
 
 

  

In vivo validation of ultrafast 
ultrasound-based velocity vector imaging 

Maxime J. P. Schoonbrood 

Graduation Internship for the Master Technical Medicine 
University of Twente 

December 2023 



 
 

  



 
 

 

 

 

 

 

In vivo validation of ultrafast ultrasound-based 
velocity vector imaging 

 
Research report 

 

 

 

Maxime J. P. Schoonbrood 

 

 

 
 

 

 

 

 

 

 

Graduation Internship for the Master Technical Medicine 
University of Twente 

 

December 2023 



 
 

  



 
 

 

Graduation committee 
 
Chairman and technological supervisor 

Prof. dr. ir. C. L. De Korte 
Multi-Modality Medical Imaging Group, University of Twente 
Medical Ultrasound Imaging Center, department of Medical Imaging, Radboudumc 

 
Medical supervisor 

Prof. dr. M. M. P. J. Reijnen 
Department of Vascular Surgery, Rijnstate Hospital 
Multi-Modality Medical Imaging Group, University of Twente 

 
Technological supervisor 

Dr. ir. A. E. C. M. Saris 
Medical Ultrasound Imaging Center, department of Medical Imaging, Radboudumc 

 
Process supervisor 

E. M. Walter MSc. 
Communication and professional behavior, Technical Medicine, University of Twente 

 
Daily supervisor 

J. M. K. de Bakker MSc. 
Medical Ultrasound Imaging Center, department of Medical Imaging, Radboudumc 

 
Daily supervisor 

J. Ruisch MSc. 
Department of Vascular Surgery, Rijnstate Hospital 
Medical Ultrasound Imaging Center, department of Medical Imaging, Radboudumc 

 
External member 

Dr. ir. F. F. J. Simonis 
Magnetic Detection and Imaging Group, University of Twente 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 
 

 

Acknowledgements 
 
About a year ago, I started my graduation internship for my master’s degree in Technical Medicine 
at the University of Twente, Enschede, in collaboration with the Rijnstate hospital in Arnhem and 
the Radboud University Medical Center in Nijmegen. I got the opportunity to gain valuable 
experiences in clinical practice and used them to contribute to a technically challenging study. I 
have grown as a person and have developed myself professionally as a technical physician. None 
of this would have been possible without the support and guidance of a lot of people. I would like 
to thank a few of them in particular. 

My deepest gratitude goes to my daily supervisors, Joosje and Janna. Joosje, I cannot thank you 
enough for the time and effort you put into helping me with all my (programming) questions. You 
were always there for me and made me feel part of the team. Janna, thank you for trusting me 
with a lot of responsibility. You taught me to make my own decisions, but were always willing to 
think along. I will not forget the interest both of you showed in me and the listening ear you offered 
when needed. I leave with a feeling of friendship and trust. 

I would also like to express my appreciation to the rest of my graduation committee. Chris, you 
were mostly in the background, but offered me just the right encouragement at pivotal moments 
to steer me in the right direction. Michel, thank you for trusting me in making my own decisions 
while maintaining a genuine curiosity about my work. You made time to think along and your 
enthusiasm increased my motivation every time. Anne, you were always willing to engage in 
thoughtful discussions and asked inspiring questions that made me think. I admire the fact that 
you always thought about ending a meeting on a positive note with a small compliment which 
has brightened up my day many times. Elyse, you have guided me and supported me in getting to 
know myself. More than once you showed me a perspective I had not thought about myself. 
Frank, thank you for completing my graduation committee. During my studies, your lectures were 
my favorites. We shared a laughter many times and my love for MRI has grown because of you. 

I would like to extend my gratitude to Joske, for her ability to teach me to see things in perspective 
during our intervision sessions. Suzan and Lonneke, I am very grateful that I got to know you both 
over the past year. We have supported one another along the way, but mostly took time to make 
a lot of fun. Thomas and Majorie, thank you for the collaboration and interesting exchange of 
ideas about my project. 

Lastly, I would like to thank my parents and sister for their unconditional love and support 
throughout my studies. And my boyfriend, Jeroen, for standing with me along the way. 

  



 
 

  



iii 
 

 

Abstract 
 
Background A stroke is a serious life-threatening medical condition. Of all strokes, 10-15% 
follow thromboembolism after the rupture of an atherosclerotic plaque in the internal carotid 
artery. Yet, the current criteria for the selection of patients for carotid endarterectomy based on 
conventional ultrasound are highly inadequate and lead to both over- and undertreatment. With 
the advent of ultrafast ultrasound, a new velocity vector imaging technique based on blood 
speckle tracking has been developed at the Radboud University Medical Center in Nijmegen, for 
the visualization of complex blood flow patterns that are associated with onset, progression, and 
rupture of atherosclerotic plaques. The visualization and quantification of complex blood flow 
patterns may enable better patient-specific risk assessment. 

Objective The aim of this research is to evaluate the performance of ultrafast ultrasound-
based velocity vector imaging using blood speckle tracking in the carotid artery of healthy 
volunteers in comparison to 4D flow MRI. 

Methods This validation study included 20 healthy volunteers that underwent both ultrafast 
ultrasound-based velocity vector imaging and 4D flow MRI of the carotid artery. A semi-
automatic algorithm was designed to perform registration of MRI to ultrasound based on 
segmentations of the carotid artery. The similarity of the registered planes was calculated based 
on the structural similarity index metric. Both techniques were compared qualitatively using 
temporal and spatial velocity profiles and quantitatively with a cosine similarity index of the 
velocity vector fields and a root-mean-square error of the correlation for axial and lateral velocity 
magnitudes. 

Results The semi-automatic registration algorithm resulted in a registration for 7 
volunteers, with a median structural similarity index of 0.94 [0.71 – 0.97]. The temporal and 
spatial velocity profiles showed fairly good correspondence. The median [min – max] cosine 
similarity for reliable velocity vector estimates was 0.77 [0.68 – 0.87] and the percentual RMSE 
for axial and lateral velocity magnitudes were 36% and 22%, respectively. 

Discussion The registration of MRI to ultrasound is uncertain due to the low resolution of the 
MRI scan, which affects the reliability of the outcomes. Also, the lower temporal and spatial 
resolution of 4D flow MRI relative to ultrasound velocity vector imaging hinder the validation of 
short-lived events that underlie complex blood flow. Nevertheless, this study is a first step 
towards the in vivo validation of ultrafast ultrasound-based velocity vector imaging and 
underwrites its potential for implementation in future clinical practice. 

Keywords Atherosclerosis, Blood velocity estimation, Carotid artery, Ultrasound velocity 
vector imaging, 4D flow MRI. 
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1. Introduction 
Every three seconds, someone around the world suffers a stroke. [1] A stroke is a serious life-
threatening medical condition that is characterized by damage to the brain and eventual cell loss 
due to a lack of oxygen supply. It is the second-leading cause of death and third-leading cause of 
disability worldwide. [2] There are two types of strokes: hemorrhagic and ischemic strokes. 
Hemorrhagic strokes are less common, but often more severe, and result from a bleeding 
following the rupture of an artery in the brain. Ischemic strokes account for the vast majority of 
strokes and are caused by the disruption of blood flow to part of the brain. If the disruption of 
blood flow is temporary, with full recovery of symptoms within 24 hours, we speak of a transient 
ischemic attack (TIA). The disruption of blood flow to the brain is either due to the narrowing or 
occlusion of a cerebral artery by buildup of atherosclerotic plaque in the vessel wall or caused 
by blockage by an embolus. Of all strokes, 10-15% follow thromboembolism after the rupture of 
an atherosclerotic plaque in the internal carotid artery. [3] Therefore, the condition of the 
vasculature supplying blood to the brain is investigated in patients who suffered an ischemic 
stroke or TIA. 

Duplex ultrasonography is the first-line diagnostic imaging modality to assess the presence and 
degree of carotid artery stenosis. Duplex ultrasonography includes the evaluation of 
atherosclerotic plaque morphology on B-mode imaging and Doppler velocity measurements of 
the common carotid artery, internal carotid artery (ICA), and external carotid artery (ECA). The 
outcomes may be verified by contrast enhanced Computed Tomography or Magnetic Resonance 
(MR) angiography. Patients with a carotid artery stenosis are prescribed medical treatment, 
including antihypertensive drugs, anti-thrombotic agents, and cholesterol synthesis inhibitors to 
prevent recurrent strokes and other cardiovascular events. [4] In addition, patients may be 
eligible for an intervention. Carotid endarterectomy (CEA), surgical removal of the plaque, is 
considered the gold standard. CEA is recommended for symptomatic patients with severe ICA 
stenosis (≥70%), which is diagnosed sonographically when ICA peak systolic velocity (PSV) is 
≥230 cm/sec together with a visible luminal narrowing (≥50%). In symptomatic patients with 
moderate ICA stenosis (50-70%), i.e. ICA PSV between 125 and 230 cm/sec together with a 
visible luminal narrowing (≥50%), CEA can be considered based on the carotid artery risk score. 
[4], [5] This score predicts the five-year risk of ipsilateral stroke with medical treatment alone. [6] 
In case of asymptomatic patients, CEA is only considered for men under 75 years of age with a 
severe ICA stenosis if the surgical risk of a disabling cerebral infarction, cerebral hemorrhage or 
death is below 3%. Carotid artery stenting is an alternative to CEA in a selected group of patients. 
[4] However, the aforementioned criteria for the selection of patients for intervention are highly 
inadequate. The number needed to treat is six for patients with severe ICA stenosis. [7] This 
means that with every six interventions only one recurrent stroke is prevented within five years, 
while five patients are unnecessarily exposed to the risks of surgery. Moreover, patients with 
symptomatic mild ICA stenosis (20-49%), who only receive medical treatment, have a 7.4% 
chance of suffering a recurrent stroke within three years, which might have been prevented with 
early intervention. [8] The both over- and undertreatment show the need for improved patient-
specific risk stratification for a better selection of patients who will benefit from intervention. 

Patient-specific risk stratification requires understanding of the mechanisms underlying onset, 
progression, and rupture of atherosclerotic plaques. One of the mechanisms that plays an 
important role in all stages of atherosclerotic cardiovascular disease is wall shear stress (WSS). 
WSS is the tangential stress exerted by the flowing blood on the endothelial surface of the arterial 
wall. Normal maximum WSS in arteries is considered to be between 1 and 7 Pa. [9] Low and/or 
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oscillating WSS can be associated with onset and progression of atherosclerosis. In contrast, 
high WSS values at the site of the stenosis make the atherosclerotic plaque more prone to 
rupture. A rupture causes the highly thrombogenic core of the plaque to be exposed to the blood, 
thereby increasing the risk of the formation of a blood clot that can break loose and lead to an 
ischemic stroke or TIA. Abnormally low and high WSS values occur mainly at locations of 
geometrical irregularities, like the carotid bifurcation, as a result of locally disturbed and 
complex blood flow patterns. [10], [11] Therefore, visualization and quantification of complex 
blood flow patterns may enable the estimation of WSS and other flow-derived parameters, that 
can be used for better patient-specific risk assessment of recurrent stroke. 

Conventional color Doppler ultrasound visualizes solely the axial component of blood flow 
velocity, i.e. in the direction of the ultrasound beam. The true blood velocity can be derived only 
in a single sample volume using pulsed wave Doppler with manual angle correction, which 
makes the technique susceptible to operator-dependent errors. Besides, the detection of short-
lived events is limited by the low frame rate due to the line-by-line acquisition method. Complex 
blood flow can variate strongly in direction and magnitude over space and time. [12] 
Consequently, conventional Doppler ultrasound methods are unable to visualize complex blood 
flow patterns. However, with the advent of ultrafast ultrasound, new possibilities have arisen for 
the development of techniques to visualize complex blood flow patterns using 2D velocity 
vectors at any location in the image plane. [13]–[15] These techniques are commonly referred to 
as velocity vector imaging.  

At the Medical Ultrasound Imaging Center of the Radboud University Medical Center in Nijmegen, 
the Netherlands, Saris et al. [16] developed an ultrafast ultrasound-based 2D velocity vector 
imaging method using blood speckle tracking in the carotid artery. The method has proven to be 
able to visualize and quantify complex flow patterns with high accuracy and precision in an 
experimental setup. Moreover, the first in vivo recordings were promising for the clinical 
feasibility of the method. The introduction of the method in clinical research could increase our 
understanding of complex flow patterns in relation to onset, progression, and rupture of 
atherosclerotic plaques, for patient-specific risk stratification. Therefore, in vivo validation of the 
2D velocity vector imaging method is necessary to gain insight in the accuracy and reproducibility 
in human subjects. 

Currently, 4D (3D + time) flow MRI is the only non-invasive blood flow velocity quantification 
technique that is clinically validated for flow measurements and it is therefore considered the in 
vivo gold standard. [17] 4D flow MRI uses velocity-encoding to measure the velocity magnitude 
in three perpendicular directions based on phase-contrast, allowing for the calculation of a 3D 
velocity vector at any location in the image volume. [18] Yet, MRI has some important 
disadvantages relative to ultrasound. It is much more expensive and less easily accessible, has 
a higher burden for the patient, no live view, and a lower temporal and spatial resolution. 
Therefore, ultrasound remains the technique of choice for the screening of the carotid artery. The 
aim of this research is to evaluate the performance of ultrafast ultrasound-based velocity vector 
imaging using blood speckle tracking in the carotid artery of healthy volunteers in comparison to 
4D flow MRI. 
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2. Research question and hypothesis 
The research question that is being answered in this thesis is: 

How does the performance of ultrafast ultrasound-based velocity vector imaging using 
blood speckle tracking compare to 4D flow MRI in assessing the velocity vector field in 
the carotid artery of healthy volunteers? 

Two sub questions underlying the research question are: 
1. How can the 4D flow MRI volume be registered to the ultrafast ultrasound-based velocity 

vector imaging plane? 
2. How can velocity vectors obtained from ultrafast ultrasound-based velocity vector 

imaging be compared with those from 4D flow MRI? 

Previous research by Saris et al. [16] confirmed the reliability of the ultrafast ultrasound-based 
velocity vector estimates based on a high level of correspondence with conventional ultrasound 
imaging in straight-tube measurements and in vivo in two healthy and three diseased carotid 
arteries. Therefore, it is hypothesized that the performance of ultrafast ultrasound-based velocity 
vector imaging using blood speckle tracking will demonstrate comparable to 4D flow MRI in 
assessing the velocity vector field in the carotid artery of healthy volunteers. However, it is 
expected that 3D-to-2D registration of two different imaging modalities is complicated and may 
influence the results. Furthermore, it is anticipated that the enhanced temporal and spatial 
resolution of velocity vector imaging will provide more detailed insights into complex blood flow 
patterns in the carotid artery that may go undetected by 4D flow MRI. 
 

3. Technological background 
In this study, two imaging techniques for the visualization of blood flow velocity patterns in the 
carotid artery are compared. This chapter describes the technological background and working 
principles of both techniques. 

3.1 Ultrafast ultrasound-based velocity vector imaging 
Velocity vector imaging is a collective term for relatively new techniques that allow for angle-
independent estimation and visualization of blood velocity patterns. Velocity estimation is 
performed not only along the axial direction, as is the case for conventional color Doppler 
ultrasound, but also along another direction of the image plane. This allows for the evaluation of 
the magnitude and direction of the velocity vector at any location in the image plane. 

3.1.1 Ultrafast ultrasound 
Ultrasound imaging is based on the transmission of high frequency sound waves into the body 
and receiving their reflections and scattering of body structures. In conventional line-by-line 
ultrasound imaging, a focused ultrasound pulse is transmitted into the tissue and the received 
echoes are used to reconstruct a single line of the image. The frame rate (of around 10-30 
frames/sec) is limited by the number of image lines multiplied with the time required to 
transmit a pulse and receive the backscattered echoes. With the advent of ultrafast 
ultrasound, it is possible to obtain ultrasound images with a much higher frame rate (up to 
10000 frames/sec). Ultrafast ultrasound imaging uses the transmission of an unfocused 
plane wave that insonifies the full field-of-view at once. [15] Reconstruction of all image lines 
takes place simultaneously, using parallel receive beamforming (e.g. delay-and-sum 
beamforming). [19] Higher frame rates allow for higher temporal resolution. Moreover, the 
short time between subsequent frames opened up possibilities for new velocity vector 
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estimation methods, like blood speckle tracking, that otherwise would suffer from 
decorrelation of the speckles between image frames. A limitation of ultrafast ultrasound is 
that it suffers from low lateral spatial resolution and low contrast, since focusing is restricted 
to the receive mode. The image quality can be improved, partially at the cost of the frame rate, 
by combining multiple tilted plane waves to obtain one image plane using coherent 
compounding. [20] 

3.1.2 Clutter filtering 
The signal that is measured for the visualization of blood flow originates from the scattering of 
red blood cells. The amplitude of the backscattered echoes from red blood cells is typically 
far less than the amplitude of the reflections from surrounding structures. The removal or 
suppression of clutter signal, originating from surrounding tissues, is therefore a major 
challenge in blood velocity vector imaging. [21] Conventional clutter filtering is based on the 
difference in temporal frequency between the relatively fast moving blood and the slow 
moving of nearly stationary surrounding tissue. The signal from the surrounding tissue can be 
suppressed by applying a high-pass filter in the frequency domain, see Figure 1. There is a 
trade-off between sufficient stopband attenuation, to remove the clutter signal, and the 
steepness of the transition region, to minimize the loss of blood signal. [22] In the velocity 
vector imaging technique developed by Saris et al. [16], adaptive high-pass finite impulse 
response clutter filtering is applied over the cardiac cycle. It uses a short transition region with 
a dynamic cut-off value that is set based on the axial vessel wall velocities. Several other 
clutter filter designs have been suggested [23], but they will not be mentioned here. 

 

Figure 1   High-pass clutter filtering. [22] 

   

3.1.3 Velocity vector estimation methods   
The estimation of the velocity vectors can be based on four types of estimation principles: 
multi-angle Doppler analysis, transverse oscillation, directional beamforming, and speckle 
tracking. [13] Multi-angle Doppler analysis uses triangulation to combine 1D Doppler 
estimates from different angles of insonation to derive a 2D velocity vector. [24] Transverse 
oscillation estimates the 2D velocity vector by introducing lateral oscillations in the 
ultrasound field by applying an apodization function in receive or by filtering around a desired 
lateral oscillation frequency in the Fourier domain. In this way, the received signals become 
sensitive to axial and lateral motion within the field. [25] Both multi-angle Doppler and 
transverse oscillation are based on the estimation of the phase-shift and are therefore limited 
by aliasing. In directional beamforming, the cross-correlation of beamformed lines between 
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subsequent acquisitions is calculated for multiple angled beamforming grids. The angle with 
the highest correlation value is used to calculate the magnitude and direction of the 2D 
velocity vector. This method has an intensive computational burden. [26] Lastly, blood 
speckle tracking uses the displacement of the blood speckle pattern between subsequent 
acquisitions to determine the 2D velocity vector. The blood speckle tracking technique is 
discussed more extensively hereafter, since it underlies the velocity vector imaging technique 
developed by Saris et al. [16] that is investigated in this study. 

3.1.4 Blood speckle tracking 
Blood speckle tracking is based on the principle that transmitted ultrasound waves are 
scattered in all directions when they encounter structures with dimensions smaller than the 
wavelength of the ultrasound, like red blood cells. The backscattered echoes form an 
interference pattern, called a speckle pattern. These patterns are tracked between 
subsequent acquisitions to determine the displacement of the tissue (i.e. blood), see Figure 
2. A kernel region in one acquisition is matched to a larger search region in the subsequent 
acquisition, using a pattern matching function. The displacement of the underlying tissue is 
defined by the location that best matches the kernel region relative to the original location of 
this kernel. The velocity can be calculated by dividing the estimated displacement by the time 
between the frames used for displacement estimation. Saris et al. [16] use 2D normalized 
cross-correlation as pattern matching function. The procedure is repeated for the entire 
region of interest (ROI), which is manually outlined, to create a map of 2D blood velocity 
vectors. [22] 

The performance of the blood speckle tracking method depends on the type of signal 
(radiofrequency (RF) or envelope) that is used and the sizes of the kernel and search region, 
which determine the robustness, computational time, and maximum detectable velocity. An 
important disadvantage of blood speckle tracking is its susceptibility to decorrelation of 
speckle patterns. This decorrelation can be a consequence of out-of-plane movement, strong 
velocity gradients, and low beam-to-flow angles. [22] 

3.1.5 Adaptive velocity compounding 
Saris et al. [16] proposed an adaptive velocity compounding method to further improve the 
accuracy of the blood velocity estimates. First, this method automatically adjusts the 
effective pulse repetition frequency (PRF) over the cardiac cycle. This allows for more 
accurate estimation of both low velocities in diastole and high velocities in systole with a low 
and high PRF, respectively. Secondly, a combination of displacement compounding [27] and 
compound speckle tracking [28] is applied. In this combined technique, two plane waves are 
transmitted into the medium at angles of -20° and 20°. The velocities are estimated for both 
angles separately. Then, the quality of the velocity estimates is determined. Saris  et al. [16] 
perform this quality assessment based on the signal power after clutter filtering and the 
variance of the axial inter-frame velocities over 40 estimates. The 2D cross-correlation 
coefficient is used as a quality metric. When the velocity estimates of both angles are of 
sufficient quality, triangularization of the axial angular displacement component of both 
angles is performed. The axial component has the highest accuracy, because of the higher 
axial resolution and the presence of phase information in the axial direction of the RF data. If 
the velocity estimates of one of the angles is of too low quality, projection of the remaining 
angular velocity vector with sufficient quality is used to obtain the axial and lateral 
displacement component. In this way, the combined technique has the possibility to discard 
unreliable velocity estimates. 
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Figure 2   The basics of speckle tracking. Unfiltered B-mode images show the carotid artery 
bifurcation (top row), where the blood signal becomes visible after clutter filtering (second 
row). A kernel region in the first acquisition (i) is matched to part of a larger search region in 
the following acquisition (i+1). Matching is based on the underlying RF or envelope data (third 
row). The peak in the pattern matching function reveals the displacement (bottom row). [22] 

 

3.2 4D flow Magnetic Resonance Imaging 
Time-resolved three-dimensional phase-contrast MRI, known as 4D (3D + time) flow MRI, is 
based on the linear relationship between blood flow velocity and the phase of the MRI signal that 
is acquired during an MRI measurement. The MRI signal originates from hydrogen protons which 
constitute a large portion of body tissue and especially blood plasm, in contrast to the ultrasound 
signal which results from the scattering of red blood cells. [29] Flow MRI uses bipolar gradients 
to induce velocity-encoding in the x, y, and z direction. The effect of a bipolar gradient in one 
direction on stationary and moving hydrogen protons is illustrated in Figure 3. When the first half 
of the bipolar gradient is applied, protons undergo a phase shift depending on their location along 
the gradient. Protons that are moving, experience differing gradient strengths as their locations 
along the gradient are constantly changing. Therefore, they will have a different phase shift than 



7 
 

the surrounding stationary protons. When the second half of the bipolar gradient is applied with 
equal but negative magnitude, the phase shift of the stationary protons is nullified. However, the 
moving protons are all encoded with a phase shift. This phase shift is proportional to their velocity 
in the direction of the gradient. Faster moving protons will have a greater phase shift than slower 
moving protons, since they have experienced a greater difference in gradients. This process can 
be repeated for the x, y, and z direction to determine the phase shift and corresponding velocity 
component of flow in each direction. The velocity vector of a specific voxel encompasses all 
three measured velocity components. [30], [31] 

Equation 1 shows the proportionality of the phase shift to the proton velocity and the gradient 
strength. 

∆𝜑 = 𝛾�⃑�∆𝑀1   [1] 

With ∆𝜑 the phase shift, 𝛾 the gyromagnetic ratio, �⃑� the proton velocity, and ∆𝑀1 the change in 

magnetic moment that is directly proportional to the gradient strength.  

There is a maximum proton velocity that can be measured, since phase shifts that exceed 180° 
in the positive or negative direction will result in aliasing. This maximum velocity is set as a 
parameter, called the velocity encoding (VENC). This VENC is inversely proportional to the 
strength of the velocity-encoding gradients. It can be increased by decreasing the gradient 
strength and vice-versa. The spatial resolution for small velocities decreases with increasing 
VENC. In practice, it is therefore important to select the most appropriate VENC for the velocities 
to be measured. [31] 

MR acquisitions are too slow to capture the dynamics within a single cardiac cycle in real time 
with sufficient spatial resolution. Consequently, the acquisition is split over multiple heartbeats. 
The acquisitions of multiple cardiac cycles are synchronized with the RR-interval by ECG-gating. 
The velocity vector fields are an average of acquisitions at specified phases during the cardiac 
cycle over multiple heartbeats. An advantage of 4D flow MRI is that it allows for retrospective 
positioning of analysis planes at any location withing the acquisition volume. This feature will be 
used in this study after the registration of the MRI volume to the ultrasound plane. [18] 

 

 

  

  

  

  

  

 

 

 

 

Figure 3   Application of a bipolar gradient in the direction of flow results in a phase shift in the 
moving protons. [31] 
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4. Methods 
The method section describes the study design and population, data acquisition and post-
processing steps for both ultrasound and MRI, the registration algorithm, and comparison 
methods for the velocity vectors. 

4.1 Study design and population 
This prospective, observational, validation study included 20 healthy volunteers, equally divided 
in two age groups of 20 to 30 and 65 to 75 years old with an equal distribution of men and women. 
The exclusion criteria were a cardiovascular or pulmonary medical history, the use of medication 
for cardiovascular risk factors, and standard MRI exclusion criteria (such as claustrophobia, the 
presence of a pacemaker or cerebral vascular clips). Volunteers who met the criteria were 
included in the study after they provided informed consent. Both ultrasound and MRI 
measurements were acquired of all participants and performed between November 2022 and 
March 2023 at the Rijnstate Hospital, Arnhem, the Netherlands. The study protocol conforms to 
the ethical guidelines of the 1975 Declaration of Helsinki and was priorly approved by an 
authorized ethical committee in the Netherlands (NL80478.091.22). Funding was obtained from 
the Rijnstate Vriendenfonds. 

4.2 Data acquisition and post-processing 
4.2.1 Ultrasound-based velocity vector imaging 
Ultrafast ultrasound data was acquired using a programmable Vantage 256 ultrasound 
system (Verasonics, Kirkland, Washington, USA) equipped with an L12-5 50 mm linear array 
transducer (ATL, Bothell, Washington, USA) with a center frequency of 7.8 MHz. Plane waves 
were repeatedly transmitted at angles of -20° and 20° with a PRF of 10 kHz and data was 
acquired for 3 seconds, together with 3-lead ECG-recording. The active aperture (128 of 256 
elements) for the -20° and 20° steered plane waves was chosen to obtain maximum overlap 
at the center of the carotid artery. An overview of the transducer properties and acquisition 
parameters is given in Table 1. The measurements were performed by a technical physician 
(JR) with 2 years of experience and participants were examined in supine position with their 
heads tilted slightly upward and to the right. The left carotid artery bifurcation was visualized 
in a longitudinal view. Whenever anatomically possible, the ICA and ECA were captured in one 
image view. Otherwise, the image plane was focused on the carotid bulb and the ICA. 

    

    Table 1   Ultrasound transducer properties and acquisition parameters 

Property Value 

Center frequency (MHz) 7.8 

Sampling frequency (MHz) 31.2 

Transducer element pitch (µm) 195.3 

Number of transducer elements 256 
Number of simultaneously active 
elements 128 

Elevational focus depth (mm) 18 

Pulse repetition frequency (kHz) 10 

Transmit and receive angle (°) ±20 
Apodization window in transmit Tukey (150, 30%) 
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Multiple post-processing steps were executed to obtain velocity vector estimates from the 
ultrafast ultrasound data. First, the RF channel data was beamformed using delay-and-sum 
beamforming on a point-spread-function-shaped beamforming grid. For velocity 
compounding, beamforming took place at angulated grids in the direction of the steered plane 
waves. For visualization of the data as B-mode images, the RF data of both angles was 
beamformed on a 0° grid and coherently compounded. A manually drawn vessel wall contour 
was tracked over all acquired frames to generate lumen ROIs and obtain the axial velocity 
component of the vessel wall. The data was clutter filtered using a 150th order Finite Impulse 
Response clutter filter with a -48 dB cut-off velocity of two times the 90th percentile axial vessel 
wall velocity and a short transition region of 1 cm/s (-80 till 0 dB).  The clutter filter settings 
were dynamically set for angles of -20° and 20° separately. In order to suppress enough tissue 
signal during the diastolic phase, the minimum cut-off velocity was set to 0.1 cm/s. The blood 
velocity vectors were coarsely estimated using the cross-correlation of envelope data and 
thereafter the estimates were refined using RF data. Displacement estimation took place at 
an effective PRF of either 2.5 or 5 kHz, which was set per ensemble of 40 frames. If the 95th 
percentile of the estimated velocity magnitude in the first inter frame displacement estimate 
of the ensemble was below 0.25 m/s (estimated at an effective PRF of 5 kHz), displacement 
estimation took place at 2.5 kHz for the entire ensemble of 40 frames, otherwise a PRF of 5 
kHz was used. The choice for performing compounding of both axial estimates or projection 
of a single angle axial and lateral estimate was based on the maximum cross-correlation 
coefficient. The threshold for reliable estimates was set at a correlation value higher than 0.4 
for 15 out of the 40 ensemble estimates for each angle separately. In case both angles fulfilled 
this criterion, compounding was applied to all axial interframe displacement estimates of this 
spatial position. In case only one of the angles met the criterion, the axial and lateral 
displacement estimates of that one angle were projected. When none of the angles reached 
the criterion, compounding of the axial estimates was used to obtain a velocity vector, but the 
vector was marked as unreliable. Eventually, the median of the interframe displacements of 
each ensemble of 40 frames was calculated after spatial filtering to obtain the final ensemble 
velocity vectors. The post-processing settings for ultrafast ultrasound are summarized in 
Table 2. 

Table 2   Ultrasound post-processing settings for beamforming and displacement estimation 

Property Value 

Beamforming 
F-number 0.875 

Apodization window in receive Hamming 

Sampling beamforming grid (µm), axial x lateral 12.3 x 51.7 

Displacement estimation 

Template size (mm), axial x lateral 
Iteration 1 
Iteration 2 

 
2.33 x 2.33 
1.2 x 1.2 

Median filtering interframe estimates (mm), axial / lateral 
Iteration 1 

 
0.5 x 0.5 / 0.5 x 0.5 

Median filtering ensemble averaged estimates (mm), axial / lateral 0.25 x 0.25 / 0.25 x 0.25 
Final displacement resolution (mm), vertical x horizontal 0.1 x 0.1 
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4.2.2 4D flow MRI 
In addition to the ultrafast ultrasound imaging, all participants underwent a time-resolved 
phase-contrast 3.0T MRI scan (Ingenia, Philips Healthcare, Best, the Netherlands) with the 
use of a head-and-neck coil. Median [min – max] time between ultrasound and MRI 
measurements was 2 [0 – 133] days. The carotid artery bifurcation was localized in multi-
section 2D survey acquisitions and a 3D quantitative flow scout scan was used to extract the 
PSV from the central area of a cross-section of the common carotid artery. The VENC was set 
at a value approximately 10% above the maximum PSV measured with MRI or conventional 
pulsed wave Doppler ultrasound, to prevent aliasing. Subsequently, a 3D acquisition was 
performed with a free-breathing RF-spoiled gradient echo sequence with 3-directional 
velocity encoding. Retrospective ECG-gating was used to reconstruct the cardiac cycle into 
28 phases. The repetition time and echo time varied between participants due to a difference 
in heart rate, but there median [min – max] values were 4.549 [4.287 – 4.938] ms and 2.671 
[2.418 – 3.012] ms, respectively. The flip angle was 8°. Images were acquired in a coronal 
plane with a resolution of 1.2093 x 1.2093 mm, 1.21 mm spacing between slices, and a slice 
thickness of 2.293 mm. The median [min – max] acquisition time was 11.7 [9.1 – 18.4] minutes. 
The MRI acquisition parameters are assembled in Table 3. Scans were executed by an MRI 
radiographer together with a technical physician with the participants again in supine position 
and their heads tilted slightly upward and to the right, to resemble their position during the 
ultrasound measurements. 

 

             Table 3   4D flow MRI acquisition parameters for all twenty volunteers 

Property Value 

Spatial resolution (mm3) 1.2093 x 1.2093 x 1.21 

Slice thickness (mm) 2.293 

Flip angle (°) 8 

VENC (cm/s), median [min – max] 100 [75 – 150] 

TR (ms), median [min – max] 4.549 [4.287 – 4.938] 

TE (ms), median [min – max] 2.671 [2.418 – 3.012] 

Total acquisition time (minutes), median [min – max] 11.7 [9.1 – 18.4] 
 

Post-processing of the data, including offset correction for static tissue and anti-aliasing 
correction, was performed using CAAS MR Solutions software (Pie Medical Imaging, 
Maastricht, the Netherlands). This resulted in four datasets per volunteer for the MRI 
recordings: one 3D volume with magnitude information and three 3D volumes with phase 
information in the x, y, and z direction. The phase information in each direction was converted 
to velocity magnitudes, using Equation 2. 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑠𝑙𝑜𝑝𝑒 ∙  𝑝ℎ𝑎𝑠𝑒 +  𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  [2] 

 

The direction of positive flow is along the x-axis, from right-to-left, along the negative y-axis, 
from feet-to-head, and along the z-axis, from anterior-to-posterior, as shown in Figure 4. 
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Figure 4    Direction of positive flow relative to the coordinate system x, y, and z-axis. 

 

4.3 Registration algorithm 
To be able to compare the velocity vectors of ultrasound-based velocity vector imaging to 4D flow 
MRI, it is necessary to extract the slice from the 3D MRI volume that corresponds with the 2D 
ultrasound plane. In other words, the 3D MRI scan should be registered to the 2D ultrasound 
plane. 3D-to-2D registration is a complex and difficult process, especially for images from 
different imaging modalities based on different physical properties. In this study, a semi-
automatic algorithm was designed and evaluated to search for the slice through the 3D MRI scan 
that best matches the ultrasound plane based on geometrical information, namely the 
segmentations of the carotid artery on both scans. The algorithm is developed using MATLAB 
(R2021a, MathWorks, Natick, Massachusetts, USA). 

4.3.1 Pre-processing 
It was decided to match the MRI volume and ultrasound plane at the timepoint of PSV. The 
timepoint of PSV can be determined from the ultrafast ultrasound-based velocity trace at a 
manually appointed location in the ROI for one RR-interval of the cardiac cycle. It was 
assumed that the time between R-top on ECG to timepoint of PSV on the ultrasound velocity 
trace did not significantly change with varying heart rate. [32], [33] Therefore, the time 𝑡 from 
R-top on the ECG to timepoint of PSV of the ultrasound velocity trace was divided by the 
duration 𝑑 of one phase on MRI at the specified heart rate, to obtain the expected phase of 
PSV of the MRI scan, according to Figure 5. 

 

Figure 5   Time 𝑡 from R-top on ECG to timepoint of PSV of the ultrasound velocity trace divided 
by the duration 𝑑 of one phase on MRI at the specified heart rate, to obtain the expected phase 
of PSV of the MRI scan. 
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The carotid artery was segmented manually on the ultrasound frame at PSV. Unlike the post-
processing steps of the ultrasound data, the entire image plane was used for this 
segmentation and not just the part where the steered plane waves overlap. This resulted in a 
binary 2D image with ones inside the lumen ROI and zeros outside the lumen. For registration 
purposes, the resolution of this binary image was reduced to match the resolution of the MRI 
scan. This was achieved through spatial averaging, resulting in an image of 29 x 21 pixels. 

The MRI volume containing the magnitude information at PSV was cropped around a manually 
selected center point in the carotid artery bifurcation to limit the dimensions of the search 
volume to 71 x 51 x 31 pixels. The triangle method [34] was then used to calculate a threshold 
for segmentation of the lumen area based on a histogram of the normalized data of the 
cropped magnitude scan. The triangle method constructs a line between the peak of the 
histogram and the farthest bin that contains any pixels, as illustrated in Figure 6. The threshold 
is set at the value where the perpendicular distance from this line to the histogram is 
maximized. The automatic segmentations were visually evaluated and if necessary erosion 
and dilation with a structuring element or manual adjustments were executed. In this way, the 
final binary 3D search volume was obtained. 

 

 

Figure 6   Triangle method to automatically determine the threshold for segmentation of the 
cropped MRI scan, adapted from [34]. 

 

4.3.2 Search for the matching slice 
The search algorithm is designed to compare slices in multiple directions through the 3D 
binary MRI volume with the 2D binary ultrasound plane. Therefore, the cropped MRI volume is 
translated in the x, y, and z direction over varying distances and rotated around the x, y, and z-
axis with multiple combinations of angles. All rotations are in clockwise direction in a right-
handed coordinate system. For all the combinations of translation distances and rotation 
angles, a horizontal slice is extracted from the center of the binary volume. The size and 
resolution of this slice are matched to the spatially averaged ultrasound image using linear 
interpolation. The sum of absolute differences between the pixels in this slice and the 
ultrasound plane is calculated as a measure of similarity. The minimum sum of absolute 
differences corresponds with the combination of settings that describes the best matching 
slice. The algorithm is illustrated in Figure 7. 
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Figure 7   The search algorithm explained. The MRI volume (A) is cropped around a manually 
selected center point in the carotid artery bifurcation (B). The magnitude information is used to 
segment the carotid artery to obtain a 3D binary search volume (C). This volume is translated in 
the x (D), y, and z direction over varying combinations of distances and rotated around the x (E), 
y, and z-axis with multiple combinations of angles. From the center of the resulting volumes a 
horizontal plane is extracted (F). Every MRI slice (G) is then compared to the ultrasound plane (H) 
using the sum of absolute differences. 

A   MRI volume 

C   Segmented ROI 

F   Extract horizontal slice G   MRI slice H   Ultrasound plane 

Crop around 
center point 

E   Rotations x (y and z) D   Translations x (y and z) 

B   Cropped ROI 
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Segmentation 

Similarity metric 

Extract slice 
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In practice, first a manual initialization of the MRI volume translations and rotations, of which 
the extracted horizontal slice is roughly comparable to the ultrasound plane, was obtained for 
every volunteer. Then, the algorithm was executed in two iterative steps to limit computational 
time. The first iteration was a quick search with a step size of 1 pixel and 2° for translation 
distances and rotation angles, respectively. The quick search was executed for all 
combinations of translations along the x, y, and z-axis from -5 to +5 pixels around their 
initialization, rotations around the x and y-axis from -15° to +15° around their initialization, and 
rotations around the z-axis from -30° to +30° around the initialization. The second iteration 
was a finetuning step, where the step size for the rotation angles was decreased to 1°. The 
boundaries for the translations and rotations of the second iteration were determined based 
on the outcomes of the first iteration. For each translation direction and rotation axis 
separately, a graph was drawn based on the found best settings which showed the influence 
of a change in that parameter on the sum of absolute differences of the planes. It was 
expected that a clear minimum sum of absolute differences would be found for the optimal 
combination of settings with increasing sum of absolute differences for larger deviations from 
these settings. If this was the case for the results of the first iteration, a limit for the sum of 
absolute differences was set manually and was used as a cut-off value for the boundaries of 
the second iteration. If again a minimum was found for the second iteration, this minimum 
determined the optimal combination of settings that described the orientation of the best 
matching slice through the 3D volume. If no minimum was found for the first or second 
iteration, the volunteer was excluded from further evaluation. 

4.3.3 Outcome measure 
Since the sum of absolute differences depends on the size of the ROI, the Structural Similarity 
(SSIM) index was calculated as an absolute measure of similarity of MRI slice and the 
ultrasound plane. This measure is calculated for each pixel relative to multiple pixels in a 
close neighborhood. An SSIM index of +1 indicates perfect similarity of two images, 0 
indicates no similarity, and -1 means perfect anti-correlation. 

4.4 Comparison of the velocity vectors 
4.4.1 Pre-processing 
If a matching slice was obtained, further evaluation of the correspondence between the MRI 
velocity data and the ultrafast ultrasound-based velocity estimates took place. First, the 3D 
MRI velocity vectors were projected on the 2D slice. Therefore, the three 3D volumes with the 
velocity information in the x, y, and z direction were translated and rotated with the optimal 
distances and angles. Again, the data in a horizontal slice was extracted from the center of the 
volume. This resulted in three datasets of the velocity magnitude in the x, y, and z direction, 
which together describe a 3D vector for every pixel in the slice. These vectors were projected 
on the axial and lateral direction of the slice in 3D to obtain the desired 2D velocity vectors. 

The ultrasound velocity vectors were estimated on a grid with an approximately 12 fold higher 
resolution in the axial direction and 11 fold higher resolution in the lateral direction. For 
quantitative comparison, therefore, the ultrasound-based velocity estimates were spatially 
averaged to obtain velocity estimates at the same grid as MRI (29 x 21 pixels). The MRI values 
were masked with the ROI of ultrasound-based velocity estimates. Temporal resolution of 
ultrasound-based velocity vector imaging was on average 4 ± 0.5 fold higher than 4D flow MRI, 
varying with the difference in heart rate between ultrasound and MRI acquisitions. Therefore, 
temporal averaging of the ultrasound velocity estimates around the timepoint of interest was 
applied to obtain more comparable estimates for quantitative analysis. 
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4.4.2 Evaluation and outcome measures 
The mean and 95% confidence interval of the temporal velocity profiles of ultrasound and MRI 
over one cardiac cycle (RR-interval) at three manually determined locations in the ROI, at 
close distances of approximately 2.4 mm from one another, were qualitatively evaluated. The 
temporal velocity profiles were used to redetermine more accurate matching timepoints of 
PSV and were shifted according to them. The mean and 95% confidence interval of the spatial 
velocity profiles of ultrasound and MRI over three lines across the lumen diameter of the ROI 
at PSV were visualized. In addition, the velocity vectors over the entire ROI at PSV were 
quantitatively evaluated, based on two measures of correspondence: 

▪ The cosine similarity of the ultrasound-based velocity vectors and MRI velocity vectors at 
PSV was calculated, according to Equation 3. 
 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝑣𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑 ∙  𝑣𝑀𝑅𝐼

|𝑣𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑||𝑣𝑀𝑅𝐼|⁄   [3] 

 

Where 𝑣𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑 ∙  𝑣𝑀𝑅𝐼  denotes the inner vector product and |𝑣𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑||𝑣𝑀𝑅𝐼| denotes 
the product of the velocity magnitudes. The cosine similarity is a measure of 
correspondence of the direction of the vectors. In other words, it indicates whether the 
vectors are pointing in roughly the same direction. The resulting similarity ranges from -1 
to +1, where two vectors pointing in exactly the same direction (independent of their 
magnitudes) have a similarity of +1, two orthogonal vectors have a similarity of 0, and two 
opposite vectors have a similarity of -1. The cosine similarity was calculated two times: 
1) for all velocity estimates and 2) only considering the reliable velocity estimates. 
 

▪ The root-mean-square error (RMSE) of the correlation of axial and lateral velocity 
magnitudes between ultrasound and MRI at PSV were obtained for the total of 7 
volunteers, according to Equation 4. 

𝑅𝑀𝑆𝐸 =  √1
𝑛⁄  ∑ (𝐸𝑆𝑇(𝑖) − 𝐺𝑇(𝑖))

2𝑛
𝑖=1      [4] 

 

With 𝑛 the number of estimated samples within the ROI, 𝐸𝑆𝑇(𝑖) the estimated value for 
sample 𝑖, and 𝐺𝑇(𝑖) the ground truth value for sample 𝑖. The RMSE was used as a measure 
of correspondence of axial and lateral velocity magnitudes. The correlation plots were 
visualized. 
 

5. Results 
5.1 Cohort characteristics 
A total of 20 volunteers underwent both ultrafast ultrasound imaging and 4D flow MRI. However, 
5 participants were excluded for analysis with the registration algorithm either due to the 
absence of ECG data (n = 1), failure to obtain a clear ultrasound velocity trace with the current 
settings (n = 1), failure to obtain a reliable lumen segmentation on ultrasound (n = 1) or skewed 
acquisition of the MRI volume relative to the other participants (n = 2). During analysis with the 
registration algorithm, 8 additional participants were excluded, either because no reliable 
initialization could be determined since characteristic geometric features were missing (n = 4) or 
no minimum sum of absolute differences was found within the search regions (n = 4). This 
resulted in the inclusion of 7 volunteers for further analysis of the velocity vector comparison 
between ultrasound and MRI. 
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Of these 7 volunteers, 3 were men and 4 were women. 3 of them belonged to the age group of 20 
to 30 years old and 4 belonged to the age group of 65 to 75 years old. Median [min – max] time 
between ultrasound and MRI measurements was 0 [0 – 7] days. Overall, median [min – max] 
blood pressure was 131/76 [102/62 – 158/96) mmHg and median heart rate [min – max] was 70 
[51 – 86] bpm. When comparing ultrasound and MRI, median [min – max] difference between 
systolic and diastolic blood pressure was 55 [36 – 64] mmHg and 52 [40 – 68] mmHg and median 
[min – max] heart rate was 73 [56 – 86] bpm and 70 [51 – 70] bpm, respectively. 

5.2 Outcomes of the registration algorithm 
Median [min – max] runtime of the registration algorithm for both iterations was in total 16.3 [11.4 
– 21.7] hours. An example (of volunteer 4) of the outcome of the registration algorithm, is 
displayed in Figure 8. The graphs show the minimum sum of absolute differences of the MRI slice 
and ultrasound plane at the optimal settings of translation distances and rotation angles. For 
each translation direction and rotation axis separately, the influence of a change in its value 
relative to the optimal settings on the outcome of the algorithm is shown for both iterations. The 
zero value is calculated as the sum of absolute differences between the ultrasound plane and a 
fully black MRI plane. The limit is the manually chosen cut-off value that determines the 
boundaries of the settings for the second iteration. It can be seen that the minimum for the sum 
of absolute differences is less clear for varying translations along the y-axis and rotations around 
the z-axis. In addition, the results of the second iteration show a sawtooth shape in the graphs of 
the rotation angles which hinders the reliability of the minimum. This is seen for all participants 
in this study. 

Figure 9 shows two examples (of volunteer 4 and 7) of the best matching slice through the MRI 
segmentation resulting from the registration algorithm, the corresponding segmented 
ultrasound plane, and their overlay. The first example has good overlap, whereas the second 
example shows large deviations between the ROIs. In particular, there is a difference visible in 
the upper branch after bifurcation, the ECA. Quantitative comparison of the resulting best 
matching MRI slices with the ultrasound planes for all volunteers results in a median [min – max] 
SSIM of 0.94 [0.71 – 0.97]. The SSIM indices for all included volunteers separately are given in 
Table 4. 

 

Table 4   Outcome measures for the 7 included volunteers separately 

Volunteer 1 2 3 4 5 6 7 Median 

SSIM 0.96 0.92 0.95 0.97 0.94 0.87 0.71 0.94 

Cosine similarity all 
velocity vectors 0.69 0.62 0.72 0.86 0.74 0.69 0.55 0.69 

Cosine similarity 
reliable estimates 0.79 0.71 0.76 0.87 0.83 0.68 0.77 0.77 

RMSE axial velocity 
magnitude (cm/s) 7.84 5.34 4.43 5.99 5.78 7.60 11.03 5.99 

RMSE lateral 
velocity magnitude 
(cm/s) 

17.93 14.78 12.15 16.16 21.32 23.64 29.47 17.93 
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A   Iteration 1 

 

 

B   Iteration 2 

 

Figure 8   Example (v4) of the influence of a change in one parameter of the best match settings 
on the sum of absolute differences for both iterations (A and B) of the algorithm. The minimum 
sum of absolute differences are marked with black dots. The step sizes for the translations Δt 
and rotations Δr are given. The limit and zero value are visible in Iteration 1.  

Δt = 1 px 
Δr = 2° 

Δt = 1 px 
Δr = 1° 
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Figure 9   Two examples (v4 (top) and v7 (bottom)) of a resulting best matching slice through the 
MRI segmentation (A and D), the corresponding segmented ultrasound plane (B and E), and their 
overlay (C and F). The overlapping pixels are visualized in white. 

 

5.3 Outcomes of the comparison of the velocity vectors 
The temporal velocity profiles and spatial velocity profiles for all 7 included volunteers are given 
in Figure 11 and 12, respectively. The temporal velocity profiles show overall good 
correspondence in shape. What stands out, is the fact that there is a difference in the duration 
of one cardiac cycle between ultrasound and MRI acquisitions for multiple participants. This 
complicates the comparison over time. There are differences in maximum velocity measured 
with both modalities for some volunteers. Yet, these differences are not consistently larger or 
smaller for one modality relative to the other. Likewise, the spatial velocity profiles show good 
correspondence between ultrasound and MRI with small varying deviations in maximum velocity. 
The spatial velocities show a more or less laminar flow profile, as expected. 

  

A   MRI slice B   Ultrasound plane C   Overlay 

D   MRI slice E   Ultrasound plane F   Overlay 
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Two examples (of volunteer 4 and 7) of an overlay of the reliable velocity vectors of MRI (blue) and 
spatially averaged ultrasound (red) over the full ROI at PSV are depicted in Figure 10. The reliable 
velocity vectors of the first example seem to match really well by eye. However, in the second 
example deviations in direction and size of the velocity vectors are visible, especially in the two 
branches of the ROI after bifurcation. From these overlays, the cosine similarity is calculated for 
all included volunteers. This results in a median [min – max] cosine similarity for all velocity 
vectors of 0.69 [0.55 – 0.86]. When considering only the reliable velocity vectors, the median [min 
– max] cosine similarity becomes 0.77 [0.68 – 0.87]. The cosine similarity values for all included 
volunteers separately are given in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10   Two examples (v4 (left) and v7 (right)) of an overlay of the reliable velocity vectors of 
MRI (blue) and spatially averaged ultrasound (red) at PSV with the locations of the temporal and 
spatial velocity profiles marked with black dots and stripes, respectively. 

 

 

The correlation plots of the axial and lateral velocities of MRI and spatially averaged ultrasound 
at PSV taken together for all included participants are shown in Figure 13. Both the axial velocity 
and lateral velocity magnitude show a positive correlation between MRI and spatially averaged 
ultrasound. However, the lateral velocity magnitude shows a stronger correlation between MRI 
and ultrasound measurements than the axial velocity magnitude. The absolute RMSE for axial 
and lateral velocity magnitudes are 7.32 cm/s and 20.44 cm/s, respectively. The absolute axial 
and lateral RMSE values for all included volunteers separately are set out in Table 4. 
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Figure 11   Mean temporal velocity profiles and their 95% confidence interval of MRI (blue) and 
spatially averaged ultrasound (red) for all included volunteers (v1 t/m v7). 
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Figure 12   Mean spatial velocity profiles and their 95% confidence interval of MRI (blue) and 
spatially averaged ultrasound (red) at PSV for all included volunteers (v1 t/m v7). Unreliable 
ultrasound velocity estimates are not visualized. 
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Figure 13   Correlation plots of the axial (A) and lateral (B) velocity magnitudes of MRI and spatially 
averaged ultrasound at PSV for all 7 volunteers together. 

A 
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6. Discussion 
This chapter describes the interpretation of the results, the limitations of the study, and 
recommendations for future research. 

6.1 Interpretation of the results 
In this work, an algorithm for registration of 3D MRI to 2D ultrasound based on geometrical 
information is presented. Although the algorithm found a slice through the MRI volume that 
matches to the ultrasound plane for 7 volunteers, the reliability of the positioning of these slices 
is up for debate. The minimum sum of absolute differences is uncertain, mainly for translations 
in the y-direction and rotations around the z-axis, as can be seen in Figure 8. This is most likely a 
consequence of  the low resolution of the MRI scan and the dependent spatial averaging of the 
ultrasound ROI. The low resolution results in the smoothing of characteristic geometric features 
of the carotid artery, like the carotid bulb, thereby limiting the information that is available for 
registration. The carotid segmentations on MRI and ultrasound appear in many cases as straight 
tubes. A displacement in the longitudinal direction (y-direction) of a ‘straight tube’ or a rotation 
around its longitudinal axis (the z-axis, after rotations of the volume around the x and y-axis), has 
a much smaller effect on the sum of absolute differences than a displacement in any other 
direction or a rotation around any other axis. Presumably, the low resolution of the MRI scan is 
also the cause for the sawtooth pattern which can be seen in the graphs of the rotations of the 
second iteration of the algorithm in Figure 8. A step size of 1° for the rotations, results in a 
maximum shift of the outer pixels of the plane of approximately 35

2⁄ ∙  tan 1° = 0.3 mm. This shift is 
around 4 times smaller than the resolution of the MRI scan, meaning the variation in the sum of 
absolute differences at this level is a result of the interpolation between pixels rather than the 
selection of pixels in a different slice. In other words, the search for the matching slice is 
executed with an accuracy larger than the resolution of the MRI scan. For future research, it is 
recommended to run the algorithm with a step size that is adjusted to the resolution of the data. 
For this study, this means a minimum step size for the rotations of approximately 4°. An 
additional advantage of this is the possibility to run the algorithm for a broader search region in 
less time. It can be considered to allow for some interpolation between pixels by using a smaller 
step size, as long as no sawtooth pattern occurs and a clear minimum sum of absolute 
differences is ensured. Alternatively, the fitting of a parabolic curve may be taken into 
consideration to determine the overall minimum sum of absolute differences. 

The found matching planes show relatively high SSIM indices for all included volunteers with a 
median [min – max] of 0.94 [0.71 – 0.97]. However, the plane through the MRI segmentation, the 
corresponding segmented ultrasound plane, and their overlay for volunteer 7 show a clear 
deviation in the ECA branch, as depicted in Figure 9D t/m F. From this result, it can be concluded 
that the anatomy of the carotid artery and the orientation of the ICA and ECA relative to each 
other have changed between ultrasound and MRI measurements for this volunteer. Alterations 
in the anatomy may have complicated the registration for some of the other volunteers as well. 
Presumably, the SSIM index is quite high for all volunteers due to the many black pixels outside 
the ROI that are taken into account for the similarity metric as well. For future research, it may be 
more meaningful to implement a similarity metric that focuses solely on the ROI. 

The uncertainty and deviations in the registration of MRI to ultrasound affect the reliability of the 
outcomes of the comparison of the velocity vectors. Any dissimilarity found between the velocity 
vectors of MRI and ultrasound can be a consequence of an inaccurately positioned plane instead 
of incorrect velocity vectors. This has to be kept in mind for the interpretation of the results from 
the comparison of the velocity vectors. 
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When comparing temporal velocity profiles between ultrasound and MRI in Figure 11, the shapes 
of the profiles match quite well for all included volunteers. The maximum velocities measured 
with MRI and ultrasound may differ a little, but no consistent, systematic error is found. The same 
applies to the spatial velocity profiles of ultrasound and MRI in Figure 12. In general their shapes 
correspond well and show laminar flow, but the maximum velocities may deviate a little. Notable 
is the fact that for temporal and spatial velocity profiles of 4 volunteers (v2, v3, v5, and v7) the 
maximum velocities of both ultrasound and MRI measurements do not exceed 50 cm/s, whereas 
normative velocities in the CCA and ICA are on average 88.7 ± 20.2 and 80.3 ± 18.0 cm/s, 
respectively. [35] For two of them (v2 and v3), also lower maximum velocities were measured 
with conventional Doppler ultrasound. 

The cosine similarity for all velocity estimates as well as incorporating only the reliable 
ultrasound and corresponding MRI estimates is quite high with a median [min – max] of 0.69 [0.55 
– 0.86] and 0.77 [0.68 – 0.87], respectively. This means that the vectors are pointing in roughly the 
same direction. The absolute RMSE for the axial and lateral velocities of all volunteers taken 
together are 7.32 cm/s and 20.44 cm/s, respectively. These errors are hard to interpret, since 
they are sensitive to outliers and depend on the range of data that they are derived from. Multiple 
outliers can be seen in Figure 13 for both axial and lateral ultrasound velocity magnitudes 
corresponding to MRI velocity magnitudes around 0 cm/s. The axial velocity magnitudes range 
from 0 to 20.32 cm/s for MRI, resulting in a percentual error of approximately 36%. The lateral 
velocity magnitudes range from 0 to 93.46 cm/s for MRI, resulting in a percentual error of 
approximately 22%. These RMSE values seem quite high. However, similar absolute RMSE values 
were described by Saris et al. [27] for axial and lateral velocity components obtained with the 
compound speckle tracking technique in comparison to true velocity components in FIELD II 
simulations of physiological flow at a PRF of 12 kHz. Furthermore, they showed that the RMSE 
values are increasing around the peak systolic phase. Thus, it would be expected that the RMSE 
of axial and lateral velocity magnitudes in this study would also decrease for different phases 
during the cardiac cycle. 

 

6.2 Limitations of the study 
There are several limitations of this study, of which the most important ones are discussed 
hereafter. 

Firstly, there are a lot of manual steps in this algorithm that influence the results. For example, 
the thresholding of the MRI scan using the triangle method results for some scans in an 
inaccurate segmentation where noise and/or closely running veins are also segmented. The 
manual adjustments performed in these segmentations may have an influence on the outcome 
of the registration algorithm. It could be valuable to investigate the performance of other 
segmentation techniques. For example, it might be worth trying to reconstruct a phase contrast 
MR angiography from the voxelwise multiplication of magnitude data and absolute velocities, like 
Aalbregt et al. [36] did. Besides, the initialization of the registration algorithm, the choice for MRI 
volume translations and rotations of which the extracted horizontal slice is roughly comparable 
to the ultrasound plane, is performed manually. A wrong initialization could result in the finding 
of a local minimum using the registration algorithm. To minimize this chance, it was chosen in 
this study to exclude volunteers for which an initialization could not be determined with certainty. 
The arrival of new functions in MATLAB (R2023a, MathWorks, Natick, Massachusetts, USA) to 
show volumes in 3D and interactively position a clipping plane in them, may expand the options 
for easier and more accurate initialization in future studies. Furthermore, the temporal velocity 
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profiles are derived from one or more manually chosen locations in the ROI, during pre-
processing of the data for the registration algorithm and again for obtaining the outcome 
measures for comparison of the velocity vectors. The timepoint and phase of PSV for ultrasound 
and MRI vary over the ROI. Thus, the manual indication of a location for the temporal velocity 
profiles may have an impact on the outcomes. 

Secondly, the temporal velocity profiles of MRI and ultrasound of most participants show a 
difference in the duration of one cardiac cycle due to a difference in heart rate. This has 
complicated the implementation of temporal matching of MRI and ultrasound over a full cardiac 
cycle and has forced matching only at PSV for MRI and ultrasound. However, during systole often 
complex blood flow occurs which is difficult to track in 2D. Therefore, it would be informative to 
perform comparison at several other timepoints during the cardiac cycle in future research. 

Thirdly, it is expected that data of ultrasound and MRI is compared for quite different situations 
in some volunteers, due to the relatively long time between ultrasound and MRI measurements 
and a possible difference in neck position during measurements. The neck is highly mobile, 
therefore the anatomy of the carotid artery may have changed between measurements. The fact 
that there is no ground truth information about the position in space of the plane that is acquired 
with ultrasound, makes it difficult to determine how well the registration algorithm functions. 

And lastly, but most importantly, 4D flow MRI has its own downsides, including a much lower 
temporal and spatial resolution than ultrafast ultrasound-based velocity vector imaging and the 
averaging of acquisitions at specified phases during the cardiac cycle over multiple heartbeats. 
In this study, the ultrafast ultrasound-based velocity vectors are spatially and temporally 
averaged to allow for comparison. Nevertheless, it remains difficult to prove the benefits of 
ultrafast ultrasound-based velocity vector imaging, like the higher temporal and spatial 
resolution which enable the visualization of short-lived events that underlie complex blood flow. 
Zooming in on complex blood flow patterns in patient ultrasound data and comparing them to 
the MRI data, may be a first step in future research to prove the benefit of ultrafast ultrasound-
based velocity vector imaging. 

 
6.3 Recommendations for future research 
Comparison studies of ultrasound to 4D flow MRI by Harloff et al. [37], Engelhard et al. [38], and 
Han et al. [39], all use manual positioning of a plane in the 3D MRI volume to compare to 
ultrasound. To the best of  our knowledge, this study is new in the way that it uses a semi-
automatic algorithm for the registration of 4D flow MRI to ultrafast ultrasound. Although the 
registration algorithm does not function optimally yet and requires further development, we see 
benefit in the quantitative insight it gives in the accuracy of its optimal registration relative to 
slightly different registrations. In addition to the recommendations previously described, a few 
important recommendations for future research to improve the registration algorithm and the 
outcomes are described hereafter. 

Firstly, it would be highly recommended to add a high resolution anatomical MRI scan and ECG-
recording to the scanning protocol, which can be used for improved spatial and temporal 
registration. Besides, it might be worth looking into mutual information as a similarity metric, 
since it is often used as a metric for registration of multimodal images. [40] However, keep in 
mind that the use of information from surrounding veins or other structures might be 
counterproductive in some cases, as the anatomy is very variable with movement. 
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In addition, the robustness of the algorithm must be tested to give answers to important 
questions, like ‘what is the effect of a slightly different registration of the MRI volume to the 
ultrasound plane on the outcomes of the comparison of the velocity vectors?’ And ‘how do the 
outcomes of the registration algorithm compare to the outcomes of the manual initialization?’ 
This may give insight in the efficacy and added value of a semi-automatic registration algorithm. 

This study is a first step towards the in vivo validation of ultrafast ultrasound-based velocity 
vector imaging, which can have major implications for patient-specific risk assessment of 
vascular disease and indications for interventions. Already several patient studies are ongoing at 
the Rijnstate hospital, Arnhem, the Netherlands, and at the Radboud University Medical Center, 
Nijmegen, the Netherlands, to investigate the influence of flow parameters, like WSS, vorticity, 
and vector complexity calculated from ultrafast ultrasound-based velocity vector data, on 
progression and rupture of atherosclerotic plaques in the carotid artery. These studies are the 
next step in proving the added value of the use of ultrafast ultrasound-based velocity vector 
imaging in clinical practice. 

7. Conclusion 
To conclude, this study is a first step towards the in vivo validation of ultrafast ultrasound-based 
velocity vector imaging using blood speckle tracking in the carotid artery of healthy volunteers 
against 4D flow MRI. A semi-automatic algorithm was proposed for the registration of MRI to 
ultrasound, which requires further development and evaluation. The ultrasound velocity vector 
estimates show overall fairly good agreement with the MRI data, but more extensive evaluation 
is needed. Nonetheless, this study underwrites the great potential of ultrafast ultrasound-based 
velocity vector imaging to contribute to patient-specific risk assessment of vascular disease and 
more accurate indications for interventions in future clinical practice. 
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