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Evaluation of Model Predictive Control and Adaptive Model
Predictive Control for a Selected Generalisable Daily Task

Including Uncertainties
Elena París Quijada

Department of Biomechanical Engineering, University of Twente, The Netherlands

Abstract - Robots need to interact with their sur-
roundings, sometimes without having complete
knowledge about it. In this research, different daily
activities have been studied to find a general case
that encompasses most of the situations. Subse-
quently, according to the selected scenario, Model
Predictive Control and Adaptive Model Predictive
Control methods are chosen and tested in simula-
tion. The performance of the controllers is evaluated
in different trials including model uncertainties and
disturbances. Finally, the controllers are validated in
a real case using a Franka Emika robot.

1 Introduction

Robots have been widely used in industry
during the past years. In healthcare, robots
were first introduced for surgical assistance [1].
Lately, they have been included in numerous
applications and healthcare settings such as
rehabilitation or prosthetics. In particular, the
lack of caregivers and the increase in health-
care costs have promoted the need for assis-
tance robots [1, 2]. In the day-to-day work of
nursing staff, back and shoulder injuries are
common due to patient transfer and lifting. The
urge to solve this problem has made assistive
robots an interesting research field as their as-
sistance could help with physically demanding
duties [3]. In all these environments robots
need to face a wide variety of situations and
tasks which require interaction between the
robot and its surroundings.

Disturbances and uncertainties are inevitable
in many engineering systems due to mea-
surement inaccuracy or modelling errors, e.g.
when modelling a nonlinear system. This can
affect both the performance and stability of the
control systems [4, 5]. Thus, the dynamics
of uncertain systems have long been and will
continue to be one of the dominant themes in
engineering applications [6].

Figure 1.1: Franka Emika robot with 7 degrees of
freedom in the chosen starting position. The robot
is required to follow a rotational motion in the xy-
plane, parallel to the mount.

Research has been done to develop con-
trol strategies for robots to adapt to differ-
ent scenarios and situations. Some examples
of used controllers are Disturbance-Observer-
Based Control, Model Predictive Control, Opti-
mal Control or Reinforcement Learning.
Some of these control strategies can be clas-
sified as model-based, which makes their per-
formance highly dependent on system mod-
els and their predictions. Other strategies are
model-free, meaning that a model of the envi-
ronment is not required to determine the con-
trol law. Nevertheless, these control methods
usually require a significant amount of data,
which may not always be accessible. On the
other hand, some control strategies allow the
model to be updated at run-time, while others
perform this step offline avoiding further modifi-
cations during the execution. Furthermore, not
all control methods are robust enough against
changes in the model or external disturbances
[7].
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The different properties of the control strate-
gies can be considered as strong or weak
points depending on the selected tasks or
working requirements. This makes it challeng-
ing to determine the best approach for all kinds
of scenarios.

The main aim of this research is to select and
test a control method with the potential to be
applicable across a wide range of scenarios
where complete knowledge of the dynamic and
kinematic properties is unavailable. An ex-
tensive evaluation of common daily tasks was
conducted to get insight into the full spectrum
of potential scenarios. Then, a case that incor-
porates as many of these likely scenarios as
possible was selected. Subsequently, differ-
ent control strategies were compared in order
to identify the one that best aligns with the se-
lected task and the specific requirements of the
research. Finally, this research endeavours to
establish the basis for future implementation of
the controller in healthcare assistive robots.

1.1 Related Work

Different control strategies have been devel-
oped in order to deal with a wide range of
scenarios and situations where interaction en-
vironment dynamics are not fully known. In
these cases, typically a mathematical model
of the system is needed. The strategies used
to obtain these models from observed data
are called system identification techniques [8]
which include different algorithms.

Disturbance-Observer Based (DOB) is a con-
trol framework designed to estimate distur-
bances and/or uncertainties and then generate
compensation in the control action using the
computed estimates. It does not only account
for disturbances from the external environment
but also for uncertainties such as unmodeled
dynamics and parameter perturbations. There
exist variants such as Extended state observer
which also estimates the states of a system
[4, 5].

Sparse Identification of non-linear Dynamics
(SINDy) are frameworks which identify non-
linear dynamical systems from measurement

data. These frameworks can be used when an
imperfect model of the system is known as they
identify the fewest terms in the model needed
to explain the data. Even though they are
not control frameworks, they can be combined
with other algorithms, such as Model Predic-
tive Control. Thus, the identification step can
be performed fast enough to discover models
in real-time [9, 10].

On the other hand, Adaptive Control estimates
the unknown parameters of systems thanks to
a parameter adaptation scheme. Then, the un-
known parameters are replaced in a feedback
controller with their estimates. Thus, the con-
troller is adjusted for a system with parametric,
structural and environmental uncertainties to
achieve the desired system performance [11].
An example is Model Reference Adaptive Con-
trol where the controller adapts the system so
it can behave as a certain reference model
[12, 13].

Optimal control aims to find a control signal for
a dynamic system that minimises a cost over
a certain time interval. Optimisation of a sys-
tem requires knowledge of a model of the con-
trolled system, the performance criterion and
constraints. There are different control tech-
niques based on optimal control such as Re-
inforcement Learning, where the optimal be-
haviour depends on maximising a cumulative
reward, or Model Predictive Control [14, 15].

Robust controllers are control strategies that
guarantee an adequate level of performance
within acceptable disturbance ranges or sys-
tem parameter changes. There are different
robust control strategies used in the develop-
ment of controllers with stable and optimum
response such as H-Infinity Control or Sliding
Model Control. However, a poor tracking abil-
ity is usually shown [16, 17, 18].

Reinforcement Learning controllers are based
on learning from experience while their be-
haviour is optimised based on some reward or
punishment applied. This approach can work
with systems where a complete knowledge of
the model is unknown. Nevertheless, achiev-
ing the optimal solution require high computa-
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tional resources [19, 20].
After comparing different control methods
Model Predictive Control (MPC) and Adaptive
MPC (AMPC) approaches have been selected.
Regarding the adaptive strategies, Kalman Fil-
ter and Forgetting Factor approaches have
been considered for the estimation of the
model parameters [21]. Previous works have
been done for the control of linear systems ap-
plying the mentioned controllers.

MPC describes a set of control methods that
use a process model to predict the future be-
haviour of the controlled system. Thus, an op-
timal output is determined by solving a con-
strained optimisation problem. Typically, the
system output is required to track a given ref-
erence for the prediction horizon. To some ex-
tend, it can handle with complex nonlinear sys-
tems. However, the performance can be highly
dependent on accurate prediction models.
To avoid the dependency on the model, re-
search focused on online model adaptation in
MPC such as AMPC has been done [22, 23].
In particular, [24] developed an MPC controller
with two adaptive schemes derived from online
system identification and adaptive control to al-
low a manipulator to interact with unknown en-
vironments. Such control strategies were vali-
dated in door opening and object lifting tasks.
However, it assumes that the environment can
be described by a linear mass-spring-damper
system, thus it does not consider nonlineari-
ties.
In [25], an AMPC approach for a two-wheeled
robot manipulator with varying mass is pre-
sented. The estimation of the model param-
eters is done by means of linear parameter
varying modelling using a Kalman Filter algo-
rithm. Other works have applied Kalman Fil-
ter for the estimation of the parameters in tra-
jectory tracking using AMPC [26, 27]. Never-
theless, they have been only tested in specific
cases of study without being extrapolated to
other tasks.
Forgetting factor has been used together with
AMPC approaches to improve tracking in
quadrotors [28] or space robots [29]. Only the
latest considers the presence of parameter un-
certainties. In addition, the algorithm has been
used to address the control of the joint trajecto-

ries of a robot considering nonlinear and time-
varying dynamics [30]. It combines the clas-
sic MPC with a locally weighted learning ap-
proach.
In conclusion, there is relatively little work on
AMPC approaches that can handle both linear-
ities and nonlinearities in the system as well as
uncertainties and disturbances.

1.2 Contributions

The main contribution of this work is to first,
find a case of study from daily tasks that can be
generalised to several different actions. Then,
a control strategy able to control the selected
tasks without the need to have an accurate
model of the environment is determined and
tested. This includes linear and nonlinear sce-
narios as well as different kinds of uncertain-
ties and disturbances to represent interaction
with unknown environments. In particular, the
AMPC presented in this work combines the
MPC strategy with parameter estimation to up-
date the model depending on the scenario with
a combination of algorithms that have not been
addressed in previous research. Finally, the
selected control strategy is tested in a real case
using a Franka Emika robotic device. The
procedure followed to answer the previous re-
search questions is presented in Section 2
while the results for each of them are shown
in Section 3.

2 Materials and Methods

2.1 Scenario Selection

There exists a wide variety of daily scenarios
where the dynamical and kinematic properties
of the environment are not completely known.
In order to determine a specific case to study
for this project, different approaches were con-
sidered.

2.1.1 Top-Down Approach

The first approach is called Top-Down. The
main idea of this strategy is to determine com-
mon daily activities and reduce them to their
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most basic components. First, a list of com-
mon daily tasks based on the literature was
made [31, 32, 33, 34, 35]. Then, a second list
was generated documenting the activities un-
dertaken by a specific individual over a single
day. Afterwards, a total of fifteen tasks were
selected based on their recurrence in both lists.
Thereafter, these tasks were divided into sim-
pler actions for which the following proper-
ties were determined: dynamics, kinetics and
when it is achieved. In addition, control meth-
ods and prior knowledge needed to perform
the task were determined. These properties
were selected to obtain a general idea of the
composition of the actions. It is important to
highlight that in this approach only the main
control strategy that rules the task has been
quantified. This main control strategy does not
consider the prior knowledge or the goal con-
dition but the simplest definition of the task.
Subsequently, the cumulative values of the dif-
ferent dynamics and control strategies were
calculated to have a quantitative measure of
the most common ones. Finally, the compo-
nents with the highest outcome in the summa-
tion were selected. A summary of the main
tasks with their related dynamics and control
strategies is treated in Section 3 and can be
seen in Table 3.1 while the table with the com-
plete analysis can be found in Appendix A.

2.1.2 Bottom-Up Approach

The second strategy considered is named here
as Bottom-Up. The central concept of this ap-
proach is to reconstruct the main task actions
from the basic constituent elements based on
the kinematics properties.
First, three out of the fifteen tasks determined
in the Top-Down approach were selected. The
selection process was based on the alignment
between the tasks featured in the list deter-
mined in the Top-Down approach and the daily
tasks mentioned in literature [31, 34]. The cri-
teria for inclusion also focused on the ease of
extrapolation or incorporation of the tasks into
other tasks to ensure the selection of a more
generalisable action.
Second, for each one of the tasks, different ap-
proaches to perform the tasks were considered
based on the goal conditions and different prior
knowledge. For each approach, initial and final

kinematic states were defined in between the
following options: force, position and velocity.
Then, the increase or decrease of these condi-
tions throughout the execution of the task was
determined.
Third, a control strategy able to deal with the
changes in the states was listed. Finally, as
in the previous approach, the cumulative val-
ues of the control strategies were computed
by counting their appearance in the tasks. A
summary of the diverse states and control ap-
proaches considered is treated in Section 3
and is shown in Table 3.2 while the complete
analysis can be found in Appendix A.

2.1.3 Outcome Scenario

Analysing the output of the two approaches,
the most general case was obtained. The
most common dynamics encountered in the
tasks were mass and damping while the most
common control paradigm was position con-
trol. Thus, the linear system shown in Equa-
tion 2.1 was considered. Where the value of
the mass m = 10 kg and the friction b = 10
Ns/m. These values were selected based on
similar studies [36].

F = mẍ+ bẋ (2.1)

2.2 Control Method Selection

Considering the findings of the scenario selec-
tion, the main control goal is to make the mass
of the aforementioned system follow a refer-
ence position. The controller will modify the
value of the force exerted on the system so the
generated position is as close as possible to
the reference position.
To determine the control method needed to
achieve the desired control goal, initially, a list
of the main control strategies used in the con-
trol of robots according to literature was made
[17, 18, 37, 38]. Subsequently, the strengths
and limitations of each algorithm against the
specific requirements of the research objec-
tives were considered. These properties and
studied controllers are listed in Table 2.1. It is
important to note that the lines shown in some
requirements indicate that these aspects can-
not be ensured.
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Table 2.1: Summary of the properties of the different control algorithms.

Properties

Control algorithm
Disturbance-
Observer
Based Control

SINDy-PI Adaptive
Control

Optimal
Control

Model
Predictive
Control

Robust
Control

Reinforcement
Learning

Feedback Yes No Yes Yes Yes Yes Yes
Model Yes Yes Yes Yes Yes Yes Yes or No

Runtime model update Yes No Yes No No No No
Non-linearities Yes Yes Yes Yes Yes Yes Yes

Online performance Yes Yes Yes Yes Yes Yes Yes
Multiple variables Yes Yes Yes Yes Yes Yes Yes

Stability Yes - Yes - Yes Yes No
Computational efficiency Medium Low Medium Medium Medium Depends Low
Disturbance rejection Yes No Yes No Yes Yes No
Amount of data needed Medium Low Low Low Low Depends High

Training No Yes No No No No Yes
Generalize beyond training data - - - - - - -

Combine with other control methods Yes Yes Yes Yes Yes Yes Yes

2.2.1 Requirements

Some requirements arise from the outcomes of
the scenario selection. These are the need to
be able to deal with multiple variables and non-
linearities and the presence of a model of the
system. Regarding the requirement to have
a model, this previous knowledge of the sys-
tem does not need to be completely accurate.
Thus, the controller is required to be able to
update the model information.
Other properties are determined by the main
aim of this research, which is to evaluate the
performance when interacting with unknown
environments. These include external dis-
turbances or mismatches between the reality
and the controller. Thus, disturbance rejec-
tion is considered a requirement. As shown in
the literature [4], feedback controllers are de-
signed so that the performance goals of sys-
tems can be achieved by attenuating distur-
bances. Thus, the presence of feedback or
feedforward is considered a requirement.
On the other hand, as a future application,
the controller is intended to be included in the
healthcare environment. In this scenario, the
controller needs to interact with the environ-
ment in real-time. This implies that the com-
putations and refinement processes need to be
done online. Furthermore, in real time not a big
amount of data is always available. Therefore,
control methods that require a small amount
of data are preferred. To ensure optimal per-
formance, a high computational efficiency is
needed. Furthermore, for the safe inclusion
of the controller in the healthcare environment

stability is considered a requirement.
Finally, some controllers require a training
phase which can be time-consuming and
resource-intensive. This feature is impractical
for the future implementation of the controller
as it requires immediate and reliable perfor-
mance.
After evaluating the mentioned controllers,
both MPC and its extension with adaptive
strategies, AMPC, have been selected.

2.3 Adaptive Model Predictive Control
(AMPC)

Figure 2.1: Control diagram for both controllers,
MPC and AMPC. xref is the reference position,
xmeas is the real position and Fcontoller is the force
applied by the controller. Blue section corresponds
to the identification step only present in the AMPC.

Figure 2.1 shows the control schema of both
controllers. The signal xref represents the ref-
erence position, xmeas is the real position and
Fcontoller is the force applied by the controller.
Unlike MPC, AMPC uses the measured po-
sition and the force applied by the controller
to estimate and update the parameters of the
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system model in real-time. This step is repre-
sented in blue.

2.3.1 Optimisation Problem

The MPC and the AMPC solve an optimisa-
tion problem, in this case, a quadratic pro-
gram, to determine the values of the controlled
variables. In this optimisation problem, a cost
function is minimised. The cost function used
is shown in Equation 2.2 [39].

J(zk) = Jy(zk) + Ju(zk) + J∆u(zk) + Jϵ(zk)
(2.2)

The term Jy(zk) corresponds to the tracking
of the reference. It is defined in Equation
2.3 where wy

i represents the weight associ-
ated with the reference tracking. The variables
y(k + i|k) and r(k + i|k) are the predicted po-
sition value and the reference value at the ith
prediction step while p is the prediction horizon.

Jy(zk) =

p∑
i=1

{
wy
i

sy
[r(k + i|k)− y(k + i|k)]

}2

(2.3)
The term Ju(zk) refers to the controlled vari-
able tracking and can be obtained as shown
in Equation 2.4. Its associated weight is de-
fined by wu

i . To make sure that the controller
does not generate force beyond the capacity
of a physical device, this term includes penali-
sations for actions that require high forces. Fi-
nally, u(k + i − 1|k) corresponds to the value
of the controlled variable in the control interval
k and prediction step i.

Ju(zk) =
p−1∑
i=0

{
wu
i

su
[u(k + i|k)− utarget(k + i|k)]

}2

(2.4)
The variable J∆u(zk) corresponds to the con-
trolled variable change suppression. It can be
computed as in Equation 2.5 where w∆u

i is the
associated weight.

J∆u(zk) =
p−1∑
i=0

{
w∆u
i

su
[u(k + i− 1|k)− u(k + i|k)]

}2

(2.5)

Finally, Jϵ(zk) refers to the constraint viola-
tion for the current control interval, k where zk
represents the controlled variable adjustments
that minimise the cost function.
After conducting a systematic exploration of
various weight configurations and aligning with
the recommendations proposed in [39] the de-
fault weights assigned to wy

i , wu
i , and w∆u

i in
Equation 2.5 were updated. The final values
are shown in Table 2.2.
Regarding the constraints, they are deter-
mined by the physical limits of the robot.
Specifically, to restrict the exerted force to
within acceptable limits, constraints on the
controlled variable have been introduced ac-
cording to Equation 2.6. Variables umin and
umax are the lower and upper bounds while su

refers to the scale factor for the controlled vari-
able. The values are shown in Table 2.2 and
were selected following the recommendations
of [39].

umin

su
<

u(k + i− 1|k)
su

<
umax

su
, i = 1 : p

(2.6)
where p is the prediction horizon.

Table 2.2: Optimisation weights

Variable Weight
wy

i 1 unitless

wu
i 10 unitless

w∆u
i 1 unitless

umin −100 N

umax 100 N

su 200 N

2.3.2 System Identification

The identification step is made using recursive
polynomial model estimation. Based on the in-
put of the system and themeasured output, the
discrete-time input-output polynomial model of
the system is estimated. In this case, the ARX
model shown in Equation 2.7 is selected as it
can handle systems with multiple inputs [21].
In addition, this model assumes that the cur-
rent system output is a function of the previ-
ous system outputs and inputs. Variables u(t)
and y(t) correspond to the input and the output
of the system, force and position respectively.
Variable q refers to the time-shift operator, nk
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corresponds to the input delay and e(t) is the
error. Finally, A(q) and B(q) are the polynomi-
als whose parameters will be estimated.

A(q)y(t) = B(q)u(t− nk) + e(t) (2.7)

A common algorithm used in parameter esti-
mation is Kalman Filter (KF). However, in [10]
limitations in capturing nonlinear dynamics or
structural changes are mentioned. Thus, not
only Kalman Filter but also Forgetting Factor
(FF) algorithm will be used in the parameter
estimation process [21].

2.4 Simulations

2.4.1 Experimental Setup

The selected controllers are tested in sim-
ulation using both the Matlab and Simulink
environments with the Model Predictive Con-
trol Toolbox. The configuration of the con-
troller has been determined through a system-
atic process involving iterative experimentation
and refinement. Thus, the values that ensure a
better tracking of the reference were selected.
The final settings are shown in Table 2.3. The
system is composed of two inputs, force and
disturbance force; and one output, position.
According to the research requirements, un-
measured external disturbances have been
considered.
For the identification of the parameters, the
System Identification Toolbox from Matlab was
used. The values for the process noise co-
variance for the Kalman Filter algorithm and
the Forgetting Factor parameter need to be de-
termined. These values, shown in Table 2.3
were selected after a process of iterative ex-
perimentation and refinement. The values that
minimised the reference position tracking error
were chosen.

Table 2.3: Controller settings

Settings Value
Sampling time 0.005 s
Prediction horizon 100 steps
Control horizon 5 steps
Forgetting factor 1− 5 ∗ 10−3 unitless
Process Noise Covariance 0.01 unitless

The control methods are tested in three differ-

ent simulated scenarios. These included trials
with unknown mass, damping, components of
the system model, external disturbances and
nonlinear components. A summary of all the
different tests can be seen in Table 2.4. The
values of the mass and damping were selected
based on the values used in similar studies
[36]. Furthermore, they align with the expected
application. When applying the controller to
transport a patient in a wheelchair, it is essen-
tial to consider that adults can weigh between
40 to 120 kg. If the controller is only aware of
the weight of the wheelchair, which on average
is 10 kg, the total mass the controller has to in-
teract with can be significantly larger, up to ten
times greater. The reference values consid-
ered were m = 10 kg and b = 10 Ns/m.
To compare the behaviour and performance of
the controllers for the different scenarios the
root mean square of the tracking error (RMSE),
rise time, settling time and overshoot are com-
puted. The rise time was considered as the
time the response takes to rise from 10% to
90% of the final value. Regarding the settling
time, the selected threshold was 1%. In addi-
tion, the variation of the mentioned outcomes
relative to the reference values, where no mis-
matches are considered, is computed. Then,
the mean and standard deviation (SD) of these
variations are calculated. Finally, to investi-
gate the difference in the behaviour between
the FF and KF approaches, the transfer func-
tions based on the estimated parameters along
the simulations are obtained.

2.4.2 Reaching Task

In the first simulation, named reaching task,
the controller is required to follow the reference
step signal of magnitude 10m applied at t = 10
s. A graphical representation of the motion is
shown in 2.2. First, only different values of the
modelled mass, mcp, were considered while
keeping the real mass, mrp, constant.
Afterwards, the adaptability to external distur-
bances was tested. Two different disturbances
were applied. The first one consisted of a con-
stant force and the second one was an im-
pulse. The latest was applied at t = 15.5 s.
Both were applied as positive and negative dis-
turbances with magnitudes 30N and −30N re-
spectively.
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Figure 2.2: Overview of the reaching task for the
MPC with the reference values.

Figure 2.3: Overview of the task without predefined
path for the MPC with the reference values.

2.4.3 Pulse Signal

For the second trial, the controller is required
to follow a reference pulse signal of magni-
tude 10 m. The pulse starts at t = 10 s and
ends at t = 20 s. An example of the de-
scribed motion can be seen in Figure 3.2. In
addition to the scenarios with different masses,
mismatches between the damping were tested
modifying the value of the modelled damping,
bcp, while keeping the real value, brp, constant.
Furthermore, model mismatches were intro-
duced. The real system remained a mass-
damper system, rIB, while the modelled sys-
tem was configured to operate under two dif-
ferent assumptions: one considering only a
mass, cI , and the other assuming a mass-
spring-damper system, cIBK .

2.4.4 Task Without Predefined Path

When humans perform object movement
tasks, they do not prioritise following an exact
path required to achieve the desired goal but a
motion given by models such as metabolic en-
ergy minimization, minimum jerk or minimum
torque change [40]. To emulate this behaviour,
the controller is tasked with reaching andmain-
taining the goal position, x = 10 m. Neverthe-
less, it is no longer provided with an explicit
path to follow at each time step. Figure 2.3
shows a graphical description of the motion.
As in previous scenarios, the goal was tested

for different values of the mass, damping
and components in the system. Furthermore,
nonlinearities in the damping were included
through the displacement square damping
model. The force generated due to friction can
be calculated as shown in Equation 2.8, [41].
For these simulations, the values of mass and
damping were m = 10 kg and b = 10 Ns/m.

Fb = (sgnẋ) ∗ b ∗ x2 (2.8)

Finally, simulations were performed varying
the reference values of the environment mass
and the damping at runtime. The parameters
reached the lowest value at t = 12 s.

Table 2.4: Summary of all the tested scenarios.

Configuration
Controller Environment

Unknown mass mcp (kg) mrp (kg)
1, 2, 5, 10,

10
20, 50, 100

Unknown damping bcp (Ns/m) bcp (Ns/m)
0.1, 1, 2, 5, 10,

10
20, 50, 100

Change in controller
components

cpI : mcp (kg) 10 mcp = 10kg
cpIBK : mcp, bcp, kcp 10kg, 10Ns

m
, 10N

m
bcp = 10Ns

m

Nonlinear dynamics
Nonlinear bcp Linear brp
Nonlinear bcp Nonlinear brp
Linear bcp Nonlinear brp

Changing dynamics

m (kg) 10
10 to 1

1

b (Ns/m) 10
10 to 0.1

0.1
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2.5 Robot Experiments

Finally, the selected controllers were tested in
a real setup. The robot employed is Franka
Emika composed of a 7-degree of freedom
(DOF) arm with a gripper as end-effector. The
system is shown in Figure 1.1. It is pro-
grammed using the Simulink library provided
by Franka, into which both theMPC and AMPC
codes can be easily incorporated.

2.5.1 Robot Parameters Identification

To perform the experiments, the values of the
parameters of the robot were identified. These
parameters were only identified for the specific
motion determined for the experiment. This
motion was restricted to the xy-plane, parallel
to the mount of the robot, and was generated
by one of the joints keeping the other six joints
fixed.
The robot was excited with a chirp signal in a
range of frequencies from 0.01 Hz up to 5 Hz.
This signal was provided as the torque. The
generated motion, velocity, and acceleration,
due to that torque were measured. The fre-
quency range was selected considering that,
for greater frequencies, there was no motion
associated with the input signal.
Finally, the values of the robot’s mass and
damping were obtained by applying least
squares regression as shown in Equation 2.9.
Vector τ⃗ includes all the values of the torque
and matrix X includes the values of the po-
sition, velocity and acceleration of the robot
end-effector. Finally, vector β⃗ corresponds to
the parameters that want to be estimated this
is, the value of the mass, damping and spring
constant.

τ⃗ = X ∗ β⃗ (2.9)

2.5.2 Experiments Setup

The robot is programmed to follow a rotational
motion of 60º in the xy-plane, parallel to the
mount, from the chosen initial position shown
in Figure 1.1. These values were selected
to perform motion in a large range without
exceeding the limits of the robot. Only the
joint used for the identification process was in-
volved in the motion.

In this case, only the MPC and AMPC FF were
tested due to the better performance of the
AMPC FF compared to the AMPC KF in the
simulations. Three scenarios were tested by
varying the controller mass considering it to
be greater, smaller or equal to the real robot
mass. Furthermore, a limit in the force applied
by the controller was set in −10 N and 10 N to
ensure the integrity of the robot.
In addition, to avoid discontinuities in the
torque, its range of variation was limited for
the AMPC. This was decided instead of chang-
ing the weight associated with the variation in
the controlled variable since the limitation es-
tablished within the cost function is not a hard
constraint. Thus, to get variations in the torque
that the robot can accept the weight needs to
be set excessively high, around 50, while the
weight for the reference tracking needs to be
exceptionally low, around 1. This worsens the
performance of the controller as the reference
is not followed anymore.

3 Results

3.1 Scenario Selection

The results of the Top-Down approach are
shown in Table 3.1. The dynamics that ob-
tained the highest value in the summation
and therefore, the most common within all the
tasks, are mass and damping. In addition, this
damping can be linear or nonlinear. It is impor-
tant to highlight that springs and dampers are
components with a similar number of appear-
ances in the tasks. However, only damping
was considered as according to the computed
cumulative values it appears in more actions
than spring. Furthermore, in real systems, the
motion of amass is accompanied by some kind
of damping. On the other hand, position con-
trol is the main control strategy as it exhibited
the greatest cumulative value. Finally, most of
the tasks require some prior knowledge which
leads to the necessity for the controller to have
a model of the system. However, it can be in-
complete or wrong.

Regarding the Bottom-Up approach, the re-
sults are presented in Table 3.2. The most
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Table 3.1: Summary of the main daily tasks with their related dynamics and control strategies of the
Top-Down approach.

Case of study Dynamics Control
Mass Damper Spring Impedance Position Force Velocity

Open a lid x x - x - - -
Close a lid x x - x - - -

Open the tap x x - x - - -
Prepare breakfast x - x - x x -

Take notes x - - - x x -
Open a window/door x x - x - - -
Close a window/door x x - x - - -
Throw out rubbish x - - x - - -
Hand out cards x - - - x - -
Answer a call - - x - x - -

Eat a piece of steak x - - - x - x
Cut a steak x x x x - - x

Wash the dishes x - x - x - -
Brush the teeth x x x - x - -

Vacuum x x - - x - -
Total 14 8 5 7 8 2 2

Table 3.2: Summary of the kinematic states and control methods of the three selected daily tasks for the
Bottom-Up approach.

Case of study Subactions State variation Considerations Control strategy
Impedance Position Force Velocity

1) Open a lid

fi > ff ,vi < vf - x - - -
fi > ff , xi < xf - - x x -

xi < xf
The force needed to
move the lid is known - x - -

2) Prepare breakfast

Open cupboard - Same as 3)
Take out mug xi < xf - - x - -
Open fridge - Same as 3)
Take out milk xi < xf - - x - -

Open milk bottle - Same as 1)
Pour milk xi < xf - - x - -

Open microwave
fi < ff ,vi > vf - x - - -
fi < ff ,xi < xf - - x x -

vi > vf

Apply velocity to the
button until the end
of the motion range is
reached

- - - x

Put mug in the microwave xi < xf - - x - -

3) Open a window/door

fi > ff ,vi < vf - x - - -
fi > ff , xi < xf - - x x -

xi < xf

The force needed to
move the object is
known

- x - -

fi < ff ,vi > vf

Task is completed
when the object is
completely open

x - - -
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quantified control strategy is position control
which confirms the findings obtained in the
Top-Down approach. In addition, almost all
the tasks can be explained using combinations
of different kinematic states. That determines
the need for the control framework to deal with
multiple specified goals.

Based on the previous findings similar tasks,
such as opening a door, drawer, lid, window
or jar include the most common dynamics and
control strategies. Thus, instead of a specific
task, the system described in Equation 2.1,
which can be generalised in all the mentioned
actions, was selected. Furthermore, by the na-
ture of these tasks, both rotational and linear
motion are involved. Linear motion is tested in
the simulations due to its ease of implemen-
tation reducing the complexity of the simula-
tion environment. On the other hand, rotational
motion has been selected for performing the
experiments on the robot.

3.2 Control Method Selection

Diverse control algorithms have similar prop-
erties and performance as depicted in Table
2.1. Regarding optimal control, it lacks some
of the most important properties such as dis-
turbance rejection or update of the model at
runtime. Thus, it is not considered a suitable
option.
In addition, robust control does not allow the
update of the model at run time and it has
been reported to not be an approach com-
monly used in industry [38] while MPC is.
Finally, MPC itself lacks the capability to up-
date the internal system model. However, it of-
fers sufficient flexibility to accommodate an ad-
ditional control method with the specific func-
tion of model updating. In this context, both
DOB and Adaptive Control can be combined
withMPC. The resulting controller is able to up-
date the system model and the performance of
the MPC when used on its own is improved.
According to Table 2.1 the main difference be-
tween DOB and Adaptive control is that DOB
needs a bigger amount of data to perform the
estimations. Furthermore, the efficacy of DOB
to deal with changes in mass and damping has
been already tested asmentioned in [36] which

leaves AMPC as a promising field of study. Ad-
ditionally, implementations of Adaptive Control
within MPC are already available in program-
ming environments such as Matlab. All this
leads to the selection of MPC and its exten-
sion with adaptive strategies, AMPC, as con-
trol methods.

3.3 Simulations

3.3.1 Reaching Task

Figure 3.1: RMSE, rise time, settling time and over-
shoot for different values of the controller mass for
the MPC, AMPC with FF and AMPC with KF con-
trollers. Real mass is mrp = 10 kg.

The results for the trials with different values
of the mass can be seen in Figure 3.1. MPC
shows the biggest variation of the variables rel-
ative to the values obtained for m = 10 Kg,
which is the reference. This difference is es-
pecially large for the trials where the controller
mass is bigger than the real mass. It is impor-
tant to highlight that, in these cases, the sce-
nario becomes unstable for theMPC. These in-
stabilities arise from the fact that the controller
considers the object to be heavier than it is.
Thus, the controller applies a great amount of
force to reach the target position which leads
to overshooting. The repeated attempts to cor-
rect this mismatch with the reference create a
cycle of instability. As it does not reach the de-
sired end position, there is no settling time as-
sociated with these trials.
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Table 3.3: RMSE, rise time, settling time and overshoot when applying external disturbances for the
MPC, AMPC with FF and AMPC with KF controllers. Cases where the desired end position was not
reached are marked with lines in the overshoot.

External disturbance RMSE Rise time (s) Settling time (s) Overshoot (%)
MPC FF KF MPC FF KF MPC FF KF MPC FF KF

Positive Impulse 0.015 0.015 0.015 1.248 1.248 1.248 16.275 16.274 16.273 4.784 4.799 4.812
Negative Impulse 0.014 0.015 0.015 1.248 1.248 1.248 16.275 16.274 16.273 4.863 4.881 4.894

Positive Constant Force 0.082 0.083 0.082 1.550 1.550 1.550 12.503 12.503 13.060 - - -
Negative Constant Force 0.084 0.084 0.084 1.085 1.085 1.085 13.037 13.041 13.038 15.392 15.532 15.431

Regarding the AMPC with FF and AMPC with
KF, both show similar behaviour between each
other and relative to the reference. The AMPC
with FF exhibits a closer performance to the
reference in the settling time and overshoot. In
addition, for each controller, it was computed
the average duration during which the maxi-
mum force was applied. The calculated val-
ues are as follows: 7.401 s for the MPC, 2.3954
s AMPC FF, and 2.8374 s for the AMPC KF.

The results of the simulations where external
disturbances were applied are summarised in
Table 3.3. It is observed that all controllers
exhibited a similar performance. Remarkably,
for the trial where a positive constant force
was applied, none of the implemented control
strategies reached the desired end position. In
that case, the error between the final position
and the desired reference position was consis-
tently measured as 0.072m, 0.073m and 0.073
m for the MPC, the AMPC FF, and the AMPC
KF, respectively.

3.3.2 Pulse Task

First, it is important to highlight that AMPC with
KF algorithm presented unexpected behaviour
in some of the trials. The controller was ex-
pected to show resembling behaviours both at
the rise and the fall of the pulse signal. Fur-
thermore, considering a proper adaptation of
the algorithm the performance at the end of the
pulse is expected to be improved as it happens
in the results obtained for AMPC FF. How-
ever, as illustrated in Figure 3.2, for AMPC KF
the performance does not improve but deteri-
orates.

The mean and SD of the RMSE variation rel-
ative to the reference values are computed.
The outcomes for all the controllers and sce-
narios are depicted in Table 3.4. AMPC with

FF shows the smallest values of the mean and
SD while MPC presents notable higher values.

Figure 3.2: Measured, estimated and reference po-
sition of the AMPC KF controller for mcp = 2 kg.

Table 3.4: Mean and SD of the RMSE variation for
MPC, AMPC FF and AMPC KF controllers, for dif-
ferent values of the mass, damping and controller
system components.

Varying Varying Varying
Mass Damping Components

Mean SD Mean SD Mean SD
MPC 102.40 130.27 74.43 112.96 69.60 75.24

AMPC FF 2.10 1.90 2.29 2.57 0.70 0.99
AMPC KF 5.50 8.20 4.97 0.40 8.03 0.00

On the other hand, the values of the overshoot
are represented in the boxplot shown in Figure
3.3. The first subplot corresponds to the trials
involving variations in the system mass. Sub-
plot (b) represents the simulations with varia-
tions in the value of damping. The final subplot
is associated with the model mismatches. For
the AMPC with FF, the overshoot values re-
main at approximately the same level across
all scenarios.
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Figure 3.3: Overshoot (%) for the trials involving variation in a) the system mass, b) the damping of the
system, and c) amount of system components for the MPC and AMPC FF controllers.

On the other hand, these values change signif-
icantly for the MPC and AMPC KF. It is impor-
tant to note that, the output of theMPC became
unstable in the trials mcp = 50 kg, mcp = 100
kg, bcp = 50 Ns/m, bcp = 100 Ns/m and cpIBK .

3.3.3 Task Without Predefined Path

Table 3.5: Mean and SD of the RMSE, rise time,
settling time and overshoot variation for MPC,
AMPC FF and AMPC KF controllers, for different
values of the mass and damping.

MPC AMPC FF AMPC KF
Mean SD Mean SD Mean SD

RMSE 14.83 10.91 8.25 4.08 3.08 6.82
Varying Rise time 0.69 2.05 -0.008 0.19 -0.40 0.15
mass Settling time 0.48 0.65 0.27 0.23 0.72 0.75

Overshoot 12.59 17.63 0.11 1.01 15.45 7.50
RMSE 32.50 33.73 8.36 3.65 0.36 0.24

Varying Rise time 0.28 0.58 0.027 0.21 -0.40 0.14
damping Settling time 0.46 0.88 0.44 0.33 1.01 0.99

Overshoot -0.19 0.67 -0.25 0.82 17.50 8.83

For the trials with different values of mass and
damping, the mean and SD of the RMSE, rise
time, settling time and overshoot variations are
shown in Table 3.5. MPC demonstrates the
poorest performance as all the outcome pa-
rameters highly differ from the reference. In
addition, the goal was not reached for the sce-
narios where mcp = 50 kg and mcp = 100
kg. Regarding AMPC, for different mass val-
ues, the values of the RMSE and rise time
are slightly bigger for AMPC with FF than for
AMPC with KF. However, the settling time
and overshoot present a greater difference be-
tween trials for the AMPC with KF than for the
AMPC with FF. The same outcomes arise for

the simulations with different damping values.

Figure 3.4: MPC, AMPC FF, and AMPC KF perfor-
mance with different controller system components
compared to the real mass-damper system.

The results of the model variations are sum-
marised in Figure 3.4 where the measured
and estimated position of all the controllers are
shown. For the cpIBK , the MPC presents a
great error between the measured and the es-
timated position, 0.643, apart from never reach-
ing the goal due to the overshoot, 21.717%.
Regarding AMPC, both controllers, with KF
and FF exhibit a similar performance in the two
cases. However, the behaviour of the AMPC
with FF is closer to the reference situation, Fig-
ure 2.3, where no overshoot occurs.
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Figure 3.5: Measured, estimated and reference position for the trials where variations of mass and
damping at runtime were added for MPC, AMPC with FF and AMPC with KF controllers.

Figure 3.5 depicts the measured, estimated
and reference positions for the trials where
changing dynamics were considered. AMPC
with FF presents a more consistent perfor-
mance along the four different trials. Regard-
ing the rest of the controllers, MPC exhibits a
behaviour more consistent than AMPC KF for
the changing damping trials. However, it hap-
pens the opposite in the changing mass sce-
narios.

For the simulations where the controller con-
siders nonlinear damping while the real damp-
ing is linear, all the controllers reached the
goal. The values of the RMSE are 0.036, 0.024
and 0.003 for the MPC, AMPC FF and AMPC
KF respectively. Although AMPC KF presents
the smallest value of the RMSE, it is the only
strategy that shows overshoot, 21.783%. This
overshoot is not present in the simulations
where both real and controller damping are lin-
ear, Figure 2.3. For trials with nonlinear damp-
ing in both, the controller and the real system,
none of the controllers reached the goal. The
difference between the final and reference po-
sition has been computed. These error values

are consistent between the controllers being
0.346 m for the MPC, 0.346 m for the AMPC
with FF and 0.352 m for the AMPC KF. In addi-
tion, when only the real system considers non-
linear damping none of the controllers reached
the goal. In this case, the error values are 0.346
m, 0.346m and 0.353m for the MPC, AMPC FF
and AMPC KF respectively.

Figure 3.6: Maximum force applied by the con-
trollers in all trials without predefined path.
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Figure 3.7: a) RMSE between the reference and measured position in all trials; b) RMSE between the
estimated and the measured position in all trials; c) Maximum applied force in all trials.

The mean of the maximum force applied by
the controllers in all the mentioned scenarios
is summarised in Figure 3.6. AMPC with FF
presents the lowest variability in the maximum
force. In addition, its mean value is slightly big-
ger than the one of the MPC but lower than the
AMPC KF.

Finally, the computed transfer functions based
on the estimated parameters for the FF and KF
approaches show that FF always estimates a
mass-damper system. This is not always the
case for the KF approach which sometimes es-
timates amass-spring-damper system. Never-
theless, none of the methods converge to the
real values of the mass and/or damping.

3.4 Robot Experiments

From the linear squares regression, the values
of the mass and damping of the robot in the
chosen motion were determined. The value of
the mass is 2.5 kg while the damping is 8.011
Ns/m. These values were considered the ref-
erence values.
The results of the experiments performed with
the robot can be seen in Figure 3.7. First, the
RMSE between the reference and the mea-
sured position has been calculated. AMPC
with FF presents greater error than MPC fol-
lowing the reference position. Second, the

RMSE between the estimated position by the
controller and the measured position is shown.
In this case, AMPC with FF has a smaller er-
ror relative to the actual position. Finally, the
maximum force applied in all the trials is sum-
marised. AMPC applies greater force in all
the trials than MPC. As mentioned before, for
the AMPC the change in the force was lim-
ited. This limitation has been included in the
Simulink model but not as part of the configu-
ration of the AMPC. Therefore, the controller is
not aware that the force it is supposed to apply
is being limited. As the torque cannot increase
as fast as the controller is expecting, its capa-
bility to track the reference position more accu-
rately is affected.

4 Conclusion

The goal of this study was to find a case of
study from daily tasks that can be generalised
to several different actions. Then, select a con-
trol strategy able to accurately perform the se-
lected task without the need to have perfect
knowledge about the system it is interacting
with. Finally, the performance of the controller
would be evaluated under different scenarios
both, in simulation and a real case using a
Franka Emika robotic device.

First, from the selection of the scenario, it was
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concluded that several common daily tasks
with different goals are conformed by the same
dynamics, and kinematics. In addition, they
can be controlled by the same kind of control
strategies. As a result of this, a simple scenario
that can easily be extrapolated to different ac-
tions could be selected.

Second, based on the requirements of the se-
lected case of study, MPC controller and its
extension with AMPC using both KF and FF
approaches for the parameter estimation were
selected for their evaluation.

Regarding the simulations, the goal was
reached in almost all the trials for AMPC ap-
proach but not for MPC, such as the cases con-
sidering mass values of 50 or 100 kg. Further-
more, MPC showed unstable performances
for bigger values of the mass or for some tri-
als of the pulse signal which cannot be ac-
cepted in the real application. In addition, the
greater values of the RMSE obtained for the
MPC compared to the ones of the AMPC show
that the controller is not able to accurately fol-
low the desired trajectory. Thus, it is demon-
strated that the combination of MPCwith adap-
tive strategies enables the controller to com-
plete the desired tasks when uncertainties in
the system model are present while the MPC
approach on its own fails.

In particular, AMPC with FF shows a better
performance than the KF approach. This is
demonstrated as presents a more consistent
performance between the trials. Furthermore,
it also shows better adaptability as its be-
haviour is closer to the reference. This aligns
with the statements found in the literature [10].
This difference in the performance is caused
by the estimation algorithms used. The lack
of convergence to the real values for both ap-
proaches confirms the fact that the algorithms
compute the parameters that better relate the
input and the output without caring about the
actual values or composition of the system.

The lack of difference between the controllers
in the error between the final position and the
desired reference position for the trials with ex-
ternal disturbances applied underscores that

none of the controllers account for external dis-
turbances. Thus, it can be stated that none
of the methods exhibit robust capabilities for
disturbance rejection. Future works could ap-
proach the combination of the AMPC with con-
trollers equippedwith enhanced capabilities for
the rejection of external disturbances, particu-
larly in situations where these disturbances are
completely unknown.

In addition, results showed no difference be-
tween the controllers in the error between the
final position and the desired reference posi-
tion when considering nonlinear damping in
the real system. There does not appear to be
a significantly superior controller in effectively
adapting to nonlinear dynamics. On the other
hand, the goal was reached when considering
only nonlinear damping in the controller and
linear damping in the real system. For a future
application of the controller in a real applica-
tion, a performance that does not account for
external disturbances and that does not reach
the goal when nonlinearities are present is con-
sidered to be not good enough. This behaviour
can be caused by the fact that linear methods
are used. Deeper exploration to improve the
performance of the controllers can be done.
This can include the use of control algorithms
such as nonlinear MPC.

Regarding the experiments with the robot, the
outcomes diverge from the conclusions drawn
in the simulations.
According to the simulations, AMPC was ex-
pected to show a better performance than
MPC. However, it only appears to be supe-
rior regarding the tracking of the measured po-
sition while showing a poorer tracking of the
desired trajectory than the MPC. This discrep-
ancy may arise from the physical limitations of
the device as no great changes in the torque
can be applied while in simulations this sce-
nario may be feasible.
It is important to highlight that both MPC and
AMPC showed the same variation of the force
profile in the simulations. Thus, it was not ex-
pected that the torque experienced a substan-
tial variation for the AMPC and not for theMPC.
To improve the performance of the AMPC, al-
ternative ways to regulate the variation in the
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torque applied to the robot can be studied. On
the other hand, only changes in the value of the
mass have been tested. Thus, future works
could include the extension of the scenarios
tested in the robotic device. This might involve
introducing external known masses to the end-
effector to test if greater values of mass would
have a different impact on the controllers’ per-
formance.
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A First appendix

Tables of both the Top-Down and Bottom-Up approaches.
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Case of study Dynamics Kinetics Prior 
knowledge 

Control Goal condition 

1.a) Open a 
bottle/can/jar 
 
(Control is the 
defining 
feature) 

Mass (it can 
be negligible) 
+ 
Damper 
(nonlinear) 

Force 
Position 
 

Force when 
opening for 
the first time 
 
Size of the 
lid 

Increase the 
force while 
there is no 
movement → 
admittance 
controller 

Release the lid. It is 
released when you 
are able to take the 
lid out without 
taking the jar 

Considering the 
task as a whole 
(Prior 
knowledge) 

- Position Position 
where the lid 
can be 
released 

Position 
control  
 
(Force control)  

Position the lid in 
the spot where it 
can be taken off. 

Dividing the 
motion (goal 
condition): 
- First applying 
force until it 
starts moving  

- Force  Force control  
 
 

Make the lid 
moving 

- Move the lid 
to unscrew and 
take it out 

- Position  Position 
control 
(Force control) 

Find the spot to 
take it out 

1.b) Close a 
bottle/can/jar 

Mass (it can 
be negligible) 
+ 
Damper 
(nonlinear) 

Force 
Position 

Size of the 
lid (more 
force if it’s 
bigger) 

Increase the 
force while 
there is no 
movement → 
admittance 
controller 

Fix the lid 
Minimum energy 
principle → applied 
force until you 
can’t move but no 
more 

2) Open the tap  
 
(Focusing on 
control method) 

Mass (can be 
neglected) + 
nonlinear 
damping – 
Tap 

Force 
(Position) 

Force for 
open it to 
the 
maximum / 
Whole range 
of motion 

Admittance 
controller 

Water goes out of 
the tap 

Considering the 
task as a whole 
focusing on the 
prior knowledge 

- Position Position that 
allows water 
to go out 

Position 
control 
 
(Force control) 

Reach the position 
that allows water 
to go out with a 
certain pressure 

Dividing the 
task (goal 
condition): 
- Release the 
tap 

- Force  Force control Being able to move 
the tap 

- Move it - Position  Position 
control 

Water goes out 



3) Prepare 
breakfast 
 
 

Mass – 
bottle milk 
 
Mass – mug 
 

- Weight of 
the mug 
 
Weight of a 
full milk 
bottle 

 
 

Put milk on a mug 

- Open the 
cupboard (5a) 

- See 5a Whole range 
of motion 

See 5a See 5a 

- Take out the 
mug focusing on 
control method 

- Position  Admittance 
control 

Place the mug in 
the table 

- Take out the 
mug focusing on 
prior knowledge 

- Position Weight of 
the mug 
 
Position 
where it 
have to be 
placed 

Position 
control 
 
(Force control) 

Place the mug in 
the table 

- Open the 
fridge (5a) 
 

- See 5a - See 5a See 5a 

- Take out the 
milk 

- See 3 take 
out the mug 

See 3 take 
out the mug 

See 3 take out 
the mug  

The bottle of milk is 
on the table 

- Open the 
bottle of milk 
(1a) 

- See 1a - See 1a See 1a 

- Pour the milk - Position  Position 
control 

When the mug is 
full 

- Open the 
microwave 

Spring 
(nonlinear) - 
button 

Velocity  Force control 
for the button 

When the door is 
open  

- Put the mug in 
the microwave 

- See 3 take 
out the mug 

See 3 take 
out the mug 

See 3 take out 
the mug 

The mug is inside 
the microwave 

4) Take notes 
(handwriting) 

Mass (linear) 
(No friction 
with the 
paper is 
considered) 

Position Force that 
breaks the 
tip of the 
pencil 
 
Size of the 
paper 

Position 
control and 
force control 
(separate) 

There is no more 
empty paper to 
write 

5.a) Open a 
window/door 
Control 
- Move the 
handle 
- Move the 
door/window 

Mass + 
non/linear 
damper 

Position 
Force 

-Whole 
range of 
motion 
 
-Kind of 
handle (door 
or window) 

Admittance/ 
Impedance 
controller 

The door/window 
is completely open 



Considering the 
tasks as a whole 
(prior 
knowledge): 
- Move the 
handle 
 
- Move the 
door/window 

- Position -Whole 
range of 
motion of 
handle/door
/window 

Position 
control 
 
(Force control) 

Handle completely 
pressed or in right 
position to allow 
the movement of 
the door/window 
 
Door/window is 
completely open 

Dividing both 
tasks (goal 
condition): 
- Force until 
movement 

- Force  Force control The handle/door 
starts moving 

- Keep moving - Position  Position 
control 

Handle completely 
pressed or in right 
position to allow 
the movement of 
the door/window 
Door/window 
completely open 

5.b) Close a 
window/door 
 
-Move the 
door/window 

Mass + 
non/linear 
damper 

Position -Whole path 
of the door 

Admittance/ 
Impedance 
controller 

Neither air nor 
person/object can 
pass 
 

6) Throw out 
the rubbish  
 

Mass (linear) Position   The bag is inside 
the rubbish bin 

- Open the 
rubbish bin (1a) 

- See 1a Position 
where the lid 
is completely 
open 

See 1a The lid is 
completely open 

- Placing the bag 
in the bin 

 See 3 take 
out the mug 

See 3 take 
out the mug 

See 3 take out 
the mug 

The bag is inside 
the bin 

7) Hand out 
cards 

Mass (linear) Position The size of 
the space 
where the 
cards need 
to be split 

Position 
control 

The cards are split 

8) Answer a call Damper 
(linear) 

Velocity Dimensions 
of the screen 
-Force 
needed to be 
detected 

Velocity 
control 

Minimum energy 
principle 
 
You go through half 
screen  

9.1) Eat a steak 
 

Fork – mass 
 

 Weight of 
the fork 

 
 

The steak is in the 
mouth 



 
 

Steak – 
spring  
 
 

 
Weight of 
the whole 
steak 

 

- Insert the fork 
in the steak 

 Velocity  Velocity 
control and 
position 
control 

Fork completely 
inserted 
Minimum energy 
principle 

- Move the 
steak+fork to 
the mouth 

Steak + fork - 
mass 

Position Where does 
it need to be 
moved to 

Position 
control 

Steak in the mouth 

9.2) Cut a steak 
 

Knife – mass 
 
Steak – 
spring 
+damping 

Velocity 
(Position, 
Force) 

Cutting a 
raw steak 

Velocity 
control and 
position 
control 

The plate/chopping 
board is reached 
with the knife 

10) Wash the 
dishes 
 
 

 Soap bottle- 
mass+ spring 
 
Scouring pad 
– spring 
 
Object to 
clean - mass 

- Dimensions 
of the 
scouring pad 
and the 
object 

  

- Open the soap 
(1a) 

- See 1a See 1a See 1a See 1a 

- Tilting the 
soap on the 
scouring pad 

- Position 
 

The bottle 
needs to be 
tilted 180º 

-Tilting: 
position 
control 

Bottle is tilted 180º  

- Put soap on 
the scouring 
pad 

- Force Force to get 
soap 
 

Force control 1/8 of the scouring 
pad has soap 
 

- Rub the object - Velocity 
(Position, 
Force) 

Force 
needed to 
clean the 
surface 

Velocity 
control 

Go through the 
surface at least 
once. 

- Open the tap 
(2) 

- See 2 - See 2 See 2 

- Rinse - Position - Position 
control 

Go through the 
surface at least 
once 

11) Brush your 
teeth 
 
 

Toothbrush – 
mass 
 
Toothpaste – 
mass + 
damper 

- Dimensions 
of the 
toothbrush 
and the 
toothpaste 
bottle. 

- - 



 
Teeth – 
infinite stiff 
spring 

 
 
 

- Open the 
toothpaste (1a) 

- See 1a See 1a See 1a See 1a 

-Put toothpaste 
on toothbrush 

- Position 
(Force) 

Force to get 
toothpaste 

Position 
control 
 
(Force control) 

Whole surface has 
toothpaste. For the 
force needed → 
minimum energy 
principle 

- Brush the 
teeth (same as 
10) 

- Velocity 
(position, 
force) 

Force 
needed to 
brush 

Velocity 
control 

Go through the 
surface at least 
once. 

12) Vacuum 
It is considered 
that the user 
doesn’t apply 
force in the 
up/down 
direction 

Mass + 
nonlinear 
damper 

Position Size of the 
space to 
clean 
-Material of 
the surface 
-Weight of 
the vacuum 
so the 
applied force 
to move it is 
constant 

Position 
control 

The surface is clean 
To be more 
concrete → the 
vacuum goes 
through all the 
space once 

 

Case 1a and case 2: Open a lid/tap 

It can be extrapolated to open a rubbish bin (case 6). 

Three approaches can be made. 

The first one is considering that the control is admittance control (force control).  

Other option is considering that the prior knowledge, in which point the lid can be released, is known. 

Thus, it can be considered as position control. 

The other option is dividing the task in two so defining different goal conditions: force until it starts moving 

and keep moving it. In this case each subtask has its own control. 

 

Case 3: Subcase take out the mug/milk 

Can be extended to moving objects in general. 

Considering known the prior knowledge the position where it needs to be placed it can be just position 

control. 

If the type of control it is what it wants to be applied then admittance control can be considered. 

Based on the goal condition it can be divided in force until the motion is started and then keeping the 

motion. 

 



Case 3:  Subcase pouring water/milk/soap: it can be divided in two subtasks putting up the object (force) 

and then tilt it (position). The components of the tasks are mass, force, and position. Other tasks that can 

relate with this one:  

o Putting the rubbish bag in the rubbish bin 

o Taking any object and move it. 

o Open a window/door (ignoring the damping) 

o Open a bottle (admittance control, ignoring the damping) 

 

Case 5a: Open a door/window 

It can be extrapolated to open cupboard, open fridge in case 3. The following approaches can be followed 

for the two subtasks, moving the handle and moving the door/window itself. 

Considering the prior knowledge, position where the door/window is completely open. 

Dividing the task based on different goal conditions: force until it starts moving and keep moving it.  

The control is admittance control (force control). 

 

  



BOTTOM-UP APPROACH 

1.a) Open a bottle/can/jar 
 
(Control is the defining 
feature) 

Mass (it can 
be negligible) 
+ 
Damper 
(nonlinear) 

Force 
Position 
 

Force when 
opening for the 
first time 
 
Size of the lid 

Increase the 
force while 
there is no 
movement → 
admittance 
controller 

Release the lid. It is 
released when you 
are able to take the 
lid out without 
taking the jar 

Considering the task as a 
whole 
(Prior knowledge) 

- Position Position where 
the lid can be 
released 

Position 
control  
 
(Force control)  

Position the lid in the 
spot where it can be 
taken off. 

Goal condition): 
- Force until it starts 
moving  

- Force  Force control  
 
 

Make the lid moving 

- Unscrew the lid - Position  Position 
control 
(Force control) 

Find the spot to take 
it out 

 

Option 1: Apply force until it starts moving and decrease the force while the velocity increases. 

- 𝑓𝑖 > 𝑓𝑓 

- 𝑣𝑖 < 𝑣𝑓 

This can be seen as decreasing the impedance over time. 

- 𝑍𝑖 > 𝑍𝑓 → admittance control 

Option 2: Apply force until it starts moving and decrease the force when reaching the desired position. 

- 𝑓𝑖 > 𝑓𝑓 

- 𝑥𝑖 < 𝑥𝑓 

Option 3: supposing known the force needed to move the lid, move until reaching the desired position. 

- 𝑥𝑖 < 𝑥𝑓 → position control 

 

 

  



5.a) Open a 
window/door 
Control 
- Move the handle 
- Move the 
door/window 

Mass + 
non/linear 
damper 

Position 
Force 

-Whole range 
of motion 
 
-Kind of 
handle (door 
or window) 

Admittance/ 
Impedance 
controller 

The door/window is completely 
open 

Considering the tasks as 
a whole (prior 
knowledge): 
- Move the handle 
 
- Move the 
door/window 

- Position -Whole range 
of motion of 
handle/door/
window 

Position 
control 
 
(Force control) 

Handle completely pressed or in 
right position to allow the 
movement of the door/window 
 
Door/window is completely 
open 

Dividing both tasks (goal 
condition): 
- Force until movement 

- Force  Force control The handle/door starts moving 

- Keep moving - Position  Position 
control 

Handle completely pressed or in 
right position to allow the 
movement of the door/window 
Door/window completely open 

 

Difference with open a lid: when is the task done. In this case there are two options, when you see the 

thing you want to take or there is enough space to enter/allow the air to enter or you open it completely. 

Option 1: Apply force until it starts moving and decrease the force while the velocity increases. 

- 𝑓𝑖 > 𝑓𝑓 

- 𝑣𝑖 < 𝑣𝑓 

This can be seen as decreasing the impedance over time. 

- 𝑍𝑖 > 𝑍𝑓 → admittance control 

Option 2: Apply force until it starts moving and decrease the force when reaching the desired position. 

- 𝑓𝑖 > 𝑓𝑓 

- 𝑥𝑖 < 𝑥𝑓 

Option 3: supposing known the force needed to move the lid, move until reaching the desired position. 

- 𝑥𝑖 < 𝑥𝑓 → position control 

Option 4: The task is completed when the door/window is completely open.  

- 𝑓𝑖 < 𝑓𝑓 

- 𝑣𝑖 > 𝑣𝑓 

This can be seen as increasing the impedance over time. 

- 𝑍𝑖 < 𝑍𝑓 → admittance control 



3) Prepare 
breakfast 
 
 

Mass – 
bottle milk 
 
Mass – mug 
 

- Weight of 
the mug 
 
Weight of a 
full milk 
bottle 

  
 

Put milk on a mug 

- Open the 
cupboard (5a) 

- See 5a Whole range 
of motion 

- See 5a See 5a 

- Take out the 
mug focusing on 
control method 

- Position   Admittance 
control 

Place the mug in 
the table 

- Take out the 
mug focusing on 
prior knowledge 

- Position Weight of 
the mug 
 
Position 
where it 
have to be 
placed 

 Position 
control 
 
(Force control) 

Place the mug in 
the table 

- Open the 
fridge (5a) 
 

- See 5a - - See 5a See 5a 

- Take out the 
milk 

- See 3 take 
out the mug 

See 3 take 
out the mug 

 See 3 take out 
the mug  

The bottle of milk is 
on the table 

- Open the 
bottle of milk 
(1a) 

- See 1a - - See 1a See 1a 

- Pour the milk - Position   Position 
control 

When the mug is 
full 

- Open the 
microwave 

Spring 
(nonlinear) - 
button 

Velocity   Force control 
for the button 

When the door is 
open  

- Put the mug in 
the microwave 

- See 3 take 
out the mug 

See 3 take 
out the mug 

 See 3 take out 
the mug 

The mug is inside 
the microwave 

 

Open the cupboard is the same as previous case. 

Take out the mug: 

-  𝑥𝑖 < 𝑥𝑓 → position control. 

Open the fridge is the same as previous case. 

Take out the milk: 

-  𝑥𝑖 < 𝑥𝑓 → position control. 

Open the bottle of milk is open a bottle. 

  



Pour the milk: this example can be applied to any task that implies movement of an object. 

- 𝑥𝑖 < 𝑥𝑓 → position control 

Open the microwave: 

Option 1: make the button to move until you reach the end of the motion range. 

- 𝑓𝑖 < 𝑓𝑓 

- 𝑣𝑖 > 𝑣𝑓 

Can be seen as increasing the impedance over time. 

- 𝑍𝑖 < 𝑍𝑓 → admittance control 

Option 2: increase the force until reaching a position. 

- 𝑓𝑖 < 𝑓𝑓 

- 𝑥𝑖 < 𝑥𝑓 

Option 3: only consider the velocity, so you apply some velocity to the button until it becomes 0 

meaning you reached the end. 

- 𝑣𝑖 > 𝑣𝑓 → velocity control 

 

Put the mug in the microwave is the same as taking out the mug from the cupboard. 

 


