
Membership Inference Attacks on Federated
Horizontal Gradient Boosted Decision Trees

Jaap Meerhof
Rijksinstituut voor Volksgezondheid en Milieu

Strategic Program RIVM
University of Twente

Enschede, Netherlands
jaapmeerhof@pm.me

Abstract—Federated Learning is often presented as a pri-
vacy preserving measure, as the raw unprocessed data is not
transferred to other parties. Instead models or gradients for
example are shared around such that the original data is hidden.
The privacy claims of Federated Learning have been called
into question after successful privacy breaching attacks on the
model or protocol. By attacking the model or entire federated
protocol itself Membership Inference Attacks could retrieve if an
individual was present in a dataset. These attacks are especially
dangerous in the medical domain; where sensitive data require
privacy guarantees. If these attacks can be mitigated in a Feder-
ated Learning scenario, medical institutions could collaborate to
create machine learning models together. Much of the research is
oriented towards Neural Networks, whereas the medical sector
and government institutions often use more classical machine
learning methods due to their interpretability and ease of use.
Attacking Federated Learning Gradient Boosted Decision Trees
algorithms is a field mostly left unexplored, therefore this paper
investigates the Horizontal Federated Learning protocol “Feder-
Boost” with XGBoost’s regularisation parameters. FederBoost
is investigated by attacking with two different methods that
use extra information acquired during the Federated Learning
process. This is done after testing the susceptibility of Gradient
Boosted Decision Trees to the Membership Inference Attack with-
out this federated information. This is all done to asses to what
extent Gradient Boosted Decision Trees preserve privacy when
using Federated Learning with and without heavy encryption
methods. One of the two methods that used the leaked federated
information was successful and improved the accuracy of the
Membership Inference Attack in certain conditions, thus showing
the danger of sharing gradients and hessians during training.

Index Terms—Machine Learning, Classical Machine Learning,
Privacy, Membership Inference, Federated Learning

I. INTRODUCTION

fData mining is becoming more important and prevalent
every year. Machine learning methods require as much high
quality data as possible. This data collection and exploitation
can be both to the benefit as to the detriment to the individual.
Some of the most private information is medical data, which
is at the same time highly useful data. Medical data could for
example help a machine learning algorithm do early detection
of a treatable disease. The easiest way to train such a machine
learning algorithm is to collect all data at one central point.
This might, however, be near impossible to do with sensitive
data which cannot be shared easily between parties without
legal contracts and a cyber secure environment. Federated

Learning (FL) has been proposed to train a model without
sharing the training data [1]–[3]. Federated Learning could
help to create strong models by combining datasets from
different parties, while not sharing the personal data with other
(untrusted) parties. Federated Learning could allow users to
train one model without hurting the accuracy of the end model
with other privacy preserving measures.

Medical institutions have an interest in creating more ac-
curate and privacy-preserving machine learning models. This
is difficult to do as health data holds a higher degree of
regulation [4]. Federated Learning could provide both privacy
and usability, as other privacy preserving measures often
require either slow encryption algorithms or add noise to the
data or outputs resulting in a less accurate model.

Research has, however, shown that Federated Learning
could introduce new privacy challenges as information about
the original dataset can be retrieved from the machine learning
models themselves. These attacks include the Membership
Inference [5], Property Inference [6], and the Model In-
version [7] Attack. These attacks could still force potential
users of Federated Learning to use costly privacy preserving
defenses like differential privacy and secure aggregation.

Most of the research into the privacy of federated networks
is however going into networks that use Neural Networks.
Both in the research on attacking machine learning models as
in defending against these attacks. The popularity of Neural
Networks is in good reason. These Neural Networks are pow-
erful and have enabled many new technologies, however, they
are also more difficult to interpret and use than the “classical”
machine learning algorithms. While there is research going
into the explainability of Neural Network schemes [8], [9],
classical machine learning approaches like Decision Trees,
Support Vector Machines, K-Nearest Neighbors, and Random
Forest (to a lesser certain extent) have this property already.
This property, together with their ease of use, and other
properties makes it such that many data scientist are still using
classical machine learning methods like Logistic Regression,
Decision Trees, Random Forest, and Gradient Boosted De-
cision Trees like XGBoost. This was found when surveying
25,000 thousand data scientist users on the machine learning
website Kaggle [10]. The fact that difficult to interpret models
can be unacceptable in the medical sector [8], together with

1

the fast convergence of classical approaches and competi-
tive accuracies [11], creates a strong argument for some to
use these classical machine learning approaches. There are
papers that provide different ways to do the three different
attacks [12]–[16]. The interpretability of Gradient Boosted
Decision Trees is questionable, however, when necessary trees
could be investigated to asses why a certain result was given
for an individual.

There are some papers [13], [16]–[18] that take the informa-
tion leakage of a federated algorithm into account. All these
papers look at Neural Network algorithms however. There is
no research that uses the extra leaked information that can be
obtained during a Federated Learning process for an attack on
Gradient Boosted Decision Trees. Together with this the papers
that look into attacking classical machine learning algorithms
are limited.

Then there are also papers that apply these different attacks,
however they often do not look at applying a defensive
measure [6], [16], [17], [19]–[21]. Also some papers have
mixed results with their attacks, as shown in Truex and
de Arcaute [14], [20]. Most of these papers look at the
Neural Networks. This together with the findings of Song and
Mittal [22] that shows that different defences might not be as
strong as reported in some papers. The effect of regularisation
in these federated networks as a defensive measure is not
looked at deeply.

To add to this disparity in research, some attacks differ for
Horizontal Federated Learning, Vertical Federated Learning,
and Federated Transfer Learning. This paper investigates the
Horizontal Federated Learning approach as it is the approach
most likely to be used in the near future by the Dutch
RIVM (National Institute for Public Health and the Environ-
ment). In this setting the different participants hold different
rows/items/patients. However these differing rows contain the
same features. Thus different hospitals could keep track of
the age, height, and weight of different patients, however, no
hospital is holding a different extra feature.

This research will therefore look into Horizontal Federated
Gradient Boosted Decision Trees, and in particular XGBoost’s
regularisation parameters. XGBoost is a popular method as it
incorporates extra regularization, approximation, it is sparsity
aware, and offers many computational optimisations to create
an overall package that can rival Neural Networks in certain
settings. The extra regularization of XGBoost is of particular
importance as it could help defend against possible attacks.

This paper analyses the following Main Research Question
(MQR):

• MRQ: What level of impact does taking away regular-
isation, and secure aggregation have on the privacy of
individuals when using Horizontal Federated Gradient
Boosted Decision Trees?

To achieve this the following Research Questions (RQ) will
have to be answered:

• RQ1: To what extent do the gamma, alpha, lambda,
learning rate, max depth, the number of trees, the number
of buckets, and training size regularisation parameters
affect the effectiveness of the Salem et al. Membership
Inference Attack when attacking Gradient Boosted Deci-
sion Trees?

• RQ2: To what extent can communicated non-secure-
aggregated differentials in Horizontal Gradient Boosted
Decision Tree be used in a membership inference attack?

To answer this question GBDT will be attacked using the
Membership Inference Attack on a Horizontal Federated
Learning network from Tian et al. [23] called FederBoost.
To defend against the Membership Inference Attack different
levels of regularisation will be tested and compared. The
extra information that could leak if secure aggregation is not
used will be exploited to attack FederBoost. This paper thus
introduces new methods of doing a Membership Inference
Attack.

In Section II the different terms/technologies, abbreviations
and notations used throughout the paper are explained. In
Section III FederBoost together with its privacy model is
defined. Section IV explains the different attacks done against
FederBoost. Here the different threat models that apply to the
different attacks are also explained. Section V then reveals
the results of the different attacks. Section VI goes over
other research in the field of privacy breaching attacks against
machine learning algorithms. Section VII discusses the results
further, and reasons on possible future work. The conclusion
to the paper’s above mentioned research questions are given
in Section VIII.

II. PRELIMINARIES

Abbreviation and notations used throughout the paper can
be found in Table I and II respectively.

Abbreviation Definition
FL Federated Learning

MLaaS Machine Learning as a Service
DT Decision Tree

GBDT Gradient Boosted Decision Tree
RF Random Forest
NN Neural Network

DNN Deep Neural Network
FCNN Fully Connected Neural Network
GAN Generative Adversarial Network
LR Linear Regression
NB Naive Bayes
API Application Programming Interface
PAX Party Adaptive XGBoost

TABLE I: Abbreviation definitions used in this paper.

2

Notation Description
P set of Participants
l number of participants
q number of buckets
T set of trees
m number of features
Dpi Pi’s Dataset
y ground truth label
ŷ prediction result

p(ŷ) probability estimations per class
g gradient; first order differential of loss function
h hessian; second order differential of loss function
Q quantile
C set of target classes
c class number c
n nodeID
k featureID
S splits array
v quantileID
x data (features)

TABLE II: Notations

A. XGBoost

Chen and Guestrin [24] are the original authors of Xtreme
Gradient Boost which is better known as its abbreviation
XGBoost; a Gradient Boosted Decision Tree algorithm. In this
algorithm Decision Trees are made by iteratively improving
on previously made Decision Trees. This process is called
“boosting”. This boosting process can be started by taking
random prediction guesses, on these guesses the first and
second order differentials of a loss function can be calculated.
The differentials are calculated per person (instance). These
differentials can be used to create new trees. All trees are
stored throughout this process, to do prediction all trees are
traversed to retrieve weights. In this paper only the multi-
class problem is considered, to do multi-class prediction with
a Gradient Boosted Decision Tree, a set of trees is created for
every class. The trees in this set are tasked with predicting if
one specific end class is the target y, or if it is not. All tree
sets of every class are then collaboratively used to retrieve the
probability values of all classes by comparing weights. Thus
prediction is done by taking the output of every tree in a set of
trees; as can be found in Equation 1. fc,t is the t’th tree out of
all T trees for class c. It returns a single weight per tree, which
are aggregated to retrieve one weight for every class. These
weights are then fed into the softmax function (Equation 2) to
retrieve a probability score per class, these probabilities add
up to 1 and are in the interval of [0, 1].

ŷc,i = ϕ(xi) =

T∑
t=1

fc,t(xi) (1)

p[c] = p(ŷc) =
eŷc∑C
c=1 e

ŷc

(2)

Firstly the predictions are set to be random, on these random
predictions the first set of differentials can be calculated using
Equation 3 and 4. The gradient g being the first order differ-
ential and the hessian h being the second order differential.

g =

{
p[c]− 1 if y == c
p[c] otherwise

(3)

h = max(2 ∗ p[c] ∗ (1− p[c]), 1e− 6) (4)

To build the trees, a spit value, split feature pair has to
be found at the root and the newly created nodes afterwards.
With small simple datasets XGBoost looks at every possible
value for the different features and assesses which is best.
However, for Federated Learning algorithms quantile sketches
are often made to create bins that multiple feature values
will fall into. This reduces the amount of splits to asses
and with enough bins often barely impacts performance in
most scenarios. Quantiles can be sketched with decentralised
quantile sketching algorithms like found in the federated
XGBoost FATE algorithm [25].

To build these trees iteratively, the dataset is used to find
the best split that optimises Equation 5. Here the aggregated
gradients and hessians of all instances left (IL) of a split are
compared to the gradients and hessians right of a split (IR)
and all instances (I). These aggregated gradients and hessians
are retrieved by adding the gradients or hessians that apply
to instances that fall in the same bin. Thus if there is a bin
for people aged 0 to 20 then all these people’s gradients are
aggregated.

Lsplit =
1

2

[
(
∑

i∈IL
gi)

2∑
i∈IL

hi
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi
−

(
∑

i∈I gi)
2∑

i∈I hi

] (5)

When the maximum depth is reached, or the loss returned by
Equation 5 is smaller then 0 (can happen when regularisation
metrics are introduced as explained in Section II-A1), that
node is marked to become a leaf. The weight of a leaf is
calculated using Equation 6 using the learning rate ϵ.

w = −
∑

i∈I gi∑
i∈I hi

∗ ϵ (6)

Eventually no nodes can be made anymore, and thus a tree
is made. The weights are then used in Equation 1 and 2 to
repeat the cycle.

After the trees are made, other data can be tested upon by
predicting on all trees again using Equation 1 and 2.

1) Regularisation Terms: XGBoost uses a lot of different
parameters of which most impact the regularisation strength of
the end model. The different regularisation metrics investigated
in this paper are explained below.

Alpha: α can be in [0,∞); it functions as the L1 regu-
larisation term. The parameter is used in the split loss score
calculation and can be found in Equation 7. α is subtracted
from an aggregated gradient g if α is larger g. Else if g is
smaller than −α, α is added to g. If none of these apply
then 0 is returned. This is applied to the summed & squared
gradients of Equation 9, before the loss is calculated, and on

3

Algorithm 1 Approximate & hist algorithm for split finding
[24]

1: for k = 1 to m do
2: propose split array for feature k Sk = {sk1, sk2, ..., skl}

by percentages on feature k.
3: proposal can be done per tree (global approximate), or

per split (local approximate) or once in the beginning
(hist).

4: end for
5: for k = 1 to m do
6: Gkv ←=

∑
j∈{j|sk,v≥xj,k>sk,v−1} gj

7: Hkv ←=
∑

j∈{j|sk,v≥xj,k>sk,v−1} hj

8: end for

the new weight calculation Equation 8. A larger α will result
in a smaller numerator. And thus a smaller loss resulting in a
more conservative model.

L1(g, α) =


g − α if g > α

g + α if g < −α
0 otherwise

(7)

Gamma: γ can be in [0, ∞) and is used to prune the tree.
If the calculated loss in Equation 9 is below zero then the split
is not taken. Thus γ introduces a minimum value that the loss
has to be for a split to be taken.

Lambda: λ can be in [0,∞) and functions as the L2
regularisation term. Increasing this value will make the model
more conservative as the denominator will be larger. As used
in the updated Equation 9 and 8.

w = −
L1(

∑
i∈I gi, α)∑

i∈I hi + λ
∗ ϵ (8)

Lsplit =
1

2

[
L1((

∑
i∈IL

gi)
2, α)∑

i∈IL
hi + λ

+
L1((

∑
i∈IR

gi)
2, α)∑

i∈IR
hi + λ

−

L1((
∑

i∈I gi)
2, α)∑

i∈I hi + λ

]
− γ

(9)
nBuckets: nBuckets can be in [1,∞) and represents the

amount of maximum quantile buckets. With more buckets, the
size of every bucket decreases. This will result in quantiles
that represent the exact values more and more. Like with the
learning rate an epsilon value is often used to notate these
quantile sketching algorithms where ϵ = 1

nBuckets , in this
paper only nBuckets is used to indirectly refer to this privacy
parameter epsilon value.
|T|: The amount of trees created for every class c; |T | can

have an influence on the regularisation. The more trees created,
the more dataset is used and information about the original
dataset is revealed.

Train size: The size of the training set has a influence
on the regularisation. A small dataset makes it so that the
trees are focused on only a small amount of data, making
overfitting more likely. A large dataset for Gradient Boosted

Decision Trees is more difficult to overfit with Gradient
Boosted Decision Trees.

B. Federated Learning

Federated Learning (FL) is a way for a machine learning
algorithm to be trained by multiple parties with data while
not having to share the data directly. Federated Learning
was proposed by Google [1]–[3] who claimed the following:
“Federated Learning can significantly reduce privacy and
security risks by limiting the attack surface to only the device,
rather than the device and the cloud.” [1]. This claim is valid,
however, due to the broad definition of Federated Learning,
sometimes Federated Learning is not that private as may be
believed. When using Neural Networks the model could be
shared to other users for them to calculate the backpropaga-
tions and communicate them back to a central party. This way
the model could be trained while keeping data on-premise.
The privacy benefits of these protocols are continually being
challenged requiring extra privacy preserving measures on
top of Federated Learning. Federated Learning can be done
with a central party, or distributed without a central party
orchestrating the protocol. In this paper only the setting with
one central party is investigated.

C. Secure Aggregation

Secure aggregation allows for addition without revealing
the underlying addend values used. This can be used to
aggregate gradients together like done in Bonawitz et al. [26].
Bonawithz et al. proposed a secure aggregation protocol to
specifically protect the gradients of a Neural Network Feder-
ated Learning protocol from Google. Thus only the aggregated
sum of the party’s addends will be revealed. This algorithm
relies on Shamir’s t-out-of-n Secret Sharing [27]. Secure
aggregation is used in Tian et al. ’s [23] FederBoost to protect
the differentials by aggregating them securely. FederBoost is
used in this paper without using this Secure Aggregation.

D. Membership Inference

The Membership Inference Attack is an attack that deter-
mines if a data record was used in the training of that model.
The attack takes advantage of the fact that machine learning
models are often more confident in their assessment when
using training data. It does so by creating “shadow” models
that aim to be as similar as possible to the actual model. This
was first successfully done in a paper from Shokri et al. [5].
In this attack one shadow model is made for every class. These
models can be trained by creating data using the model itself,
creating data using background information, or by having
some real noisy data. They show that a Membership Inference
Attack can be robust even if the attacker’s assumptions about
the distribution of the target model’s training data are not
very accurate. This background information could be retrieved
from other open source data; for example from data of another
nation. The goal in the end is thus to create a function that
given a set of features values, estimates if this set was used in
training; like defined in Equation 10. Here x is a data sample

4

Fig. 1: The Membership Inference Attack as done in Salem et al. [15]. A: The to be tested dataset D is split up between
Dsever,Dtarget & Dtest, where Dtarget is used to train the target model, the attacking server splits up Dserver into Dshadow,in

and Dshadow,out both of size train size. B: Server trains the shadow model using Dshadow,in. C: Server trains the attack
model using the trained shadow model. Data elements from both Dshadow,in and Dshadow,out are labeled using Equation 12.
D: The attack model is evaluated for performance by using Dtarget and Dtest to check if the attack model can differentiate
between used data elements and those which were not used.

with the same features as used in training. Function f then
returns 0 if x was used in training and 1 otherwise.

A : x, f → {0, 1} (10)

This attack was boosted by Salem et al. [15] by successfully
only using one shadow model instead of multiple achieving
similar accuracies. This makes the attack easier to do, thus
increasing the potential risk. Salem et al. also show that just
abusing confidence scores with a threshold-choosing methods
can be enough to do an effective Membership Inference
Attack. The attack as done in Salem can be found in Figure 1
and is explained below.

Throughout the following explanation a data set is notated
as D and contains the training data X , and the labels/targets
y as found in Equation 11.

Dname = (Xname, yname) (11)

A+B: Starting with a datasetD (in experimentation: “health-
care”, “synthetic-10” or “synthetic-100”) is split up by taking
a chunk of size train size ∗ 2 and train size. This is dis-
tributed to the attacker (server) and the target into Dserver and
Dtarget respectively. The target then trains its “target model”
with Dtarget. In this paper the dataset Dserver and Dtarget are
of the same distribution, this gives the attacker the best case
scenario to mimic the target model. The attacker ends splits up
its datasets, one will be used to train a shadow model that tries
to mimic the target model. As the shadow model is trained in
the same way with data similar to the target model, the shadow

model is trying to become a “shadow” of the target model.
Knowing how the target trained its model might not always
be possible, however, in this paper the worst is assumed. The
target model is then trained using Dtarget. C: The instances
used in training Dshadow,in’s y values are replaced with
ones with the labeler function (Algorithm 2), this indicates
that it was used in training. The Dshadow,out’s y values are
replaced with zeros, this indicates that the entries were not
used in training. The untouched instance values x ∈ X where
X represents the combined instances of the Dshadow,in and
Dshadow,out are fed into the trained shadow model to retrieve
probability scores per instance. These probability scores (one
for every class) are used together with y to train the attack
model. D: To test the attack model, the test dataset Dtest is
used in combination with the used training samples Dtarget.
The labeler function (Algorithm 2 is again used to replace
y values as in step C, this time the probability scores of the
target model are used to do inference on the attack model. The
result from the already trained attack model are then used to
evaluate how well the attack model is able to differentiate
trained instances from unused instances.

When using Federated Learning the Membership Inference
Attack can use the messages communicated between the users
to try to advance that attack. This is done in Nasr et al.
[28] for Neural Networks. Thus when the target model trains
centrally, the attacker is often only assumed to have access to
the target model. In the federated setup, the central party can
store the messages send and use them later in an attack. This
is illustrated in Figure 2.

5

Algorithm 2 Labeler function

Input: Dout,Din, take h (optional)
Output: data elements not used in training are labeled 0,

others 1
1: X = the union ∪ of Din, Dout such that both there is a

50/50 split between Din and Dout.
2: if take h is given then
3: X = X.take(random, take h) # takes random rows
4: end if
5: y = label(X) # uses Equation 12
6: return (X, y) # = Dattack1

Fig. 2: Threat model of both the Centralised and Federated
Setting. In the Centralised model, the target model with all its
parameters, weights, and splits are available to the attacker. In
the Federated setting the attacker is the central coordinating
server, and thus also has access to all messages send to it.

III. FEDERBOOST

This section explains the FederBoost algorithm from Tian
et al. [23]. This algorithm provides an accurate model
comparable to running XGBoost centrally with all data. It aims
to provide a fast way to create a model by using lightweight
secure aggregation. FederBoost was replicated in Python and
can be accessed on GitHub.

A. Algorithm

In the horizontal setting the parties will first have to find
quantiles for every feature. FederBoost describes it own quan-
tile sketch algorithm; this algorithm uses secure aggregation
to hide the information about the dataset of a data holder.
However, any (secure) distributed quantile sketch algorithm
can be used in place.

1) Participant: A participant Pi ∈ P has two tasks,
first it needs to help find quantiles for the combined dataset
among other participants. The quantiles can be found using
the aforementioned algorithm described in FederBoost [23] or
any other distributed (secure) quantile sketching method. For
the testing in this paper DDSketch [29] was used. Secondary, a
participant is responsible for calculating first order differentials
(gradients) and the second order differentials (hessians) on its
data and communicating it with the main server.

Algorithm 3 describes how the different participating user
help in creating a federated model. After the quantiles are
found the users will initialise the initial predictions to be
random (line 2). Using this initial prediction the different users
can calculate their first and second differentials (line 5-6); the
gradients and hessians respectively; on the dataset using a loss
function. These gradients and hessians can be used to create
the aggregated gradients and hessians for the different features
relative to the instances that are still relevant in the current
node. When going down a decision tree, different data points
are not being assessed anymore, the data points that are still
relevant to a node are the instances I still used in the gradient
calculations (line 5-6). The aggregation is done for every class,
feature, node and split on the gradients still relevant to that
node (line 9-16). These gradients are send to the server, which
will receive a two-dimensional array of gradient values for
every node n of a tree responsible for class c. The two-
dimensional array holds values over the different features and
split possibilities for that feature. The gradients are send using
secure aggregation such that only the aggregated gradients of
all participants can be retrieved by the central party. The server
processes the aggregated gradients and sends back the best
split found for every node being worked on. The local tree is
updated with this split decision on the side of the participant.
For every new node the relevant instances I are updated using
the split information from the parent’s node split information.
The prediction probabilities are updated after a tree has been
fully constructed.

6

https://github.com/Jaap-Meerhof/Federated_XGBoost_Python.git

Algorithm 3 FederBoost (Local Node)

Input: Init Probas, Initial probabilities for every class; T =
∅, Trees; ϵ, error parameter.

Output: All trees T = {t0, ..., t|T |}
1: run distributed quantile sketch algorithm to retrieve Quan-

tile Splits S
2: initialize ŷ randomly
3: for t = 1→|T | do
4: for k = 1 to m do
5: gk ← ∂ŷL(y, ŷ)
6: hk ← ∂2

ŷL(y, ŷ)
7: end for
8: for d = 1→MAX DEPTH do
9: for c = 1→ NCLASSES do

10: for node n on depth d do
11: for k = 1 to m do
12: Gcnkv =

∑
j∈{j|skv≥xjk>sk,v−1} gk

13: Hcnkv =
∑

j∈{j|skv≥xjk>sk,v−1} hk

14: end for
15: end for
16: end for
17: send all G,H
18: receive splitcn
19: update node with splits
20: update instances I of node n in tree for class c based

on splitcn parent
21: end for
22: update ŷ+ = Predict(ft)
23: end for

2) Server: The server Pserver (or Active Party in some
papers) is responsible for receiving differentials from the
participants and using them to find the best split value and
feature combination. This can be done by using Equation 9.
The differentials are first received and aggregated using secure
aggregation (line 4-9 Algorithm 4. The optimal split is then
calculated using Equation 9 for every class and node being
investigated (line 10-15). The splits are then send to every
participant (line 16-15). This is done till all trees have been
constructed.

Algorithm 4 FederBoost (Server)

Input: Init Probas, Initial probabilities for every class; T =
∅, Trees; ϵ, error parameter.

Output: All trees T = {t0, ..., t|t|}
1: receives the chosen quantiles Quantile Splits S from one

of the participants
2: for t = 1→|T | do
3: for l = 1→MAX DEPTH do
4: G,H ← ∅
5: for i = 1→|P | do
6: receive Gi, Hi

7: G ∪Gi

8: H ∪Hi

9: end for
10: for c = 1→ N CLASSES do
11: for node n on level l do
12: splitcn ← find split(S,Gcn, Hcn)
13: As in Algorithm 1.
14: end for
15: end for
16: for i = 1→ l do
17: send all splitcn
18: end for
19: end for
20: end for

B. Privacy

Tian et al. [23] explains the security achieved by this
algorithm in the following manner:

For a participant Pi, there are two places of possible
information leakage:

• During quantile lookup, Pi inputs n′
i to secure aggrega-

tion
• During the tree construction the gradients and hessians

are not leaked as secure aggregation is used.
As secure aggregation is used only the sum of the gradients,

hessians and dataset size is leaked.
For Pserver is also argued that the server leaks some

information to the other participants:
• During quantile lookup, Pserver sends the quantiles to

other users.
• During tree construction the different splits are shared to

the participants.

7

As the splits that are calculated by the server only use the
gradients and the hessians, the server does not gain anything
from these splits. The deeper the trees are the less users/rows
are linked to the gradients & hessians. Thus revealing more
about the underlying data. This is illustrated in Figure 3;
here the people relevant to a node lower as with larger depth
values. By using the differentials leaked at the different nodes,
the attacker could extract more information about how the
different instances flowed through the tree. This could result
in knowing better in which ranges a patients features lie in.
The attack from Salem et al. [15] only uses the probabilities
derived from the end leaf’s weights. Although the weights are
calculated from the gradients and hessians, some information
is lost in this translation. The hypothesis is that the federated
attack could benefit from also using the gradients, hessians
and tree structure to advance the attack.

Fig. 3: Deeper trees result in fewer relevant instances down
in the tree. The reported gradients are therefore more valuable
further down in a tree.

The secure aggregation is used as information about the
individual user’s dataset can leak to the central server. If an
participant reports a gradient of 0 for one of the branching
nodes, then that participant has no indices with the feature
values, and splits found above towards the root.

IV. ATTACKING EXPERIMENTS

This Section will explain what kind of Membership Infer-
ence Attacks will be experimented with on the FederBoost
algorithm explained in Section III.

A. Environment

In the three experimentation’s two threat scenarios will be
investigated, the “Centralised” setting and the “Federated”
setting. The scenarios are illustrated in Figure 2. In the
centralised setting target model is trained by the dataset holder,
the attacker gains access to this attack model after training and
is tasked with doing the Membership Inference Attack on the
target model using background information. In the federated
setting the target model is trained in the federated setting.
The attacker is the central party coordinating the Federated

Learning setup. It can thus capture the different messages
send of the different parties and use them later to do the
Membership Inference Attack. This means that the gradients
and hessians are used, together with the tree split values, and
spit features as illustrated in Figure 4C.

The federated attacks are also compared to the centralised
attack by using the attack from Salem et al. [15] on the
federated algorithm (FederBoost-Central).

Fig. 4: A: During the federated learning process the partic-
ipants {P1, ...Pi, ..., Pl} will send their aggregated gradients
and hessians GPi, HPi, these are stored by the central party.
B: Splits are created, these splits are stored by the central
party as they are relevant to following gradients and hessians
to be received from lower nodes. The participating parties also
store the splits, they do not however learn about the gradients
of others. C: The central party thus stores all gradients and
hessians for the different nodes (and if secure aggregation is
not used for every party as well). Together with this the splits
are stored.

To find the splits, DDSketch [29] was used centrally on

8

all data to simulate a secure federated quantile sketching
algorithm.

1) Mimicking the Dshadow dataset: To perform an attack it
is best to create a shadow dataset Dshadow that is as close to
the target model’s dataset Dtrain as possible. For the attacks
simulated for this paper, another subset of the used dataset is
used to attack the original dataset. This is done to look at the
upper-bound effectiveness of the attack such that the attacker
has all theoretically possible advantages.

B. Data sets

1) Healthcare: The “Healthcare Analytics II” dataset from
Kaggle is a dataset on which a model can be trained to
predict the length of stay for a patient. This can help hospitals
by having better resource allocation. The stay duration is
split between 11 classes ranging from 0-10 to more than
100 days resulting in 11 multi-class labels. There are 17
features, of which 16 features are used in testing (case id is
dropped as it does not add to the problem and could help in
membership inference). The dataset has about 318k rows as
only test data.scv was used.

2) Synthetic: The synthetic dataset is created using
sklearn’s make classification method was used to create
a custom dataset with desired features, rows and classes.
All experiments use the following parameters: class sep =
1.0, n clusters per class = 1, n informative = 5,
n redundant = 0). The target classes are uniformly dis-
tributed. Different amount of multi-class labels are tested,
“synthetic-10” is using 10 multi-class labels, where as
“synthetic-50” is using 50 multi-class labels.

C. Experiment 1: FederBoost-Central

The Membership Inference Attack can be done on the end
model. The central server can use background information by
using a dataset that has the same splits as agreed upon in the
target model. The attack can be done in the way described in
Salem et al. [15] and explained in Figure 1. This attack as in
Salem et al. will be referred to as the “Centralised” attack as
no federated information is used.

1) The Centralised Attack: To see what effect the differ-
ent regularisation metrics have on the effectiveness of the
Membership Inference Attack, the centralised attack will be
applied to these different metrics. The attack will be executed
as in Salem et al. [15]. The attack is applied to the custom
FederBoost implementation.

The configurations used for the target, shadow and attack
model can be found in Table III.

D. Experiment 2: FederBoost-Federated-1

With the attack from Salem et al. [15] only the probability
scores and thus the weights were used to do the Membership
Inference Attack. As in Nasr et al. [28], the differentials
leaked when no secure aggregation is used, could be exploited
to produce a stronger attack. If secure aggregation is not used.
Then the central party could attack the datasets based on the
gradients of that individual participant. If secure aggregation

Parameter target & shadow attack model
model FederBoost XGBClassifier
alpha 0.0 0.0

gamma 0.5 0.5
lambda 0.1 0.1

learning rate 0.3 0.3
max depth 8 12

|T | 20 20
nBuckets 100 -
train size 10.000 20.000
objective softmax binary:logistic

tree method hist exact

TABLE III: Configurations for target, shadow and attack
model used in experiment 1.

is not used then the aggregated gradients and hessians of that
single participant can also be used to get a better understanding
of the individual participant’s dataset. If no regularisation is
used, and trees are allowed to go unreasonably deep, individual
gradients could be retrieved. Even if some regularisation is
used, the question remains as to how much information is
in the tree split values, tree split features, and differentials.
One main issue compared to the Nasr et al. [28] approach
is that there are different amounts of previous taken splits
for the nodes at different levels. Neural Networks have a
static amount of parameters, and can therefore easily be put
into other machine learning models. To combat this issue, an
attack model is created for every depth. This attack model is
tasked with only looking at nodes at that level. To combine
the outputs of these different models an overarching machine
learning model can be used to make a final judgement.

Using the information that is leaked from the shared quan-
tiles, the attacker could create a dataset that looks similar
to the dataset that is being used by the participating party.
Figure 4 further illustrates the information leakage that is
captured during the federated learning process. The attack that
uses the differentials, split values, and split features will be
called “FederBoost-Federated-1”.

1) Architecture in more detail: The central party acquires
most information as other parties only acquire the end model.
During the simulations done for experiment 2, the to be tested
dataset is split up between participants; and is labeled as in
Figure 5 using Algorithm 2 and Equation 12. The “labeler”
replaces the label of a data entry with 1 if it was used in
training and a 0 if not. These datasets are then used to train
the target model using the federated process of FederBoost.

label(x) =

{
1 if x ∈ Din

0 otherwise
(12)

The attack itself works quite similar to the “normal” Mem-
bership Inference Attack. Multiple shadow models are build
to acquire multiple captures of information leakage of the
federated process. The gradients, hessians, and splits are then
used together with the class probabilities returned by the
shadow model.

9

https://www.kaggle.com/datasets/nehaprabhavalkar/av-healthcare-analytics-ii/
https://www.kaggle.com/datasets/nehaprabhavalkar/av-healthcare-analytics-ii/

Fig. 5: The main database D that is being tested is split up
between the users in the tested simulations with these datasets
the main database is trained.

Algorithm 5 Centralised Membership Inference

Input: Dshadow,Out, Dshadow,In, Dtarget & Dtest

1: target model.fit(Dtarget)
2: shadow model.fit(Dshadow)
3: Dattack1 = labeler(Dshadow,out,Dshadow,In)
4: Dattack1.X = shadow model.predict proba(Dattack1.X)

5: attack model.fit(Dattack1)
6: Dshadow,In = (Xshadow,In, yshadow,In)
7: shadow model.fit(Dshadow,In)
8: Xtest attack = Dtest.X ∪Dtarget.X #

take only X array
9: ytest attack = label(Xtest attack)

10: Dtest attack = (Xtest attack, ytest attack)
11: retrieve metrics on Dtest attack

In this experiment the extra information that gets leaked
during training is used by the server to create a Membership
Inference Attack that uses the differentials. For this experiment
the data holding participants are the target of the attack. Both
individually as collectively the question is asked whether a
dataset was in the individual participant’s dataset or in the
collective’s dataset. A multi-class problem dataset D is split
up into Dtarget and Dserver and Dtest. Dtarget and Dtest

are of size train size. Dtarget is split up evenly between
the participating data holders in the federated network to train
collaboratively. Dtest is later used to asses how well the attack
worked. Dataset DServer is of size (train size/2) ∗n where
n is the amount of shadow models. The attacking server spits
up Dserver into {Dshadow,0,Dshadow,a, ...,Dshadow,n} each
one of the size as train size

2 . n shadow models are trained in
the exact same fashion as the target model which uses Dtarget.

The shadow models are, however, trained by using Dshadow,a

and Dshadow,(a+1)%n on shadowa. At this point different
attacks are possible that use the available data in different
manners. By going through the different shadow models with
a modulo operator %, it makes it such that a data entry from
Dserver is used both in the “In” (train) set as in the “Out” set.

The “FederBoost-Federated-1” attack is illustrated in
Figure 6. A: The original dataset D is split up into
Dserver, Dtarget & Dtest. Dsever is further split up into
Dshadow,0, ..,Dshadow,n. Such that there is a database for all n
shadow models. B: Dshadow,a and Dshadow,(a+1)%n are both
used to train shadow model a. The union of these datasets
will have the same size as Dtarget. C: In the next phase,
the gradients, hessians and tree structure are attempted to be
retrieved. Dshadow,a and Dshadow,(a+2)%n are used to train the
attack1 models. This is done by taking differentials and split
information required to get to a node on depth d and for class
c as described in Equation 13. Here a dataset is created for a
certain depth and class, together with the label if it was used in
training. Using label() as described previously in Algorithm 2
the attack1 models can thus be trained in a supervised manner.

Xattack1 c,d(x, node) = {x, split valued=0,

splitfeatureIDd=0, directiond=0, ...,

split valued, splitfeatureIDd,

directiond, node.G, node.H}
(13)

D: The attack2 model which uses the attack1 model to infer
if a data entry was used during training can be trained by
using Dshadow,(a+1)%n and Dshadow,(a+3)%n. These are again
labeled using Algorithm 2 to tell the attack2 model if an entry
was used in training. The dataset to train attack2 is made by
inferring the different attack models with nodes of the shadow
model that are found on depth d and for class c. The binary
probability outputs of the attack1 models are saved for every
node as in Equation 14. For every depth and class the average,
minimum and maximum probability returned is given to the
attack2 model to train as done in Equation 15.

zc,d = p(attack1c,d(Xattack1 c,d

(node | node from T where c, d and node is a leaf)))
(14)

Xattack 2(node) = {x,model(x), avg(z0,0), ..., avg(zc,d)}
(15)

E. Experiment 3: FederBoost-Federated-2

The Membership Inference Attack can be done more easily
by only using the gradients and hessians to calculate personal
leaf node weights for every participant. When secure aggrega-
tion is not used, the main server can collect the gradients and
hessians for every participant, this can then be used to calculate
participant bound weights. These weights should reveal more
about the subset of the participant. The attack from Salem

10

Fig. 6: The FL enhanced attack ”FederBoost-Federated-1“
used in experiment 2.

et al. [15] can be adapted to use these participant bound
weights instead of the aggregated ones. Thus the GPi and
HPi as also illustrated in Figure 4. This information is used
by Equation 6 to end up with a weight specific to a participant.
This attack is called the “FederBoost-Federated-2” attack.
It is compared to XGBoost and FederBoost (“FederBoost-
Centralised”) under the Salem et al. [15] attack. Two
different scenarios are taken into consideration, a target model
with little to no regularisation and a regularised target model.
The confirguration of both models can be found in Table IV.
The configurations for the attack model can also be found in
Table IV.

Parameter little regularised regularised attack model
model FederBoost FederBoost XGBClassifier

objective softmax softmax binary:logistic
max depth 10 10 12

tree method hist hist exact
learning rate 0.3 0.3 0.3

|T | 20 20 20
gamma 0 1 0
alpha 0.0 1 0

lambda 0 10 1
data division [0.1, 0.9] [0.1, 0.9] -

nBuckets 100 100 -

TABLE IV: The configurations for models in experiment 3

V. RESULTS

A. Metrics

1) Accuracy: The attack model can give one binary answer,
either the given dataset was used or it was not. Accuracy is the
amount of correctly classified samples divided by the amount
of wrongly classified samples. For the attack the testing dataset
is split 50/50 between entries used in training and entries not
used in training. Thus here an an accuracy of 0.5 is as good as
randomly guessing. For the different datasets the accuracy can
differ for the different data problems. This metric will mostly
be used to see how well the attack model can differentiate
between entries used and not used in training.
2) Precision: The precision of the attack can be measured by
taking the True Positive and divide it by the False Positive
plus the True Positives. The output can be a useful indicator:
if the precision hits 1.0 like in Fredrikson et al. [12], it means
that if the algorithm claims a given input was in the training
data, then it is guaranteed that this is true. This implicates a
strong privacy breach.
3) Recall: The recall or sensitivity is used on the target model
to find out how well the model is able to find all entries used
in training.

3) “Training-Test Accuracy Delta” (T−TAcc∆) To mea-
sure how well regularisation is working the accuracy between
the test and train dataset can be taken as used in Liu et al.
[30]. Thus T − TAccc∆ = accuracytrain - accuracytest, as
the training accuracy is typically higher then the test accuracy,
this metric lies between 0 and 1. This difference shows how
well the algorithm was able to generalize on the test set. It is
thus desired to have a low level of T − TAcc∆.

B. Experiment 1

By using the attack described by Salem et al. [15] different
regularisation parameters can be used to defend against the
Membership Inference Attack. The gamma, lambda, alpha,
number of trees |T |, number of buckets nBuckets, maximum
depth, learning rate, and training size were tested in this
experiment. As found in other papers for different machine
learning models, the story that more regularisation results in
less susceptibility to the Membership Inference Attack holds.

1) Conclusions: The link between using little regularisation
and accuracy for the attack can be seen in the tables mentioned
below. The different datasets show significant differences to

11

changes in accuracies, this can for example be seen in Table
V.

Multi-class with more target classes are are also more
susceptible to the Membership Inference Attack, as can be
seen when comparing the results from the synthetic-10 and
synthetic-100 datasets. The number of target classes are dis-
tributed uniformly in these datasets. For a target class there are
therefore 10 times less training samples in the synthetic-100
dataset.

Table V shows the influence of different maximum depth
values. The deeper the tree becomes, the higher the T −
TAcc∆. The accuracy of the target model on the test set does
increase. with large differences in accuracy, 0.50 to 0.73 and
0.50 to 0.78; the maximum depth of a tree is one of the more
influential parameters in terms of the attack. It is at the same
time a double edge sword, as the accuracy of the target model
also increases with a deeper tree.

Table VI shows the influence of different alpha regularisa-
tion metric. Alpha is the L1 regularisation parameter which
can range from 0 to infinity. The higher alpha is the more
conservative the model is. This can be backed up with the
findings, as the alpha increases the T −TAcc∆ decreases and
the effectiveness of the attack decreases. Interesting is that the
accuracy of the target model can perform nearly as well or
even better with a larger alpha, while decreasing susceptibility
to the attack. The at first highly confident synthetic-100 target
model with an T − TAcc∆ of 0.77 decreases to 0.23 just by
changing the alpha. While “only¨ losing 0.03 in accuracy.

Table VII shows the influence of the gamma regularisation
metric. Gamma signifies how large the loss should be before
a split can be taken. A larger gamma results in more pruning.
The T − TAcc∆ can be seen going down with larger gamma
values. The attack accuracy also decreases with a larger
gamma. The accuracy does not have to suffer for this trade-
off, on the contrary, the accuracy increases greatly for both
the healthcare and the synthetic-10 dataset; going from 0.11
to 0.39 and 0.31 to 0.75 respectively.

Table VIII shows the influence of changing the number
of estimators created. More estimators can greatly help in
the accuracy of a target model, this however, comes at the
cost of creating a less regularised model. Interesting is that
the healthcare dataset does not get influenced significantly by
this metric in terms of accuracy to the attack with only an
insignificant 0.05 increase between 5 and 150 trees.

Table IX shows the influence of changing the learning rate
on the attack. Larger learning rates correspond to lower levels
of regularisation.

Table X shows the influence of the regularisation met-
ric lambda. A larger lambda results in smaller loss scores,
and thus a more conservative model as it acts as the L2
regularisation metric. The impact of a well-chosen lambda
value is most apparent in the synthetic-100 dataset with the
weakest regularization. The model becomes more useful with
the highest test accuracy scores for the target model, while
achieving a low accuracy/recall pair on the attack.

Table XI shows the influence of different training sizes to
the attack. In general, a smaller dataset leads to a less well-
regularized model for Gradient Boosted Decision Trees for
the tested datasets which is more susceptible to the attack.
A larger training size also results in better accuracies in the
synthetic-10 and synthetic-100 datasets.

Table XII shows the influence of the number of buckets
chosen for quantile sketching. The more buckets the worse
the regularisation is. The effect for these datasets is, how-
ever, minimal. This could differ greatly for different untested
datasets. Only a 0.11 increase in the attack accuracy for the
most easily to potentially overfit synthetic-100 dataset, shows
this is not always an important parameter.

C. Experiment 2

FederBoost was tested by using the attack described in
Section IV-D against different datasets. The algorithm was
not able to achieve meaning full accuracies across the testing.
The testing dataset consists of 50% samples that were used in
training and 50% samples that were not used in training.

The federated attack was tested by using both the differen-
tials of an individual, and with the aggregated differentials G,
H . When attacking the aggregated differentials a dataset size
of 2000 was used, where as when attacking a single individual
a data size of 25 for that individual and 2000 for total size of
all participants aggregated.

1) Conclusions: Both when attacking one user with a lim-
ited database size (200) or when attacking both users using the
differentials (2000), no meaningful gain in accuracy, precision
or AUC was made. Apart from the stated experiment other
parameters were attempted with different attack. In the time
allotted, none of these attacks succeeded during this research.
The full discussion about the negative results can be found in
Section VII.

12

max depth healthcare synthetic-10 synthetic-100

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

5 0.50 0.43 0.11 0.01 0.50 0.34 0.10 -0.00 0.50 0.54 0.12 0.25
8 0.51 0.41 0.20 0.19 0.55 0.52 0.71 0.21 0.70 0.72 0.21 0.77

12 0.67 0.66 0.34 0.60 0.65 0.71 0.80 0.20 0.78 0.86 0.22 0.78
15 0.73 0.75 0.36 0.62 0.66 0.72 0.81 0.19 0.78 0.85 0.22 0.78

TABLE V: FederBoost-Central’s attack metrics on max depth. With the configurations found in Table III.

alpha healthcare synthetic-10 synthetic-100

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

0 0.51 0.45 0.22 0.19 0.55 0.52 0.70 0.21 0.70 0.71 0.21 0.77
0.1 0.50 0.53 0.19 0.17 0.54 0.48 0.70 0.21 0.69 0.70 0.21 0.76

0.25 0.51 0.49 0.23 0.21 0.54 0.51 0.71 0.21 0.68 0.71 0.21 0.76
0.5 0.51 0.48 0.22 0.18 0.54 0.50 0.72 0.21 0.66 0.67 0.21 0.73

0.75 0.51 0.53 0.23 0.15 0.54 0.51 0.71 0.20 0.64 0.67 0.20 0.73
1 0.50 0.49 0.22 0.15 0.53 0.49 0.72 0.19 0.63 0.66 0.20 0.71

10 0.50 0.54 0.22 0.03 0.51 0.52 0.72 0.12 0.50 0.50 0.18 0.23

TABLE VI: FederBoost-Central’s attack metrics on alpha. With the configurations found in Table III.

gamma healthcare synthetic-10 synthetic-100

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

0 0.51 0.43 0.11 0.14 0.52 0.43 0.31 0.14 0.69 0.67 0.20 0.77
0.1 0.51 0.35 0.11 0.13 0.52 0.44 0.39 0.17 0.70 0.70 0.20 0.76
0.25 0.52 0.27 0.13 0.15 0.53 0.53 0.65 0.22 0.71 0.73 0.20 0.77
0.5 0.50 0.48 0.20 0.18 0.55 0.52 0.70 0.22 0.70 0.72 0.21 0.76
0.75 0.51 0.48 0.26 0.23 0.55 0.56 0.74 0.19 0.69 0.72 0.21 0.76

1 0.51 0.47 0.31 0.23 0.55 0.57 0.76 0.18 0.66 0.71 0.20 0.76
5 0.50 0.61 0.37 0.07 0.51 0.51 0.77 0.11 0.52 0.54 0.18 0.38
10 0.51 0.51 0.39 0.05 0.52 0.50 0.75 0.08 0.50 0.49 0.15 0.20

TABLE VII: FederBoost-Central’s attack metrics on gamma. With the configurations found in Table III.

|T | healthcare synthetic-10 synthetic-100

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

5 0.50 0.50 0.17 0.09 0.50 0.48 0.52 0.14 0.53 0.56 0.17 0.45
10 0.50 0.49 0.17 0.14 0.52 0.47 0.61 0.20 0.59 0.60 0.18 0.66
20 0.51 0.49 0.22 0.19 0.55 0.49 0.69 0.21 0.70 0.71 0.21 0.77
30 0.52 0.44 0.20 0.23 0.57 0.54 0.73 0.22 0.75 0.80 0.22 0.77
50 0.53 0.49 0.23 0.26 0.60 0.59 0.78 0.20 0.76 0.84 0.22 0.78
100 0.54 0.39 0.25 0.31 0.62 0.67 0.81 0.18 0.77 0.83 0.22 0.78
150 0.55 0.38 0.27 0.35 0.63 0.66 0.82 0.18 0.76 0.82 0.22 0.78

TABLE VIII: FederBoost-Central’s attack metrics on |T |. With the configurations found in Table III.

13

learning rate healthcare synthetic-10 synthetic-100

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

0.1 0.50 0.43 0.18 0.11 0.51 0.48 0.58 0.18 0.60 0.60 0.20 0.63
0.25 0.51 0.40 0.21 0.16 0.55 0.49 0.70 0.20 0.68 0.68 0.20 0.74
0.5 0.52 0.50 0.20 0.25 0.57 0.55 0.75 0.22 0.68 0.74 0.19 0.81

0.75 0.53 0.53 0.26 0.29 0.59 0.61 0.77 0.21 0.61 0.64 0.15 0.85
1 0.53 0.45 0.24 0.34 0.61 0.67 0.79 0.21 0.50 1.00 0.02 0.00

TABLE IX: FederBoost-Central’s attack metrics on learning rate. With the configurations found in TableIII.

lambda healthcare synthetic-10 synthetic-100

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

0 0.52 0.46 0.22 0.19 0.54 0.52 0.70 0.21 0.70 0.74 0.20 0.78
0.1 0.51 0.48 0.21 0.19 0.55 0.55 0.72 0.22 0.70 0.71 0.20 0.77
0.25 0.51 0.46 0.22 0.19 0.55 0.51 0.71 0.21 0.69 0.71 0.22 0.75
0.5 0.51 0.44 0.24 0.18 0.54 0.50 0.73 0.20 0.68 0.67 0.22 0.72
0.75 0.51 0.52 0.25 0.19 0.55 0.56 0.74 0.20 0.67 0.63 0.22 0.70

1 0.51 0.52 0.23 0.18 0.54 0.56 0.73 0.19 0.67 0.66 0.23 0.69
10 0.50 0.55 0.37 0.11 0.53 0.55 0.76 0.13 0.56 0.57 0.24 0.43

TABLE X: FederBoost-Central’s attack metrics on lambda. With the configurations found in Table III.

train size healthcare synthetic-10 synthetic-100

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

1000 0.67 0.71 0.31 0.64 0.72 0.76 0.58 0.42 0.85 0.90 0.07 0.93
2000 0.59 0.66 0.31 0.60 0.69 0.70 0.61 0.39 0.84 0.89 0.12 0.88
5000 0.54 0.54 0.28 0.34 0.60 0.57 0.69 0.28 0.77 0.80 0.19 0.80
10000 0.51 0.43 0.23 0.19 0.54 0.52 0.72 0.20 0.70 0.72 0.20 0.77

TABLE XI: FederBoost-Central’s attack metrics on train size. With the configurations found in Table III.

nBuckets healthcare synthetic-10 synthetic-100

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

accuracy
attack

recall at-
tack

accuracy
target

T −
TAcc∆
target

10 0.50 0.51 0.21 0.17 0.53 0.53 0.72 0.17 0.62 0.62 0.20 0.72
20 0.50 0.48 0.21 0.18 0.53 0.55 0.73 0.19 0.66 0.67 0.21 0.75
50 0.51 0.44 0.22 0.19 0.54 0.53 0.73 0.20 0.69 0.71 0.21 0.76
100 0.51 0.42 0.23 0.19 0.55 0.52 0.70 0.21 0.70 0.74 0.21 0.77

1000 0.51 0.44 0.21 0.19 0.55 0.54 0.69 0.23 0.71 0.73 0.20 0.78

TABLE XII: FederBoost-Central’s attack metrics on nBuckets. With the configurations found in Table III.

D. Experiment 3

The FederBoost-Federated-2 attack was able to use the send
differentials to perform the Membership Inference Attack with
higher accuracies than without using the leaked federated
information. Figure 7 shows that an individual participant
of a poorly regularised federated learning setup can be at-
tacked more effectively when using federated information. The
accuracy of the “FederBoost-Federated-2” attack achieving
accuracies and precision values of 1. It is thus able to classify
all 200 of participant’s P1’s data entries, and separate the other
200 data entries that were not used in training. Figure 8 shows
the loss over time for the different datasets for the training
and test dataset. This shows that the healthcare dataset is
overfitting. The synthetic-10 dataset is not overfitted and is still
improving, and the synthetic-100 dataset is slightly overfitted,
here.

However as seen in Figure 9, when the target model was
regularised well using the different regularisation metrics, the
attack is not able to make significant gains. The attack’s
accuracy on the global weights is about the same as on the
weights of the first participant P1.

14

healthcare synthetic-10 synthetic-100
0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

0.834 0.82

0.947

0.698 0.682

0.942
1 1 1

accuracy attack

(a) Accuracy of the attack

healthcare synthetic-10 synthetic-100
0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

0.841 0.826

0.949

0.698 0.683

0.944
1 1 1

precision attack

(b) Precision of the attack

healthcare synthetic-10 synthetic-100
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

0.358

0.682

0.134

0.28

0.565

0.127

0.275

0.485

0.105

accuracy test target

(c) Accuracy of the target

healthcare synthetic-10 synthetic-100
0.0

0.2

0.4

0.6

0.8

1.0

0.643

0.318

0.866

0.672

0.416

0.873

0.66

0.49

0.895

T −T Acc∆ target

T
−

T
Ac

c∆

(d) T − TAcc∆ of the target

XGBoost FederBoost-Central FederBoost-Federated-2

(e) Legend

Fig. 7: Experiment 3, using an target model made with little regularisation.

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Tree

0

1

2

3

4

Lo
ss

Loss over Trees

healthcare
synthetic-10
synthetic-100
Training Loss
Testing Loss

Fig. 8: Loss over time for FederBoost’s low regularisation
scenario

VI. RELATED WORK

This section will discuss previous papers that discuss pri-
vacy breaching attacks on machine learning, different defences
against these attacks, and different federated algorithms will
be discussed. An overview of the different papers discussed
in the sections about the attacks and defences can be found
in Table XIII in Appendix A. Here for the trust scenario, a
user can be “honest-but-curious”, this means that the party
will follow the protocol. An malicious attacker does not have
to follow the protocol.

A. Membership Inference

1) Attack: Apart from Shokri et al. [5] and Salem et al.
[15] research into Membership Inference Attacks as described
in Section II-D, there are other papers that look into attacking
other models like GBDT’s or DT’s.

Yuan et al. [31] proposes a self-attention Membership
Inference Attack, this attack uses different thresholds between
the confidence gaps to provide a more “fine-grained Member-
ship Inference Attack. This works by inputting the confidence,
sensitivity and one-hot label into the attack model which uses
multi-head self-attention modules which aims to capture global
dependencies among inputs and allows the inputs to interact
with each other.

Liu et al. [30] examined attacking the logistic regression,
XGBoost and cloud machine learning algorithms using the
Membership Inference Attack. They introduce SocInf, a con-
struction for conducting Membership Inference Attacks using
a GAN to mimic any type of model. The models are inferenced
upon in a black-box fashion. The authors found a clear
correlation between the level of overfitting and effectiveness
of the attack. The attack on XGBoost on different datasets
achieved an average accuracy of 0.7339 on their used datasets.

de Arcaute et al. [20] assessed the impact of Membership
Inference for different classical machine learning approaches.

In their experiments they observed that a Membership Infer-
ence Attack was less effective when used against classical
machine learning models. The authors suggested that this
might be due to the lower risk of overfitting. However this
conclusion is subject to debate.

Truex et al. [14] also investigated the effectiveness of the
Membership Inference Attack on different classical machine
learning approaches. In this paper however Decision Trees
were the worst against Membership Inference Attacks. The
highest accuracy of the Membership Inference Attack here
was 95.74 in strong contrast to de Arcaute et al. who con-
cluded that the attack did not seem effective on Decision
Trees. Truex et al. argues the following about Membership
Inference Attacks:“(1) they are data-driven attacks, (2) attack
models are transferable, (3) target model type is a strong
indicator of model vulnerability, (4) attack data generation
techniques need not explicitly mirror the target model, and (5)
Membership Inference Attacks can persist as insider attacks
in federated systems.” Truex et al. applied the attack from
Shokri et al. [5].

Nasr et al. [28] used one custom created Neural Network
to attack the model in a similar fashion to Salem et al. [15].
Their highest attack accuracy reported was 0.676.

Nasr, Shokri & Houmansadr [18] conducted a comprehen-
sive study on white-box adversarial attacks on deep Neural
Networks using Membership Inference. They implement two
different attacks, one using background knowledge to create
a supervised attack model, and one that uses an unsupervised
attack model. For the unsupervised attack an auto-encoder is
created that is made to do Membership Inference on any data.
They claim that “even well generalized deep models might
leak significant amount of information about their training
data, and could be vulnerable to white-box Membership In-
ference Attacks”. This attack is also made easier for the local
participants and the central server in a Federated Learning
setting.

Melis [32] used model updates during the federated learn-
ing process to successfully conduct a Membership Inference
Attack. This attack was used on a federated setup where the
central server would be updated for each mini-batch instead
of each epoch. This made it such that the central server can
save the differences of weights created by one mini-batch. By
holding this information on only a mini-batch, the attacker
receives a lot of information about the original data entry.

2) Defence: Regularization can be applied to any ma-
chine learning approach. Truex et al. [14] explains that
Model Hardening (model choice, fit control, regularisation,
anonymization), API hardening and Differential Privacy can
be used to protect against Membership Inference Attacks as
well.

In a paper from Jia et al. [33] a Membership Inference
defence was proposed called MemGuard. MemGuard carefully
crafts the confidence scores such that Membership Infer-
ence (supposedly) cannot be done on the black-box model.
MemGuard does not influence the target models’ prediction
accuracy. However, the security claims of MemGuard have

16

healthcare synthetic-10 synthetic-100
0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

0.494
0.561 0.540.514

0.568 0.562
0.512

0.55 0.525

accuracy attack

(a) Accuracy of the attack

healthcare synthetic-10 synthetic-100
0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

0.494
0.561 0.545

0.514
0.568 0.566

0.513
0.55 0.528

precision attack

(b) Precision of the attack

healthcare synthetic-10 synthetic-100
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

0.406

0.67

0.126

0.405

0.644

0.134

0.42

0.64

0.135

accuracy test target

(c) Accuracy of the target

healthcare synthetic-10 synthetic-100
0.0

0.2

0.4

0.6

0.8

1.0

0.163
0.224

0.436

0.186
0.244

0.53

0.16

0.285

0.565

T −T Acc∆ target

T
−

T
Ac

c∆

(d) T − TAcc∆ of the target

XGBoost FederBoost-Central FederBoost-Federated-2

(e) Legend

Fig. 9: Experiment 3, using an well regularised target model.

been put into question as Song and Mittal [22] were able
to attack the model with higher accuracies then reported.
This was possible because “MemGuard lacks consideration
of strategic adversaries”. This means that an attacker can use
the fact that MemGuard is being used to amplify his attack.

Nasr et al. [28] uses a min-max game that minimises
the prediction loss of the model while creating a model that
can mitigate the risks of Membership Inference Attacks (near
random guesses) on a black-box model. Song and Mittal [22],
however, argue that adversarial regularisation like done by
Nasr et al. is no better than early stopping in Neural Networks.
This attack requires the defender to have access to the data, this
is therefore not trivial to implement in a Federated Learning

setting.
Next to a new attack, Yuan et al. [31] also proposes a

new defence which uses KL-divergence distances. Their attack
named “Pair-based Posterior Balancing” aims at reducing the
divergence between scores of members and non-members.

B. Federated Algorithms

This section will show different Federated Learning im-
plementations of XGBoost. For an overview of the different
privacy-preserving algorithms discussed below the reader can
refer to Table XIV in Appendix A.

1) Horizontal XGBoost: Ong et al. [34] proposes Party-
Adaptive XGBoost (PAX). A Federated Learning setting
which uses XGBoost without encryption. Without encryption

17

PAX is significantly faster then SecureBoost. As a secu-
rity measure PAX makes use of the security provided by
the quantile-based approximation that XGBoost provides. By
putting the original data in bins individual user’s features are
combined and obfuscated. The “Party-Adaptive” part of PAX
lets different users calculate their privacy parameter ϵ in an
effort to make sure deviations in other party’s data do not
effect the learning. In contrast to most other algorithms, only
one histogram is build in the beginning of the algorithm.

A more recent paper in which Jones et al. [35] build a
simplified version of Ong et al. ’s implementation. In this
implementation the “Party-Adaptive” part of the algorithm is
not being used, parties create histograms with the same bin
size such that they can more easily be merged.

Cheng et al. [36] has a version SecureBoost that supports
the horizontal setting. In this version the passive nodes will
create their histograms of gradients and hessians and add
random numbers to it such that the random numbers cancel
each other out. This is done by using secure aggregation using
Additive Homomorphic Encryption. The main server therefore
only learns the aggregated gradients and hessians. The central
server can then find the best split and communicate it with the
other participants. After a split is received the passive nodes
will create a new histogram with different samples from the
dataset. This is continued until max depth is reached or other
stop conditions are reached. The process will repeat until the
desired amount of trees are constructed. This process can be
quite slow as pointed out in Ong et al. [34]. This is because
the amount of communication that has to happen together with
the expensive homomorphic encryption.

Tian et al. [23] proposes FederBoost for both vertical as
Horizontal Federated Learning. The GBDT algorithm almost
preforms as well as a central XGBoost implementation in their
findings. For the horizontal setting only lightweight secure
aggregation is needed. Quantiles are generated at the start
the algorithm such that they can be used for every tree. New
gradients are calculated for every split, these gradients are
aggregated into the respective quantile bins. The different
gradients and hessians are send to the central party using
secure aggregation. This prevents that the central party learns
about about the gradients and hessians of a single party.

Yang et al. [37] proposes a Federated XGBoost which
is also available on GitHub1. Federated XGBoost uses data
aggregation and k-anonymity to achieve their level of desired
privacy. The algorithm further works in much of the same
fashion as FederBoost, however without the secure aggrega-
tion.

Liu et al. [38] proposes FedXGB, designed against user
dropout and forced aggregation. Forced aggregation means that
the server is forced to aggregate the encrypted model updates
from the participants. This privacy-preserving algorithm uses
both homomorphic encryption as secret sharing to create a
secure training environment. This algorithm scales linear with
both the amount of users as the input size.

1https://github.com/Raymw/Federated-XGBoost

2) Horizontal GBDT: Wu et al. [39] introduces Pivot-DT,
Pivot-RF and Pivot-GBDT. This paper presents a way to do
Federated Decision Tree learning without a trusted third party.
And provides protection against parties that are listening into
the communication. The model stays encrypted and all users
need to be online to get a prediction.

C. Property Inference

The Property Inference Attack is another attack that aims
to infer information about a dataset. The Property Inference
Attack aims to infer overall properties of the training data.
Ganju et al. [6] examined white-box Fully Connected Neural
Networks (FCNN) to retrieve information about the training
dataset that is supposed to be private. The authors give the
example of inferring global properties of a malware detection
model. The properties of the testing environment that effect
all of the traces could be retrieved to evade detection. This
can again be achieved by using “shadow” models” like in the
Membership Inference Attack. These models are trained on
datasets, half of the datasets have a property P the other half P̄
does not have this property. The features (weights and biases)
are retrieved and normalised by sorting weights by magnitude
of sums or by using unordered sets to represent the network.
A meta-classifier is then trained on these features to create a
model that can detect if a model was trained with a property
P .

D. Model Inversion

1) Attack: A Model Inversion Attack is an attack where
parts of the training data is retrieved from the model. In Neural
Network models this can be done by looking at the gradient
updates, using an encoder decoder setup where the encoder
is the victim’s model, with a GAN, or by combining these
approaches. A Model Inversion Attack can be seen as the most
powerful attack as training data can be (partially) reconstructed
if successful.

In Yang et al. [7] a Neural Network Inversion was used to
create a new adversarial model. This model could be used to
infer information about the training set. This inverted model
can be created using using background knowledge or by
training the inversion model with truncated output data from
the classifier. The inverted model is the decoder in an encoder
decoder network, where the encoder is the victim’s model.
This paper shows that Model Inversion Attacks can work in
reconstructing training data by creating identifiable faces.

Fredrikson et al. [12] successfully attacked a Decision
Tree API by using a Model Inversion Attack. When Model
Inversion is applied against Decision Trees, most of the
dataset’s sensitive features can be inferred with a precision of
1.0. Also, the authors argued that releasing a model in a white-
box manner can greatly enhance the adversary’s advantage.

Hitaj et al. [13] concluded that “distributed, federated or
decentralised deep learning approach is fundamentally broken
and does not protect the training sets of honest participants”.
By using a GAN the training of the model can be worsened
by training the model with generated data. This makes it so

18

https://github.com/Raymw/Federated-XGBoost

that the participants have to insert more of their private data
into the model to achieve required accuracy levels. This attack
works as long as the victim is inserting more of its label’s data
to train.

Wang et al. [17] also used a GAN to do a Model Inversion
Attack. Here, however, the GAN was used by the server to spy
on the white-box model. The update from the user after target
data is inserted can directly be used to update the discrimina-
tor. This attack also showed the ability to successfully generate
data that looks near identical to what the victim trained upon.

Zhang et al. [40] applied a Model Inversion Attack using a
GAN, against a white-box model using auxiliary knowledge.
This auxiliary knowledge can be blurred or masked images for
example. Public datasets together with the white-box model’s
responses are used to train the GAN.

2) Defence: Friedman and Schuster [41] look at the privacy
of Decision Trees, they introduce error based pruning to
have differential privacy in the Decision Tree model. This
paper had large variance in their experimental results. Their
experiments further show a clear cost in accuracy when privacy
is increased.

Fredrikson et al. [12] examined sensitive feature splitting
at different levels in the trees, as well as reducing Neural
Network API precision. Splitting the sensitive attributes at
different heights did have an influence on Membership In-
ference and Class Accuracies. The sensitive feature splitting
did not show significant improvements, rounding API returns
for Neural Networks however did decrease attack accuracies.

In a paper from Park, Hong and Seo [42] different private
Decision Tree models were investigated to counter Model In-
version Attacks. The authors compared three different privacy-
preserving algorithms from:, Blum et al. [43], Friedman et
al. [41], and Mohammed et al. [44]. The authors found that
differentially private Decision Trees can mitigate the Model
Inversion Attack. Where as the non-defended models were
susceptible to Model Inversion Attacks. Friedman et al. [41]’s
algorithm showed the best performance while also countering
the Model Inversion Attack significantly.

Multi-Party Computation and homomorphic encryption can
mitigate some attacks like the one mentioned in Hitaj et al.
[13]. In cases where the model is attacked during the training
phase, encryption can mitigate model information leakage.

E. Model Extraction

Tramèr et al. [21] provided a method to do Model Ex-
traction on Logistic Regression, Decision Trees or Neural
Networks. This Model Extraction Attack aims to rebuild the
black-box model. The attack is shown to be successful in this
paper thus putting black-box models in danger. Depending on
the dataset the authors were able to extract an 100% equivalent
model with about 1000 to 4000 queries on a German Credit
and Steak Survey dataset. However, the ease of an attack like
this depends on the complexity of the tree and the underlying
dataset. This attack could potentially also be used against the
many trees of a GBDT algorithm or an ensemble method like
RF.

VII. DISCUSSION & FUTURE WORK

Gradient Boosted Decision Trees have a large amount of
parameters, most of which influential on the effectiveness
of the Membership Inference Attack. The difference in the
total dataset, and individual participant’s datasets can all
heavily influence the susceptibility to the attack. The attacks
assumed that the attacker were in possession of a lot of
background information; it was thus attempted to find the
maximum possible effectiveness of the different attacks. The
given implementation FederBoost-Federated-1 which tried to
mimic Nasr et al. [18] was not able to produce significant
enough improvements over randomly guessing in the tests.
However, as FederBoost-Federated-2 shows, using the extra
federated information can improve the effectiveness of the
attack. A different implementation of FederBoost-Federated-
1 could work, this is true because it should be able to
achieve the same if not higher accuracy levels of FederBoost-
Federated-2, and the centralised attack. FederBoost-Federated-
1 namely uses the same, and more information as these
attacks. FederBoost-Federated-1 could have failed due to an
implementation mistake, wrong parameters, or wrong model
choices for the attack models. This should be investigated
further, to better find the maximum available effectiveness
of a Membership Inference Attack that uses the extra leaked
federated information. The differentials hold some information
about the original dataset, extracting this information out of
the many gradients and hessians, proved to be a barrier. In
most testing all nodes were used to retrieve differentials from;
only the leaf nodes would have to be used as the entire
tree structure can be found above the leaf nodes, and the
gradients and hessians of nodes above the leaf nodes are just
the aggregate of two leaf nodes. Certainly starting off changing
FederBoost-Federated-2 with an attack that takes the entire
gradient and hessian matrix at the leaf nodes instead of the
weight of a participant could already create a stronger attack.
FederBoost-Federated-2 could potentially work better when
different participants hold information that is different in terms
of average, standard deviation, etc. An attacker might be able
to catch these differences in the attack. All participants only
had the same dataset distribution in the testing of this paper
(although these distributions were practically different when
using a really small training set).

It is also interesting to observe that XGBoost was more
susceptible to the Membership Inference Attack than the
custom implementation of FederBoost in the experimenta-
tion’s. This difference is less significant when regularisation
is introduced. As XGBoost is an open source project, the
actual implementation of XGBoost is slightly different than
documented. Although it was attempted to create a FederBoost
that would mimic XGBoost best, XGBoost seems to have a
bit less regularisation in favour of speed outside of the tested
parameters.

Different defences against the federated attack would then
also have to be explored further, although even some regu-
larisation showed significant improvements against the Mem-

19

bership Inference Attack. Regularisation does not give a de-
fender a guarantee, Differential Privacy [45] could provide this
guarantee. Certainly, when using medical data, this absolute
privacy guarantee should be pursuit. K-anonymity can also
be used a privacy enhancing measure on the datasets of the
participants. The use of secure aggregation is also reinforced
as an important defensive measure, the privacy given by
the quantile sketching can be too insignificant to reduce the
effectiveness of the attack.

In the testing only a passive attacker that listens in to
the communication is examined, the attack can however be
exacerbated when the attacker does not follow the protocol. It
could attack a participant and lie in the chosen split decisions
by secretly using different regularisation parameters.

VIII. CONCLUSIONS

Gradient Boosted Decision Trees continue to show a link be-
tween the degree of using regularisation and the effectiveness
of the Membership Inference Attack. If secure aggregation
is not used, an attacker is able in some cases to use this
extra information to create an attack with a higher accuracy.
The maximum potential of this federated attack has not been
reached yet, as the communicated gradients and hessians of
leaf nodes were only indirectly used by looking at the partici-
pant bounded weights. The tree structure was not successfully
taken into the attack as well, the combination of the gradients,
hessians and tree structure could even create a stronger attack
in the envisioned threat model.

A. Answering The Main Research Question

Regularisation showed to be highly important in combatting
the Membership Inference Attack, thus defending the individ-
ual’s privacy. Regularisation has to be used excessively or
tuned correctly during all federated training to limit infor-
mation leakage. At first sight the lack of secure aggregation
does not seem to be a problem when using regularisation,
however, the successful attack (FederBoost-Federated-2) only
used weights bound to a participant to successfully create a
stronger attack. The attacker could have more information at
its disposal; that being the information hidden in the gradients,
hessians and tree structure. The maximum effectiveness in the
Membership Inference Attack in the given threat scenario is
thus not fully explored and no guarantee can be given to
a defender. Only secure aggregation, or differential privacy
could give the defender some guarantees.

B. Answering Research Question 1

The gamma, alpha, lambda regularisation metrics all affect
the split calculation, all three are able to effectively increase
regularisation and in turn show the ability to limit the sus-
ceptibility to the Membership Inference Attack. The usage of
both alpha and lambda in the weight calculation makes

The number of trees, and maximum depth, can both greatly
influence the degree of regularisation. having a smaller training
size, makes overfitting easier on Gradient Boosted Decision
Trees. Using too many trees can result in extra privacy leakage.

With the learning rate having a minimal impact on the degree
of regularisation.

The results also show that merely relying on a low amount
of buckets during quantile sketching is not enough to protect
against the Membership Inference attack.

C. Answering Research Question 2
The full extend to which the extra federated learning can be

exploited was not found, however, it is found that an attacker is
able to use the information to it’s advantage with “FederBoost-
Federated-2”. An individual smaller hospital could realistically
have a dataset of only a couple patients. If the gradients,
hessians and tree structure are all used, the attacker might
be able to use the leaked federated information to mount
an attack with a higher accuracy then without using the
extra information. An adapted, re-implemented “FederBoost-
Federated-1” could further force a defender to use secure
aggregation in order to protect it’s information.

ACKNOWLEDGMENT

I want to thank my main supervisor Florian Hahn (Univer-
sity of Twente), Nicola Strisciuglio (University of Twente),
Albert Wong (RIVM), and Mark Kroon (RIVM) for their
guidance and feedback.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[2] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[3] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas,
“Federated learning of deep networks using model averaging,” CoRR,
vol. abs/1602.05629, 2016. [Online]. Available: http://arxiv.org/abs/
1602.05629

[4] W. G. Van Panhuis, P. Paul, C. Emerson, J. Grefenstette, R. Wilder, A. J.
Herbst, D. Heymann, and D. S. Burke, “A systematic review of barriers
to data sharing in public health,” BMC public health, vol. 14, no. 1, pp.
1–9, 2014.

[5] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[6] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
inference attacks on fully connected neural networks using permutation
invariant representations,” in Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, 2018, pp. 619–
633.

[7] Z. Yang, J. Zhang, E.-C. Chang, and Z. Liang, “Neural network
inversion in adversarial setting via background knowledge alignment,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 225–240.

[8] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial in-
telligence: Understanding, visualizing and interpreting deep learning
models,” arXiv preprint arXiv:1708.08296, 2017.

[9] P. Angelov and E. Soares, “Towards explainable deep neural networks
(xdnn),” Neural Networks, vol. 130, pp. 185–194, 2020.

[10] “State of data science and machine learning 2021,” Oct 2021. [Online].
Available: https://www.kaggle.com/kaggle-survey-2021

[11] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The journal of machine learning research, vol. 15, no. 1, pp. 3133–3181,
2014.

[12] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

20

http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://www.kaggle.com/kaggle-survey-2021

[13] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 603–618.

[14] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei, “Demystifying
membership inference attacks in machine learning as a service,” IEEE
Transactions on Services Computing, vol. 14, no. 6, pp. 2073–2089,
2019.

[15] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“Ml-leaks: Model and data independent membership inference at-
tacks and defenses on machine learning models,” arXiv preprint
arXiv:1806.01246, 2018.

[16] M. Xu and X. Li, “Subject property inference attack in collaborative
learning,” in 2020 12th International Conference on Intelligent Human-
Machine Systems and Cybernetics (IHMSC), vol. 1. IEEE, 2020, pp.
227–231.

[17] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in IEEE INFOCOM 2019-IEEE conference on computer
communications. IEEE, 2019, pp. 2512–2520.

[18] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in 2019 IEEE symposium on
security and privacy (SP). IEEE, 2019, pp. 739–753.

[19] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[20] G. M. R. de Arcaute, J. A. Hernández, and P. Reviriego, “Assessing the
impact of membership inference attacks on classical machine learning
algorithms,” in 2022 18th International Conference on the Design of
Reliable Communication Networks (DRCN). IEEE, 2022, pp. 1–4.

[21] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis.” in USENIX security
symposium, vol. 16, 2016, pp. 601–618.

[22] L. Song and P. Mittal, “Systematic evaluation of privacy risks of machine
learning models.” in USENIX Security Symposium, vol. 1, no. 2, 2021,
p. 4.

[23] Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren, “Federboost: Private
federated learning for gbdt,” arXiv preprint arXiv:2011.02796, 2020.

[24] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[25] Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang, “Fate: An industrial grade
platform for collaborative learning with data protection,” The Journal of
Machine Learning Research, vol. 22, no. 1, pp. 10 320–10 325, 2021.

[26] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[27] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[28] M. Nasr, R. Shokri, and A. Houmansadr, “Machine learning with
membership privacy using adversarial regularization,” in Proceedings
of the 2018 ACM SIGSAC conference on computer and communications
security, 2018, pp. 634–646.

[29] C. Masson, J. E. Rim, and H. K. Lee, “Ddsketch: A fast and fully-
mergeable quantile sketch with relative-error guarantees,” arXiv preprint
arXiv:1908.10693, 2019.

[30] G. Liu, C. Wang, K. Peng, H. Huang, Y. Li, and W. Cheng, “Socinf:
Membership inference attacks on social media health data with machine
learning,” IEEE Transactions on Computational Social Systems, vol. 6,
no. 5, pp. 907–921, 2019.

[31] X. Yuan and L. Zhang, “Membership inference attacks and defenses
in neural network pruning,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 4561–4578. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/yuan-xiaoyong

[32] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in 2019 IEEE
symposium on security and privacy (SP). IEEE, 2019, pp. 691–706.

[33] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “Memguard:
Defending against black-box membership inference attacks via adver-

sarial examples,” in Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, 2019, pp. 259–274.

[34] Y. J. Ong, Y. Zhou, N. Baracaldo, and H. Ludwig, “Adaptive histogram-
based gradient boosted trees for federated learning,” arXiv preprint
arXiv:2012.06670, 2020.

[35] K. Jones, Y. J. Ong, Y. Zhou, and N. Baracaldo, “Federated xgboost on
sample-wise non-iid data,” arXiv preprint arXiv:2209.01340, 2022.

[36] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and
Q. Yang, “Secureboost: A lossless federated learning framework,” IEEE
Intelligent Systems, vol. 36, no. 6, pp. 87–98, 2021.

[37] M. Yang, L. Song, J. Xu, C. Li, and G. Tan, “The tradeoff between
privacy and accuracy in anomaly detection using federated xgboost,”
2019.

[38] Y. Liu, Z. Ma, X. Liu, S. Ma, S. Nepal, and R. Deng, “Boosting
privately: Privacy-preserving federated extreme boosting for mobile
crowdsensing,” arXiv preprint arXiv:1907.10218, 2019.

[39] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserv-
ing vertical federated learning for tree-based models,” arXiv preprint
arXiv:2008.06170, 2020.

[40] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The secret
revealer: Generative model-inversion attacks against deep neural net-
works,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020, pp. 253–261.

[41] A. Friedman and A. Schuster, “Data mining with differential privacy,”
in Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2010, pp. 493–502.

[42] C. Park, D. Hong, and C. Seo, “Evaluating differentially private deci-
sion tree model over model inversion attack,” International Journal of
Information Security, vol. 21, no. 3, pp. 1–14, 2022.

[43] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical privacy: the
sulq framework,” in Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, 2005,
pp. 128–138.

[44] S. Fletcher and M. Z. Islam, “A differentially private random decision
forest using reliable signal-to-noise ratios,” in AI 2015: Advances in
Artificial Intelligence: 28th Australasian Joint Conference, Canberra,
ACT, Australia, November 30–December 4, 2015, Proceedings 28.
Springer, 2015, pp. 192–203.

[45] C. Dwork, “Differential privacy,” in Automata, Languages and Program-
ming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July
10-14, 2006, Proceedings, Part II 33. Springer, 2006, pp. 1–12.

[46] N. K. Le, Y. Liu, Q. M. Nguyen, Q. Liu, F. Liu, Q. Cai, and S. Hirche,
“Fedxgboost: Privacy-preserving xgboost for federated learning,” arXiv
preprint arXiv:2106.10662, 2021.

[47] Q. Li, Z. Wen, and B. He, “Practical federated gradient boosting decision
trees,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 34, no. 04, 2020, pp. 4642–4649.

[48] B. Liu, C. Tan, J. Wang, T. Zeng, H. Shan, H. Yao, H. Huang,
P. Dai, L. Bo, and Y. Chen, “Fedlearn-algo: A flexible open-
source privacy-preserving machine learning platform,” arXiv preprint
arXiv:2107.04129, 2021.

[49] J. Hou, M. Su, A. Fu, and Y. Yu, “Verifiable privacy-preserving scheme
based on vertical federated random forest,” IEEE Internet of Things
Journal, vol. 9, no. 22, pp. 22 158–22 172, 2021.

[50] Y. Liu, Y. Liu, Z. Liu, Y. Liang, C. Meng, J. Zhang, and Y. Zheng,
“Federated forest,” IEEE Transactions on Big Data, vol. 8, no. 3, pp.
843–854, 2020.

[51] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Advances
in Cryptology—CRYPTO 2000: 20th Annual International Cryptology
Conference Santa Barbara, California, USA, August 20–24, 2000 Pro-
ceedings. Springer, 2000, pp. 36–54.

[52] J. Vaidya, C. Clifton, M. Kantarcioglu, and A. S. Patterson, “Privacy-
preserving decision trees over vertically partitioned data,” ACM Trans-
actions on Knowledge Discovery from Data (TKDD), vol. 2, no. 3, pp.
1–27, 2008.

[53] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat,
J. S. Sousa, and J.-P. Hubaux, “Poseidon: Privacy-preserving federated
neural network learning,” arXiv preprint arXiv:2009.00349, 2020.

[54] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure com-
putation for neural network training.” Proc. Priv. Enhancing Technol.,
vol. 2019, no. 3, pp. 26–49, 2019.

21

https://www.usenix.org/conference/usenixsecurity22/presentation/yuan-xiaoyong
https://www.usenix.org/conference/usenixsecurity22/presentation/yuan-xiaoyong

APPENDIX

A. Related Work

Paper Used attack Setting Trust scenario Target
Network Proposed defence

Yang, et al. [7] Model Inversion Centralised API
Black-box, honest-but-
curious user & malicious
creator

NN -

Fredrikson et al. [12] Model Inversion Centralised API

White-box & black-box
DT ML model API &
honest-but-curious API
user

DT &
NN

Sensitive feature splitting
& reducing NN API pre-
cision

Wang et al. [17] Model Inversion Federated White-box & Malicious
Server NN -

Park et al. [42] Model Inversion Centralised
Black-box, honest-but-
curious user who has
model

DT
Multiple differential
privacy-preserving
algorithms

Hitaj et al. [13] Model Inversion (GAN) Federated Active insider in white-
box training DNN differential privacy (useful

till a certain extent)

Truex et al. [14] Membership Inference MLaaS & active
FL insider

Black-Box, honest-but-
curious user

DT, LR,
k-NN,
NB &
NN

Short survey into Model
Hardening, API hardening
& Differential Privacy, no
experimentation.

Liu et al. [30] Membership Inference Centralised API Black-box, honest-but-
curious

XGBoost,
BigM &
LR

Overfitting, differential
privacy (no
experimentation), and
coarsening the precision
of prediction.

Shokri et al. [5] Membership Inference Centralised API Black-box CNN &
FCNN Generalization

de Acraute et al. [20] Membership Inference Centralised Black-box, honest-but-
curious user

DT, RF,
Ad-
aBoost
& more

-

Salem et al. [15] Membership Inference Centralised API Black-box API & honest-
but-curious API user

NN, LR
& RF

Dropout & model stack-
ing = train different parts
target model trained with
different subsets (ensem-
ble learning).

Nasr et al. [28] Membership Inference Centralised Black-box, honest-but-
curious CNN Min-max game to defend

against the attack
Nasr, Shokri &
Houmansadr [18] Membership Inference Federated White-box, honest-but-

curious & adversarial CNN -

Melis et al. [32] Membership Inference Federated White-box, honest-but-
curious CNN -

Tramér et al. [21] Model extraction attack Centralised API Black-box, honest-but-
curious user

LR &
NN &
DT

-

Karan et al. [6] Property Inference Centralised White-box, honest-but-
curious user FCNN -

Xu et al. [16] Property Inference Federated server White-box, honest-but-
curious & malicious CNN -

TABLE XIII: Current literature of machine learning attacks on different machine learning approaches

22

Paper Algorithm Name Data Threat Idea Conclusion

Ong et al. [34] XGBoost PAX H -

FL implementation of XGBoost
without encryption. The gradients,
hessians and histograms will be ex-
changed around to create the tree.

Significantly faster than Secure-
Boost.

Jones et al. [35] XGBoost - H -
Simplify Ong et al. ’s implementa-
tion by not doing “party-adaptive”
part

The use of histograms should be
private while still allow the cre-
ation of an accurate model.

Cheng et al. [36] XGBoost SecureBoost V & H*
Honest-
but-
curious

Aggregate encrypted gradient
statistics. FATE: GitHub
implementation.

Lossless, *Although not covered in
paper, it can be done with Secure-
Boost

Tian et al. [23] XGBoost FederBoost V & H
Honest-
but-
curious

Differential Privacy for vertical set-
ting and lightweight cryptography
for horizontal setting.

Fast and comparable performance
to XGBoost.

Yang et al. [37] XGBoost Federated
XGBoost H -

Sum up gradient’s of nodes and us-
ing k-anonymity. server sends out
direction of split in FL setting.
GitHub implementation.

Liu et al. [38] XGBoost FedXGB H
Honest-
but-
curious

XGBoost where gradient updates
are shared and aggregated en-
crypted through a central server
using cryptography.

Robust against User dropout

Le et al. [46] XGBoost FedXGBoost V -
Central server uses Secure Multi-
Party Computation to find the best
split

Li et al. [47] GBDTs - H
Honest-
but-
curious

Use Locality-Sensitive Hashing to
share data and create trees together.

Wu et al. [39] DT, RF, &
GBDT Pivot V

Honest-
but-
curious
clients

Homomorphic encryption & MPC
on training, white-box model on
prediction on vertical data

Encrypted scenario performance as
well as non-private scenario.

Liu et al. [48] RF Fedlearn-
Algo V - Provides GitHub framework with

Random Forest being implemented

Hou et al. [49] RF VPRF V

Honest-
but-
curious
with
TTP

Homomorphic encrypted model &
delegated computing verification

More efficient then Wu et al. ’s
Pivot [39]

Liu et al. [50] RF Federated
Forest V

Honest-
but-
curious
with
TTP

Using CART, master server
chooses split features randomly,
receives client best splits, entire
model distributed among clients,
master can have entire model.

Lossless classification, raw data is
not exposed. Possible attacks on
model not mentioned.

Friedman et al. [41] DT
DiffPID3
&
DiffPC4.5

H & V - Differential Privacy build into the
creation of a DT.

Trade-off between privacy param-
eter and accuracy. Different stop-
ping rules could be assessed.

Blum et al. [43] DT & more SuLQ ID3 H & V
Honest-
but-
curious

Insert noise into queries to Data

Lindel & Pinkas [51] DT Private
ID3δ

H & V
Honest-
but-
curious

Two-Party Union, using Oblivious
Transfer and Circuits

Manageable Overhead due to most
computations being done locally

Vaidya et al. [52] DT - V
Honest-
but-
curious

Two or more privacy-preserving
DT setup with a black-box, individ-
ual participants need to be online to
query model.

General framework for distributed
classification. Aims to be a proof of
concept. Can take days to complete

Sav et al. [53] NN POSEIDON H

Honest-
but-
curious
& par-
ticipants

The model stays encrypted using
homomophic encryption & MPC

Linearly scaling communicational
overhead

Wagh et al. [54] NN SecureNN H

Honest-
but-
curious
& mali-
cious

Data split using secret shares be-
tween 3 (independent) servers, in-
ference through MLaaS, Homo-
morphic MPC

Fast and accurate NN training,
fast enough for CNN applications.
Communication is biggest over-
head

TABLE XIV: Privacy-Preserving & Distributed Algorithms, H = Horizontally partitioned data, V = Vertically partitioned data.

23

https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://github.com/Raymw/Federated-XGBoost
https://github.com/fedlearnAI/fedlearn-algo

	Introduction
	Preliminaries
	XGBoost
	Regularisation Terms

	Federated Learning
	Secure Aggregation
	Membership Inference

	FederBoost
	Algorithm
	Participant
	Server

	Privacy

	Attacking Experiments
	Environment
	Mimicking the Dshadow dataset

	Data sets
	Healthcare
	Synthetic

	Experiment 1: FederBoost-Central
	The Centralised Attack

	Experiment 2: FederBoost-Federated-1
	Architecture in more detail

	Experiment 3: FederBoost-Federated-2

	Results
	Metrics
	Experiment 1
	Conclusions

	Experiment 2
	Conclusions

	Experiment 3

	Related Work
	Membership Inference
	Attack
	Defence

	Federated Algorithms
	Horizontal XGBoost
	Horizontal GBDT

	Property Inference
	Model Inversion
	Attack
	Defence

	Model Extraction

	Discussion & Future Work
	Conclusions
	Answering The Main Research Question
	Answering Research Question 1
	Answering Research Question 2

	References
	Appendix
	Related Work

