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disturbances and measurement noise. This thesis presents a framework, in which character-
izations of the perturbation in terms of bounded norm and rate-of-variation can be included in
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The thesis is structured as follows. The work is introduced in Chapter 1. Chapter 2 provides an
introduction to LMI-based controller synthesis and provides some tools relevant to this thesis.
In Chapter 3, some key concepts in LMI-based data-driven control are presented, and together
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ABSTRACT

Data-driven H∞-optimal controller synthesis is considered for unknown discrete-time linear
time-invariant systems. Perturbations in the data, such as those coming from external dis-
turbances and measurement noise, are assumed to be bounded in norm and rate-of-variation.
A linear matrix inequality (LMI) based framework is presented in which these realistic bounds
can be included in the synthesis. This reduces the set of systems consistent with the data and
thus offers a reduction in conservatism, at the cost of increased computational complexity. The
method is evaluated through simulations on a double pendulum system.
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1 INTRODUCTION

The world of engineering is swiftly adopting data-driven methodologies [1]. Through the inte-
gration of sensors and advanced monitoring systems, optimization of manufacturing processes
and efficiency refinement are underway. Breakthroughs in predictive maintenance allow us to
foresee and address equipment failures before occurrence. Engineers utilize data analytics and
machine learning for tasks like quality control in production lines and structural health monitor-
ing in infrastructure projects. This shift signifies a paradigm change in engineering practices,
where the strategic use of data not only enhances efficiency but also revolutionizes approaches
to precision and reliability across various applications.
Terms like “data-based” and “data-driven” have permeated the language of the control commu-
nity as well. Direct data-driven control is a notable example of this, which refers to the process of
designing controllers for an unknown system starting from only data collected from this system.
In contrast to the classical approach of refined system identification [2] followed by controller
design, which uses data indirectly, direct data-driven control is a procedure in which no inter-
mediate model identification step is required.
Forgoing the need for system identification could position data-driven methods as a compelling
alternative. The process of refined system identification is frequently time-consuming, requir-
ing significant human intervention to ensure model quality. If the demand for such thorough
identification is deemed too cumbersome, practitioners may find data-driven methods to be a
viable alternative, provided that these methods are simple and quicker to execute. A recent line
of work on direct data-driven control might fulfill these requirements, as the solutions of these
works are formulated in the form of linear matrix inequality (LMI) optimization. This is beneficial,
as LMIs have been shown to be computationally efficient and effective in a variety of analysis
and synthesis problems [3].
One of the critical issues in data-driven control is how to deal with perturbations affecting the
data. Not all input signals are measurable (e.g. external disturbances) and measurements are
always corrupted by some noise. A recent line of work resolves this problem for linear time-
invariant (LTI) systems, building on the assumption that the matrix containing the perturbation
samples can be described by a known perturbation model, which is a characterization of dis-
turbances and noise (through convenient set descriptions). Through this perturbation model, a
set of LTI systems consistent with the data emerges, in that each system in this set could have
generated the experimental data for some admissible perturbation sequence. In this context,
direct data-driven controller synthesis amounts to finding a single controller that satisfies the
performance objective when interconnected with any system consistent with the data.
In recent works, including but not limited to [4, 5, 6, 7, 8, 9, 10], the perturbation model is de-
fined explicitly as the solution of a specific quadratic matrix inequality (QMI), and can capture
energy bounds on the perturbation sequence and/or bounds on the noise sample covariance
matrix. Considering the QMI’s less-than-ideal structure, a perturbation model may not be easily
retrieved based on some characterization of disturbances and noise, yielding potentially con-
servative results.
In this thesis, it is shown that these perturbation models can be constructed via LMIs using an
implicit characterization of the perturbation signal. This characterization can describe bounds in
the form of quadratic inequalities in any of the elements of the perturbation samples, including
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energy bounds as in previous works. In addition, this framework allows for bounds on the rate-
of-variation between samples. This is highly relevant for controlling mechanical systems, due to
the possible and very probable correlation between perturbation samples, such as those coming
from external disturbances as well as from the nonlinear system dynamics.
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2 BASIC LMI THEORY FOR CONTROLLER SYNTHESIS

The aim of this chapter is to give an overview of the tools required for the controller design of
subsequent chapters. The main purpose of this chapter is to introduce the Linear Matrix In-
equality (LMI) framework and its application in the analysis and synthesis of control systems.
Here, it will be shown that controller design problems relevant to this thesis can be reduced to
convex optimization problems involving LMIs. This is beneficial, since these kinds of optimiza-
tion problems can be solved numerically using very efficient algorithms. The development of
these algorithms can be traced back to the late 1980’s and increased the popularity of LMIs for
controller design. As such, there exist a large collection of work explaining the properties and
application of LMIs in analysis and synthesis of control systems, with different terminology and
notation. This work mainly follows the lines of [11], as it presents LMIs in a convenient way for
implementation (e.g. in MATLAB) and has clear sections on discrete-time systems, which are
the interest of this work. In this chapter, LMIs for stability and H∞-performance are presented,
and subsequently used for synthesis of full state feedback controllers. The reader is referred to
[11, 12, 13] for LMIs addressing various other control system analysis and synthesis problems,
including optimal state estimation and dynamic output feedback control.

2.1 Definitions and fundamental LMI properties

In order to define LMIs, first it needs to be established what it means for a matrix to be positive
or negative definite.

2.1.1 Definiteness of a matrix

Definition 1 (e.g. [11], page 8). Consider a symmetric1 matrix P ∈ Sηx . P is called

1. positive semidefinite or non-negative definite, denoted by P ⪰ 0, if

x⊤Px ≥ 0, ∀x ∈ Rηx , (2.1)

2. positive definite, denoted by P ≻ 0, if

x⊤Px > 0, ∀x ∈ Rηx \ {0}, (2.2)

3. negative semidefinite, denoted by P ⪯ 0, if

x⊤Px ≤ 0, ∀x ∈ Rηx , (2.3)

4. negative definite, denoted by P ≺ 0, if

x⊤Px < 0, ∀x ̸= 0 ∈ Rηx \ {0}. (2.4)
1The same definitions hold for self-adjoint matrices in the complex space, which are not considered in this thesis.
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5. indefinite if x⊤Px is neither positive nor negative definite.

Since this specific form will be used throughout the thesis, it is defined explicitly.

Definition 2. A function f : Rηx → R is called a quadratic form if it can be written in the form

f(x) = x⊤Px, (2.5)

for some P ∈ Sηx .

An important property of quadratic forms is that the sign of x⊤Px is dictated by the eigenvalues
of P .

Theorem 1 (e.g. [11], page 9). Consider a symmetric matrix P ∈ Sηx . The following are equiv-
alent

1. P is positive semidefinite,

2. λ(P ) ≥ 0,

where λ(P ) denotes the smallest eigenvalue of P . The same can be shown for the other cases
of Definition 1, so the matrix P ∈ Sηx is

1. positive definite if and only if λ(P ) > 0,

2. negative definite if and only if λ(P ) < 0,

3. negative semidefinite if and only if λ(P ) ≤ 0,

4. and indefinite if and only if λ(P ) < 0 and λ(P ) > 0,

where λ(P ) denotes the largest eigenvalue of P .

Clearly, the definiteness of matrices is an interesting property to study for the analysis and de-
sign of control systems, as eigenvalues play a major role in the stability and dynamic behaviour
of such systems.

2.1.2 Matrix inequalities and LMIs

Any form of mathematical optimization involves finding decision variables that satisfy specific
constraints, aiming to determine the most favorable solution for some objective function. As will
be shown in later sections, definiteness of a matrix is a relevant constraint for the optimization
problems considered in this thesis. Based on the notions of definite matrices in Section 2.1.1,
definiteness of a matrix can be enforced via a matrix inequality as follows:

Definition 3 (e.g. [11], page 10). Amatrix inequality in the decision variable x =
[
x1 . . . xm

]⊤ ∈
Rm is an expression of the form

G(x) = G0 +

p∑
i=1

fi(x)Gi ⪯ 0, (2.6)

and defines the mapping G : Rm → Sn with Gi ∈ Sn, i = 0, . . . , p.

The inequality means that G(x) is a negative semidefinite matrix as by Definition 1.
The most relevant class of matrix inequalities in this thesis are linear matrix inequalities, which
have an affine dependence on the decision variable.
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Definition 4 (e.g. [11], page 10). An LMI in the decision variable x =
[
x1 . . . . . . xm

]⊤ ∈ Rm

is an expression of the form

F (x) = F0 +
m∑
i=1

xiFi ⪯ 0, (2.7)

and defines the mapping F : Rm → Sn with Fi ∈ Sn, i = 0, . . . ,m.

LMIs can also be defined in terms of matrix variables as follows:

Definition 5 (e.g. [11], page 11). An LMI in the matrix variables Xi ∈ Rpi×qi , i = 1, . . . , r, is an
expression of the form

F (X1, . . . , Xr) = F0 +

r∑
i=1

(GiXiHi +H⊤
i X⊤

i G⊤
i ) ⪯ 0, (2.8)

defined by the mapping F : Rp1×q1 × · · · ×Rpr×qr with F0 ∈ Sn, Gi ∈ Rn×pi , and Hi ∈ Rqi×n, i =
1, . . . , r.

Besides LMIs, relevant to this thesis are bilinear matrix inequalities, which arematrix inequalities
that contain products of decision variables

Definition 6 (e.g. [11], page 10). A bilinearmatrix inequality (BMI) in the variable x =
[
x1 . . . xm

]⊤
is an expression of the form

H(x) = H0 +

m∑
i=1

xiHi +

m∑
i=1

m∑
j=1

xixjHi,j ⪯ 0, (2.9)

defined by the mappingH : Rm → Sn withH0 ∈ Sn andHi,Hi,j ∈ Sn, i = 1, . . . ,m, j = 1, . . . ,m.

Next to these, relevant to this thesis is the less common quadratic matrix inequality.

Definition 7 (e.g. [14]). A quadratic matrix inequality (QMI) in the matrix variable X ∈ Rp×q is
an expression of the form

J(X) =

[
X
I

]⊤ [
P11 P12

P⊤
12 P22

]
︸ ︷︷ ︸

P

[
X
I

]
⪯ 0, (2.10)

defined by the mapping J : Rp×q → Sq with some partitioned matrix P ∈ Sp+q.

2.1.3 Convex sets and functions

To demonstrate that LMIs are convex constraints, the notions of convex sets and convex func-
tions are introduced.

Definition 8 (Convex sets). A set F in a linear vector space is convex if{
x1, x2 ∈ F

}
⇒
{
x := αx1 + (1− α)x2 ∈ F, ∀α ∈ (0, 1)

}
. (2.11)

Definition 9 (Convex function). A function F : F → R is convex if F is a non-empty convex set
and

F (αx1 + (1− α)x2) ≤ αF (x1) + (1− α)F (x2). (2.12)
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2.1.4 Convexity of LMIs

From Definitions 4 and 9, it can be shown that LMIs are convex constraints. Consider x, y ∈ Rm

and α ∈ (0, 1) and an LMI as in 4. Recall by Definition 8 that Rm is a non-empty convex set.
Using the definition of an LMI as in (2.8) shows that the expression

F (αx+ (1− α)y) = F0 +

m∑
i=1

(αxi + (1− α)yi)Fi = F0 + α

m∑
i=1

xiFi + (1− α)

m∑
i=1

yiFi

= F0 + α

m∑
i=1

xiFi +−αF0 + αF0︸ ︷︷ ︸
=0

+(1− α)

m∑
i=1

yiFi

= α(F0 +

m∑
i=1

xiFi) + (1− α)(F0 +

m∑
i=1

yiFi) = αF (x) + (1− α)F (y). (2.13)

Hence if F (x) ⪯ 0 and F (y) ⪯ 0, then also F (αx+(1−α)y) ⪯ 0. According to Definition 9, this
implies that an LMI F (x) ⪯ 0 defines a convex constraint on x and the set of solutions to this
LMI is convex.

2.1.5 Semidefinite Programs (SDPs)

A semidefinite program (SDP) is a convex optimization problem of the form

min
x∈Rm

c⊤x (2.14a)

subject to F0 +
m∑
i=1

xiFi ⪯ 0, (2.14b)

where x⊤ =
[
x1 . . . xm

]
, c ∈ Rm, Fi ∈ Sn, i = 0, . . . ,m, and (2.14b) is an LMI in the decision

variable x. The problems in which there is no objective to minimize are referred to as feasibility
problems. In such cases, the SDP answers the question if there exists an x ∈ Rm such that
(2.14b) is satisfied.

2.2 LMI properties and common methods for LMI formulations

The following sections demonstrate some tricks using properties of matrix inequalities. The
main objective of these is to reformulate matrix inequalities in a way to end up with a semidefinite
program, such that it can be solved using convex optimization.

2.2.1 Change of variables

As demonstrated in Section 2.1.5, in order to solve problems with semidefinite programs, con-
straints on the decision variables are required to be LMIs. BMIs as in Definition 6, which are not
convex, can thus not be solved via SDPs. However, in some cases, a BMI can be converted
into an LMI using a change of variables. By introducing a new variable, the bilinear term can
be replaced by this variable, yielding a linear matrix inequality. One needs to be sure that the
change of variables is chosen to be a one-to-one mapping, such that the original variable can
be reconstructed after the optimization. Similarly, a change of variables can be used to replace
the inverse of a decision variable, which is not convex either. Here, one needs to make sure
that the newly introduced variable is invertible in order to reconstruct to original variable after
the optimization.
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2.2.2 Congruence transformation

Another relevant property of definite matrices follows from Sylvester’s law of inertia. In order to
present this theorem, the congruence transformation is defined as follows:

Definition 10. Consider P ∈ Sn and a non-singular matrix T ∈ Rn×n. The product T⊤PT is
called a congruence transformation of P .

With this definition, Sylvester’s law of inertia states the following:

Theorem 2. If P ∈ Sn is a real matrix, then any congruence transformation of P as in Definition
10 will have the same number of positive, negative, and zero eigenvalues as P .

Proof. See, e.g, page 154 in [15].
Following Theorem 1, this implies that definiteness of P is preserved under congruence trans-
formations.

2.2.3 Schur complement

From the properties of Section 2.2.2, an important relation can be obtained, which is the Schur
complement.

Theorem 3 (e.g. [11], page 18). Consider P ∈ Sn, S ∈ Rn×m, and Q ∈ Sm. The following
statements are equivalent.

1.
[
P S
S⊤ Q

]
≺ 0,

2. Q ≺ 0 and P − SQ−1S⊤ ≺ 0,

3. P ≺ 0 and Q− S⊤P−1S ≺ 0.

2.2.4 Concatenation of LMIs

If there exist multiple LMI constraints on x as F1(x) ⪯ 0, F2(x) ⪯ 0, . . . , Fn(x) ⪯ 0, they can be
concatenated together to form a single LMI. This LMI will take the form of

F (x) ≜


F1(x) 0 . . . 0
0 F2(x) . . . 0
...

... . . . ...
0 0 . . . Fn(x)

 ⪯ 0. (2.15)

One may observe that this is an application of the Schur complement of Theorem 3, which
emerges when S = 0.

2.2.5 The S-procedure for quadratic forms

The S-procedure shows that certain implications involving inequalities of quadratic forms can
be reformulated as LMIs. Using this procedure, some non-LMI conditions can be represented
as LMIs. One of these non-LMI conditions are definiteness constraints of quadratic forms over
a subset. The S-procedure is stated as follows:
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Theorem 4 (e.g. [13], page 24). Consider x ∈ Rm and the quadratic forms x⊤Fx and x⊤Gx
with F ∈ Sm, G ∈ Sm. Then

z⊤Fz ≥ 0, ∀z ∈
{
x : x⊤Gx ≥ 0

}
, (2.16)

if and only if2 there exists a scalar τ ≥ 0 such that

F − τG ⪰ 0. (2.17)

Similarly, positivity of a quadratic form can be ensured over a region defined bymultiple quadratic
forms as

z⊤Fz ≥ 0, ∀z ∈
{
x : x⊤Gix ≥ 0, i = 1, . . . , p

}
, (2.18)

if

F −
p∑

i=1

τiGi ⪰ 0, (2.19)

with τi ≥ 0.

2.3 Analysis of LTI systems through LMIs

In this section, it is shown how properties of an LTI system can be analysed using LMIs. For
conciseness, only discrete-time LTI systems are considered. Here, the considered formulation
is

xk+1 = Axk +Buk +Hwk, (2.20a)
zk = Cxk +Duk + Ewk, (2.20b)

where xk ∈ Rηx denotes the state, while wk ∈ Rηw is the exogenous input, uk ∈ Rηu is the
control input, and zk ∈ Rηz is the performance output. The exogenous inputs are those which
are not measurable and/or cannot be altered by control. This includes references to be tracked,
external disturbances, and measurement noise. The performance output zk is a signal which
consists of terms which ought to be minimized, such as a tracking error or the response to the
exogenous inputs on certain states.

2.3.1 LMI characterization for Lyapunov stability

Consider the autonomous system obtained from (2.20) with uk = 0 and wk = 0 as

xk+1 = Axk, (2.21)

with the equilibrium point at x = 0. It is well known that this system is stable if A ∈ Rηx×ηx is
Schur (i.e. has all its eigenvalues inside the unit disk in the complex plane). Alternatively, one
can search for a function V (x) which satisfies

• V (x) > 0 for x ̸= 0,

• V (x) = 0 for x = 0,

• V (xk+1)− V (xk) < 0 for xk ̸= 0.
2For the only if direction, it is necessary that

{
x : x⊤Gx > 0

}
has an interior point, e.g. G has at least one positive

eigenvalue. This is known as the generalized Slater condition.
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If such a function can be found, then the system is asymptotically stable. Using a Lyapunov
function which has a quadratic form V (x) = x⊤Px where P ∈ Sηx and P ≻ 0, the asymptotic
stability can be rewritten as an LMI constraint. The first two conditions of V (x) are satisfied by
the quadratic form and the constraint that P ≻ 0, while the third condition reads as

x⊤k+1Pxk+1 − xTk Pxk = (Axk)
⊤P (Axk)− x⊤k Pxk = x⊤k (A

⊤PA− P )xk < 0, (2.22)

which itself is a quadratic form. As such, an equivalent LMI condition to (2.22) is found as

A⊤PA− P ≺ 0. (2.23)

Thus, the Lyapunov stability of a discrete-time LTI can be verified by an LMI feasibility problem.

2.3.2 LMI characterization of H∞ performance

System norms are of interest, as they can clearly define a performance criteria for control sys-
tems. Consequently, they can be used to find controllers which optimize these performance
criteria. One of such system norms is the H∞ norm, which is relevant for reference tracking
and disturbance attenuation. In order to define theH∞ norm, consider the discrete-time LTI sys-
tem of (2.20). With uk = 0, the influence of wk on zk is captured by the state-space realization
(A,H,C,E) with the corresponding transfer function

P(z) = C(zI −A)−1H + E. (2.24)

The H∞ norm of P is then defined as follows:

Definition 11. The H∞ norm of P as in (2.24), denoted by ∥P∥∞, is defined as

∥P∥∞ = sup
z∈C+

σmax(P(z)), (2.25)

where σmax(P(z) represents the maximum singular value of P(z) evaluated at the point z in the
complex z-plane.

From this definition, it can be observed that P needs to be analytic in the right-half plane in order
for its H∞ norm to be finite. Furthermore, it can be shown that

∥P(z)∥∞ = sup
ω∈R

σmax(P(ejω)), (2.26)

i.e, the H∞ norm is equal to the maximum singular value of the transfer function evaluated at
points on the unit circle in the z-plane. A signal-based interpretation of the H∞ can be stated
as follows:

Lemma 5 (e.g. [11], page 52). The H∞ norm of P as in (2.24), denoted by ∥P∥∞, is equal to

∥P∥∞ = sup
w∈L2,w ̸=0

∥z∥2
∥w∥2

, (2.27)

where L2 denotes the space of square-summable sequences, i.e. w ∈ L2 ⇒
∑∞

k=0w
⊤
k wk < ∞.

Lemma 5 shows a clear motivation for for utilizing the H∞ norm in controller synthesis, as
the squared H∞ norm corresponds to the maximum (worst-case) energy amplification from the
exogenous input to the performance output. Therefore, one may want to minimize this norm or
ensure it is below a certain fixed value.
The bounded real lemma is an LMI characterization of theH∞ performance used to ensure that
∥P∥∞ < γ for a fixed or to-be-optimized γ. For discrete-time systems as in (2.24) it reads as
follows:
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Lemma 6 (Discrete-time bounded real lemma). The following statements are equivalent:

1. A is Schur-stable and ∥P∥∞ < γ.

2.


P 0 ∗ ∗
0 γI ∗ ∗

PA PH P 0
C E 0 γI

 ≻ 0.

Here ∗ denotes blocks which can be deduced from symmetry.

This is a well known result, and multiple equivalent forms exists (see e.g. Section 3.2.2 of [11]).
Since showing the equivalence of these forms requires cumbersome algebraic manipulations,
a proof for this specific form is presented in A.1, which follows the technical notes of [16] very
closely.

2.4 Controller synthesis for LTI systems through LMIs

In this section it is shown how controllers for LTI systems can be designed using LMIs. Here
the analytical results of Section 2.3 are extended to synthesis problems by introducing decision
variables that represent the controller parameters. The standard control problem, as presented
in Figure 2.1, is considered.

Σ

K

wz

y u

Figure 2.1: Standard control problem for a plant Σ and a static gain matrix K.

Here, the plant Σ is considered to be of the form (2.20) and full state measurements are avail-
able, so

xk+1 = Axk +Buk +Hwk, (2.28a)
zk = Cxk +Duk + Ewk, (2.28b)
yk = xk. (2.28c)

With the control law, uk = Kxk, the closed-loop dynamics from wk to zk of (2.28) is described
by the state-space model [

xk+1

zk

]
=

[
AK HK

CK EK

] [
xk
wk

]
, (2.29)

where [
AK HK

CK EK

]
=

[
A+BK H

C +DK E

]
. (2.30)

It should be observed that (2.29) is a standard state-space formulation. Consequently, LMIs
such as those presented in Section 2.3 can be applied to the closed-loop system through the
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substitution (A,B,C,D) → (AK ,HK , CK , EK). To illustrate, the stability of the closed-loop is
guaranteed if there exists P ≻ 0 and K ∈ Rηu×ηx such that

(A+BK)⊤P (A+BK)− P ≺ 0. (2.31)

This is a direct application of the LMI used for stability analysis in (2.23), translated into a con-
troller synthesis problem through the decision variable K. Because (2.31) contains products
of the decision variables P and K it is not an LMI, hence K can not be determined via an
SDP. Luckily though, (2.31) can be turned into an LMI via some of the tricks in Section 2.2. In
preparation, rewrite (2.31) into

P − (A+BK)⊤P P−1P︸ ︷︷ ︸
I

(A+BK) (2.32)

= P − (PA+ PBK)⊤P−1(PA+ PBK) ≻ 0. (2.33)

This form yields itself for application of the Schur complement of Theorem 3 into[
P PA+ PBK
∗ P

]
≻ 0, (2.34)

which contains a bilinear term in the decision variables P and K. This form does not yield itself
for a change of variables. Luckily, via a congruence transform with blkdiag(P−1, P−1), which
is invertible since P ≻ 0 implies it has no eigenvalues that are equal to zero, the constraint in
(2.34) can be equivalently formulated as[

P−1 0
0 P−1

]⊤ [
P PA+ PBK
∗ P

] [
P−1 0
0 P−1

]
=

[
P−1 AP−1 +BKP−1

∗ P−1

]
≻ 0, (2.35)

which can be turned into an LMI via the change of variables Q = P−1 and F = KP−1 into[
Q AQ+BF
∗ Q

]
≻ 0. (2.36)

The controller gain matrix can be reconstructed from the solution of the SDP as K = FP−1.
The design of state feedback controllers for optimal H∞-performance is presented in Chapter
4 and as such will not be discussed here.

2.5 Controller synthesis for LTI systems with uncertainty

In view of robustness, one must consider that the systemmight not be exactly known. In Section
2.4, the controller synthesis does not consider these uncertainties, potentially impacting stability
and performance when uncertainties are present. Fortunately, through a characterization of the
uncertainty, controllers can be designed that guarantee stability and/or performance criteria in
the presence of such uncertainties.
In this thesis, only systems with an affine dependency on time-invariant parametric uncertainties
are considered. To illustrate, an uncertain autonomous system could be defined as

xk+1 = (A+∆)xk, (2.37)

where ∆ ∈ Rηx×ηx denotes the uncertainty on some nominal system matrix A. Although the
exact value of ∆ is unknown, it is assumed that ∆ ∈ ∆ for some known set of uncertainties ∆.
With this description, it will become possible to define LMIs which can guarantee stability and/or
performance criteria for any ∆ ∈ ∆.
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2.5.1 Introducing uncertainty in LMI problems

For control systems with uncertainty, any subsequent LMI-based analysis or controller syn-
thesis should be carried out with parameter dependent LMIs. A generic description of such a
parameter dependent LMI is defined as follows:

Definition 12. A parameter dependent LMI is an expression of the form

F (∆) ⪯ 0, ∀∆ ∈ ∆, (2.38)

with uncertain parameter ∆ and a known set ∆.

To demonstrate how uncertainty might be included in LMI problems3, the notion of quadratic
stability is introduced as follows:

Theorem 7. The uncertain system in (2.37) is quadratically stable over∆ if there exists a P ≻ 0,
such that

(A+∆)⊤P (A+∆)− P ≺ 0, ∀∆ ∈ ∆. (2.39)

One should observe that (2.39) reduces to (2.23) when ∆ =
{
0
}
, which is used to determine

the stability of systems without uncertainty.
The affine dependence on ∆ in (2.37) causes the Lyapunov condition in (2.39) to have a
quadratic dependency on ∆. This dependency can be rendered affine via the Schur comple-
ment, since rewriting (2.39) in the form

P − (A+∆)⊤PP−1P (A+∆) (2.40)
= P − (PA+ P∆)⊤P−1(PA+ P∆) ≻ 0, ∀∆ ∈ ∆ (2.41)

yields an equivalent LMI as [
P PA+ P∆
∗ P

]
≻ 0, ∀∆ ∈ ∆. (2.42)

Thus, just as the introduction of a parameter K in LMI analysis problems, which represents the
controller, transforms analysis problems into controller synthesis problems, these LMIs can be
employed for uncertain LTI systems by introducing a parameter ∆ to represent the uncertainty.
A critical differentiation to address is that the controller parameterK is introduced as a decision
variable to be searched for in an LMI problem, whereas the uncertainty ∆ imposes additional
constraints on an LMI problem.
In realistic scenarios, the uncertainty ∆ represents some unknown physical parameters, which
can take any real value and as such, ∆ will have an infinite number of elements. Thus, solving
LMI problems involving this uncertainty will require satisfying an infinite number of constraints.
This is known as a semi-infinite program with a finite number of variables and an infinite number
of constraints, and cannot be solved directly by convex optimization. Fortunately, depending on
the characterization of ∆, different strategies exist to solve such a problem, and are presented
in Sections 2.5.2-2.5.4.

2.5.2 Convex hull relaxation

Structured real uncertainty blocks can often be described by the convex hull of finitely many
matrices as

∆ = conv(∆1, . . . ,∆p). (2.43)
3Although presented here for stability, a similar approach should be taken for other LMI problems involving pa-

rameter dependent matrices which can be characterized by some uncertainty set.
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This description can capture polytopic or interval uncertainty regions, in which the matrices
∆1, . . . ,∆p represent the vertices of the region.
Only in the special case that (3.42) depends affinely on the uncertainty ∆, it defines a convex
constraint on ∆ ∈ ∆. This is because the convex hull is a non-empty convex set, and as such
the results from Section 2.1.4 are applicable. With this, the convex hull relaxation can be stated
as follows:

Theorem 8. A parameter dependent constraint as (2.38) with affine dependency on ∆ is satis-
fied for all ∆ ∈ ∆, where ∆ is as in (2.43), if and only if

F (∆i) ⪯ 0, ∀i = 1, . . . , p. (2.44)

Here, p represents the number of vertices of the region.

2.5.3 Full-block S-procedure

In order to apply Theorem 8, it is required that the parameter dependent constraint has an affine
dependency on the uncertainty. If the dependency is not affine, (2.38) does not have a convexity
property (as defined in Section 2.1.4), even when the uncertainty set is defined by a convex hull.
Fortunately, the full-block S-procedure of [17] can resolve this issue for parameter dependent
constraints that have a rational dependency on the uncertainty.
Due to its clear implementation in the context of this thesis, a corollary of the full-block S-
procedure ([18], Lemma 7) is used. For uncertainties which enter the matrix inequality rationally,
the interconnection can be expressed by a Linear Fractional Transformation (LFT) as

∆ ⋆

[
Y11 Y12
Y21 Y22

]
︸ ︷︷ ︸

Y

≜ Y22 + Y21∆(I − Y11∆)−1Y12, (2.45)

for a known matrix Y and the uncertainty ∆. The lemma states the following:

Lemma 9 (Full-block S-procedure). The LFT ∆ ⋆ Y is well-posed and

He(∆ ⋆ Y ) ≜ ∆ ⋆ Y + (∆ ⋆ Y )⊤ ≻ 0, ∀∆ ∈ ∆, (2.46)

holds if there exists a multiplier matrix Φ which satisfies[
∆⊤

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
∆⊤

I

]
⪯ 0, ∀∆ ∈ ∆, (2.47)

and [
Y21Φ22Y

⊤
21 + He(Y22) Y21Φ22Y

⊤
11 + Y21Φ

⊤
12 + Y ⊤

12

∗ Φ11 + Y11Φ22Y
⊤
11 + He(Y11Φ⊤

12)

]
≻ 0. (2.48)

What should be observed is that the full-block S-procedure transforms the LMI constraint with
rational dependency on the uncertainty (2.46) into a single constraint (2.48), which is indepen-
dent of ∆, and a semi-infinite QMI (2.47), which has a quadratic dependency on ∆. This form
is beneficial, as one only needs to find a single multiplier which satisfies (2.47) and (2.48) to
solve the original problem. Furthermore, using Lemma 10, a convexity property of the mapping
in (2.47) can be enforced, recovering the convex hull relaxation.

Lemma 10 ([12]). Consider structured real uncertainty blocks as in (2.43) and the constraint in
(2.47). If the conditions [

I
0

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
I
0

]
⪰ 0, (2.49)
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and [
∆⊤

i

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
∆⊤

i

I

]
⪯ 0, ∀i = 1, . . . , p, (2.50)

hold, then (2.47) is satisfied.

Proof. Consider ∆1,∆2 ∈ ∆ and α ∈ (0, 1). Definition 9 implies that the mapping

∆ →
[
∆⊤

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
∆⊤

I

]
, (2.51)

is convex if and only if

[
(α∆1 + (1− α)∆2)

⊤

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
(α∆1 + (1− α)∆2)⊤

I

]
≤

α

[
∆⊤

1

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
∆⊤

1

I

]
+ (1− α)

[
∆⊤

2

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
∆⊤

2

I

]
. (2.52)

Well[
(α∆1 + (1− α)∆2)

⊤

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
(α∆1 + (1− α)∆2)⊤

I

]
=

α

[
∆⊤

1

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
∆⊤

1

I

]
+ (1− α)

[
∆⊤

2

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
∆⊤

2

I

]
−

α(1− α)

[
(∆1 −∆2)

⊤

0

]⊤ [
Φ11 0
0 0

] [
(∆1 −∆2)

⊤

0

]
, (2.53)

contains the right-hand side of (2.52). The convexity condition then reads as

−α(1− α)

[
(∆1 −∆2)

⊤

0

]⊤ [
Φ11 0
0 0

] [
(∆1 −∆2)

⊤

0

]
≤ 0, (2.54)

which implies that Φ11 ⪰ 0, since −α(1−α) < 0 for α ∈ (0, 1). This condition on Φ11 is enforced
by the inequality in (2.49). Since the mapping is convex and ∆ defines a convex set, (2.47) is
satisfied if and only if it is satisfied at the vertices of ∆. This is enforced by (2.50).

In this way, the set of admissible multipliers is described by finitely many LMI constraints.
In case∆ describes a convex region with a smooth boundary, Lemma 10 does not yield tractable
conditions. Luckily, the full-block S-procedure can still be used to turn this problem into a finite
number of LMIs with guaranteed validity over the whole parameter space by constructing valid
multipliers from inner approximations. To this end, introduce define the set of all admissible
multipliers as

Φ ≜
{
Φ | (2.47) is satisfied

}
. (2.55)

It is possible to obtain inner approximations of this set based on finitely many LMI conditions.
To illustrate, if it is known that the uncertainty satisfies a known bound on the spectral norm as

∥∆∥2 ≤ δ̄, ∀∆ ∈ ∆, (2.56)

for some δ̄ > 0, then it can be deduced that

∥∆∥2 ≤ δ̄ ⇔ ∆∆⊤ ⪯ δ̄2I ⇔
[
∆⊤

I

]⊤ [
I 0
0 −δ̄2I

] [
∆⊤

I

]
⪯ 0. (2.57)
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Hence a valid inner approximation of Φ can be constructed as

Φn =

{(
τI 0
0 −τ δ̄2I

) ∣∣∣τ ≥ 0

}
, (2.58)

so checking (2.48) amounts to solving a problemwith one additional decision variable τ . In order
for (2.48) to be an LMI, one needs to make sure that Y11 and Y21 do not depend on any decision
variables (since this would lead to a BMI problem). For other, more refined inner approximations
of Φ the reader is referred to Section 6.3 in [12].

2.5.4 Sum-of-squares relaxation

In Section 2.5.3, the condition on the multiplier is satisfied by constructing an inner approxi-
mation of the set of admissible multipliers. The construction relies on the deduction from an
explicit condition (such as a bound on the spectral norm), which holds for all uncertainties∆. In
cases where the uncertainty set can only be described implicitly, such as through scalar-valued
inequalities as

∆ =
{
∆ : g1(∆) ≤ 0, . . . , gp(∆) ≤ 0

}
, (2.59)

or through an LMI description as

∆ =
{
∆ : G1(∆) ⪯ 0, . . . , Gp(∆) ⪯ 0

}
, (2.60)

such a deduction cannot be made. For these kinds of problems, the sum-of-squares relaxation
can be used. As a preparation for this, the following notions for global positive definiteness are
required.

Definition 13. A function f : Rm → R is globally positive semidefinite if and only if

f(x) ≥ 0, ∀x ∈ Rm. (2.61)

Definition 14. A matrix-valued function F : Rm → Sn is globally positive semidefinite if and
only if

F (x) ⪰ 0 ∀x ∈ Rm. (2.62)

With these, the sum-of-squares property is defined as follows:

Definition 15. A matrix-valued function F : Rm → Sn is a sum-of-squares (SOS) if it can be
represented as

F (x) = T (x)⊤T (x), (2.63)

for some matrix-valued function T : Rm → Rq×n.

The significance of sum-of-squares lies in the fact it is a sufficient condition for global positive
semidefiniteness. This can clearly be seen in the scalar case (n = 1), since T (x) will be a
column vector and F (x) is equal to the sum of the squared elements of T (x), which are all
positive. As such, a parameter dependent constraint like the multiplier condition of (2.47) is
clearly satisfied by finding a multiplier matrix Φ4 such that

−F (Φ,∆) is SOS. (2.64)

A sum-of-squares relaxation for (2.64), with knowledge on ∆ as (2.59), can be formulated as
follows. If there exists a multiplier Φ and positive semidefinite matrices S1, . . . , Sp such that

−F (Φ,∆) +

p∑
i=1

Sigi(∆) is SOS, (2.65)

4This holds in general for any choice of decision variables; the multiplier matrix is solely used as a practical
example.
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one can infer that (2.64) is satisfied. Indeed, (2.65) implies

F (Φ,∆) ⪯
p∑

i=1

Sigi(∆), ∀∆ ∈ ∆, (2.66)

exploitation of the negative semidefiniteness of gi(∆), i = 1, . . . , p shows the right-hand side of
(2.66) to be negative semidefinite and hence F (Φ,∆) ⪯ 0.
For uncertainty regions described by (2.60), a similar relaxed condition as (2.65) can be con-
structed as

−F (Φ,∆) +

p∑
i=1

(Si, Gi(∆))ν is SOS, (2.67)

where (., .)ν : Rνq×νq × Rνq×νq → Rν×ν denotes the bilinear mapping from [19], defined as

(S,G)ν = trν(S⊤(Iν ⊗G)), (2.68)

with

trp(C) =

tr(C11) . . . tr(C1ν)
... . . . ...

tr(Cν1) . . . tr(Cνν)

 , for C ∈ Rνq×νq, Cjk ∈ Rq×q. (2.69)

This mapping ensures dimensional consistency without loss of definiteness. For a more thor-
ough explanation of this, the the reader is referred to [19].
To verify the SOS property, one can resort to numerical solvers such as the SOS module in
Yalmip [20]. Although very powerful, SOS solvers are computationally expensive. As will be
shown in Chapter 4, for some specific forms of F (Φ,∆), including the multiplier condition of
(2.47), and some specific matrix-valued functions Gi(∆) in (2.60), the SOS relaxation can be
transformed into a computationally efficient LMI problem.
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3 INTRODUCTION TO LMI-BASED DATA-DRIVEN CON-
TROL

This chapter aims to highlight some key concepts in LMI-based data-driven control. Here, the
primary interest lies in more recent literature on data-driven control, used to synthesize con-
trollers directly without any intermediate system identification. For clarity, this type of approach
is sometimes called direct data-driven controller synthesis, in contrast to indirect approaches
using intermediate system identification (which could be seen as a data-driven alternative to
first principle modelling).
Due to the lack of system identification, the designer will not have access to an explicit system
representation, such as Bode plots or state space models. The recent literature on LMI-based
direct data-driven control revolves around the idea that data obtained from a single open-loop
experiment can be a system representation itself. This line of work is heavily inspired by re-
search led by Willems [21], discussed in more detail in Section 3.2. This work shows how the
input signal and time horizon can be chosen such that data from a single open-loop experi-
ment captures the whole behaviour of the system. This entails that all possible trajectories of
the system can be constructed with data from this single experiment. In consequent works, it
is shown that this constitutes an informative representation of the system and can be used to
design controllers.
The rest of this chapter shows how the results from [21], later coined the fundamental lemma,
can be used for controller synthesis in the LMI framework. Here, the works are limited to ap-
proaches which consider discrete-time LTI systems. In correspondence with the novel imple-
mentation of the thesis, cases of special interest are those in which the data is perturbed. The
word perturbation is used as an umbrella term for all effects which corrupt the data, such as
measurement noise, external disturbances, and effects caused by slight nonlinearities (e.g. ge-
ometric terms).

Preliminaries

Similarly to Section 2.4, the exclusive focus is on the state evolution of discrete-time LTI systems
which can be described by

xk+1 = Atrxk +Btruk +Hwk, (3.1)

where the true system matrices Atr and Btr are unknown. Here xk ∈ Rηx denotes the state,
uk ∈ Rηu the control input, and wk ∈ Rηw the perturbation. The matrix H is assumed to be
known and can model a priori that the perturbation w is contained in a subspace rather than
affecting the entire state space. If such knowledge is not available, consider H = I.
From a length-T open-loop experiment of (3.1), input-state measurements are obtained. By
collecting the samples of the experiment, the following matrices are defined:

X =
[
x0 x1 . . . xT−1

]
∈ Rηx×T , (3.2a)

X+ =
[
x1 x2 . . . xT

]
∈ Rηx×T , (3.2b)

U =
[
u0 u1 . . . uT−1

]
∈ Rηu×T . (3.2c)
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Although the perturbation signal cannot be measured, and hence its samples unknown, they
can be collected in a similar way to form the matrix

W =
[
w0 w1 . . . wT−1

]
∈ Rηw×T . (3.3)

3.1 The informativity framework

In order to get a better understanding of the data-driven controller synthesis approaches in later
sections, some underlying concepts and definitions are presented, mainly following the data
informativity framework from [5].
Although in data-driven control, no explicit system representation is available, it is assumed that
the true system can be described as in (3.1). As a general description of all such state-space
models, the model class is defined as follows:

Definition 16. A model class M is a set of systems (A,B) which satisfy the dimensional con-
straints

M =
{
(A,B)

∣∣A ∈ Rηx×ηx , B ∈ Rηx×ηu
}
. (3.4)

Consider the true system as in (3.1), for which (Atr, Btr) ∈ M . This system, denoted by Σtr is
thus an element of the model class M , as shown in Figure 3.1.

M

Σtr

Figure 3.1: The true system can be described as an element of a model class.

Data from this system is obtained via an open-loop experiment, yielding the matrices in (3.2).
With this data, it becomes possible to define a set of systems consistent with the data

Definition 17. The set of consistent systems, denoted byΣD ⊆ M , contains all systems which
could have generated the same data as the true system.

The size of this set heavily depends on the length of the experiment and the input u, as this
determines how much of the system can be learned through the experiment.
It follows naturally that the true system explains the data, e.g. Σtr ∈ ΣD and that other systems
explaining the data are (in some way) similar to the true system, as shown in Figure 3.2.

M

ΣD

Σtr

Figure 3.2: The set ΣD describes all systems consistent with the data.
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Suppose the data will be used to determine if the true system has a certain property (such as
stability), and denote the set of all systems inM which have this property byΣP. The systemΣtr
can not be distinguished from any other system in ΣD solely from the data. Therefore, the only
way to conclude that Σtr ∈ ΣP is when all system consistent with the data satisfy this property,
i.e. ΣD ⊆ ΣP. Hence, these methods are potentially conservative, as is shown in Figure 3.3.

M

ΣP

ΣD

Σtr

Figure 3.3: From the data, it cannot be guaranteed that the true system Σtr satisfies the desired
property as ΣD ⊊ ΣP.

By conducting proper experiments, which are sufficiently long and have sufficiently exciting
inputs, it may be possible to reduce the size of the setΣD, potentially yielding less conservative
results as shown in Fig. 3.4.

M

ΣP ΣDΣtr

Figure 3.4: For more informative experiments, the set of consistent systems may be reduced.
As a result, ΣD ⊂ ΣP and hence the objective can be guaranteed to be satisfied for the true
system Σtr.

In order to use this framework for controller synthesis, consider that the controller can be pa-
rameterized by a parameter K. With this, denote ΣD(K) as the set of all systems obtained as
the interconnection of a system in ΣD with the controller K. The controller synthesis problem
then reads as finding a single controller K that ensures ΣD(K) ⊆ ΣP.

3.2 Willems’ fundamental lemma

A key consideration of data-driven controller synthesis is the choice of the time horizon T and
the input sequenceU of the open-loop experiment. This is because good choices can potentially
reduce conservatism in the controller synthesis, as shown in Section 3.1.
Although not developed particularly for data-driven control, the main concern of [21] is whether
there exist conditions on T and U such that all trajectories of (3.1) can be parameterized by
the matrices in (3.2). In [21], it is shown that this can be done under some requirements. Only
perturbation-free systems are considered in [21], which are captured by (3.1) with w = 0. In
later sections, it will be shown how the results of [21] are still useful for controller synthesis
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with perturbed data. In order to state Willems’ lemma, introduce persistently exciting signals as
follows:

Definition 18. A finite sequence U =
[
u0 u1 . . . uT−1

]
∈ Rηu×T is persistently exciting of

order L ≥ 1 if and only if the Hankel matrix of depth L, defined as

HL(U) ≜


u0 u1 . . . uT−L

u1 u2 . . . uT−L+1
...

... . . . ...
uL−1 uL . . . uT−1

 , (3.5)

has full row rank of ηu · L. This rank requirement enforces a lower bound on length of the
sequence as T ≥ (ηu + 1)L− 1.

With this, Willems’ lemma can be stated as follows:

Lemma 11. Consider a system as in (3.1) with w = 0 and suppose the system is controllable
and observable. Consider data as in (3.2) obtained by a persistently exciting input u of order
ηx+d for some d ≥ 1. Then, any d-long input/state1 trajectory of (3.1), denoted by

[
Ũ⊤
d X̃⊤

d

]⊤
can be constructed from [

vec(Ũd)

vec(X̃d)

]
=

[
Hd(U)
Hd(X)

]
g, (3.6)

for some vector g ∈ RT−d+1. Here, vec(·) denotes an operator which stacks the columns of its
input on top of each other.

Proof: This result is proven in [21] in the behavioural framework. For a proof in the standard
state space setting, the reader is referred to [22].
Willems’ fundamental lemma shows that it is possible to represent any trajectory of (3.1) as a
linear combination of the collected input/state data, with an input sequence that is persistently
exciting.
This result forms the basis for a specific working direction in data-driven controller synthesis. In
the following sections, a few different applications are presented.

3.3 Controller synthesis from data-dependent representation

In [23], Willems’ fundamental lemma is used to provide solutions to offline controller synthesis
problems for state/output feedback stabilization and linear-quadratic regulation. The key point
in this work is to make use of data-dependent representations of the open-loop and closed-loop
state-space matrices and substitute them in LMI-based controller synthesis problems.
Integral to this approach is a special case of Lemma 11, which arises for d = 1. With this, (3.6)
implies any input-state pair

[
ũ⊤ x̃⊤

]⊤ can be expressed as[
ũ
x̃

]
=

[
U
X

]
g, (3.7)

for some vector g. By the Rouché–Capelli theorem (e.g. page 202 in [24]) this implies that[
X⊤ U⊤]⊤ has full row rank.
The set of systems consistent with the perturbation-free data in (3.2) is captured by

ΣD =

{
(A,B) ∈ M

∣∣∣X+ =
[
A B

] [X
U

]}
, (3.8)

1This result is usually presented for input/output trajectories with a state evolution as (3.1) and measured output
as yk = Cxk +Duk. However, in the context of this thesis, full state measurements are a standing assumption (e.g.
yk = xk), and hence this is applied directly for clarity.
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and has only one element when
[
X⊤ U⊤]⊤ has full row rank, namely (Atr, Btr). Therefore,

from an open-loop experiment with persistently exciting inputs of order ηx + 1, which requires
an experiment of length T ≥ (ηu + 1)ηx + ηu, the underlying model can be uniquely identified
from the data as [

Atr Btr
]
= X+

[
X
U

]†
, (3.9)

where † denotes the Moore–Penrose inverse. Hence, the unknown system matrices (Atr, Btr)
in LMI problems can be replaced by a data-dependent open-loop representation as (3.9).
For the interconnection of (3.1) with a state feedback controller u = Kx, a convenient data-
dependent closed-loop representation can be constructed. By introducing a decision variable
G ∈ RT×ηu , which is required to satisfy [

K
I

]
=

[
U
X

]
G, (3.10)

the closed-loop system matrix can be parameterized as

Atr +BtrK =
[
Btr Atr

] [K
I

]
= (3.11a)

[
Btr Atr

] [ U
X

]
G = X+G, (3.11b)

which can be substituted in LMI-based controller synthesis problems. When the data is obtained
from a persistently exciting input signal,

[
U⊤ X⊤]⊤ has full row rank, and as such (by the

Rouché-Capelli theorem) G in (3.10) exists. In order to satisfy (3.10), any occurrence of K in
the LMI needs to be substituted by

K = UG, (3.12)

and the constraint
I = XG, (3.13)

needs to be added. Then, after the optimization, the feedback matrix can be reconstructed as
K = UG.
The main downside of this approach is that the direct application of Willems’ lemma requires
perturbation-free data. In practice this will never be the case, as data is always corrupted by
some measurement noise. In [23], it is presented that the approach still works with data per-
turbed by a small state measurement noise, via a condition on the signal-to-noise ratio. How-
ever, this condition cannot be verified using the measured data, as direct access to the pertur-
bation signal is required.

3.4 Robust synthesis methods for perturbed data

In [4], the work of [23] is extended to robust synthesis. In this context, robust has two meanings.
On one hand, the paper presents data-dependent LMIs to achieve robust control objectives,
such as H∞-optimal performance, while on the other hand, it shows the approach is robust
to perturbations in the data in that the performance can be guaranteed for all perturbations
satisfying some known bound.
In a length-T open-loop experiment, perturbed data is captured from (3.1) as (3.2) and satisfies

X+ = AtrX +BtrU +HW, (3.14)

for the true perturbation W as in (3.3). Since the perturbation is not measured, W is not part
of the data, and hence cannot be used to uniquely determine (Atr, Btr) from (3.14). Despite
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that, by constructing a set of legitimate perturbations which, e.g., are bounded in norm, a set
description of systems (A,B) consistent with the data can be constructed. In [4], the set of
legitimate perturbation is defined by means of a quadratic matrix inequality.

Assumption 1 (as made in [4]). The matrix W is an element of

W ≜
{
W ∈ Rηu×T

∣∣∣ [W
I

]⊤ [
Π11 Π12

Π⊤
12 Π22

] [
W
I

]
⪯ 0

}
, (3.15)

for some known matrices Π11 ∈ Rηu×ηu , Π12 ∈ Rηu×T , and a negative definite matrix Π22 ∈ ST−.

This specific description is chosen for two reasons. Firstly, this form can be used to describe
realistic perturbation bounds. Indeed, with Π11 = I,Π12 = 0, (3.15) reduces to

W⊤W =
T−1∑
k=0

wkw
⊤
k ⪯ −Π22, (3.16)

which can be used to express an upper bound on the energy of w over the time interval of the
experiment.

• If W has a bounded maximum singular value σmax(W ) ≤ σ̄, the form (3.16) can be used
with Π22 = −σ̄2I.

• Norm bounds on the samples of W such as ∥wk∥2 ≤ w̄, k = 0, . . . , T − 1 can be captured
in the form (3.16) with Π22 = −w̄2TI.

• Magnitude bounds on each component of W such as |wk,j | ≤ w̄j , k = 0, . . . , T − 1, j =
1, . . . , ηw can be captured in the form (3.16) with Π22 = −

∑ηw
j=0 w̄

2
jTI.

Secondly, this form yields itself for application of the full-block S-procedure of Section 2.5.3, due
to the similar structure as the multiplier coming from the procedure, and will be shown later in
this section.
Using the set of legitimate perturbations as in Assumption 1, the set of systems which are
consistent with the data is defined as

ΣD =
{
(A,B) ∈ M | X+ = AX +BU +HW,W ∈ W

}
. (3.17)

SoΣD contains the systems which could have generated the data as in (3.2) for some legitimate
perturbation as in Assumption 1. Under a state feedback law uk = Kxk, the set of closed-loop
matrices which are consistent with the data is defined as

ΣD(K) =
{
AK | AK = A+BK, (A,B) ∈ ΣD

}
. (3.18)

The goal of [4] is to find a data-dependent representation of the setΣD(K) and then ensure that
all systems in this set satisfy the specified performance objective. In this way, it is guaranteed
that the performance objective is satisfied for the true system. To this end, they apply a similar
approach as in Section 3.3 by introducing a decision variable G that is required to satisfy (3.10).
In contrast to [23], the closed-loop system matrix cannot be uniquely parameterized as in (3.11),
but will be dependent on the unknown perturbation matrix W as

AK = A+BK =
[
B A

] [K
I

]
= (3.19a)

[
B A

] [ U
X

]
G = (X+ −HW )G. (3.19b)
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With this, the closed-loop dynamics from wk to zk as in (2.30) (repeated in (3.20)) can be ex-
pressed by data as[

AK HK

CK EK

]
=

[
A+BK H

C +DK E

]
=

[
(X+ −HW )G H

C +DUG E

]
. (3.20)

Direct substitution of this parametrization into an LMI for controller synthesis yields a parameter
dependent LMI with unknown parameter W . To illustrate, the H∞-optimal controller synthesis
is considered, using Lemma 6.

Example 1 (LMI for H∞-optimal state feedback synthesis using methods from [4]). The H∞-
optimal state feedback controller can be designed by substitution of the data-dependent closed-
loop dynamics of (3.18) into the LMI presented in the discrete-time bounded real lemma (Lemma
6). Finding the H∞-optimal controller amounts to finding a P ≻ 0, G ∈ RT×ηu and minimizing γ
such that [

K
I

]
=

[
U
X

]
G (3.21)

and 
P 0 ∗ ∗
0 γI ∗ ∗

P (X+ −HW )G PH P 0
C +DUG E 0 γI

 ≻ 0, ∀W ∈ W . (3.22)

Note that (3.22) is not linear in the decision variables P andG. Fortunately, (3.22) can be turned
into an LMI by a congruence transform with blkdiag(P−1, I, P−1, I) and applying the change of
variables Q = P−1, F = GP−1 to obtain

Q 0 ∗ ∗
0 γI ∗ ∗

(X+ −HW )F H Q 0
CQ+DUF E 0 γI

 ≻ 0, ∀W ∈ W . (3.23)

As such, the problem at hand is a parameter dependent LMI with parameter W .

To solve the parameter dependent LMI problem, relaxation methods as described in Section
2.5.1 are required. Since (3.23) is affine in W , the full-block S-procedure from Section 2.5.3
can be used. To reproduce the results of [4], Lemma 9 needs to be applied with ∆ = W⊤ and
with Y11 = 0. With this, (3.23) can be expressed by a Linear Fractional Transformation as (2.45)
with

Y =


0 0 0 −H⊤ 0

F⊤ 1
2Q 0 0 0

0 0 γ
2 I 0 0

0 X+F H 1
2Q 0

0 CQ+DUF E 0 γ
2 I

 . (3.24)

Application of the full-block S-procedure in this context states that (3.23) holds if there exists a
multiplier matrix Φ which satisfies[

W
I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

] [
W
I

]
⪯ 0, ∀W ∈ W, (3.25)

such that 
F⊤Φ22F +Q 0 ∗ ∗ ∗

0 γI ∗ ∗ 0
X+F H Q 0 ∗

CQ+DUF E 0 γI 0
FΦ12 0 −H⊤ 0 Φ11

 ≻ 0, (3.26)
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holds. The nonlinear term in the (1, 1) block of (3.26) can be resolved via a Schur complement.
By rewriting (3.26) into

Q 0 ∗ ∗ ∗
0 γI ∗ ∗ 0

X+F H Q 0 ∗
CQ+DUF E 0 γI 0

FΦ12 0 −H⊤ 0 Φ11

−


F⊤

0
0
0
0

 (−Φ22)
−1
[
F 0 0 0 0

]
≻ 0, (3.27)

application of the Schur complement yields the constraint

Q 0 ∗ ∗ ∗ ∗
0 γI ∗ ∗ 0 0

X+F H Q 0 ∗ 0
CQ+DUF E 0 γI 0 0

FΦ12 0 −H⊤ 0 Φ11 0

F 0 0 0 0 −Φ−1
22

 ≻ 0. (3.28)

After the optimization, the controller gain matrix is retrieved as

K = UG = UFQ−1. (3.29)

Application of the full-block S-procedure shows the clear motivation for Assumption 1. The
condition on the multiplier (3.25) is satisfied by choosing[

Φ11 Φ12

Φ⊤
12 Φ22

]
= τ

[
Π11 Π12

Π⊤
12 Π22

]
, (3.30)

for some decision variable τ ≥ 0 and Π11,Π12,Π22 as in Assumption 1.

Remark. In order to apply the full-block S-procedure to (3.23) with ∆ = W⊤, the decision
variable F will show up in Y21 when constructing the LFT. As a result, the resulting constraint
from the full-block S-procedure will not be an LMI (but contains the inverse term −Φ−1

22 and the
bilinear terms FΦ12 and Φ⊤

12F
⊤). In [4] it is shown that with the choice of multiplier as (3.30)

with Π12 = 0, the nonlinear problem can be solved via a line search over τ .
Alternatively, the full-block S-procedure can be applied to (3.23) with ∆ = W . In this ”dual”
form, decision variables will only show up in Y12 and hence the resulting constraint will be an
LMI. As such, no line search is required, which decreases computational complexity. In turn,
this requires one to formulate Assumption 1 on W⊤ instead of W to infer suitable multipliers
as (3.30). Fortunately, this form can be used to describe the same energy bounds on w as
presented in this section.

A limiting factor of this approach is that the parametrization of the closed-loop system matrices
is actually not exact. Using the parametrization as in (3.19), any performance objective in an
LMI controller synthesis is guaranteed for all closed-loop systems in the superset

Σs
D(K) =

{
AG

∣∣AG = (X+ −HW )G,W ∈ W
}
, (3.31)

which contains all closed loop systems defined by a perturbation as in Assumption 1. This
also contains systems that are not consistent with the data, and hence Σs

D(K) is not neces-
sarily equal to ΣD(K) in (3.18). Therefore, designing controllers using this parametrization is
potentially conservative.
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3.5 Improved parametrization of the set of consistent systems

In [5], an approach is presented with which controllers can be designed to guarantee a per-
formance objective for an exact parametrization of the closed-loop system matrices consistent
with the data. In this way, it is less conservative than the methods of [4]. The central concept of
this work is that QMIs in the unknown system matrices can describe both the set of consistent
systems and relevant performance objectives.
To this end, consider data collected from an open-loop system such that (3.14) holds and as-
sume H = I.2 Consider a perturbation model as[

W⊤

I

]⊤ [
Π11 Π12

Π⊤
12 Π22

] [
W⊤

I

]
⪯ 0, ∀W ∈ W. (3.32)

With this, the matrix containing the perturbation samples can be rewritten as

W = X+ −AX −BU, (3.33)

and substitution in (3.32) yields a QMI in A and B as[
(X+ −AX −BU)⊤

I

]⊤ [
Π11 Π12

Π⊤
12 Π22

] [
(X+ −AX −BU)⊤

I

]
(3.34)

=

A⊤

B⊤

I

⊤ 0 −X
0 −U
I X+

[Π11 Π12

Π⊤
12 Π22

]0 −X
0 −U
I X+

⊤ A⊤

B⊤

I

 ⪯ 0. (3.35)

With this, the set of all systems consistent with the data is clearly defined as

ΣD =
{
(A,B) ∈ M

∣∣ (3.35) is satisfied} . (3.36)

In [5], it is shown that LMIs for the synthesis of stabilizing controllers and robust performance
can be rewritten in a similar form as (3.35). Consider the following example for synthesizing
stabilizing state feedback controllers.

Example 2. As presented in Section 2.4, the stability of the closed-loop is guaranteed if there
exists P ≻ 0 and K ∈ Rηu×ηx such that

P − (A+BK)⊤P (A+BK) ≻ 0. (3.37)

As shown in Section 2.4, via a Schur complement and a congruence transformwith blkdiag(P−1, P−1),
an equivalent LMI can be formulated as[

P−1 (A+BK)P−1

∗ P−1

]
≻ 0. (3.38)

With a change of variables Q = P−1 and another Schur complement, the problem can be
reformulated as

Q− (A+BK)QQ−1Q︸ ︷︷ ︸
I

(A+BK)⊤ = Q− (A+BK)Q(A+BK)⊤ ≻ 0, (3.39)

which can be rewritten in a similar form as (3.35) asA⊤

B⊤

I

⊤  Q QK⊤ 0
KQ KQK⊤ 0
0 0 −Q

A⊤

B⊤

I

 ≺ 0. (3.40)

2In [5] it is shown how to deal with the case if H ̸= I, by a slight alteration of the perturbation model.
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In this setting, the problem of quadratic stabilization amounts to finding Q ≻ 0 and K ∈ Rηu×ηx

such that the QMI (3.40) is satisfied for all (A,B) satisfying the QMI (3.35).
The main question which arises, is under which conditions satisfying one QMI implies satisfying
another QMI. To find these, the authors in [5] were heavily inspired by the standard S-procedure,
such as presented in Section 2.2.5, which provides these conditions for quadratic forms. In [14]
it is shown that the results of the S-procedure for quadratic forms can be extended to both strict
and non-strict QMIs.

Theorem 12 (Strict matrix S-lemma, [14]). Suppose the QMI[
Z
I

]⊤
G

[
Z
I

]
⪯ 0, (3.41)

is satisfied for all Z ∈ Z for some bounded set Z, and that there exists some Z ∈ Z for which[
Z
I

]⊤
G

[
Z
I

]
≺ 0. (3.42)

Then another QMI [
Z
I

]⊤
F

[
Z
I

]
≺ 0, (3.43)

is satisfied for all Z ∈ Z if and only if3 there exists α ≥ 0 such that

F − αG ≺ 0. (3.44)

From this result, it is clear that the problem of quadratic stabilization amounts to finding Q ≻ 0
and K ∈ Rηu×ηx such that Q QK⊤ 0

KQ KQK⊤ 0
0 0 −Q

− α

0 −X
0 −U
I X+

[Π11 Π12

Π⊤
12 Π22

]0 −X
0 −U
I X+

⊤

≺ 0. (3.45)

Note that (3.45) is not linear in Q and K. Luckily, (3.45) can be transformed into an LMI by a
rather standard change of variables and Schur complement. By rewriting (3.45) as Q QK⊤ 0

KQ 0 0
0 0 −Q

−α

0 −X
0 −U
I X+

[Π11 Π12

Π⊤
12 Π22

]0 −X
0 −U
I X+

⊤

−

 0
KQ
0

Q−1
[
0 QK⊤ 0

]
≻ 0,

(3.46)

the Schur complement can be applied to obtain the BMI
Q QK⊤ 0 0
KQ 0 0 QK⊤

0 0 −Q 0
0 KQ 0 Q

− α


0 −X
0 −U
I X+

0 0

[Π11 Π12

Π⊤
12 Π22

]
0 −X
0 −U
I X+

0 0


⊤

≻ 0, (3.47)

which can be turned into the LMI
Q F⊤ 0 0
F 0 0 F⊤

0 0 −Q 0
0 F 0 Q

− α


0 −X
0 −U
I X+

0 0

[Π11 Π12

Π⊤
12 Π22

]
0 −X
0 −U
I X+

0 0


⊤

≻ 0, (3.48)

3the ”if” part of the statement remains true if (3.42) is not satisfied.
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with the change of variables F = KQ.
As this framework is not used in Chapter 4, the reader is referred to [5] for LMIs for controller
synthesis problems with a performance objective, such asH∞-optimal performance. Note how-
ever, that the results of Chapter 4 are applicable to this line of work by observing that the term

α

[
Π11 Π12

Π⊤
12 Π22

]
(3.49)

has the same function as a multiplier, such as the one constructed in (3.30).

3.6 Robust synthesis methods with prior knowledge

In [6], a framework is presented which allows for combining data with prior knowledge. This prior
knowledge takes the form of information on the structure of the system matrices, or as bounds
on the uncertain parameters. This is especially relevant for mechanical systems, whose state
space system matrices often include entries that are not affected by uncertain parameters. As
an example, the discrete-time state evolution of a mass-spring-damper system can be modeled
by a difference equation as

xk+1 =

[
1 τs
δ1 δ2

]
xk +

[
0
δ3

]
uk, (3.50)

for some unknown parameters δ1, δ2, δ3 and a (known) sampling time τs. In such a system, all
entries of the top row of (3.50) are available. Moreover, (conservative) bounds on the unknown
parameters might be available based on estimates of their values. Using the results of [6],
this knowledge can be used together with data collected from an open-loop system to design
controllers that satisfy performance criteria for all systems consistent with the data and the
prior knowledge. With this, conservatism is potentially reduced compared to purely data-driven
methods.
In the case that no prior knowledge is available, the method of [6] is equivalent to [5]. The
flexibility of this method (combined with the option of including prior knowledge) makes it the
most favorable framework to be used. Therefore, [6] is closely followed to formulate the new
contributions of this thesis in Chapter 4. This chapter will also provide a sufficiently in-depth
explanation of the methods using in [6].

3.7 Other notable lines of research

This section highlights significant research directions in data-driven control that were not ex-
plicitly explored in this thesis. By briefly addressing these research directions, their significance
and potential contributions to the broader field of data-driven control methodologies are em-
phasized. These aspects, although not the primary focus here, serve as notable directions for
future exploration and advancement in the field.

3.7.1 Data-driven model predictive control

As an advanced control method, model predictive control (MPC) has a wide range of technolog-
ical applications [25] and is expected to have growing industrial impact in the future [26]. The
performance of the MPC is critically dependent of the quality of the model. Developing such
a refined model is very time-consuming, and hence research in data-driven alternatives began
to emerge. A seminal work is [27], which shows that Hankel matrices can be used to describe
the controlled processes instead of a model, and hence be used for MPC. In turn, [28] popular-
ized this working direction by providing an algorithm that is able to satisfy system constraints,
yielding more practical applications. Data-driven MPC for perturbed data is considered in [29]
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for guaranteed open-loop properties. In [30], this work is extended to guarantee closed-loop
properties, such as exponential stability.

3.7.2 Data-driven control for nonlinear systems

Since all works discussed up to this point consider LTI systems, one might wonder if Willems’
fundamental lemma, and controller methods based upon it, can be extended to nonlinear sys-
tems. In [31], the authors consider an approach of linearization around an operating point, where
the nonlinear remainder is treated as a perturbation. With this, robust data-driven controller
synthesis is applied to obtain local stabilization. Designing stabilizing controllers for polynomial
systems is considered in [32], and extended to design with perturbed data in [33]. Another
notable work is the data-driven MPC for nonlinear systems in [34], which can be applied for
reference tracking problems with guaranteed closed-loop stability.

3.7.3 Data-driven control in the frequency domain

In this thesis, the focus is on LMI-based controller design from time-domain data. As an alter-
native to this working direction, frequency-domain data can also be used for data-driven design.
In these approaches, controllers are directly synthesized from data, without the need to identify
a parametric model. A notable work is [35], in which automatic loop-shaping of PID controllers
from frequency-domain data is considered. Here, (frequency-dependent) bounds on the gain of
the four sensitivity functions can be imposed as constraints in the optimization. A fifth constraint
is used to impose a requirement on set-point tracking. In [36], frequency-domain data is used to
synthesize the frequency response of a controller that achieves desired closed-loop pole place-
ments. Data-driven synthesis for fixed structure controllers for guaranteed H∞ performance is
considered in [37].
Similarly to this thesis, convex optimization methods are used to design robust controllers based
on frequency-domain data. In [38], convex optimization is used to synthesize linearly parame-
terized controllers (which includes PID controllers) for SISO systems that satisfy specifications
on the gain margin, phase margin, and the desired closed-loop bandwidth. Controller synthesis
for loop shaping and H∞ performance for SISO systems is considered in [39]. This work is ex-
tended to MIMO systems in [40].In [41], standard performance specifications such as H2, H∞
and loop shaping are considered for robust controller synthesis of multivariable systems with re-
spect to a multimodel uncertainty. In this work, a unified framework is presented in which these
specifications can be guaranteed starting only from frequency-domain data that is collected at
different operating points.

3.8 Novel working direction of this thesis

With the works of [5] and [6], a strong framework is established for data-driven control of
discrete-time LTI systems. Both make use of an exact parametrization of the set of systems
consistent with the data under some model of the perturbation (in the form of a QMI). For clar-
ity, the perturbation model is repeated here as[

W⊤

I

]⊤ [
Π11 Π12

Π⊤
12 Π22

]
︸ ︷︷ ︸

Π

[
W⊤

I

]
⪯ 0, ∀W ∈ W, (3.51)

for some known Π11,Π12 and Π22 ≺ 0. This model might be potentially conservative, as it relies
on the designer to choose these matrices based on the knowledge about W . Considering the
QMI’s less-than-ideal structure, it is not obvious to see what Π should be to satisfy (3.51) based
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on some characterization ofW . To illustrate, the choices for Π for norm bounds on the samples
or elements of W , as presented in Section 3.4, are based on (potentially) conservative over-
approximations of the energy bound over the whole experiment. In turn, this might increase
conservatism in the controller synthesis. As such, Chapter 4 aims to show that these multipliers
do not need to be constructed directly by the designer, but can be used as decision variables in
a separate LMI constructed from the implicit characterization of the perturbation.
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Robust data-driven state-feedback synthesis from data corrupted by
perturbations with bounded norms and rates-of-variation

Rens de Boer1 and Hakan Köroğlu2

Abstract— Data-driven H∞-optimal controller synthesis is
considered for unknown discrete-time linear time-invariant
systems. Perturbations in the data, such as those coming from
external disturbances and measurement noise, are assumed to
be bounded in norm and rate-of-variation. A linear matrix
inequality (LMI) based framework is introduced in which
these realistic bounds can be included in the synthesis. This
is done via perturbation regions, which can describe quadratic
inequalities on (the elements of) individual samples and the
variation between samples. Combining multiple regions allows
to infer multipliers from learnt data that better describe
the properties of the perturbation. This reduces the set of
systems consistent with the data and thus offers a reduction in
conservatism, at the cost of increased computational complexity.
The proposed framework is compatible with the most recent
literature, which includes prior knowledge on the system
matrices or the uncertainty in the controller synthesis.

I. INTRODUCTION

Synthesizing controllers directly from measured data is
gaining more prominence in the field of systems and control
[1], [2]. Compared to the sequential process of system identi-
fication and model-based control, data-driven methods could
offer a promising alternative. Refined system identification
[3] can be a time-consuming process, demanding significant
human intervention to ensure model quality. If this is deemed
too cumbersome, data-driven methods might be a viable
alternative if they are simple and faster to execute.

A particular class of data-driven control, built on pio-
neering research led by Willems [4], might fulfill these
requirements. In this research, it is demonstrated that a single
open-loop experiment can parameterize all trajectories of a
linear time-invariant (LTI) system, provided that the input
signal is sufficiently exciting. As a direct consequence, a
data-dependent representation of the underlying LTI system
can be obtained. Through the use of this representation, the
seminal work [5] presented solutions for offline controller
synthesis in both state/output feedback stabilization and the
linear quadratic regulation problem. These solutions are
formulated in the form of linear matrix inequality (LMI)
optimization, which is shown to be computationally efficient
and effective in a variety of analysis and synthesis problems
[6].

An obstacle of data-driven methods is that not all input
signals are measurable (e.g. external disturbances) and that

1Rens de Boer is currently pursuing his MSc degree in mechanical
engineering, University of Twente, Drienerlolaan 5, 7522 NB Enschede,
The Netherlands r.deboer-2@student.utwente.nl

2Hakan Köroğlu is with, and supported by, the Faculty of Engineering
Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The
Netherlands h.koroglu@utwente.nl

the measurements are always corrupted by some noise.
Consequently, it is not possible to derive a single exact rep-
resentation of the underlying system from the data. Luckily
though, using upper bound estimates of of these factors, a
set of LTI systems can be constructed that would produce
the same data, assuming accurate estimates. This set can
then be utilized for controller synthesis. This method is
potentially conservative, as a single controller needs to fulfill
the design requirements for all systems in this set. As such,
it is beneficial to have a good perturbation model, which
is a characterization of disturbances and noise (through
convenient set descriptions).

Prior work has considered the challenge of managing
perturbations in the data for LMI based controller synthesis.
In [5], sufficient conditions for closed-loop stability under
additive state measurement noise are provided. However, it
is worth noting that these conditions rely on assumptions
that cannot be verified using measured data. Several other
works assume that perturbations satisfy a quadratic matrix
inequality. This specific characterization facilitates dealing
with perturbations using variants of the S-procedure [7], such
as the full-block S-procedure in [8], the classical S-lemma
in [9], the lossless matrix S-procedure of [10] in [11], and
Petersen’s lemma in [12]. In [8], [11], [12] this perturbation
model is used to describe an energy bound of the perturbation
over the whole experiment. This is potentially conservative
if bounds on (the elements of) individual samples are known.
As such, [9], [13] provide approaches to describe Euclidean
norm bounds on the individual perturbation samples, but
this cannot be generalized to quadratic inequalities on the
elements of a sample. Furthermore, none of the afore-
mentioned methods can handle bounds on the maximum
rate-of-variation, although there is very probable correlation
between perturbation samples, such as those coming from
external disturbances. As mentioned in [13], sum-of-squares
relaxation approaches from [14] can be used to describe
these more general bounds, but this approach relies on
computationally expensive tools.

In this paper, it is shown that multiple realistic perturba-
tion bounds can be implemented in the controller synthesis
problem via LMIs. We present a framework that allows for
more flexible bounds on perturbation signals by constructing
perturbation regions. These regions can describe bounds in
the form of quadratic inequalities in any of the elements of
the perturbation samples. As such, bounds on the rate-of-
variation between samples can be included.

The paper is structured as follows. The problem is for-
mulated in Section II. In Section III we provide LMIs



for designing full state-feedback controllers with guaranteed
H∞-performance, relying on multipliers from the full-block
S-procedure. In Section IV it is shown how these multipliers
can be constructed in compliance with the knowledge on the
perturbation bounds. Section V demonstrates the flexibility of
the proposed framework by providing expressions for some
relevant perturbation regions. We show the effectiveness of
this framework via an illustrative example in Section VI
before the concluding remarks.

II. PROBLEM FORMULATION

Consider uncertain linear time-invariant systems of the
form

 xk+1

zk
pk

 =

 A B H L
C D E 0
Cu Du 0 0




xk

uk

wk

qk

 (1a)

qk = ∆trpk, (1b)

where xk ∈ Rηx denotes the state, uk ∈ Rηu the control
input, wk ∈ Rηw the perturbation, and zk ∈ Rηz the
performance output. The signals qk ∈ Rηq and pk ∈ Rηp are
introduced to be able to pull out the unknown parameters
and thereby form an uncertainty channel. All matrices in
(1) are assumed to be known, except the true uncertainty
∆tr ∈ Rηq×ηp . It is assumed that ∆tr has a block-diagonal
structure

∆tr = blkdiagℓ
j=1(∆j), (2)

where ∆j ∈ Rηq,j×ηp,j is a full block or a repeated scalar
block ∆j = δjIηw,j , δj ∈ R. Because of this, the description

∆tr = blkdiagℓ
j=1(∆j) =

ℓ∑
j=1

Nj∆jY
⊤
j (3)

can be used, where Nj and Yj are the corresponding block-
columns of the identity matrix.

It is assumed that the signals wk and qk cannot be
measured. However, we assume to have prior knowledge
on the perturbation signal wk and its rate-of-variation vk ≜
wk+1 − wk i.e., wk ∈ W and vk ∈ V for some known
sets W ⊂ Rηw , V ⊂ Rηw . These sets can express norm
bounds on (the elements of) wk and vk. For the uncertainty,
we assume to have prior knowledge in the form ∆tr ∈ ∆pr

for some known compact set ∆pr.
From a length-T open-loop experiment of (1), perturbed

state-input measurements are obtained. By collecting the
samples of the experiment, we have access to the matrices

X =
[
x0 x1 . . . xT−1

]
∈ Rηx×T , (4a)

X+ =
[
x1 x1 . . . xT

]
∈ Rηx×T , (4b)

U =
[
u0 u1 . . . uT−1

]
∈ Rηu×T . (4c)

The samples of the perturbation, although unknown, are
collected in the matrix

W =
[
w0 w1 . . . wT−1

]
∈ Rηw×T . (5)

From the open-loop dynamics of (1), it is clear that the data
needs to satisfy

X+ = AX +BU +HW + L∆tr(CuX +DuU). (6)

In contrast to related works such as [5], [8], [15], measure-
ments are said to be perturbed rather than noisy. This is done
to stress that W consists of all corrupting factors such that
a linear model as

xk+1 = (A+ L∆Cu)xk + (B + L∆Du)uk (7)

cannot explain the data in (4). Next to measurement- and
process noise, this would also include external disturbances
and disruptions caused by slight nonlinearities. From the
knowledge on the perturbation signal, we define the set of
admissible perturbation matrices as

WT =
{
W

∣∣∣ wk ∈ W, k = 0, . . . , T − 1
vk ∈ V, k = 0, . . . , T − 2

}
. (8)

For notational purposes, similarly to [13], we introduce the
matrices

M = X+ −AX −BU, (9a)
Z = CuX +DuU, (9b)

such that any ∆ ∈ ∆ln is consistent with the data, where

∆ln = {∆: ∃W ∈ W | M = HW + L∆Z}. (10)

Naturally, ∆tr ∈ ∆ln and as such it is an element of the
combined uncertainty set

∆com = {∆ | ∆ ∈ (∆pr ∩∆ln)}. (11)

This paper considers the synthesis of a state feedback
controller as

uk = Kxk (12)

for (1). The closed loop transfer matrix from wk to zk under
this controller has an LTI representation as

G(z) = CK(zI−AK)−1HK+EK =

[
AK HK

CK EK

]
, (13)

where[
AK HK

CK EK

]
=

[
A+BK+L∆tr(Cu+DuK) H

C+DK E

]
. (14)

We denote the H∞ norm of G(z) by ∥G∥∞.
Based on these basic notions, the formulation of the

problem reads as follows:

Problem 1. Given a system as in (1) and data as in (4)
where the perturbation matrix of (5) satisfies W ∈ WT ,
design a state-feedback controller as in (12) which renders
the closed loop in (14) stable and ensures that ∥G∥∞ < γ
for all ∆ ∈ ∆com.



III. H∞-OPTIMAL FULL STATE-FEEDBACK
SYNTHESIS FROM PERTURBED DATA

In this section, it is shown how stability of the closed loop
and H∞-performance of level γ > 0 can be guaranteed via
LMI conditions. Furthermore, it is shown how to deal with
the unknown term ∆tr in (14).

The bounded real lemma gives a necessary and sufficient
conditions for H∞-performance for LTI systems.

Lemma 1 (Discrete-time bounded real lemma). Consider a
system (13) and a scalar γ > 0. Then AK is Schur-stable
and ∥G∥∞ < γ if and only if there exists P ≻ 0 such that

P 0 ∗ ∗
0 γI ∗ ∗

PAK PHK P 0
CK EK 0 γI

 ≻ 0. (15)

Proof: see e.g. (3.14) in [16], Section 3.2.2.
By substituting the matrices from (14) into (15), the

controller synthesis problem (for a fixed or to-be-optimized
γ) reads as

find P ≻ 0 and K ∈ Rηu×ηx such that
P 0 ∗ ∗
0 γI ∗ ∗

P (Ã(∆tr) + B̃(∆tr)K) PH P 0
C +DK E 0 γI

 ≻ 0,
(16)

where Ã(∆) = A + L∆Cu and B̃(∆) = B + L∆Du.
This problem is bilinear in the decision variables P and K,
but can be turned into an LMI by performing a congruence
transform on (16) with blkdiag(P−1, I, P−1, I) and applying
the change of variables Q = P−1, F = KP−1. Since ∆tr is
unknown, we are forced to consider a parameter dependent
formulation of (16) by replacing ∆tr with ∆ ∈ ∆com. We
now introduce the LFT

∆̃ ⋆

[
Y11 Y12

Y21 Y22

]
︸ ︷︷ ︸

Y

≜ Y22 + Y21∆̃(I −Y11∆̃)−1Y12, (17)

such that with the choices ∆̃ = L∆ and

Y =


0 CuQ+DuF 0 0 0
0 1

2Q 0 0 0
0 0 γ

2 I 0 0
I AQ+BF H 1

2Q 0
0 CQ+DF E 0 γ

2 I

 , (18)

the parameter dependent LMI of (16) is retrieved as

He(∆̃ ⋆ Y) ≜ ∆̃ ⋆ Y + (∆̃ ⋆ Y)⊤ ≻ 0,∀∆̃ ∈ ∆̃com. (19)

We want to stress that the parameter set ∆̃com does not have
an explicit description due to the definition of ∆ln. It hence
becomes convenient to use the full-block S-procedure of [17]
to be able to develop a general and computationally efficient
framework for data-driven controller synthesis. We employ a
corollary of the full-block S-procedure ([18], Lemma 7) due
its clear implementation in our context. This allows us to
arrive at a sufficient condition for (19) as (21) by introducing

a multiplier matrix, denoted as Φ, which is an unstructured
variable that is required to satisfy[

∆̃⊤

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

]
︸ ︷︷ ︸

Φ

[
∆̃⊤

I

]
⪯ 0,∀∆̃ ∈ ∆̃com, (20)

The controller synthesis can then be formulated as follows:

Lemma 2. If there exist Q ≻ 0, F ∈ Rηu×ηx and a
multiplier Φ such that (20) and (21) hold, then for any
∆ ∈ ∆com

1) AK of (14) with K = FQ−1 is Schur-stable; and
2) ∥G(z)∥∞ < γ.


Q 0 ∗ ∗ ∗
0 γI ∗ ∗ 0

AQ+BF H Q+Φ22 0 ∗
CQ+DF E 0 γI 0
CuQ+DuF 0 Φ12 0 Φ11

 ≻ 0. (21)

Similarly to [13], the full block S-procedure is applied
on L∆ instead of ∆ as it allows us to characterize valid
multipliers for the corresponding condition (20) from bounds
on the uncertainty and perturbation.

Lemma 3. [13] Valid multipliers for (20) can be constructed
as

Φ =

l∑
j=1

[
N⊤

j 0
0 L⊤

j

]⊤
Ψj

[
N⊤

j 0
0 L⊤

j

]
+

[
−Z⊤ M⊤

0 H⊤

]⊤
Π

[
−Z⊤ M⊤

0 H⊤

]
, (22)

where Ψj and Π are multipliers with Ψ11 ≻ 0 and Π11 ≻ 0
which need to satisfy[

∆⊤
j

I

]⊤
Ψj

[
∆⊤

j

I

]
⪯ 0,∀∆j ∈ ∆j , (23)

and

Fp(W ) =

[
W⊤

I

]⊤
Π

[
W⊤

I

]
⪯ 0,∀W ∈ WT , (24)

respectively.

Proof: See [13], Lemma 1− 3.
Here Lj are partitions of the matrix L according to the

structure of ∆, i.e. L =
[
L1 L2 . . . Lℓ

]
with Lj = LYj .

We want to stress that multipliers derived from bounds on
the uncertain parameters directly, as in (23), are required
to retain the structural information on ∆tr (in [13], Section
V.A). This includes the fact that ∆̃ is of the form L∆, so no
knowledge is lost by performing the full-block S-procedure
on ∆̃ instead of ∆ if these multipliers are used.

In [13] it is shown that norm bounds on the uncertainty
as ∆j∆

⊤
j ⪯ δ

2

jI or δ2j ≤ δ
2

j with δj > 0 can be transformed



into valid classes of multipliers for (23) as

Ψj =

{
λ

[
I 0

0 −δjI

] ∣∣∣λ ≥ 0

}
, (25a)

Ψj =

{[
1 0

0 −δj

]
⊗ Λ

∣∣Λ ⪰ 0

}
, (25b)

respectively. For perturbations which satisfy a pointwise-in-
time Euclidean norm bound ∥wk∥2 ≤ w̄ ∀k = 0, . . . , T − 1
for w̄ > 0, a valid class of multipliers for (24) is

Πn =

{[
diagT

i=1(λi) 0

0 −
∑T

i=1 λiw̄
2Iηw

] ∣∣∣λi ≥ 0

}
(26)

Though valid and easy to construct, these multipliers are not
very descriptive for more elaborate perturbation characteri-
zations, such as bounds on the rate-of-variation or bounds
on the individual components of a sample. This is especially
relevant for bounds on the perturbation as some states might
be affected by larger external disturbances, whereas others
are only influenced by small measurement noise.

IV. CONSTRUCTING MULTIPLIERS FROM
KNOWLEDGE ON THE PERTURBATION

In this section, we show how valid multipliers for (24)
can be obtained in which full knowledge of WT is taken
into account. We take inspiration from sum-of-squares
(SOS) programming techniques [19]. These techniques allow
for solving general polynomial optimization problems via
semidefinite programming by rewriting positive definiteness
constraints as SOS constraints [20]. Being SOS is a sufficient
condition for global positive semi definiteness and can be
verified using available software tools such as the SOS
module in Yalmip [21].

A. Sum-of-squares relaxation

By using a sum-of-squares based relaxation approach, (24)
can be guaranteed by ensuring Fp(W ) ⪯ Tp(W ) where
Tp(W ) is a polynomial matrix which is known to be negative
semidefinite for W ∈ WT . For an effective relaxation,
Tp(W ) ought to be constructed from the knowledge on the
perturbation characterization (see e.g. [14],[19]). With this,
(24) can be solved by ensuring that

−Fp(W ) + Tp(W ) is SOS. (27)

B. LMI-based SOS relaxation for specific perturbation
bounds

Although SOS programming is a powerful tool, it can be
computationally expensive. For specific, yet highly relevant,
characterizations of WT , the SOS condition (27) can be
turned into an LMI constraint with much less computational
complexity. The quadratic dependence of (24) on W is
particularly convenient in this sense since common uncer-
tainty descriptions also read as quadratic inequalities. Based
on this, a simple SOS relaxation was introduced in [22]
within the context of robust stability analysis, particularly for
rectangular and ellipsoidal uncertainty regions. Aiming for
a more generic framework, we now introduce perturbation

regions as a set of polynomial functions which characterize
WT as

WT ⊆ {W : β(W )⊤Riβ(W ) ⪯ 0, i = 1, . . . , n}, (28)

where Ri ∈ ST ·ηw+1. The function β(W ) acts as a basis
function and is defined as1

β(W ) ≜

[
vec(W )

1

]
(29)

With this, any quadratic polynomial function in the elements
of W can be described by some choice of Ri. In Section
V, it is shown that this includes norm bounds on (the
elements of) wk as well as vk and thus WT can be described
by an intersection of these regions. As preparation for the
derivation, we introduce the matrix

Λ = blkdiag (IT ⊗ Γ, Iηw) (30)

where
Γ =

[
11×(ηw−1) ⊗

[
1 01×ηw

]
1
]

(31)

such that

Λ · (β(W )⊗ Iηw
) =

[
W⊤

I

]
. (32)

With this, (24) can be rewritten to the condition that

−(β(W )⊗ Iηw
)⊤Λ⊤ΠΛ(β(W )⊗ Iηw

) is SOS. (33)

Remark. In the case of scalar perturbations (ηw = 1),[
W I

]⊤
= β(W ) and thus is already in the preferred form

of (29). As a result, Λ = I in this case.

In accordance with the SOS relaxation approach of Section
IV-A, we will construct Tp(W ) to reflect the knowledge on
WT , using perturbation regions as (28). To this end, we
introduce the following result:

Lemma 4. Let S ∈ ST ·ηw+1
+ be a positive semidefinite matrix

and β⊤(W )Rβ(W ) <= 0. Then

(β(W )⊗ I)⊤(R⊗ S)(β(W )⊗ I) ⪯ 0. (34)

Proof: Using the Kronecker product rules (e.g. [23],
page 118) for transposition and applying the mixed-product
property twice yields

(β(W )⊗ I)⊤(R⊗ S)(β(W )⊗ I)

= (β(W )⊤ ⊗ I⊤)(R⊗ S)(β(W )⊗ I)

= (β(W )⊤ ⊗ I⊤)(Rβ(W ))⊗ S

= (β(W )⊤Rβ(W ))⊗ S. (35)

Denote the eigenvalues of β(W )⊤Rβ(W ) by µi and the
eigenvalues of S by ζj . The eigenvalues of β(W )⊤Rβ(W )⊗
S are then all the products µiζk (e.g. [23], page 234). Since S
is positive semidefinite and β(W )⊤Rβ(W ) ⪯ 0, this implies
(β(W )⊤Rβ(W ))⊗ S ⪯ 0.

1Given an ηw×T matrix W , vec(W ) produces a vector of length ηw ·T
that contains the columns of W , stacked below each other.



Based on this result, we can construct multiple perturba-
tion regions and combine them to relax (33) into

− (β(W )⊗ Iηw
)⊤Λ⊤ΠΛ(β(W )⊗ Iηw

)

+

n∑
i=1

(β(W )⊗ Iηw)
⊤(Ri ⊗ Si)(β(W )⊗ Iηw)

is SOS. (36)

In (36), we find a sufficient LMI condition as

Λ⊤ΠΛ−
n∑

i=1

(Ri ⊗ Si) ⪯ 0. (37)

This brings us to the main result of the paper stated as
follows:

Theorem 5. Consider Problem 1 with prior information
captured by multiplier sets Ψj , j = 1, .., ℓ; and with WT

characterized by n polynomial inequalities of the form in
(28). A state-feedback controller (12) which satisfies the
stability and performance requirements is retrieved as K =
FQ−1 by solving (21), where Φ needs to be obtained as in
Lemma 3 with Ψj ∈ Ψj , 1, . . . , ℓ and Π required to satisfy
(37).

In Section V, some relevant polynomial inequalities of the
form in (28) are presented.

Remark. Computational complexity can be reduced by
choosing Si ∈ Sηw

+ as a diagonal matrix or even as siIηw

with si ≥ 0 at the cost of potential conservatism.

V. DESCRIPTIONS FOR RELEVANT
PERTURBATION REGIONS

In this section, some relevant polynomial inequalities of
the form in (28) are presented as convenient descriptions of
the perturbation signals. By combining these, a more accu-
rate perturbation characterization may be obtained, yielding
potentially less conservative results in synthesis.

A. Regions for norm-bounded perturbations
Consider that W is bounded pointwise-in-time as ∥wk∥2 ≤

w̄, k = 0, . . . , T − 1. This is equivalent to

w2
k,1 + w2

k,2 + · · ·+ w2
k,ηw

− w̄2 ≤ 0, (38)

which can be expressed as the intersection of T perturbation
regions of the form (28) with

Rnorm,k = blkdiag(0k·ηw
, Iηw

, 0(T−k−1)·ηw
,−w̄2). (39)

B. Regions for element-wise bounded perturbations
Consider that each element of W is bounded as |wk,i| ≤

wi, k = 0, . . . , T − 1, i = 1, . . . , ηw. This is equivalent to

w2
k,i − wi

2 ≤ 0, (40)

which can be expressed as the intersection of T · ηw pertur-
bation regions of the form (28) with

Rmag,k,i = blkdiag(0k·ηw
, Ji, 0(T−k−1)·ηw

,−wi
2), (41)

where Ji ∈ Sηw are diagonal matrices with a single 1 at
position (i, i) and zeros elsewhere.

C. Regions for perturbations with norm-bounded rates-of-
variation

Consider that the variation between samples is bounded
as ∥vk∥2 = ∥wk+1 − wk∥2 ≤ v̄, k = 0, . . . , T − 2. This is
equivalent to[

wk

wk+1

]⊤ [
I −I
−I I

]
︸ ︷︷ ︸

Rv

[
wk

wk+1

]
− v̄2 ≤ 0, (42)

which can be expressed as the intersection of (T − 1)
perturbation regions of the form (28) with

Rvar,k = blkdiag(0k·ηw , Rv, 0(T−k−2)·ηw
,−v̄2). (43)

D. Regions for perturbations with element-wise bounded
rates-of-variation

Consider that each element of vk is bounded as |vk,i| ≤
vi, k = 0, . . . , T − 2, i = 1, . . . , ηw. This is equivalent to[

wk,i

wk+1,i

]⊤ [
Ji −Ji
−Ji Ji

]
︸ ︷︷ ︸

Rv,i

[
wk,i

wk+1,i

]
− v̄2i ≤ 0, (44)

and can be expressed as the intersection of (T − 1) · ηw
perturbation regions of the form (28) with

Rvar,k,i = blkdiag(0k·ηw
, Rv,i, 0(T−k−2)·ηw

,−v̄2). (45)

E. Ellipsoidal regions for perturbations with magnitude and
rate bounded elements

Using both regions of Section V-B and V-D requires
(2T −1)ηw perturbation regions, and for each region at least
a scalar decision variable si. Note that multipliers which
satisfy a pointwise-in-time Euclidean norm bound such as
(26) require only T additional decision variables. To reduce
computational complexity, the combined region as shown in
Fig. 1 can be used. This region can be described by a rotated

Fig. 1. Perturbation region for bounded element norm and rate-of-variation.
This region can be described by a single ellipse.

ellipse and as such, only (T − 1)ηw perturbation regions are
required. For this, we make use of the following lemma.



Lemma 6. Assume that |wk,i| ≤ w̄ and |wk+1,i −wk,i| ≤ v̄
with 0 ≤ v̄ ≤ 2w̄ being constant for sequential samples. The
rotated ellipse is parameterized in the (x, y) plane as

(xc(θ) + ys(θ))2

r2x
+

(xs(θ)− yc(θ))2

r2y
≤ 1, (46)

where s(θ) ≜ sin θ, c(θ) ≜ cos θ and (x, y) =
(wk,i, wk+1,i). A region for bounded element norm and
rate-of-variation can be described by a minimally bounding
ellipse of the form (46) with

r2x = 2w̄2,

r2y =
2v̄w̄2

4w̄ − v̄
,

θ =
π

4
.

(47)

Proof: Since w̄ is constant over samples, it is clear
that the rotation angle is θ = arctan(w̄/w̄) = π/4 and the
semi-major radius is rx =

√
w̄2 + w̄2 = w̄

√
2. The semi-

minor radius ry is obtained by enforcing that the ellipse goes
through all corners of the inner rectangle (shown with dotted
lines in Fig. 1). As a result of symmetry, this is the case when
it goes through one of the corners. The upper-right corner
is located at (x, y) = (w̄ − v̄, w̄) at the boundary of the
ellipse. Hence for (46) with equality and substituting θ =
π/4 and rx = w̄

√
2, we can isolate r2y to find its expression

in (47). .
Based on Lemma 6, combined magnitude-bounded ele-

ments and rate-of-variation can be captured by the intersec-
tion of (T −1)ηw perturbation regions of the form (28) with

Rell,k,i = blkdiag(0k·ηw , Rell,i, 0(T−k−2)·ηw
,−1), (48)

for k = 0, . . . , T − 1, i = 1, . . . , ηw and where

Rell,i =

[
1

w̄·v̄
1

2w̄2 − 1
w̄·v̄

1
2w̄2 − 1

w̄·v̄
1

w̄·v̄

]
⊗ Ji. (49)

Remark. To maintain the form of (46), the lower right block
of (48) is normalised. This representation cannot be used
when v̄i = 0.

Remark. Regions for norm-bounded perturbations and
rates-of-variation can be captured by T − 1 perturbation
regions of the form (28) by replacing Ji by I in (49) (and
replacing magnitude bounds by respective norm bounds). The
resulting expression can be substituted for Rv in (43) to
ensure correct dimensions. It is yet unclear if this extension
yields the minimally bounding ellipsoid.

VI. NUMERICAL EXAMPLE

In this section, we showcase the potential of our frame-
work with a numerical example. To this end, we explore the
influence of different perturbation multipliers, constructed
from the regions of Section V, on the closed-loop perfor-
mance. Here we will examine the influence of including
bounds on the rate-of-variation more closely.

Let us consider the academic example from [13]:

xk+1 =

 0 0.5 −0.3
δ1 ∆11 ∆12

0.1 ∆21 ∆22

xk +

 δ1
1
0.5

uk + wk, (50a)

zk =

[
I3

01×3

]
xk +

[
03×1

0.2

]
uk + 04×3wk, (50b)

where ∆ = blkdiag2
j=1(∆j) with a repeated scalar block

∆1 = δ1I2 with true value δ1,tr = 0.2 and a full scalar block

∆2 =

[
∆11 ∆12

∆21 ∆22

]
with ∆2,tr =

[
0.5 −0.2
−0.1 0.3

]
. With the

choice of matrices

A =

 0 0.5 −0.3
0 0 0
0.1 0 0

 , B =

 0
1
0.5

 , H = I,

L =

1 0 0 0
0 1 1 0
0 0 0 1

 , Cu =

[
01×3

I3

]
, Du =

[
1

03×1

]
,

(51)

system (50) can be put in the form of (1). From an open-loop
experiment with T = 20, we collect input-state data from
(50). The data is generated by an input sampled uniformly
as uk ∈ [−1, 1] and a perturbation satisfying wk ∈ {w ∈
R3 | ∥w∥∞ ≤ w̄} and vk ∈ {v ∈ R3 | ∥v∥∞ ≤ v̄ = w̄}
for some w̄ ≥ 0. The choice that v̄ = w̄ corresponds to
a rate-of-variation which is 50% of the maximum possible
variation. We assume that the perturbed input-state data is
available and consider the following scenarios:

1) An Euclidean bound on the perturbation is known as
∥wk∥2 ≤ w̄

√
ηw.

2) The value of w̄ is known.
3) The values of w̄ and v̄ are both known.
4) The true values of δ1 and ∆2 are known, i.e. (50) is

known exactly without any uncertainty.
In scenarios 1− 3 we assume to have access to uncertainty
bounds δ21,tr ≤ 1000 and ∆2,tr∆

⊤
2,tr ⪯ 1000I . Although

these are very conservative bounds, they inform us about
the structure of ∆tr and hence are beneficial. In scenario 1,
we make use of the multiplier class in (26), while scenario
2 uses multipliers constructed from perturbation regions of
Section V-B. Scenario 3 also adds the perturbation regions
from Section V-D.

The optimal H∞-performance levels that can be guaran-
teed for each scenario, are presented in Fig. 2 as a function
of w̄. Solutions are obtained using Yalmip [21] with Mosek
as the LMI solver. Using multipliers constructed from per-
turbation regions (Scenarios 2 and 3) reduces conservatism if
compared to existing methods with bounded Euclidean norm
(Scenario 1). Values for γopt ≥ 100 are deemed futile, and
hence are not shown in the figure.

Since scenario 3 requires significantly more decision vari-
ables than scenario 1, the effectiveness of using ellipsoidal
regions of Section V-E is investigated. The optimal H∞-
performance which can be guaranteed, depending on the rate-
of-variation is presented in Fig. 3. Arbitrarily fast variation
is captured by v̄/w̄ = 2. Using ellipsoidal regions reduces



Fig. 2. Guaranteed closed-loop H∞-norm for the four scenarios with
different perturbation levels.

computational complexity, but this is at the cost of conser-
vatism. This is especially prevalent for high rates of variation.

Fig. 3. Guaranteed closed-loop H∞-norm for different bounds on the
rate-of-variation and w̄ = 0.01.

Remark. In order to vary v̄ while keeping w̄ fixed, a different
data set needs be generated for each instance in Fig. 3.
Results may vary due to randomness in the data generation.

VII. CONCLUDING REMARKS

In this paper, an LMI-based framework is presented by
which knowledge on perturbation samples can be utilized
in data-driven robust controller synthesis. It has been shown
that this framework allows for more flexible descriptions on
bounds than previous research, such as magnitude bounds on
individual elements of the perturbation and rate-of-variation.
With this, we have shown that conservatism in the opti-
mization procedure is reduced. A possible future working
direction is extension to robust data-driven output-feedback

control and developing methods to determine perturbation
bounds experimentally.
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5 SUPPLEMENTARY RESULTS AND ANALYSIS

As discussed in Chapter 4, known bounds on the norm and rate-of-variation of the perturbation
can be incorporated into the controller synthesis. This chapter presents supplementary results
that, due to page limitations, were not included in the paper. This chapter primarily focuses
on considerations when translating theoretical results from Chapter 4 into real-world control
applications.
In Chapter 4, the performance output is defined as a linear combination of the physical states
and the input. However, for real-world control applications like reference tracking, this is not a
suitable performance output. Luckily, similarly to model-based design, state augmentation can
be used to include the error dynamics, and will be presented in Section 5.1. Furthermore, it is
shown how integral action and weighting filters can be included in the controller synthesis. This
enhances the refinement of performance criteria.
In Section 5.2, systems with a large workspace-to-footprint ratio are considered. These systems
may have dynamics that depend heavily on the position. In order to design a single controller
that satisfies a performance criteria for the whole workspace, data needs to be collected from
multiple open-loop experiments at different operating points. Using the synthesis methods as
presented in Chapter 4, one may be forced to make the prevailing assumption that there exists
a common Lyapunov function for all operating points in order to reconstruct the controller after
optimization. In turn, this might yield conservative results. In this section, dilated LMIs are
presented, which remove the necessity of this assumption.
SSection 5.3 presents LMIs for multi-objective controller synthesis, specifically considering
mixed H∞ and generalized H2 optimization. In this way, H∞-optimal controllers can be de-
signed, while respecting peak bounds on the control effort to accommodate for actuator limita-
tions.
Section 5.4 provides considerations that need to be made to design experiments for data-driven
controller synthesis. These considerations are demonstrated in Section 5.5 through a reference
tracking problem involving a double pendulum.

5.1 Controller synthesis for reference tracking

In Chapter 4, uncertain linear time-invariant systems of the form

 xk+1

zk
pk

 =

 A B H L

C D E 0
Cu Du 0 0




xk
uk
wk

qk

 , (5.1a)

qk = ∆trpk, (5.1b)

are considered. Recall all matrices except for the true uncertainty ∆tr are known. From this
framework, and the numerical example in Chapter 4, it should be observed that the matrices
A,B represent partial model knowledge on the unknown system matrices Atr andBtr. However,
these matrices are not limited to partial knowledge on unknown system matrices. By augment-
ing the state vector, prior knowledge on these additional states can be included. As a relevant
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example, weighting filters represent a natural form of prior knowledge, and can be added to the
framework by extending the matrices in (5.1).

5.1.1 Error dynamics

Since reference signals are inputs which cannot be altered by control, they are a part of the
exogenous inputs w in the framework of (5.1). Consider that a position reference r needs to be
tracked. To this end, define Cp ∈ Rηr×ηx as a matrix which which picks the position entries of x,
such that the positional error can be defined as

ek = rk − Cpxk. (5.2)

The positional error can then be included in the framework via state augmentation as


xk+1

ek
zk
pk

 =


A 0 B H 0 L

−Cp 0 0 0 I 0

C Ce D E Er 0
Cu 0 Du 0 0 0




xk
ek−1

uk
wk

rk
qk

 , (5.3a)

qk = ∆trpk, (5.3b)

where Ce andEr can be used to include the newly introduced signals e and r in the performance
objective. What should be observed is that (5.3) is again of the form (5.1) where all matrices
are known except the true uncertainty ∆tr, hence the same tools can be used for controller
synthesis.

5.1.2 Including integral action

In (5.3), the state vector is augmented by the error signal. In this form, the error signal can be
chosen as a performance output, such that e.g. H∞-optimal controllers are synthesized which
aim to minimize the positional error. In certain tracking problems, it is desired to have zero
steady-state error, which can be obtained by integral action. To this end, introduce the integral
of the error state as ξ, whose evolution is described by

ξk+1 = ξk + ek = ξk + rk − Cpxk. (5.4)

This state can be included in the framework via state augmentation as


xk+1

ξk+1

zk
pk

 =


A 0 B H 0 L

−Cp I 0 0 I 0

C Cξ D E Er 0
Cu 0 Du 0 0 0




xk
ξk
uk
wk

rk
qk

 , (5.5a)

qk = ∆trpk. (5.5b)

To obtain controllers with integral action, one needs to choose the integral of the error state as
one of the performance outputs by proper choice of Cξ.
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5.1.3 Including weighting filters

In real-world control applications, the direct minimization of the H∞-norm is rarely practical.
Instead, it is common to incorporate weighting filters to shape the frequency response of the
closed loop system. As a relevant case, weighting filters on the control effort can be used to
reduce high frequency control effort. This specific scenario can be realised with a high-pass
filter on the input. Suppose its state evolution is described by

ζk+1 = Afζk +Bfuk, (5.6)

then the filter can be included in the framework as


xk+1

ζk+1

ξk+1

zk
pk

 =


A 0 0 B H 0 L
0 Af 0 Bf 0 0 0

−Cp 0 I 0 0 I 0

C Cf Ce D E Er 0
Cu 0 0 Du 0 0 0





xk
ζk
ξk
uk
wk

rk
qk


(5.7a)

qk = ∆trpk. (5.7b)

Here, Cf can be used to include the newly introduced state ζk in the performance objective.
With proper selection of the performance channel, a trade-off between small tracking errors
and control inputs can be realized.

5.2 Dilated LMIs for data-driven control

Using the dilation technique, as suggested by [42], a decoupling between the Lyapunov and
system matrices can be realised. This decoupling is accomplished through the introduction
of an auxiliary matrix variable, taking on the multiplication with the state-space matrices. The
usage of dilated LMIs has been demonstrated to be beneficial for reducing conservatism in
robust stability and performance analysis [43, 44], multi-objective controller synthesis [45, 46],
as well as parameter-dependent controller synthesis [47].
To illustrate, consider a system with position dependent dynamics for which a single state feed-
back controller needs to be designed. To ensure good performance over the whole workspace,
data is obtained from n open-loop experiments at different operating points. Each of these
experiments will generate different data that is affected by a different perturbation realization.
Furthermore, one may have prior knowledge on this perturbation and on the uncertainty, which
differ from experiment to experiment. From these, valid multipliers Φi, i = 1, . . . , n are con-
structed for each experiment.
With this, Lemma 2 from Chapter 4 can be utilized to find an H∞-optimal controller by finding
Q ≻ 0, F ∈ Rηu×ηx such that

Q 0 ∗ ∗ ∗
0 γI ∗ ∗ 0

AQ+BF H Q+Φi
22 0 ∗

CQ+DF E 0 γI 0
CuQ+DuF 0 Φi

12 0 Φi
11

 ≻ 0, i = 1, . . . , n. (5.8)

The controller is then reconstructed as

K = FQ−1. (5.9)
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What should be observed is that a common Lyapunov matrix Q is used for each experiment,
which is required to reconstruct a single controller K. Therefore, this method is potentially
conservative. A dilated form of (5.8) (using the methods of A.2) can be constructed as

Qi 0 ∗ ∗ ∗
0 γI ∗ ∗ 0

AG+BN H G+G⊤ −Qi +Φi
22 0 ∗

CG+DN E 0 γI 0
CuG+DuN 0 Φi

12 0 Φi
11

 ≻ 0, i = 1, . . . , n, (5.10)

where Q′
is are different Lyapunov matrices for each experiment. The decision variable G ∈

Rηx×ηx is a slack variable, which is an unstructured matrix, and N = KG is a decision variable
that takes the function of F in (5.8). Hence, the controller is reconstructed as

K = NG−1. (5.11)

It should be observed that (5.10) reduces to (5.8) when G = Q and Qi = Q, i = 1, . . . , n.
Since (5.10) allows for different Lyapunov matrices per experiment, this approach may be less
conservative than using (5.8).

Remark. Note that this approach facilitates the design of controllers which yield H∞-optimal
performance around specific operating points, and only ensures stability around others. This
can be achieved by changing the LMI constraints for certain operating points to those for stability.
Additionally, by making γ operating-point-dependent, the H∞-performance over the workspace
can be ”shaped” by minimizing the objective function

∑n
i=1 αiγi, with

∑n
i=1 αi = 1, where each

αi ∈ R acts as a weight for that specific operating point. Here, larger weights will be assigned
to operating points in which the tracking error needs to be kept low.

5.3 Mixed H∞ and generalized H2 optimization

The H∞-performance guarantees bounds on the worst-case L2-gain, and thus the worst-case
energy gain from w to z. However, in certain cases it is much preferred to ensure that the
peak value of z does not exceed a certain value for any finite energy signal w. A particularly
relevant case is the effect from w on the control effort u, which has a peak bound due to actuator
limitations. To this end, the H2-norm of a discrete-time system is defined as follows:

Definition 19 (e.g. [48]). TheH2-norm of an asymptotically stable systemΣwith corresponding
transfer function T , denoted by ∥T∥2, is defined as

∥T2∥2 =

√
1

2π

∫ π

−π
trace|T (ejω)⊤T (ejω)|dω. (5.12)

In the case that ∥T2∥2 < ∞, then for any input w with
∑∞

k=0w
⊤
k wk < ∞, the corresponding

output vk has a finite amplitude [12], i.e.

∥vk∥∞ =
√
sup
k≥0

v⊤k vk < ∞. (5.13)

With this, the so-called generalizedH2 norm provides a suitable characterization of the problem
described at the start of this section. It offers a quantitative measure for the L2 → L∞-gain1.
The generalized H2 norm is defined as follows:

1The generalized H2 norm squared is equal to the energy to squared-peak gain, which is the L2 → L∞-gain
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Definition 20 (e.g. [12], page 78). The generalizedH2 norm of a transfer function T (z), denoted
by ∥T ∥2→∞, is defined as

∥T ∥2→∞ = sup
w∈L2,w ̸=0

∥z∥∞
∥w∥2

. (5.14)

From this definition, it can be observed that T (z) needs to be Lyapunov stable in order for its
generalized H2 norm to be finite.
For mixed H∞ and generalized H2 optimization, dilated LMIs are presented in the technical
notes of [49]. It is shown that a single LMI can be added to the H∞-optimal problem (Lemma
1 in Chapter 4) to turn this into a mixed H∞ and generalized H2 optimization problem. To this
end, introduce a second performance output of signals whose peak bound should be regulated
as

vk = Uxk + V uk. (5.15)

The state feedback controller synthesis using dilated LMIs for mixed H∞ and generalized H2

optimization then reads as follows:

Lemma 13. If there exist Q ≻ 0, G ∈ Rηx×ηx , N ∈ Rηu×ηx such that
Q 0 ∗ ∗
0 γI ∗ ∗

AG+BN H G+G⊤ −Q 0
CG+DN E 0 γI

 ≻ 0, (5.16)

[
Q ∗

UG+ V N σ2I

]
≻ 0, (5.17)

then the closed-loop system is stable, has H∞ performance as

∥z∥22 < γ2∥w∥22, (5.18)

and generalized H2 performance as

∥v∥2∞ < γ · σ2∥w∥22, (5.19)

via the controller uk = Kxk, with controller gain matrix computed as K = NG−1.

A proof for this specific form is presented in A.2, which follow the the technical notes of [16] and
[49] closely.

Remark. In the context of limiting peak values of the control effort, one may set a desired value
for the generalized H2-performance prior to the optimization. To this end, the value of σ is fixed
and the remaining parameters are determined to minimize γ. Therefore, the optimum value of
γ will change depending on the choice of σ. Using the LMIs as presented in Lemma 13, this
will indirectly affect the guaranteed generalized H2-performance, which is defined as γ · σ2. In
order to obtain the desired generalizedH2-performance, one should be prepared to to iteratively
adjust σ to regulate the product γ · σ2.2

The data-driven version of Lemma 5.3 is stated as follows:

Lemma 14. If there exist Q ≻ 0, G ∈ Rηx×ηx , N ∈ Rηu×ηx and a multiplier Φ satisfying[
∆̃⊤

I

]⊤ [
Φ11 Φ12

Φ⊤
12 Φ22

]
︸ ︷︷ ︸

Φ

[
∆̃⊤

I

]
⪯ 0, ∀∆̃ ∈ ∆̃com, (5.20)

2The technical notes of [49] present LMIs which decouple γ and σ, and hence they are more convenient to use if
the generalized H2-performance needs to be regulated precisely. These LMIs are not used in this chapter to keep
consistency with Chapter 4.
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such that 
Q 0 ∗ ∗ ∗
0 γI ∗ ∗ 0

AG+BN H G+G⊤ −Q+Φ22 0 ∗
CG+DN E 0 γI 0
CuG+DuN 0 Φ12 0 Φ11

 ≻ 0, (5.21)

[
Q ∗

UG+ V N σ2I

]
≻ 0, (5.22)

then the closed-loop system is stable, has H∞ performance as

∥z∥22 < γ2∥w∥22, (5.23)

and generalized H2 performance as

∥v∥2∞ < γ · σ2∥w∥22, (5.24)

via the controller uk = Kxk, where the controller gain matrix computed as K = NG−1.

The proof follows from the observation that only the matrices A and B are dependent on ∆,
hence the LMI in (5.22) remains unchanged. The dilated LMI forH∞-performance is equivalent
to (5.10) evaluated at a single operating point. The condition on the multiplier follows from (20)
in Chapter 4.

5.4 Designing experiments for data-driven control

A crucial factor for real-world application of the methods described in this thesis, is that bounds
on the norm and rate-of-variation should be determined experimentally. This section aims to
provide some of the choices and trade-offs that need to be made to design experiments, and
how one could systematically determine perturbation bounds.

5.4.1 Constructing input signals for experiments

A handful of aspects are important when constructing the input signal. Firstly, the input signal
should be persistently exciting of a sufficiently high order such that data is obtained which is
informative for controller design. The theoretical minimal order of persistent excitation is ηx + 1
and hence can be determined only from a (correct) assumption on the number of states of the
system.

Remark. In simulated examples on data-driven control from the literature, the input signal is
often sampled from a uniform distribution (e.g. [4, 6, 23]), since this signal is guaranteed to be
persistently exciting. However, such signals do not allow one to set the order of persistent exci-
tation. For a more systematic approach one could generate pseudorandom binary sequences
(PRBS), in which this order can be set by the designer [50].

Secondly, one should carefully establish a proper signal amplitude. While a higher amplitude will
increase the signal-to-noise ratio with respect to measurement noise and external disturbances,
it might also increase the effect of nonlinearities of the system in the data. Since noise and the
effect of nonlinear terms are both considered as perturbations in the controller synthesis, neither
of them should be considerably high.
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5.4.2 Acquiring data from the system

The followup step is to capture data from the open-loop system using the constructed input sig-
nal. Since there is a certain component of randomness involved in the construction of the input
signal, one should ensure that the system remains in a small region surrounding the operating
point to minimize the effect of nonlinear terms. If this is not the case, the signal amplitude should
be decreased or a new input signal should be generated.
The length of the experiment introduces a trade-off between conservatism reduction and com-
putational complexity. Extending the experiment might reduce the set of systems consistent with
the data and hence result in less conservative results from the controller synthesis. However,
since perturbation regions are constructed per sample, this increases computational complexity.
In order to synthesize full state feedback controllers from the data using methods described in
this thesis, full state measurements are required. Therefore, all states ought to be measured or
need to be accurately reconstructed from the available measurements.

5.4.3 Construct prior knowledge on the system

While the goal of data-driven control is to avoid the need for refined system identification, some
prior knowledge on the underlying system might be available. This could be in the form of
estimated parameter values or knowledge about the plant structure. Especially plant structure
might be straightforward to determine as the equations of motion of many mechanical systems
can be described in the generic form

τ = M(q)q̈ + C(q̇, q)q̇ +Kq. (5.25)

Here, M , C, and K are the mass, damping, and stiffness matrices, τ is the external input and
q represents the generalized coordinates. Equations of motion of this form can be converted to
a state space model as

ẋ =

[
0 I

−M−1(q)K −M−1(q)C(q̇, q)

]
︸ ︷︷ ︸

Ac

x+

[
0

M−1(q)

]
︸ ︷︷ ︸

Bc

u, (5.26)

where x =
[
q⊤ q̇⊤

]⊤. The top row of (5.26) is known for any linearization of the plant, even
when no prior knowledge on the uncertain parameters is available. The same holds for any
Euler discretization of such as model, as the top row of the discretized state-space matrices

A = I + τs ·Ac, (5.27)
B = τs ·Bc, (5.28)

with sampling time τs is not affected. For other discretization methods, such as Tustin or zero-
order-hold, the top row is approximately known and can be captured by (5.27) together with a
small uncertainty.
Next to this, the designer should decide on the inclusion of prior knowledge through integral
action and weighting filters as presented in Sections 5.1.2 and 5.1.3.

5.5 Reference tracking of a double pendulum system

In this section, the data-driven controller synthesis methods are tested by applying them to a
simulated ideal double pendulum model. Here, the goal is to design a mixed H∞ and general-
ized H2-optimal state feedback controller from perturbed data.
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5.5.1 System model

The ideal double pendulum, shown in Figure 5.1, consists of two point masses connected by
two weightless rotating rigid beams. The beams are connected to each other, and to the fixed
world, by ideal springs and dampers. The double pendulum will operate in the horizontal plane.
Consequently, the influence of gravity can be neglected.

Figure 5.1: Double pendulum.

The system parameters are defined as follows: Li are the lengths of the arms, mi represent
the weight of a point mass, θi is the (relative) angular displacement of an arm, and ki and
di represent the stiffness and damping of the joint corresponding to the degree of freedom θi
respectively. The double pendulum is in its nominal position when it is fully vertical. Table 5.1
shows the values of the parameters used in the simulations.

Table 5.1: Values for the simulation parameters of the double pendulum

Parameter Value
τs 0.005 s
L1 0.4 m
L2 0.3 m
m1 0.5 kg
m2 0.6 kg
k1 4.0 N rad−1

k2 3.5 N rad−1

d1 0.2 Ns rad−1

d2 0.1 Ns rad−1

The equations of motion for this system are derived in [51] in the form of (5.25) with generalized
coordinates and its derivatives

q =

[
θ1
θ2

]
, q̇ =

[
θ̇1
θ̇2

]
, q̈ =

[
θ̈1
θ̈2,

]
(5.29)

and the matrices

M(q) =

[
(m1 +m2)L

2
1 +m2L

2
2 + 2m2L1L2 cos (θ2) m2L

2
2 +m2L1L2 cos (θ2)

m2L
2
2 +m2L1L2 cos (θ2) m2L

2
2

]
, (5.30a)

C(q, q̇) =

[
−2m2L1L2 sin (θ2)θ̇2 + d1 −m2L1L2 sin (θ2)θ̇2

m2L1L2 sin (θ2)θ̇1 d2

]
, (5.30b)

K =

[
k1 0
0 k2

]
. (5.30c)
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The input is defined as

τ =

[
τ1
τ2

]
, (5.31)

and acts on the two joints of the double pendulum.
Obviously, the double pendulum is a nonlinear system and hence its trajectories may not be
described by a standard LTI model. Inspired by [31], linearization around an operating point is
considered, where the nonlinear remainder is treated as a perturbation in the controller synthe-
sis. If the experiment is carried out such that the double pendulum remains sufficiently close
to this operating point, sensible results may be obtained. Specifically, guarantees on the H∞
and generalized H2 norm of the linearized system interconnected with this controller can be
computed. In return, the controller might yield good tracking performance when interconnected
with the nonlinear system, provided that the reference stays sufficiently close to this operating
point.
To this end, the model is linearized around its nominal position using a first-order Taylor approx-
imation, and subsequently converted to a continuous time state-space model via (5.26). This
procedure is followed in [51] and yields the state-space matrices

Ac =


0 0 1 0
0 0 0 1

− k1
m1L2

1

(L1+L2)k2
m1L2

1L2
− d1

m1L2
1

(L1+L2)d2
m1L2

1L2

(L1+L2)k1
m1L2

1L2
− k2

m2L2
2
− (L1+L2)2k2

m1L2
1L

2
2

(L1+L2)d1
m1L2

1L2
− d2

m2L2
2
− (L1+L2)2d2

m1L2
1L

2
2

 , (5.32a)

Bc =


0 0
0 0
1

m1L2
1

− L1+L2

m1L2
1L2

− L1+L2

m1L2
1L2

1
m2L2

2
+ (L1+L2)2

m1L2
1L

2
2

 . (5.32b)

Themodel is discretized using a zero-order hold with sampling time τs and yields the true system
matrices Atr and Btr of the linearized model.
In order to obtain sufficient tracking performance, integral action is included in the controller
synthesis. Therefore, a modified framework of (5.5) will be used to describe the linearized
uncertain double pendulum system as


xk+1

ξk+1

zk
vk
pk

 =


Â 0 B̂ H 0 L

−Cp I 0 0 I 0

C Cξ D E Er 0
U 0 V 0 0 0
Cu 0 Du 0 0 0





xk
ξk
uk
wk

rk
qk

 (5.33a)

qk = ∆trpk, (5.33b)

which includes the second performance channel vk. Here, Â and B̂ represent a generic form
of the system matrices, which may differ depending on the available prior knowledge.
The perturbation is assumed to affect the entire state space, which is captured by H = I.
Since the tracking of a position reference is considered, the matrix Cp should pick the angular
deflection states of x, which is achieved by Cp =

[
I 0

]
.

The performance output zk describes the signals that should beminimized in aH∞ sense, which
in this case is the integral of the error, hence Cξ = I and D = E = Er = 0. The performance
output vk describes the signals that should be minimized in a generalized H2 sense, which in
this case is the control input, hence V = I and U = 0.
The goal of the controller synthesis is for the second point mass to track the smooth profile
shown in Figure 5.2, which has a duration of 20s.
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Figure 5.2: Reference profile to be tracked.

This profile is translated to references for the joint angles using the inverse kinematic relation-
ships

r1(x, y) = tan−1

(
x

y

)
− sin−1(L2 sin (r2(x, y)))√

x2 + y2
, (5.34a)

r2(x, y) = cos−1

(
x2 + y2 − L2

1 − L2
2

2L1L2

)
. (5.34b)

5.5.2 Model-based controller synthesis

In order to establish a limit on the achievable H∞ and generalized H2-performance, a model-
based controller synthesis is carried out. Consequently, the system matrices Atr and Btr are
exactly known and hence ∆tr = 0. This case is captured by (5.33) with Â = Atr, B̂ = Btr, and
with L, Cu, Du being zero matrices of appropriate dimensions.
With this, Lemma 13 is used to generate state feedback controllers for this system. Solutions are
obtained using Yalmip [52] with Mosek as the LMI solver. The guaranteed H∞ and generalized
H2-performance of the closed-loop system for different values of σ are presented in Figure 5.3.

(a) Guaranteed H∞-norm. (b) Guaranteed generalized H2-norm.

Figure 5.3: Guaranteed H∞ (a) and generalized H2-performance (b) of the closed-loop as
function of σ. The controller is synthesized with exact model knowledge.
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From Figure 5.3, two observations emerge. As expected, larger values of σ enhance the H∞-
performance at the expense of the generalized H2-performance. The more unexpected obser-
vation are the large values for the guaranteed performance indices, which are of several order
of magnitude. This can be explained by the order of the sequence in which new states are
introduced and the discretization of the linearized model. By introducing the integral of the error
after discretization, the performance channel zk contains the state corresponding to this error,
but is not representative of the integral of the error itself. In order to get more intuitive values
for the guaranteed performance indices, the integral of the error should be included as a state
before discretization as

ξ̇ = r − Cpx. (5.35)

The discrete-time state evolution can then be approximated via Euler discretization as

ξk+1 = ξk + (rk − Cpxk)τs, (5.36)

which is a better approximation of the integral of the error. In a similar way, including the per-
turbation signal w in the continuous time as

ẋ = Acx+Bcu+Hcw, (5.37)

with Hc = I before discretization shows that in discrete-time the Euler approximation of H =
τsI fits better. With these changes, more intuitive values for the performance guarantees are
obtained, as shown in Figure 5.4. It is important to emphasize that these choices do not affect
the actual tracking performance, just the calculation and representation of the performance
indices.

(a) Guaranteed H∞-norm. (b) Guaranteed generalized H2-norm.

Figure 5.4: More intuitive values for the guaranteed H∞ (a) and generalized H2-performance
(b) are obtained by introducing new states before discretization.

In this framework, a proper choice of σ can be determined to balance tracking performance and
guaranteed bounds on peaks in the control effort. This can be done systematically by starting
with a low value for σ and iteratively increasing it for better tracking performance. This requires
evaluation the tracking performance and corresponding control effort for multiple controllers.
From Figure 5.4b it can be observed that the guaranteed generalized H2-performance grows
quickly with σ and hence the guaranteed peak bound on the control effort is not that meaningful
for larger values of σ. However, one can still use these larger values for systems which need
to track a finite number of known references, by assessing the required control effort for each
reference signal in separate experiments.

45



5.5.3 Data-driven synthesis with perturbation-free data

Data-driven controller synthesis from perturbation-free data is considered as an initial step to-
wards synthesis with perturbations. In this way, it can be shown that this problem is equivalent
to the model-based synthesis when the input signal is constructed with regards to Willems’ fun-
damental lemma. To this end, consider that the system matrices Atr and Btr are fully unknown,
so ∆tr =

[
Atr Btr

]
. This case is captured by (5.33) with

Â = 0, B̂ = 0, L = I, Cu =
[
I 0

]⊤
, Du =

[
0 I

]⊤
. (5.38)

The performance- and perturbation channels are defined as in Section 5.5.2.
In accordance with Willems’ fundamental lemma (Lemma 11) with d = 1, data from an open-
loop experiment generated by an uniformly sampled input as uk ∈ [−1, 1] is acquired for T =
(ηu + 1)ηx + ηu = 14 samples.
Lemma 14 is applied to synthesize controllers, here σ = 30 is chosen. The multiplier matrix Φ
is constructed according to Lemma 3 of Chapter 4 as

Φ =

[
−Z⊤ M⊤

0 H⊤

]⊤
Π

[
−Z⊤ M⊤

0 H⊤

]
, (5.39)

with a multiplier Π from learnt data only. The multiplier Π is constructed following Theorem 5 of
Chapter 4 via the LMI

Λ⊤ΠΛ−
n∑

i=1

(Ri ⊗ Si) ⪯ 0, (5.40)

where Ri are regions for norm-bounded perturbations with w̄ = 0.
Under these conditions, it is expected that the data-driven and model-based yield the same
performance. This is because the condition on the multiplier from learnt data[

W⊤

I

]⊤ [
Π11 Π12

Π⊤
12 Π22

] [
W⊤

I

]
⪯ 0, ∀W ∈ WT , (5.41)

is satisfied for Π11 ⪰ 0,Π12 = 0 and Π22 = 0 when W = 0. Consequently, the data-dependent
LMI (5.21) in Lemma 14 reduces to its model-based equivalent in Lemma 13.
With these choices, the controller synthesis verifies that the problem is feasible with γopt =
0.4450 and a corresponding controller gain matrix is found as

K =

[
−12.2482 −3.6930 −2.6649 −0.9088 38.4254 8.1850
−4.7048 −2.4512 −1.0880 −0.4235 11.2376 14.6357

]
, (5.42)

which yields to a closed-loop H∞-norm of γCL = 0.4316. This is slightly larger than the model-
based case, which yields γopt = 0.4445 and γCL = 0.4311 via the controller gain matrix

K =

[
−12.0319 −4.5866 −2.6929 −0.8869 38.0700 9.9762
−5.1697 −0.1501 −1.0065 −0.4755 11.9608 10.0027

]
. (5.43)

This is likely due to numerical challenges in the optimization process, which terminates before
achieving an even more precise solution for γopt.
The tracking performance is evaluated using the closed-loop simulation setup presented in Fig-
ure 5.5.
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Figure 5.5: Simulink model for reference tracking.

The obtained tracking performance using the controllers as in (5.42) and (5.43) are presented
in Figure 5.6. Here, it can be seen that both methods yield approximately the same tracking
performance and that the control effort is smooth and does not have large peaks.

(a) Controller synthesized with exact model knowledge.

(b) Controller synthesized from perturbation-free data.

Figure 5.6: Tracking performance in the model-based case (a) and the data-driven case with
perturbation-free data (b) are approximately equivalent.
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5.5.4 Data-driven synthesis with perturbed data

In this section, data-driven controller synthesis from perturbed data is considered. The perturba-
tion is considered to be a measurement noise acting on all the states. For illustrative purposes,
the data is captured from the discretized linearized system. The same matrices as in Section
5.5.3 are used to describe the controller synthesis framework. This time, the data is captured
following the state evolution

xk+1 = Atrxk +Btruk +Hwk, (5.44)

with a uniformly sampled input as uk ∈ [−1, 1] and a uniformly sampled perturbation as wk ∈[
−5 · 10−3, 5 · 10−3

]
.

With the data captured, Lemma 14 is applied to synthesize controllers, here σ = 30 is chosen
as well. The multiplier Φ is constructed following Lemma 3 of Chapter 4 with a multiplier Π from
learnt data only. In contrast to the case of perturbation-free data as in Section 5.5.3, the proper
perturbation regions and their parameters are not clearly defined.
In this case, regions for norm-bounded perturbations and regions for perturbations with norm-
bounded rates-of-variation are considered. These regions are described by the upper bound
of norm-bound as w̄ and the upper bound on the rate-of-variation as v̄. Since their true values
cannot be determined from the experiment itself, they act as tuning parameters in the controller
synthesis. A general approach is outlined as follows:

1. Start with a high value for w̄ and let v̄ = 2w̄, which corresponds to an arbitrary variation.

2. Synthesise a controller for these bounds and denote the guaranteed H∞-performance
from the optimization as γopt.

3. Evaluate the resulting closed-loop H∞-performance for this controller as γCL.

4. If γCL < γopt, decrease w̄ and repeat until this statement is false.

5. Use the lowest value of w̄ for which γCL < γopt, and repeat the process by decreasing v̄
until the statement is false.

As an alternative approach, one could swap the order in which the parameters are tuned, so
by first tuning v̄ instead of w̄. If there is reason to think that the perturbation signal is (almost)
constant, one could start with v̄ = 0 (which describes a constant perturbation) and iteratively
increase its value.
Following the outlined procedure, varying w̄ yields the results presented in Figure 5.7.

(a) w̄ is close to its true value. (b) With larger values for w̄.

Figure 5.7: Guaranteed H∞-performance for perturbed data with true norm bound w̄tr.
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From Figure 5.7, three distinct regions can be observed

1. The assumed norm bound of the perturbation is below the true value, i.e. w̄ < w̄tr. In this
scenario, the true system is not an element of the set of consistent systems. Consequently,
it cannot be guaranteed that γopt > γCL, or even that γCL is finite, as seen in Figure 5.7a.

2. The assumed perturbation norm bound is larger but close to the true value. For these
values, the best closed-loop performance can be guaranteed.

3. The assumed perturbation bound is much larger than the true value. The set of systems
consistent with the data is too large to generate controllers that guarantee a sufficient
tracking performance.

For even larger values of the assumed perturbation bound, the problemmay become infeasible.
From Figure 5.7a, the true perturbation level can be estimated. Subsequently, a bound on the
rate-of-variation is introduced and decreased from v̄ = 2w̄ to 0. The effect on the resulting
performance is presented in Figure 5.8a

(a) w̄ = w̄tr. (b) w̄ = 0.0361

Figure 5.8: Including bounds on the rate-of-variation improves the guaranteed H∞-
performance.

Again, it can be seen that it cannot be guaranteed that γopt > γCL when v̄ < v̄tr, as the true
system is not an element of the set of systems consistent with the data. In this case, the inclu-
sion of bounds on the rate-of-variation yield a minimal performance increase, since model-like
performance could already be achieved by the inclusion of norm bounds only. Repeating the
same procedure with w̄ = 0.0361 shows that the inclusion of the bound on the rate-of-variation
can improve the performance significantly, as can be seen in Figure 5.8b.
Comparing Figure 5.7a to Figure 5.8b, it can be seen that good performance can be achieved
by introducing a bound on the rate-of-variation, even when the bound on the norm is not fully
tuned, as performance improves more rapidly with this choice.
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(a) With w̄ = 0.0361 and v̄ = 2w̄ (arbitrary rate-of-variation).

(b) With w̄ = 0.0361 and v̄ = v̄tr.

Figure 5.9: The tracking performance using a sub-optimal norm bound (a) can be improved by
introducing a bound on the rate-of-variation (b).

In Figure 5.9 it can be seen that the tracking performance, although improved significantly, might
still not fulfill the requirements on the tracking accuracy. It should be noted that only 14 samples
are being used in the optimization. Increasing the number of samples decreases the amount
of systems that are consistent with the data, and hence might decrease conservatism in the
optimization. To illustrate, the controller synthesis used to generate Figure 5.7a is repeated for
T = 30 samples. What should be observed is that good performance can be obtained without
needing to tune the norm bound as precisely as for the case with 14 samples. However, this is
at the expense of computational complexity.
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Figure 5.10: Increasing the number of samples reduces conservatism.

5.5.5 Synthesis with data from the nonlinear system with prior knowledge

In Section 5.5.4, the data is collected from a linearized system that is discretized using a zero-
order hold. For this reason, the entries in Atr and Btr cannot be exactly known. As presented in
Section 5.4.3, the Euler discretization can provide approximate values for the top two rows of
Atr and Btr.
This case is captured using the approximate system dynamics

Â =


1 0 τs 0
0 0 0 τs
0 0 0 0
0 0 0 0

 , B̂ =


0 0
0 0

0 0
0 0

 , (5.45)

and an uncertainty description as

∆tr = blkdiag4j=1(∆j). (5.46)

Here, each ∆j is a full block uncertainty corresponding to one of the four blocks in (5.45), i.e.

A = Â+

[
∆1

∆2

]
, B = B̂ +

[
∆3

∆4

]
. (5.47)

This can be put in the framework of (5.33) with

L =
[
I4 I4

]
, Cu =

[
I4 I4 04

]⊤
, Du =

[
02×8 I2 I2

]⊤
. (5.48)

The performance- and perturbation channels are defined as in Sections 5.5.2-5.5.4.
Again, Lemma 14 is applied to synthesize controllers, with σ = 30. In this case the multiplier
matrix Φ is constructed according to Lemma 3 of Chapter 4, including the multiplier on the prior
knowledge as

Φ =

4∑
j=1

[
N⊤

j 0

0 L⊤
j

]⊤
Ψj

[
N⊤

j 0

0 L⊤
j

]
+

[
−Z⊤ M⊤

0 H⊤

]⊤
Π

[
−Z⊤ M⊤

0 H⊤

]
, (5.49)

where Ψj and Π are multipliers with Ψ11 ≻ 0 and Π11 ≻ 0 which need to satisfy[
∆⊤

j

I

]⊤
Ψj

[
∆⊤

j

I

]
⪯ 0, ∀∆j ∈ ∆j , (5.50)
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and [
W⊤

I

]⊤
Π

[
W⊤

I

]
⪯ 0, ∀W ∈ W T , (5.51)

respectively. The multipliers Ψj from the uncertainty description are constructed from norm
bounds on the corresponding uncertainty block. The uncertainty blocks ∆1 and ∆3 describe
the numerical differences between discretization methods (zero-order hold and Euler), and as
such can are captured by the bounds ∆1,tr∆

⊤
1,tr ⪯ I and ∆3,tr∆

⊤
3,tr ⪯ I. The uncertainty blocks

∆2 and ∆4 correspond to the unknown entries of Atr and Btr related to the parameters of the
system. These parameters are not (approximately) known, and hence are captured by themuch
more conservative bounds ∆2,tr∆

⊤
2,tr ⪯ 1000I and ∆4,tr∆

⊤
4,tr ⪯ 1000I.

The data is collected from the nonlinear system using the Simulink presented in Figure 5.11.
Here, the continuous-time dynamics are described by

q̈ = M(q)−1(τ − C(q̇, q)q̇ −Kq). (5.52)

Figure 5.11: Simulink model to capture data from the nonlinear system.

In order to ensure that the system remains in a small region surrounding the operating point,
the input signal is sampled uniformly as uk ∈ [−0.05, 0.05].
With the data captured, the synthesis procedure as described in Section 5.5.4 is followed. Its
results are presented in Figure 5.12.

Figure 5.12: Synthesis from data of the nonlinear system.

From Figure 5.12, it can be seen that good performance can also be guaranteed in case the
perturbation is coming from nonlinear terms of the system. Again, including bounds on the
rate-of-variation can enhance the performance, as shown in Figure 5.13.
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Figure 5.13: Including bounds on the rate-of-variation can improve the performance. Here, w̄
corresponds to the largest value in Figure 5.12.

5.5.6 Proneness to numerical issues

Although Sections 5.5.2-5.4.3 show promising results, it should be noted that this is partly due
to careful selection of the simulation parameters. With a different selection of parameters, the
results from the optimization are rather inconsistent. To illustrate, the data-driven controller syn-
thesis with perturbation-free data of Section 5.5.3 is repeated for different sampling times. A
smaller sampling time is preferred in the optimization, as the discrepancy in the systemmatrices
caused by different discretization methods decreases, which allows for tighter bounds on the
uncertainty blocks when introducing prior knowledge. Furthermore, small sampling times for
controllers are desirable to quickly and accurately respond to dynamic system changes, ensur-
ing effective real-time control and stability. The result of this synthesis is presented in Figure
5.14.

Figure 5.14: The optimization fails for smaller sampling times.

From Figure 5.14, it should be observed that the synthesis fails for lower sampling times. The
value of the guaranteed H∞-performance is significantly less than the corresponding closed-
loop performance, i.e. γopt < γCL. Moreover, there is a significant discrepancy between the
model-based and data-driven syntheses. This seems to be caused by numerical issues, in the
sense that the variation between data samples is too little to identify the underlying system for
appropriate controller synthesis. One could say that the system is not sufficiently excited for
good controller synthesis even though the input signal is persistently exciting. Indeed, scaling
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the data matrices U,X and X+ with a constant value before the optimization seems to alleviate
some of these issues. From Figure 5.15 it can be seen that the model-based and data-driven
solutions are also equivalent for smaller sampling times as compared to Figure 5.14.

Figure 5.15: Data is scaled by a factor 100.

Unfortunately, this approach cannot be used for the controller synthesis problems in Sections
5.5.4-5.5.5 as this implies that the matrix containing the perturbation samples should be scaled
as well. Accordingly, the assumed bounds on the norm and rate-of-variation should be scaled
to accommodate for this scaling. Consequently, the set of systems consistent with the data
grows, and hence the problem does not accurately reflect the original problem.
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6 CONCLUSIONS AND RECOMMENDATIONS

In this thesis, full state feedback controllers for unknown discrete-time linear time-invariant sys-
tems were aimed to be synthesized from perturbed data directly. In Chapter 4, an LMI based
framework was presented that shows how bounds on the norm and rate-of-variation of pertur-
bation samples can be included in the synthesis. This method was subsequently applied to an
academic example and to a reference tracking problem of a double pendulum system. This
chapter provides concluding remarks and recommendations on future research directions.

6.1 Conclusions

The presented framework was shown to be flexible, in that multiple realistic bounds could be
included in the controller synthesis. Moreover, it was shown that prior knowledge on the sys-
temmatrices and its uncertain parameters could be included, making the framework compatible
with the most recent literature. The method was applied to an academic example successfully in
that conservatism was reduced compared to contemporary methods due to a tighter character-
ization of the perturbation signal. Ellipsoidal regions were introduced to reduce computational
complexity compared to using separate bounds on the norm and rate-of-variation, albeit with a
trade-off of increased conservatism.
Chapter 5 demonstrated the use of state augmentation to formulate reference tracking prob-
lems. It was then demonstrated how this framework could be extended to systems with mixed
data-driven and model-based components, enablingH∞-loop shaping through weighting filters
and integral action.
A dilated LMI formulation was presented in Section 5.2, with the intent of reducing conservatism
for systems with a large workspace-to-footprint and position dependent dynamics. The dilated
form allows for a decoupling of the Lyapunov matrices and the system matrices between differ-
ent different experiments.
LMIs for mixedH∞ and generalizedH2 optimization were presented in Section 5.3, which could
be used to guarantee upper bounds on the peak of the control effort.
In Section 5.5, the methods of this thesis were applied to a reference tracking problem of a
double pendulum system. Although good tracking performance was achieved for perturbed data
using these methods, Section 5.5.6 revealed susceptibility to numerical issues under varying
simulation parameters.

6.2 Recommendations on future research directions

In view of the findings presented in this thesis, several recommendations can be made.
It is strongly recommended to prioritize experimental validation in future studies. Rigorous real-
world experiments will not only substantiate the theoretical findings, but also offer practical in-
sights into the applicability of data-driven control methods in diverse engineering scenarios.
In light of the numerical issues identified in the simulations, a critical evaluation of available
algorithms for solving semidefinite programs and their tuning parameters is advised. Increasing
the robustness and reliability of these algorithms is essential for ensuring the effectiveness and
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consistency of data-driven control methodologies. With this, potential challenges encountered
in practical applications can be expressed.
The presented framework is used to construct multipliers for the perturbation, but could also
be used to construct multipliers for the uncertainty for systems with prior knowledge. Currently,
prior knowledge on uncertain parameters is characterized by norm bounds. Using the presented
framework, also knowledge on the sign of an uncertain parameter could be included in the
synthesis. It should be investigated to what extent this application reduces conservatism.
A possible extension of the framework involves exploring systems that have a rational depen-
dency on the uncertain parameters, as the full-block S-procedure provides the robust framework
to address uncertainties in such systems. Illustrative examples showcasing the application of
this extended approach could greatly enhance the practical applicability of the proposed data-
driven control methods.
In the simulations for the double pendulum systems, bounds on the norm and rate-of-variation
are tuning parameters with constant values. Real mechanical systems often introduce position-
dependent perturbations due to influence of nonlinear terms. The norm and rate-of-variation of
such perturbations might vary significantly from sample to sample. Therefore, a possible route
of exploration lies in replacing the norm and rate-of-variation tuning parameters by position-
dependent functions, such as low-degree polynomials. With a good characterization of the
position-dependent perturbations, conservatism in the optimization may be reduced.
In view of generalizing the results, it might be interesting to extend and investigate the effec-
tiveness of the proposed methodology for descriptor systems. In view of this, [53] provides a
variant of Willems’ fundamental lemma for descriptor systems, which can be combined with
the bounded real lemma for descriptor systems (e.g. [11], page 56) to design state feedback
controllers for unknown descriptor systems. In [54], such an approach is used for the design of
H∞-optimal state feedback controllers. One can build upon this work by integrating the methods
from this thesis for multiplier construction, and including prior knowledge in the synthesis.
Additionally, it should be investigated how the presented methods can be extended to linear
parameter-varying systems. In [55] it is shown how Willems’ fundamental lemma can be ex-
tended to capture the behaviour of an LPV system from a single experiment. This work is
subsequently used in [56] to synthesize state feedback controllers that guarantee stability and
performance on the generalizedH2-norm and the L2-gain of the closed-loop system. However,
the case of perturbed data is not considered, and hence could be a potential working direction.
Collectively, these recommendations aim to advance the robustness, applicability, and theoret-
ical underpinnings of the proposed data-driven control framework. Such advancements might
contribute to the broader adoption and effectiveness of data-driven control methodologies in
diverse engineering contexts.
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A APPENDIX

A.1 Proof of the H∞-norm and discrete-time bounded real lemma

Consider a discrete-time LTI system Σ with state-space representation

xk+1 = Axk +Hwk, (A.1a)
zk = Cxk + Ewk. (A.1b)

Consider an ϵ > 0 and a positive definite matrix P for which 0 ≺ λI ⪯ P ⪯ λI with smallest and
largest eigenvalue as λ and λ respectively. Under these conditions, it can be shown that if the
Lyapunov condition

1

1 + ϵ
x⊤k Pxk − x⊤k+1Pxk+1 +

γ

1 + ϵ
w⊤
k wk ≥ 1

γ
z⊤k zk, (A.2)

holds for all k ≥ 0, then the system is stable and has L2-gain performance of level γ > 0.
Let ρ ≜ 1√

1+ϵ
∈ (0, 1). To prove stability, consider that wk = 0, ∀k ≥ 0. Then (A.2) implies

ρ2x⊤k−1Pxk−1 − x⊤k Pxk ≥ 1

γ
z⊤k−1zk−1, ∀k ≥ 1. (A.3)

Since γ > 0, this implies
ρ2x⊤k−1Pxk−1 − x⊤k Pxk ≥ 0, ∀k ≥ 1. (A.4)

Repeated exploitation of (A.4) yields

x⊤k Pxk ≤ ρ2x⊤k−1Pxk−1 ≤ ρ4x⊤k−2Pxk−2 ≤ · · · ≤ ρ2kx⊤0 Px0. (A.5)

From the properties of P , it can be inferred that x⊤k Pxk ≥ λx⊤k xk and x⊤0 Px0 ≤ λx⊤0 x0 and as
such

x⊤k xk ≤ λ

λ
x⊤0 x0ρ

k. (A.6)

This implies the norm x⊤k xk = ∥xk∥2 is never increasing with k and hence the system is stable.

For L2-gain performance, consider a perturbation signal w with 0 < ∥w∥22 ≜
∑∞

k=0w
⊤
k wk < ∞.

Since ϵ > 0, infer from (A.2) that

1

1 + ϵ

κ∑
k=0

x⊤k Pxk −
κ∑

k=0

x⊤k+1Pxk+1 ≤
κ∑

k=0

x⊤k Pxk −
κ∑

k=0

x⊤k+1Pxk+1

= x⊤0 Px0 − x⊤κ+1Pxκ+1 ≥ 0.

(A.7)

Then (A.2) implies

x⊤0 Px0 − x⊤κ+1Pxκ+1 +
γ

1 + ϵ

κ∑
k=0

w⊤
k wk ≥ 1

γ

κ∑
k=0

z⊤k zk. (A.8)
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Taking the limit of κ → ∞ and setting x0 = 0 implies

∥zk∥2 ≤ ργ∥wk∥2 < γ∥wk∥2, (A.9)

so the L2-gain from wk to zk is bounded from above by γ.

To transform (A.2) into an LMI condition, substitute (A.1) into the Lyapunov condition to obtain

1

1 + ϵ
x⊤Px−(Ax+Hw)⊤P (Ax+Hw)+

γ

1 + ϵ
w⊤w− 1

γ
(Cx+Ew)⊤(Cx+Ew) ≥ 0, ∀x,w, (A.10)

where the subscripts are dropped to imply that the condition needs to be satisfied for arbitrary
x and w. Rewriting (A.10) into the form[

x
w

]⊤([ 1
1+ϵP 0

0 γ
1+ϵI

]
−
[
PA PH
C E

]⊤ [
P 0
0 γI

]−1 [
PA PH
C E

])[
x
w

]
≥ 0, ∀

[
x
w

]
, (A.11)

yields an equivalent LMI condition as[ 1
1+ϵP 0

0 γ
1+ϵI

]
−
[
PA PH
C E

]⊤ [
P 0
0 γI

]−1 [
PA PH
C E

]
⪰ 0. (A.12)

Since ϵ > 0, this this reads as a strict matrix inequality expressed as[
P 0
0 γI

]
−
[
PA PH
C E

]⊤ [
P 0
0 γI

]−1 [
PA PH
C E

]
≻ 0, (A.13)

which can be turned into an LMI by applying the Schur complement from Section 2.2.3
P 0 ∗ ∗
0 γI ∗ ∗

PA PH P 0
C E 0 γI

 ≻ 0. (A.14)

A.2 Proof of dilated LMIs for mixed H∞ and generalized H2 optimization

Consider a discrete-time LTI system Σ with state-space representation

xk+1 = Axk +Buk +Hwk, (A.15a)
zk = Cxk +Duk + Ewk, (A.15b)
vk = Uxk + V uk (A.15c)

The interconnection of Σ with the state feedback controller

uk = Kxk, (A.16)

can be described by the the closed-loop state-space system

xk+1 = (A+BK)xk +Hwk, (A.17a)
zk = (C +DK)xk + Ewk, (A.17b)
vk = (U + V K)xk. (A.17c)

Consider an ϵ > 0 and a positive definite matrix P for which 0 ≺ λI ⪯ P ⪯ λI with smallest
and largest eigenvalue λ and λ respectively. Under these conditions, it can be shown that if the
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Lyapunov condition in (A.2) holds, the closed-loop system is stable and has H∞-performance
of level γ.
To ensure generalized H2-performance of level σ, add a second condition to the Lyapunov
condition as

x⊤k Pxk ≥ 1

σ2
v⊤k vk. (A.18)

From (A.8) it can be inherited for κ → κ− 1 that

x⊤0 Px0 − x⊤κ Pxκ +
γ

1 + ϵ

κ−1∑
k=0

w⊤
k wk ≥ 1

γ

κ−1∑
k=0

z⊤k zk ≥ 0, κ ≥ 0. (A.19)

With this, it is implied that

1

σ2
v⊤κ vκ ≤ x⊤κ Pxκ ≤ x⊤0 Px0 +

γ

1 + ϵ

κ−1∑
k=0

w⊤
k wk. (A.20)

With zero initial conditions, x0 = 0, this implies

1

σ2
v⊤κ vκ ≤ γ

1 + ϵ

κ−1∑
k=0

w⊤
k wk ≤ γ

1 + ϵ
∥w∥22, (A.21)

and hence
∥v∥2∞ ≜ sup

κ≥0
v⊤κ vκ ≤ γ · σ2

1 + ϵ
∥w∥22 < γ · σ2∥w∥22. (A.22)

Thus, the performance criteria will be satisfied for (A.17) if the following conditions are ensured:
1

1 + ϵ
x⊤Px− x⊤+Px+ +

γ

1 + ϵ
w⊤w−1

γ
z⊤z ≥ 0, and x⊤Px− 1

σ2
v⊤v ≥ 0,

∀x, x+, w, z, v :


(A+BK)x+Hw − x+ = 0
(C +DK)x+ Ew − z = 0
(U + V K)x − v = 0

,

(A.23)

where the subscripts are omitted to imply that the condition needs to be satisfied for arbitrary
x,w,z and v.
In preparation for the dilated LMI formulation, introduce an invertible matrix G and θ = G−1x,
as well as Q = G⊤PG and N = KG. With these, (A.23) is thus re-expressed as follows:

1

1 + ϵ
θ⊤Qθ − θ⊤+Qθ+ +

γ

1 + ϵ
w⊤w−1

γ
z⊤z ≥ 0, and θ⊤Qθ − 1

σ2
v⊤v ≥ 0,

∀θ, θ+, w, z, v :


(AG+BN)θ +Hw −Gθ+ = 0
(CG+DN)θ + Ew − z = 0
(UG+ V N)θ − v = 0

.

(A.24)

In preparation for a Schur complement, observe in reference to the system dynamics of (A.24)
that

He((−θ+)
⊤)((AG+BN)θ +Hw −Gθ+)) = 0, (A.25)

z = (CG+DN)θ + Ew, (A.26)
v = (UG+ V N)θ (A.27)

and as such the first expression in (A.24) is equivalent to

1

1 + ϵ
θ⊤Qθ − θ⊤+Qθ+ + He((−θ+)

⊤)((AG+BN)θ +Hw −Gθ+))

+
γ

1 + ϵ
w⊤w − 1

γ
((CG+DN)θ + Ew)⊤((CG+DN)θ + Ew) ≥ 0. (A.28)
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Rewriting (A.28) into the form

 θ
w

−θ+

⊤ 1
1+ϵQ 0 ∗
0 γ

1+ϵI ∗
AG+BN H G+G⊤ −Q


−

(CG+DN)⊤

ET

0

 (γI)−1

(CG+DN)⊤

ET

0

⊤
 θ

w
−θ+

 ≥ 0, (A.29)

yields an equivalent LMI condition as 1
1+ϵQ 0 ∗
0 γ

1+ϵI ∗
AG+BN H G+G⊤ −Q

−

(CG+DN)⊤

ET

0

 (γI)−1

(CG+DN)⊤

ET

0

⊤

⪰ 0. (A.30)

Since ϵ > 0, this implies a strict inequality as Q 0 ∗
0 γI ∗

AG+BN H G+G⊤ −Q

−

(CG+DN)⊤

ET

0

 (γI)−1

(CG+DN)⊤

ET

0

⊤

≻ 0, (A.31)

which can be rewritten as an LMI by applying the Schur complement from Section 2.2.3
Q 0 ∗ ∗
0 γI ∗ ∗

AG+BN H G+G⊤ −Q 0
CG+DN E 0 γI

 ≻ 0. (A.32)

Substitution of (A.27) into the second condition of (A.24) yields

θ⊤Qθ − 1

σ2
((UG+ V N)θ)⊤((UG+ V N)θ)

= θ⊤(Q− (UG+ V N)⊤(σ2I)−1(UG+ V N))θ ≥ 0, (A.33)

in which a sufficient condition is found as

Q− (UG+ V N)⊤(σ2I)−1(UG+ V N) ⪰ 0, (A.34)

which can be rewritten as an LMI by applying the Schur complement[
Q ∗

UG+ V N σ2I

]
⪰ 0. (A.35)
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