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Abstract

The transportation and mobility sector is central to the energy transition from fossil fuels
to sustainable sources. Given the European Union’s impending ban on gasoline and diesel
vehicles by 2035, electric vehicle (EV) sales are soaring, presenting challenges in charging
infrastructure and power grid management. As EV adoption increases, so does the need
for widespread charging infrastructure and strategies to manage the strain of EV charging
on power grids. Moreover, the variable nature of energy prices introduces the need for
optimizing energy consumption during cheaper rates, pushing businesses towards dynamic
energy pricing.

Addressing these challenges, Energy Management Systems (EMS) have emerged, aim-
ing to control EV charging, especially with increasing interest in photovoltaic (PV) systems
integrated with charging facilities. The "Energy Scheduler" is a pioneering approach to
determine optimal charging schedules, balancing costs, grid load, and EV user needs. How-
ever, the system, as it stands, doesn’t account for real-time deviations from solar power
predictions.

This thesis seeks to assess the performance of the Energy Scheduler and enhance it by
integrating a Real-Time Control mechanism, making charging more adaptable to real-time
conditions. The research also delves into gathering EV flexibility information, used for
charging scheduling. It explores the potential of a charger integrated user interface (UIs).
Additionally, to validate EV control strategies, a comprehensive Evaluation Framework is
proposed, serving both simulated and real-world testing environments.

The Energy Scheduler demonstrated an effective EV charging schedule management
based on PV power forecasts and EV flexibility. Significant achievements include a 67.47%
reduction in summer electricity costs and a 40.97% reduction in peak grid loads. However,
the system’s efficiency waned during winter due to lower PV generation.

Implementing a real-time control mechanism provided an effective response to unfore-
seen solar power forecast fluctuations. Although costs slightly rose, the mechanism sig-
nificantly reduced peak grid loads with an extra 5%, and improved self-consumption and
self-sufficiency rates. While robust in simulated conditions, real-world complexities posed
challenges to the mechanism’s performance.

Simulations showed that an UI has potential for improved scheduling effectiveness,
offering potential enhancements in self-sufficiency, self-consumption, cost-effectiveness, and
grid stability. Challenges remain in user engagement and advocating the benefits of active
UI use.

The Evaluation Framework enabled rigorous testing of solutions under various condi-
tions. It ensures adaptability for simulation and real-world scenarios. However, limitations
surfaced, including high-speed simulation challenges and the inability to perfectly replicate
real-world hardware behaviors.

This research proposes enhancements to the EV charging system for a sustainable, cost-
effective, and grid-protective future. Key recommendations include refining the Real-Time
Control mechanism to consider grid load discrepancies, and reevaluating the Cost Opti-
mization strategy to prevent grid strain. Furthermore, boosting user engagement with the
UI, and leveraging sophisticated predictive modeling could be beneficial for EV scheduling.
Extended real-world testing across seasons is advised to ensure system robustness. Imple-
menting these measures promises a holistic improvement in EV charging infrastructure.
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Chapter 1

Introduction

1.1 Motivation

The transportation and mobility sector is a key factor in the current energy transition from
fossil fuels to clean and sustainable energy sources, such as solar and wind energy. There-
fore, different governments around the world are using policies to shift towards electrical
mobility. The European Union has agreed on a complete ban on the sale of new gasoline
and diesel vehicles starting in 2035 [1].

As a result, sales of electric vehicles (EVs) are increasing on a worldwide scale. They
doubled in 2021 from the previous year to a new record of 6.6 million vehicles. In 2030,
the market share of light duty cars in Europe that are electric is expected to be 80% [2].
This growing adoption of EVs has raised new challenges, particularly in terms of charging
infrastructure and power grid management.

1.1.1 Charging Infrastructure

The first challenge involves the urgent need for augmenting charging infrastructure in
numerous facilities. According to the IEA, this rise in EV sales "requires an adequate
surge in chargers installed in buildings" [3]. Charge points will not only be installed at
single-family homes but will continue to expand to several types of buildings. It will be
crucial to include or increase charging points in buildings such as apartment complexes,
offices, parking lots or commercial centers ([4], [5]). For EV owners, the preferred charging
options are usually at home and workplaces.

A central element in this development is the concept of a charging hub. This is a
centralized location equipped with multiple EV charging stations. It may also be integrated
with renewable energy sources, such as photovoltaic (PV) panels for solar power generation
and energy storage systems, providing a sustainable solution for EV charging.

1.1.2 Impact on Grid

The second challenge comes from the increasing strain of EV charging on the local elec-
tricity distribution grids due to widespread electrification initiatives. With more people
making the transition from traditional fuel-based vehicles to electric ones, the demand for
electricity soars. This leads to an increased usage of charging points, potentially resulting
in synchronized electricity demand and high-power peaks on the grid. Such peaks signifi-
cantly impact the power grid, escalating the risk of overload, congestion, and ultimately,
service outages ([6], [7]).
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Because existing grid infrastructure is not designed to accommodate the significant load
increase, securing larger grid connections to accomodate the increasing power demands of
EVs is a challenge. To tackle this problem, numerous businesses and organizations are
combining the installation of EV charging stations with the deployment of PV panels
(e.g. on their parking lots). Integrating PV systems directly with EV charging facilities
presents a viable solution to meet the increasing power demands of EVs while alleviating
pressure on the local grid [8]. This combination, however, calls for optimal control of EV
charging to align with PV production times, leading to a necessity for effective EV charging
management.

1.1.3 Dynamic Energy Pricing

An additional challenge emerges from volatility in dynamic day-ahead energy prices. With
fluctuation in energy prices, businesses are increasingly interested to optimize the use of
their self-generated energy and to shift their energy usage to periods of lower electric-
ity prices in dynamic energy price contracts. This does not only maximize the use of
self-generated and low-cost energy, it also induces the transition towards a decarbonized
transportation sector [9]. Consequently, optimal control of EV charging and the utilization
of dynamic energy pricing are becoming critical necessities for businesses, especially those
required to achieve sustainability targets.

1.1.4 Energy Management Systems

In response to these challenges, alternative solutions have emerged, aiming to manage the
increased demand from EVs without necessarily requiring extensive investments in trans-
mission and distribution grids. One such solution is the application of Energy Management
Systems (EMS). EMS leverage the flexibility that EVs offer to move EV charging load from
peak times to off-peak times. This not only relieves stress on the grid but, when combined
with time-of-use electricity tariffs, allows EV users and charging hub operators to econom-
ically benefit from optimized charging strategies. Such an EV scheduling strategy must
consider the practicalities of everyday EV use and provide solutions that can be applied
within the typical charging locations, usually at home or at work. Numerous methods for
optimal coordinated control of EV charging have been presented in recent years ([10], [11],
[12], [13]). Applying these strategies in EMS aims to synchronize the EV charging process
with (forecasted) PV production times and/or time of use electricity tariffs, leading to a
more efficient and cost-effective use of energy, with less reliance on the grid. EMS and
existing EV scheduling strategies are elaborated in more detail in Section 2.2.

An example of an innovative solution has been pursued by B. Nijenhuis [14] with the
goal to balance multiple factors to create the best possible charging schedules. This system
aims to keep costs low and prevent overloading the grid, while ensuring that the charging
demand for the EV users are met before they leave. This strategy, which is called the
Energy Scheduler, is explained in more detail in Section 2.3.

EV scheduling strategies often depend on available information regarding the adaptabil-
ity of the EV’s charging load. This information, referred to as EV flexibility information,
can be used to adjust the charging process of the EV, i.e. being accelerated, decelerated,
or temporarily halted, without compromising the user’s need for a fully charged vehicle.
The EV flexibility information consists of parameters regarding the charging constraints
of the EV user, such as approximate departure times and energy demand. For more on
’EV flexibility information’, see Section 2.2.3.
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Nijenhuis et. al. [15] show that if the system is able to receive such information,
grid peak load can be significantly reduced and PV self-consumption can be significantly
increased compared to uncontrolled charging in an office parking scenario.

Therefore, it is important to research ways of gathering EV flexibility information.
[16] shows that there is potential of gathering the information through a User Interface
(UI). Participants are willing to share their flexibility by using a smartphone application
when starting their EV charging sessions. Although the quality of the data given by the
users may be far from perfect (with over- and under estimations of both energy demand
and departure time) their impact on the grid load and PV power self-sufficiency has been
proven to be significant.

1.2 Research Problem

The Energy Scheduler is the base for this thesis. The aim is to explore further improvements
for scheduling strategies and providing a framework in which the proposed solution and
future solutions can be tested thoroughly, both in computer simulations and real-life field
tests.

1.2.1 Real-Time Control

Currently, the Energy Scheduler is not designed to accommodate fluctuations in solar power
predictions. It creates a charging profile for EVs upon arrival, taking into account the solar
power prediction and the already scheduled loads (i.e., other EVs), and then optimizes for
a flat grid load or low costs. These schedules typically come in durations ranging from 12
to 24 hours, depending on the available information. However, this approach does not take
into account deviations from solar power forecasts, resulting in suboptimal utilization of
available resources. Therefore, there is a need for short term corrections to these deviations.

There exist charging strategies that employ Real-Time Control without forecasting on
PV output or EV charging demand ([17], [18]). A noticeable gap persists in the literature
regarding methods that combine both predictive control and feedback control. In the
case of EV charging, predictive control is represented by a scheduling strategy, which is
designed to optimize EV charging schedules based on forecasted information, such as PV
power generation and electricity prices. On the other hand, feedback control is a reactive
measure, adjusting the charging schedule in real-time based on actual measured data, such
as current PV power generation and EV load. The integration of these two control methods
can offer a robust solution, enabling the system to schedule charging effectively based on
predicted data and simultaneously make adjustments when actual data deviate from the
forecasts.

This approach could potentially minimize energy-not-served, maximize the utilization
of renewable energy, and reduce the cost of charging. By combining the foresight of pre-
dictive control (via the Energy Scheduler) with the adaptability of feedback control (via
a real-time controller), this research seeks to enhance the robustness and efficiency of EV
charging strategies.

With these challenges and potential solutions in mind, this thesis addresses the need
for a more robust EV scheduling strategy. It proposes the integration of a Real-Time
Control mechanism by creating a dynamic system that can respond to deviations and
update the charging power as needed. Such a system better protects the grid, while the
usage of renewable locally generated energy can be increased. Thereby the available energy
flexibility of EV users could be utilized more effectively with this addition.
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1.2.2 Acquisition of EV Flexibility Information

To further improve EV charging strategies, a key aspect that needs to be addressed is
the collection and utilization of EV flexibility information. Many control solutions to co-
ordinate EV charging depend on the availability of this EV flexibility information. The
systems often rely on knowing the state of charge (SoC), energy demand, and departure
time. However, in practice, often a lack of communication between the EV and the charg-
ing system is observed. Some information is not available to the charger, as the current
standard of AC charging protocol (Open Charge Point Protocol (OCPP)) does not provide
State of Charge (SoC) information for AC charging.

Based on this communication gap, researchers have been exploring alternative ways to
collect EV flexibility information. Findings indicate that EV flexibility information can
be collected through smartphone applications [16]. However, this method does have a
notable constraint: users are required to install the relevant application on their mobile
devices. Therefore, there is a pressing need to explore alternative UIs for the collection of
EV flexibility information.

Notably, the effectiveness of the methods utilized in the [16] study to gather EV flex-
ibility information may be somewhat skewed. This is because the research largely relies
on tech-savvy users who are aware that a study is being conducted. Thus, there may be a
potential bias in the data gathered from these informed users. To ensure the effectiveness
of EV charging solutions, it is crucial that their interfaces cater to a wide array of users,
not just those already familiar with or engaged in the research. Additional investigation is
necessary, particularly regarding the efficacy of smart charging UIs for a more broad user
group. This way, it can secure that more comprehensive and accurate data is available,
which will better inform the development and implementation of robust online EV control
systems.

1.2.3 Development of an Evaluation Framework

Next to the difficulties and possibilities in data acquisition, also an assessment of the per-
formance of charging control solutions is relevant. Given the complexity and novelty of
charging control solutions like the Energy Scheduler, an adaptable and robust evaluation
tool becomes highly beneficial. Such an Evaluation Framework can provide an effective
means to continuously refine and enhance these strategies. It allows to assess the perfor-
mance of the system under a variety of conditions and circumstances and can be utilized in
both computer simulations and real-life field tests. The framework thereby provides data
that are critical to refine and improve the strategy. It finally can ensure that the strategy
is not only theoretically sound but also practically viable.

1.3 Goals and Objectives

The primary goal of this research is to validate, test, and enhance the existing EV schedul-
ing strategy of the Energy Scheduler for a smart charging hub equipped with solar PV
panels. This strategy aims to optimize energy usage while protecting the grid and lower
charging costs. For this, a Real-Time Control mechanism is implemented in this existing
scheduling strategy to further optimize the charging process. Next to that, this thesis aims
to provide a comprehensive framework for thoroughly testing the existing solution with
and without a Real-Time Control mechanism, and testing future solutions, both through
computer simulations and real-life field tests. The ultimate goal is to evaluate if the strat-
egy is not only theoretically sound but also practically viable. Furthermore, a novel UI
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between EV user and EMS to acquire EV flexibility information is established. This UI
is tested in a real environment with uninformed users. To achieve these objectives, the
following specific aims have been established:

• To validate and test the existing Energy Scheduler approach that takes into account
multiple factors, such as charging demand, grid limits, PV power production, and
EPEX spot prices.

• To research, design, and evaluate a Real-Time Control Mechanism that can adjust
the charging schedules based on deviations from forecasted values in charging profiles,
solar energy, and grid load, to improve existing solutions.

• To research, design, and evaluate a UI that facilitates better communication between
users and the EMS. This interface aims to improve the accuracy and effectiveness of
scheduling by incorporating EV user flexibility information in a real-world environ-
ment.

• To develop a versatile Evaluation Framework that can effectively evaluate the per-
formance of EV scheduling strategies by simulating a charging hub under varied
conditions, while also allowing for real-life implementation and evaluation.

1.4 Research Questions

This research aims to address a series of research questions to enhance the current EV
charging infrastructure. The initial question assesses the current Energy Scheduler:

"How does the existing Energy Scheduler approach perform under various con-
ditions, and how can it be improved further?"

Building upon the identified improvements, the next question explores the effectiveness
of implementing a Real-Time Control Mechanism:

"What are the impacts and improvements achieved by the implementation of a
Real-Time Control Mechanism in EV control?"

The research then shifts to the user interface, examining how it could impact user-EMS
interaction and scheduling effectiveness:

"How does an enhanced UI influence user-EMS interaction and EV scheduling
effectiveness in a real-life environment?"

The final question aims to establish an Evaluation Framework for testing the robustness
of the EV scheduling strategies (with and without Real-Time Control component) under
varied conditions:

"How can a comprehensive Evaluation Framework be designed that simulates
various conditions to evaluate EV scheduling strategies, and allow for practical
implementation?"

These questions aim to systematically improve the EV charging system for enhanced
sustainability and efficiency.
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1.5 Approach

The research is structured into four primary phases, corresponding to the research ques-
tions.

The initial phase of the research is focused on validating the existing Energy Sched-
uler. Various conditions are created to test the system and its ability to adapt. The
performance of the Energy Scheduler is analyzed using quantitative methods. Addition-
ally, this phase involve a literature review to identify potential areas for improvement and
further optimization.

The second phase of the research focuses on the development of a Real-Time Control
Mechanism. This includes a rigorous exploration of feedback control and algorithms to
adjust charging schedules to deviations from forecasts accordingly. The newly developed
mechanism is validated through simulations under various scenarios and in a real environ-
ment.

The third phase of the research involves establishing a UI between users and the EMS.
This phase includes prototyping and testing. User acceptance and interaction with the
system is evaluated in a real-world setting.

A comprehensive Evaluation Framework for testing EV scheduling strategies is devel-
oped. It serves as the environment where the Real-Time Control mechanism, the Energy
Scheduler and future solutions can be extensively tested and evaluated. The developed
Evaluation Framework also has the capability to facilitate real-world testing, ensuring the
practical validity of the proposed solutions. The framework provides a controlled setting
for the iterative development, refinement, and evaluation of the Energy Scheduler and
Real-Time Control Mechanism, while also allowing implementation of the UI.

1.6 Outline

The thesis is outlined as follows: The following chapter provides the necessary background
on charging hubs, EMS, and the Energy Scheduler. Design decisions and the implemen-
tation of the research like Real-Time Control, User Interface, and Evaluation Framework
are elaborated in Chapters 3 and 4. The method to assess their performance is explained
in Chapter 5, with the results presented in Chapter 6. The findings are discussed and
analyzed in Chapter 7, leading to the conclusions summarized in Chapter 8. The thesis
concludes with Chapter 9, which offers recommendations for future research on improving
the EV charging infrastructure.
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Chapter 2

Background

This chapter provides a review of the fundamental concepts related to Electric vehicle (EV)
charging. It expands on the general ideas introduced in the previous chapter, delving deeper
into the specific topics important for understanding this thesis. Firstly, an overview of EV
charging infrastructure, including its challenges and trends in today’s energy landscape, is
given. This includes the significance of charging hubs, discussing the transaction process
at such hubs, and delving into the intricacies of Energy Management Systems (EMS). We
focus on how EMS play a vital role in managing EV charging and discuss existing strate-
gies and their limitations. Finally, we elaborate on the Energy Scheduler, an innovative
approach that forms the basis of this research. We discuss its present performance, its
potential shortcomings, and areas where enhancement is needed.

2.1 EV Charging

EV charging is the process of replenishing an EV’s battery with electrical energy. Charging
an EV can range from a few minutes to several hours, depending on the charging tech-
nology used and the capacity. This duration is influenced by various factors, including
the state of charge (SoC) of the battery, its total capacity, the capabilities of the charg-
ing equipment, and the electrical infrastructure (i.e. the electricity grid) supporting the
charging station. EV charging can be performed at multiple locations, including residential
settings, workplaces, public charging stations, and dedicated EV charging hubs.

The energy transfer to the EV is controlled by both the charging station and the vehicle,
whereby both have the capability to determine and regulate the maximum charging rate. A
communication link between the charging station and the vehicle ensures safe and efficient
charging.

EVs are quite specific loads in the electricity grid, because they are mobile and their
power demand can be time-shifted to a certain extent without negatively affecting the
user. Consequently, EVs may be charged during periods of low overall electricity demand
(e.g., at night) or of high (sustainable) electricity production (e.g., when there is high local
photovoltaic (PV) production) to level out the load profile and minimize the impact on
the power grid. However, this requires intelligent charging strategies that can optimize
the charging process based on the power system condition, the availability of renewable
energy, and user requirements.

The following sections explore the EV charging process and landscape in more de-
tail, discussing the challenges associated with EV charging and various types of charging
stations.
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2.1.1 Impact of Expanding EV Fleet on the Grid

The increasing market share of EVs introduces a new major consumer of electricity, which
charging activities form an additional and substantial demand on the grid infrastructure
[6]. This has considerable implications on the performance of the grid, particularly during
peak periods. It is essential to assess the impact of EVs on power grid and the challenges
they bring:

• Increased Load Demand: Charging EVs contributes to an overall increase in
electricity demand, which can be substantial in areas with high EV adoption rates.
If many EVs are charged during peak hours, they may cause an overload on the
distribution grid. These synchronized load peaks significantly increase the risk of
of overload, congestion, and ultimately, service outages ([6], [7]). [19] shows that at
an EV penetration rate of 30%, the expected number of daily power outages in the
Netherlands increases by 20%.

• Voltage Drops and Instability: The additional load from EV charging can lead to
significant voltage drops and instability in the power grid, especially in local distribu-
tion networks that were not designed to accommodate such high power consumption
levels [20].

• Grid Infrastructure Upgrades: If not properly managed, the growing EV load
may necessitate costly infrastructure upgrades to distribution networks, including
substations, transformers, and wiring.

In light of these challenges, it is clear that managing the integration of a large EV
fleet into the power grid requires a multi-faceted approach. This includes considering the
availability and sustainability of charging locations. Homes and workplaces are the primary
locations for EV charging. These convenient charging locations are critical to supporting
the growing EV market. However, charging dynamics vary across these locations, with
daytime charging at workplaces being generally more sustainable than nighttime charging
at homes [21]. It is also important to consider that lower-income households, renters, and
residents of multi-unit dwellings (MUDs) are less likely to have access to home charging
[22]. This lack of access emphasizes the importance of offering alternative, convenient, and
sustainable charging solutions in the form of public charging hubs.

The issues raised, underline the need for effective strategies to manage the integration
of an expanding EV fleet into the grid. This includes the integration of renewable energy
sources to provide green power for EV charging, and the development of advanced charging
strategies and EMS to control and optimize EV charging based on grid conditions and
renewable energy availability. These solutions, which are discussed in more detail in the
subsequent sections, not only mitigate the potential negative impacts of EV charging on
the grid but can also bring several benefits, such as improving grid stability, reducing peak
loads, and promoting the use of renewable energy.

2.1.2 Integration With Renewable Energy

Integrating PV systems directly with EV charging facilities presents a viable solution to
meet the increasing power demands of EVs while alleviating pressure on the local grid [8].
Renewable energy, particularly wind and solar power, is variable and intermittent. The
temporal mismatch between renewable energy production and electricity demand can be
mitigated by using EVs as flexible loads.
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In times of high renewable energy generation and low demand, instead of delivering the
renewable power back to the grid or even curtailing it to protect the grid from overloading,
this energy could be used to charge EVs. In contrast, during periods of low renewable
energy generation and high electricity demand, the charging of EVs could be reduced or
postponed. This would flatten the grid load.

By spreading out the EV charging demand over time and aligning it with periods of high
renewable generation, the system load profile can be flattened. This has several benefits
including reduced strain on the grid infrastructure, decreased reliance on grid power, and
using more sustainable energy locally. To achieve this it is essential to develop "smart
charging" and EMS that can coordinate the charging of a large number of EVs based on
the availability of renewable energy.

2.1.3 Charging Hubs

One promising approach towards resolving the challenges associated with renewable en-
ergy integration and the growing EV fleet is the introduction of Charging Hubs. These
hubs are centralized locations hosting multiple points for EV charging, thereby offering a
critical infrastructure for the transition towards electric mobility by enabling EV users to
conveniently charge their vehicles, especially for those who do not have access to home
charging facilities. This complements workplace charging as a sustainable solution, ensur-
ing the charging demand does not coincide with peak household electricity consumption
and better utilizes PV power.

Charging hubs can be categorized based on their charging speed into three main types:

• Level 1 charging stations: These are the basic charging stations that offer slow
charging, typically over several hours for one EV. They are often used for overnight
or over day charging at homes or workplaces.

• Level 2 charging stations: Offering faster charging speeds than Level 1 stations.
They are commonly used in public areas, shopping centers, and parking lots. They
can fully charge an EV in a few hours.

• DC Fast charging stations: These are high-power charging stations designed to
charge EVs rapidly, often within 30 minutes up to 80%. They are typically installed
along highways or in areas with high traffic to provide quick charging for long-distance
travelers.

Beyond providing the basic charging services to EV users, charging hubs have evolved
to also adopt more integrated, intelligent and sustainable practices. Some charging hubs
have started to incorporate renewable energy sources into their design. This could involve
integrating solar PV panels or wind turbines to directly provide green energy for EV
charging. Such renewable energy sources not only reduce the carbon footprint of EV
charging but can also mitigate the increase of the load on the electricity grid.

In addition to renewable energy integration, energy storage systems, such as batteries,
are often incorporated into these hubs. These systems store excess energy generated during
periods of low demand or high renewable energy production, which later can be used to
charge EVs during peak times or when renewable energy production is low. This further
improves the energy efficiency and sustainability of the charging hub.

In line with the above, many contemporary charging hubs are equipped with advanced
Energy Management Systems (EMS) that optimize energy usage, reduce peak load, and
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manage charging strategies of both the EVs and the added batteries. EMS and their state
of the art are explained more thoroughly in Section 2.2.

The research within this thesis is conducted at a Level 2 charging hub at an office
location. This particular charging hub serves as both the site for experimental studies and
the basis for developing a simulation model. More information on the testing site is given
in Section 5.2.

Figure 2.1: A Charging Hub in Hengelo [23].

2.1.4 Transaction Process

At public charge points (e.g. charging hub) several transactions take place. They refer
to the process by which an EV is connected to a charging station, charged, and then
disconnected. This process is managed and recorded to ensure transparency and efficiency.
In the following a generalized flow of a transaction in a charging hub is given:

• Initiation: The transaction begins when an EV is plugged into a charging point,
thereby the charger communicates with the vehicle to verify its readiness.

• Identification and Authentication: In this step, the users identify themselves,
typically by using an RFID card or a mobile application linked to their user account.
The system validates the credentials of the user and checks for available credit or
membership status.

• User Input of Flexibility Information (optional): In some innovative charging
hubs ([16]) employing smart charging strategies, users have the option to input their
EV flexibility information (see Section 2.2.3 for an explanation) via a user inter-
face (UI). This information may include their expected departure time and energy
demand.

• Charging: Once the user has been authenticated, the charging process starts. The
charging station communicates with the vehicle to manage the charging rate, ensuring
it is within the capacity of the vehicle and the grid. Note, that the maximum charging
rate of the charger may also be set by an external system.

• Energy Metering: Throughout the charging process, the amount of energy trans-
ferred to the EV is carefully monitored and recorded.

• Completion: The transaction is completed when the charging process is finished
(either because the battery is fully charged, the user manually stops the charging, or
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the charger suspends the charging) and the vehicle is unplugged. At this point, the
final energy transfer is recorded.

In the context of this research, transaction data forms a critical component, provid-
ing necessary information for applying charging control, simulating realistic EV charging
scenarios, and testing the performance of various EV scheduling strategies.

2.2 Energy Management Systems

Energy Management Systems (EMS) are integral to efficient energy utilization, particularly
with the surge in the adoption of EVs. Although traditionally, EMS have been systems of
software-tools used by operators of electric utility grids to monitor, control, and optimize
the performance of the generation and transmission system, their role has significantly
evolved. Today, EMS are extensively employed in homes, businesses, charging hubs, and
other facilities to automate, manage, measure, and control their energy needs, including
heating, ventilation, lighting installations, and EV charging.

In essence, an EMS is a computer system designed to automatically control and monitor
electric facilities in a building that account for significant energy consumption. The inputs
and outputs of EMS are derived from various data sources and can be tailored to the
specific requirements of the site. Inputs into an EMS include:

• Energy consumption data: The EMS collects real-time or historical data about
the energy usage of the connected devices or systems. This includes, for example, the
energy usage of appliances, lighting, heating, and ventilation systems in a building,
or charging needs of EVs at a charging station.

• Energy production data: If the system includes on-site energy generation facili-
ties, such as solar panels or wind turbines, the EMS gathers data on the energy being
generated.

• Grid electricity prices: Real-time or projected electricity prices, such as day ahead
prices from the utility grid, can be fed into the EMS. This information is crucial for
demand response strategies.

• Weather forecasts: Weather conditions significantly impact energy consumption
and generation, particularly in the case of renewable energy sources, such as solar
and wind. Hence, the EMS should also consider weather forecasts.

An EMS processes these inputs to generate useful outputs, such as:

• Optimized energy usage schedules: A schedule in the context of an EMS refers
to a timetable that determines the start and end times for operating each controllable
asset, such as an EV charger, heat pump, or battery system. It also specifies the rate
or intensity at which each asset should be operated at any given time. Based on the
input data, the EMS creates an optimized schedule for energy usage. For instance, it
may schedule EV charging, heat pump operation, or battery charging during times
when electricity prices are low or when renewable energy generation is high.

• Real-time demand response signals: In response to grid electricity prices or
during periods of high demand, the EMS can adjust the energy consumption patterns
of connected devices and systems to reduce load on the grid.
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• Energy savings and efficiency reports: The EMS can provide reports on energy
usage, potential savings, and efficiency measures. These insights can help users to
make informed decisions and adjustments to further improve energy efficiency.

2.2.1 EV Charging Control Strategies

In the context of EV charging, EMS are especially valuable due to the flexible nature
of EV charging, a process often referred to as ’smart charging’. To illustrate how this
works, we consider a charging hub with several EVs plugged in at the same time. In
an uncontrolled charging scenario, all EVs would begin charging immediately upon being
plugged in, regardless of the current load on the power grid or the electricity prices. This
could potentially overload the power grid during peak hours when many electrical devices
are drawing power, leading to a power outage. Moreover, charging during peak hours when
electricity prices are high results in higher charging costs.

With an EMS controlling the charging process, things may be different. The EMS,
using real-time electricity prices, grid load data, and weather forecasts optimally schedules
the EV charging. For example, it might delay the charging of some EVs to off-peak hours
when electricity demand is low, and prices are cheaper. It could also distribute the available
PV power among various EVs based on their individual energy needs and departure times.
This smart management not only helps prevent overloading of the power grid but also
optimizes energy usage, resulting in cost savings and more efficient use of energy resources.

This control of the charging process by an EMS can be done according to different
strategies. Several strategies have already been explored to better manage EV charging.
One approach involves decreasing the accessible charging power at charging stations. This
technique commonly uses load-balancing, which ensures that the collective power usage of
several charging stations remains within the limits set by local electrical installations [24].
However, researchers are examining more intricate methods [25], with some studies con-
sidering the impact on the wider electricity grid within built environments [26]. A detailed
review of research focusing on PV production integrated with EV charging is presented in
[27]. Van der Klauw [28] has designed scheduling algorithms tailored for different types of
buffer devices. When integrated with decentralized optimization strategies, such as Profile
Steering [29], these algorithms can promote the efficient management of a fleet of EVs. A
novel scheduling approach is the Energy Scheduler [14]. This Energy Scheduler serves as
a base for this research and is further explained in Section 2.3.

2.2.2 Openness To Smart Charging

According to a study conducted in the Netherlands involving EV drivers [30], the concept
of smart charging can gain widespread acceptance if users are given the ability to ’override’
the system. Although it is anticipated that this function may not be frequently used, the
option to have it is appreciated by users.

Similar findings were given in a recent UK-based study [31] that interviewed 60 current
and potential EV users. The study found that two-third of the participants preferred
user-managed charging (UMC) over supplier-managed charging (SMC), citing improved
personal control as the main reason.

In addition to the override feature, these studies underline the importance of consid-
ering user needs in the design of EV scheduling systems. Meeting energy demand of EVs
before their departure is a crucial element of user satisfaction and system acceptance. By
guaranteeing a high level of service to the EV user, a greater adoption of the technology
can be expected.
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2.2.3 EV Flexibility Information Acquisition

The effective operation of an EMS in managing EV charging greatly depends on its ability
to acquire accurate EV flexibility information. This data includes parameters, such as
the energy demand (i.e. the amount of electricity an EV user requests) and the expected
departure time (i.e. the time at which the EV user plans to use their vehicle next). Energy
demand reveals how much electricity is needed, and the expected departure time provides
the window within which this demand must be met. By leveraging this information, the
EMS can create more accurate and efficient charging schedules, thus ensuring optimal
utilization of energy resources while fulfilling user requirements.

However, the acquisition of this data in real-world settings presents several challenges.
The current standard of the AC charging protocol, Open Charge Point Protocol (OCPP),
does not provide the SoC information for AC charging, a key parameter for charging
control [32]. This lack of essential data prevents the EMS from gaining a comprehensive
understanding of the charging state and needs of EVs, obstructing the creation of precise
charging schedules.

Consequently, alternative ways of collecting EV flexibility information have been ex-
plored by researchers. One such method involves the use of smartphone applications [16].
While this approach provides a more direct and flexible option for data collection, it re-
quires users to install the respective application on their mobile devices, creating a barrier
to its widespread adoption.

Furthermore, the research on the efficacy of current methods of data collection may
present a skewed picture of their true effectiveness. The study [16] primarily involved
tech-savvy users who are often already aware of or engaged with the research, potentially
introducing a bias in the collected data. This bias may undermine the applicability of the
findings to a broader user base with varying levels of technical expertise.

As such, there is an increasing need for the development of user-friendly and universally
accessible user interfaces (UIs) to effectively gather EV flexibility information. These UIs
should be designed to cater to a wide spectrum of users, not just those already familiar
with the concept of smart charging or engaged in research related to it.

Moreover, investigation of these new data collection methods is required, particularly
in the context of a more generalized user group. By obtaining more comprehensive and
accurate data from a broader user base, the control systems can be made more robust and
effective, regardless of the technical proficiency of the user.

2.2.4 PV Power Forecasting and Uncertainty

Key to implementing an EMS based on renewable energy availability is the forecasting of
PV power generation. PV power generation is highly dependent on weather conditions,
particularly solar irradiance and temperature. The forecast of these weather parameters
introduces a level of uncertainty into the PV power forecast.

The accuracy of PV power forecasting can be influenced by many factors, such as the
forecast horizon, weather prediction errors, and inaccuracies in the model or methodology
used for forecasting. For very short-term forecasts (minutes to a few hours), the most influ-
ential factor is often the rapidly changing weather conditions, particularly the movement
of clouds. A sudden cloud cover can drastically reduce the solar irradiance reaching the
PV panels, leading to a sharp drop in power output. On the other hand, the dissipation
of cloud cover can result in a sudden increase in power generation.

In addition, many PV power forecasts typically provide output on a 15-minute ba-
sis, meaning they account for the average weather conditions and solar irradiance levels
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expected over each 15-minute interval. However, this approach does not capture the short-
term fluctuations that can occur within these intervals.

For instance, a sudden cloud cover passing over the panels within the 15-minute interval
may not be captured by the forecast, leading to an overestimation of the power output for
that period. Conversely, if the sky clears unexpectedly within the 15-minute window, the
power output could be underestimated.

Therefore, even with advanced forecasting techniques, the actual PV power output
can exhibit high fluctuations and differ significantly from the forecasted values due to
the dynamic and unpredictable nature of weather conditions. This discrepancy between
forecasted and actual PV power output presents a significant challenge for the effective
implementation of smart charging strategies based on renewable energy availability.

2.3 Energy Scheduler

This research builds on an integrated scheduling approach, the Energy Scheduler [14],
that takes into account multiple factors, such as charging demand, grid limits, PV power
production, and day ahead electricity prices. This approach, developed by B. Nijenhuis,
serves as a foundation for this study. The focus of this research is on further exploring,
enhancing, and assessing the performance of this approach under a variety of conditions
and circumstances.

2.3.1 Description of the Energy Scheduler

The Energy Scheduler leverages the inherent flexibility of EVs, enabling the shifting of EV
load from peak to off-peak times in sync with time-of-use electricity tariffs.

The Energy Scheduler employs the optimization capabilities of Mixed-Integer Linear
Programming (MILP) solvers, such as CBC [33] or Gurobi [34]. It balances an array of
inputs to generate optimal charging schedules for the various available assets. Such a
charging schedule is refered to as a timetable that determines the start and end times for
charging each EV. It also includes the rate at which each EV should be charged at any
given time. The objective is to minimize costs and reduce peak loads, while maintaining
a high level of service to the EV user, i.e. shifting EV charging load from peak to off-
peak times in alignment with time-of-use electricity tariffs. Thereby, it takes into account
forecasts, including electricity prices and PV energy generation predictions, to optimize
the scheduling process. In addition, it considers the grid limit, ensuring that the grid is
protected, and it respects the energy requirements of EV users, maintaining a high level
of service. The system is designed to be able to adapt to ever-changing conditions in real-
time. It is capable of incorporating new information, such as newly updated forecast data
or new EV arrivals and departures, by constantly re-optimizing with the new information.

The Energy Scheduler utilizes an objective function to define the optimal characteristics
of a scheduling solution. This function takes into account all relevant energy costs, from
grid import/export to PV curtailment (i.e., the lost opportunity of generating free energy
when the PV system is not fully utilized) and battery charging, as well as energy not served
to the EVs. The end result is an optimal schedule for each controllable asset in the system
that fulfills all demands, depending on the mode it is in. Thereby, the Energy Scheduler has
2 modes: cost optimization or peak shaving, explained in detail in the following sections.
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Cost Optimization

In the Cost Optimization mode, the primary objective of the Energy Scheduler is to min-
imize the total cost of energy usage. The system not only takes into account the cost of
energy imported from the grid, but also the cost associated with PV curtailment, and the
cost of not serving energy demand to the EVs.

The scheduler uses its inputs, such as forecasts for energy prices and PV generation,
along with known constraints, such as the grid limit and EV requirements, to generate an
optimal schedule for each controllable asset. The optimization model hereby is designed
to minimize the overall energy cost for the entire duration of the schedule, factoring in
tariffs, PV generation, battery storage, and EV charging demands. If there is flexibility in
when EVs can be charged (such as with overnight charging), the scheduler aims to do so
at times when energy costs are at their lowest.

Peak Shaving

In Peak Shaving mode, the main objective of the Energy Scheduler is to reduce the max-
imum load placed on the power grid over time, while still providing the energy demand
of the EVs. This not only safeguards the grid infrastructure from potential overloads, but
also maximizes the effective utilization of existing power connections. By flattening the de-
mand curve and mitigating peak usage, this strategy allows for a greater overall electricity
usage without necessitating an upgrade to a higher capacity connection.

To achieve this, the scheduler aims to use energy from local storage (such as a battery
system) or locally generated energy (such as PV) during times of peak demand. By doing
so, the system effectively ’shaves off’ the peaks in energy demand, reducing the maximum
power drawn from the grid and thereby decreasing peak demand charges.

2.3.2 Current Performance and Limitations

The Energy Scheduler, at its current stage, demonstrates promising performance in man-
aging EV charging schedules to optimize grid load, lower costs, and maximize the use of
PV generation. However, there remain several challenges that need to be addressed.

Firstly, the Energy Scheduler is not designed to handle real-time adjustments effectively.
It generates charging profiles based on PV power forecasts and other pre-known constraints.
But this approach fails to accommodate unforeseen fluctuations or deviations from solar
power forecasts, resulting in suboptimal usage of available resources.

Secondly, the Energy Scheduler currently relies on a limited set of data to generate
schedules, primarily depending on solar power forecasts and known EV flexibility. How-
ever, in practice, the EV flexibility is often not readily available due to inadequate com-
munication between EVs and the charging system. For instance, the current standard of
AC charging protocol, Open Charge Point Protocol (OCPP), does not provide SoC infor-
mation for AC charging. Also, the departure time of the EV is not known and can only
be approximated.

Moreover, existing EV flexibility information collection methods, such as smartphone
applications, may provide a barrier for EV users to provide their flexibility information, as
they first have to install the application.

2.3.3 Areas for Enhancement

Based on the existing limitations, several key areas of improvement can be identified for
the Energy Scheduler.
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Primarily, there is a need for the integration of a Real-Time Control Mechanism. This
enhancement allows the Energy Scheduler to dynamically respond to real-time deviations
from forecasts, continually updating charging schedules to achieve optimal usage of avail-
able resources. This improved strategy can combine predictive control and feedback con-
trol, using forecasted data to plan charging schedules while adapting in real-time to actual
measured data. The implementation of such a mechanism can potentially minimize energy-
not-served, maximize the utilization of renewable energy, and reduce the cost of charging,
leading to increased efficiency, reduced CO2 emissions, and lower costs.

Secondly, the Energy Scheduler could significantly benefit from better user integration.
Currently, the lack of accurate EV flexibility information significantly hampers the opti-
mization of the charging schedules. Thus, a more user-centric design could improve the
overall performance. For instance, an intuitive and interactive UI could be developed to
facilitate the exchange of information between EV users and the Energy Scheduler. This
UI could collect data such as the State of Charge (SoC), the expected energy demand, the
expected departure time, and other relevant user-specific data.

To evaluate these enhancements effectively, there is a need for a comprehensive Eval-
uation Framework. This framework should allow for thorough testing of proposed and
future solutions under various conditions and scenarios, both in computer simulations and
real-life field tests. This systematic evaluation can facilitate the ongoing development and
refinement of the Energy Scheduler, ensuring it is robust, efficient, and widely applicable.
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Chapter 3

Requirements & Design

This chapter explores the specific requirements and design considerations that have guided
the development of the three key components of this research: the Real-Time Control mech-
anism, the User Interface (UI), and the Evaluation Framework. Each of these components
plays a critical role in addressing the challenges outlined in Section 1.2 and contributing
to the overall aim of enhancing the management of electric vehicle (EV) charging.

The chapter begins with a comprehensive discussion on the Real-Time Control mecha-
nism in Section 3.1. The Real-Time Control mechanism is designed to adapt to real-time
changes in energy production and demand, revising the charging schedules dynamically to
enhance efficiency and reliability.

In Section 3.2, the UI is discussed. The UI has been designed to provide an intu-
itive and user-friendly platform to facilitate user-system interactions, enabling users to
efficiently communicate their EV flexiblity information. The section details several key
design considerations such as simplicity, information gathering, flexibility, reliability, and
user control and choice.

Section 3.3 dives into the design considerations regarding the Evaluation Framework,
which serves as the testbed. The design considerations for this framework revolve around
its ability to test various scheduling strategies effectively and its adaptability for easy tran-
sition to real-world scenarios. This section also explains how the Evaluation Framework
aligns with the principles of the Microservices Architecture Model for ease of implementa-
tion and scalability.

The requirements and design considerations detailed in this chapter are integral in
solving the challenges outlined in Section 1.2. These design parameters set the stage for
the subsequent chapters, which delve into the implementation. These requirements and
design considerations not only guide the development process but also serve as benchmarks
against which the effectiveness of the system can be evaluated.

3.1 Real-Time Control

The Real-Time Control mechanism has as aim to enhance the performance of EV scheduling
strategies by accounting for deviations from forecasted values. A key requirement of the
Real-Time Control mechanism is its ability to adapt to changes in real-time and revise the
charging schedules accordingly. To effectively implement this mechanism, several aspects
were considered during its design.

The following subsections go through the requirements and design considerations step
by step, laying the groundwork for a detailed discussion of how the Real-Time Control
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mechanism was implemented to satisfy these essential characteristics. The specific imple-
mentation details are covered in Section 4.1.

3.1.1 Dynamic Responsiveness

The control mechanism was required to be dynamic, ensuring rapid and effective adjust-
ments to the charging schedules in response to real-time data. This characteristic is crucial
in addressing the uncertainty and variability associated with energy forecasts, as discussed
in Section 2.2.4. The Real-Time Control mechanism should be capable of continually mon-
itoring the system and making suitable adjustments to the charging power as required.

3.1.2 User Requirements

The control mechanism should take into account the EV user requirements, ensuring that
the EVs are charged to the desired level by the time the user indicates to depart. While
making adjustments to the charging schedule, it is important to ensure that these changes
do not compromise the ability to meet EV user requirements. This requirement stems
from the discussion in Section 2.2.2, where the importance of considering user needs in the
design of EV scheduling systems was emphasized.

3.1.3 Utilization of Locally Produced Energy

The primary objective of the Real-Time Control mechanism is to optimize the utilization
of locally produced solar energy and manage the load on the grid effectively. The grid
load should be spread out across time and flattened. This would protect the grid load and
works to lower the overall charging costs as well, as cheap locally produced solar energy is
utilized more efficiently.

3.1.4 Simplicity and Computational Efficiency

The control mechanism has to be designed with the consideration of simplicity and com-
putational efficiency. It is important that the control mechanism can be implemented in a
practical setting without excessive computational requirements.

3.1.5 Timing Requirements

The Evaluation Framework, where the Real-Time Control mechanism is implemented, op-
erates on a time-tick basis. This means the Evaluation Framework continuously measures
and acts at regular intervals, called time ticks (e.g., every 10 seconds).

This approach has implications for the performance of the system. Specifically, in
between time ticks, there is a possibility of changes in measured photovoltaic (PV) power
values that the system is not aware of, potentially affecting the accuracy of the real-time
control actions. As such, the accuracy of the control mechanism is inherently tied to the
frequency of these time ticks. The design of the Real-Time Control mechanism should
ensure it can effectively handle these inherent uncertainties.

To strike a balance between accuracy and performance, the length of the time tick
needs to be chosen carefully. Short time ticks would allow the system to quickly respond
to changes and enhance the accuracy of the control mechanism. However, this length should
also not be so short that the chargers do not have sufficient time to react to changes in
power settings.
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On the other hand, longer time ticks might ease the computational burden and allow
more time for the chargers to react, but this could lead to less accurate control as changes
occurring between time ticks might not be accounted for. Therefore, it is crucial to deter-
mine a suitable time tick length that allows for rapid, accurate control adjustments, while
also giving the chargers adequate time to respond to new power settings.

The detailed operation of the system on a time tick basis, including the determination
of a proper tick length, is discussed further in Section 4.3.3.

3.2 User Interface

The User Interface (UI) plays a significant role in any system, which has to provide a
communication bridge between users and the functionalities of the system. Given the
complex nature of energy scheduling and real-time control, it is imperative that the UI is
designed to provide clear, accessible, and concise information to users, regardless of their
technical background.

To ensure that the UI effectively supports the functions of the Real-Time Control mech-
anism and the Evaluation Framework, the design incorporated several key considerations:

• Simplicity: As the primary interface between users and the system, the UI should
be simple, uncluttered, and intuitive. This lowers the threshold for users to input
their flexibility information.

• Information Gathering: One of the critical functions of the UI is to effectively
gather flexibility information from users, including departure times and energy de-
mands. To ensure broad user accessibility, it is essential to ask for this information
in an easily understandable way. This approach reduces the technical complexity
for the user. The UI should effectively accommodate users with varying degrees of
technical expertise and facilitate accurate energy demand input.

• Flexibility: The UI design should be adaptable to accommodate future changes,
additions, or updates to the system. It should be easy to add, remove, or modify
components of the interface to adapt to the evolving system requirements.

• Reliability: The UI must be reliable. It should have a low error rate, handle
exceptions gracefully, and always provide accurate information.

• User Control and Choice: In line with findings from Section 2.2.2, it is important
for the UI to incorporate an element of control and choice for the users. Smart
charging should be designed as the default, but it should be possible for users to
override this when desired. This would not only enhance user experience but also
support greater acceptance and adoption of the smart charging system.

• Inviting Design: The UI should not only be functional but also appealing and
inviting to use. Recognizing that users might opt to start charging without utilizing
the UI, it’s crucial that interfacing with the system isn’t perceived as cumbersome.
The goal is a seamless, hassle-free user experience that encourages more consistent
UI interaction.

3.3 Evaluation Framework

The design of the Evaluation Framework was driven by the primary objective of thor-
oughly testing various scheduling strategies and real-time control strategies for charging
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hubs before their implementation in real environments, while also allowing for easy imple-
mentation in real environments. The framework has to be versatile and adaptive, capable
of accommodating charging hubs of different sizes and components, ranging from chargers,
batteries, solar panels, to inverters. It is essential that the framework can adjust various
settings to optimize for specific goals such as cost optimization and peak shaving. Also,
real-time control has to be included, and it should be possible to set the system time tick
frequency.

The framework’s design aligns with the principles of the Microservices Architecture
Model [35]. Microservices Architecture is a method of developing software systems that
are made up of independently deployable, modular services. Each service runs a unique
process and communicates through a well-defined, lightweight mechanism.

By following the Microservices Architecture Model, the framework can mirror real-
world operations as closely as possible in simulations, and allows for easy implementation
in practical scenarios. For this, only the simulated hardware services need to be replaced
with actual hardware components, keeping the transition straightforward and efficient.
The modularity inherent to this model enables a subdivision of the services, meaning some
services can be hosted on centralized servers. This negates the need for expensive compu-
tational resources at each charging hub location. Computationally intensive calculations
can be conducted at a central location, while tasks such as measuring and sending control
signals can be managed locally at the charging hub. This efficient distribution of tasks
enhances the scalability of the system and speeds up the transition to real-world appli-
cations while minimizing resource expenditure. This design encourages realistic testing,
accelerates the transition to real-world applications, and simplifies the transition process.
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Chapter 4

Implementation

This chapter delves into the practical side of our research, transforming the concepts and
designs we detailed in the previous chapter into reality. We are focusing on three main
components of this study: the Real-Time Control mechanism, User Interface (UI), and
Evaluation Framework. Each serves a unique purpose in scheduling the charging of electric
vehicles (EV) in response to solar power fluctuations.

Building on the design considerations and requirements elaborated in the previous
chapter, we start by discussing the implementation of the Real-Time Control mechanism
in Section 4.1. This mechanism combines predictive and feedback controls to adjust charg-
ing strategies dynamically and effectively based on real-time changes. Next, The imple-
mentation of the UI is discussed in Section 4.2. This is designed to be user-friendly and
encourages users to share their flexibility information (i.e. estimated departure time and
estimated departure time), which is critical for effective scheduling. Finally, we delve into
the creation of the Evaluation Framework in Section 4.3. This framework acts as a realistic
simulation and testing environment, bridging the gap between theoretical strategies and
their practical applications.

4.1 Real-Time Control

This section describes the implementation of a Real-Time Control mechanism. The Real-
Time Control mechanism is aimed at addressing the inability of the Energy Scheduler
to adapt to real-time fluctuations in solar power. This lack of flexibility often results in
suboptimal utilization of resources and increased costs. The Real-Time Control mechanism
is designed to make corrections to charging schedules based on the deviations between
forecasted PV power and measured PV power, with the objective to flatten the total
grid load and increase the utilization of locally generated energy. The Real-Time Control
implementation merges predictive and feedback control methods to achieve this.

We begin with an overview of the Real-Time Control mechanism in Section 4.1.1,
explaining its purpose and basic function. This is followed by a discussion on the concept
of Power Discrepancy, a central element to this control mechanism. Next, we delve into
the method of distributing this Power Discrepancy among active chargers in Section 4.1.2.
This method forms the basis for the charger adjustments made by the Real-Time Control
mechanism. Sections 4.1.3 and 4.1.4 introduce more advanced considerations and strategies
in charger adjustments to meet EV requirements and handle EV charging constraints,
respectively. This way we illustrate the evolution of charger adjustments from simple to
complex. After that, in Section 4.1.6, we discuss the handling of significant deviations
induced by the Real-Time Controller. Finally, the core of this section provides a step-by-
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step description of the algorithm that drives the Real-Time Control mechanism.

4.1.1 Overview

The Real-Time Control mechanism is developed using a combination of predictive con-
trol and feedback control methods. Predictive control, derived from the Energy Scheduler,
involves making predictions about the future and then taking action based on these predic-
tions. On the other hand, feedback control involves continually measuring the state of the
system and adjusting the control signals to achieve the desired outcomes. The flowchart
in Figure 4.1 offers a view of the functional structure of this mechanism.

Initially, the cloud provides forecasts of power generation, consumption, and electricity
prices. The Energy Scheduler receives these forecasts, along with EV flexibility information
from the user interface (this User Interface is explained in Section 4.2), and processes these
inputs to produce energy schedules for the chargers. This is used as input to the Real-Time
Control mechanism to apply real-time adjustments based on the evolving power dynamics
in the system, and is therefore referred to as blueprint schedules. These blueprint schedules
represents a predictive control measure as it is developed based on future predictions.

The blueprint schedules then form the basis for the feedback control by the Real-Time
Control mechanism. The Real-Time Control mechanism involves measuring the actual
values of PV generation, grid load, and EV charging powers from the hardware, and com-
paring these with the forecasted values. Significant discrepancies between the forecasted
and actual measured values results in positive (more power available than forecasted) or
negative (less power available than forecasted) Power Discrepancy. The Real-Time Con-
trol mechanism operates on the principle of adjusting the charging rates of active chargers
based on the Power Discrepancy. If there is Power Discrepancy, the charging schedule is
adjusted by the Real-Time Controller to compensate for this. This means we are deviating
from the blueprint schedule. After calculating the adjusted charging rates, the control
signals are send to the chargers.

When the Real-Time Control mechanism identifies significant deviations from the
blueprint schedules, it can send an optimization request back to the Energy Scheduler.
This can then recalculate blueprint schedules based on new values. This is further elabo-
rated on in Section 4.1.6.

Real-Time Control is applied at every time tick within the system. These time intervals
are the frequency at which the system measures and reacts to changes in variables such
as solar generation, grid load, and EV charging profiles. The proper length of these time-
ticks is further elaborated on in Section 4.3.3. The subsequent sections describe how the
Real-Time Control mechanism calculates the adjustments to the blueprint schedule at each
time tick.
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Figure 4.1: Flowchart illustrating the functional structure of the Real-Time Con-
trol mechanism. The mechanism sits in between the Energy Scheduler and the
hardware and adapts the control signals from the blueprint schedules using a feed-
back algorithm.

4.1.2 Distributing Power Discrepancy Among Chargers

In essence, the Real-Time Control mechanism divides the Power Discrepancy among the
active chargers. The Power Discrepancy can either be negative or positive. In case of a
negative Power Discrepancy, the Real-Time Control mechanism attempts to decrease the
charging rates of the active EV chargers, compared to their respective blueprint schedules,
in order to compensate for the shortage. Conversely, when there is a positive Power
Discrepancy, the mechanism increases the charging rates accordingly.

To achieve this balance, the mechanism aims to divide the Power Discrepancy at time
interval t (PD(t)) evenly among the number of active chargers at time interval t (n(t)).
The adjustment for each charger at time interval t (Ai(t)) is computed as follows:

Ai(t) =
PD(t)

n(t)
. (4.1)

This computed adjustment, which can either be negative (when less power than fore-
casted is available) or positive (when more power than forecasted is available), is then
applied to the charging rate of each charger.

However, while it might appear straightforward to evenly distribute the Power Discrep-
ancy, the actual process is more nuanced. Various constraints and considerations come into
play when applying these adjustments. The mechanism must account for the individual
characteristics and states of each charger, the EV user requirements, as well as the broader
conditions of the grid and the objectives of the overall energy management system. The
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subsequent sections delve deeper into these complexities, discussing the additional strate-
gies employed to ensure the efficient use of available power and the fulfillment of EV
charging requirements.

4.1.3 Fulfilling EV Requirements

The initial blueprint schedules are established by the Energy Scheduler considering two
primary parameters: the energy demand of the EVs and their respective estimated or
indicated departure times. When the system deviates from these blueprint schedules, it
could potentially lead to an inability to meet the energy demand within the designated
time, unless corrections are done later on in the schedule.

Therefore, an additional requirement is to ensure that despite any deviations, the total
energy delivered by the end of the charging schedule is the same as or exceeds the energy
demand. This responsive adaptation not only ensures energy requirements are met but
also maintains a high level of service for the EV user. To handle this, three strategies
are deployed: ’Maximum Charging Power’, ’Urgency’, and ’Cumulative Deviation’. These
strategies collaboratively rectify deviations, prioritize energy distribution based on need,
and align energy delivery with the original schedule, ensuring that service for EV users
remains uninterrupted and efficient. Details of these strategies are outlined in the following
sections.

Maximum Charging Power

A viable strategy to address time constraints involves utilizing the maximum charging
power. Specifically, when the remaining time before the departure of the EV is less than
the time required to fulfill the energy demand at the maximum power, the charging power
is set to its highest level. First testings of this functionality revealed that this would
often result in high power peaks just before EV users typically depart. Note, that this
often is at times when PV generation is relatively low, in office scenarios. This results
in higher than average grid load peaks, which are undesirable. Therefore, this strategy
is only implemented as a fall-back mechanism that acts when the other mechanisms for
compensation fail.

Urgency

To mitigate the high power peaks when utilizing the maximum charing power, and thus to
better distribute the power, another solution has been implemented. If time until departure
is also considered, it is possible to prioritize which chargers receive energy first based on
both their remaining energy demand and the remaining time they have to charge. Chargers
with a high energy demand and little remaining time would be prioritized. This is done by
introducing the Urgency metric. This Urgency is based on the remaining energy demand
and the remaining time before the estimated departure of the specific transaction, and it
dictates the proportion of available excess energy which is allocated to each charger during
each adjustment.

The Real-Time Control component identifies the active chargers and calculates the
Urgency for each charger at the each time interval, represented as Ui(t), as the remaining
energy demand (Erem,i(t)) divided by the remaining time intervals, which can be calculated
as the total charging time for each charger (Ti) minus the current time interval t:

Ui(t) =
Erem,i(t)

Ti − t
(4.2)
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Here, the Remaining Energy Demand is calculated as the initial energy demand indi-
cated by the EV user minus the energy already served to that transaction. The Remaining
Time Intervals is computed as the total number of time intervals from the current times-
tamp until the indicated departure time of the charger.

The Urgency represents the "pressure" to serve energy to each charger based on its
remaining energy demand and the time left until its departure. A higher Urgency means
that the charger has a high remaining energy demand and/or little time left to charge, so
it gets prioritized during the adjustment of the charging schedules.

This Urgency metric is then used to distribute the Power Discrepancy among the
active chargers. If the Power Discrepancy is positive (indicating excess PV production),
chargers with a higher Urgency receive a larger share of the additional energy. If the Power
Discrepancy is negative (indicating less PV production than expected), the system uses
the Inverse Urgency (i.e. chargers with lower Urgency have higher inverse Urgency) to
distribute the reduced energy allocation. The Inverse Urgency of each charger at each
time interval, denoted as Uinv,i(t), is the reciprocal of the Urgency Ui(t):

Uinv,i(t) =
1

Ui(t)
(4.3)

This way, chargers with lower Urgency (and therefore a lower need for immediate
charging) receive a larger reduction in their charging schedule. With the introduction
of the Urgency metric, the approach for adjusting the charging schedule for each active
charger evolves. Instead of distributing the Power Discrepancy evenly, it is now weighted
according to each charger’s Urgency.

This is done by calculating the Urgency Proportion for each charger at each time
interval, denoted as Uprop,i(t). It is calculated as the Urgency of the specific charger
divided by the sum of Urgencies of all active chargers:

Uprop,i(t) =
Ui(t)∑n(t)
i=1 Ui(t)

(4.4)

where n is the number of active chargers. The Urgency Proportion represents the
proportion of the total Urgency that each charger’s Urgency represents.

Finally, we calculate the adjustment for each charger at each time interval, denoted as
Ai(t), as the product of Power Discrepancy (PD(t)) and the Urgency Proportion of the
charger Uprop,i(t):

Ai(t) = PD(t)× Uprop,i(t) (4.5)

This way, the chargers with higher Urgency receive a higher proportion of the Power
Discrepancy, either positive or negative, depending on the real-time state of the energy
system.

Note that if the Power Discrepancy is negative (indicating less PV production than
expected), the system uses the inverse Urgency to distribute the reduced energy allocation.
In this case it is denoted as Uinv,prop,i(t), and is calculated as the Inverse Urgency of the
each charger divided by the sum of Inverse Urgencies of all active chargers:

Uinv,prop,i(t) =
Uinv,i(t)∑n(t)
i=1 Uinv,i(t)

(4.6)
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The Adjustment for each charger then updates to the product of Power Discrepancy
and the Inverse Urgency Proportion of the charger:

Ai(t) = PD(t)× Uinv,prop,i(t) (4.7)

This method ensures that chargers with a lower need for immediate charging (lower
Urgency) receive a larger reduction in their charging schedule.

Cumulative Deviation

To further enhance the control over the charging process, the Real-Time Control system
considers the Cumulative Deviation of the transactions. Cumulative Deviation, for a spe-
cific transaction, refers to the aggregate difference between the actual energy delivered to
an EV and the energy that should have been delivered according to the blueprint schedule
up to the current time interval. Mathematically, it is denoted as Dcum,i(t), and is the dif-
ference between the actual energy delivered for each charger until time interval t (Eact,i(t))
and the scheduled energy until time interval t (Esch,i(t)):

Dcum,i(t) = Eact,i(t)− Esch,i(t) (4.8)

A positive Cumulative Deviation indicates that an EV has received more energy than
initially planned by the Energy Scheduler, while a negative Cumulative Deviation signifies
less energy has been delivered.

The system integrates this Cumulative Deviation into its calculations to determine the
adjustments needed to compensate for past deviations for each charger. To achieve this, the
Cumulative Deviation is distributed over the remaining time intervals until the indicated
departure time of the EV. This distributed deviation is referred to as the Cumulative
Adjustment Ratio, denoted as Rcum,i(t), and is calculated as the Cumulative Deviation at
the current time interval, Dcum,i(t), divided by the Remaining Time Intervals, which can
be calculated as the total amount of time intervals (T ) minus the current interval.

Rcum,i(t) =
Dcum,i(t)

Ti − t
(4.9)

The Cumulative Adjustment Ratio gives an additional layer to fine-tune the charging
schedule of each EV. It is added to the adjustment derived from the Power Discrepancy to
form the total adjustment for each charger.

If we integrate this ratio into our original Adjustment formula, the Total Adjustment
for each charger i at time interval t, denoted as Atot,i(t), is the difference between the
original Adjustment at time interval t, Ai(t), and the Cumulative Adjustment Ratio at
time interval t, Rcum,i(t):

Atot,i(t) = Ai(t)−Rcum,i(t) (4.10)

Incorporating the Cumulative Adjustment Ratio enables the Real-Time Control sys-
tem to distribute the accumulated past deviations over the remaining charging period.
This approach ensures corrections spread out over time, contrasting with methods such as
the maximum charging approach, which might delay adjustments until the latest possible
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moment. As such, if an EV has received more energy than planned in the past (positive
Cumulative Deviation), its charging rate will be reduced in the future and vice versa. By
doing so, the system can ensure that the total energy delivered to each EV aligns as closely
as possible with the original scheduled energy by the time of departure. This mechanism
prevents the system from accumulating errors and being forced to make large corrections
at the last possible moment. It contributes to a consistent and evenly distributed load on
the grid.

Summary

In summary, the real-time control system leverages three strategies: Maximum Charging
Power, Urgency, and Cumulative Deviation, to ensure energy requirements are met and to
keep EV charging reliable. The Maximum Charging Power strategy serves as a fallback
mechanism, while the Urgency strategy prioritizes power distribution based on the remain-
ing energy demand and time left to charge. The Cumulative Deviation strategy provides
a corrective mechanism for past deviations. Together, these strategies help in shaping an
effective charging schedule for EVs.

The total adjustment for each charger is calculated using the following formula:

Atot,i(t) = PD(t)× Uprop,i(t)−Rcum,i(t) (4.11)

This formula ensures the distribution of power adheres to the urgency of each charger
and compensates for past deviations in energy distribution. This comprehensive approach
ensures that the total energy delivered to each EV closely aligns with the original schedule,
maintaining a high level of service for EV users and reducing stress on the grid.

4.1.4 EV Charging Constraints

The Real-Time Control component checks whether the current of the charger falls within
certain bounds after the adjustment. Most EVs can only handle charging currents in
between 6 and 16 amperes. If the adjusted charger value falls between 0 and 6 amperes, it
is rounded up (6) or down (0). If the adjusted value exceeds the maximum allowed charging
value, it is reset to this maximum value. Next to that, the considered AC chargers can
only handle steps of 1 ampere. Due to this nature, it could happen that not all Power
Discrepancy is used. To handle this, recursion is introduced.

4.1.5 Recursion

The Real-Time Control Component uses recursion to ensure that the total Power Discrep-
ancy is properly distributed among all the active chargers. When the Real-Time Control
component initially distributes this power discrepancy amongst the active chargers based
on their Urgency and Cumulative Adjustment Ratios, it is possible that not all of the dis-
crepancy can be used in that initial pass. This leftover or "unused" power discrepancy can
occur under certain circumstances. For instance, if an adjustment would cause a charger
to exceed its maximum or minimum permissible charging rate, the adjustment for that
charger will be limited to keep it within those bounds. This limit may prevent the full
Power Discrepancy from being allocated in the initial distribution.

Furthermore, the process of correcting past deviations (through cumulative adjustment
ratios) might not fully utilize the Power Discrepancy. For example, if a charger was previ-
ously over-served and is now receiving less energy to compensate, it may not need its full
share of any additional power available.
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To handle this, the Real-Time Control component includes a check that determines
whether there is any "remaining" Power Discrepancy and whether any adjustments have
been made during the current iteration. If there is still Power Discrepancy and adjustments
have been made, the function recalls itself, passing in the adjusted schedule values, active
transactions, and the remaining Power Discrepancy.

The recursive calling of the Real-Time Control function will persist until one of the
following conditions is met:

• All available Power Discrepancy has been allocated. This is determined when the
remaining Power Discrepancy (in amperes) falls below the minimum step of 1 ampere
that the chargers can handle. This implies that any remaining discrepancy cannot
be further distributed among the chargers due to their operational constraints.

• No further adjustments can be made. This scenario occurs when a round of adjust-
ments does not yield any changes to the charging schedules. This may happen when
all chargers are already charging at their maximum capacity, while adjustments are
positive, or when the remaining energy demand of the EVs has been met.

• The Power Discrepancy becomes worse after adjustments. This condition is included
to prevent a potential infinite loop where the system keeps trying to optimize the
distribution but instead worsens the Power Discrepancy due to various factors such as
constraints in the charging process. This can occur when all chargers have reached
their maximum or minimum allowable values, and no further adjustments can be
made.

The above recursive mechanism is crucial, as it ensures that any remaining Power
Discrepancy, whether excess or shortfall, is progressively distributed among the active
chargers, adhering to their Urgency and Cumulative Adjustment Ratios. This results in a
more accurate and efficient allocation of energy, taking into account both the Urgency and
the past deviations for each charger.

4.1.6 Re-optimizations

Significant Power Discrepancies could diverge the served energy and scheduled energy by
quite a lot. In such a case, a new optimization request could be sent to the Energy
Scheduler, which then creates a new blueprint schedule considering the updated energy
demand, (original energy demand minus the energy already served). This ensures that
schedules are updated based on the updated energy demands.

The Cumulative Adjustment Ratio gives insight into the magnitude of the deviation
from the blueprint schedule in relation to the remaining time to correct this deviation.
Therefore is could serve as a good measure to trigger re-optimization of the blueprint
schedules.

In detail, a high Cumulative Adjustment Ratio, even with a sufficient remaining charg-
ing time, indicates that the real-time charging process has deviated significantly from the
initially planned blueprint schedule. On the other hand, a small remaining charging time,
regardless of the size of the cumulative deviation would also increase the Cumulative Ad-
justment Ratio. This may indicate that there is insufficient time to adjust the charging
rates and correct the deviation, without causing substantial disruptions in the charging
schedules. Therefore the Cumulative Adjustment Ratio is a good indicator of the necessity
for a re-optimization.
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In either scenario, a re-optimization of the blueprint schedules could be beneficial to
realign the actual energy delivery with the planned schedules. The re-optimization process
involves sending a new optimization request to the Energy Scheduler, which then creates
a revised blueprint schedule. This new schedule is based on the updated energy demand,
which is the original energy demand minus the energy already served.

Importantly, the re-optimization process is triggered when the Cumulative Adjustment
Ratio exceeds a pre-defined threshold. This threshold serves as an indicator of the ac-
ceptable level of divergence between the blueprint schedule and the realized schedule. If
the Cumulative Adjustment Ratio exceeds this threshold, it signals that the blueprint and
realized schedules have diverged excessively or there the remaining time to correct for the
deviations is low, warranting re-optimization. It should be noted that this new blueprint
schedule still relies on the original forecast values, reinforcing the necessity of the Real-
Time Control component to handle any potential deviations for the new blueprint schedule
as well.

The process of determining a corresponding threshold is a complex task that involves
balancing the use of computational power and the quality of the scheduling solution. A
too low threshold might cause frequent re-optimizations, increasing the computational
load, while too high threshold might result in significant deviations from the blueprint
schedule, requiring compensation at possibly inconvenient times, at which for example PV
production is low. In practise, the threshold at which a new optimization is requested is
chosen to be a pre-defined value set by trial and error.

4.1.7 The Algorithm

The Real-Time Control Component uses an algorithm that operates based on the principles
and constraints previously discussed. The algorithm can be broken down into various steps
to more clearly demonstrate its operation.

1. The algorithm begins by obtaining the blueprint charging schedule value from the
Energy Scheduler, the current time, the grid load, PV power measurements and PV
power forecasts.

2. It then computes the Power Discrepancy by comparing the forecasted PV power with
the actual measurements.

3. The algorithm then retrieves all the active transactions. For each transaction, it
calculates the remaining energy demand and remaining time intervals.

4. Using the remaining energy demand and remaining time intervals, it calculates the
Urgency for each active transaction. The Urgency is reversed when the Power Dis-
crepancy is negative.

5. The algorithm also calculates the Cumulative Deviation and Cumulative Adjustment
Ratio for each active transaction.

6. The algorithm then uses the Urgency and Cumulative Adjustment Ratio to calculate
the adjustment for each charger:

Atot,i(t) = PD(t)× Uprop,i(t)−Rcum,i(t) (4.12)

This formula ensures that the adjustments made to each charger are based on both
the urgency of their energy demand and the history of over- or under-supply of energy,
while also taking into account the total Power Discrepancy available.
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7. After computing the adjustments, the algorithm checks the constraints on the charg-
ing rates and adjusts the charging rates accordingly.

8. The algorithm then checks whether there is any remaining Power Discrepancy. If
there is, and if any adjustments have been made, it repeats steps 6-7 with the new
Power Discrepancy.

9. The algorithm continues to repeat these steps until all Power Discrepancy has been
allocated, no further adjustments can be made, or the Power Discrepancy worsens
after adjustments.

10. If at any time the Cumulative Deviation becomes too significant, the algorithm sends
a request to the Energy Scheduler to create a new blueprint schedule.

4.2 User Interface

The UI is the connection between users and the EMS, it should be easy to use, and EV
flexibility information should be gathered effectively. The UI enables users to input their
expected departure time and desired travel distance, providing valuable data for both the
Energy Scheduler, to schedule the loads, and the Real-Time Control algorithm, to know
how much it can deviate. This section explores its development process and the underlying
technology.

4.2.1 Development

The main feature of the UI is a straightforward, digital form for users to input their
expected departure time and desired travel distance they want to charge. To make the
process simple, users may provide their desired additional kilometers of range, instead of
the more technical measure of energy in kWh. This approach aims to motivate non tech-
savvy users to provide their flexibility information. The EMS converts these kilometers of
range to kWh by a factor based on average kWh/km for EVs.

The designed UI is directly integrated into the charger, thereby simplifying the process
of gathering user flexibility information. This approach encourages users to provide their
data without the need for an additional smartphone application.

The developed UI uses a modern technology stack, consisting of JavaScript for dynamic
functionality, HTML and CSS for structure and design, and a backend API for data storage
and retrieval. These technologies were chosen for their ubiquity, simplicity, and robust
support. The UI runs on a waterproof tablet installed above the charger. See Figure 4.2.
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Figure 4.2: Integrated UI tablet on the EV charger facilitating ease of access for
users to input their flexibility data.

4.2.2 User Interaction

The UI supports three steps, shown in Figure 4.3. The first step informs the users about
the benefits of Smart Charging (ZonLaden), which encourages them to drive sustainably.
If the user wishes to proceed without Smart Charging, they can just swipe their charging
card. This screen also displays the current cost of charging (€0.50 / kWh).

In the second step the user is able to select the charging station, here the two options
for the left and the right charging plug are provided, as the charger has two plugs. For
example, in Figure 4.2, the right charger plug is in use.

The third step allows users to input their flexibility information. They indicate their
expected duration of their stay using a slider that ranges from 0 to 10 hours, and their
desired travel distance (in kilometers) using another slider that ranges from 0 to 500 kilo-
meters. This input is easy to adjust and visually intuitive, thereby aiding user accessibility.
The conversion from kilometers to kWh happens in the EMS and uses an average kWh/km
conversion factor.
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(a) First screen
shows benefits of
ZonLaden (smart
charging), offers
standard charging,
and shows kWh price.

(b) Second screen,
where the user can
select their charging
station, choosing be-
tween the left or right
socket.

(c) Third screen, ask-
ing the user for their
stay duration in hours
and the amount of km
they want to charge.

Figure 4.3: Screenshots of the 3 steps of the form of the UI.

4.2.3 Backend

The UI already employs some error-checking algorithms to ensure that the given data
is valid. It hereby provides visual feedback once the data is submitted and in case of
inconsistencies, it guides the user where necessary.

The input data of the users is stored securely in the EMS database via a RESTful API.
The EMS uses this data for energy scheduling. By providing an accessible interface for
data input, the UI enables users to communicate their energy needs to the EMS easily,
promoting efficient scheduling of the charging process.

4.3 Evaluation Framework

This Section presents the design and operations of the Evaluation Framework, providing a
comprehensive understanding of the tools and methodologies adopted in this research to
analyze EV scheduling strategies.

The Evaluation Framework has been instrumental in testing and evaluating EV schedul-
ing strategies, providing a realistic simulation environment and practical implementation
options. The framework is designed to to bridge the gap between theoretical strategies and
their real-world applications.

4.3.1 Framework Design and Components

The Framework is constructed on a "time tick" principle. It operates by subdividing the
simulation period into small time intervals (e.g., 10 seconds). During each time tick, a
sequence of operations such as hardware measurements, optimization, application of live
control, and signal transmission to the hardware are carried out.

The framework is designed to accommodate a multitude of variables, thereby broaden-
ing the range of its applications. Variables such as simulation time, frequency of time ticks,

32



configuration of the charging hub, size of the PV installation, grid limit, battery capacity,
building consumption, and electricity tariffs are taken into account. The framework also
makes use of forecasted and measured PV power data, EV transaction data, and electricity
price forecasts.

The framework has several components. An overview of these components and their
dataflows can be found in Figure 4.4. The primary components of the framework include
the Livecontroller, which coordinates the time ticks and subsequent operations, the Hard-
ware Model, which can be either a simulation or physical hardware, a time-series database
(InfluxDB [36]), a document-oriented database (MongoDB [37]), an API-Gateway, and the
Energy Scheduler. The dataflows are further explained in Section 4.3.2.

The time ticks are handled by the Livecontroller, acting as the orchestrator of various
activities, including measuring hardware, requesting and reading energy schedules, ap-
plying Real-Time Control, and sending control signals to different hardware components.
The Livecontroller also accommodates user input, and forecasts, which can be used for
Real-Time Control.

The hardware components, which can be either physical or simulated, encompass all the
inverters, batteries, and chargers within the charging hub. The hardware has the capability
to adjust power control values for the battery and chargers, and to curtail the inverter as
needed. The hardware components can be measured, providing data on the actual power
output. Additionally, these components can provide state information. For chargers, this
includes transaction data, such as the energy charged (in kWh), the associated user ID
and a unique transaction ID. For the battery, the state of charge (SoC) can be determined,
providing information on the current capacity of the battery relative to its maximum
capacity.

The Energy Scheduler is an event-based optimizer/solver, producing energy schedules
for each asset in the system. These schedules are optimized energy schedules for each asset
in the system for a horizon, set by the available forecast information. Due to the nature of
PV power forecasts and electricity price forecasts, this horizon is typically between 12 and
24 hours. Energy schedules are calculated when the Energy Scheduler is triggered by the
Livecontroller upon specific events (such as an EV arrival or departure), when new infor-
mation becomes available, or other insights derived by the Real-Time Control mechanism,
such as the Cumulative Adjustment Ratio, explained in Section 4.1. The Energy Sched-
uler uses user-input and state information from MongoDB and already scheduled loads and
forecasts from InfluxDB to provide energy schedules for the different assets in the system.
As such, the Energy Scheduler is the service that handles the energy scheduling approach
explained in Section 2.3.

The API-Gateway is responsible for managing and directing user inputs, charger sta-
tuses, and forecasts to appropriate services.

4.3.2 Component Interactions and Dataflow

The flowchart in Figure 4.4 visualizes the interactions among the various components of
the Evaluation Framework. It shows how the databases (InfluxDB and MongoDB), the
Livecontroller, the Energy Scheduler, the API-Gateway, and the hardware components
(either simulated or physical) communicate with each other.

Starting with the Livecontroller, it is shown that it receives inputs in the form of user
input, forecasts and electricity prices and that it also measures the hardware. These mea-
surements are stored in InfluxDB. It also fetches power schedules created by the Energy
Scheduler from InfluxDB. The Livecontroller then requests an optimization from the En-
ergy Scheduler when it deems it necessary. It also sends the control signal to the hardware.
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The Energy Scheduler, which is responsible for producing optimized energy schedules,
receives a variety of data; the forecasts and already scheduled loads achieved from the In-
fluxDB, are fetched and the user-input and state information is taken from MongoDB. The
schedules are then stored in InfluxDB to be fetched by the Livecontroller when necessary.

The API-Gateway receives user inputs, charger statuses, and forecasts and saves them
to the databases. These data can be stored in either MongoDB (for user inputs and state
information) or InfluxDB (for PV power and price forecasts). The forecasts can come from
a forecast API service such as Forecast.Solar [38] or ENTSO-e Transparency Platform [39]
in case of real-world implementation, or from a file in case of simulations.

The hardware components receive control signals from the Livecontroller and provide
measurements and state information back to the Livecontroller and the API-Gateway.

Figure 4.4: An overview of the different services and data flows of the Evaluation
Framework.

4.3.3 Time Tick Operations

The operations of the Evaluation Framework revolve around the concept of "time ticks".
These are discrete intervals of time that the framework uses to coordinate activities. Each
time tick initiates a sequence of operations, such as gathering hardware measurements,
optimization, Real-Time Control application, and signal transmission to the hardware.

In more detail, the operations happening each time tick are:

• EV Arrivals and Departures: Capturing real-time changes in the charging hub
such as the arrival and departure of EVs, their energy demand, departure time, and
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charging status.

• Active Transactions Update: The framework keeps track of ongoing transac-
tions, allowing for accurate data management and timely updates to the scheduling
strategy.

• Energy Price and PV Power Forecast Updates: The framework incorporates
real-time energy prices and PV power forecasts, improving the scheduling strategy’s
adaptability and efficiency.

• Optimization Request: Optimization requests are generated based on changes in
the state of the charging hub, allowing for dynamic scheduling.

• (Real-time) Control: The framework executes Real-Time Control based on active
transactions, further refining the energy schedules and their implementation.

• Measurement Fetching and Storage: Measurements from the assets are con-
stantly retrieved and stored, aiding in real-time decision-making and future analysis.

The chosen frequency for the time tick in the Evaluation Framework is 10 seconds.
This choice of time tick frequency is a balance between maintaining high-speed simula-
tions, providing accurate Real-Time Control, and accurately reflecting fluctuations in PV
production and charger response times.

In real-world environments, PV generation can fluctuate significantly due to changes in
weather conditions. Having a time tick of 10 seconds allows the system to respond promptly
to these rapid changes in solar output, providing more accurate control and optimization
of charging schedules.

Charger response times are another critical factor to consider. Modern EV chargers
can respond to control signals relatively quickly, often within a few seconds. By choosing
a time tick of 10 seconds, the framework allows sufficient time for chargers to respond to
control signals and for these changes to be measured and incorporated into the system,
which is crucial for the effective implementation of Real-Time Control.

A shorter time tick would allow for even more precise control and could potentially
handle faster fluctuations in variables such as PV output or charger state by the Real-
Time Controller. However, this would come at the cost of significantly increasing the
computational load. Also, chargers might not be able to respond in time to the changes
in power as fast. In contrast, a longer time tick would reduce the computational load and
allow enough time for hardware to react to control signals but might not be able to react
to rapid changes in these variables effectively.

Finally, choosing a time tick frequency of 10 seconds aligns well with the communication
protocols used by many energy assets, making the Evaluation Framework compatible with
a wide range of potential real-world applications.

4.3.4 Implementation of the Framework

The Evaluation Framework is implemented using Docker [40], which facilitated a Microser-
vices Architecture [35], where each microservice runs independently in isolated environ-
ments. This approach significantly reduced the complexity of managing multi-container
Docker applications, thereby enhancing the effectiveness of the framework.

The Evaluation Framework is implemented using an asynchronous programming ap-
proach in Python [41], thereby utilizing the robust support for asynchronous Input/Output
operations. The asynchronous nature of the tick method in the Livecontroller allows for
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concurrent execution of I/O-bound tasks such as data fetching and sending, resulting in
significantly improved simulation speed.

For handling user inputs, charger statuses, and forecast APIs, the framework incorpo-
rated an API-Gateway, developed using Flask [42]. Data management is achieved using
InfluxDB [36] for handling time-series data, and MongoDB [37] for handling non-time-
series data. For visualization and analysis, Grafana [43] is employed, providing dynamic,
real-time dashboards.

4.3.5 Implementation in Real Environment

The Evaluation Framework can be implemented for both simulated environments and
actual real operation. The simulation mode uses theoretical data and emulated hardware to
mimic real-world situations, whereas in the actual implementation, the framework interacts
with physical hardware and utilises real-time data from the environment.

Firstly, the hardware models used in the simulations are replaced with actual hardware
components, such as chargers, inverters, batteries, and solar panels. As these hardware
components can receive and respond to control signals, they facilitate the transition from
the simulation mode. They also offer the added advantage of providing real-time measure-
ments and state information which can be integrated into the system for more accurate
decision making.

Next, the forecast data for PV production and electricity prices, which are loaded from
saved files in the simulation mode, are replaced with live data from APIs. The APIs,
such as Forecast.Solar for PV power forecasts and ENTSO-e Transparency Platform for
electricity prices, provide real-time and more accurate data for the Energy Scheduler to
optimise the charging schedules.

To accommodate the difference in computation requirements between simulation and
real-world operation, a distributed computing architecture may be adopted. The opera-
tions could be divided across a centralised location and the charging hub location. The
centralised location, having robust computational power, would handle the computationally
intensive tasks, such as optimising the energy schedules based on the current forecast and
price data. On the other hand, the charging hub location, closer to the physical hardware,
would take care of measuring the hardware, sending control signals, and implementing
real-time control.

This distributed architecture can bring significant advantages. The computational load
is efficiently divided, allowing for faster operation without overloading the hardware at the
charging hub. Furthermore, real-time control and monitoring tasks could be performed
with lower latency due to their proximity to the hardware.

4.3.6 Challenges and Limitations

One of the significant challenges encountered during the design was to ensure high-speed
simulations while maintaining a high degree of realism. In simulations, where each ’time
tick’ does not represent actual elapsed time but is processed as quickly as possible, the
initial design strategy of executing all steps at each time tick led to slower simulations,
especially at lower time tick intervals. To enhance simulation speed, the Livecontroller was
optimized to limit inputs and outputs to various services, only performing measurements
and sending signals when necessary. However, in a real-world operation where each tick
corresponds to an actual elapsed time, performance was not an issue. The system had
ample time in between time ticks to complete necessary calculations, ensuring smooth
real-time operation.
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Creating accurate models for hardware, such as chargers, inverters, batteries, and so-
lar panels is a non-trivial task. There may be a discrepancy between how the modelled
hardware behaves in the simulation and their performance in the real world. Differences
that can occur are hardware failures, measuring inaccuracies and slower reaction times on
control signals.

Although this approach offers high speed and close-to-reality simulations, the accuracy
of the results is dependent on the quality of the input data. While the design attempts
to mirror real-world hardware as closely as possible, the unpredictable nature of real-
world environments presents a significant challenge. Factors, such as unexpected user
behavior or hardware failure, while hard to simulate accurately, can significantly impact
the performance of EV scheduling strategies. Also, the power forecast data for PV need
to be reliable.
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Chapter 5

Test Setup

This chapter describes the comprehensive strategy employed for testing and evaluating the
various components of our system, which include the Energy Scheduler, the Real-Time
Control mechanism, the User Interface (UI), and the Evaluation Framework. The strategy
revolves around a robust approach that ensures the evaluation of each component under
various conditions. This includes the deployment of distinct scenarios and modes, the
collection of real-world data from different seasons, and the investigation of user interaction
through an enhanced UI.

A testing approach involving both simulation and field testing is employed. The sim-
ulations allow for systematic and controlled testing, while field testing provides an under-
standing of the performance of the system under real-world conditions. The testing site is
a charging hub located at an office location, ensuring real-world applicability and reliability
of the testing process.

The chapter is organized as follows: It starts with Section 5.1, where we introduce the
evaluation metrics used to assess the performance of the components. Different quantitative
performance metrics, including total electricity costs, peak grid loads, self-consumption,
self-sufficiency, and energy not served, are used for evaluation.

This is followed by an explanation of the test location in Section 5.2. At this location
the field test is performed and data gathered for input to the simulations.

Then Section 5.3 gives account of the how the simulations are done is given. The simu-
lations are set up to evaluate how the existing Energy Scheduler approach performs under
various conditions, and to investigate how it can be improved further. The simulations
also seeks to understand the impacts and improvements resulting from the implementation
of a Real-Time Control mechanism in electric vehicle (EV) control. For this, scenarios
that incorporate the Real-Time Control mechanism are included. To highlight its impact,
the performance under these scenarios with the performance under scenarios without this
mechanism are compared. To address this, we have implemented a series of scenarios that
encompass different operational conditions including different seasons and the two modes
(peak shaving and cost-optimization, explained in Section 2.3).

Following that, Section 5.4 is dedicated to describing the real-world field testing and
the strategies used therein. The influence of an integrated UI on user-EMS interaction and
EV scheduling effectiveness in a real-world environment is evaluated. For this, the field
test phase involves implementing the UI, allowing users to interact with it, and observing
its influence on scheduling effectiveness. To evaluate the impact of the Real-Time Control
mechanism in a real environment, additional simulations, mimicing the field test with
inputs based on the field test, are conducted. These are used to compare the field test
results with and see the effect of various dynamic variables that may emerge in a real-world
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environment. We conclude this chapter in Section 5.5 with an overview of how the different
tests are compared with each other.

5.1 Performance Evaluation Metrics

Five performance evaluation metrics are used to assess the performance of the different
scheduling techniques. These consist of the total electricity costs, the peak grid loads, the
solar self-consumption, the self-sufficiency and the energy not served.

• Total Electricity Costs: This metric represents the overall expense incurred by
the charging hub in consuming electricity from the grid over a (simulated) period. It
directly reflects the economic efficiency of a scheduling strategy. An effective schedul-
ing strategy should minimize the total electricity cost by making use of the available
resources and electricity price dynamics. For example, it should aim to charge the
EVs when the electricity prices are low, given the users’ charging requirements are
satisfied.

• Peak Grid Loads: This metric focuses on the highest power imports from the grid
or exports to the grid during a period. In this work, the peak grid load is expressed
as the mean of the top 1% of the highest grid loads during a certain period. A
visual representation of peak grid loads is typically achieved through load duration
curves. These curves effectively illustrate for how much time the system operates
at particular load levels, enabling a better understanding of peak loads and their
potential impact on the grid system.

The Peak grid load is an important parameter as high peak loads can induce grid
instability or even failure. Therefore, reducing the peak grid load is an important
objective for energy scheduling strategies. A good scheduling strategy should be able
to flatten the load by spreading the charging load across time and towards periods of
high generation, thus reducing the peak demand. Also, it should be able to reduce
peak PV production to protect the grid infrastructure.

• Self-Sufficiency: Self-sufficiency measures the percentage of the energy demand
(from the EV chargers) that is met by the solar energy generated on-site. We define
Self-Sufficiency (SSmean) as the mean share of the total energy consumption by the
EV charging stations that was sourced directly from the PV installation, calculated
across all days. Each day, we calculate a daily self-sufficiency score by summing up
the difference between the total energy consumed and the energy imported at each
time interval within the day, and then dividing this sum by the total energy consumed
that day, and finally multiplying by 100 to express the result as a percentage. Then
the mean of these daily self-sufficiency scores is calculated to arrive at the SSmean.
This is mathematically represented as:

SSmean =
1

N

(
N∑
d=1

(
1−

∑
tϵtd

Eimported(t)∑
tϵtd

Econsumed(t)

))
· 100 (5.1)

where, N represents the total number of days, d is a specific day in {1, . . . , N}, tday
are the time intervals within each day d and Econsumed(t) is the energy consumed at
time t and Eimported(t) is the energy imported from the grid at time t.
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A higher SSmean implies that the hub is less reliant on the grid for its energy needs.
Enhancing self-sufficiency is an important goal, given the environmental and eco-
nomic benefits of using renewable energy sources. Higher self-sufficiency also results,
on average, in lower grid load.

• Self-Consumption: This metric measures the percentage of solar energy produced
by the PV panels that is directly consumed by the charging hub, rather than being
fed into the grid.

Like self-sufficiency, self-consumption (SCmean) is calculated daily and then averaged
across all days. The daily self-consumption score is derived by considering the energy
consumed and imported at each time interval within a day, but now it is divided by
the total energy generated that day.

Mathematically, this is represented as:

SCmean =
1

N

(
N∑
d=1

(∑
tϵtd

(Econsumed(t)− Eimported(t))∑
tϵtd

Egenerated(t)

))
· 100 (5.2)

Here, Egenerated(t) refers to the energy generated by the PV panels at time t.

Higher self-consumption means that more of the solar energy produced is being effec-
tively utilized at the spot. An efficient scheduling strategy should aim to maximize
self-consumption by aligning charging schedules with periods of high solar generation,
where possible.

• Energy Not Served: The energy not served is the energy demand minus the
energy served to the EV at the end of a transaction. This is energy that the EV user
expected, but did not receive. Energy not served due to a full battery is not taken
into account. The energy not served of all transactions is a measure of how well a
charging control system can satisfy the energy demand of EV users. A lower energy
not served indicates a more reliable charging strategy. It is important to maintain a
high level of service to the EV user while applying charging control.

5.2 Test Setting

The testing is performed at a charging hub located at an office location in Rijssen. An
impression of this location is given in Figure 5.1. An office location was chosen for the
field test and the simulations for several reasons. Firstly, this setting typically exhibits
predictable patterns of EV arrivals and departures based on the work schedule of the office
employees. This regularity allows the system to better manage the charging schedules
based on expected vehicle availability. This makes an office location with charging hub a
typical use case for employing an Energy Management system (EMS).

In addition to the predictable patterns, the choice of the office location was further
influenced by the availability of historical data regarding the arrival and departure times
of EVs. This data is valuable for the simulations, as it keeps the simulations closer to
reality.

The chosen office location hosts, amongst other devices, 24 controllable AC charging
stations (with a maximum power of 22 kW each) and a 73 kWp PV system. Two charging
stations also have the UI (see Section 4.2 integrated to gather EV flexibility information.

40



At this location, transactions are tracked and EV users can be identified, by their ID tag.
This enables us to use historical data (mean energy demand and mean stay duration) for
scheduling per user if no departure time and energy demand is given by the user, further
explained in Section 5.4. The time tick is set to 10 seconds for both the simulation and the
real environment. This enables the use of Real-Time Control, while not performing too
much redundant calculations. It also enables enough time for optimizations by the Energy
Scheduler and for the EVs to react on changes in power supplied.

Figure 5.1: An impression of the test setup in Rijssen, The Netherlands.

5.3 Simulations

The simulations are conducted for specific periods, a week in summer and a week in win-
ter, to account for the impact of seasonal variations on PV production. Furthermore,
the performance of the Real-Time Control component is examined more closely on three
particular days; one where PV production is fluctuating heavily, one where the PV pro-
duction forecast is significantly lower than the actual measured value and one where the
PV production is significantly higher than predicted. Here, no re-optimization is applied,
to purely show how the Real-Time Control mechanism performs on its own.

The simulations are performed using the Evaluation Framework, of which the imple-
mentation has been explained in Section 4.3. The flexibility of this framework, resulting
from the range of variables it can accommodate and its ability to utilize diverse data
sources, facilitates the creation of diverse scenarios to test the performance of the system
under different conditions.

5.3.1 Scenarios

Five primary scenarios are considered for the simulation testing.

1. Business As Usual

2. Cost Optimization

3. Cost Optimization and Real-Time Control

4. Peak Shaving
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5. Peak Shaving and Real-Time Control

The simulations are conducted using distinct operational strategies of the Energy Sched-
uler: Peak Shaving and Cost Optimization. In Peak Shaving mode, the Energy Scheduler
seeks to minimize the highest grid load, while in Cost Optimization mode, it tries to
minimize the total cost of electricity.

The performance of the system under each scenario and strategy is evaluated based on
the metrics defined earlier, including total electricity costs, peak grid loads, self-consumption,
self-sufficiency and energy not served. This diverse set of scenarios and strategies provides
comprehensive insights into performance of the system under various conditions and control
strategies.

Business as Usual

This scenario represents the baseline case where there is no EMS or scheduling. This
scenario simulates what would have happened if no charging control was applied. The EVs
are charged according to a greedy strategy, meaning that it charges as much as possible
as quickly as possible and that no scheduling or load-balancing is involved. It provides
a reference point to compare the performance of the system when the Energy Scheduler
approach and Real-Time Control mechanism are applied.

Cost Optimization

This scenario involves the Energy Scheduler, set to optimize for cost minimization. The
EV charging sessions are scheduled upon arrival of the EV, on a first-come-first-serve
basis and the EV follows the schedule. The scheduling is based on simulated user input.
This scenario serves to understand the performance improvement achieved through the
scheduling approach for cost minimization alone, while also providing a reference point for
the performance of the Real-Time Control mechanism.

Cost Optimization and Real-Time Control

This scenario is similar to the Cost Optimization scenario but includes the Real-Time
Control mechanism. Its purpose is to provide insights into the combined performance of
the scheduling approach in Cost Optimization mode combined with Real-Time Control
mechanism.

Peak Shaving

In this scenario, the Energy Scheduler is set to operate in Peak Shaving mode, aiming to
minimize the highest grid load. The scenario is designed to study the performance of the
system when peak grid loads were targeted for reduction.

Peak Shaving and Real-Time Control

This final scenario combined the Peak Shaving strategy with the Real-Time Control mech-
anism. The objective was to understand the performance of the system when the target is
to reduce peak grid loads with the inclusion of the Real-Time Control mechanism.
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5.3.2 Simulation Data and Assumptions

For the simulation, the EV arrivals and departures are generated based on actual patterns
observed at the testing location during a typical week without holidays (April 3rd to 9th,
2023). This real-world data from the testing location is used to replicate typical EV arrivals
and departures for both a summer and winter week at an office location.

Generated user input is intentionally designed to reflect the unpredictability and in-
herent inaccuracies in real-world predictions. In actual scenarios, the departure times and
energy demands indicated by the user often do not align perfectly with the actual depar-
ture time and the actual charged energy, respectively. To simulate this discrepancy, an
offset is introduced between the indicated and actual departure times, as well as between
the indicated and actual energy demands.

The offsets are modeled using a normal distribution, with parameters drawn from the
findings of a referenced study [16]. To simulate the time offset, a mean value of 33 minutes
earlier than the indicated departure time is used. This suggests that, on average, the
actual departure time is likely to be 33 minutes earlier than the time initially indicated
by the user. The variation around this average is captured by a standard deviation of 107
minutes.

Similarly, the energy demand offset is simulated using a mean value of 8 kWh less
than the indicated demand, with a standard deviation of 13 kWh. This reflects that
the actual energy demand of EVs is, on average, likely to be 8 kWh lower than what is
initially indicated by the user, with variations around this average captured by the standard
deviation.

By simulating these offsets, the model can account for the deviations and uncertainties
that typically occur in real-world EV usage and charging patterns.

The PV power data used in the simulation, both forecasted and actual measurements,
is carefully sourced from historical data. Forecasted PV power data is obtained from
a nearby weather station, ensuring that the predictions align closely with the potential
weather conditions at the testing site.

Actual PV power data is gathered from a PV installation located in close geographical
proximity and similar in setup to the testing location, namely at the SlimPark Living Lab at
the University of Twente [44]. To align this data more closely with the specific parameters
of the testing location, it is appropriately scaled to the PV system. This scaling accounts
for any PV system size differences between the source of the measured data and the testing
site, ensuring that the input data accurately reflects the potential power output of the PV
installation at the testing location.

In terms of electricity pricing, EPEX day-ahead prices [45] for the periods being sim-
ulated are utilized. This represents a realistic and market-based price signal for both the
import and export of electricity. The simulation assumes an equal price for both the import
and export of electricity, as determined by the EPEX day-ahead prices.

5.4 Field Test

Next to the simulations, the system was also tested in a real-world field test. The field test
involved the implementation of the system at the actual charging hub that is simulated in
Section 5.3, with real EVs, solar panels, and grid connection. The user interface, described
in Section 4.2, was also implemented to interact with EV users and gather their flexibility
information.

In this charging hub, the UI is integrated at 4 of the 24 chargers. The energy scheduling
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is carried out based on the flexibility information provided through this UI when people
use this UI. However, when an EV user does not park at a charger with UI or does not
interact with the UI, we rely on historical transaction data to devise a charging schedule.
In this case, schedules are based on the mean parking time and the mean energy demand
from the user’s past transactions, if available. These two variables enable the Energy
Management System (EMS) to create a personalized and efficient charging schedule for
each user, without the necessity of user interaction with the UI. Mean parking times under 4
hours are excluded. These cases typically involve visitors who cannot be reliably scheduled.
In these case a "greedy" schedule is given, wherein maximum charging is provided until
the EV user departs or the battery reaches full capacity.

The performance of the system in the field test is evaluated based on the metrics
explained in Section 5.1. Doing a field test is important, as it takes into account the
uncertainties and complexities of the real world.

One source of uncertainty could come from the behavior of the EV users. Although
we have historical data to guide our predictions, individual behavior can vary greatly
and is influenced by countless factors. For instance, EV arrival and departure times may
be inconsistent due to changes in users’ schedules. The state of charge of the EV upon
arrival can also vary, affecting the charging requirements. Furthermore, users’ responses
to and interactions with the UI can be unpredictable. Next to that, unexpected technical
issues or failures can have an effect on the results. Issues can range from minor glitches
in the UI or the Energy Scheduler to more significant failures such as a malfunctioning
EV charger. These occurrences can disrupt the planned charging schedules and affect the
overall performance of the system.

Next to taking into account these uncertainties, the process of implementing and in-
tegrating the system into the existing infrastructure at the field test can also introduce
complexities. This can include challenges related to compatibility with existing EV charg-
ers or the power grid, compliance with regulations, and the successful implementation of
the user interface.

Next to the field test, we run extra simulations (next to the ones explained in Section
5.3) using data measured at this field test at the time the field test was conducted, to ensure
an accurate comparison between simulated and field test results. These include a Business
As Usual scenario, a scenario without Real-Time Control, and a scenario with Real-Time
Control. Comparing these extra simulations with the field test allow us to observe what
would have happened if no control was applied, and how much influence uncertainties have
on the performance of the charging control strategies. To run the simulations we use the
same data (arrival times, departure times, measured PV power and forecasted PV power)
from the real-world setting.

During the field test only the scenario with the Energy Scheduler in Peak Shaving mode
and Real-Time Control was tested.

5.5 Comparison and Analysis

The results of the simulation and the field test are compared and analyzed to understand
the performance of the system. This phase involves a systematic comparison of the results
obtained from the simulation and field testing. The comparison between the simulations is
made across the five scenarios: Business As Usual, Cost Optimization, Cost Optimization
and Real-Time Control, Peak Shaving, and Peak Shaving and Real-Time Control. For the
field test comparison, additional simulated scenarios are employed. These scenarios use
measured data from the field test as inputs, providing a direct and fair comparison to the
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actual field test measurements.
The comparisons are done based on the defined metrics, including total electricity costs,

peak grid loads, self-consumption, self-sufficiency, and energy not served. The evaluation
provides a quantitative measure of the performance of the system and its potential for
reducing electricity costs and grid load and increasing self-consumption and self-sufficiency.

The analysis is conducted in two distinct steps:

5.5.1 Comparison of Simulation Results

The first step involves comparing the results obtained from the simulations across the five
scenarios. This comparison provides insights into the performance improvement achieved
by implementing the Energy Scheduler and the Real-Time Control mechanism. It also
helps to identify the strengths and weaknesses of each approach and their impact on the
overall performance of the system.

5.5.2 Analysis of Field Test Results

The next step involves analyzing the results obtained from the field test with the Energy
Scheduler (Peak Shaving) and Real-Time Control scenario. To enable an accurate compar-
ison, we do three extra simulations where we mirror the real-world conditions of the field
test in three specific simulation scenarios: a Business As Usual scenario, a scenario without
Real-Time Control, and a scenario with Real-Time Control. To run these simulations, we
use the exact same data, i.e. EV arrival times, departure times, measured PV power, and
forecasted PV power, that we measured at the field test. This way we simulate what would
have happened if either no control was applied and if no Real-Time Control was applied.

This parallel use of data ensures a fair comparison and a comprehensive understanding
of how our system performs control strategies in the real world. To compare, we use the
evaluation metrics explained in Section 5.1. This comparison helps understanding the
differences in the performance of the system under controlled simulations and real-world
conditions. It also provides insights into the robustness of the system and adaptability to
real-world uncertainties and complexities, which may, among other things, occur due to
the implementation of the UI.
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Chapter 6

Results

This chapter provides a comprehensive presentation and analysis of the results obtained
from the tests, explained in the previous chapter. Three primary aspects are examined:
the Real-Time Control mechanism performance under varied conditions, the results of
the simulation testing and the results of the real-world testing. The investigation of the
Real-Time Control mechanism performance delves into its behavior under three distinctive
situations: a day with high fluctuations in photovoltaic (PV) production (Section 6.1.1), a
day with overestimated forecasts (Section 6.1.2) and a day with underestimated forecasts
(Section 6.1.3). These scenarios offer valuable insights into the dynamic adjustment of the
Real-Time Control mechanism in response to different forecast accuracies and fluctuations
in photovoltaic (PV) production.

The Section 6.2 presents the results from the simulation testing, where the performance
of the Energy Scheduler and Real-Time Control mechanism is evaluated under various
scenarios, namely: ’Business As Usual’, ’Cost Optimization’, ’Cost Optimization + Real-
Time Control (RTC)’, ’Peak Shaving’, and ’Peak Shaving + RTC’. The evaluation is based
on performance metrics, including total electricity costs, peak grid loads, self-consumption,
and self-sufficiency.

Finally, in Section 6.3 of this chapter, the field test results are analysed. Also the results
of the effectiveness of the User Interface (UI) is discussed. This comparison further con-
textualizes the potential effectiveness and efficiency of the Real-Time Control mechanism
and the Energy Scheduler, as well as their impact on cost, grid load, and self-sufficiency.

6.1 Real-Time Control Mechanism Under Varied Conditions

This section aims to give an understanding of how the Real-Time Control mechanism
operates and performs in a charging hub hosting multiple chargers. To show this, only one
charging schedule is shown. The analysis of the Real-Time Control mechanism performance
under varied conditions focuses on its behavior under three distinctive situations: on a day
with high fluctuations in PV production, a day with underestimated forecasts and a day
with overestimated forecasts.

6.1.1 High Fluctuations in PV Production

Figure 6.1 illustrates the initial blueprint schedule for a particular charger versus actual
charging values throughout a day with highly fluctuating PV production. These fluctua-
tions are not reflected by the forecasts. On a day with high fluctuations in PV production,
for example due to clouding, the benefits of the Real-Time Control mechanism showed to
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be evident. Even though the PV generation was highly fluctuating, the Real-Time Control
mechanism was able to follow these fluctuations adjust the charging rate in real-time, al-
lowing it to compensate for the deviations from the forecast effectively. As seen in Figure
6.1, the Real-Time Control mechanism decided to charge when the actual PV production
was higher than the forecasted PV production, even if the Energy Scheduler had deter-
mined not to charge during that period (e.g. 9:00 till 12:00). It also reduced the charging
rate significantly when the PV production decreased at times when the blueprint schedule
determined to charge at the maximum rate (e.g. 12:00 till 15:00).

On this highly fluctuating day, the inclusion of the Real-Time Control resulted in both
a notable increase in self-sufficiency and a decrease in the mean top 1% grid load. The
self-sufficiency increased from 70.15% without Real-Time Control to 81.91% with Real-
Time Control. Concurrently, the mean top 1% grid load significantly decreased from 57.6
kW to 30.5 kW, further highlighting the potential of the Real-Time Control mechanism
to enhance system performance and manage grid load, especially during periods of high
fluctuation in PV production.

Figure 6.1: Illustration of the adaptability of the Real-Time Control mechanism
during a day with high fluctuations in PV production. (a) The charging profile
given by the Energy Scheduler and the measured charging power after real-time
control adaptations. (b) The PV power forecast and the measured PV power.

Fluctuations in Charging Rate

An interesting dynamic observed during these periods of intense PV power fluctuation
was a pattern of rapid oscillation in charger power. Specifically, the charger power was
seen to quickly alternate between varying amperage levels in 10-second time ticks. It
demonstrates the active engagement of the Real-Time Control mechanism in balancing the
load in response to the highly fluctuating PV production. While these fluctuations can
occur at all charging rates, the most striking pattern emerged between 0 and 6 amperes.
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This oscillatory behaviour is primarily due to the operational constraints of the charger
itself. The charger has a minimum charging rate set to 6 amperes and, therefore, when the
adjusted charging rate falls in between 0 and 6, the charger would fluctuate between being
fully off (0 amperes) and operating at the minimum allowed charging rate (6 amperes).

The influence of this behaviour on the system can be seen in the performance of the
chargers. When the changes in the charging rate happen when the charger is already active
(between 6 and 16 amperes), the chargers are able to respond to control signals quickly
(within 10 second time ticks) and adjust their operation accordingly. This ensures a smooth
flow of energy from the PV generation to the load, optimizing the use of renewable energy
resources.

However, when faced with on/off oscillations, the system encounters challenges. The
rapid oscillations between 0 and 6 amperes require the chargers to wake up from stand-by
mode, which the chargers struggle to do within the 10-second time tick. This can lead
to inefficiencies in the energy distribution, as the chargers may either under-utilize the
available PV production or overdraw from the grid. Such situations underline the necessity
for fine-tuning the control mechanisms and considering the operational constraints of the
chargers in the real-time scheduling and control processes.

Impact on Grid Load

Figure 6.2 provides a depiction of the RTC mechanism’s influence on the grid load during
the day characterized by high fluctuations in PV production. The graph shows the result
of the RTC acting on the multiple chargers on the grid.

An interesting pattern that can be observed is the significant reduction in the grid load
at peak production times, when there are also multiple electric vehicles (EVs) charging.
This illustrates the ability of the RTC mechanism to efficiently leverage the available PV
power, mitigating grid stress during high-demand periods.

However, the introduction of RTC does introduce a trade-off. During periods of indi-
cated EV departures (11:00, 14:15, 17:00), the grid load is often higher just before vehicle
departures as compared to the scenario without RTC. This increase is a result of the
compensation mechanism of the RTC compensating for past deviations, ensuring that the
vehicles receive the energy they need before departure. Interestingly, shorter transaction
durations sometimes result in higher peaks with the RTC mechanism, again attributable
to the compensation mechanism. This mechanism tends to overcompensate during these
short duration transactions, leading to these observed spikes.
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Figure 6.2: Illustration of the Real-Time Control mechanism’s impact on grid load
during a day with high fluctuations in PV production for the highly fluctuating PV
production case.

6.1.2 Overestimated PV Power Forecasts

On a day with overestimated forecasts, the Real-Time Control mechanism does not follow
the predetermined charging schedule when the power discrepancy between the actual and
forecasted PV power becomes too large, as can be seen in Figure 6.3. The figure shows that,
especially from 11:30 till 12:30, the Real-Time Control mechanism reduces the charging
rate to compensate for the forecast error. Later on in the schedule (14:00), the charger
follows the blueprint schedule again, even though there is still negative power discrepancy.
This is part of the compensation mechanism. Starting from 17:00, shortly before departure
of the EV, the Real-Time Control mechanism starts to compensate more for the earlier
reduction in charging by applying a current of 6 amperes to the charger until the end of
the schedule. This makes sure the requested energy demand is met before the EV departs.
Unfortunately, this compensation occurs at a time when no PV power is available anymore,
potentially leading to higher average power peaks.

Due to this, the inclusion of Real-Time Control resulted in a slight decrease of self-
sufficiency, with values dropping from 11.66% without Real-Time Control to 11.42% with
Real-Time Control. However, this reduction may be offset by days where the performance
of the Real-Time Control mechanism is more significant. In terms of grid load, the mean
top 1% grid load for this overestimated day remained consistent, showing no noticeable
change with the introduction of the Real-Time Control.

For this simulation, no re-optimizations are performed by the Energy Scheduler trough-
out the schedule. The issue where compensation happens when no PV power is available
could be mitigated by performing re-optimizations earlier in the day, allowing it to resched-
ule the remaining energy demand during periods when PV power is still available. For the
summer week and winter week simulations in Section 6.2 this is done.
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Figure 6.3: Comparison of the predetermined charging schedule and actual charg-
ing throughout the day on a day with overestimated forecasts. (a) The charging
profile given by the Energy Scheduler and the measured charging power after real-
time control adaptations. (b) The PV power forecast and the measured PV power.

6.1.3 Underestimated PV Power Forecasts

On a day with underestimated forecasts, where the forecasted PV power is lower than
the actual PV power, the behavior of the Real-Time Control mechanism demonstrates a
different pattern. At the beginning of the schedule, the Real-Time Control increased the
power to a particular charger at periods when the PV discrepancy was positive, as shown in
Figure 6.4. This strategy takes advantage of the surplus PV power that was not accounted
for in the forecasts.

Towards the end of the schedule, specifically around 14:15 and 16:00, the Real-Time
Control mechanism begins to compensate for these deviations by decreasing the power to
the charger, even though the PV discrepancy remained positive. This reduction in power
aligns with the objective of ensuring that the power supplied to the EV at the end of the
day is equal to the energy demand, thereby preserving the balance between supply and
demand.

Interestingly, the inclusion of the Real-Time Control mechanism resulted in a slight in-
crease in self-sufficiency during this day with underestimated forecasts. The self-sufficiency
values rose from 50.48% without Real-Time Control to 52.28% with Real-Time Control.
Moreover, a slight decrease in the mean top 1% grid load was observed, which went from
43.3 kW to 42.2 kW. This decrease in grid load indicates a reduction in peak demand
periods, further showcasing the potential benefits of integrating the Real-Time Control
mechanism.
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Figure 6.4: The Real-Time Control mechanism adjusts the charging schedule in
response to underestimated PV forecasts. (a) The charging profile given by the
Energy Scheduler and the measured charging power after real-time control adapta-
tions. (b) The PV power forecast and the measured PV power.

6.2 Simulation Results

This section presents the results from the simulations of the testing location for a summer
week and a winter week. This section assesses the performance of the Energy Scheduler
alone and for the combination of the Energy Scheduler and the Real-Time Control mech-
anism in the two weeks. For this the performance of the Energy Scheduler and Real-Time
Control mechanism is evaluated under different scenarios: Business As Usual, Cost Opti-
mization, Cost Optimization + RTC, Peak Shaving, and Peak Shaving + RTC. Evaluation
is done based on the performance evaluation metrics, including total electricity costs, peak
grid loads, self-consumption, and self-sufficiency. The energy not served was the same over
all scenarios. The Energy Scheduler and Real-Time Control mechanism do always reach
the energy demand requested.

The performance results of the Energy Scheduler and the Real-Time Control Mecha-
nism under different scenarios has been summarized for both summer and winter seasons
in Tables 6.1 and 6.2, respectively. These tables provide a succinct overview of the com-
parative analysis for self-sufficiency (SS), self-consumption (SC), mean of the top 1% grid
load (TG), and total cost under the different scenarios. The subsequent sections go over
these result and each performance metric and draw conclusions.
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Scenario SS (%) SC (%) TG (kW) Cost (EUR)

Business As Usual 49.25 45.86 80.713 95.39

Cost Optimization 51.26 47.75 81.917 30.95

Cost Optimization + RTC 56.7 51.63 72.222 34.48

Peak Shaving 57.44 51.42 47.651 44.80

Peak Shaving + RTC 64.66 56.78 35.871 46.94

Table 6.1: Overview of simulation results for different scenarios for a summer
week (11-7-2022 till 17-7-2022).

Scenario SS (%) SC (%) TG (kW) Cost (EUR)

Business As Usual 7.94 70.54 84.586 340.34

Cost Optimization 8.14 69.13 78.635 302.20

Cost Optimization + RTC 8.14 68.69 77.481 301.19

Peak Shaving 9.14 71.43 42.203 296.57

Peak Shaving + RTC 9.12 71.43 43.337 297.24

Table 6.2: Overview of simulation results for different scenarios for a winter week
(10-1-2022 till 16-1-2022).

6.2.1 Total Electricity Costs

The results of electricity costs for different scenarios across both summer and winter weeks
are summarized in Table 6.3. This table highlights the differences in comparison to the
Business As Usual scenario.

The total cost for the Business As Usual scenario in summer was 95.39 EUR, whereas in
winter, it was significantly higher at 340.34 EUR. This clearly demonstrates the seasonality
in electricity costs, presumably due to higher consumption and lower solar generation
during winter.

Across all scenarios, the implementation of the Energy Scheduler, using either Cost
Optimization or Peak Shaving strategies, results in notable reductions in total electricity
costs. However, it is interesting to note the divergence between summer and winter costs.

With the implementation of the Energy Scheduler in Cost Optimization mode, the total
electricity cost in summer was reduced to 30.95 EUR, a significant reduction of about 68%
compared to the Business As Usual scenario. This reduction underscores the effectiveness of
the Energy Scheduler in leveraging lower electricity rates and high solar energy generation
for cost-efficiency. However, in winter, characterized by reduced solar generation, The
Cost Optimization strategy still manages a decrease in total costs, albeit less significant at
around 11%. This smaller reduction reflects the challenges of cost optimization in periods
of reduced renewable energy generation.

The inclusion of the Real-Time Control mechanism with Cost Optimization mode re-
sulted in a slight increase in total cost in both summer and winter scenarios. The total
costs were 34.48 EUR and 301.19 EUR for summer and winter, respectively.

For the Peak Shaving strategy, the total cost was 44.80 EUR in summer, a 53% re-
duction from the Business As Usual scenario. In winter, the total cost was 296.57 EUR,
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representing a 13% reduction. When Real-Time Control was applied with the Peak Shaving
mode, the total costs were 46.94 EUR and 297.24 EUR for summer and winter, respectively,
similar to the Peak Shaving scenario.

It is noteworthy that the inclusion of the Real-Time Control mechanism leads to a slight
increase in total costs in both seasons. Incorporating the Real-Time Control mechanism
adds a dynamic layer to the energy scheduling process. Rather than being solely dependent
on known electricity prices for cost reduction, the energy schedules now respond to real-
time changes. This adaptability means the realized schedules are not optimally reducing
costs anymore, whereas the schedules without Real Time Control would be optimal in
reducing costs.

Scenario Summer Winter Average Difference

Business As Usual 95.39 340.34 217.87 -

Cost Optimization 30.95 302.20 166.58 -51.29 (-23.55%)

Cost Optimization + RTC 34.48 301.19 167.84 -50.03 (-22.97%)

Peak Shaving 44.80 296.57 170.69 -47.18 (-21.67%)

Peak Shaving + RTC 46.94 297.24 172.09 -45.78 (-21.00%)

Table 6.3: Cost in EUR for both the winter and the summer week, the average,
and the difference compared to the Business As Usual Scenario.

6.2.2 Grid Loads

Grid loads significantly impact the overall longevity of the grid infrastructure and the
power quality. Hence, strategies that effectively manage these loads can contribute to the
long-term sustainability of energy systems.

Table 6.4 provides an overview of the top 1% grid loads across various scenarios, com-
paring summer and winter weeks and highlighting the difference relative to the "Business
As Usual" scenario. The mean top 1% grid load under the Business As Usual scenario was
80.7 kW in summer, which was substantially reduced to 47.7 kW, a 41% reduction, with
the Peak Shaving mode of the Energy Scheduler. The ability of the Peak Shaving strategy
to flatten the grid load, thereby decreasing peak demand periods, can help reduce grid
strain.

The addition of the Real-Time Control mechanism further decreased the mean top 1%
grid load to 35.9 kW, a 24% reduction compared to the Peak Shaving scenario and a 56%
reduction from the Business As Usual scenario. This indicates that a dynamic, responsive
energy scheduling approach can offer even greater benefits in managing grid loads.

In winter, the Business As Usual scenario resulted in a mean top 1% grid load of 84.6
kW. The Peak Shaving scenario reduced this to 42.2 kW, a 50% reduction. The inclusion of
the Real-Time Control mechanism did not significantly affect this, with the mean top 1%
grid load slightly increasing to 43.3 kW. This shows that the Real-Time Control mechanism
had to compensate a lot later on in schedules, which increased the grid load slightly.

In the winter week, the Cost Optimization strategy led to a decrease in the mean top 1%
grid load by 7.0% compared to the Business As Usual scenario. However, the application
of the Cost Optimization strategy in the summer led to a modest increase in the grid
load compared to the Business As Usual scenario. Interestingly, this suggests that steering
based solely on day-ahead prices may not always yield the most beneficial outcomes for
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grid load, while day-ahead prices are typically designed to signal periods of high and low
demand, encouraging consumption shifts towards lower demand (and hence lower price)
periods to balance the grid load. However, the time spent in higher grid loads is lower for
the Cost Optimization strategy and even lower for the Cost Optimization strategy with
Real-Time Control.

Scenario Summer Winter Average Difference

Business As Usual 80.713 84.586 82.6495 -

Cost Optimization 81.917 78.635 80.276 -2.3735 (-2.87%)

Cost Optimization + RTC 72.222 77.481 74.8515 -7.798 (-9.44%)

Peak Shaving 47.651 42.203 44.927 -37.7225 (-45.64%)

Peak Shaving + RTC 35.871 43.337 39.604 -43.0455 (-52.08%)

Table 6.4: Top 1% Grid Load (TG) in kW for both the winter and the summer
week, the average, and the difference compared to the Business As Usual Scenario.

Figure 6.5 and Figure 6.6 show load duration curves of the simulated summer and winter
week respectively at load hours with net electricity consumption. The load duration curves
for both summer and winter show further differences between the performance of different
scenarios. These curves effectively visualize how the load varies over time and how often it
stays in high, medium, or low load zones. Long durations of high grid load are particularly
unfavorable as they strain the grid infrastructure, leading to higher maintenance costs,
increased likelihood of power outages, and potentially higher electricity tariffs during these
peak periods.

In the summer, it can be observed that the Cost Optimization and the Cost Optimiza-
tion + Real-Time Control scenarios experienced the highest peak loads. This is followed
by the Business As Usual scenario, and significantly lower than that, we have the Peak
Shaving scenario. The Peak Shaving + Real-Time Control scenario exhibited the lowest
peak loads of all.

When it comes to the duration spent in high grid loads, the Business As Usual scenario
spent the most time, reflecting less efficient use of energy resources. Comparatively, the
Cost Optimization and Cost Optimization + Real-Time Control scenarios spent less time
in high to medium grid loads, indicating their effectiveness in managing the system load.

The Peak Shaving scenario spents limited time in the high grid load zone, demonstrating
its strength in reducing the strain on the grid and essentially flattening the grid load. This
effectiveness was further amplified in the Peak Shaving + Real-Time Control scenario,
which spent the least amount of time in the high grid load zone, thereby contributing to
grid stability.

In the winter week, the flattened grid load by the Peak Shaving and Peak Shaving and
Real-Time Control scenarios is even more evident. Time spent in high grid loads and peak
grid loads are significantly lower than for the other scenarios. Both Cost Optimization
and Cost Optimization and Real-Time Control show slightly lower peak loads and time
spent in high grid loads than the Business As Usual scenario. The performance of the
Real-Time Control mechanism is not evident, as the load duration curves of each scenario
with and without Real-Time Control show no significant differences. This indicates a need
for further investigation into its role in periods of low PV production.

The results strongly underline the benefits of both Cost Optimization and Peak Shaving
scenarios in reducing the time spent in high grid loads, thereby reducing strain on the
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grid. The Peak Shaving strategy, in particular, demonstrates superior performance in
maintaining lower peak loads, contributing significantly to grid stability.

Figure 6.5: Load duration curves for the simulated summer week (11-7-2022 till
17-7-2022).

Figure 6.6: Load duration curves for the simulated winter week (10-1-2022 till
16-1-2022).

6.2.3 Self-Sufficiency

Table 6.5 provides a comparative summary of self-sufficiency percentages across different
scenarios for summer and winter weeks. It highlighting the deviation from the "Business
As Usual" scenario as well.

The Business As Usual scenario resulted in a self-sufficiency of 49.25% in summer and
7.94% in winter. When the Cost Optimization strategy was implemented, self-sufficiency
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slightly increased to 51.26% in summer and 8.14% in winter. Incorporating the Real-
Time Control mechanism with the Energy Scheduler in Cost Optimization mode improved
self-sufficiency to 56.7% in summer, but there was no change in winter (8.14%).

The Peak Shaving scenario resulted in self-sufficiencies of 57.44% and 9.14% in summer
and winter, respectively. With the addition of the Real-Time Control mechanism, self-
sufficiency increased significantly in summer to 64.66% but showed a negligible decrease in
winter (9.12%).

Strategies involving the Energy Scheduler performed better than the Business As Usual
scenario. The most significant improvement was observed in the Peak Shaving + Real-
Time Control scenario during the summer, indicating an enhanced ability to cover elec-
tricity needs through solar generation. Particularly, this scenario simulated in the summer
demonstrated an increased ability to cover electricity needs autonomously, signaling to-
wards less dependence on the grid.

Scenario Summer Winter Average Difference

Business As Usual 49.25 7.94 28.595 -

Cost Optimization 51.26 8.14 29.7 +1.105

Cost Optimization + RTC 56.7 8.14 32.42 +3.825

Peak Shaving 57.44 9.14 33.29 +4.695

Peak Shaving + RTC 64.66 9.12 36.89 +8.295

Table 6.5: Self-sufficiency (SS) in % for both the winter and the summer week,
the average, and the difference compared to the Business As Usual Scenario.

6.2.4 Self-Consumption

Table 6.6 summarizes the self-consumption rates across different scenarios for both summer
and winter weeks, indicating the average values and differences when contrasted with the
"Business As Usual" scenario.

In the Business As Usual scenario, self-consumption was 45.86% in summer and 70.54%
in winter. With the implementation of the Cost Optimization strategy, self-consumption
increased slightly to 47.75% in summer and decreased to 69.13% in winter.

The incorporation of the Real-Time Control mechanism with Cost Optimization in-
creased self-consumption to 51.63% in summer, while it reduced further to 68.69% in
winter.

For the Peak Shaving strategy, self-consumption was 51.42% in summer and 71.43% in
winter. Adding the Real-Time Control mechanism led to self-consumption rates of 56.78%
in summer and 71.43% in winter, showing a substantial increase in summer and no change
in winter.

All scenarios involving the Energy Scheduler improved self-consumption rates com-
pared to Business As Usual, particularly during the summer. This improvement implies
a more efficient use of locally generated solar energy, contributing to sustainability and
cost-efficiency. The combination of Peak Shaving and the Real-Time Control mechanism
resulted in the highest self-consumption rate in the summer, highlighting the potential of
these strategies to complement each other for optimal utilization of solar energy.
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Scenario Summer Winter Average Difference

Business As Usual 45.86 70.54 58.2 -

Cost Optimization 47.75 69.13 58.44 +0.24

Cost Optimization + RTC 51.63 68.69 60.16 +1.96

Peak Shaving 51.42 71.43 61.425 +3.225

Peak Shaving + RTC 56.78 71.43 64.105 +5.905

Table 6.6: Self-consumption (SC) in % for both the winter and the summer week,
the average, and the difference compared to the Business As Usual Scenario.

Seasonal Impact

Seasonality had a significant impact on all performance metrics. In winter, when solar
generation is low, reductions in total cost and improvements in self-sufficiency were less
pronounced. On the other hand, the potential of the Energy Scheduler, especially with the
Peak Shaving strategy, to reduce grid loads was highly effective in both seasons.

6.2.5 Summary

A comparison of the various metrics - total electricity costs, peak grid loads, self-sufficiency,
and self-consumption - in both summer and winter seasons reveals the strengths and limi-
tations of each scenario.

Cost Optimization and Peak Shaving strategies of the Energy Scheduler demonstrated
significant potential in improving the efficiency and sustainability of energy use. This
was evident in the significant reductions in total electricity costs, particularly during the
summer. Although the Real-Time Control mechanism did not notably decrease costs, its
value becomes apparent in terms of grid load management and increased self-sufficiency
and self-consumption, especially in the Peak Shaving + Real-Time Control scenario during
summer.

The Peak Shaving scenario consistently delivered lower grid loads across both seasons.
Notably, the addition of the Real-Time Control mechanism in this scenario further low-
ered the mean top 1% grid load. Such reduction in peak loads contributes significantly
towards improved grid stability and longevity, indicating the potential of these strategies
in enhancing the sustainability of energy systems.

Self-sufficiency and self-consumption rates were generally better in scenarios involving
the Energy Scheduler compared to Business As Usual. Peak Shaving, combined with Real-
Time Control, resulted in the highest self-sufficiency rate during summer, showcasing the
potential of these strategies in achieving autonomous electricity needs coverage.

The seasonality effect was evident in all performance metrics. Reductions in total cost
and improvements in self-sufficiency were less pronounced in winter due to lower solar
generation. However, the potential of the Energy Scheduler, especially with the Peak
Shaving strategy, to reduce grid loads was highly effective in both seasons.

In conclusion, while the individual benefits of both Cost Optimization and Peak Shaving
strategies are apparent, their combination with the Real-Time Control mechanism show-
cases a significant opportunity for enhanced performance. Although the winter season
presents certain challenges due to lower solar generation, the overall potential for cost sav-
ings, improved grid load management, and increased self-consumption and self-sufficiency
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demonstrates the viability of these strategies in improving the efficiency and sustainability
of energy systems. Future work may involve refining these strategies to better tackle the
challenges posed by seasonal variations and enhancing the performance of the Real-Time
Control mechanism.

6.3 Field Test Results

The field test was conducted in a real-world environment, dealing with the complexities and
unpredictability that come with real-world application. This environment provides crucial
insights into the practical effectiveness of the implemented charging control strategies.
An overview of the results of the field test and the corresponding simulations on the
performance evaluation metrics is given in Table 6.7. The results presented in the following
sections shed light on the impact of these strategies in a real-world setting, beyond their
theoretical efficacy shown in simulations. First the results of the user interface (UI) are
explained and the subsequent sections go over each performance metric. The results of the
field test are compared with the corresponding simulations.

Scenario SS (%) SC (%) TG (kW) Cost (EUR)
Field Test 78.76 43.97 31.122 -0.24
Business As Usual Simulation 69.40 33.03 52.982 -0.12
Peak Shaving Simulation 83.01 35.32 25.283 -0.27
Peak Shaving + RTC Simulation 88.99 41.21 22.856 -0.26

Table 6.7: Overview of field test results and corresponding simulations, including
the Self Sufficiency (SS), Self-Consumption (SC) Top 1% Grid Load (TG) and the
Cost.

6.3.1 User Interface

The User Interface plays a crucial role in facilitating the interaction between the EV users
and the charging infrastructure. However, during the period of the field test, the UI was
not used by users. As such, all EV charging schedules were derived from the historical data
of known users. In this case this data was the mean parking time and the mean energy
demand from the user’s past transactions, as explained in Section 5.4.

The absence of UI utilization during the field test could be attributed to several factors.
It could be a result of users being unaccustomed to this new technology or being unaware
of the benefits it could bring. Alternatively, it could be due to a lack of user engagement or
understanding about how to utilize the UI to their advantage. This observation indicates
that there is room for improving the usability of the UI and engagement of the users, as
well as promoting its benefits to users more effectively.

Despite this limited use, the UI implementation in the field test provided important
insights. For one, the results show that, despite this low UI use, the control strategies
were still able to achieve significant improvements in self-sufficiency, self-consumption,
cost, and grid load compared to the Business As Usual simulation. This success in real-
world conditions, even with a less personalized and less accurate charging schedule, is a
testament to the robustness of the control strategies. However, the simulations using the
Energy Scheduler also highlight the potential of a more accurate charging schedule that
could be achieved with active UI use. The UI, when fully utilized, could provide more

58



precise and personalized data for scheduling, leading to optimized charging schedules that
more accurately reflect the needs and habits of individual users.

In conclusion, the limited use of the UI during the field test indicates a clear opportunity
for future improvement and refinement in the system. With a more effective UI design,
user engagement, and communication of its benefits, the system could achieve even better
results in terms of self-sufficiency, self-consumption, and cost. It could also result in a
more user-friendly and personalized experience, thus fostering user satisfaction and the
long-term success of the EV charging infrastructure.

6.3.2 Self-Sufficiency and Self-Consumption

An overview of the results of the field test for the self-sufficiency and the self-consumption
is given in Table 6.8. In the real-world field test, we achieved a self-sufficiency of 78.76%
and a self-consumption of 43.97%. Compared to the Business As Usual simulation, which
had a self-sufficiency of 69.40% and a self-consumption of 33.03%, it is clear that the control
strategies have significantly improved the use of locally generated renewable energy in a
real-world scenario.

However, compared to the ideal conditions in the Peak Shaving + Real-Time Control
simulation, which achieved a self-sufficiency of 88.99% and a self-consumption of 41.21%,
the real-world setting saw a slight reduction in self-sufficiency. This confirms the impact
of real-world complexities and uncertainties.

Scenario SS (%) Diff. (%) SC (%) Diff. (%)

Business As Usual Simulation 69.40 - 33.03 -

Field Test 78.76 +13.5 43.97 +33.1

Peak Shaving Simulation 83.01 +19.6 35.32 +6.9

Peak Shaving + RTC Simulation 88.99 +28.3 41.21 +24.8

Table 6.8: Difference and absolute values of Self Sufficiency (SS) and Self-
Consumption (SC) compared to the Business As Usual Simulation.

6.3.3 Grid Load

The implemented control strategies were designed to manage and reduce the grid load.
Table 6.9 gives an overview of the results of the mean top 1% grid load. The second
column shows the differences compared with the Business As Usual scenario During the
real-world field test this was 31.1 kW. This was significantly lower than the Business As
Usual simulation, which had a mean top 1% grid load of 53.0 kW. This 41.2% decrease in
peak grid load demonstrates the real-world efficacy of the implemented control strategies in
managing grid load, thereby enhancing grid stability and reducing stress on infrastructure.

However, when compared to the ideal conditions in the Peak Shaving + Real-Time
Control simulation, which had a mean top 1% grid load of 22.9, the real-world field test
showed a higher peak load. This variation reflects the uncertainties and unpredictable
aspects inherent in real-world scenarios, which impact grid load management.

The load duration curve shown in Figure 6.7 is consistent with these findings. It shows
the Business As Usual simulation having the highest grid load, followed by the real-world
field test, then the Peak Shaving and Peak Shaving + Real-Time Control simulations. This
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Scenario TG (kW) Difference (kW)

Business As Usual Simulation 52.982 -

Field Test 31.122 -21.860 (-41.2%)

Peak Shaving Simulation 25.283 -27.699 (-52.3%)

Peak Shaving + RTC Simulation 22.856 -30.126 (-56.8%)

Table 6.9: Difference and absolute values of the top 1% Grid Load (TG) compared
to the Business As Usual Simulation.

reinforces the real-world effectiveness of the control strategies in managing and reducing
grid load.

Figure 6.7: Load duration curves for the field test and the corresponding simula-
tions.

6.3.4 Total Electricity Costs

Table 6.10 shows the cost for each scenario and the differences with the Business As Usual
scenario. The negative values in these cost metrics typically indicate reimbursements due
feeding surplus energy back into the grid. The total electricity cost in the real-world field
test was -0.24 EUR. This was more favorable than the Business As Usual simulation, which
yielded a total cost of -0.12 EUR.This result illustrates the cost-saving potential of the
system when implemented in real-world scenarios, underlining the practical effectiveness
of the control strategies.

It is important to note that while the field test showed a slightly less favorable re-
sult compared to the Peak Shaving + Real-Time Control simulation, which had a total
electricity cost of -0.26 EUR, the difference is not substantial. This marginal difference
demonstrates that, despite the variability and unpredictability of real-world factors, the
control strategies of the system were effective in achieving cost savings.
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In essence, the impact of real-world complexities and uncertainties on cost-effectiveness
was minimal. This minor variation reinforces the robustness of the system, showing that it
can successfully deliver significant cost savings in real-world applications, even when faced
with inevitable environmental, user-related, and technical uncertainties.

Scenario Cost (EUR) Difference (EUR)

Business As Usual Simulation -0.12 -

Field Test -0.24 -0.12

Peak Shaving Simulation -0.27 -0.15

Peak Shaving + RTC Simulation -0.26 -0.14

Table 6.10: Difference and absolute values of electricity costs compared to the
Business As Usual Simulation.
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Chapter 7

Conclusions

This research addresses a series of research questions focusing on the improvement of
electric vehicle (EV) charging infrastructure, specifically in the areas of Energy Scheduler
performance, implementation of a Real-Time Control Mechanism, the User Interface (UI),
and the development of a comprehensive Evaluation Framework. This chapter answers the
research questions regarding the performance of the Energy Scheduler, the implementation
of a Real-Time Control mechanism, improvements to the UI, and the construction of a
comprehensive Evaluation Framework, as formulated in Section 1.4.

7.1 Energy Scheduler Performance and Improvements

The first research question, "How does the existing Energy Scheduler approach perform
under various conditions, and how can it be improved further?", yielded a thorough under-
standing of the strengths and weaknesses of the current Energy Scheduler. It was found
that the Energy Scheduler performs effectively in managing EV charging schedules based
on photovoltaic (PV) power forecasts and EV flexibility information. It shows good results
under various conditions, demonstrated by its ability to substantially lower total electricity
costs, especially in summer, and its effective management of peak grid loads in both winter
and summer.

The effectiveness of the Energy Scheduler is made evident by the Cost Optimization
and Peak Shaving strategies, which both contribute significantly to enhanced energy use
efficiency and sustainability. Simulations show that Cost Optimization could enable sig-
nificant reductions in total electricity costs, which is particularly impactful during the
summer, where a reduction of 67.47% compared to an uncontrolled scenario has been ob-
served. This reflects the potential of the Energy Scheduler to strategically schedule EV
charging based on cost and availability of renewable resources, leading to cost savings.

The Peak Shaving strategy of the Energy Scheduler consistently lowers grid loads across
both summer and winter seasons, in both simulations and a field test. A reduction of
40.97% compared to uncontrolled charging is observed in the mean top 1% grid load in
the summer week. By smoothing out the power demand and reducing peaks, the Energy
Scheduler contributes to improved grid stability, potentially extending the lifespan of the
grid infrastructure and reducing the need for costly grid upgrades.

Furthermore, the Energy Scheduler, especially when operating in the Peak Shaving
strategy in summer, improves self-sufficiency and self-consumption rates by 17% and 12%
respectively. This increased reliance on locally generated solar power contributes to the
wider goal of energy autonomy, aligning with broader sustainability objectives.

However, simulations with only solar as energy source show that the performance of
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the Energy Scheduler is affected by seasonal variations, with reductions in total cost and
improvements in self-sufficiency being less pronounced during winter due to lower PV
generation. Despite this, the Energy Scheduler remains effective in managing grid loads
across both seasons. Next to that, the challenges of real-time adjustments and inadequate
EV flexibility information inputs were identified. EV flexibility information is needed to
keep service to the EV user high by minimizing the energy not served. These challenges led
to the recommendation of incorporating a Real-Time Control Mechanism and streamlining
the flexibility data collection process, which became the focus of the following research
questions.

7.2 Impact Real-Time Control Mechanism

The second research question, "What are the impacts and improvements achieved by the
implementation of a Real-Time Control mechanism in EV control?", brought to light the
significant value of a dynamic response mechanism in the Energy Scheduler. The Real-
Time Control Mechanism proved essential in managing unforeseen solar power forecast
fluctuations. While it did increase costs slightly compared to scenarios with only the
Energy Scheduler, its impact was significant in managing grid load, particularly in the
Peak Shaving + Real-Time Control scenario, while not reducing the energy not served.
The service to the EV user is therefore kept high.

Simulations show that the mean top 1% grid load across both seasons can be reduced
with an extra 15% when Real-Time Control is applied, compared to the Peak Shaving
only scenario. This contributes to improved grid stability and longevity. In terms of self-
sufficiency and self-consumption, the inclusion Real-Time Control increased these with
an extra 14% and 11% respectively. This indicates the potential of these strategies in
achieving autonomous electricity needs coverage.

In real-world application, the Real-Time Control Mechanism still made a significant
impact. Field test results showed a significant reduction in peak grid load and improved
cost-effectiveness compared to the Business As Usual scenario, even when faced with real-
world uncertainties.

However, compared to ideal simulation conditions, slight reductions in self-sufficiency
and increases in peak grid load were observed, underlining the challenges of real-world
complexities. Overall, the Real-Time Control Mechanism significantly enhanced the per-
formance of the Energy Scheduler, reducing peak loads, improving self-consumption and
self-sufficiency rates, and proving its robustness in a real-world environment. Future work
could focus on refining the Real-Time Control Mechanism to better adapt to real-world
uncertainties and further improve its effectiveness.

7.3 User Interface

Addressing the third research question, "How does an enhanced UI influence user-EMS
interaction and EV scheduling effectiveness in a real-life environment?", the field test has
provided valuable insights. Even though the charging schedules during the field test were
based on mean values derived from historical data, the system was still able to achieve
substantial improvements compared to the Business As Usual scenario. This implies a
significant potential for scheduling effectiveness when the UI would be actively used.

The role of a UI is hard to match in bridging the gap between the users and the Energy
Management System (EMS). However, only having a UI does not mean people are going to
use it. An enhanced UI could improve user-EMS interaction by facilitating the exchange
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of more accurate EV flexibility information, such as the expected energy demand and
expected departure time of the user.

By allowing the EMS to gather this data, the UI can enable more effective scheduling
that further boosts self-sufficiency, self-consumption, cost-effectiveness, and grid stabil-
ity. This has been shown by the simulations involving the Energy Scheduler, where EV
flexibility information was simulated to be available.

Therefore, an enhanced UI has the potential to substantially improve user-EMS inter-
action and EV scheduling effectiveness in real-life environments. However, realizing this
potential requires overcoming the identified challenges in user engagement and promoting
the advantages of active UI use.

7.4 Evaluation Framework

Finally, the last research question, "How can a comprehensive Evaluation Framework be
designed that simulates various conditions to evaluate EV scheduling strategies, and al-
low for practical implementation?", resulted in the development of a robust and flexible
Evaluation Framework. This framework, constructed based on the time tick principle, en-
ables thorough testing of proposed and future solutions under a wide range of conditions.
The architecture, which revolves around microservices, ensures a scalable system that can
adapt to both simulation and real-world environments. It proved to be instrumental in
the simulation and subsequent analysis of EV scheduling strategies, leading to meaningful
insights for practical implementation.

Real-world field test results confirmed the effectiveness of the Energy Scheduler with
Real-Time Control. While minor decreases in the performance metrics were noted when
compared to simulations, the performance of the system in the real-world setting showcased
its practicality and robustness.

While the Evaluation Framework provided valuable insights, it faced some limitations.
A balance between high speed simulations and realism had to be found. High-speed simu-
lations would sacrifice some realism. The behaviour of real-world hardware was not always
accurately mirrored in simulations, which could impact fidelity.

The unpredictability of user behavior, hardware failure, and the reliability of PV power
forecast data also presented challenges, making it hard to simulate real-world complexities.
Despite these limitations, the research made significant strides towards enhancing the EV
charging system. Future work should aim to further refine these strategies, addressing
these limitations.

7.5 Summary

In conclusion, this research presented a methodical approach to enhancing the current
EV charging system, specifically focusing on the Energy Scheduler, the Real-Time Con-
trol Mechanism, and the UI improvements. The results from this study, both from the
simulation and the field tests, demonstrate that the proposed enhancements significantly
contribute to sustainable and efficient energy management. Future research could build
upon this work, refining these strategies, particularly to address user behaviour and en-
gagement, and continue the exploration of efficient, sustainable, and user-friendly solutions
for the EV charging infrastructure.
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Chapter 8

Recommendations

The findings from this research have led to several recommendations to guide future ef-
forts in enhancing electric vehicle (EV) charging systems. These insights form a series of
recommendations, which, when implemented, could notably elevate the efficiency, efficacy,
and user-friendliness of EV charging infrastructure. More importantly, the integration of
these enhancements may significantly contribute to the broader goals of sustainability, cost
reduction and grid protection.

An important aspect of the recommendations is the refinement of the Real-Time Con-
trol mechanism. At present, the mechanism is designed to manage discrepancies between
forecasted and actual measured photovoltaic (PV) power. Nonetheless, this function can
be further enhanced by incorporating the dicrepancy between forecasted and measured grid
load instead of the PV discrepancy alone. Using grid load discrepancy, the system could
not only account for PV variability, but also unexpected fluctuations in the EV load, such
as malfunctioning chargers or EVs not adhering to prescribed schedules. By creating a
more robust and inclusive Real-Time Control mechanism, the system could respond more
effectively to the nuances of real-world operations.

Furthermore, currently, the Real-Time Control mechanism adjusts charging power fur-
ther on in the schedule to compensate for earlier discrepancies, even when the energy
demand has already been met. This process could be more effectively designed. Rather
than decreasing charging power when there is surplus PV power, it would be more benefi-
cial to continue channeling this excess energy to the EVs, as long as their batteries are not
yet fully charged. This approach could lead to decreased grid exporting and an increase in
PV self-consumption rates.

A notable observation during this research is that grid loads increased slightly in the
Cost Optimizations setting of the Energy Scheduler. This is somewhat unexpected as en-
ergy prices are partly designed with the goal of mitigating grid strain; higher prices during
peak demand periods are meant to disincentivize heavy power consumption, thus easing
the load on the grid. This outcome is significant as it indicates that a strategy purely
optimized for cost might inadvertently lead to higher loads on the grid, potentially con-
tributing to peak demand issues. Therefore, it is advised to balance the Cost Optimization
strategy with measures such as peak-shaving to prevent unintentional strain on the grid.
Such a hybrid approach would not only optimize the cost but also maintain a healthy grid
load.

The Evaluation Framework used in the project offers another area for improvement.
The framework, as it stands, provides valuable insights but could benefit from more ac-
curately mimicking real-world conditions. This could be achieved by integrating realistic
hardware failures, measurement inaccuracies, and control signal response times into the
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framework. Additionally, the unpredictability of user behavior and the possibility of hard-
ware failures, both significant challenges, could be better addressed through the use of
more sophisticated models or simulation techniques. Another enhancement to the evalua-
tion framework would involve augmenting the speed of simulations without compromising
their realism, potentially achieved by employing advanced algorithms or leveraging more
efficient hardware.

Next to that, given the absence of usage of the User Interface (UI) observed during
the field test, it is clear that user education and engagement should be a priority. As
with all emerging technologies, awareness and adoption of the UI are likely to grow over
time. Users may not be fully aware of the benefits of active UI usage or understand
how to utilize it effectively. To address this, a more comprehensive user guide could be
developed and training sessions could be held to familiarize users with the system and its
benefits. Additionally, making the use of the UI mandatory to charge an EV could drive
more consistent engagement. As an incentive to further promote user engagement, rewards
could be introduced, such as offering cheaper electricity rates for those who actively use
the UI.

When the UI is not used, there are considerable opportunities to better utilize historical
data in systems where the UI is not employed or in transactions where the user did not
use the UI. In this research, only the mean of the energy demand and the mean of the stay
duration of the historical transactions of a specific user are used for planning. While this
approach yielded promising results, there is room for improvement. For example, more
sophisticated predictive modeling techniques, such as machine learning algorithms, can be
used to forecast future energy demand and stay durations based on historical data. These
models can account for complex patterns and trends that are not captured when only the
mean values are used.

Finally, the real-world implementation should be studied more extensively. The field
test conducted in this research was only done for one summer week. As simulations show,
the charging strategies could be less effective in winter scenarios. The field test as it stands
should continue and gather data. Next to that, further field tests should be conducted to
validate the robustness of the system in diverse conditions and over extended periods.
By verifying the performance of the system outside of a controlled environment, we can
build a compelling case for its practicality and robustness, underlining the viability of the
improvements proposed in this research.

The above recommendations form a cohesive strategy to address the limitations identi-
fied in this study and set the course for future research. By integrating these improvements,
we could continue to enhance EV charging infrastructure, creating a system that is not
only efficient and user-friendly but also plays a key role in the broader push towards a
more sustainable energy future.
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