
Solving Parity Games:
Combining Progress Measures and

Tangle Learning

Master Thesis
Alexander Stekelenburg

January 2024

Supervisors / Graduation Committee:

dr. Tom van Dijk
dr.ir Pieter-Tjerk de Boer

dr. Milan Lopuhaä-Zwakenberg

Faculty of Electrical Engineering, Mathematics & Computer Science (EEMCS)

Master Computer Science: Software Technology Specialisation

Abstract

An oft-usedmethod for verifying the correctness of software is model checking.
One technique for performing model checking involves converting a model and
specification into a parity game and solving this parity game to obtain information
about the model. There are many algorithms for solving parity games. Most of
these run in exponential time, but recently some were found which run in quasi-
polynomial time. Most of these quasi-polynomial algorithms are from the family
of progress measure-based algorithms. However, these algorithms tend to be im-
practically slow on large games. On the other hand, there are the attractor-based
algorithmswhich tend to be fast in practice but have an exponential time complexity.
In this thesis we present an algorithm which accelerates the value iteration of any
progress measure by using attractors. We prove the correctness of this algorithm
and some of its variants. To do this we first establish a set of requirements on what
makes a suitable progress measure. Finally, we perform some empirical perform-
ance tests and an analysis of the complexity of the algorithm which show that the
algorithm significantly accelerates the progress measure algorithms while having a
time complexity that is equivalent to the progress measure that is used.

Acknowledgements

To start I would like to thank my supervisors/members of my graduation commit-
tee Tom van Dijk, Pieter-Tjerk de Boer, and Milan Lopuhaä-Zwakenberg for their
diligent reading and feedback.

Secondly, I would like to thank Suzanne van der Veen who worked on her
parity game related thesis at the same time as me and with whom I had productive
conversations about our theses and the graduation procedure in general.

Finally, I would like to thank my family and friends for their support during
this somewhat prolonged endeavour and for providing me useful tips and feedback
despite their distance from the subject.

- Alexander

1

Contents

1 Introduction 4

2 Preliminaries 6
2.1 Basic definitions . 6
2.2 Structures of a parity game . 8
2.3 Attractors . 9

2.3.1 Tangle attractors . 11
2.3.2 Attractor decomposition . 12

2.4 Progress measures . 15

3 Requirements on Progress Measures 17
3.1 Progress function . 17
3.2 Generic Progress Measures . 19
3.3 Existing progress measures . 23

3.3.1 Small Progress Measures 23
3.3.2 Ordered Progress Measures 26

3.4 Properties of paths . 36

4 The monotonicity of Ordered Progress Measures 42
4.1 Implementation as described by Fearnley et al. 42

4.1.1 Multiple rule 2 candidates 43
4.1.2 Reaching the top measure prematurely 44

4.2 Unanswered questions . 44
4.3 The solution . 45

5 The algorithm 47
5.1 The base algorithm . 47

5.1.1 Description of the algorithm 47
5.1.2 Proving correctness . 50

5.2 Going up . 52
5.2.1 Description of the algorithm 52
5.2.2 Proving correctness . 53

5.3 Adding tangles . 54
5.3.1 Description of the algorithm 57
5.3.2 Proving correctness . 57

5.4 Termination . 59

2

6 Analysis 60
6.1 Time complexity . 60
6.2 Space complexity . 61

7 Experiments 63
7.1 Methodology . 63
7.2 Results . 65

7.2.1 ‘Two Counters’ . 65
7.2.2 ‘Two Counters+’ . 69
7.2.3 Random games . 70
7.2.4 SYNTCOMP games . 71

7.3 Possible optimisations . 71
7.3.1 Counting escapes . 72
7.3.2 Ignoring opponent-priority vertices 72
7.3.3 Skipping unchanged regions 72
7.3.4 Completing the decomposition 73

7.4 Do we need tangles . 76

8 Related work 79
8.1 Attractor Decomposition Lifting 79
8.2 Quasi-Dominion Progress Measures 81

9 Conclusions and Future Work 84
9.1 Conclusion . 84
9.2 Future Work . 85

Bibliography 87

3

Chapter 1

Introduction

Ensuring the correctness and reliability of software is crucial in aworld that depends
so heavily on computing. One common approach for the formal verification of
programs is model checking. For model checking we construct a model of the
program (usually a finite automaton) and provide a specification describing the
properties of the program we want to verify. This model and specification can be
combined and converted into a parity game.

Parity games are infinite games played by an even and an odd player on a
finite directed graph partitioned into vertices owned by the even player and vertices
owned by the odd player. Every vertex has an associated priority which is a natural
number. For every play through the game the winner is determined by checking
the parity (even or odd) of the highest priority that occurs infinitely often. Every
play is an infinite path along the vertices of the graph where the owner of a vertex
determines the next vertex in the play.

When we solve a parity game we are attempting to find for each vertex which
player, the even player or the odd player, has a strategy to win every play starting
at that vertex and what that strategy is. The winner of a vertex and the associated
strategy give information about whether the model conformed to the specification,
and if it did not, what a counter-example looks like. The specifics of how the solu-
tion to the parity game relates to the model and specification from which it was
synthesized depend on how this synthesis was done and are beyond the scope of
this thesis.

For a long time algorithms that solved parity games had an exponential worst-
case time complexity. However, since 2017 some quasi-polynomial (2poly(log 𝑛)) al-
gorithms have emerged. Two of the most prominent families of parity game solving
algorithms are the attractor-based and progress measure-based algorithms. These
two families of algorithms work in a very different manner and as such exhibit their
worst-case running time on different graph structures.

Attractor-based algorithms reason about the backward reachability of vertices
in the graph. We can compute an attractor set for a target vertex and a player which
comprises all the vertices for which the player can ensure that a play continues
towards the target vertex. By computing attractor sets and removing them from

4

the game in different orders we can detect structures in the game graph which
eventually allow us to solve the game. The attractor-based algorithms tend to solve
most parity games quickly. However, most of these algorithms have an exponential
theoretical time complexity.

The Tangle Learning algorithm uses an extended variant of the attractor
called the tangle attractor. When structures in the game graph called tangles are
detected they can be used to attract more vertices to the target. Eventually enough
tangles are found to solve the game.

Progress measure-based algorithms assign two measures to every vertex, one
for each player. Thismeasure is a value that represents howmuch the player ‘prefers’
to play towards the vertex. By updating the measures of every vertex based on the
measures of its direct successors using a consistent set of update rules we eventually
reach a fixed point. At this fixed point, called a progress measure, we can determ-
ine the winner of every vertex by checking whether the measure of that vertex got
assigned the largest possible measure ⊤. In practice, progress measure-based al-
gorithms tend to be considerably slower than other parity game solving algorithms
making themunsuitable for use on larger parity games. However, there aremultiple
progress measure-based algorithms which feature a quasi-polynomial theoretical
time complexity.

The progress measure-based algorithms are also referred to as value iteration
algorithms since they mirror the value iteration algorithmic framework that is com-
monly used for Markov Decision Processes.

We introduce and analyse a new algorithm for solving parity games which is a
synthesis of these two families. We will henceforth refer to this algorithm as PMTL
(Progress Measures and Tangle Learning). This algorithm takes any exist-
ing progress measure and accelerates the propagation of measures using (tangle)
attractors. The aim is to combine the quasi-polynomial time complexity of progress
measure-based algorithms with the much greater speed of (tangle) attractor-based
algorithms on most real-world and random games.

In this thesis we prove the correctness of three variants of this algorithm and
give a set of requirements on a progress measure for it to be used with PMTL. Ad-
ditionally, we test and analyse the performance of the algorithm’s variants when
combined with different progress measures against attractor-based algorithms and
against those measures when put in a value iteration framework.

5

Chapter 2

Preliminaries

Introduction
In this chapter we introduce parity games and the existing concepts surrounding
them. After introducing the abstract concepts underlying Tangle Learning (an
attractor-based algorithm for solving parity games) we discuss the generic concept
of a progressmeasurewhichwill be expanded on in chapter 3. This chapter contains
only (reformulations of) existing concepts surrounding parity games.

2.1 Basic definitions
A parity game is a two-player game played on a directed graph which is partitioned
into two sets: the vertices owned by the even player and the vertices owned by the
odd player. We denote the even player as○ and the odd player as⬠. Commonly
we refer to a player as 𝛼 ∈ {○,⬠} or �̄� which is the opposing player for player 𝛼.
Every vertex has priority p ∈ ℕ, i.e. some natural number. Additionally, we also use
○ and⬠ to refer to their respective parities.

Definition 2.1 (Parity Game) Aparity game𝒢 is a tuple (𝑉, 𝐸, pr, (𝑉○, 𝑉⬠)). It con-
sists of a directed graph (𝑉, 𝐸), a functionmapping vertices to a priority pr ∶ 𝑉 → ℕ,
and a partition into even○ and odd⬠ vertices (𝑉○, 𝑉⬠). ▫

We define some more notation. The set 𝐸(u) is the set of successors of the
vertex u, i.e. 𝐸(u) = {v | (u, v) ∈ 𝐸}. Similarly, we refer to the set 𝐸−1(u) as the set

5 2

1 3

6

Figure 2.1: An example of a parity game

6

of predecessors of the vertex u. Lastly, we use the≡2 operator to determine whether
two natural numbers have the same parity. For example, we use p ≡2 ○ to denote
that p ∈ ℕ is an even number.

Figure 2.1 shows an example of a parity game graph. On these graphswe define
the concept of a play. In a play the player who owns the current vertex determines
the next vertex in the play.

Definition 2.2 (Play) A play 𝜋 is an infinite path along the edges of the graph such
that ∀i>0(𝜋i−1, 𝜋𝑖) ∈ 𝐸. ▫

We use the word path to mean a sequence of vertices connected by edges in
the graph. This concept is also commonly referred to as a walk.

A play is won by a player 𝛼 ∈ {○,⬠} if among the vertices that occur infinitely
often the highest priority is of 𝛼’s parity. That is, every play ends up in some infinite
sequence and the highest priority in that sequence determines the winner of the
play.

When reasoning about parity games we often fix a positional strategy for a
player. This strategy is used to determine, for each vertex in the graph owned by
that player, what the successor must be in the play.

Definition 2.3 (Positional Strategy) Given a player 𝛼, a positional strategy 𝜎𝛼 is a
partial function 𝑉𝛼 → 𝑉 such that ∀u∈dom(𝜍𝛼)(u, 𝜎𝛼(u)) ∈ 𝐸. ▫

We sometimes use 𝜎 to refer to a specific 𝜎𝛼 when this is clear from the context.
Given a strategy 𝜎𝛼 we write Plays (𝑉(𝒢), 𝜎𝛼) to refer to the set of plays which are
consistent with that strategy, that is every play contains only edges (u, v) where
either u ∈ 𝑉�̄�, u ∉ dom 𝜎𝛼, or 𝜎𝛼[u] = v. The player 𝛼 wins a vertex u if there
exists a strategy 𝜎𝛼 such that in all infinite sequences in every play in Plays (u, 𝜎𝛼)
(meaning the set of all plays starting in u consistent with 𝜎𝛼) the highest priority is
of 𝛼’s parity.

Parity games are memoryless determined. This means that every vertex is won
by either even ○ or odd⬠, and for both players there exists a positional strategy
to win their respective vertices[17]. A positional strategy means that the choice of
successor is only determined by the current position, no other information needs
to be stored. As such, such a strategy is memoryless. For example, in Figure 2.1 the
odd⬠ player can choose to always play towards the vertex with priority 3 in which
case all the cycles in the subgame induced by the odd⬠ player’s strategy have a
highest priority that is odd⬠. We say that these cycles are won by odd⬠.

In general, every play eventually enters a repeating sequence, i.e. a cycle.
Whichever priority is the highest among the vertices in the cycle determines the
winner of the cycle and consequently the winner of the play.

An induced subgame is the game with all edges that are not consistent with the
strategy removed. In this example, the strategy for the odd⬠ vertex (i.e. the vertex
owned by the odd⬠ player) with priority 1 is to play towards the even○ vertex with
priority 3. Because of this the induced subgame does not contain the edge that ends
in the even○ vertex with priority 6. As such, the remaining cycles are the smaller
cycle with the priorities 3 and 2 which is won by odd⬠ and the larger cycle with
the priorities 1, 3, 2, and 5 which is also won by odd.

7

A play will always end in a cycle if a positional strategy is used. Since we have
found a strategy for odd⬠ which wins the game for all plays starting in any vertex
we find that odd⬠ wins all the vertices in the game. It may also occur that some
set of vertices is won by the odd⬠ player and another set is won by the○ player.
However, there is no situation where neither player, or both players win a vertex.

2.2 Structures of a parity game
Within parity games we can identify certain structures that allow us to analyse the
properties of these games. We commonly refer to sets of vertices in the game as
regions. We can identify closed regions. An 𝛼-closed region is a set of vertices for
which 𝛼 has a strategy 𝜎𝛼 such that for every vertex v in the region 𝜎𝛼[v] does not
leave the region, or if v is owned by �̄� there is no successor that is not in the region.

Definition 2.4 (Closed region) An 𝛼-closed region in a game 𝒢 is any non-empty
set U ⊆ 𝑉(𝒢) such that:

1. ∀v∈U∩𝑉𝛼(𝒢)𝐸(v) ∩ U ≠ ∅

2. ∀v∈U∩𝑉�̄�(𝒢)𝐸(v) ⊆ U ▫

Another structure we can identify is the tangle. A tangle is a set of vertices
for which a player 𝛼 has a strategy 𝜎𝛼 to win all the cycles within. The subgraph
restricted to the strategy is strongly-connected.

Definition 2.5 (Tangle) A p-tangle is a set of vertices 𝜏 ⊆ 𝑉(𝒢) where the highest
priority vertex in 𝜏 has priority p≡2𝛼 (it has 𝛼’s parity), and the player 𝛼 has a
strategy 𝜎𝛼 such that ∀v∈𝜏∩𝑉𝛼(𝒢)𝜎𝛼[v] ∈ 𝜏 and 𝛼 wins all the cycles in the subgraph
(𝜏, 𝐸′) with 𝐸′ = {(u, v) ∈ 𝐸(𝒢) | u ∈ 𝜏 ∧ v ∈ 𝜏 ∧ (𝜎𝛼[u] = v ∨ u ∉ dom 𝜎𝛼)}. Addi-
tionally, the subgraph (𝜏, 𝐸′) is strongly-connected. ▫

5 2

1 3

6

Figure 2.2: The tangles of the game in Figure 2.1 highlighted

If a p-tangle with p ≡2 𝛼 is an 𝛼-closed region, i.e. �̄� cannot escape it, then it
is a closed p-tangle. For example, in Figure 2.2 we can see that the 3-tangle is not a
closed region because the vertex with priority 2 can play towards a vertex outside
the region. However, the 5-tangle is a⬠-closed region (odd) since there are no even
vertices which can leave the region and the odd vertex has the option to stay in the
region.

Parity games contain hierarchies of tangles. A p-tangle may contain tangles
with maximum priorities q ≤ p, i.e. q-tangles. We can identify two tangles in the

8

game in Figure 2.1, these are highlighted in Figure 2.2. We can see two tangles won
by odd⬠, a 3-tangle contained in a 5-tangle.

Finally, parity games contain dominions.

Definition 2.6 (Dominion) A p-dominion is an 𝛼-closed region such that the
highest infinitely recurring priority in every play restricted to the region is p. As
such, there exists a strategy 𝜎𝛼 for 𝛼 such that 𝛼 wins any play starting from one of
the vertices in the region. ▫

Every p-dominion contains at least one p-tangle but may also contain more
vertices that, for example, have a priority ≥ p but for which 𝛼 has a strategy such
that that priority does not infinitely recur. (the vertices with these priorities are
not visited infinitely often in any play) Furthermore an ○-dominion (even) is a
p-dominion with p ≡2 ○ and an⬠-dominion (odd) is a q-dominion with q ≡2 ⬠.
We identify three well-known properties of dominions:

Lemma 2.1 (Closed under union) Given a p-dominion U and a q-dominion U ′

with p ≡2 q, we have that U ∪ U ′ is a r-dominion with r ≡2 p. ▫

Lemma 2.2 (Positionally determined) Every vertex v in a parity game 𝒢 is
either in an even dominion or in an odd dominion. Specifically, v is in either the
largest even dominion or in the largest odd dominion. The proof of this is given by
McNaughton[15]. ▫

Corollary 2.1 (Disjoint) Given a p-dominion U and a q-dominion U ′ with p ≢2 q,
we have that U ∩ U ′ = ∅. ▫

Note that if a tangle is closed, it is a dominion. But a dominion is not necessarily
a tangle since it may contain vertices with priorities of �̄�’s parity that are higher than
the highest priority of 𝛼’s parity in the set of vertices as long as they are not a part
of a �̄�-cycle. (i.e. a cycle where the highest priority is of �̄�’s parity) Additionally, a
dominion need not be strongly connected.

2.3 Attractors
To find the aforementioned structures in a parity game we can use attractors. At-
tractors reason about the backward reachability of a vertex. If a vertex u is in the
𝛼-attractor set of a vertex v then there is a strategy for 𝛼 such that it can ensure a
play ends up in v. Intuitively, we can reason that if 𝛼 owns a vertex u and there is an
edge (u, v) ∈ 𝐸(𝒢) then if 𝛼 chooses to use that edge as its strategy, that will ensure
that every play that reaches u will reach v. Therefore, we can say that v attracts u.
However, a vertex w owned by �̄� can only be attracted if all its outgoing edges lead
either to v directly or lead to a vertex which is already attracted to v.

It is important to be able to compute these attractors with some maximum
priority, because when we find a region that is locally closed, i.e. closed with regard
to only the current subgame, we can ensure that the highest priority vertex in that
region is of 𝛼’s parity. This allows us to conclude that all the vertices in that region
are won by 𝛼 if �̄� cannot escape the region.

9

Attractor sets were first specified by Zielonka[17]; he proves that the existence
of the attractor implies that a positionally determined strategy exists such that the
target is reached. An attractor set attr𝒢𝛼(𝒜,P) is the set of vertices forwhich a player
𝛼 has a strategy 𝜎𝛼 such that a play will reach some set of vertices 𝒜 ⊆ 𝑉(𝒢) while
only attracting vertices with a priority that is in the set P. The formal definition
given here is based on Van Dijk[5].

Definition 2.7 (Attractor) Given a player 𝛼 ∈ {○,⬠}, a parity game 𝒢, a set of
vertices 𝒜, and a set of priorities P the attractor set attr𝒢𝛼(𝒜,P) is defined1 as:

𝜇Z. 𝒜 ∪ {v ∈ 𝑉𝛼(𝒢) | 𝐸(v) ∩ Z ≠ ∅ ∧ pr (v) ∈ P}
∪ {v ∈ 𝑉�̄�(𝒢) | 𝐸(v) ⊆ Z ∧ pr (v) ∈ P}

(To simplify the conditionswe assume that𝐸(𝑣) ≠ ∅ since any unconnected vertices
may be trivially solved and excluded from the game) ▫

Attractors can be computed as such:

• Add all vertices from the set 𝒜 to the attractor. (since they have already been
reached)

• Repeat until no more vertices can be added:

– Add all vertices 𝑉𝛼(𝒢) owned by 𝛼 that have a successor in the attractor
set and that have a priority that is in the set P.

– Addall vertices𝑉�̄�(𝒢) owned by �̄�whose successors are all in the attractor
set and that have a priority that is in the set P.

While computing the attractor we can also store a strategy 𝜎𝛼 (simply by setting
the vertex which attracted its neighbour to be the strategy for that neighbour) for
each attracted vertex which can later be used when giving the solution of the game
or to determine the strategy of a tangle.

Lemma 2.3 Given a player 𝛼 ∈ {○,⬠}, a parity game 𝒢, a set of vertices𝒜, a set of
priorities P, and an attractor set attr𝒢𝛼(𝒜,P) there exists a strategy 𝜎𝛼 for 𝛼 such that
every play consistent with 𝜎𝛼 in the attractor set eventually reaches a vertex in𝒜. ▫

One straightforward way in which attractors can help us discover structures in
a game is that they can extend dominions.

Lemma 2.4 Given a p-dominion U for a player 𝛼 with p≡2𝛼 in a game 𝒢, the at-
tractor set attr𝒢𝛼(U , ℕ) is a p-dominion. ▫

We extend definition of an attractor to take an extra set of escapes ℰ ⊆ 𝒢. If a
vertex is not in ℰ then the �̄� player cannot use it to escape, and thus the resulting
attractor set may be larger than the onewhere ℰ = 𝒢. Wewrite attr𝒢𝛼(𝒜, ℰ,P) to de-
note the attractor set taking into account the set of escapes. As such attr𝒢𝛼(𝒜,P) =
attr

𝒢
𝛼(𝒜, 𝒢,P). The formal definition of attr𝒢𝛼(𝒜, ℰ,P) is:

𝜇Z. 𝒜 ∪ {v ∈ 𝑉𝛼(𝒢) | 𝐸(v) ∩ Z ≠ ∅ ∧ pr (v) ∈ P}
∪ {v ∈ 𝑉�̄�(𝒢) | 𝐸(v) ∩ ℰ ⊆ Z ∧ pr (v) ∈ P}

1Using the modal 𝜇-calculus where 𝜇 is the least fixed point operator. The set Z is initially empty
and expanded until a fixed point is reached.

10

Finally, we also define the function attracts which simply checks for a single
vertex whether it is attracted to the given set in a single step, i.e. no other vertex may
be attracted first such that the given vertex is attracted other than those given in the
original target set.

Definition 2.8 (attracts function) The function attracts is defined as
follows:

attracts𝛼(u, 𝒜, ℰ) = {
true if attr{u}𝛼 (𝒜, ℰ, ℕ) = 𝒜 ∪ {u}
false otherwise, i.e. attr{u}𝛼 (𝒜, ℰ, ℕ) = 𝒜 ▫

2.3.1 Tangle attractors
Van Dijk[5] extended the notion of an attractor by adding the tangle attractor. If
we have a tangle 𝜏 won by player 𝛼 then we know that the opponent �̄�must escape
this tangle to avoid losing the game. We can use this fact to attract more vertices
than otherwise possible. If we are computing an attractor for player 𝛼 and one of
the vertices in the attractor set is also contained in 𝜏 then we can add all the vertices
in 𝜏 to the set.

A tangle attractor set attrT𝒢𝛼(𝒜,P) is an extended attractor set for which a
player 𝛼 has a strategy 𝜎𝛼 such that all plays that start at a vertex in the attractor set
will reach some set of vertices 𝒜 ⊆ 𝑉(𝒢) or remain in a tangle 𝜏 ∈ 𝒯𝛼 which is won
by 𝛼 where 𝒯𝛼 is a subset of all the tangles of 𝛼’s parity in the game.

Definition 2.9 (Tangle Attractor) Given a player 𝛼 ∈ {○,⬠}, a parity game 𝒢, a
set of vertices 𝒜, and a set of priorities P the tangle attractor set attrT𝒢𝛼(𝒜,P) is
defined as:

𝜇Z. 𝒜 ∪ {v ∈ 𝑉𝛼(𝒢) | 𝐸(v) ∩ Z ≠ ∅ ∧ pr (v) ∈ P}
∪ {v ∈ 𝑉�̄�(𝒢) | 𝐸(v) ⊆ Z ∧ pr (v) ∈ P}
∪ {v ∈ 𝜏 ∩ 𝑉(𝒢) | 𝜏 ∈ 𝒯𝛼 ∧ 𝐸(𝜏) ⊆ Z ∧ ∀w∈𝜏pr (w) ∈ P}

(To simplify the conditionswe assume that𝐸(𝑣) ≠ ∅ since any unconnected vertices
may be trivially solved and excluded from the game) ▫

Tangle attractors can be computed by first calculating the normal attractor and
then adding all vertices from every tangle 𝜏 ∈ 𝒯𝛼 won by 𝛼 where the only escapes
𝐸(𝜏) of the tangle are vertices in the attractor set.

Similarly to the regular attractor we can store a strategy 𝜎𝛼 for each attracted
vertex. For vertices that were attracted because they were part of a tangle we simply
use the strategy that was stored along with the tangle when it was found.

Lemma 2.5 Given a player 𝛼 ∈ {○,⬠}, a parity game 𝒢, a set of vertices𝒜, a set of
priorities P, and a tangle attractor set attrT𝒢𝛼(𝒜,P) there exists a strategy 𝜎𝛼 for 𝛼
such that every play consistent with 𝜎𝛼 in the attractor set eventually reaches a vertex
in𝒜 or ends up in a cycle where the highest priority is of 𝛼’s parity. ▫

Similarly to the regular attractors, tangle attractors can extend dominions.

11

Lemma 2.6 Given a p-dominion U for a player 𝛼 with p≡2𝛼 in a game 𝒢, the at-
tractor set attrT𝒢𝛼(U , ℕ) is a p-dominion. ▫

We extend the definition of a tangle attractor to take an extra set of escapes
ℰ ⊆ 𝒢. If a vertex is not in ℰ then the �̄� player cannot use it to escape. We
write attrT𝒢𝛼(𝒜, ℰ,P) to denote the tangle attractor set taking into account the
set of escapes. As such attrT𝒢𝛼(𝒜, 𝒢,P) = attrT

𝒢
𝛼(𝒜,P). The formal definition of

attrT
𝒢
𝛼(𝒜, ℰ,P) is:

𝜇Z. 𝒜 ∪ {v ∈ 𝑉𝛼(𝒢) | 𝐸(v) ∩ Z ≠ ∅ ∧ pr (v) ∈ P}
∪ {v ∈ 𝑉�̄�(𝒢) | 𝐸(v) ∩ ℰ ⊆ Z ∧ pr (v) ∈ P}
∪ {v ∈ 𝜏 ∩ 𝑉(𝒢) | 𝜏 ∈ 𝒯𝛼 ∧ 𝐸(𝜏) ∩ ℰ ⊆ Z ∧ ∀w∈𝜏pr (w) ∈ P}

2.3.2 Attractor decomposition
We can use attractors to partition a game into regions by repeatedly taking the
highest priority vertex in a subgame, computing its attractor set, and removing
those vertices from the subgame. This is a top-down attractor decomposition since
we start with the highest priority in the game (the top) and we work our way down.
We call the priority of the highest vertex in the region the priority of the region. As
such, we can refer to regions as being lower and higher than each other based on
their priority. There are multiple algorithms for solving parity games which use
these regions obtained through top-down attractor decomposition[5, 13, 16].

The Tangle Learning algorithm uses attractor decompositions and the
extractTangles function to solve parity games[5]. By repeatedly decomposing
the game into regions and finding tangles in the closed regions it eventually finds
all the dominions in the game. By introducing the tangle attractor attrT Tangle
Learning is able to detect dominions in the game and remove them earlier than
would be possible with older attractor-based algorithms.

0 2 7 1 5

8 6 2 3

Figure 2.3: A parity game decomposed top-down into regions using attractors

Figure 2.3 shows an example of a parity game decomposed top-down into re-
gions by the Tangle Learning algorithm; even○ regions are red and odd⬠ re-
gions are blue. In Example 2.1 we explain how this decomposition is done and how
the Tangle Learning algorithm refines the decomposition in the next iteration.

12

In order for the tangle attractor attrT𝛼 to attract more vertices than attr𝛼
we first need to find tangles in the game and store them in 𝒯𝛼. This is done using
the extractTangles function.

Definition 2.10 (extractTangles Function) The extractTangles (𝒜, 𝜎) is a
function that when given a closed 𝛼-region𝒜 (i.e. a region for which 𝛼 has a strategy
𝜎 such that any play remains within the region) computes the non-trivial strongly
connected components in that region when restricted to the strategy 𝜎 and stores
these as tangles in 𝒯𝛼. If any of these tangles have no escapes for �̄� in the 𝒢 (note
here that we are talking about outgoing edges in the entire game not only those that
are left after removing vertices in the attractor decomposition) then those tangles
are instead added to the set of 𝛼-dominions𝒟𝛼. ▫

The extractTangles function can be efficiently implemented using Tarjan’s
algorithm starting in the top vertex to find the strongly connected components[5].

Example 2.1 (Executing the Tangle Learning algorithm) For this example
we take the game shown in Figure 2.3. We initialise the set of even ○ tangles 𝒯○
and odd⬠ tangles 𝒯⬠ to the empty set.

We start by finding the highest priority in the current subgame 𝒢 which is 8.
We compute Z = attrT

𝒢
○(𝒜, ℕ) where𝒜 is the set of all vertices with priority 8. In

this case 𝒜 = Z because the 𝑜𝑑𝑑-vertex with priority 2 can choose to play to the
○-vertex with priority 2 instead of the○-vertex with priority 8. Now we remove Z
from our subgame 𝒢. Z is marked as an○ region (red) because its highest priority
is even.

The next remaining highest priority is 7. We compute Z = attrT
𝒢
⬠(𝒜, ℕ)

where𝒜 is the set of all vertices with priority 7. In this case Z includes the⬠-vertex
with priority 1 because the⬠ player can choose to play towards the○-vertex with
priority 7. We computed an odd⬠ attractor because 7 is odd. Now we remove Z
form our subgame 𝒢. Z is marked as an⬠ region (blue) because its highest priority
is odd.

The next remaining highest priority is 6. We compute Z = attrT
𝒢
○(𝒜, ℕ)

where 𝒜 is the set of all vertices with priority 6. In this case Z = 𝒜 because there
are no vertices in the remaining subgame which have the○-vertex with priority 6
as a successor. Now we remove Z form our subgame 𝒢. Z is marked as an○ region
(red) because its highest priority is even.

The next remaining highest priority is 5. We compute Z = attrT
𝒢
⬠(𝒜, ℕ)

where 𝒜 is the set of all vertices with priority 5. In this case 𝒜 = Z because the
𝑒𝑣𝑒𝑛-vertex with priority can choose to play to the○-vertex with priority 2 instead
of the○-vertex with priority 8. Nowwe remove Z form our subgame 𝒢. Z is marked
as an⬠ region (blue) because its highest priority is odd.

The next remaining highest priority is 3. We compute Z = attrT
𝒢
⬠(𝒜, ℕ)

where𝒜 is the set of all vertices with priority 3. In this case Z includes the○-vertex
with priority 2 because the ○ player cannot choose to play towards the⬠-vertex
with priority 1 because it was already removed from the subgame. Now we remove
Z form our subgame𝒢.Z ismarked as an⬠ region (blue) because its highest priority
is odd. Note that this region is locally closed since the vertices in Z are unable to

13

leave the region since all their successors are in the region or were already removed
from the subgame.

Finally, the next remaining highest priority is 2. We compute Z =
attrT

𝒢
○(𝒜, ℕ) where 𝒜 is the set of all vertices with priority 2. In this case

Z includes the○-vertex with priority 0. Now we remove Z form our subgame 𝒢. Z
is marked as an○ region (red) because its highest priority is even. Note that this
region is locally closed since the vertices in Z are unable to leave the region since
all their successors are in the region or were already removed from the subgame.

After decomposing the game into regions Tangle Learning uses
extractTangles to extract tangles from (locally) closed regions. In this
case it finds an○-tangle (even) with the⬠-vertex with priority 2 and the○-vertex
with priority 0, and an⬠-tangle (odd) with the ○-vertices with priorities 3 and 0.
These tangles are added to 𝒯○ and 𝒯⬠ respectively.

We can then start another iteration with the subgame set to the entire game
again. We will not cover the entire solving of the game, but we can notice that while
computing the tangle attractor for the highest region (i.e. the region with priority
8) the○-tangle we just found can be attracted meaning we have found larger even
region than before. This process continues until only globally closed regions remain
which are dominions for whichever player has the highest priority in the region.
For this particular game odd⬠ ends up winning every vertex. ▫

Our algorithm (PMTL) also uses regions to determine which vertices should
have their measures lifted. (what a measure is will be explained in the next sec-
tion) However, these regions are not computed in the top-down order as described
above, instead the order is primarily determined by the current measure of each
vertex. Additionally, the attractor decompositions used by our algorithm do not
an○-attractor when computing the region where the highest priority is○ and an
⬠-attractor when computing the region where the highest priority is⬠. Instead, we
have separate○-attractor decompositions and⬠-attractor decompositions which
use the same parity for the attractor of every region.

We define an attractor decomposition, which formalises the repeated applica-
tion of the tangle attractor computation to decompose a game into regions.

Definition 2.11 (Attractor Decomposition) Given some ordering≤ of vertices in
𝑉(𝒢), the 𝛼-attractor decompositionℋ𝛼(𝒢, ≤) of 𝒢 is a sequence of regions recurs-
ively defined as:

ℋ𝛼(∅,≤) = ⟨⟩
ℋ𝛼(𝒢, ≤) = (v, 𝒜) ⋅ ℋ𝛼(𝒢 ⧵ 𝒜,≤)

where
v = max

≤
𝑉(𝒢)

𝒜 = attrT
𝒢
𝛼({v}, {p ∈ ℕ | p ≡2 𝛼 ∨ p ≤ pr (v)}) ▫

Here, ⟨⟩ denotes an empty sequence, and x ⋅ s forms a new sequence where the
first element is x and the elements from the sequence s follow. The notation max≤ Z

14

or max
≤

Z denotes the maximum element in the set Z given the ordering ≤. More
formally a sequence is defined as such:

Definition 2.12 (Sequence) A sequence Q∶ ℕ ⇀ S is a partial function mapping
indices to elements of a set S. The domain of the empty sequence ⟨⟩ is the empty set
and the domain of any non-empty sequence of length k is the set of natural numbers
in the range [0, k). We write Qi to refer to the i-th element in the sequence Q, i.e.
the result of Q(i). ▫

We refer to the v in a region (v, 𝒜) as the top vertex of the region. Additionally,
we say that the region has the priority pr (v) and we consider a region whose top
vertex was higher in the ordering ≤ than the top vertex of another region to be a
higher region than that other region.

2.4 Progress measures
There are several algorithms for solving parity games which use progress measures.
These algorithms use a framework which is similar to the value iteration framework
that is commonly used forMarkov Decision Processes. Namely, repeatedly applying
a monotone function to a set of values until a fixpoint is reached which represents
the solution to the game, i.e. the values in the fixpoint state allow us to derive the
solution to the game. Since these progress measure-based algorithms all use their
own progress measures we will first define the abstract concept of ameasure and a
progressmeasure in this section. Indeed, the algorithmwe describe in this thesis can
be used with multiple different progress measures with their exact semantics being
unimportant as long as they satisfy the definition in this chapter and the properties
in chapter 3. In that chapter we will also describe two concrete examples of progress
measures which satisfy these definitions and properties.

Measures are values that are assigned to every vertex in the graph. We keep
track of a set of measures for each player, i.e., we have an ○-measure (even) and
an⬠-measure (odd) for each vertex. Informally, each measure that is assigned
to a vertex represents how much the player ‘prefers’ the vertex. To solve a parity
game measures are lifted (i.e. replaced with a higher measure) until they cannot be
lifted any further. How exactly this lifting procedure works depends on the progress
measure algorithm that is used.

The solution to the game (i.e. which vertices are won by which player and
their strategies) can be derived from the final values in the fixed point state of the
measures. We call the fixed point state of the measures after no more measures can
be lifted a progress measure. An 𝛼-progress measure contains information about
which vertices are won by which player and from the 𝛼-measures we can extract
the winning strategy for �̄�. (and from the �̄�-measures we would be able to extract
the winning strategy for 𝛼)

We refer to the set of all measures, also known as themeasure space, asℳ. For
most progress measure algorithms there is a separate measure space for each player
written asℳ⬠ andℳ○ for the odd⬠ and even○ player respectively. A measure
spaceℳ is a complete lattice with a total order, it must have a least element (written
as ⊥) which is used as the starting measure of every vertex and a greatest element

15

(written as ⊤) which denotes that the player wins the vertex. Lifting is done using
a progression function prog ∶ ℳ × ℕ → ℳ also often referred to as the update
function. This function determines how a measure updates when it ‘encounters’ a
certain priority. We need to determine what properties this function needs to have
to prove the correctness of our algorithm. We do this in chapter 3. Themeasures are
stored using a measure function 𝜇∶ 𝑉 → ℳ which maps every vertex to a measure.

Lifting a vertex v is done by taking the measure of all the successors of v and
calling prog on those measures with the priority of v: pr (v). We say that these
measures ‘encounter’ the priority pr (v). If v is owned by the player whose meas-
ures we are calculating then v’s new measure becomes the largest of these updated
measures. Otherwise, v’s newmeasure becomes the smallest of these updatedmeas-
ures. This operation always terminates since there is a finite2 set of measures, and
the progression function is monotonic. Once the final measures have been determ-
ined all the measures that have not reached ⊤ will be won by the opponent of the
player whose progress measures we computed. Furthermore, it is now trivial to
compute the strategy for this player’s vertices by simply selecting the successor with
the lowest measure.

One way to visualise the process of lifting measures is that a measure is moved
from vertex to vertex by following edges in the reverse direction. The measure in
this manner ‘encounters’ the priorities of the prefix of a play, albeit in a reversed
order. Since every play of a game eventually ends up in a cycle that is won by the
player 𝛼 or �̄� an 𝛼-measure will eventually converge to a value that is either ⊤ if it
got stuck in a cycle won by 𝛼 or lower than ⊤ if it got stuck in a cycle won by �̄�.

Finally, we give a formal definition of a progress measure3:

Definition 2.13 (Progress measure) A measure function 𝜇∶ 𝑉 → ℳ is an
𝛼-progress measure if the following conditions hold for every vertex u in the game:

• ∀v∈𝐸(u)prog (𝜇[v], pr (u)) ≤ 𝜇[u] if u ∈ 𝑉𝛼(𝒢)

• ∃v∈𝐸(u)prog (𝜇[v], pr (u)) ≤ 𝜇[u] if u ∈ 𝑉�̄�(𝒢)

• 𝜇[u] = ⊤ if and only if u is won by 𝛼, that is, there exists an 𝛼-strategy to win
all plays originating in u. ▫

Summary
In this chapter we presented definitions of a parity game and its surrounding con-
cepts. Additionally, we gave definitions of our own modified versions of (tangle)
attractors and attractor decompositions. Finally, we formalised the concept of a
progress measure, but left the definition and examples of progress measure-based
algorithms for solving parity game for the next chapter.

2For our algorithm we do not require the set of measures to be finite since we rely on the original
progress measure-based algorithm’s termination proof to prove our algorithm terminates, although we
do not know of any progress measure-based algorithm with an infinite measure space.

3This is reworded and extended from definition 5 in [1].

16

Chapter 3

Requirements on Progress
Measures

Introduction
In this chapter we introduce some properties of the progress function prog for pro-
gressmeasures. Secondly, we introduce a generic progressmeasure-based algorithm
which can be parametrised to resemble concrete existing progress measure-based
algorithms. Furthermore, we introduce two concrete examples of existing progress
measure-based algorithms: the Small Progress Measures and the Ordered
Progress Measures. We show how these algorithms satisfy the properties that
we introduced. Finally, we use these properties to prove lemmas which form the
basis for the correctness proof of the PMTL algorithm in chapter 5.

3.1 Progress function
In section 2.4 we described the progression function prog but did not give a defini-
tionwhich can be used to determine such a function can be usedwith our algorithm.

Before we can describe these properties we need to introduce a new concept:
the p-achievements. A measure has an achievement for every priority p ∈ ℕ. A
p-achievement signifies the minimum to which a measure will be lowered if it
‘encounters’ a vertex with a priority q ≤ p.

To define the p-achievement we first define amodification of prog which takes
a sequence of priorities instead of a single priority.

Definition 3.1 (prog on sequences of priorities) Given a measurem ∈ ℳ and a
sequence of priorities Q we define:

prog (m,Q) ≜ {
m if Q = ⟨⟩
prog (prog (m,Q′), pr (u)) if Q = Q′ ⋅ u ▫

17

Here, ⟨⟩ denotes an empty sequence, and s ⋅ x forms a new sequence where the
elements from the sequence s are followed by the element x.

Definition 3.2 (p-achievement) Given a priority p ∈ ℕ, a p-achievement of an
𝛼-measurem ∈ ℳ𝛼 is a measurem′ ∈ ℳ𝛼 such that, given a sequence of priorities
Q where for every priority q ∈ Q, q ≤ p ∨ q ≡2 𝛼, we have prog(m,Q) ≥ m′. ▫

We can see that the least element ⊥ ∈ ℳ has p-achievements equal to ⊥ for
every p ∈ ℕ because there exists no lowermeasure, and the greatest element⊤ ∈ ℳ
has p-achievements equal to⊤ for every p ∈ ℕ because prog is monotonic and⊤ is
the greatest possible element. (at least for all sane definitions of measures because
if there were a priority p ∈ ℕ such that prog (⊤, p) < ⊤ then this must be true for
every priority because ⊤ ≤ ⊤)

In practice, we only care about a measure’s p-achievement when it equals itself.
We call this p-stable.

Definition 3.3 (p-stable) Given a priority p ∈ ℕ, an 𝛼-measure m ∈ ℳ𝛼 is p-
stable, if and only if, given a sequence of priorities Qwhere for every priority q ∈ Q,
q ≤ p ∨ q ≡2 𝛼, we have prog(m,Q) ≥ m. ▫

Corollary 3.1 Given a priority p ∈ ℕ, an 𝛼-measure m ∈ ℳ𝛼 is p-stable, if and only
if, m has a p-achievement equal to m. ▫

We can now introduce the requirements on the prog function. These proper-
ties are sufficient for a progress measure to correctly solve a parity game within a
value iteration framework and within our algorithm. However, it is probable that
not all of these properties are necessary when applied within a value iteration frame-
work. Therefore, there may be a progress measure which is not compatible with
PMTL, however we have not encountered such a progress measure yet.

Definition 3.4 (Progress function) The prog ∶ ℳ𝛼 × ℕ → ℳ𝛼 function of an
𝛼-progress measure must have the following properties:

1. prog must be monotonic (order-preserving), i.e. given a measurem ∈ ℳ𝛼, a
measurem′ ≥ m, and a priority p ∈ ℕ we have prog (m, p) ≤ prog (m′, p).

2. Given a measure m ∈ ℳ𝛼, and a priority p ∈ ℕ we have that the resulting
measure of prog (m, p) is p-stable. (Definition 3.3)

3. Given a measure m ∈ ℳ𝛼, a priority p ∈ ℕ and a sequence of priorities Q
where for every priority q ∈ Q with q ≤ p ∨ q ≡2 𝛼, we have prog (m, p) ≤
prog (prog (m,Q), p). ▫

Lemma 3.1 Every measure m ∈ ℳ that is assigned to a vertex with priority p ∈ ℕ
must be p-stable in any algorithm where the measure assigned to a vertex is the result
of some prog with its own priority.
Proof The second property ensures that an 𝛼-measurem′ ∈ ℳ𝛼 that is produced
using a priority p ∈ ℕ and subsequently assigned to a vertex with a priority p is p-
stable such that encountering priorities that are of 𝛼’s parity, or smaller or equal to p
cannot decrease the measure belowm′. Therefore, we can conclude that whenever
a measure m′ is assigned to vertex with priority p by a progress measure-based
algorithm that measure must be p-stable. ▪

18

Whereas p-stability allows us to ensure that measures with that property do
not decrease beyond some level, we also need something similar for allmeasures.
The third property ensures that no priority in the sequence of priorities Q where
each priority is smaller than p (or of 𝛼’s parity which in general should always be
beneficial for 𝛼) is able to cause prog (m,Q) to be so low that, when the priority p is
encountered the resultingmeasure is smaller than if themeasurem encountered the
priority p immediately. For example, for some○-measuremwe have prog (m, 6) ≤
prog (prog (m, ⟨1, 5, 4, 3, 5⟩), 6).

The necessity of the properties

Firstly, the requirement that the prog function ismonotonic is shared by all progress
measures that are used in the traditional value iteration framework since proving
that those algorithms terminate requires a guarantee that an inflationary fixpoint
is reached eventually. If a prog function has non-monotonic behaviour this is not
necessarily the case.

Secondly, the second and third property of prog are absolutely essential for us
to prove that lifting measures one edge at a time along a path is equivalent to lifting
using an attractor. We need some guarantee that the measure cannot decrease too
much along the path such that we can safely skip lifting one edge at a time.

3.2 Generic Progress Measures
Most existing progress measure-based parity game solving algorithms use a value
iteration framework to update the measures and determine the strategy. In order to
prove the correctness of our PMTL algorithm we will prove that it yields equivalent
results to the Generic Progress Measures (GPM) algorithm presented in this
section. That is, our PMTL algorithm and the GPM algorithm should output the
same measure functions. By parametrising GPM with the appropriate measures
spaces, orderings, and prog functions it will behave identically to these existing
progress measure-based algorithms.

19

Algorithm 3.1: gpm
1 fn gpm ():
2 pm○ ← {u← ⊥ | u ∈ 𝑉(𝒢)}
3 pm⬠ ← {u← ⊥ | u ∈ 𝑉(𝒢)}
4 do:
5 updated← false
6 for every vertex u ∈ 𝑉(𝒢) :
7 if liftVertex (pm○,○,u) : updated← true
8 while updated
9 solve (pm○,⬠)
10 do:
11 updated← false
12 for every vertex u ∈ 𝑉(𝒢) :
13 if liftVertex (pm⬠,⬠,u) : updated← true
14 while updated
15 solve (pm⬠,○)

The function gpm is shown in Algorithm 3.1. It starts by initialising the ○-
measure (even) and⬠-measure (odd) functions, setting the measure of every vertex
to the smallest possible value, i.e. the least element ⊤ inℳ○ andℳ⬠ respectively.
Then it will lift the○-measures using liftVertex until they can no longer be lifted
after which solve is used to mark vertices as won by⬠ and set the strategies for
these vertices. The process is then repeated for the⬠-measures, marking vertices
as won by○ and setting the strategies for these vertices.

In the actual implementation it is often better to interleave these processes
since in some games the ○-measures will reach their fixed point faster than the
⬠-measures or vice versa.

Algorithm 3.2: liftVertex
1 fn liftVertex (pm, 𝛼,u):
2 if u ∈ 𝑉𝛼(𝒢) : newMeasure ← max {prog (pm[v], pr (u)) | v ∈ 𝐸(u)}
3 else: newMeasure ← min {prog (pm[v], pr (u)) | v ∈ 𝐸(u)}
4 if newMeasure > pm[u] :
5 pm[u] ← newMeasure
6 return true
7 return false

The liftVertex function shown in Algorithm 3.2 applies the prog function
to the measures of the successors of u and the priority of u. Then, for the vertices
owned by 𝛼 it takes the largest result, and for the vertices owned by �̄� it takes the
lowest result. It stores that result in the measure function pm for u and returns true
if the measure was updated.

Again, in the actual implementation this can be optimised. One such optim-
isation is to only lift vertices whose successors have been updated. This can be
achieved by keeping track of a queue and enqueuing all the predecessors of a vertex
after its measure has been updated.

20

Algorithm 3.3: solve
1 fn solve(pm, 𝛼):
2 for every vertex u ∈ 𝑉𝛼(𝒢) :
3 if pm[u] ≠ ⊤ :
4 𝜎𝛼[u] ← arg min {pm[v] | v ∈ 𝐸(𝑢)}
5 for every vertex u ∈ 𝑉(𝒢) :
6 if pm[u] ≠ ⊤ :
7 if u ∈ 𝑉𝛼(𝒢) : mark u as won by 𝛼with strategy 𝜎𝛼[u]
8 else: mark u as won by 𝛼
9 𝒢 ← 𝒢 ⧵ {u}

The solve function shown in Algorithm 3.3 sets the strategy for all vertices
that were won by 𝛼 (which is the set of vertices whose �̄�-measure did not reach ⊤)
and owned by 𝛼. Then it marks all vertices won by 𝛼 and removes them from the
game.

Now we can introduce some lemmas to prove the correctness of the GPM
algorithm for solving parity games.

Lemma 3.2 Given a game 𝒢, and a player 𝛼 ∈ {○,⬠} when gpm has finished ex-
ecuting it ensures that

∀u∈𝑉(𝒢)pm𝛼[u] = {
max {prog (pm𝛼[v], pr (u)) || v ∈ 𝐸(u)} u ∈ 𝑉𝛼(𝒢)
min {prog (pm𝛼[v], pr (u)) || v ∈ 𝐸(u)} u ∈ 𝑉�̄�(𝒢)

Proof We prove this by contradiction, suppose there exists a u ∈ 𝑉(𝒢) such that

pm𝛼[u] ≠ {
max {prog (pm𝛼[v], pr (u)) || v ∈ 𝐸(u)} u ∈ 𝑉𝛼(𝒢)
min {prog (pm𝛼[v], pr (u)) || v ∈ 𝐸(u)} u ∈ 𝑉�̄�(𝒢)

.

For gpm to terminate liftVertex (pm𝛼, 𝛼,u) must have returned false since oth-
erwise Updated would have been set to true and either the loop on lines 4–8 or
the loop on lines 10–14 of Algorithm 3.1 (depending on 𝛼) would continue. For
liftVertex to return false we must have newMeasure ≤ pm𝛼[u]. There are two
cases to consider:

Case u ∈ 𝑉𝛼(𝒢):
In this case we have newMeasure = max {prog (pm𝛼[v], pr (u)) || v ∈ 𝐸(u)}. Since
we assumed that pm𝛼[u] ≠ max {prog (pm[v], pr (u)) | v ∈ 𝐸(u)} we have that
pm𝛼[u] < newMeasure. Therefore, we know that in some previous iteration
pm𝛼[u]must have been assigned a higher measure. By Definition 3.4 property 1 we
know that the prog function ismonotonic, therefore at least one vertex in𝐸(u)must
have had a higher measure in the previous iteration than max {pm𝛼[v] || v ∈ 𝐸(v)}
in the final iteration. However, liftVertex only assigns measures to vertices
if they are higher than the previously stored measure in the measure function.
Therefore, we have a contradiction because the measures of the vertices in 𝐸(u)
cannot be lower than they were in a previous iteration.

Case u ∈ 𝑉�̄�(𝒢):
In this case we have newMeasure = min {prog (pm𝛼[v], pr (u)) || v ∈ 𝐸(u)}. Since
we assumed that pm𝛼[u] ≠ min {prog (pm𝛼[v], pr (u)) || v ∈ 𝐸(u)} we have that

21

pm𝛼[u] < newMeasure. Therefore, we know that in some previous iteration pm𝛼[u]
must have been assigned a higher measure. By Definition 3.4 property 1 we know
that the prog function is monotonic, therefore all vertices in 𝐸(u)must have had
a higher measure in the previous iteration than min {pm𝛼[v] || v ∈ 𝐸(u)} in the fi-
nal iteration. However, liftVertex only assigns measures to vertices if they are
higher than the previously stored measure in the measure function. Therefore, we
have a contradiction because the measures of the vertices in 𝐸(u) cannot be lower
than they were in a previous iteration. ▪

Lemma 3.3 Given a game 𝒢, a player 𝛼 ∈ {○,⬠} and a �̄�-progress measure
pm∶ 𝑉 → ℳ𝛼, solve (pm, 𝛼)marks every vertex won by 𝛼 as won by 𝛼 and if that
vertex is controlled by 𝛼 it marks it with a winning strategy.
Proof ByDefinition 2.13 property 3 have that every vertex u ∈ 𝑉(𝒢)with pm[u] ≠
⊤ if and only if it is won by 𝛼. Therefore, we can conclude that the loop on lines 5–9
of Algorithm 3.3 marks every vertex won by 𝛼 as won by 𝛼.

It remains to be proven that for every vertex u ∈ 𝑉𝛼(𝒢) with pm[u] ≠ ⊤ every
the strategy for 𝛼 determined in the loop on lines 2–4 Algorithm 3.3 and used to
mark the vertices won and owned by 𝛼 is a winning strategy. We can construct a
play 𝜋 along the edges of the game graph starting with the vertex u containing only
vertices with a measure that is not ⊤ by induction on the construction of 𝜋.

Induction Hypothesis (IH): ∀v∈𝜋pm[v] ≠ ⊤

Base case 𝜋 = {u}:
Because pm[u] ≠ ⊤ and v is the only vertex in 𝜋 we find that the IH holds.

Step case 𝜋 = 𝜋 ⋅ v ⋅ w:
By the IH we have that pm[v] ≠ ⊤. We can distinguish two cases v ∈ 𝑉𝛼(𝒢) or v ∈
𝑉�̄�(𝒢). If v ∈ 𝑉𝛼(𝒢) then by Definition 2.13 property 2 and Definition 3.4 property 1
we have that there must exist a successor w ∈ 𝐸(v) with pm[w] ≠ ⊤. Otherwise, if
v ∈ 𝑉�̄�(𝒢) then by Definition 2.13 property 1 and Definition 3.4 property 1 we have
that all successors w ∈ 𝐸(v)must have pm[w] ≠ ⊤. As such, we have found a valid
w such that the IH holds in all cases.

By Definition 2.13 property 3 we have that every vertex in the play 𝜋 is won
by 𝛼. Therefore, we know that every play starting in u restricted to the strategy
for 𝛼 determined by choosing the successor with the smallest measure is won by
𝛼. Therefore, the strategy that is computed by solve for the vertex u is a winning
strategy. ▪

The GPM algorithm needs to be given some parameters in order to resemble
one of the existing progress measure-based algorithms.

Definition 3.5 (Concrete progress measure-based algorithm) A concrete pro-
gress measure-based algorithm is obtained by setting three parameters of our
GPM algorithm: the measure spaces ℳ○ and ℳ⬠, a total order ≤ for each of
these measure spaces, and the progression functions prog ∶ ℳ○ × ℕ → ℳ○ and
prog ∶ ℳ⬠ × ℕ → ℳ⬠. A concrete progress measure-based algorithm must
satisfy the following property: the fixed point of a measure function obtained by
repeatedly lifting vertices using liftVertex as defined in Algorithm 3.2 must be
a progress measure as defined in Definition 2.13. ▫

22

Finally, we prove a theorem which ensures that the GPM correctly solves a
parity game when parametrised appropriately.

Theorem 3.1 Given a game 𝒢 and the parameters ((ℳ○,ℳ⬠), (≤○, ≤⬠), prog)
such that gpm yields a concrete progress measure as defined by Definition 3.5. When
gpm has finished executing it ensures that every vertex is marked as won by○ or⬠
and if that vertex is controlled by the winning player it has marked it with a winning
strategy.
Proof ByDefinition 3.5 we have that the loops on lines 4–8 and 10–14 compute the
○-progressmeasure pm○ and the⬠-progressmeasure pm⬠ respectively. Therefore,
by Lemma 3.3 we find that gpm marks vertices won by○ as won by○ and vertices
won by⬠ as won by⬠, and if these vertices are owned by the player whowins them
they are marked with a winning strategy. ▪

3.3 Existing progress measures
To adequately test PMTL we will use two existing progress measures: Small Pro-
gress Measures (SPM) and Ordered Progress Measures (OPM). These pro-
gress measures were chosen because comparing the measures from SPM is compu-
tationally inexpensive, but it has an exponential (2poly(𝑛)) time complexity because
the size of its measure spaceℳ with respect to the size of the game is exponential.
On the other hand, the measures from OPM come with more overhead but the size
ofOPM’s measure space is quasi-polynomial (2poly(log 𝑛)) with respect to the size of
the game which gives the algorithm a quasi-polynomial time complexity. We give a
brief description of their rules and provide some worked examples.

3.3.1 Small Progress Measures
The simplest progressmeasure-based algorithm to consider is the Small Progress
Measures algorithm[11]. The measure space of the⬠-measures (odd) is defined
as

ℳ⬠ = {⟨rd, rd−2,… , 𝑟1⟩ || 1 ≤ i ≤ d ∧ 0 ≤ ri ≤ ||pr−1(i)||} ∪ ⊤

where d is the highest odd⬠ priority in the game and pr−1(i) is the set of vertices
with priority i in the game. The measure space of the○-measures (even) is defined
as

ℳ○ = {⟨re, re−2,… , 𝑟0⟩ || 0 ≤ i ≤ e ∧ 0 ≤ ri ≤ ||pr−1(i)||} ∪ ⊤

where e is the highest even○ priority in the game.

An⬠-measure keeps track of the amount of times certain odd⬠ priorities are
‘encountered’ and an○-measure does so for the even○ priorities. Every element
ri ∈ {p ∈ ℕ || p ≤ ||pr−1(i)||} of an 𝛼-measure represents howmany times the priority
i has been encountered.

SPM uses the p-truncated comparison operators ≥p and >p which compare
p-truncated progress measures. When a progress measure gets p-truncated we set
all elements ri with i < p to 0. The p-truncation operator is |p. For example, given
the⬠-measures a = ⟨0, 1, 3⟩ and b = ⟨0, 1, 2⟩ we find that a|3 = b|3 = ⟨0, 1, 0⟩.
(recall that the⬠-measure has the form ⟨r5, r3, r1⟩ for a game where the highest odd
⬠ priority is 5) To make it clear if an element r𝑖 of a measure equals 0 because it was

23

truncated we often write − instead of 0, as such we write a|3 = ⟨0, 1, −⟩. Because
a|3 = b|3 we have that a ≥3 b but not a >3 b. However, we do have a >1 b since
a|1 = ⟨0, 1, 3⟩ and b|1 = ⟨0, 1, 2⟩.

When an⬠-measure is lifted it ‘encounters’ a priority p, if p is even○ then the
resulting measure must be ≥p to the original measure, whereas if p is odd⬠, the
resulting measure must be >p than the original measure.

Sowhenwe lift a progressmeasure itmust be greater than or equal to, or strictly
greater than the original measure considering only elements ri with i ≥ p. Since
every element ri can only range between 0 and the amount of vertices with that
priority in the game, this procedure will eventually lead to a measure which cannot
be lifted any further which then becomes ⊤. This procedure is the prog function
of the Small Progress Measures.

Definition 3.6 (Small Progress Measures’ prog function) Given an 𝛼-
measure m ∈ ℳ𝛼 and a priority p ∈ ℕ the function prog ∶ ℳ𝛼 × ℕ → ℳ𝛼 is
defined as:

prog (m, p) =
⎧

⎨
⎩

⊤ m = ⊤
min {m′ ∈ ℳ𝛼 || m′ >p m} p ≡2 𝛼
min {m′ ∈ ℳ𝛼 || m′ ≥p m} p ≡2 �̄� ▫

A quasi-polynomial variant of Small ProgressMeasures is Succinct Pro-
gress Measures[12] which uses smaller measures that encode ordered trees.

We give some examples of the rules of the application of the progression func-
tion prog of the Small Progress Measures.

Example 3.1 We use a game with 2 vertices with priority 1, 1 vertex with priority
3, 1 vertex with priority 5, and any number of ○-priority (even) vertices. For this
game an⬠-measure (odd) is of the form ⟨b5, b3, b1⟩.

b = ⟨0, 1, 0⟩
prog (b, 4) = min {m ∈ ℳ⬠ || m ≥4 b}

= ⟨0, −, −⟩

Here we see an⬠-measure b encountering a vertex with priority 4. To get the
resulting measure we must first truncate the measure b with the priority 4 which
gives us ⟨0, −, −⟩. Then wemust find a measuremwhich, when also truncated with
the priority 4, must be greater or equal to the truncated b measure. This gives us
⟨0, −, −⟩ = ⟨0, 0, 0⟩. ▫

Example 3.2 We again use a game with 2 vertices with priority 1, 1 vertex with
priority 3, 1 vertex with priority 5, and any number of ○-priority (even) vertices.
For this game an⬠-measure (odd) is of the form ⟨b5, b3, b1⟩.

24

b = ⟨0, 1, 2⟩
prog (b, 1) = min {m ∈ ℳ⬠ || m >1 b}

= ⟨1, 0, 0⟩

Here we see an⬠-measure b encountering a vertex with priority 1. To get the
resulting measure we must first truncate the measure b with the priority 1 which
gives us ⟨0, 1, 2⟩ since a p-truncation keeps all elements for priorities greater or equal
to p. Then we must find a measurem which, when also truncated with the priority
1, must be greater than the truncated b measure. This gives us ⟨1, 0, 0⟩ because
⟨0, 1, 3⟩would exceed the amount of vertices with priority 1 in the game and ⟨0, 2, 0⟩
would exceed the amount of vertices 3 in the game. ▫

Example 3.3 We again use the same game as Example 3.1 and Example 3.2. For
this game an⬠-measure (odd) is of the form ⟨b5, b3, b1⟩.

b = ⟨1, 0, 2⟩
prog (b, 3) = min {m ∈ ℳ⬠ || m >3 b}

= ⟨1, 1, 0⟩

Here we see an⬠-measure b encountering a vertex with priority 3. To get the
resulting measure we must first truncate the measure b with the priority 3 which
gives us ⟨1, 0, −⟩. Then we must find a measuremwhich, when also truncated with
the priority 3, must be greater than the truncated bmeasure. This gives us ⟨1, 1, −⟩
because any change to the element which tracks the amount of encountered vertices
with priority 1 is truncated away, therefore the smallest change we can make is to
increase the element which counts the amount of encountered vertices with priority
3. ▫

Example 3.4 We reuse the game used for Example 3.1, Example 3.2, and
Example 3.3. For this game an⬠-measure (odd) is of the form ⟨b5, b3, b1⟩.

b = ⟨1, 1, 0⟩
prog (b, 3) = min {m ∈ ℳ⬠ || m >3 b}

= ⊤

Here we see an⬠-measure b encountering a vertex with priority 3. To get the
resulting measure we must first truncate the measure b with the priority 3 which
gives us ⟨1, 1, −⟩. Then we must find a measuremwhich, when also truncated with
the priority 3, must be greater than the truncated bmeasure. This gives us⊤ because
any change to the element which tracks the amount of encountered vertices with
priority 1 is truncated away and every other counter has already reached the amount
of vertices of its priority present in the game. Therefore, the smallest change we can
make is to lift the measure to ⊤. ▫

25

Properties of the prog function

Touse the Small ProgressMeasureswith our algorithm its progression function
prog must conform to the properties described in Definition 3.4.

It is straightforward to see that SPM’s prog function is monotonic (Defini-
tion 3.4 property 1) since all three cases result in a measure that is either equal
to original measure or the smallest possible step greater given some p-truncation.
Therefore, if twomeasures encounter the same priority p their order will not change
since they will be subjected to the same p-truncation.

Furthermore, we can see that SPM’s prog function satisfies Definition 3.4
property 2 since anymeasure resulting from a prog with priority pmust equal itself
under a p-truncation. That is, prog (m, p)|p = prog (m, p) for every possible priority
p and measurem ∈ ℳ. In fact, this measure equals itself under any q-truncation
with q ≤ p. Since the result of SPM’s prog function with a priority q can never be
lower than the q-truncation of the input measure we can conclude that the measure
resulting from prog (m, p) is p-stable.

Finally, we can see that SPM’s prog function satisfies Definition 3.4 property 3
since for every possible priority q and measurem ∈ ℳ we have that prog (m, q) ≥
m|q. If we have some starting measurem ∈ ℳ, a priority p, and a sequence of pri-
orities Q where every priority q ∈ Q, q ≤ p. Then we know that prog (m,Q) ≥ m|p.
Therefore, because SPM’s prog when given a measurem and a priority p always p-
truncatesm before taking the smallest possible step we know that if prog (m,Q) ≥
m|p then prog (prog (m,Q), p) ≥ prog (m, p).

3.3.2 Ordered Progress Measures
Another type of quasi-polynomial progress measure was introduced by Fearnley
et al.[9]. Their Ordered Progress Measures were based on the original quasi-
polynomial algorithm by Calude et al.[2]. The measure space of the⬠-measures
(odd) is defined as

ℳ⬠ = {⟨bk, bk−1,… , b0⟩ | 0 ≤ i ≤ k ∧ bi ∈ pr (𝑉(𝒢)) ∪ {_}}

where pr (𝑉(𝒢)) is the set of priorities of vertices in 𝒢, and k = ⌊log2 o⌋ with o
being the number of vertices with an odd⬠ priority in 𝒢. The measure space of the
○-measures (even) is defined as

ℳ○ = {⟨bk, bk−1,… , b0⟩ | 0 ≤ i ≤ k ∧ bi ∈ pr (𝑉(𝒢)) ∪ {_}}

where k = ⌊log2 e⌋ with e being the number of vertices with an even○ priority in
𝒢.

Every element bi ≠ _ in an 𝛼-measure b = ⟨bk, bk−1,… , b0⟩ represents a chain
of vertices derived from a partial (i.e. finite) play of the game. To define this chain of
vertices we look only at the vertices with a priority of 𝛼’s parity in the play and the
first vertex in the play. This chain must have the property that all the vertices in the
play between each pair of vertices in the chain must have a lower priority than the
highest priority among the pair of vertices. We call this chain an 𝛼-chain, the value
of the element bi representing the chain is equal to the last vertex in the chain.

26

Example 3.5 Given a partial play through a game which encounters the following
priorities: ⟨2, 1, 3, 4, 3, 1, 2, 1, 0⟩ (where the first vertex’s priority is on the left and
the last vertex’s priority is on the right) we can identify an ○-chain (even) of the
vertices with priorities ⟨2, 4, 2, 0⟩. Since max{1, 3} < max{2, 4}, max{3, 1} < max{4, 2},
and 1 < max{2, 0} we find that the property holds for each pair of vertices in the
chain. ▫

This property is intuitively related to properties 2 and 3 of Definition 3.4. Un-
derstanding this intuition is not necessary to understand the Ordered Progress
Measures or how it satisfies the properties of Definition 3.4 but it gives insight
into why it seems likely that these properties match what is needed for any progress
measure-based algorithm to solve a parity game. Any pair of vertices in a chain with
this property must either have a first vertex with a higher priority than the vertices
in the play between the pair, in which case property 3 of Definition 3.4 might be
applied, or the second vertex must have a higher priority than the vertices in the
play between the pair, in which case property 2 of Definition 3.4 might be applied.
While the property of a chain is only about the priorities of vertices and the proper-
ties of prog in Definition 3.4 are about the measures of vertices and their priorities
we can see that they reason similarly about the priorities. In other words every
𝛼-chain represented by an element bi ≠ _ in an 𝛼-measure corresponds to the prefix
of a play which when encountered by any progress measure-based algorithm’s 𝛼-
measure should not cause the measure to decrease. While this intuitively connects
the definition of the Ordered Progress Measures to the properties of prog out-
lined in Definition 3.4 this does not mean that OPM’s prog function satisfies those
properties. We will show that is the case after introducing the prog function.

The order ⊑ of the 𝛼-measures is determined by comparing two 𝛼-measures
lexicographically from bk to b0 where each witness is ordered such that _ is the
smallest, then we have the priorities of �̄�’s parity from the highest to the lowest, and
finally we have the priorities of 𝛼’s parity from the lowest to the highest. In other
words we might say that we order the priorities by how much the 𝛼 player prefers
them. So for 𝛼 = ○we prefer higher even priorities over lower even priorities, even
priorities over odd priorities, lower odd priorities over higher odd priorities, and all
priorities over _.

Definition 3.7 (Raw Update) The raw update function ru ∶ ℳ𝛼 × ℕ → ℳ𝛼 lifts
an 𝛼-measure b = ⟨bk, bk−1,… , b0⟩ with a priority p ∈ ℕ by finding all candidate
indices j with 0 ≤ j ≤ k for which either:

1. All elements bi with i < j are of 𝛼’s parity, or

2. p > bj and for all i > j we have bi ≥ d

Then for each candidate index jwe can construct a candidatemeasurem ∈ ℳ𝛼
by settingmi = bi for all i > j, settingmj = d, and settingmi = _ for all i < j. The
result of the raw update function is the largest candidate measure in the ordering ⊑
or the original measure b if the only candidate index is 0 and ∀0≤i≤kbi = _ ∨ bi ≥ d.▫

The intuition behind the raw update is that if the first rule is used we have
found a longer 𝛼-chain by concatenating all chains represented by the bi with i < j
and the new vertex. If the second rule is used only the last vertex in the chain is
replaced with the newly encountered one and the chain remains the same length.

27

Since the second rulemay only be used when the encountered priority is larger than
the priority of the last vertex in the chain (bj) we ensure that properties of the chain
are preserved. Finally, it is possible to return the original measure in the exceptional
where the first two rules are not applicable except for rule 1 with j = 0 which is
always applicable but where applying rule 1 would result in a lower measure than b.
An example of the latter would be ru (⟨_, 4, 2⟩, 1) which we want to return ⟨_, 4, 2⟩
instead of ⟨_, 4, 1⟩.

Unfortunately, on its own the raw update is not a suitable progression func-
tion if we want the Ordered Progress Measures to be valid progress measures.
Firstly, we need to define how a measure reaches ⊤. This is done using the value
function value.

Definition 3.8 (Value function) For 𝛼-measures we define value as follows:

value (b) =
k

∑
i=0

{
2i if bi is of 𝛼’s parity
0 otherwise ▫

The value function returns the sum of the lengths of the 𝛼-chains where
the highest priority in the chain is of 𝛼’s parity. If we find a chain that is longer
than the amount of 𝛼-priority vertices in the game then we know that we have
found a winning cycle for 𝛼 at which point we can increase the measure to ⊤. The
value of k which determines the size of the measure was chosen such that there
are enough positions in the measures to record chains of at least the amount of
𝛼-priority vertices in the game.

We can now define the update function up which uses value to determine
when a measure needs to be lifted to ⊤.

Definition 3.9 (Update) For 𝛼-measures we define up as follows:

up (b, p) = {
ru (c, p) value (ru (c, p)) ≤ d
⊤ otherwise

Where d is the amount of 𝛼-priority vertices in the game. ▫

One of the critical properties of the progression function prog is that it ismono-
tonic (Definition 3.4 property 1), but the rules as described can result in the order
between two measures switching after being lifted with the same vertex priority.
(see Example 3.7) To get a monotonic progression function an antagonistic update
rule is introduced which allows the opponent to increase the measure a minimal
amount before the normal update rules are applied. More formally we can define
the antagonistic function as such:

Definition 3.10 (Antagonistic Update) For 𝛼-measures we define au as follows:

au (b, p) = min
⊑

{up (c, p) | c ⊒ b} ▫

The prog function of the Ordered Progress Measures is au.

It is challenging to implement the antagonistic update such that it can be com-
puted in a reasonable amount of time. The antagonistic update and its monotonicity
are discussed in chapter 4.

28

We give some examples of these rules being applied to clarify them.

Example 3.6 Here we assume the game has 5 ○-priority (even) and 6⬠-priority
(odd) vertices. We look at how an○-measure is lifted.

b = ⟨2, _, 2⟩

Here we use rule 1 of the raw update ru (Definition 3.7) since b𝑖 is even for
i < 2. Therefore, rule 1 (with j = 1) is applicable and results in ⟨2, 2, _⟩, applying
rule 2 (with j = 0) yields ⟨2, _, 2⟩. Since the raw update uses the largest result we
get ⟨2, 2, _⟩ because 2 > _ in our ordering.

Since value (⟨2, 2, _⟩) = 22 + 21 = 6 we have found an ○-cycle with at least
5 ○-priority vertices and the measure becomes ⊤ because we have exceeded the
amount of○-priority vertices in the game. Consequently, the result of up (b, 2) = ⊤.

However, to determine the result of au (b, 2) we need to find the lowest result
of up (c, 2) where c ⊒ b. The possible values of c depend on the sets of even and
odd priorities in the game. For example, if the largest even priority in the game is 2
then there are no candidates for c where c0 is set to _ or an odd priority since b has
the elements at indices 0, and 2 already set to the highest possible (most preferable
for○) priority and rule 1 can be used to set the element at index 1. Therefore, we
would have au (b, 2) = up (b, 2) = ⊤.

However, if there is a larger even priority in the game, for example 4 then
the measure c = ⟨4, _, _⟩ ⊐ b but up (c, 2) = ⟨4, _, 2⟩ because value (⟨4, _, 2⟩) =
5. To determine which c yields the lowest measure we would have to try every
possible measure larger than b, but for this example it suffices that we can see that
antagonistic update makes it such that au (b, 2) is not always equal to up (b, 2). ▫

Fearnley et al. also provide an example where the antagonistic update au is
required to preserve the monotonicity of the prog function.

Example 3.7 We will illustrate this example here. Given a game with 5 ○-priority
vertices and any number of⬠-priority vertices we take two○-measures: b and c.

b = ⟨_, 4, 2⟩
c = ⟨9, 8, _⟩

We have b ⊑ c since _ < 9 in our ordering. However, when we update these
measures using a vertex with priority 6 we can see the order changes.

b′ = up (b, 6) = ⟨6, _, _⟩
c′ = up (c, 6) = ⟨9, 8, 6⟩

To obtain b′ we use rule 1 of ru with candidate index j = 2 since this yields a
higher measure than using rule 2 of ru with candidate index j = 1. Furthermore,
value (⟨6, _, _⟩) ≤ 5 therefore b′ ≠ ⊤.

29

To obtain c′ we use rule 1 of ru with candidate index j = 0 since there are
no indices for which rule 2 is applicable because the priorities are higher than 6.
Furthermore, value (⟨9, 8, 6) = 3 ≤ 5 therefore c′ ≠ ⊤.

We have c′ ⊑ b′ since 9 < 6 in our ordering. From this we can conclude that
the up function is not monotonic. Applying the antagonistic update function au

instead gives:

b′′ = au (b, 6) = ⟨_, 6, 6⟩
c′′ = au (c, 6) = ⟨9, 8, 6⟩

Toobtain b′′weattempt to find the smallestmeasure obtainable fromameasure
that is greater in our ordering than b. One such larger measure is ⟨_, 6, _⟩ which is
in fact the smallest measure that is larger than b. We have up (⟨_, 6, _⟩, 6) = ⟨_, 6, 6⟩
using rule 1 of ru with candidate index j = 0. According to Fearnley et al. it is in
practice sufficient to implement the antagonistic update by only considering the
original measure b and the smallest measure that is larger than b. We have found
this to not always be true; chapter 4 covers this topic in more detail. It is impractical
to list every possible measure which is larger than b here but suffice it to say that
there are no such measures which will result in a smaller measure than ⟨_, 6, 6⟩.

To obtain c′′we attempt to find the smallestmeasure obtainable fromameasure
that is greater in our ordering than c. All measures greater than c either have a
priority that is better for 𝛼 than 9 at index 2, a priority that is better for 𝛼 than 8 at
index 1, or some priority that is not _ at index 0. In all these cases we have that rule 1
with candidate index j = 0 is still applicable resulting a measure where the priority
at index 0 is 6 or higher and the priorities at indices 1 and 2 are also equal to or
higher (in our ordering for○) than 8 and 9 respectively which is a measure greater
than or equal to ⟨9, 8, 6⟩. Therefore, no such measure that is greater than cwill yield
a measure after the update that is greater than ⟨9, 8, 6⟩. As such au (c, 6) = up (c, 6).

Since the measure b′′ ⊐ b we still make progress which means that given
sufficient applications of an even priority the measure ⟨6, _, _⟩ will still be reached
eventually. However, by slowing the progress of the bmeasure the au function is
monotonic. ▫

Finally, we give an example of solving an entire game using the Ordered
Progress Measures. This is a simple example where we only need to compute
the ○-measures, and we have no instances where the antagonistic update au is
needed. Therefore, for the sake of brevity we will not be listing measures that are
larger than the input measure of au while explaining the calculations in detail.

Example 3.8 As our example we use the game from Figure 2.1. We start by setting
the○-measure of every vertex to ⟨_, _⟩ as shown in Figure 3.1.

30

5

⟨_, _⟩

2

⟨_, _⟩

1

⟨_, _⟩

3

⟨_, _⟩

6

⟨_, _⟩

Figure 3.1: Set all measures to ⟨_, _⟩.

For every vertex we can now attempt to lift its measure by applying the prog
function on the measures of its successors and its priority. Since we are calculating
○-measures (even), if the vertex is owned by○, we use the largest result of these
prog s. If the vertex is owned by⬠ (in this case only the vertex with priority 1), we
use the smallest result.

We start by lifting the○-vertex with priority 6, but we could have started with
any other vertex, the order does not matter. Since the vertex has only one successor
it computes prog (⟨_, _⟩, 6) = ⟨_, 6⟩, where ⟨_, _⟩ is the measure of the successor, the
○-vertex with priority 5. The measure here results from rule 1 of the raw update ru.
(see Definition 3.7) Recall that an element bi ○-measure b = ⟨b1, b0⟩ is a witness
of a chain of at least 2i ○-priority vertices where the last vertex in the chain has
the priority bi. Here we simply start recording a new chain of ○-priority vertices
ending with the○-priority 6.

We can repeat this for the ○-vertices with priority 5 and priority 3, since the
rules allow for the priority of the last vertex in a chain of○-priority vertices to be
odd⬠. The result is shown in Figure 3.2.

5

⟨_, 5⟩

2

⟨_, _⟩

1

⟨_, _⟩

3

⟨_, 3⟩

6

⟨_, 6⟩

Figure 3.2: Lift the○-vertex with priority 6 to ⟨_, 6⟩, the○-vertex with priority 5 to
⟨_, 5⟩, and the○-vertex with priority 3 to ⟨_, 3⟩.

Next we can lift the○-vertex with priority 2. This vertex has two possible suc-
cessors, however both of these successor vertices have a measure that only contains
a witness to a chain of○-priority (even) vertices with an⬠-priority (odd) vertex at
the end of the chain. Because of this we cannot extend the chain of vertices and
must instead start anew using rule 1 of the raw update ru. The○-vertex with pri-
ority 2 gets lifted to the new measure prog (⟨_, 5⟩, 2) = prog (⟨_, 3⟩, 2) = ⟨_, 2⟩ as

31

shown in Figure 3.3.

5

⟨_, 5⟩

2

⟨_, 2⟩

1

⟨_, _⟩

3

⟨_, 3⟩

6

⟨_, 6⟩

Figure 3.3: Lift the○-vertex with priority 2 to ⟨_, 2⟩.

The last remaining vertex thatwehave not lifted yet is the⬠-vertexwith priority
1. This vertex can play towards the○-vertex with priority 6 and the○-vertex with
priority 3. If it were to be lifted using the○-vertex with priority 6 we could extend
the chain of ○-priority vertices witnessed by the 6 in the measure ⟨_, 6⟩ to form
a chain of length 21 = 2. Therefore, using rule 1 of the raw update ru we have
prog (⟨_, 6⟩, 1) = ⟨1, _⟩.

If we instead lift using the ○-vertex with priority 3 we cannot extend the
chain because it already ended with an odd ⬠ priority. Therefore, we have
prog (⟨_, 3⟩, 1) = ⟨_, 1⟩ as shown in Figure 3.4. Note that playing towards the
○-vertex with priority 3 matches the winning strategy we highlighted when we
first discussed this game in section 2.1

5

⟨_, 5⟩

2

⟨_, 2⟩

1

⟨_, 1⟩

3

⟨_, 3⟩

6

⟨_, 6⟩

Figure 3.4: Lift the⬠-vertex with priority 1 to ⟨_, 1⟩.

Now we have lifted every vertex at least once. There are a couple of vertices
that can now be lifted again because their successors got lifted.

The ○-vertex with priority 3 can be lifted because prog (⟨_, 2⟩, 3) = ⟨3, _⟩ ⊒
⟨_, 3⟩. This extends the length 1 chain of○-priority vertices witnessed by the 2 in
⟨_, 2⟩ forming a new chain with length 2.

Using this new measure the ○-vertex with priority 2 can now also be lifted
again. Here prog (⟨3, _⟩, 2) = ⟨3, 2⟩, because we cannot extend the chain of ○-
priority vertices witnessed by the 3 in the measure because it ended with an⬠-
priority vertex. We can however keep track of an additional chain of ○-priority
vertices with length 1.

32

The⬠-vertex with priority 1 can also be updated using the newmeasure which
was assigned to the○-vertex with priority 3. There we have prog (⟨3, _⟩, 1) = ⟨3, 1⟩
which is still smaller than the prog (⟨_, 6⟩, 1) = ⟨1, _⟩ which could be gotten by
playing towards the○-vertex with priority 6. Note that 1 > 3 in the ordering used
for ○-measures (even) for the Ordered Progress Measures. Since the vertex
is owned by⬠ and we are computing ○-measures we use the smaller of the two
results.

These three updates are shown in Figure 3.5.

5

⟨_, 5⟩

2

⟨3, 2⟩

1

⟨3, 1⟩

3

⟨3, _⟩

6

⟨_, 6⟩

Figure 3.5: Lift the○-vertex with priority 3 to ⟨3, _⟩, the○-vertex with priority 2 to
⟨3, 2⟩, and the⬠-vertex with priority 1 to ⟨3, 1⟩.

Using the newmeasure for the⬠-vertex with priority 1we can lift the○-vertex
with priority 5. Here we have prog (⟨3, _⟩, 5) = ⟨5, _⟩, because we can replace the
last vertex (with priority 3) in the length 2 chain of ○-priority vertices with the
vertex with priority 5.

In turn, the○ vertex with priority 6 can be lifted using this newmeasure. Here
we have prog (⟨5, _⟩, 6) = ⟨6, _⟩, because 6 is a higher priority than 5 we are able to
replace the last vertex in the chain of○-priority vertices even though it had an odd
⬠ priority. The result of these two updates is shown in Figure 3.6.

5

⟨5, _⟩

2

⟨3, 2⟩

1

⟨3, 1⟩

3

⟨3, _⟩

6

⟨6, _⟩

Figure 3.6: Lift the○-vertex with priority 5 to ⟨5, _⟩, and the○-vertex with priority
6 to ⟨6, _⟩.

In this state no further lifts can occur because the⬠-vertex with priority 1
will never be lifted towards the○-vertex with priority 6 because lifting towards the
○-vertex with priority 3 results in a lower measure.

33

Now that we have reached the fixpoint we can determine which vertices are
won by which player. Since none of the vertices reached the ⊤ ○-measure (even)
we find that all the vertices are won by odd⬠. We can determine the strategy for
odd⬠ to win the game by looking at which of its successors gives us the lowest
measure, in this case that is the○-vertex with priority 3. ▫

Properties of the prog function

To use the Ordered Progress Measures with our algorithm its progression
function prog must conform to the properties described in Definition 3.4.

The first property holds because the antagonistic update au turns the function
up into amonotonic function. In practice, implementing this ‘trick’ which canmake
any function monotonic can be difficult. In chapter 4 we discuss the monotonicity
of the Ordered Progress Measures in greater detail.

To show that the second property of Definition 3.4 holds for OPM’s prog func-
tion we will first show that it holds for the up function and then show that the
property is preserved when applying the antagonistic update.

The second property holds because rule 1 of the raw update ru (Definition 3.7)
always yields a higher measure and rule 2 may only decrease a measure if the en-
countered priority is greater or equal to a priority stored in the tuple. Additionally,
a priority can only be stored as an element in the measure if the priority is en-
countered. Given a starting measurem ∈ ℳ𝛼 and a priority p ∈ ℕ there are three
cases to consider: the starting measure is ⊤, up (m, p) = m, or up (m, p) ≠ m. It is
trivial to see that ifm = ⊤ that the measure cannot decrease by encountering any
priority. If up (m, p) = m then both rules of the raw update ru must not have been
applicable this can only occur if p is smaller than all elements inm. Consequently,
any priority q ≤ p will also have the property up (m, q) = m which means thatm is
p-stable. Finally, if m′ = up (m, p) ≠ m then the resulting measure m′ must have
some index j such that for all i > j we have m′

i ≥ p, m′
j , and for all i < j we have

m′
i = _. No priority q ≤ p can result in up (m′, q) being lower thanm′ because the

elementsm′
i for all i ≥ j cannot be lowered by priorities less or equal to p and the

remaining elementsm′
i for all i < j are already at their smallest possible value _.

Now what remains to be shown is that this property is preserved when the
antagonistic update is applied. The result of au (m, p) is the smallest result of up (c, p)
for all c ⊒ m. Therefore, to show that the result of au (m, p) is p-stable we must
show that the result of up (c, p) is p-stable for all c ⊐ m. We can use the same logic
we used in the previous paragraph which already showed that for anym ∈ ℳ𝛼 and
priority p ∈ ℕ we have that up (m, p) is p-stable. Therefore, we can conclude that
the second property of Definition 3.4 holds for OPM’s prog (au) function.

Similarly to what we did to show that the second property of Definition 3.4
holds for OPM’s prog function we will first show that the third property holds for
the up function and then show that the property is preserved when applying the
antagonistic update.

The third property holds because after a raw update ru of a measurem ∈ ℳ𝛼
and a priority p ∈ ℕ with a candidate index j the resulting measure will have
elements with indices i < j set to _ and all elements with indices i > j will be
equal to _ or greater than p. Consequently, given a starting measurem ∈ ℳ𝛼 and

34

a sequence of priorities Q where for every priority q ∈ Q with q ≤ p ∨ q ≡2 𝛼 we
find that all elements with indices i > j in the result of up (up (m,Q), p) are greater
than or equal to the elements with those indices in the result of up (m, p) since the
priorities in Q cannot decrease the values of the elements with indices i > j. (either
because they have a lower priority than the ones stored at those indices or because
they are of 𝛼’s parity which never yields a lower measure) Finally, what remains
to be shown is that the same candidate index j (or a candidate index resulting in
a higher measure) is chosen for up (up (m,Q), p) and up (m, p). If j is a candidate
index for rule 2 of ru then it does not depend on the elements with indices i < j
and is therefore still valid for the resulting measure after applying the progression
function to sequence Q. On the other hand, if j is a candidate index for rule 1 of ru
then it does depend on all elements with indices i < j being of 𝛼’s parity. However,
after the right-most priority in the sequenceQ is encountered the resulting measure
will be high enough such that any further priorities (to the left of the right-most
priority) q ∈ Q with q ≤ p cannot cause the measure to become low enough
that encountering p would result in a measure that is lower than up (m, p). This is
because when encountering the last priority (right-most) in the sequence Q rule 1
can be used with the candidate index j. This causes the priority at index j in the
measure to be increased. Since the priority at index j in the measure is now lower
than p and not equal to _ when computing up (up (m,Q), p) rule 2 can be used with
index j resulting in the same measure as (or, if Q contained priorities of 𝛼’s parity, a
higher measure than) up (m, p). Essentially, after the last priority in the sequence
Q has been applied (it is the first priority to be applied according to Definition 3.1)
we can use the same reasoning as was used in the rule 2 case using the fact that the
resulting measure is always larger than the original measurem because rule 1 was
used.

Finally, what remains to be shown is that this property is preserved when the
antagonistic update is applied. The result of au (m, p) is the smallest result of up (c, p)
for all c ⊒ m. We can notice here that when up (m, p) would use rule 2 of ru with
candidate index j then au (m, p) = up (m, p) because if a measure c ⊐ mwould have
up (c, p) ⊏ up (m, p) then the priority at index j in c would have to be greater than p
otherwise the same candidate index would be applicable and the same (or a higher)
measure would be obtained. However, we can now distinguish two cases: either
the priority at index j in c is greater than the priority at index j inm, or the priority
at index j in c is smaller or equal to the priority at index j in m. If the priority at
index j in c is greater, then that priority must be of 𝛼’s parity because c ⊐ m which
causes a contradiction because then up (c, p) ⊐ up (m, p). If the priority at index j in
c is smaller or equal to the priority at index j inm then there must be an index k > j
such that the priority at index k of c is better for 𝛼 (i.e. greater inOPM’s ordering for
the 𝛼-measures) than the priority at index k ofm. If this is the case then the result
of up (c, p) must always be greater than up (m, p) because a higher indexed element
was improved for 𝛼 resulting a contradiction.

Therefore, we only need to consider cases where the priority q ∈ Q results in
up using rule 1 of ru and cases where up (m, p) uses rule 1. For the former we can
consider two cases either ∃r∈Qr ≡2 𝛼 or up (m, p) uses rule 1 because either rule 1
was applicable form or one or more priorities of 𝛼’s parity increased the measure
such that rule 1 became applicable. If there are priorities of 𝛼’s parity in Q then
this can yield a measure where rule 1 of ru is applicable. However, this can never
yield a measure that is low enough such that au (au (m,Q), p) ⊏ au (m, p) because

35

the application of rule 1 always yields a higher measure, and we already found
that the application of rule 2 will yield a measure that is high enough. Finally, if
up (m, p) uses rule 1 then we find using Definition 3.4 property 1 that au (m, p) ⊑
au (au (m,Q), p) because au (m, p) ⊑ up (m, p) and up (m, q) ⊒ m where q is the last
priority in Q and because rule 1 is applicable for up (m, q) because it was applicable
for up (m, p) where we can use that up (m, q) ⊑ up (up (m,Q′), q) where Q′ is the
start of the sequence Q without the last priority q.

3.4 Properties of paths
We will use the novel concept of a forced path which is equivalent to a (tangle)
attractor but is defined for paths instead of sets of vertices.

Definition 3.11 (Forced Path) Given two vertices u, v ∈ 𝑉(𝒢) a path 𝜋 from u to
v is an 𝛼-forced path if there is some strategy 𝜎𝛼 for 𝛼 such that all plays starting at
u reach v or end up in a cycle that is won by 𝛼 and the path 𝜋 is one of the paths
that such a play could follow. ▫

0a

1b

2d

6e

...f

2c

Figure 3.7: A parity game graph with two highlighted○-forced paths

Example 3.9 Figure 3.7 shows two ○-forced paths from vertex a to vertex e. The
even○ player has a strategy such that the play must continue towards vertex e. We
see that regardless of the choice made by the odd⬠ player at vertex b by making
the right choice at vertex d the even○ player can ensure e is reached. ▫

Another example of an 𝛼-forced path is the path formed in the proof of
Lemma 3.3 since if it was not an 𝛼-forced path there would be a vertex owned by �̄�

36

which could play to a vertex with a measure equalling ⊤.

Additionally, we commonly use 𝒫 to refer to the set of all paths between two
vertices u and v in a game, and we use ℱ ⊆ 𝒫 to refer to the set of forced paths
between those two vertices.

Since the forced path is equivalent to a (tangle) attractor we can prove two
lemmas to show that attractors and tangle attractors imply the existence of a forced
path.

Lemma 3.4 Given two vertices u, v ∈ 𝑉(𝒢) with u ∈ attr
𝒢
𝛼({v},P) there exists an

𝛼-forced path 𝜋 from u to v containing only vertices with priorities in the set P.
Proof By Lemma 2.3 there exists a strategy 𝜎𝛼 for 𝛼 such that any play must con-
tinue from u to v. The forced path is obtained by, for each vertex along the path
starting at u, choosing an appropriate successor. If the vertex is owned by 𝛼 the
strategy 𝜎𝛼 should be used, if the vertex is owned by �̄� any choice of successor will
suffice. Since the computation of attr restricts the attracted vertices to those with
a priority in P, the formed path also contains only those vertices. ▪

Lemma 3.5 Given two vertices u, v ∈ 𝑉(𝒢) with u ∈ attrT
𝒢
𝛼({v},P) there exists an

𝛼-forced path 𝜋 from u to v containing only vertices with priorities in the set P.
Proof By Lemma 2.5 there exists a strategy 𝜎𝛼 for 𝛼 such that any play must con-
tinue from u to v, or get stuck in a winning cycle for 𝛼. The forced path is obtained
by, for each vertex along the path starting at u, choosing an appropriate successor.
If the vertex is owned by 𝛼 the strategy 𝜎𝛼 should be used, if the vertex is owned by
�̄� any choice of successor will suffice. Since the computation of attrT restricts the
attracted vertices to those with a priority in P, the formed path also contains only
those vertices. ▪

Benerecetti et al.[1] introduce the notion of the measure 𝜂(𝜋) of a finite path.
A version of their definition which has been adapted to fit the terminology used in
this thesis is shown in Definition 3.12. Additionally, this definition allows for some
starting measure of the first vertex in the path.

Definition 3.12 (Path Measure) The measure 𝜂(𝜋,m) of a finite path 𝜋where the
last vertex v ∈ 𝜋 has the starting measurem is recursively defined as such:

𝜂(𝜋,m) ≜ {
m if 𝜋 = {v}
prog (𝜂(𝜋′,m), pr (u)) if 𝜋 = u ⋅ 𝜋′, for some unique u ∈ 𝑉(𝒢) ▫

Note that this is very similar to our definition of prog when applied to a se-
quence of properties. The following lemma shows the connection between the two.

Lemma 3.6 Given a finite path 𝜋, a starting measure m, and the path’s measure
𝜂(𝜋,m), we have 𝜂(𝜋,m) = prog (m, Q) where Q is a sequence with all the priorities
of the vertices along the path 𝜋 in reverse order, excluding the last vertex in the path
which had the starting measure m. ▫

We can now define and prove some lemmas which will be useful in chapter 5
to prove the correctness of our algorithm.

37

Lemma 3.7 Given two vertices u, v ∈ 𝑉(𝒢) where ℱ ⊆ 𝒫 is the set of all 𝛼-forced
paths from u to v, the parameters ((ℳ○,ℳ⬠), (≤○, ≤⬠), prog) such that gpm yields
a concrete progress measure as defined by Definition 3.5, and an 𝛼-measure function
𝜇∶ 𝑉 → ℳ𝛼 where ∀v∈𝑉(𝒢)𝜇[v] ≤ gpm ()[pm𝛼][v]

1 we have that:

min
𝜋∈ℱ

𝜂(𝜋, 𝜇[v]) ≤ gpm ()[pm𝛼][u]

Proof We prove this by induction on the construction of an 𝛼-forced path 𝜋 ∈ ℱ.
We aim to construct such a path 𝜋 such that 𝜂(𝜋, 𝜇[v]) ≤ gpm ()[pm𝛼][u].

Induction Hypothesis (IH): given an 𝛼-measure function 𝜇 where
∀v∈𝑉(𝒢)𝜇[v] ≤ gpm ()[pm𝛼][v] we have 𝜂(𝜋, 𝜇[w]) ≤ gpm ()[pm𝛼][u] where w
is the last vertex in 𝜋.

Base case 𝜋 = {u,w}:
First we fix some 𝛼-measure function 𝜇 where ∀v∈𝑉(𝒢)𝜇[v] ≤ gpm ()[pm𝛼][v]. We
distinguish two cases: either u ∈ 𝑉𝛼 or u ∈ 𝑉�̄�. If u ∈ 𝑉𝛼 then by Lemma 3.2
we have that gpm ()[pm𝛼][u] = max {prog (gpm ()[pm𝛼][x], pr (u)) || x ∈ 𝐸(u)}. Ad-
ditionally, we have 𝜂({u,w}, 𝜇[w]) = prog (𝜇[w], pr (u)) by Definition 3.12
and w ∈ 𝐸(u). Therefore, by Definition 3.4 property 1 we have that
𝜂(𝜋, 𝜇[w]) ≤ gpm ()[pm𝛼][u]. If u ∈ 𝑉�̄� then by Lemma 3.2 we have that
gpm ()[pm𝛼] = min {prog (gpm ()[pm𝛼][x], pr (u)) || x ∈ 𝐸(u)}. Now we can again
distinguish two cases: either 𝐸(u) = {w} or 𝐸(u) ≠ {w}. If 𝐸(u) = {w} then
gpm ()[pm𝛼][u] = prog (gpm ()[pm𝛼][w], pr (u)) ≥ 𝜂(𝜋, 𝜇[w]) by Definition 3.4
property 1 and the requirement on 𝜇. Otherwise, if 𝐸(u) ≠ {w} then w.l.o.g. we
can choose w ∈ 𝐸(u) to be any successor of u in an 𝛼-forced path between u
and v. We can do this by Definition 3.11 because if there exists some strategy
𝜎𝛼 for 𝛼 such that all plays starting at u eventually reach v or end up in a cycle
won by 𝛼 then all successors w of u must either have gpm ()[pm𝛼][w] = ⊤ by
Theorem 3.1 and Definition 2.13 in which case they will not be the successor
which grants gpm ()[pm𝛼][u] its minimal value, or w must be in a forced path
between u and v. Since we have free choice of w ∈ 𝐸(u) we can choose w such
that prog (𝜇[w], pr (u)) ≤ min {prog (gpm ()[pm𝛼][x], pr (u)) || x ∈ 𝐸(u)} using
Definition 3.4 property 1 and the requirement on 𝜇.

Step case 𝜋 = 𝜋′ ⋅ x:
First we fix some 𝛼-measure function 𝜇 where ∀v∈𝑉(𝒢)𝜇[v] ≤ gpm ()[pm𝛼][v]
and we use w to be the last vertex in 𝜋′. We distinguish two cases: either
w ∈ 𝑉𝛼 or w ∈ 𝑉�̄�. If w ∈ 𝑉𝛼 then by Lemma 3.2 we have that gpm ()[pm𝛼][w] =
max {prog (gpm ()[pm𝛼][x], pr (w)) || x ∈ 𝐸(u)}. Additionally, wehave 𝜂({w, x}, 𝜇[x])
= prog (𝜇[x], pr (w)) by Definition 3.12 and x ∈ 𝐸(w). Therefore, by Definition 3.4
property 1 we have that 𝜂({w, x}, 𝜇[x]) ≤ gpm ()[pm𝛼][w]. If u ∈ 𝑉�̄� then by
Lemma 3.2 we have that gpm ()[pm𝛼][w] = min {prog (gpm ()[pm𝛼][x], pr (u)) || x ∈
𝐸(u)}. Now we can again distinguish two cases: either 𝐸(w) = {x} or 𝐸(w) ≠ {x}. If
𝐸(w) = {x} then gpm ()[pm𝛼][w] = prog (gpm ()[pm𝛼][x], pr (w)) ≥ 𝜂({w, x}, 𝜇[x])
by Definition 3.4 property 1 and the requirement on 𝜇. Otherwise, if 𝐸(u) ≠ {x}
then w.l.o.g. we can choose x ∈ 𝐸(w) to be any successor of w in an 𝛼-forced path
between u and v. We can do this by Definition 3.11 because if there exists some
strategy 𝜎𝛼 for 𝛼 such that all plays starting at u eventually reach v or end up in

1The notation gpm ()[pm𝛼][x] refers to the 𝛼-measure of x after gpm has finished executing

38

a cycle won by 𝛼 then all successors x of w must either have gpm ()[pm𝛼][x] = ⊤
by Theorem 3.1 and Definition 2.13 in which case they will not be the successor
which grants gpm ()[pm𝛼][w] its minimal value, or x must be in a forced path
between u and v. Since we have free choice of x ∈ 𝐸(w) we can choose x such
that prog (𝜇[x], pr (w)) ≤ min {prog (gpm ()[pm𝛼][y], pr (w)) || y ∈ 𝐸(w)} using
Definition 3.4 property 1 and the requirement on 𝜇.

We have now proven that 𝜂({w, x}, 𝜇[x]) ≤ gpm ()[pm𝛼][w]. Using this
we can fix an 𝛼-measure function 𝜇′ where ∀v∈𝑉(𝒢)𝜇′[v] ≤ gpm ()[pm𝛼][v] and
𝜇′[w] = 𝜂({w, x}, 𝜇[x]). Then by the IH (setting 𝜇 in the IH to our 𝜇′) we have that
𝜂(𝜋′, 𝜇′[w]) ≤ gpm ()[pm𝛼][u]. Finally, because we have 𝜂(𝜋, 𝜇[x]) = 𝜂(𝜋′, 𝜇′[w])
we find that 𝜂(𝜋, 𝜇[x]) ≤ gpm ()[pm𝛼][u]. ▪

Lemma 3.8 Given an attractor decomposition ℋ𝛼(𝒢, ⪯), the parameters
((ℳ○,ℳ⬠), (≤○, ≤⬠), prog) such that gpm yields a concrete progress meas-
ure as defined by Definition 3.5, and an 𝛼-measure function pm∶ 𝑉 → ℳ𝛼 where
∀v∈𝑉(𝒢)pm[v] ≤ gpm ()[pm𝛼][v], ⪯ orders vertices by their value in pm, and for each
vertex v ∈ 𝑉(𝒢), pm[v] is pr (v)-stable. For every region (v, 𝒜) ∈ ℋ𝛼(𝒢, ⪯) and every
vertex u ∈ 𝒜 for which there exists a forced path from u to v containing only vertices
with priorities which are of 𝛼’s parity or that are less or equal to pr (v) we have:

prog (pm[v], pr (u)) ≤ gpm ()[pm𝛼][u]

Proof We prove this by induction on the construction of the sequenceℋ𝛼(𝒢, ⪯).
(see Definition 2.11)

Induction Hypothesis (IH): For every region (v, 𝒜) ∈ ℋ and every vertex
u ∈ 𝒜 we have:

prog (pm[v], pr (u)) ≤ gpm ()[pm𝛼][u]

Base caseℋ = ⟨(v, 𝒜)⟩:
Using Lemma 3.7 we have that given the set of all 𝛼-forced paths ℱ ⊆ 𝒫 between
u and v we have min𝜋∈ℱ 𝜂(𝜋, pm[u]) ≤ gpm ()[pm𝛼][u]. Additionally, because
we know that pm[v] is pr (v)-stable by Definition 3.3 we have that for all finite
paths 𝜋 ∈ 𝒫 containing only priorities of 𝛼’s parity or that are lower or equal to
pr (v), prog (pm[v], pr (u)) ≤ 𝜂(𝜋, pm[v]) because by Lemma 3.6 𝜂(𝜋, pm[v]) =
prog (prog (pm[v],Q), pr (u)) where Q is the sequence of priorities of the vertices
in 𝜋 except the first vertex u. Becauseℱ ⊆ 𝒫, that is the set of forced paths from u to
v is a subset of all the paths from u to v, we can conclude that prog (pm[v], pr (u)) ≤
gpm ()[pm𝛼][u]. (Note that ℱ is non-empty because by Lemma 3.5 we know there
exists a forced path from u to v)

Step caseℋ = ℋ′ ⋅ (v, 𝒜)
For some v′ ∈ 𝑉(𝒢) ⧵𝑉(𝒢′), where 𝒢′ is the game after the regions inℋ′ have been
removed, with pm[v] ≤ pm[v′] we have:

∀u′∈𝑉(𝒢)⧵𝒢′prog (pm[v′], pr (u′)) ≤ gpm ()[pm𝛼][u
′] by the IH

∀u′∈𝑉(𝒢)⧵𝒢′prog (pm[v], pr (u′)) ≤ prog (pm[v′], pr (u′)) by Definition 3.4 prop. 1

Note that the set 𝑉(𝒢) ⧵ 𝑉(𝒢′) is the set of vertices which were removed from the
game by the regions inℋ′ which is why the induction hypothesis is applicable to
the vertices in that set.

39

We can again use Lemma 3.7 but now we only consider the set of all 𝛼-forced
paths ℱ′ ⊆ ℱ ⊆ 𝒫 between u and v which exclusively contain vertices from 𝑉(𝒢′).
We can ignore the 𝛼-forced paths that pass through 𝒢 ⧵ 𝒢′ since those vertices were
already attracted to a vertex with a higher measure than pm[v]. Hence, there is a
strategy for 𝛼 such that 𝛼 can force the play to continue towards the higher region
resulting in a higher measure than those obtained by paths that do not pass through
𝒢⧵𝒢′ because of ∀u′∈𝑉(𝒢)⧵𝒢′prog (pm[v], pr (u′)) ≤ prog (pm[v′], pr (u′)). Nowwe
have min𝜋∈ℱ′ 𝜂(𝜋, pm[v]) ≤ gpm ()[pm𝛼][u].

Additionally, because we know that pm[v] is pr (v)-stable by Lemma 3.6 and
Definition 3.3 we have that for all finite paths 𝜋 ∈ 𝒫 containing only priorities of
𝛼’s parity or that are lower or equal to pr (v), prog (pm[v], pr (u)) ≤ 𝜂(𝜋, pm[v]).
(using the same logic as in the base case) Because ℱ′ ⊆ 𝒫, we can conclude that
prog (pm[v], pr (u)) ≤ gpm ()[pm𝛼][u]. ▪

Lemma 3.9 Given an attractor decomposition ℋ𝛼(𝒢, ⪯), the parameters
((ℳ○,ℳ⬠), (≤○, ≤⬠), prog) such that gpm yields a concrete progress meas-
ure as defined by Definition 3.5, and an 𝛼-measure function pm∶ 𝑉 → ℳ𝛼 where
∀𝑣∈𝑉(𝒢)pm[v] ≤ gpm ()[pm𝛼][v], ⪯ orders vertices by their value in pm, and for each
vertex v ∈ 𝑉(𝒢), pm[v] is pr (v)-stable. For every region (v, 𝒜) ∈ ℋ𝛼(𝒢, ⪯), every
vertex u ∈ 𝒜, and every predecessor w of u for which there exists an 𝛼-forced path
from w to u we have:

prog (pm[v], pr (w)) ≤ gpm ()[pm𝛼][w]

Proof We have w.l.o.g. w ∉ 𝒜 using Lemma 3.8, therefore pr (u) < pr (w) ∨
pr (u) ≡2 𝛼. Then, by Definition 3.3 and Definition 3.4 property 2, we have pm[v] ≤
prog (pm[v], u). Then, by Definition 3.4 property 1 we have prog (pm[v], pr (w)) ≤
prog (prog (pm[v], pr (u)), pr (w)). Finally, using Lemma 3.2 and Lemma 3.8 we
have prog (pm[v], pr (w)) ≤ gpm ()[pm𝛼][w].

Since we needed no additional assumptions on the region, we find that the
lemma holds for all regions inℋ𝛼(𝒢, ⪯). ▪

Lemma 3.10 Given an attractor decomposition ℋ𝛼(𝒢, ⪯), the parameters
((ℳ○,ℳ⬠), (≤○, ≤⬠), prog) such that gpm yields a concrete progress measure
as defined by Definition 3.5, and an 𝛼-measure function pm∶ 𝑉 → ℳ𝛼 where
∀𝑣∈𝑉(𝒢)pm[v] ≤ gpm ()[pm𝛼][v] and⪯ orders vertices by their value in pm. For every
region (v, 𝒜) ∈ ℋ𝛼(𝒢, ⪯), every priority pr (v) < max ≤ d where d is the highest
priority in the game we have, and every vertex u with pr (u) ≥ max for which there
exists an 𝛼-forced path 𝜋 containing only vertices with priorities which are of 𝛼’s
parity or that are less or equal to max we have:

prog (pm[v], pr (u)) ≤ gpm ()[pm𝛼][u]

Proof By the premise of the lemma we have pr (u) ≥ maxx∈𝜋∧pr (x)≢2𝛼 pr (x). By
Definition 3.4 property 3 and Lemma 3.6 we have that prog (pm[v], pr (u)) ≤
𝜂(𝜋, pm[v]). By Lemma 3.7 we have that given the set of all 𝛼-forced paths ℱ ⊆ 𝒫
between u and v we have min𝜋∈ℱ 𝜂(𝜋, pm[v]) ≤ gpm ()[pm𝛼][u]. Because ℱ ⊆ 𝒫
we conclude that prog (pm[v], pr (u) ≤ gpm ()[pm𝛼][u]) ▪

40

Summary
In this chapter we presented some requirements on the progression function prog
of a progress measure which make it suitable for use with our PMTL algorithm.
Then we introduced the Generic Progress Measures which can be paramet-
rised to resemble existing progress measure algorithms allowing us to rely on their
correctness proof to prove the correctness of ourPMTL algorithm in the next chapter.
Wewent on to give a description of the Small ProgressMeasures andOrdered
Progress Measures, and discussed how these existing progress measure-based
algorithms satisfy the properties we introduced. Finally, we presented the novel
concept of a forced path and proved some lemmas which will allow us to prove the
correctness of the PMTL algorithm in chapter 5.

41

Chapter 4

The monotonicity of Ordered
Progress Measures

Introduction
The basic update rules for the Ordered Progress Measures algorithm were de-
scribed by Calude et al.[2], and modified for value iteration by Fearnley et al.[9].
(see Definition 3.9) Unfortunately, these basic update rules do not preserve the or-
dering introduced by Fearnley et al. To resolve this issue Fearnley et al. introduce an
antagonistic update. (see Definition 3.10) This operation can be applied to any func-
tion to make it monotonic. However, to make the Ordered Progress Measures
algorithm practical to use it must be possible to compute its progression function ef-
ficiently. While Fearnley et al. give an explanation of how this can be implemented,
we found that the resulting function is notmonotonic. All existing implementations
of the Ordered Progress Measures algorithm sidesteps the issue by adding a
check before measures are updated which seems to be sufficient to make the al-
gorithm behave correctly. However, in our PMTL algorithm we cannot employ this
same trick, therefore we require the progress measure used with our algorithm to
be monotonic for all inputs. In this chapter we will explore some examples that
show that the function as implemented is not monotonic, analyse the situations in
which this occurs, and provide an alternative definition which fixes this issue.

4.1 Implementation as described by Fearnley et al.
According to Fearnley et al.[9] the antagonistic update au (b, v) can be implemented
as follows. First, we find some measure d:

min
⊑

{d = ⟨dk, dk−1,… , d0⟩ | d ⊒ b ∧ d0 = _}

Then, we compare up (b, v) and up (d, v), taking the smallest of the two (in the order
⊑) as the result of au (b, v).

However, as mentioned in the introduction to this chapter, the resulting func-
tion is not order-preserving for all input measures. In this section we will discuss

42

the two kinds of situations in which this non-monotonic behaviour presents itself.

4.1.1 Multiple rule 2 candidates
In some caseswhen there are two ormore candidate indices that can be used to apply
rule 2 of the raw update function ru (Definition 3.7) to a measure. This results in a
measure that is too high. Take, for example, the○-measures (even) b = ⟨_, 9, 3, 2⟩
and b′ = ⟨_, 5, _, _⟩. We can see that b ⊏ b′ (since 9 and 5 are odd and 9 > 5), but
au (b, v) ⊐ au (b′, v) for a vertex v with pr (v) = 9. We will look at the calculation of
au (b, v) and au (b′, v) in detail to see that this is true.

For au (b, v) we first find d. Setting b0 to _ gives us ⟨_, 9, 3, _⟩ ⊑ b, the smallest
step we can take to make this measure larger than or equal to b is to lower the 3 to a
1. (remember the order ⊑ prefers lower odd priorities over higher ones) This yields
d = ⟨_, 9, 1, _⟩ ⊒ b. Now we calculate up (b, v). If we use rule 1 of Definition 3.7 we
get ⟨_, 9, 9, _⟩, and if we use rule 2 we get ⟨_, 9, 9, _⟩ too. As such that is the result of
au (b, v).

For au (b′, v) we first find d′. Setting b′0 to _ gives us d′ = ⟨_, 5, _, _⟩ ⊒ b′. In
this case we do not need to find a d ⊒ b′ since b′0 was already equal to _. Therefore,
we only need to calculate up (b′, v). We cannot use rule 1 of Definition 3.7 because
there are no even priorities in themeasure. However, we can use rule 2 which yields
au (b′, v) = ⟨_, 9, _, _⟩. We can see that ⟨_, 9, 9, _⟩ ⊐ ⟨_, 9, _, _⟩.

In general, the problem occurs when an 𝛼-measure b has some bj = p and some
bi = q ≤ p with i < j. When updating this measure with a vertex v with a priority
r > q, i can be used to apply rule 2 of the raw update ru. Additionally, we assume
p, q, and r are not of 𝛼’s parity. It is possible for there to be multiple candidates bi
which fit the above description. Since Fearnley et al. specify the largest measure
must be chosen we assume w.l.o.g. that i is the index for rule 2 which results in the
largest measure out of all possible i candidates. We can distinguish two cases:

Case r ≤ p:
Because r ≤ p, j cannot be used as an index for rule 2. Therefore, iwill be chosen to
update the measure with rule 2. This means that in the measure c after the update,
all ck with k > i will be equal to their respective bk.

Case r > p:
Since choosing j as the index for rule 2 results in a smaller measure, we know that i
will be used. This does conflict with the later instruction in Fearnley et al.[9] which
states ‘the rule is to simply update the left-most position in a measure that can be
updated’. This instruction would indicate that jmust be chosen instead, resulting
in a smaller measure after the update. However, if i is used then all ck with k > i in
the measure c after the update will be equal to their respective bk.

We can now compare this to another measure b′ ⊐ b with b′j < p, b′k = bk
for all k > j, and there is no k < j for which b′k < r. Because there is no other
index for which rule 2 can be applied the index j must be used. Therefore, the
measure c′ after the update has c′j = r and c′k = ck for all k > j. Hence, c′ ⊑ c and
up (b′, v) ⊑ up (b, v). Since we had b′ ⊐ b, we can conclude that the definition of
rule 2 does not yield a monotonic update function. The example given above shows
that the implementation of the antagonistic update as provided by Fearnley et al. is

43

not able to resolve this case, unlike the non-monotonic behaviour induced by rule
1 which is resolved by their implementation.

4.1.2 Reaching the top measure prematurely
There is also another way that the update rules violate monotonicity. Take, for
example, the○-measures (even) b = ⟨_, 2, _, 2⟩, and b′ = ⟨_, 6, _, _⟩ for a game with
5○-priority vertices. We can see that b ⊏ b′ (since 2 and 6 are even○ and 2 < 6),
but au (b, v) ⊐ au (b′, v) for a vertex vwith pr (v) = 2. We will look at the calculation
of au (b, v) and au (b′, v) in detail to see that this is true.

For au (b, v) we first find d. Setting b0 to _ gives us ⟨_, 2, _, _⟩, the smallest step
we can take to make this measure larger than or equal to b is to set d1 to the highest
odd priority in the game, in this case 1. This yields d = ⟨_, 2, 1, _⟩ ⊒ b. Now we
calculate up (b, v). If we use rule 1 of the raw update function ru (Definition 3.7),
this results in ⟨_, 2, 1, 2⟩ and if we use rule 2 this results in ⟨_, 2, 2, _⟩. Since we
always choose the highest possible measure the result of the raw update ru (b, v) is
⟨_, 2, 2, _⟩, however, the result of the normal update up (b, v) is ⊤. This is because
value (⟨_, 2, 2, _⟩) = 6 and there are only 5 even-priority vertices in the game. Next,
we calculate up (d, v). If we use rule 1 this results in ⟨_, 2, 2, _⟩, since rule 2 is not
applicable here this is the result of ru (d, v). However, again the value of thismeasure
exceeds 5 so au (d, v) = up (d, v) = ⊤.

For au (b′, v) we first find d′. Setting b′0 to _ gives us d′ = ⟨_, 6, _, _⟩ = b′.
Therefore, we have au (b′, v) = up (b′, v). Now we calculate up (b′, v). We use
rule 1, since rule 2 is not applicable, this results in ru (b′, v) = ⟨_, 6, _, 2⟩. Since
value (⟨_, 6, _, 2⟩) = 5, we have up (b′, v) = ru (b′, v). We can now see that
au (b, v) = ⊤ ⊐ au (b′, v) = ⟨_, 6, _, 2⟩, whereas b ⊏ b′. We can therefore conclude
that the implementation of the antagonistic update as described by Fearnley et al.
does not yield a monotonic function.

4.2 Unanswered questions
In section 4.1 we showed that the implementation of the antagonistic update yields
a non-monotone function. However, despite this, the available implementations of
theOrdered ProgressMeasures have provided correct results for all games that
have been fed to them[6, 8]. These implementations have an additional check that
will only allow the measure of a vertex to be updated if the new measure is higher
in the ordering ⊑. By removing this check, which should be unnecessary if the
update function is monotonic, one can verify that the implemented update function
is non-monotonic. To prove correctness of these implementations we would need
to prove that for every measure b that results from the implemented antagonistic
update, if it is higher than the measure c that the theoretical antagonistic update
would have produced, two properties hold:

• The measure bmust not be higher than the measure that the vertex gets after
the algorithm with the theoretical antagonistic update has finished running.

• Since au (b, v) may be lower than au (c, v) for some vertex v, using the measure
b instead of the measure c must not cause the final measure (after running

44

the algorithm to completion) of v to be lower than it would have been were
the algorithm to use the theoretical antagonistic update.

Proving these properties is outside the scope of this research since the PMTL
algorithm described in chapter 5 requires the progression function to be monotonic.
The extra check does notmake the implemented antagonistic update functionmono-
tonic.

4.3 The solution
As described in section 4.1 we have identified two different mechanisms that cause
the update function to be non-monotonic: by choosing the wrong index for rule
2 of the raw update function ru (Definition 3.7), and by reaching ⊤ faster than a
lower measure would because of a higher value. The latter is easily resolved by
modifying the up function (Definition 3.9) to no longer use the value for determin-
ing when a measure should become ⊤, instead an 𝛼-measure b becomes top when
bk (i.e. the left-most element of b) is of 𝛼’s parity and the value is still sufficiently
large. It is clear that this new rule allows strictly fewer measures to become ⊤, ad-
ditionally, if a measure reached ⊤ with the old rule then the game has an 𝛼-cycle
which causes the measure to continue to rise such that it will eventually also set bk
to an 𝛼-priority. As such this new rule will not change the results of the Ordered
ProgressMeasures algorithm. Another way to implement this rule is to increase
the size of the measure by increasing k by one. This means that when bk is set to a
priority that is of 𝛼’s parity, then there must also be an 𝛼-priority chain of vertices
that is at least 2⌊log2 d⌋+1 > d in length.

To solve the choice of the wrong index for rule 2 we must replace two parts of
the raw update function ru. Firstly, currently the choice of which rule to apply and
which index to use for that rule is determined by seeing which one results in the
largest possible measure. We will change this to instead choose the highest index
for which a rule can be applied. It is clear that for rule 1 this will still select the same
index since applying rule 1 with a higher index will always yield a higher measure
than selecting any lower index.

For rule 2 there are cases where this results in a higher index (and therefore
lower measure) being chosen. However, switching to the highest index rule does
not, on its own, change anything for the example given in subsection 4.1.1. For this
reason we also modify rule 2. When the encountered vertex has a priority p that
is of 𝛼’s priority we only want to apply rule 2 on an index j for which bj < p since,
otherwise we would be making the measure smaller if bj ≠ p or bi ≠ _ for any i < j.
Therefore, we only change the rule for cases in which p is of �̄�’s priority. In those
cases we want to allow indices j for which bj ≤ d instead of being strictly less than
d. This means that in our example j = 2 could and would be chosen resulting in
⟨_9, _, _⟩ instead of ⟨_, 9, 9, _⟩.

By making these two changes we fix both mechanisms that we identified could
cause the update function to be non-monotonic. While we did not prove this is
the case, the modification of the Ordered Progress Measures described by
Dell’Erba and Schewe[3] likely also bypasses the mechanisms we described.

45

Summary
In this chapterwe discussed the difficulty of implementing theOrderedProgress
Measures’ antagonistic update. We showed two examples that represent different
ways in which the update function’s implementation as described by Fearnley et al.
is non-monotonic. We then discussed why this deficiency has not caused any prob-
lems in practice. Finally, we described two changes to the update function which
fix the two mechanism by which the non-monotonicity was introduced thereby
making the algorithm suitable to be used with the PMTL algorithm described in
the next chapter.

46

Chapter 5

The algorithm

Introduction
This chapter describes three variants of the PMTL algorithm starting with its most
basic form. The PMTL algorithm accelerates the value iteration of progress meas-
ures to more quickly solve a parity game. It does this by lifting all measures of
vertices in the attractor set using the measure of the target vertex of the attractor set.
By doing this a high-valued measure that would previously need multiple iterations
to influence a vertex’s measure can be used immediately. We also describe a variant
which uses an alternative strategy for lifting the measures of vertices with a higher
priority than the top vertex of the region. Finally, we incorporate the techniques
from the Tangle Learning algorithm into a third variant. This includes the use
of the tangle attractor attrT and the extractTangles function to find tangles
and quickly remove dominions from the game. This allows the game to be solved
even faster. Additionally, we discuss the reasoning behind the different operations
the algorithm performs. Finally, we prove the correctness of the three variants.

5.1 The base algorithm
We will first examine the simplest version of the algorithm which only uses regular
attractors, leaving out the discovery of tangles for now. This will make it easier to
prove correctness and the lemmas we prove along the way will be reused for the
tangle learning version. Additionally, this base version only attracts vertices of a
lower priority since it is much easier to prove correctness in those cases.

5.1.1 Description of the algorithm
We can solve a parity game by iteratively lifting a set of progress measures for each
player and removing the dominions from the game when the progress measure
has reached a fixpoint. This iteration is implemented in the pmtl function in Al-
gorithm 5.1. Note that in the interest of brevity the game 𝒢 parameter is omitted for
all functions presented.

47

Algorithm 5.1: pmtl
1 fn pmtl ():
2 pm○ ← {u← ⊥ | u ∈ 𝑉(𝒢)}
3 pm⬠ ← {u← ⊥ | u ∈ 𝑉(𝒢)}
4 c○ ← true, c⬠ ← true
5 while c○ ∨ c⬠ :
6 if c○ :
7 c○ ← update (pm○,○)
8 if ¬ c○ : solve (pm○,⬠)
9 if c⬠ :
10 c⬠ ← update (pm⬠,⬠)
11 if ¬ c⬠ : solve (pm⬠,○)

The pmtl function in Algorithm 5.1 uses update to iteratively lift two sets of
progress measures and solve to remove the vertices won by �̄� from 𝒢 after pm𝛼
has reached a fixpoint, i.e. after c𝛼 becomes false.

Algorithm 5.2: update
1 fn update (pm, 𝛼):
2 target ← 𝑉(𝒢) ↦ _
3 ℰ ← 𝒢
4 for (top, 𝒜) ∈ ℋ𝛼(𝒢, ⊑) :
5 for u ∈ 𝑉(𝒢) :
6 if target[u] = _ ∧ attracts𝛼(u, 𝒜, ℰ) :
7 target[u] ← top
8 ℰ ← ℰ ⧵ 𝒜
9 updated← false
10 for u ∈ 𝑉(𝒢) :
11 if progressVertex (pm, target[u], u) : updated← true
12 return updated

The update function is shown in Algorithm 5.2. It starts by computing the at-
tractor decompositionℋ𝛼(𝒢, ⊑)where⊑ orders vertices by their measure and then
by their priority. For every region (top, 𝒜) we find all the vertices which are attrac-
ted to the attractor set 𝒜. Note that by attracted we mean ‘attracted in a single step’
here, essentially we only check whether the vertices 𝐸−1(𝒜) (direct predecessors
of the vertices 𝒜) are attracted. For each attracted vertex u which has not already
been assigned a target vertex in a higher region, we assign top. This is stored in
the target∶ 𝑉 → (𝑉 ∪ {_}) variable which maps every vertex to the top vertex of a
region.

Finally, we use progressVertex on every vertex to lift it towards its target
vertex. If the measure of any vertex was lifted in this way we return true.

The actual implementation of update differs quite substantially from this de-
scription. Instead of iterating over the attractor decomposition twice and then over
every vertex in the game, we do all of this during a single iteration over the attractor
decomposition. By separately tracking vertices which may be attracted (which in-
cludes the top vertices of higher regions) and the escapes we can determine which

48

region attracts which top vertex.

Finally, once at least one vertex’s measure has been lifted (and after we have
finished all steps for that vertex’s region) we return true without iterating further.
This should theoretically allow a higher measure to be used again earlier. Since
the update function is called until it no longer returns true this gives the same
results as completing the entire decomposition each time, but it has different per-
formance characteristics. In subsection 7.3.4 we will investigate what the impact of
this decision is.

There is another way to conceptualise what this algorithm does which makes
it easier to prove its correctness. We split the for loop into two loops. In the first for
loop the target of every vertexwill be assigned to the top of the regionwhich contains
it, except for the top vertices themselves. In other words, for all u ∈ 𝒜 ⧵ {top} we
set target[u] = top.

After this we need to set the target of the top vertices of each region. It is
possible that these vertices are attracted by their own region, but they may also
be attracted by lower regions, i.e. a region whose top vertex has a lower measure.
Additionally, since the attractor decomposition uses a maximum priority for its
calculation of the attractor there may be some vertex which may be attracted to
higher region because it lies only one edge beyond the original region.

To set the target vertex of the top vertices and to update the target of the
aforementioned vertices to a higher region we iterate over every region (top, 𝒜) ∈
ℋ𝛼(𝒢, ⊑) once more. We keep track of a variable ℰ tracking the remaining vertices
to which the opponent may escape and use this to determine whether any vertices
around the periphery of the region’s attractor set 𝒜 can be attracted. If the vertex
can be attracted, its target vertex is set to the current top vertex if it is higher in the
ordering ⊑.

Only after the second for loop do we use the stored targets to attempt to lift the
measures of the vertices with progressVertex.

Algorithm 5.3: progressVertex
1 fn progressVertex(pm, v,u):
2 newMeasure ← prog (pm[v], pr (u))
3 if newMeasure > pm[v] :
4 pm[v] ← newMeasure
5 return true
6 else: return false

The progressVertex function shown in Algorithm 5.3 attempts to lift a ver-
tex v using the progress measure’s prog function based on themeasure of the vertex
u. It only does so if the new measure is strictly larger than the original measure.

An important note is that care must be taken to not override the ‘old’ measures
before they are passed to prog because this might causemeasures to be lifted higher
than they should have been. To prevent this we can keep track of two separate sets
of measures and switch them at the end of the update function. Alternatively, we
can keep track of whether a measure was updated before we call prog, and if it was,
we simply skip progressing that vertex, but we still return true. That vertex will

49

then end up being updated in a later iteration.

5.1.2 Proving correctness
To prove that the algorithm described in subsection 5.1.1 is able to correctly solve all
parity gameswewill proof two lemmaswhich in turn prove that the algorithm yields
the samemeasures as the original progress measure-based algorithmwould have in
its value iteration framework. We use the Generic Progress Measures (GPM)
algorithm described in chapter 2 as an analogue for the original progress-measure
based algorithm. These lemmas are:

Lemma 5.1 Given an 𝛼-measure function pm∶ 𝑉 → ℳ𝛼 where for each vertex
v ∈ 𝑉(𝒢), pm[v] is pr (v)-stable, the function update will lift these measures to be no
higher than those acquired by running the original progress measure algorithm gpm

when both are parametrised with the same set of parameters ((ℳ○,ℳ⬠), (≤○, ≤⬠
), prog) such that gpm yields a concrete progressmeasure as defined by Definition 3.5.
Proof The update function computes the attractor decomposition ℋ𝛼 of
𝒢 with an ordering ≤ based on the current measure stored in pm. For every
region (top, 𝒜) ∈ ℋ𝛼(𝒢, ≤) it updates the measures of all u ∈ 𝒜 in pm to
be prog (pm[top], pr (u)), or it keeps them at a higher measure. We have
u ∈ attr

𝒢′
𝛼 ({top}, {p ∈ ℕ | p ≡2 𝛼 ∨ p ≤ pr (top)}) ⧵ {top} where 𝒢′ is the set of

vertices which were not in a higher region. By Lemma 3.4 we have an 𝛼-forced
path from u to top containing only vertices with priorities which are of 𝛼’s
parity or that are less or equal to pr (top). Note that since the set of found
tangles 𝒯𝛼 is empty attrT = attr which means we can use lemmas that use
attr even though the definition of ℋ uses attrT. By Lemma 3.8 we have
prog (pm[top], pr (u)) ≤ gpm ()[pm𝛼][u].

Then for every vertex in the 𝒜 set the measure of its successor w be-
comes prog (pm[top], pr (w)) if it is attracted to u in a single step (e.g.
w ∈ attr

𝐸−1(𝒜)
𝛼 ({u}, ℰ, ℕ) again using attrT = attr), or it remains higher.

By Lemma 3.4 we have an 𝛼-forced path from w to u. Finally, by Lemma 3.9 we
have prog (pm[top], pr (u)) ≤ gpm ()[pm𝛼][w]. Since all the updated measures are
no higher than the measures obtained from gpm the lemma holds. ▪

Lemma 5.2 Given an 𝛼-measure function pm∶ 𝑉 → ℳ𝛼, the function update

will lift at least one measure, if running the original progress measure algorithm
gpm would have lifted a measure when both are parametrised with the same set of
parameters ((ℳ○,ℳ⬠), (≤○, ≤⬠), prog) such that gpm yields a concrete progress
measure as defined by Definition 3.5.
Proof We will prove this by structural induction on the construction of a graph:

Induction Hypothesis: the function update will lift at least one measure in
pm. if running gpm would have lifted a measure.

Base case 𝑉(𝒢) = 𝐸(𝒢) = ∅:
Since there are no vertices to be lifted by gpm or update the IH holds.

Step case adding a vertex 𝑉(𝒢) = 𝑉(𝒢′) ∪ {u}, 𝐸(𝒢) = 𝐸(𝒢′):
By the IH we have that for all vertices in 𝒢′ if gpm had lifted the measure then
update will also lift a measure. Since the newly added vertex u is not connected to

50

any other vertex it does not affect the measure of any other vertex, and it can never
be lifted itself. Hence, the IH holds for 𝒢.

Step case adding an edge 𝑉(𝒢) = 𝑉(𝒢′), 𝐸(𝒢) = 𝐸(𝒢′) ∪ {(u, v)}:
By the IH we have that in 𝒢′, if gpm had lifted the measure then update will also
lift a measure. To prove that this is still the case in 𝒢 it suffices to prove that if gpm
lifted the measure of u using the edge (u, v) then update must also lift a measure.
This suffices because any difference in the final measures returned by gpm after
adding the edge must come about by lifting along that edge. We will prove this by
contradiction. Suppose that u is lifted by gpm along the edge (u, v), but update does
not lift any measures. We know that prog (pm[v], pr (u)) > pm[u]. The update
function computes the attractor decompositionℋ𝛼 of 𝒢 with an ordering ≤ based
on the current measure stored in pm. We know there must exist a region (top, 𝒜) ∈
ℋ𝛼(𝒢, ≤) with u ∈ 𝒜. Additionally, we know that prog (pm[top], pr (u)) ≤ pm[u]
and pm[top] < pm[v]. Furthermore, we know that there must exist another higher
value region (w, 𝒜′) containing v because it has a higher measure than top. This
region must have a top vertex w with pm[v] ≤ pm[w]. There are two cases to
consider:

Case u ∈ 𝑉𝛼(𝒢):
Because u ∈ 𝑉𝛼(𝒢) we have that u ∈ attr

𝐸−1(𝒜)
𝛼 (𝒜, ℰ, ℕ). However, that

means that update would have lifted the measure of u to prog (pm[w], pr (u))
which contradicts the premise that no measures would be lifted.

Case u ∈ 𝑉�̄�(𝒢):
By the logic of the other case we know that it must be the case that u ∉
attr

𝐸−1(𝒜)
𝛼 (𝒜, ℰ, ℕ). Since u is not attracted theremust exist a vertex x ∈ ℰ⧵𝒜.

However, because gpm used the edge (u, v) to lift u, we know that vmust have
the lowest measure among all the successors of u. Since all vertices with a
higher measure than vmust either be in𝒜 or in some higher region that means
they cannot be inℰ⧵𝒜. Therefore, we know that umust be attracted to𝒜which
by the same logic as the other case contradicts the premise that no measures
would be lifted.

We have now proven by induction that for any parity game graph the lemma holds.▪

Finally, we can use Lemma 5.1 which proved that the measures computed by
our algorithm are no higher than the measure computed by GPM, and Lemma 5.2
which proved that if there are any measures that could be lifted by GPM then our
algorithm will lift at least one, to prove that our algorithm correctly solves a parity
game.

Theorem 5.1 Given a game 𝒢. When pmtl has finished executing it ensures that
every vertex is marked as won by○ or⬠ and if the vertex is controlled by the winning
player it has it with a winning strategy.
Proof For all vertices we have by Lemma 3.1, Lemma 5.1, and Lemma 5.2 that the
measures computed by pmtl and gpm must be the same. Therefore, this theorem
holds by Theorem 3.1. ▪

51

5.2 Going up
The base algorithm only uses attractors which attract vertices with a priority that is
less or equal to the priority of the top vertex. (or the attracted vertex has a priority
that is of the current player’s parity) It is relatively straightforward to prove that
this cannot result in measures that are too high since we can rely on Definition 3.4
property 2. However, even for the base algorithm we needed an exception since
there would otherwise be cases where we would not lift a ‘liftable’ vertex. This
exception entailed attracting one more step around the boundary of the attractor.
The proof for this mainly relies on the fact that the newly attracted vertex must have
a larger priority than the vertex in the attractor that it was attracted to. Attracting
more vertices to a region is beneficial since these vertices will be attracted to a higher
region than they would otherwise be, therefore, their measure will increase faster.

For the ‘going up’ variant of the algorithmwe attempt to attractmore vertices by
using Definition 3.4 property 3. Using this property we find that if the vertex whose
measure we are lifting has a higher priority than all the vertices between it and the
target vertex then we are allowed to skip progressing the measure vertex-by-vertex.

5.2.1 Description of the algorithm

Algorithm 5.4: update
1 fn update (pm, 𝛼):
2 target ← 𝑉(𝒢) ↦ _
3 ℰ ← 𝒢
4 for (top, 𝒜) ∈ ℋ𝛼(𝒢, ⊑) :
5 for u ∈ 𝑉(𝒢) :
6 if target[u] = _ ∧ attracts𝛼(u, 𝒜, ℰ) :
7 target[u] ← top
8 for every priority max ∈ (pr (top); 𝑑] :
9 for u ∈ attrT

𝒢
𝛼(𝒜, ℰ, {p ∈ ℕ | p ≡2 𝛼 ∨ p ≤ max}) :

10 if target[u] = _ ∧ pr (u) ≥ max :
11 target[u] ← top
12 ℰ ← ℰ ⧵ 𝒜
13 updated← false
14 for u ∈ 𝑉(𝒢) :
15 if progressVertex (pm, target[u], u) : updated← true
16 return updated

We reuse most of the base algorithm only modifying the update function in
Algorithm 5.4. In addition to attracting a single layer of vertices around the attractor
set we start iterating over all priorities higher than pr (top). For every priority we
attempt to expand our original attractor set by attracting vertices with a priority
≤ max. It is important to do this in steps where we only call progressVertex on
the attracted vertices withmax priority and the attracted vertices with a priority of
𝛼’s parity. This is required because if we were to lift vertices with a lower priority
that only got attracted through some higher �̄�-priority vertex this would no longer
be analogous to lifting along that path using the successors.

52

6

⟨_, 6, _⟩

7

⟨_, _, 7⟩

2

⟨_, _, 2⟩
⟨_, 6, 2⟩

Figure 5.1: A simple parity game showingwhywe need to be careful when attracting
vertices with a higher priority.

To illustrate this Figure 5.1 shows a simple parity game where the vertex with
priority 2 gets attracted to the vertex with priority 6 through the vertex with priority
7. The progress measures above each vertex are those that are gotten by using the
Ordered Progress Measures’ update rule twice for every vertex. The figure
shows that when we naively lift all vertices attracted to 6 that 2 gets a higher value
(shown in red) than would otherwise be possible (shown in green), in fact, with
more iterations this would allow the value of 6 and 2 to reach ⊤ which should not
be possible since the vertices are clearly won by the odd⬠ player in every possible
infinite play.

In the actual implementation it is not needed to both attract a single layer of
vertices around the attractor set and ‘attract up’ since the latter will also attract all
the vertices attracted by the former.

5.2.2 Proving correctness
Since most of the base algorithm is left the same, proving the correctness of this
modification is relatively straightforward.

We will again need to prove two lemmas to prove that the algorithm yields the
same measures as the original progress measure algorithm:

Lemma 5.3 Given an 𝛼-measure-function pm∶ 𝑉 → ℳ𝛼 where for each vertex
v ∈ 𝑉(𝒢), pm[v] is pr (v)-stable, the function update will lift these measures to be no
higher than those acquired by running the original progress measure algorithm gpm

when both are parametrised with the same set of parameters ((ℳ○,ℳ⬠), (≤○, ≤⬠
), prog) such that gpm yields a concrete progressmeasure as defined by Definition 3.5.
Proof Both versions of the update function (Algorithm 5.2 Algorithm 5.4) com-
pute the attractor decomposition ℋ𝛼 of 𝒢 with an ordering ≤ based on the cur-
rent measure stored in pm. For every region (top, 𝒜) ∈ ℋ𝛼(𝒢, ≤) it sets the tar-
gets of every vertex u ∈ 𝒜 ⧵ {top} to top if they had not been set to a higher
region’s top. Furthermore, both version of update set the target of top to top
if the region is closed, i.e. attracts𝛼(top, 𝒜, ℰ). If no more changes are made
to the targets of the vertices the two versions are equivalent. Therefore, we can
use the same reasoning as Lemma 5.1 (which uses Lemma 3.4 and Lemma 3.8)
to find that prog (pm[top], pr (u)) ≤ gpm ()[pm𝛼][u] for every u ∈ 𝑉(𝒢) with
target[u] = top ≠ _. It remains to be proven that this holds after the targets have
been modified by the ‘going up’ part of Algorithm 5.4.

53

For every priority pr (top) < max ≤ d where d is the highest priority in the
game, and every vertex u ∈ attr

𝒢
𝛼(𝒜, ℰ, {p ∈ ℕ | p ≡2 𝛼 ∨ p ≤ max})with pr (u) ≥

max we have an 𝛼-forced path from u to top by Lemma 3.4. As with Lemma 5.1
we use attrT = attr because the set of found tangles 𝒯𝛼 is empty. This path only
contains vertices with priorities which are of 𝛼’s parity or that are less or equal
to max. By Lemma 3.10 we have prog (pm[top], pr (u)) ≤ gpm ()[pm𝛼][u]. Since
all the updated measures are no higher than the measures obtained from gpm the
lemma holds. ▪

Lemma 5.4 Given an 𝛼-measure function pm∶ 𝑉 → ℳ𝛼, the function update

will lift at least one measure, if running the original progress measure algorithm
gpm would have lifted a measure when both are parametrised with the same set of
parameters ((ℳ○,ℳ⬠), (≤○, ≤⬠), prog) such that gpm yields a concrete progress
measure as defined by Definition 3.5.
Proof Since both versions of the update function (Algorithm 5.2 and Al-
gorithm 5.4) use the same attractor decomposition the regions that are used are the
same. By Lemma 5.2 we have that the base version (Algorithm 5.2) always lifts
at least one vertex if there is one that can be lifted. As mentioned in the proof for
Lemma 5.3 the computed targets for the vertices in each region are the same. The
only difference arises when comparing which vertices get assigned a higher target
than their region’s top vertex.

However, the ‘attract up’ version (Algorithm 5.4) of the algorithm only ever
assigns a higher target to more vertices than the base version did. We know this is
true since the added lines 10–11 can only cause a higher target to be set and never
reduce an already set target. Therefore, this lemma holds by Lemma 5.2. ▪

Finally, we can use Lemma 5.3 which proved that the measures computed by
our algorithm are no higher than the measure computed by GPM, and Lemma 5.4
which proved that if there are any measures that could be lifted by GPM then our
algorithm will lift at least one, to prove that our algorithm correctly solves a parity
game.

Theorem 5.2 Given a game 𝒢. When pmtl has finished executing it ensures that
every vertex is marked as won by○ or⬠ and if the vertex is controlled by the winning
player it has it with a winning strategy.
Proof For all vertices we have by Lemma 3.1, Lemma 5.3, and Lemma 5.4 that the
measures computed by pmtl and gpm must be the same. Therefore, this theorem
holds by Theorem 3.1. ▪

5.3 Adding tangles
Using attractors instead of only successors for lifting progress measures accelerates
the computation because it allows a higher measure to propagate further without
lifting all vertices in between the higher and the lower area over the course of mul-
tiple iterations.

54

… 7

20

4

19

6

3

5

4

3

…

6

…

3

…

2

…

Figure 5.2: A game which is able to delay a progress measure-based algorithm

However, applying the techniques from Tangle Learning (the tangle at-
tractor attrT and extractTangles) to this algorithm can yield amore significant
acceleration. Progress measure-based algorithms can be significantly slowed by the
presence of tangles.

An example of this is shown in Figure 5.2. There we see the odd⬠ vertex with
priority 6which tries to avoid high○-measures (even), here we have used arbitrary
integers to represent these measures since the specifics do not matter. We can see
that if odd⬠ chooses the red strategy it enters a cycle which will be won by even○
since the highest priority in the cycle is 6.

However, the regular value iteration progress measure algorithms will not
change their strategy from red to green until the ○-measure of the vertex with
priority 5 becomes higher than the ○-measure of the vertex with priority 4. We
know this must eventually happen (unless the ○-measure of the vertex with pri-
ority 4 becomes ⊤) since the ○-measures in the cycle will tend to ⊤ because the
cycle is won by○. Unfortunately, it may takemany iterations of the measures being
updated one-by-one across the cycle before the green edge is used.

Using attractors like we do in PMTL speeds up this process since the vertices
in the cycle may attract themselves (once the top two vertices with measures have
been removed from consideration in a higher region of the attractor decomposition)
which allows their measures to be lifted immediately across the path instead of
step-by-step. However, it may still take many iterations before the ○-measure of
the vertex with priority 5 exceeds the○-measure of the vertex with priority 4.

By applying the tangle attractor attrT and extracting tangles with
extractTangles, we can detect that the aforementioned cycle is a 6-tangle. As
such the⬠-vertex with priority 7 can attract not only the vertex with priority 4 but
also every vertex in the cycle, thereby in a single iteration increasing the○measure
of the 𝑜𝑑𝑑-vertex with priority 6 to at least 20 immediately. As such we can see
how the techniques from Tangle Learning can further accelerate the lifting of

55

progress measures.

There is, however, anotherway inwhichTangle Learning can accelerate our
algorithm. When we find tangles, we may also find inescapable tangles which are
dominions which we may immediately mark as solved. In fact, as we will discuss
in more detail in chapter 7 most games are entirely solved in this manner. This may
prompt the question: How is this any different from just doing Tangle Learning?

The crucial difference is that whereas Tangle Learning orders its attractor
decomposition based on the priority of every vertex (although there are variants
with other orders), PMTL orders its attractor decomposition based on the measures
of every vertex. One way to interpret Tangle Learning is that it keeps trying
different attractor decompositions (because it keeps learning more tangles) until it
tries one that allows it to detect a dominion which allows it to solve (part of) the
game. In PMTL we are using the measures to guide the order of the decomposition
which may help us find these dominions faster.

If we take, for example, a game where we have found the inflationary fixpoint
of the○-measures (even) then we know that every vertex that has an○-measure
that is ⊤ that it is won by even. If we now compute an attractor decomposition
ordered by 𝛼-measure, we will find only closed regions since if a vertex that is won
by○ (and hence has the highest○-measure) attracts a vertex, then that vertex must
also have been won. (Lemma 2.4) All the remaining regions may not contain ○-
vertices which can escape these regions, these regions are won by odd. We could
say that this ordering of the attractor decomposition is ideal since it allows us to
find every dominion.

Since every iteration of PMTL will lift measures closer to this ideal fixpoint
state we also approach the ideal attractor decomposition for finding dominions. Of
course, this just an intuition and not a proof, and in practice, we do find that there
are some games that are solved by reaching a fixpoint without a dominion being
found. We are essentially doing ‘one-sided’ Tangle Learning because we only
use ○-attractors while updating ○-measures and⬠-attractors while updating⬠-
measures. Therefore, we are not guaranteed to find every tangle and dominion. In
chapter 7 we will discuss whether there is evidence that this theory holds water.

56

5.3.1 Description of the algorithm

Algorithm 5.5: update (with tangle learning added)
1 fn update (pm, 𝛼):
2 target ← 𝑉(𝒢) ↦ _
3 ℰ ← 𝒢
4 for (top, 𝒜) ∈ ℋ𝛼(𝒢, ⊑) :
5 for u ∈ 𝒜 :
6 if target[u] = _ ∧ attracts𝛼(u, 𝒜, ℰ) :
7 target[u] ← top
8 for every priority max ∈ (pr (top); 𝑑] :
9 for u ∈ attrT

𝒢
𝛼(𝒜, ℰ, {p ∈ ℕ | p ≡2 𝛼 ∨ p ≤ max}) :

10 if target[u] = _ ∧ pr (u) ≥ max :
11 target[u] ← top
12 if attracts𝛼(top, 𝒜, ℰ) ∧ pr(top) ≡2 𝛼 :
13 extractTangles (𝒜, 𝜎𝛼)
14 ℰ ← ℰ ⧵ 𝒜
15 updated← false
16 for u ∈ 𝑉(𝒢) :
17 if progressVertex (pm, target[u], u) : updated← true
18

19 if dominions ≠ ∅ :
20 𝒜 ← attrT

𝒢
𝛼(𝒟𝛼, ℕ)

21 for v ∈ 𝒜 :
22 mark v as won by 𝛼with strategy 𝜎𝛼[v]
23 𝒢 ← 𝒢 ⧵ 𝒜
24 return updated

There are two differences between the version of update presented in Al-
gorithm 5.4 and the version with Tangle Learning presented in Algorithm 5.5.

Firstly, whenever we find a closed region (i.e. attracts𝛼(top, 𝒜, ℰ)) with
a priority that is of 𝛼’s parity we attempt to extract tangles from it with the
extractTangles function. This function populates the set 𝒯𝛼 of tangles of 𝛼’s
parity and when it finds dominions (i.e. inescapable tangles) it stores them in𝒟𝛼.

Secondly, after we finish our attractor decomposition we attempt to extend any
dominions found by calls to extractTangles by computing the attractor. After
this all the vertices in these dominions are marked as won by 𝛼 and removed from
the game. The strategy 𝜎𝛼[v]was computed by the attractor which found the closed
region in the first place. In the interest of brevity the specifics of how these strategies
are stored is left out here. In practice, we find that many games are solved entirely
through the removal of dominions before the measures reach a fixpoint.

5.3.2 Proving correctness
There are essentially three changes to consider when we compare the new variant
to the ‘going up’ variant described in section 5.2. Firstly, we use tangle attract-
ors instead of regular attractors. Proving that this still yields a correct algorithm
is straightforward since we can simply apply Lemma 3.5 instead of Lemma 3.4.

57

Secondly, we extract tangles by finding closed regions. We need to prove that we
only add a tangle to our list of tangles if it actually exists. Finally, we remove domin-
ions from the game. We need to prove that removing the dominions from the game
marks vertices with the correct winner and strategy. We now have three lemmas
that we will prove:

Lemma 5.5 All tangles found through the invocation of extractTangles by
update are valid p-tangles where p = pr (top) ≡2 𝛼.
Proof The function extractTangles restricts the attractor set to the strategy 𝜎
that was computed by the attrT function and then computes the bottom SCCs of
the resulting region. It is only called when the attractor set is a closed region and the
top vertex has a priority that is of 𝛼’s parity. This means that the attractor set when
restricted by the strategy 𝜎 is inescapable given the current subgame. Furthermore,
because of the condition on the attrT function we know that all vertices in the
attractor set have a priority that is either lower or equal to p, or higher than p and of
𝛼’s parity. As such when extractTangles finds strongly connected components
of the game graph where the highest priority is greater or equal to p with a strategy
𝜎, that forces any play restricted to the region to end up in a winning cycle for 𝛼, i.e.
a p-tangle. ▪

Lemma 5.6 Given an 𝛼-measure function pm∶ 𝑉 → ℳ𝛼, the function update

will lift these measures to be no higher than those acquired by running the original
progress measure algorithm gpm when both are parametrised with the same set of
parameters ((ℳ○,ℳ⬠), (≤○, ≤⬠), prog) such that gpm yields a concrete progress
measure as defined by Definition 3.5.
Proof By Lemma 5.5 we have that the tangles found by extractTangles are
valid tangles, therefore, the attrT function produces correct tangle attractor sets.

The only difference with regard to the measures returned by the previous ver-
sion of update (Algorithm 5.4) and the version which uses tangles (Algorithm 5.5)
is that the tangle attractors sets may be larger than the attractor sets computed by
the previous version. Proving this lemma is equivalent to proving Lemma 5.3 except
we replace Lemma 3.4 with Lemma 3.5. ▪

Lemma 5.7 Given an 𝛼-measure function pm∶ 𝑉 → ℳ𝛼, the function update

will lift at least one measure, if running the original progress measure algorithm
gpm would have lifted a measure when both are parametrised with the same set of
parameters ((ℳ○,ℳ⬠), (≤○, ≤⬠), prog) such that gpm yields a concrete progress
measure as defined by Definition 3.5.
Proof By Lemma 5.5 we have that the tangles found by extractTangles are
valid tangles, therefore, the attrT function produces correct tangle attractor sets.
Since tangle attractor sets are always a superset of their respective regular attractor
sets this means that more vertices are attracted to higher regions which can only
cause these vertices to be lifted higher than they would be had they been attracted
to a lower region. Therefore, by Lemma 5.4 we find that we would always lift at
least one measure if the original gpm algorithm would have. ▪

Finally, we prove that pmtl correctly solves a parity game.

Theorem 5.3 Given a game 𝒢. When pmtl has finished executing it ensures that
every vertex is marked as won by○ or⬠ and if the vertex is controlled by the winning

58

player it has it with a winning strategy.
Proof By Lemma 5.5 we have that the tangles found by extractTangles are
valid tangles. The function extractTangles also marks any tangles with no es-
capes (edges from a vertex owned by the losing player that leave the tangle) as
dominions. In update these dominions are maximised marked as won, marked
with a strategy and removed from the game. Since the tangles are valid, so are the
dominions. Since for every 𝛼-dominion there exist a strategy for 𝛼 to win (computed
by the tangle attractor), all the vertices in this dominion aremarked with the correct
winner and winning strategy.

For all remaining vertices we have by Lemma 3.1, Lemma 5.6, and Lemma 5.7
that the measures computed by pmtl and gpm must be the same. Therefore, this
theorem holds by Theorem 3.1. ▪

5.4 Termination
Notably missing from the proofs for the three variants of PMTL is a proof that the
algorithm terminates. For this proof we simply rely on the termination proof of the
original progress measure-based algorithms. Because by Definition 3.5 the fixed
point obtained by repeatedly lifting vertices must be progress measure that must
mean there exists such a fixed point. The termination proofs of the Small Pro-
gress Measures and Ordered Progress Measures algorithms simply rely on
the monotonicity of their progression function prog and the fact that their measure
spaces are finite.

Summary
In this chapter we discussed three different variants of PMTL and proved their
correctness. Additionally, we provided the reasoning behind choices thatweremade
and highlighted areas which require further testing. These tests and a comparison
of the variants are presented in chapter 7.

59

Chapter 6

Analysis

Introduction
This chapter discusses the time and space complexity of the PMTL algorithm.

6.1 Time complexity
For a given progress measure we can take the set ℳ to be the set of all possible
measures. We can see that to solve the game we need to perform at most |𝑉| ⋅ |ℳ| lift
operations per player. In theworst case therewill be atmost one lift in every iteration
of the loop on line 5 of pmtl (Algorithm 5.1), meaning we need 2⋅|𝑉|⋅ |ℳ| iterations.
In the worst case every region consists of a single vertex meaning every call to
update (Algorithm 5.2, Algorithm 5.4, and Algorithm 5.5) will need to perform |𝑉|
iterations of the loop on line 4 of update. Every iteration of this loop consists of
calculating the (tangle) attractor, lifting the vertices in the region, and extracting
tangles. Finally, update also attracts and updates higher-priority vertices or a single
layer of vertices around the region.

Computing the attractor, in the worst case, requires checking every edge in the
game. This would give computing the attractor a time complexity of 𝑂 (|𝐸|). The
tangle attractor requires checking for every vertex of every found tangle whether it
is attracted or can escape. While solving the game we can find at most one tangle
for every region in every iteration, meaning we find at most |𝑉|2 ⋅ |ℳ| tangles. This
gives computing the tangle attractor an upper-bound of 𝑂(|𝑉|3 ⋅ |ℳ|) steps. Note
that it should be possible to find a much tighter upper bound since finding more
tangles causes regions to grow in size which causes there to be fewer regions and
more vertices that are attracted to higher regions which means they can get lifted
higher which means we need less iterations.

The time complexity of lifting a vertex is dependent on the complexity of the
progress measures’ prog function. For Ordered Progress Measures the up-
date/prog function has an average cost of 𝑂(1), or 𝑂 (log |ℳ|) if we want to save
𝑂 (|𝐸| ⋅ log log |ℳ|) space[9]. For Small Progress Measures the lift function

60

can be implemented to work in 𝑂 (d ⋅ |𝐸|) where d is the highest priority in the
game[11]. Attempting to lift all the vertices in a region takes at most |𝑉| ⋅ LiftCost.

For every region we attempt to extract tangles, this takes 𝑂(|𝐸|)[5].

Attracting and updating higher-priority vertices or a single layer of ver-
tices around the region has a similar complexity to the attracting and up-
dating of the region itself. Since attracting and updating higher-priority
vertices is done in steps of increasing maximum priority it has a complexity of
𝑂 (d ⋅ (|𝐸| + |𝑉|3 ⋅ |ℳ|) + |𝑉| ⋅ LiftCost). Attracting a single layer of vertices is
simpler since it simply requires checking all incoming edges of the regions giving
us a complexity of 𝑂 (|𝐸| ⋅ LiftCost).

Finally, in every iteration we also attempt to extend any dominions which were
found. This has the same complexity as the other attractor computations and simply
happens once per iteration.

In conclusion, after simplification PMTL has a worst-case time complexity of

2 ⋅ ((𝑑 + 2) ⋅ |𝑉|5 ⋅ |ℳ|2 + |𝑉|2 ⋅ |ℳ| ⋅ ((𝑑 + 2) ⋅ |𝐸| + (𝑑 + 1) ⋅ |𝑉| ⋅ LiftCost))

for the ‘attract up’ variant, which is in the order 𝑂(𝑑 ⋅ |𝑉|5 ⋅ |ℳ|2), or

2 ⋅ (2 ⋅ |𝑉|5 ⋅ |ℳ|2 + |𝑉|2 ⋅ |ℳ| ⋅ (2 |𝐸| + (|𝑉| + |𝐸|) ⋅ LiftCost))

for the variant which only attracts a single layer of vertices around the attractor set,
which is in the order 𝑂 (|𝑉|5 ⋅ |ℳ|2).

From this we find that PMTL has a polynomial time complexity if used with
a progress measure with a polynomial amount of possible measures. Since such a
progress measure has not been found the best time complexity arises from the use
of PMTL with a quasi-polynomial progress measure such as Ordered Progress
Measures. In this case PMTL has a quasi-polynomial time complexity.

Note that the time complexity given here is likely a gross overestimate of the
actual time complexity of our algorithm sincewe used theworst case for the amount
of tangles found and the worst case for the amount of iterations needed, but finding
more tangles means we need fewer iterations.

6.2 Space complexity
Determining the space complexity is relatively trivial. For every vertex we need
to keep track of two measures (the even ○ and odd⬠ measures) which requires
𝑂 (2 |𝑉| ⋅MeasureSize). For Ordered Progress Measures the size of a measure
is 𝑂 (log |ℳ|) per vertex, to get 𝑂(1) time complexity for its update function we
need to store an additional𝑂 (log log |ℳ|) for every edge[9]. For Small Progress
Measures every measure consists of d integers[11].

Additionally, we need to store the discovered tangles. In section 6.1 we found
that we find at most |𝑉|2 ⋅ |ℳ| tangles in a game. Every tangle can be stored in
log2 |𝑉| bits. However, to achieve a better time upper-bound we store the vertices
that the opponent can escape to requiring an additional log2 |𝑉| bits.

61

In conclusion, PMTL has a space complexity of:

2 ⋅ |𝑉| ⋅MeasureSize + 4 ⋅ |𝑉|2 ⋅ |ℳ| ⋅ log2 |𝑉|

which is in the order of
𝑂(|𝑉|2 ⋅ log |𝑉| ⋅ |ℳ|)

This is exactly the space complexity one would expect when running Tangle
Learning and a value-iteration progress measure algorithm concurrently.

Summary
In this chapterwe determined that the time and space complexity ofPMTL is primar-
ily dependent on the time and space complexity of the progress measure chosen.
The amount of work PMTL performs in each iteration is polynomial and the amount
of iterations (in the worst case) is determined by the progress measure. Therefore, a
quasi-polynomial progress measure yields a quasi-polynomial time complexity for
PMTL, an exponential progress measure yields an exponential time complexity, and
so on. The space complexity was equivalent to running the Tangle Learning and
progress measure algorithms concurrently.

62

Chapter 7

Experiments

Introduction
In this chapterweperformempirical testing of the different variants ofPMTLpresen-
ted in chapter 5. Additionally, we analyse the results of these benchmarks to identify
what the strengths and weaknesses of the algorithm are. Finally, we test some po-
tential improvements to the algorithm.

7.1 Methodology
In chapter 5 we presented three different variants of the PMTL algorithm. While
the variant that ‘attracts up’ is able to propagate a higher measure further within
the same iteration than the variant which does not, this does not necessarily mean
that this variant is faster when implemented. Therefore, it is important to run
benchmarks to compare these variants. Furthermore, to analyse whether the PMTL
algorithm is a feasible alternative to existing parity game solving algorithms we
compare its variants to progress measure algorithms and tangle learning variants.

We test two variants of PMTLwith twomeasures each. The first variant we test
is a hybrid of the base version (section 5.1) and the version with tangles (section 5.3)
which uses tangle attractors, but only attracts inside the region and a single step
outside of it. In the benchmarks we refer to this variant as ‘No-Up’. The second
variant is the version with tangles (section 5.3), but with the step where we attract
upwards, attracting vertices with a higher priority than the top of the region. In the
benchmarks we refer to this variant as ‘Up’. Both of these variants are tested using
the Small Progress Measures and the Ordered Progress Measures.

Since the different parity game algorithms respond differently to different
graph structures it is important to run our benchmarks with a variety of differ-
ent graphs. Firstly, to explore whether PMTL is able to avoid the distractions which
slow down tangle learning we use the ‘Two Counters’ games which are worst-
case examples which show tangle learning to have an exponential lower bound.[4]
Secondly, since there are algorithms like Recursive Tangle Learning which
solve the ‘Two Counters’ game in polynomial time we also test PMTL against Re-

63

cursive Tangle Learning on the ‘Two Counters+’ games which show that Re-
cursive Tangle Learning has an exponential lower bound.[7] Thirdly, we use
4 sets of 1000 random games with 25, 50, 100, and 200 vertices respectively which
we use to compare against tangle learning and the regular progress measures al-
gorithms. These random games are generated using Oink with a maximum vertex
priority equal to the number of vertices and a maximum number of edges equal to
four times the number of vertices making these sparse graphs. Fourthly, we use
the worst case example for Zielonka’s algorithm by Gazda[10] as implemented in
Oink since this is an example where PMTL performs significantly worse than the
regular progress measure algorithms. Finally, we use some games generated using
Knor based on the HOA files from SYNTCOMP 2023 which resemble games that
are close to the real-world usage of solving parity games.1

The benchmarks were run using the hyperfine2 command-line benchmarking
tool. All benchmarks except for the random games and some of the ‘Two Coun-
ters+’ games were run with 5 warmup runs and with a minimum of 20 actual runs
of the benchmark. The random games and the longer benchmarks for the ‘Two
Counters+’ games were run with 1 warmup run and a minimum of 5 actual runs.
If the total benchmarking time was less than 3 seconds hyperfine adds runs until 3
seconds have passed. The generation of the games and the execution of the solvers
were performed using Oink and its accompanying tools. The implementation and
benchmarks can be found at https://doi.org/10.5281/zenodo.10558316.

All the benchmarks were run on an Intel i7–8750H @ 2.20 Ghz with 6 cores
and 12 threads, however the benchmarks only run on a single core.

1Knor found at https://github.com/trolando/knor. HOA files found at https://github.com/SYNTC
OMP/benchmarks/releases/tag/v2023.4.

2Found at https://github.com/sharkdp/hyperfine.

64

https://doi.org/10.5281/zenodo.10558316
https://github.com/trolando/knor
https://github.com/SYNTCOMP/benchmarks/releases/tag/v2023.4
https://github.com/SYNTCOMP/benchmarks/releases/tag/v2023.4
https://github.com/sharkdp/hyperfine

7.2 Results

7.2.1 ‘Two Counters’

Figure 7.1: Tangle Learning versus PMTL ‘going up’ with Ordered Progress
Measures solving ‘Two Counters’ games with between 8 and 20 bits. For legibility
the top of the graph has been truncated. Error bars represent 1𝜎.

Figure 7.1 shows that in this worst-case example of a game for tangle learning
that PMTL is able to outperform tangle learning. A comparison with the regular
Ordered Progress Measures is not shown here since a 6-bit two counters game
already takes over 7 minutes to solve. While this result shows that PMTL is not
equivalent to tangle learning there are still a lot of other variations of tangle learning
which are significantly faster than PMTL. For example, recursive tangle learning
solves the 20-bit two counters game in 3 milliseconds. Additionally, we can see
that for the 15 and 20-bit games the solving time decreases compared to the smaller
game. It is unclear what the cause of this is.

65

Figure 7.2: Four variants of PMTL solving ‘Two Counters’ games with between 14
and 20 bits. Error bars represent 1𝜎.

Figure 7.2 shows a comparison between the different PMTL variants. We can
see that for the Ordered Progress Measures variant the PMTL version that
does not attract up has an advantage, whereas for the Small Progress Measures
variant the PMTL version that does attract up has an advantage. While attracting
up allows a measure to ‘spread’ further within the same iteration, not attracting up
means that there are fewer lifts per iteration which means that we reach the next
iteration sooner allowing a higher measure to be ‘spread’.

Additionally, we can see that on smaller games the Small Progress Meas-
ures variants of PMTL outperform the Ordered Progress Measures variants.
This is likely because the comparison operation between Small Progress Meas-
ures is faster than the comparison operation between Ordered Progress Meas-
ures. Using a profiler we determined that more than 50% of the time spent solv-
ing games was spent on comparing measures for all variants. The reason that the
Ordered Progress Measures variants of PMTL outperform the Small Pro-
gressMeasures variants on the larger games is likely due to the quasi-polynomial
lower bound for OPM and the exponential lower bound for SPM. The aforemen-
tioned dips in solving time for the 15 and 20-bit games are seen again here for the
Ordered ProgressMeasures PMTL variants and only on the 15-bit game for the
Small Progress Measures variants. This means that the effect cannot be purely
explained by the quasi-polynomial nature of the Ordered Progress Measures.

66

Figure 7.3: Four variants of PMTL solving ‘Two Counters’ games, showing the
number of lifts and iterations that were required for games between 14 and 20 bits.

To gain a better insight into the differences between the PMTL variants we
can take a look at Figure 7.3 which shows that the amount of lifts and iterations
needed to solve the games differs significantly between the different variants. Note
that a lift here refers only to successful lifts (if the progress function returned the
samemeasure that was already applied to the vertex it is not counted) and iterations
refers to the amount of iterations of the loop in the pmtl function as shown in
Algorithm 5.1.

When comparing Figure 7.2 and Figure 7.3 we find that there is no clear rela-
tionship between the amount of successful lifts and iterations, and the amount of
time taken to solve the game. For example the SPM Up variant performs 9318 suc-
cessful lifts and 1464 iterations in around 6.6 seconds for the 20-bit game whereas
the OPM No-Up variant performs 215830 successful lifts and 5061 iterations in
around 2.1 seconds for the same game.

67

Bits SPM Up SPM No-Up OPM Up OPM No-Up

Lifts Hit% Lifts Hit% Lifts Hit% Lifts Hit%

14 129131 2.02% 565941 2.07% 862112 7.93% 472233 12.03%
15 81868 5.29% 454322 1.65% 444124 12.52% 551074 12.18%
16 137618 3.15% 1562137 1.08% 1059947 9.35% 1598511 9.43%
17 196385 2.73% 2699893 0.94% 1470621 7.94% 1125511 8.32%
18 291632 2.13% 1938287 0.97% 2025777 6.63% 1388105 7.67%
19 629124 1.64% 4924799 0.68% 2580853 6.12% 2080640 5.86%
20 2178812 0.43% 3339093 0.67% 1942079 7.53% 1795361 8.38%

Table 7.1: Four variants of PMTL solving ‘Two Counters’ games, showing the total
number of lifts and the percentage of thosewhichwere successful for games between
14 and 20 bits.

Figure 7.4: Four variants of PMTL solving ‘Two Counters’ games, showing the total
number of lifts required for games between 14 and 20 bits.

Measuring the total number of lifts, including those that did not yield an in-
creased measure, provides more insight into the differences between the PMTL
variants. This is shown in Table 7.1 which also includes the percentage of lifts
which successfully increased a vertex’ measure. While the Ordered Progress
Measures variants seem to perform more successful lifts they do not necessarily
perform more lifts in total. Seemingly the Ordered Progress Measures can
measure smaller amounts of progress than the Small Progress Measures this
yields more overhead because the measures changes more often. However, this also
means that OPM is able to make more progress sooner than SPM which is likely
what explains their better performance on larger games. Comparing Figure 7.2 and

68

Figure 7.4 we can see a clearer correlation between the total number of lifts and the
time taken than between the number of successful lifts and the time taken.

7.2.2 ‘Two Counters+’

Figure 7.5: Recursive Tangle Learning versus four variants of PMTL solving ‘Two
Counters+’ games with between 5 and 14 bits. The cut-off striped bar was a single
run of Recursive Tangle Learning which was not repeated the usual 5 times
because it took more than 21 minutes. Error bars represent 1𝜎.

Figure 7.5 shows that for ‘Two Counters+’ games between 5 and 12 bits Recursive
Tangle Learning is significantly faster than the PMTL variants. However, for
the larger two games PMTL shows a large advantage over Recursive Tangle
Learning. Given that Ordered Progress Measures already took more than
9.5 minutes on the game with 5 bits and Small Progress Measures already took
more than 3.5 minutes on the game with 6 bits (solving the 5-bit game in about 5
seconds) we can see that PMTL offers an advantage over both the ‘generally fast
in practice’ tangle learning algorithms and the ‘good worst-case time complexity’
progress measure algorithms.

69

7.2.3 Random games

Figure 7.6: Ordered Progress Measures and Small Progress Measures
versus four variants of PMTL solving 4 sets of 1000 random games with 25, 50, 100,
and 200 vertices respectively. The cut-off striped bar was a single run of Small
Progress Measures which was not repeated the usual 5 times because it took
almost 15 minutes. Error bars represent 1𝜎.

Figure 7.6 shows that for random games PMTL is a lot faster than the value iteration
algorithms. However, not shown in the graph is that the regular Tangle Learn-
ing algorithm needed less than 0.5 seconds to solve the 1000 random games with
200 vertices. In fact, Tangle Learning needed less than 2 seconds to solve 1000
random games with 2000 vertices, whereas PMTL took more than that on a single
game from that set.

70

Figure 7.7: Small Progress Measures solving 1000 random games with 50 ver-
tices. Histogram of the time taken to solve individual games.

However, it should be noted that due to the random nature of the games there
is a large amount of variability in the amount of time needed to solve individual
games. We can see this in Figure 7.7 where we see that the time taken by Small
Progress Measures to solve a game with 50 vertices ranges from less than 1 ms
to more than 2 minutes. Clearly Tangle Learning handles sparse graphs very
well whereas the progress measure based algorithms (including PMTL) are more
significantly affected by other parameters like the number of priorities.

7.2.4 SYNTCOMP games
Cursory tests showed that PMTL performed in much the same way for the random
games and the SYNTCOMP games. Because of this we only took a selection of
games with between 7 and 35,657 vertices, since we expected solving larger games
to take too long. Unfortunately, whereas Tangle Learning needed only 452 ms to
solve all 29 games, ‘PMTL SPM Up’ needed 5 minutes to a single one of the largest
games in the set. ‘PMTLOPMUp’ did not finish solving that game even after waiting
for 20 minutes. ‘PMTL OPM No-Up’ needed 16 minutes and ‘PMTL SPM No-Up’
needed 2.5 minutes. While PMTL performs well on the smaller games it struggles
with large amounts of vertices.

7.3 Possible optimisations
While implementing the algorithm and testing it we came up with several ways in
which it might be optimised. We did some cursory tests to determine whether these
optimisations were worth pursuing further.

71

7.3.1 Counting escapes
There are multiple ways to implement the (tangle) attractors. The implementation
of the results presented so far simply checks all the neighbours of a vertex to see
whether they can act as an escape, if they can’t, the vertex is attracted. Similarly, for
the tangle attractor we keep track of a list of escapes and see whether all of these
escapes have already been attracted to higher regions or the current regions. If all
of them have, we attract the tangle. However, it may be more efficient to count the
amount of escapes as we attempt to a vertex or a tangle. When such an attempt is
made we can decrease the counter until it reaches 1, meaning that the only escape
is the vertex we are currently trying to attract from, at which point we attract the
vertex or tangle.

We implemented this and found that there was a slight improvement in the
speed of the algorithm but not significant enough to warrant rerunning all the
previous benchmarks.

7.3.2 Ignoring opponent-priority vertices
When first presented with Table 7.1 we speculated that themajority of the failed lifts
must be attempts to lift vertices which have a priority of the opponent’s parity. If a
vertex with a priority of the current player is lifted it will always yield an increased
measure if this vertex has not been attracted to the same measure before. However,
this is not necessarily the case for vertices with the opponent’s parity. Since all
increases in a progress measure result from encountering a vertex of the current
player’s parity we can delay lifting the other vertices until the very end, at which
point we have already been determined which vertex is won by which player.

We implemented this and found that the number of failed lifts almost always
decreased significantly. However, in some cases the total number of lifts increased
by as much as 35%. Additionally, in some cases the number of iterations increased
by 50 to 70 percent. Clearly there are games where we benefit from having lifted
the other vertices early and the majority of failed lifts are not caused by attempting
to lift vertices. In terms of the amount of time taken by this variation’s compared to
the one which did not postpone the lifting of certain vertices we found between a
27% improvement and a 19% regression.

7.3.3 Skipping unchanged regions
After seeing the results from the previous optimisation we realised that the majority
of the failed lifts are due to repeatedly lifting unchanged regions. We added a check
which skipped any regions which had not changed until reaching one which had
changed. After that we can no longer skip regions since theymight contain different
vertices because of the region that changed.

We found that with this optimisation the number of failed lifts decreased by
around 0.5% with all other metrics remaining the same. This did not yield any sig-
nificant difference in the amount of time taken to solve a game since the overhead
of keeping track of whether regions could be skipped likely cancelled out any im-
provement seen from the smaller lift count. The number of failed lifts decreased
by a smaller amount than we had hoped. We speculate that the cause of this that it

72

is common for one of the higher regions to change which means we can no longer
skip the next regions even if they were the same.

To improve upon this we would need to store more information, similarly to
Lapauw, Bruynooghe and Denecker’s[14] approach with justifications which will
be briefly covered in section 9.2.

7.3.4 Completing the decomposition
While exploring the performance of PMTL on several of the counterexample games
included in Oink we found that PMTL was significantly slowed by the worst case
example from Gazda[10]. It was in fact the only game we found where the value-
iteration progress measure algorithms outperformed PMTL. The culprit was the
‘optimisation’ mentioned in subsection 5.1.1 which meant that only a single region
was updated in each iteration. As mentioned there this was done so that higher
regions can be lifted before working on the lower regions.

Figure 7.8: Four variants of PMTL solving ‘Two Counters’ games with between 14
and 20 bits. Error bars represent 1𝜎.

73

Figure 7.9: Recursive Tangle Learning versus four variants of PMTL solving ‘Two
Counters+’ games with between 5 and 14 bits. The cut-off striped bar was a single
run of Recursive Tangle Learning which was not repeated the usual 5 times
because it took more than 21 minutes. Error bars represent 1𝜎.

Comparing Figure 7.8 and Figure 7.9 with Figure 7.2 and Figure 7.5 shows
that in almost all cases the version that does a full attractor decomposition before
resetting is faster. In general, it seems that the ‘no-up’ variants get more benefit
from this change, likely because the overhead of calculating the entire attractor
decomposition is greater for the variants which attract up because every region
needs a lot more attractor computations.

74

Figure 7.10: Ordered Progress Measures, Small Progress Measures and
Tangle Learning versus four variants of PMTL solving 5 sets of 1000 random
games with 25, 50, 100, 200, and 2000 vertices respectively. The cut-off striped bar
was a single run of Small Progress Measureswhich was not repeated the usual
5 times because it took almost 15 minutes. Error bars represent 1𝜎.

The result of re-running our benchmarks for the random games is shown in
Figure 7.10. Since there was a significant speed increase it was now useful to also
test random games with 2000 vertices and to compare against Tangle Learning.
By completing entire attractor decompositions we are able to find more tangles
and dominions which has brought down the performance gap between Tangle
Learning and PMTL.

75

Figure 7.11: Tangle Learning versus four variants of PMTL solving 29 SYNT-
COMP games. Error bars represent 1𝜎.

In Figure 7.11 we see that, similar to the random games, this change signific-
antly improves the solving time for the SYNTCOMP games. It is unsurprising that
there is still significant gap between Tangle Learning and PMTL considering
the size of the games and the performance we saw on the random games. On the
large game for which we reported the execution times in subsection 7.2.4 we now
see solving times between 0.7 and 2.1 seconds which is significantly faster but still
more than the time Tangle Learning takes to solve all 29 games.

7.4 Do we need tangles
The motivation behind using tangle attractors instead of the regular attractors for
the PMTL algorithm was twofold: tangle attractors find larger regions because they
can attract more vertices, and extracting tangles also finds dominions which can
be removed from the game. However, since we experimentally found that in most
cases our ‘Going Up’ variant did not improve upon our most basic variant of the
algorithmwe can conclude that lifting vertices to higher regions is not always worth
it in practice if it incurs too much overhead. Therefore, without testing we cannot
conclude that tangle attractors finding larger regions will improve performance.

76

Figure 7.12: The regular PMTL with tangles and dominions versus PMTL with
tangles and no dominions versus PMTL without tangles and dominions solving
1000 random games with 25 vertices. All tests were run on the variant that uses
Ordered Progress Measures and the ‘No-Up’ strategy. Error bars represent 1𝜎.

To distinguish between the effect of finding larger regions and removing domin-
ions from the game we compare the regular version of PMTL which uses tangle
attractors and detects dominions, with a version that uses tangle attractors but does
not remove dominions from the game when they are found and a version that only
uses regular attractors and does not detect tangles or dominions. In Figure 7.12
we compare the three versions of PMTL when solving 1000 games with 25 ver-
tices each. We chose to use this example since for the ‘Two Counters’ and ‘Two
Counters+’ games either the games were too small to show any differences or the
running-time of the version without tangles became too long to obtain results in a
reasonable amount of time.

From the data in Figure 7.12 we can conclude that both the use of tangle attract-
ors and the removal of dominions improve the algorithm. Recall that in Figure 7.10
we compared variants of PMTL which used tangle attractors and removed domin-
ions from the game against the progress measure algorithms that we are acceler-
ating. We can see that all PMTL variants are faster than the Ordered Progress
Measures.

In section 5.3 we speculated that we are not only accelerating progress meas-
ures using attractors, but that we are also accelerating the discovery of dominions
through the use of progress measures. Earlier in this chapter we already showed
examples of PMTL outperforming Tangle Learning and Recursive Tangle
Learning on their respective worst-case example games. However, when we dig
into how these games are solved we find that no vertices are marked as won by
reaching a fixpoint of the measures and calling solve. Instead, all vertices for

77

these ‘Two Counters’ and ‘Two Counters+’ are solved after the algorithm finds a
dominion. This tells us that we must somehow be finding a more optimal attractor
decomposition earlier than the regular Tangle Learning algorithm.

Summary
In this chapter we compared the different variants of PMTL against each other and
against other parity game solving algorithms. We found that while Tangle Learn-
ing is faster than PMTL for most games, there are some games for which PMTL
has better performance. In all cases, at least the improved version described in sub-
section 7.3.4, was significantly faster than the regular progress measure algorithms.
We found that in most cases attracting higher priority regions does not accelerate
the algorithm and in fact causes the algorithm to perform worse due to the over-
head caused by the extra attractor calculations. Additionally, we determined that
much, but not all the performance improvement over plain progress measures are
due to the discovery of tangles and dominions. Finally, we tested some possible
optimisations and found that most did not yield a significant improvement.

78

Chapter 8

Related work

Introduction
In this chapter we introduce two other attempts at synthesising progress measures
and an attractor-based algorithm. We describe how they work, compare them to
PMTL, and discuss whether the approach PMTL takes is sufficiently distinct.

8.1 Attractor Decomposition Lifting
Jurdziński et al.[13] already discuss a new quasi-polynomial algorithm that com-
bines value iteration and attractor decompositions. This algorithm directly uses
universal trees (the underlying concept which seems to be at the basis of all quasi-
polynomial parity game algorithms) to construct a labelling for vertices. The tree
is expanded (lazified) with before and after nodes for every existing node. The
labelling is created by assigning vertices to nodes in the lazified tree with the same
level as the priority of the vertex for all the regular nodes from the universal tree or
to nodes with level greater or equal to the priority of the vertex for the lazy nodes
which were added by the lazification.

The paper introduces a notion of validity for edges and vertices for labellings 𝜇
which is similar to the concept of 𝜇-progressive edges for Small Progress Meas-
ures. When we have an edge (u, v) it is called 𝜇-progressive for some 𝛼-measure
function 𝜇 such that if pr (u) ≡2 �̄� then 𝜇(u) ≥pr (u) 𝜇(v), or if pr (u) ≡2 𝛼 then
either 𝜇(u) >pr (u) 𝜇(v) or 𝜇(v) = 𝜇(u) = ⊤. We can use this concept to give an
alternative definition of a progress measure (Definition 2.13):

Definition 8.1 (Progress Measure) A measure function 𝜇∶ 𝑉 → ℳ is an
𝛼-progress measure if the following conditions hold for every vertex u in the game:

• if u ∈ 𝑉𝛼(𝒢) then there exists an edge (u, v) ∈ 𝐸(𝒢) such that (u, v) is 𝜇-
progressive

• if v𝑖𝑛𝑉�̄�(𝒢) then all edges (u, v) ∈ ℰmust be 𝜇-progressive

Additionally,𝜇must be the smallestmeasure functionwhere these conditions hold.▫

79

Lifting the measures of vertices can then be seen as repeatedly attempting to
fix the measures of vertices such that they get 𝜇-progressive edges.

Nowwe can look at what the similar concept of validity looks like for labellings
𝜇. For an edge (u, v) if v is assigned to a regular node 𝜇(v), then vmust be labelled
with nodes smaller than the after node of that regular node. This is very similar
to the 𝜇-progressiveness requirement that 𝜇(v) ≤pr (u) 𝜇(u). If u is assigned to a lazy
node 𝜇(u) then either 𝜇(v) < 𝜇(u) or 𝜇(v) = 𝜇(u) and there is tangle ensuring a
vertex x with 𝜇(x) < 𝜇(u) can be reached without passing through vertices assigned
to a node that is greater or equal to 𝜇(u). When either of these cases is true or if
𝜇(u) = ⊤ then the edge is valid.

This notion of validity can be extended to vertices in the same manner as 𝜇-
progressiveness was. A mapping 𝜇 from vertices to the lazified tree is an 𝛼-labelling
(progress measure) if all vertices are valid. An 𝛼-owned vertex is valid if it has
an outgoing valid edge and a �̄�-owned vertex is valid if all its outgoing edges are
valid. Jurdziński et al.[13] define such an 𝛼-labelling to be an 𝛼-embedded attractor
decomposition in the 𝛼-universal tree used to construct the labelling.

Similarly to Small ProgressMeasures awinning strategy for vertices vwith
𝜇(v) < ⊤ can be found by choosing any valid edge. Simply lifting such a labelling
until all vertices are valid, results in an algorithm that runs in quasi-polynomial time
when universal trees are used to construct the even○ and odd⬠ labellings. The
resulting algorithm is referred to as Asymmetric Attractor Decomposition
Lifting.

The paper also introduces an accelerated symmetric variant of this algorithm
which runs on a tree that is the interleaving of the even○ and odd⬠ trees. Every
iteration of this algorithm checks if its Scope (n) (all vertices that are labelled with
nodes in the tree that are in the subtree of the current node n in the interleaving)
contains only valid vertices for 𝛼’s labelling, if that is the case, all of those vertices
can immediately be labelled in �̄�’s labelling with the node after (n�̄�) where n�̄� is
the node in �̄�’s tree from which the interleaved node n originated.

Essentially, this allows information learned through one of the labellings to be
used for the other labelling in a more granular manner than what is done for the
well-known progress measure algorithms. In these algorithms, only when one of
the progressmeasures is done being lifted, can the discovered dominion be removed
from the subgame that the other progress measure is iterating upon. This approach
of allowing the two separate measures to interact may be similar to Benerecetti et
al.’s[1] approach which uses quasi-dominions to accelerate progress measures.

Instead of directly computing attractors (and therefore attractor decomposi-
tions) Attractor Decomposition Lifting works by encoding the decompos-
itions in the labellings (measures) and lifting those measures along their edges
essentially changing the regions of the attractor decomposition edge-by-edge. Due
to the size of the universal tree this yields a quasi-polynomial time algorithmwhose
behaviour matches attractor-based algorithms. In contrast, PMTL computes attract-
ors and the decompositions directly and relies on lifting the progress measures of
the vertices across a wider area instead of from edge-to-edge, all the while keeping
track of tangles to hopefully find a dominion. In essence, Attractor Decompos-
ition Lifting relies on finding the attractor decomposition which when given to
an attractor-based algorithm would solve the game in a single iteration, whereas

80

PMTL merely uses the attractor decompositions to accelerate a progress measure
which has its own wholly separate way of determining the solution. However, we
do see that most games solved by PMTL are solved because dominions are found.
Still, PMTL does not encode the attractor decompositions in the measures and con-
sequently can be used with any existing progress measure.

Since there is no code or benchmark data available, the performance of At-
tractor Decomposition Lifting and PMTL could not be compared.

8.2 Quasi-Dominion Progress Measures
The paper by Benerecetti et al.[1] redefines much of the existing theory around
progress measures in formal terms. Specifically, the paper introduces the abstract
concepts of a measure space and a progress measure. Ameasure space is a structure
consisting of a set of measures, a total order on those measures, a truncation oper-
ator, and a stretch operator. The truncation operator maps ameasure 𝜂 to a measure
≤ 𝜂 such that contributions of vertices with priority lower than the one provided
to the truncation operator are disregarded. The p-truncation used in Small Pro-
gress Measures, and Succinct Progress Measures is an example of such a
truncation operator. The stretch operator adds a vertex’ contribution (its priority) to
a measure, the prog functions of most progress measure algorithms are it’s equival-
ent, although Benerecetti et al. disallow the truncation and stretch operators from
changing a non-⊤measure into a ⊤measure and vice versa.

A given measure spaceℳ induces a measure-function space with is another
structure containing the set of all measure functions 𝜇whichmap vertices to ameas-
ure from the set of measures in the measure spaceℳ. Additionally, the measure-
function space includes an order onmeasure functions, which is simply a piecewise
comparison of the measures mapped to each vertex.

Interestingly, Benerecetti et al. also introduce a notion of a measure of a finite
path, which is essentially the measure that arises from applying the stretch operator
to a measure for every vertex along the path. We used this same concept in the
correctness proof for PMTL. The paper then defines a progress measure space as
a measure space with properties that ensure that every contribution of an even
vertex v to a measure cannot be negated by applying the truncation operator with
v’s priority, or any lower priority.

Finally, a progress measure is defined as a measure function which adheres
to the properties that we expect from all progress measures. Namely, even vertices
need to have ameasure that is greater or equal to all themeasures of their successors’
measures lifted/stretched with the vertex’ priority, and odd vertices need to have
a measure that is greater or equal than at least one of their successors’ measures
lifted/stretched with the vertex’ priority. In essence, the even player cannot increase
the measures further, and the odd player is not forced to do so. So far, all of this is
just an alternative formulation of the existing, arguably less rigidly defined, notion
of a progress measure.

Benerecetti et al. use a structure similar to the tangle for their Quasi-
Dominion Progress Measures. The paper makes a distinction between a

81

quasi-dominion and a weak quasi-dominion but in practice the weak quasi-
dominion is what is used.

Definition 8.2 (Quasi-dominion) An 𝛼-quasi-dominion is subgraph U for which
a player 𝛼 has a strategy such that for all �̄� strategies the highest priority in every
path in U is of 𝛼’s parity. ▫

Definition 8.3 (Weak quasi-dominion) A weak 𝛼-quasi-dominion is a subgraph
U for which a player 𝛼 has a strategy such that for all �̄� strategies the highest priority
in every infinite path (also known as a play) is of 𝛼’s parity. ▫

Benerecetti et al. aim to allow ameasure to embed information about the game’s
quasi-dominions. They do this introducing a regress measure which enforces the
dual conditions of the normal progressmeasure. Thismeans that every contribution
of an odd vertex v, must cause the measure to become smaller after applying the
truncation operator with v’s priority, or any lower priority. Even vertices need to
have a measure that is smaller or equal to at least one of the measures of their
successors’ measures lifted/stretchedwith the vertex’ priority, and odd vertices need
to have a measure that is smaller or equal than all of their successors’ measures
lifted/stretched with the vertex’ priority. In essence, the even player must have a
successor that it cannot use to increase its measure, and the odd player must have
no successor that allows it to lower its measure.

A regress measure guarantees that the set of non-⊥ non-⊤ vertices form a weak
quasi-dominion for even. If these measures are further restricted to say that the set
of verticesmapped to⊤ is a dominion for even and everymeasuremapped to a vertex
vwitnesses some finite simple path originating in v, then such ameasure guarantees
that the set of non-⊥ vertices is a quasi-dominion therefore such ameasure function
is a quasi-dominion measure.

Finally, the paper describes a concrete measure space which obeys the prop-
erties of a progress measure and quasi-dominion measure space. Benerecetti et al.
also implement their algorithm within Oink and compare its performance with the
other algorithms implemented there, showing that it is faster than most algorithms
in most of the parity game types tested. A cursory comparison between QDPM and
PMTL shows that QDPM is much faster in all cases, however it does not compute
the correct strategies. Whether this is a bug in the code that was provided or an
oversight in the algorithm itself is unclear.

Comparing QDPM and PMTL we can see they share some similar concepts.
Both take a larger set of vertices which are updated at the same time. However,
PMTL keeps track of its tangles (which are strongly-connected quasi-dominions)
separately, allowing it to be usedwithmany different progressmeasures. In contrast,
QDPM encodes the quasi-dominion in the measures themselves. While we can
clearly see from the empirical test that QDPM enjoys a significant speed advantage
over PMTL it has a worst-case time complexity that is exponential, whereas PMTL
can be quasi-polynomial. Benerecetti et al. mention that their approach may lead
to a quasi-polynomial algorithm based on the Succinct Progress Measures.
However, given the more complex nature of QDPM it is not immediately clear how
it can be integrated with succinct progress measures.

82

Summary
PMTL differs greatly from Jurdziński et al.’s Attractor Decomposition Lift-
ing. While both offer quasi-polynomial worst-case time complexity, Attractor
Decomposition Lifting is value-iteration implementation of an attractor-based
algorithm. Whereas PMTL uses an existing progress measure and accelerates the
value-iteration framework with attractors.

PMTL and QDPM are a lot more similar since they both lift larger sets of ver-
tices instead of only lifting neighbours of vertices. However,QDPM needs the meas-
ures that it uses to conform to a more strict set of requirements since it encodes the
quasi-dominion in the measures, whereas PMTL keeps track of its tangles separ-
ately.

83

Chapter 9

Conclusions and Future Work

9.1 Conclusion
In chapter 3 we determined the requirements on the progression function prog

of a progress measure such that it is compatible with our algorithm. Additionally,
we showed that the Small Progress Measures and Ordered Progress Meas-
ures fulfil these requirements.

In chapter 4 we discussed the difficulty of implementing the Ordered Pro-
gress Measures’ antagonistic update function. We concluded that procedure
described by Fearnley et al.[9] for implementing the antagonistic update did not
yield a monotonic function. Therefore, we proposed a modification to the raw up-
date ru and update up functions such that Fearnley et al.’s implementation of the
antagonistic update does result in a monotonic function allowing us to use the
Ordered Progress Measures with our algorithm. Finally, we speculated that
a simple check making sure that the measure of a vertex is never lowered suffices
to make the Ordered Progress Measures behave correctly within its original
value iteration framework. This simpler solution is not suitable for use with our
algorithm.

In chapter 5 we presented and proved the correctness of an algorithm that ac-
celerates progress measure based algorithms using (tangle) attractors. Additionally,
we showed that there are multiple variants of the algorithm which still yield correct
results.

In chapter 6 we determined that the algorithm’s time and space complexity is
determined almost entirely by the choice of progressmeasure. Specifically, if a quasi-
polynomial progress measure is used then PMTL is also quasi-polynomial, and if a
polynomial progress measure were to exist then PMTL would become polynomial
too. The space complexity was equivalent to running Tangle Learning and the
value-iteration progress measure algorithm concurrently.

In chapter 7 we found that for all games we tested that the PMTL is faster
than the original progress measure-based algorithms, confirming that the use of at-
tractors can accelerate progress measure-based algorithms. Additionally, we found
that also detecting tangles and using tangle attractors yielded an even more signi-

84

ficant acceleration. While competitive on small games and on certain worst case
examples PMTL was not able to outperform existing attractor-based algorithms
such as Tangle Learning and Recursive Tangle Learning. Aside from some
specific types of games the ‘no-up’ variant of PMTL was the fastest variant. Addi-
tionally, we saw that when PMTL used the Small Progress Measures it was
able to solve small parity games faster than when it used the Ordered Progress
Measures. On larger games we saw the opposite PMTL with OPM significantly
outperformed PMTLwith SPM. Thismatches our initial hypothesis that SPMwould
perform well on small games due to its simpler comparison function and that OPM
would perform well on large games due to its quasi-polynomial time complexity.

Finally, in chapter 8 we compared our algorithm to other attempts to bridge
the gap between the two families of algorithms. We found that while there are
some similarities, especially with Benerecetti et al.[1]’s Quasi-Dominion Pro-
gress Measures, there are significant enough differences that this algorithm is
worth investigating further.

In conclusion, we showed that Tangle Learning (and attractor-based tech-
niques in general) can be used to accelerate a progress measure-based algorithm.
This resulted in an algorithm for solving parity games which has the same time
complexity class as whichever progress measure-based algorithm it is based upon
while running in orders of magnitude less time than those algorithms.

9.2 Future Work
During this research we found several potential improvements and changes to the
Progress Measures and Tangle Learning algorithm that warrant further in-
vestigation.

• Testing PMTL with other progress measures. For this thesis we focused on
two progress measures (Small Progress Measures and Ordered Pro-
gress Measures) to narrow the scope of the research. However, it would
be interesting to see how PMTL performs with other measures such as: Suc-
cinct ProgressMeasures[12], Dell’Erba and Schewe[3]’s improvement of
Ordered Progress Measures, or even the measure from the Attractor-
Decomposition Lifting algorithm discussed in chapter 8.

• Applying Tangle Learning with Justifications[14]. Lapauw,
Bruynooghe and Denecker were able to improve Tangle Learning
by storing extra information. This extra information allows unchanged
regions to be skipped and prevents already attracted vertices from being
re-attracted. Since PMTL tends to repeat similar attractor decompositions as
the measures slowly increase this may yield a significant improvement.

• Experiment with different decomposition orders. The version of PMTLwhich
we investigated in this research orders the vertices from highest to lowest
measures and then from highest to lowest priority. We briefly performed
some tests with different priority orders, but found no significant differences.
However, it might still be worth investigating further what impact this order-
ing has.

• Testing out PMTL variants with different preparation stages. Since plain

85

Tangle Learning is often faster than PMTL for random games there may
be merit in running several iterations of the attractor decomposition without
updating measures. This is equivalent to ‘one-sided’ Tangle Learning. By
doing this we may be able to find tangles and dominions quickly, after which
we need fewer iterations where the measures are updated.

• Find a worst-case example. For many other parity game solving algorithms
a construction is known for games which show the algorithms worst-case
time complexity. It should be possible to find such a construction for PMTL,
however this is non-trivial because of the hybrid nature of PMTL. The worst-
case for tangle learning and the worst-case for the progress measure that is
used might not be the worst-case for the combination of the two

86

Bibliography

[1] Massimo Benerecetti et al. ‘FromQuasi-Dominions to Progress Measures’. In:
(2020). doi: 10.48550/ARXIV.2008.04232. arXiv: 2008.04232.

[2] Cristian S Calude et al. ‘Deciding Parity Games in Quasipolynomial Time’.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing 12 (2017), pp. 19–23. doi: 10.1145/3055399.

[3] Daniele Dell’Erba and Sven Schewe. ‘Smaller Progress Measures and Separ-
ating Automata for Parity Games’. In: Frontiers in Computer Science, 4, 2022
4 (2nd May 2022). doi: 10 . 3389 / fcomp. 2022 . 936903. arXiv: 2205 . 00744
[cs.DS].

[4] Tom van Dijk. ‘A Parity Game Tale of Two Counters’. In: EPTCS 305, 2019, pp.
107-122 305 (26th July 2018), pp. 107–122. doi: 10.4204/eptcs.305.8. arXiv:
1807.10210 [cs.LO].

[5] Tom van Dijk. ‘Attracting Tangles to Solve Parity Games’. In: CoRR
abs/1804.01023 (2018). arXiv: 1804.01023.

[6] Tom van Dijk. ‘Oink: An implementation and evaluation of modern parity
game solvers’. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10805
LNCS (2018), pp. 291–308. issn: 1611-3349. doi: 10.1007/978-3-319-89960-
2_16/FIGURES/1.

[7] Tom van Dijk. ‘Recursive attractor decomposition for parity games’. Unpub-
lished.

[8] Ding Xian Fei. qpt-parity (implementation of Ordered Progress Measures).
GitHub, 2017. url: https://github.com/dingxiangfei2009/qpt-parity.

[9] John Fearnley et al. ‘An Ordered Approach to Solving Parity Games in Quasi
Polynomial Time and Quasi Linear Space’. In: (2017). doi: 10.48550/ARXIV.
1703.01296. arXiv: 1703.01296.

[10] M.W. Gazda. ‘Fixpoint logic, games, and relations of consequence’. English.
Proefschrift. Phd Thesis 1 (Research TU/e / Graduation TU/e). Mathematics
and Computer Science, Mar. 2016. isbn: 978-94-028-0041-8.

[11] Marcin Jurdziński. ‘Small Progress Measures for Solving Parity Games’. In:
STACS 2000. Ed. by Horst Reichel and Sophie Tison. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 290–301. isbn: 978-3-540-46541-6.

[12] Marcin Jurdziński and Ranko Lazić. ‘Succinct progress measures for solving
parity games’. In: Proceedings - Symposium on Logic in Computer Science
(Aug. 2017). issn: 1043-6871. doi: 10.1109/LICS.2017.8005092.

87

https://doi.org/10.48550/ARXIV.2008.04232
https://arxiv.org/abs/2008.04232
https://doi.org/10.1145/3055399
https://doi.org/10.3389/fcomp.2022.936903
https://arxiv.org/abs/2205.00744
https://arxiv.org/abs/2205.00744
https://doi.org/10.4204/eptcs.305.8
https://arxiv.org/abs/1807.10210
https://arxiv.org/abs/1804.01023
https://doi.org/10.1007/978-3-319-89960-2_16/FIGURES/1
https://doi.org/10.1007/978-3-319-89960-2_16/FIGURES/1
https://github.com/dingxiangfei2009/qpt-parity
https://doi.org/10.48550/ARXIV.1703.01296
https://doi.org/10.48550/ARXIV.1703.01296
https://arxiv.org/abs/1703.01296
https://doi.org/10.1109/LICS.2017.8005092

[13] Marcin Jurdziński et al. ‘A symmetric attractor-decomposition lifting
algorithm for parity games’. In: CoRR abs/2010.08288 (2020). arXiv:
2010.08288.

[14] Ruben Lapauw, Maurice Bruynooghe and Marc Denecker. ‘Improving Par-
ity Game Solvers with Justifications’. In: Lecture Notes in Computer Science.
Springer International Publishing, 2020, pp. 449–470. doi: 10.1007/978-3-
030-39322-9_21.

[15] Robert McNaughton. ‘Infinite games played on finite graphs’. In: Annals of
Pure and Applied Logic 65.2 (Dec. 1993), pp. 149–184. doi: 10.1016/0168-
0072(93)90036-d.

[16] K. S. Thejaswini, Pierre Ohlmann and Marcin Jurdziński. ‘A Tech-
nique to Speed up Symmetric Attractor-Based Algorithms for Parity
Games’. In: 42nd IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS 2022).
Ed. by Anuj Dawar and Venkatesan Guruswami. Vol. 250. Leibniz In-
ternational Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 44:1–44:20.
isbn: 978-3-95977-261-7. doi: 10 . 4230 / LIPIcs . FSTTCS . 2022 . 44. url:
https://drops.dagstuhl.de/opus/volltexte/2022/17436.

[17] Wieslaw Zielonka. ‘Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees’. In: Theoretical Computer Science 200.1-2
(June 1998), pp. 135–183. doi: 10.1016/s0304-3975(98)00009-7.

88

https://arxiv.org/abs/2010.08288
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1016/0168-0072(93)90036-d
https://doi.org/10.1016/0168-0072(93)90036-d
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.44
https://drops.dagstuhl.de/opus/volltexte/2022/17436
https://doi.org/10.1016/s0304-3975(98)00009-7

	Introduction
	Preliminaries
	Basic definitions
	Structures of a parity game
	Attractors
	Tangle attractors
	Attractor decomposition

	Progress measures

	Requirements on Progress Measures
	Progress function
	Generic Progress Measures
	Existing progress measures
	Small Progress Measures
	Ordered Progress Measures

	Properties of paths

	The monotonicity of Ordered Progress Measures
	Implementation as described by Fearnley et al.
	Multiple rule 2 candidates
	Reaching the top measure prematurely

	Unanswered questions
	The solution

	The algorithm
	The base algorithm
	Description of the algorithm
	Proving correctness

	Going up
	Description of the algorithm
	Proving correctness

	Adding tangles
	Description of the algorithm
	Proving correctness

	Termination

	Analysis
	Time complexity
	Space complexity

	Experiments
	Methodology
	Results
	"Two Counters"
	"Two Counters+"
	Random games
	SYNTCOMP games

	Possible optimisations
	Counting escapes
	Ignoring opponent-priority vertices
	Skipping unchanged regions
	Completing the decomposition

	Do we need tangles

	Related work
	Attractor Decomposition Lifting
	Quasi-Dominion Progress Measures

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography

