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Abstract

Breast cancer is the most commonly diagnosed cancer among Dutch women with a diagnosis percentage of 31%.
Digital two-view mammography (DM) is the current standard imaging technique for breast cancer diagnosis and
detection. But recently questioning concerning the suitability of DM has been rising, along with the potential of
different imaging techniques. Breast CT (BCT) is one of these techniques and it the main topic of this report.
In BCT an image of the breast tissue is acquired using X-ray, the image then gets reconstructed and processed
for evaluation. There are different reconstruction algorithms that can be used, like filtered back projection (FBP)
and iterative reconstruction (IR). To find the best reconstruction algorithm, they can be compared using the re-
constructed images and the determined modulation transfer function (MTF).
In this research, two experiments are done. The first experiment is to create a suitable phantom for further test-
ing. Here measurements are done using different liquids and comparing their Hounsfield Unit values. The results
showed that tap water is the best option, but also that further testing and research is necessary. The second ex-
periment is to reconstruct images using Feldkamp-Davis-Kress (FDK) FBP with different filters and also recon-
struct images using IR with different filters. After determining the MTF, the results are compared. Based on the
results, FDK FBP with Shepp-Logan filter and additional filtering was determined to be the best reconstruction
algorithm (combination). However, the used phantom was deemed unsuitable for accurate results and a reliable
conclusion. Thus, further research should be done and the experiments need to be redone using a different phan-
tom.
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1 INTRODUCTION

1 Introduction

Worldwide, breast cancer is the second most commonly diagnosed cancer with a diagnosis percentage of 11.6%
of all cancer diagnoses. But when looking solely among women, breast cancer is the most commonly diagnosed
and also the leading cause of cancer death [1]. In the Netherlands, the diagnosis percentage of breast cancer in
women is 31% and in 2022 a 5-year prevalence of 66,400 was recorded. This means that out of the 88,772 women
that got a breast cancer diagnosis between 2017 and 2022 in the Netherlands, only 66,400 women were still alive
in 2022 [2].

To decrease the mortality related to breast cancer, a breast cancer screening program is implemented in most
European countries. The standard screening technique used for this process is digital two-view mammography
(DM), here the breast gets compressed and an X-ray image is made from two sides to get an even surface cov-
erage [3, 4, 5, 6]. One of the main downsides of DM is that it calls for a two-dimensional projection of a three-
dimensional object, this goes along with the need for compression. Compression of the breasts during this pro-
cedure is often considered to be painful and causes tissue overlap, which decreases the sensitivity of DM [3, 7].
In recent years, breast computed tomography (BCT) has emerged as a potential replacement technique for DM.
In BCT a three-dimensional projection is made and no compression is needed, therefore offering solutions for the
main problems with DM [3, 7].

1.1 The potential of breast CT

Imaging a breast tumor can be done in multiple different ways, depending on the particular demands. Some of
the techniques to consider are DM, BCT, magnetic resonance imaging (MRI) and ultrasound (US). These tech-
niques are used in a variety of settings. Along with the recent rising potential of BCT goes the questioning if the
current standard technique, DM, is still the most suitable. DM is often compared to MRI, US and now BCT, and
has previously been chosen as the standard because of its cost-effectiveness and proven reduction of breast can-
cer related mortality [3, 4, 5, 8]. MRI is proven to be effective for detecting breast cancer and can be used with
contrast enhancement (CE-MRI), enabling for a highlighted display of a tumor [9]. It has a high sensitivity com-
pared to DM and does not use X-ray, therefore not exposing patients to ionizing radiation. However, the cost,
availability and the scan duration of MRI make it currently unsuitable for regular, general use [7, 8, 9]. US plays
an important part in real-time imaging during procedures and is able to differentiate between benign and malig-
nant tumors. It can be used in combination with DM to detect breast tumors, but it is not yet suitable for de-
tection on its own [10, 11]. Furthermore, the use of US calls for a specialist, increasing the cost of general use [8].
BCT uses X-ray imaging to make a three-dimensional projection of the breast. It shares similarities with MRI
in sensitivity and contrast enhancement options (CE-BCT), but it has a lower scan duration and cost. However,
there is exposure to ionizing radiation for patients and it has a relatively low specificity [3, 7, 8].

1.2 Screening or monitoring

When implementing BCT as an imaging technique in detecting breast cancer, it should be considered that dif-
ferent kinds of imaging are necessary during screening and monitoring. Screening should be done in a very cost-
efficient manner as it is a very regular and general procedure, also a low radiation exposure and relatively high
specificity are desired. The aspects of BCT make it currently unfit for regular screening, but it does have po-
tential for monitoring breast tumors during treatment [3, 12]. Compared to MRI and DM, BCT is a consider-
ably better imaging technique for monitoring breast tumors, combining their advantages into one technique [7, 8].
Likewise, CE-BCT is very beneficial for monitoring tumor growth and would be a good option over CE-MRI be-
cause of the lower scan duration and lower cost [7, 12].

1.3 Aim and goal

The aim of this research is to imitate and model a phantom of a tumor in breast tissue and find the best recon-
struction algorithm by determining the MTF of the phantom imaged by a breast CT. The goal of this report is
to compare different reconstruction algorithms by the images created and the determined MTF. This leads to the
following research question: What is the best reconstruction algorithm based on the MTF of an im-
age, of a phantom, created by a breast CT? Other questions that were to be answered leading up to the
research question were:

• How can the MTF be determined using Python?

• What is a suitable liquid for a home-made phantom and will this phantom give an adequate representation
that can be used to get the desired results?
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2 THEORETICAL BACKGROUND

2 Theoretical background

2.1 Breast CT

BCT is an imaging technique which uses X-rays to image breast tissue. The core functioning of a BCT system is
the same across all different brands, but most of the settings and mechanical elements are different [13]. As for
this report, the ’Koning Co. breast CT’ system [14] is described and shown in Figure 1. The BCT system con-
sists of an exam table with an opening for the breast to go through for imaging. Underneath the table represents
a regular CT system with an X-ray tube and a flat-panel detector, as is shown in Figure 2. The X-ray tube and
detector are opposite of each other on a gantry and rotate 360 degrees around the breast during the scan [8, 15].
During the scan a number of projections are made, for the Koning Co. breast CT this number is 300 [14, 15]. Be-
fore starting the actual scan, a scout measurement is done with a low radiation dose to calculate the optimal dose
level as a function of the thickness of the breast tissue. During this measurement two scout images are made at 0
and 90 degrees of rotation [15]. After acquiring an image, the image goes through reconstruction and processing
before it can be evaluated.

Figure 1: The Koning Co. breast CT that was
used during the measurements done for this re-
port. The opening is located near the middle of
the exam table.

Figure 2: The inside of the breast CT with a
home-made phantom suspended through the open-
ing instead of a breast. The X-ray tube is on the
left and the flat-panel detector is on the right.

2.1.1 Contrast-enhanced breast CT

The protocol for CE-BCT is similar to the protocol for BCT, except for the addition of contrast medium. Iodine
contrast medium gets injected intravenously before the BCT scan to visualise tumor angiogenesis and enhance
potential malignancies. This enables monitoring of tumor size and growth which is relevant for determining if the
treatment of the patient is beneficial. An example of an image acquired with CE-BCT is shown in Figure 3. Here
can be seen how the addition of contrast medium can increase the chance of detecting a tumor in breast tissue by
enhancing and visualising tumor angiogenesis compared to the surrounding tissue [12, 15, 16, 17, 18].
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2.2 Modulation Transfer Function 2 THEORETICAL BACKGROUND

Figure 3: The effect of contrast medium in CE-BCT for detecting tumors in breast tissue, before (a) and
after (b) using the contrast medium. The resulting enhanced tumor sites are indicated using arrows [18].

2.2 Modulation Transfer Function

The modulation transfer function (MTF) provides a measurement for the ability of a CT system to transfer con-
trast over spatial frequencies. This means that it provides information about the detectability of, for example, a
tumor in breast tissue based on the difference in contrast. Therefore, a low MTF results in low object recognition
[19]. The MTF is often used as an indicator for the spatial resolution of a system and image sharpness of CT,
making it useful for evaluating the performance of a system [19, 20, 21]. The MTF can be calculated by taking
the Fourier transform of the line-spread function (LSF), which is the derivative of the edge-spread function (ESF)
[19, 22]. Further explaining of the determination and plotting of the ESF, LSF and MTF is done in Section 2.2.1.
When plotting the MTF over the spatial frequency, as can be seen in Figure 8, conclusions can be drawn based
on the values and shape of the graph. The y-axis, containing the MTF, ranges from 0.0 to 1.0 and is the resulting
value of the modulation transfer ratio (MT). This ratio can be calculated as follows [23];

MT =
Mim

Mobj
(1)

Here Mim represents the modulation in the image and Mobj represents the modulation in the object. The ratio
values are often presented as percentages, with 1.0 being 100%, in a way to define the meaning of these values.
When the MT is equal to 1.0 (100%) it means that the modulation in the image and the object are equal, signi-
fying that the contrast got transferred perfectly from the object to the image. This would be an ideal result, but
this rarely is the case [23]. The general rule of thumb is that a high MT (or MTF) is desirable over a low MT (or
MTF).

2.2.1 Technical implementation

To get the MTF of a reconstructed image, using Python, certain steps are taken to go from detecting the relevant
structures to taking the Fourier transform of the LSF. For explanatory purposes, a simplified process is shown
below explaining the results and reasoning behind the steps taken. The Python code, for determining the MTF of
a simplified image, is shown in Appendix A.
In BCT, and this research, an image will be acquired similar to Figure 4b. This is a simplified image compared
to the actual acquired images, which are not a symmetrical circle and are subjected to non-artificial noise and
blurring. This image is the result of adding certain amounts of noise and blurring onto Figure 4a by using the
code presented in Appendix A.1.
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2.2 Modulation Transfer Function 2 THEORETICAL BACKGROUND

(a) Simplified breast CT image of a contrast-
enhanced tumor in breast tissue.

(b) Simplified breast CT image with artificially
added noise and blurring.

Figure 4: Simplified and artificially created breast CT images.

To have Python detect and extract a structure within an image, in this case a circle, the image is put through
thresholding and segmentation. This part of the Python code is shown in Appendix A.2. Thresholding is a way
to separate the circle from the background by looking at the change in pixel intensity of the image. When an im-
age has noise and blurring, the edges of a structure are no longer well defined. By using a thresholding technique,
the edges get redefined but these redefined edges can differ from the actual edges of the structure. Segmenta-
tion is performed after thresholding to detect the redefined structure and select it so data can be gathered from
that specific area. During segmentation the centre coordinates and the radius of the structure are determined and
used to produce a circle, these values are based on the detected shape and estimations are made accordingly to
neither overestimate or underestimate the size of the circle.

Next, the pixel values and distance from the centre get determined within the segmented circle. The function cy-
cles through the pixels within the circle, determining their pixel value and corresponding coordinates. The dis-
tance of these pixels from the centre of the circle is calculated using Pythagoras and the x- and y-coordinates of
the pixels. To make sure that the pixels belong to the circle, the calculated distance gets compared to the radius
and if the distance is greater than the radius, the pixel value is not saved. Otherwise, the pixel value and corre-
sponding distance are put into a matrix.
To acquire the ESF, the pixel values and their corresponding distances get sorted based on the distance from the
centre. The pixel values then get plotted over the distance from the centre, and the resulting plot is shown in
Figure 5.

Figure 5: The ESF plotted.
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2.3 Reconstruction algorithms 2 THEORETICAL BACKGROUND

In order to do a Fourier transformation, the data should be uniformly spaced. To achieve this, the ESF data
points were re-binned as this cancels out uneven spacing between consecutive data points, as shown in Figure 6.
During the re-binning, 30 ’bins’ were created with each bin corresponding to a distance between 0 and 30 evenly
spaced apart. Then while cycling through the distances, a pixel value gets put in a bin when the corresponding,
previously determined, distance matches the distance assigned to that bin. When no match is found and a bin
is left empty, a mean value is determined and placed in the bin. Finally, the re-binned ESF gets plotted and the
resulting plot is shown in Figure 7.

Figure 6: ESF plotted in a nonuni-
form way (top plot) and in a re-
binned way (bottom plot) [19]. Figure 7: The re-binned ESF plotted.

To determine and plot the MTF, the derivative of the ESF is taken and the Fourier transform is done on the re-
sult. The Fourier transform represent the signal in the frequency domain as opposed to the time domain. The
Python code for the Fourier transform is shown in Appendix A.3. After doing the Fourier transformation and
plotting the results, the MTF is seen plotted over the spatial frequency in Figure 8.

Figure 8: The MTF plotted over the spatial frequency.

2.3 Reconstruction algorithms

Various reconstruction algorithms are used to reconstruct CT images for evaluation. Depending on the charac-
teristics of the imaging subject, different algorithms are favourable. The two main categories are filtered back
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projection (FBP) and iterative reconstruction (IR) [24].

FBP is the most common reconstruction algorithm used for CT [25]. It is an analytic reconstruction algorithm
that relies on linear mathematical operations and relationships. FBP assumes that the acquired projection data
from the CT scans is exact data and therefore produces an exact image of this data, but in reality the data is
noisy. This noise is amplified by the FBP in the reconstructed images [26, 27]. Because this method reconstructs
images based on an analytic equation, it is relatively fast compared to IR. However, FBP is not favourable com-
pared to IR when using lower doses of radiation, because that causes the resulting reconstructed images to be
noisier than at higher doses [24, 25, 26, 27].

IR was introduced as an alternative to FBP because of its ability to deliver reconstructed images with lower noise
levels at a reduced radiation dose [24]. IR reconstructs images using a loop to minimize the error and reduce the
differences between the acquired data and forward projected data [25, 26, 27]. One of the downsides of using IR
is that it takes longer to reconstruct an image than FBP. This is due to repeating the same procedure for multi-
ple iterations [26, 27].
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3 Creating a physical phantom for testing

3.1 Goal of the experiment

The goal of this experiment was to create a physical phantom, representing breast tissue, that can be used in
later measurements with the BCT. During this experiment, different liquids were tested in the BCT and the re-
sults were compared to an existing quality control (QC) phantom with similar attenuation values to breast tissue.
Based on this, a liquid was chosen to use in further experiments with this home-made (HM) phantom.

3.2 Materials and methods

3.2.1 Breast tissue

Figure 9: Mammogram with scattered areas
of fibroglandular tissue. The light areas are
fibroglandular tissue and the darker areas are
fatty tissue [28].

In order to find the best representative liquid to use for the phan-
tom, it is important to have a closer look at the type of tissues
that breast tissue consists of. Breast tissue mainly consists of
fatty tissue and fibroglandular tissue, the difference between these
tissues becomes more apparent when comparing them on a CT
scan or mammogram, as is seen in Figure 9. On the scan the fi-
broglandular tissue appears white, whilst the fatty tissue appears
to be darker [29, 30]. Fibroglandular tissue is a dense type of tis-
sue and consists of fibrous connective tissue and glandular tissue,
which includes the milk glands. Because this is a dense tissue, it
appears white on mammograms and (breast) CT scans. Fatty tis-
sue is not as dense, appearing dark on mammograms and (breast)
CT scans. Tumor tissue appears in a similar way as fibroglan-
dular tissue on these scans, making the detection of a tumor in
this type of tissue difficult compared to a tumor in fatty tissue
[29, 30, 31].

3.2.2 Hounsfield Unit

The use of Hounsfield Units (HU) helps when differentiating be-
tween tissue types in reconstructed BCT images. These values
act as a scale, comparing tissue attenuation coefficients with the
attenuation coefficient of distilled water in the same conditions.
For this reason, HU values are often used to help identify tissues
that might look similar in a BCT scan [32]. The accuracy of a
system when determining the HU is of importance when assessing
the performance of a BCT system, as this could be a determining
factor in detecting a tumor in breast tissue.
When recreating characteristics of breast tissue in a phantom
used in BCT, choosing a substance with similar HU is of great
importance. The HU values of breast tissue consists of ranges for the different types of tissue present within the
breast tissue itself, the values differ based on the volumes in which they are present. For fatty tissue the HU val-
ues range from -210 to -100 HU, while for fibroglandular tissue the HU values range from -99 to +100 HU [29].

3.2.3 Data acquisition

The scans were acquired using a breast CT from Koning Co. and four different phantom options. The first phan-
tom was the available QC phantom, specifically made to mimic breast tissue and to be used with the BCT. The
other three phantoms had the same plastic tube casing, but different liquids were used each time, creating the
different options for the HM phantom. The tube and part of the setup can be seen in Figure 2. The first liquid
was regular olive oil, the second one was extra virgin olive oil and lastly tap water was used. All the scans were
made using the same BCT settings, which are listed in Table 1.
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Table 1: The BCT settings used in the first measurements.

Current X-ray tube 50 mA
Tube voltage 49 kVp
Estimated dose 5.8 mGy
Pulse width 5 ms
Scan duration 10 s
Pulses/rev 225
Total pulses 225
Filter Aluminium filter

To determine what liquid had the most resemblance to breast tissue, and in this case the QC phantom, the HU
values of the HM phantoms were compared to the acquired HU value of the QC phantom. The HU values were
acquired by selecting a large region of interest (ROI) and measuring the average HU, in some cases the HU was
measured for multiple ROIs along the vertical direction.

3.3 Results

In Table 2 the measured Hounsfield Unit values are displayed for the different phantoms. When these results get
compared, the most fitting liquid can be chosen to use in the HM phantom for further experiments. In Table 2
can be seen that the HU values vary between the phantoms and also in the phantoms themselves. The QC phan-
tom shows minimal variation, but the olive oil phantom shows a large difference of 81.8 HU along the height of
the tube.

Table 2: The acquired Hounsfield Unit values for the different phantoms.

Phantom type Hounsfield Unit value
QC phantom -111.5 HU

-116.3 HU
-118.9 HU

Olive oil phantom -244.5 HU
-162.7 HU

Extra virgin olive oil phantom -244.6 HU
Tap water phantom 45.4 HU

3.4 Discussion and conclusion

From the results can be seen that the HU values differ between the liquids for the HM phantom, the greatest
difference is between tap water and olive oil. Extra virgin olive oil and regular olive oil showed a difference of
around 0.1 HU, while the difference with tap water was around 290 HU. An important note is the varying HU
values inside the phantoms themselves, which is a result of the spectrum varying over the detector. It can be seen
that this difference is smaller for the QC phantom compared to the olive oil phantom, this can be explained by
the difference in shape and size between the QC phantom and the HM phantoms. The QC phantom is shorter,
vertically, than the olive oil phantom and has a round, half-sphere shape in contrast to the cylindrical tube shape
of the olive oil phantom. When taking advantage of the varying spectrum and comparing the HU values of the
different liquids with the HU values of the QC phantom, tap water was chosen to be used in the HM phantom.
However, the difference between the HU of tap water and the QC phantom, which is around 156.9 HU, is still
considered to be large and further testing should be done to find a more suitable liquid. A consideration that
should be taken into account is the homogeneity of the liquids used, while actual breast tissue is a representation
of heterogeneous tissue with the presence of fatty and fibroglandular tissue. A homogeneous liquid or substance
will always represent a mean HU value of fatty and fibroglandular tissue, in contrast to the changing HU value
in real breast tissue. This constant change in value adds a difficulty factor for detecting tumors which varies de-
pending on the tumor location and surrounding tissue type.
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4 Comparing reconstruction algorithms using the MTF

4.1 Goal of the experiment

The goal of this experiment was to reconstruct the images of the HM phantom, with an iodine rod inserted into
it, using different reconstruction algorithms and additional filtering. The HM phantom should be a suitable, sim-
plified representation of a contrast-enhanced tumor in breast tissue, in order for the experiments to have usable
results. In addition, the acquired images and the MTF of these images were used to compare the different algo-
rithms.

4.2 Materials and methods

4.2.1 Data acquisition

In this experiment, the final HM phantom from Section 3 was used in combination with an iodine rod to mimic
the contrast fluid used when monitoring tumor growth in breast tissue as explained in Section 2.1.1. This phan-
tom is shown in Figure 2. Two groups of six measurements were done with the BCT, but only one of the twelve
total scans was used for comparing the reconstruction algorithms. The first half of the first group of measure-
ments was done with the settings from Table 1 and the phantom in a ”centred” position (CP), as shown in Fig-
ure 10a, while changing the scan duration to 10, 7 and 5 seconds. After these measurements, the settings were
changed to the settings seen in Table 3 and more measurements were done with a scan duration of 10, 7 and 5
seconds.

Table 3: The BCT settings after changing the original settings.

Current X-ray tube 32 mA
Tube voltage 65 kVp
Estimated dose 3.7 mGy
Pulse width 5 ms
Scan duration 10 s, 7 s, 5 s
Pulses/rev 225
Total pulses 225

The second group of measurements was done with the HM phantom in ”off-centred” position (OCP), as shown
in Figure 10b. This was achieved by moving the phantom 4 cm to the left from the middle position, to make this
possible part of the phantom was balanced on a wooden bar. The same measurements were done as described
before but with the phantom in OCP instead of CP. By doing these measurements, OCP and CP with different
scan duration, the spatial resolution of the BCT was tested. It was assumed that the scan with the lowest scan
duration (5 seconds) and the phantom in OCP would appear the most blurry.
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(a) The home-made phantom set up in the
”centred” position in the breast CT.

(b) The home-made phantom set up in the
”off-centred” position in the breast CT.

Figure 10: The positioning of the phantom for the ”centred” (a) and ”off-centred” (b) measurements.

4.2.2 Data processing

After acquiring the images using the BCT they were reconstructed using different reconstruction algorithms, with
and without additional filtering in the projection domain. Using the acquired data, the MTF was calculated and
graphed using Python following the procedure explained in Section 2.2.1. The actual Python code used for deter-
mining the MTF of the reconstructed images is shown in Appendix B. The reconstruction algorithms used were
FDK (Feldkamp-Davis-Kress) back projection with different filters, and IR with different filters and 100 itera-
tions. The exact filters used are Cosine, Hamming, Hann, Ramp and Shepp-Logan filters for FDK back projec-
tion, and FISTA (Fast Iterative Shrinkage Thresholding Algorithm) 100, MLTR (Maximum Likelihood Transmis-
sion) 100 and SART (Simultaneous Algebraic Reconstruction Technique) 100 filters for IR.
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4.3 Results 4 COMPARING RECONSTRUCTION ALGORITHMS USING THE MTF

4.3 Results

After evaluating the CP scans, it was decided not to include the OCP scans in the reconstruction process or fur-
ther evaluate them due to issues with the setup.

4.3.1 The edge-spread function plots

During the process of determining the MTF, the ESF was plotted for all reconstructed images. This was done
according to the methods described in Section 2.2.1. The resulting plots can be seen in Figure 11.

Figure 11: The ESF of all reconstruction methods used (all including additional filtering).

The data points are not uniformly spaced and there is noise visible, especially for the FDK Ramp filter and FDK
Shepp-Logan filter with additional filtering. To create a uniform overview of the data, the data was re-binned.
The result is shown in Figure 12.
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Figure 12: The re-binned ESF of all reconstruction methods used (all including additional filtering).
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4.3.2 The reconstructed images and the MTF

In Figure 13 the images resulting from FDK back projection using different filters are shown. The first five im-
ages where acquired using the different filters from Section 4.2.2 and additional filtering. The sixth image is re-
constructed using FDK and the Shepp-Logan filter, but without additional filtering of the projections. From the
images can be seen that the amount of blurring and noise differs between the filters used. In all images the iodine
rod is visible as a white circle on a dark background. The inside and outside of the circle are not one uniform
color and the edges are not distinctly defined, but around the circle is a much darker rim visible that separates
the undefined edges of the circle from the background. Figure 13F has less blurring, but seemingly more noise
present.

Figure 13: The reconstructed images acquired with the FDK back projection method and different filtering.
A) FDK Cosine filter with additional filtering. B) FDK Hamming filter with additional filtering. C) FDK
Hann filter with additional filtering. D) FDK Ramp filter with additional filtering. E) FDK Shepp-Logan
filter with additional filtering. F) FDK Shepp-Logan filter without additional filtering.

To determine which FDK method should be displayed without additional filtering, the reconstructed images were
compared initially. From this comparison, Figure 13D and Figure 13E were determined to be the clearest. To fur-
ther compare these filters, the MTFs were graphed, as shown in Figure 14, and compared. From this comparison
it was decided that the FDK with Shepp-Logan filter would be displayed without additional filtering.
In Figure 14 can be seen that all graphs have a dip between 0.75 and 1.00, afterwards most of the graphs go back
up and down again with a smaller slope than they initially went down with. This creates a bump in the graphs.
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Figure 14: The graphs of the MTF over the spatial frequency for the FDK back projection method with the
different filters and additional filtering. On the bottom right is the graph of the MTF over the spatial fre-
quency for the FDK back projection method with the Shepp-Logan filter and without additional filtering.

For a better comparison between the MTF graphs, the graphs can be combined into one plot. The result can be
seen in Figure 15.

Figure 15: A collection of all (FDK) graphs of the MTF over the spatial frequency.
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Figure 16 shows the images reconstructed using iterative reconstruction filters and additional filtering. In Figure
16A a dark rim is visible around the circle, similar to the rim seen in Figure 13, but in the other images there is
no prominent dark rim visible.

Figure 16: The reconstructed images acquired with different iterative reconstruction filters and additional
filtering. A) FISTA 100 with additional filtering. B) MLTR 100 with additional filtering. C) SART 100
with additional filtering. D) FISTA 100 without additional filtering.

To determine which method should be depicted without additional filtering, the same procedure was followed as
for the FDK method. The reconstructed images from Figure 16 were compared to each other by solely looking at
the amount of noise and blurring visible. Afterwards, the graphs of the MTF, as shown in Figure 17, were com-
pared and FISTA 100 was picked to be displayed without additional filtering.

17



4.3 Results 4 COMPARING RECONSTRUCTION ALGORITHMS USING THE MTF

Figure 17: The graphs of the MTF over the spatial frequency for the different iterative reconstruction meth-
ods.

Again, a combined plot is made for a better comparison between the MTF graphs. This can be seen in Figure 18.

Figure 18: A collection of all (IR) graphs of the MTF over the spatial frequency.

As a final comparison, the two best MTF graphs are combined into one plot. The final plot can be seen in Figure
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19. The reasoning behind choosing these specific graphs is explained in Section 4.4.

Figure 19: The MTF graphs of FISTA 100 and FDK Shepp-Logan combined into one plot for better com-
paring.

4.4 Discussion

In most of the reconstructed images, a high amount of noise is visible even after additional filtering. The im-
ages with the most amount of noise after additional filtering are Figure 13D and 13E (FDK with Ramp filter and
Shepp-Logan filter including additional filtering) for FDK back projection, and Figure 16B (MLTR 100 with ad-
ditional filtering) for IR. The noise can cause problems and influence the accuracy of the calculation of the MTF.
One of these problems is that the noise makes it more difficult for the Python script to carry out the segmenta-
tion and determine the middle of the circle, here the white circle caused by the presence of the iodine rod, result-
ing in diverging results. The noise in the ESF plots, as seen in Figure 11, could have been caused by the noise in
the reconstructed images. A potential solution would be to increase the X-ray tube current [33].

When looking at the effect of the additional filtering, the different reconstruction algorithms show differences in
their changes. For FDK back projection the difference between additional filtering and no additional filtering
is more visible than for IR. When comparing Figure 13E and 13F it can be seen that 13F is noisier than 13E,
meaning that additional filtering reduces noise. The difference from additional filtering can also be seen when
looking at the MTF graphs in Figure 14, specifically looking at the graphs in the bottom right and middle. The
graphs start off in similar ways, but start displaying changes around the dip in the graph. The graph on the bot-
tom right has a wider dip, starting around 0.75 and ending around 1.25, than the graph in the middle, which
starts around 0.75 and ends around 1.15. But because the right graph rises with a steeper slope, both graphs end
up with a peak around the same spatial frequency. The middle graph seems to have a lower peak around 1.37
than the right graph, resulting in a smaller visible bump. This bump is present in all MTF graphs of FDK back
projection and IR, but it is most apparent in the FDK back projection graphs. The nature of this bump is still
unclear, but as it is visible in all MTF graphs it is likely caused by a common error source in all measurements.
This source could be the phantom itself or a mistake in the Python code, further research should be done to de-
termine the actual cause.

In Figure 16A and 16D can be seen that the additional filtering in IR methods results in minimal noise reduction,
the change is not prominent. However, this does not apply to the MTF graphs, when looking at Figure 17 the
graphs corresponding to FISTA 100 with and without additional filtering show prominent differences. The ad-
ditional filtering seems to have reduced the overall hight of the bump, but in stead separates the one bump into
two bumps. In addition, the total width of the bump gets increased with additional filtering from approximately
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1.0 to 1.12.

When comparing the reconstructed images of FDK back projection and IR, the differences are very prominent.
The images acquired with FDK, seen in Figure 13, look more grainy than the images seen in Figure 16. Also
the dark rim around the white circle is more pronounced in Figure 13 than in Figure 16. This dark rim is likely
caused by the plastic layer around the iodine rod, this layer seems to have a different Hounsfield Unit value than
the iodine and the surrounding water. The darker complexion suggests that the HU value is lower than the HU
value of the tap water that was used, which seems to be correct as the HU value of plastic should be around -47
HU [34]. Therefore, it causes a dark rim to appear that clearly sets apart the white circle from the background
and redefines the edges that might have been lost otherwise. This eliminates some of the problems caused by
noise and blurring in the images. Even though this effect seems beneficial for recognizing the iodine rod and use-
ful for segmentation, it has adverse effects on the outcome of the experiments and the conclusion of this report
as it is no longer a suitable phantom representing a contrast-enhanced tumor in breast tissue. For any further re-
search it is advised to either remove the plastic layer or choose a liquid with a HU value closer to the plastic than
tap water.
However, this dark rim can be of use when comparing the reconstruction algorithms solely based on the recon-
structed images as it presents a measure of the details that are lost during reconstruction. The dark rim is the
result of the thin layer of plastic around the iodine rod, which was present during all measurements. But when
comparing the images in Figure 13 and Figure 16, this dark rim has varying visibility. If the dark rim is not (or
barely) visible it means that in a realistic setting, inconsistencies with a similar or smaller size are also not visi-
ble after reconstruction. The visibility is similar in the images shown in Figure 13 except for Figure 13F, here the
dark rim is thinner than in the other images and is more difficult to differentiate from the background because of
the increased amount of noise. Figure 13B and 13E seem to have the best visibility, in Figure 13B the dark rim
stands out more than in Figure 13E but it also has more blurring. In Figure 13E the rim seems more detailed
and slightly thinner than in Figure 13B, but not less visible. Therefore, Figure 13E is decided to have the over-
all best visibility of the dark rim. In Figure 16, the visibility of the dark rim is significantly better in Figure 16A
than in the other images. Figure 16B has the least visible dark rim, as the background overall seems darker than
the other images and closer in shade to the dark rim. When comparing Figure 13E and Figure 16A, it can be
seen that the dark rim is more visible and detailed in Figure 13E.

When comparing the MTF graphs of FDK back projection, all graphs look similar except for the graph belong-
ing to FDK with Ramp filter which does not seem to be a suitable option as the graph does not run as smoothly
as the others. This is clearly visible in Figure 15. To pick the filter with the best MTF graph, it is important to
look at the initial slope and the minimum MTF value this slope leads to. When looking at Figure 15 all initial
slopes seem similar. But, around 0.50 on the x-axis, the slope of the graph belonging to FDK with Shepp-Logan
filter starts to decrease compared to the other graphs. This results in a higher initial minimum of approximately
0.15. When following the rule of thumb from Section 2.2, the FDK with Shepp-Logan filter has the best MTF
and MTF graph.

For IR it is less difficult to separate the different MTF graphs, as can be seen in Figure 18. The graphs belonging
to IR with MLTR 100 filter and IR with SART 100 filter have a similar initial slope, but the graph belonging to
IR with FISTA 100 filter has a less steep initial slope. This results in a higher MTF and is therefore the most
favorable option.

Finally, when comparing the MTF graphs of FDK with Shepp-Logan filter and IR with FISTA 100 filter it will
become clear which reconstruction algorithm and filter combination is the best. In Figure 19 can be seen that the
FISTA 100 graph starts off a little higher than the Shepp-Logan graph, while the slope of the Shepp-Logan graph
is less steep than the FISTA 100 graph. This means that the Shepp-Logan graph has a higher MTF over more
spatial frequency than the FISTA 100 graph.

4.5 Conclusion

In conclusion, the additional filtering is beneficial for image reconstruction and evaluation, but there is room
for improvement. The MTF is able to be determined of the reconstructed images using Python, but the graphs
show the presence of a common error source of which the nature is unclear. And finally, the home-made phantom
is deemed unsuitable for the purpose of representing a contrast-enhanced tumor in breast tissue because of the
HU value of the plastic. Because of this, it is not possible to draw any reliable conclusions concerning the recon-
struction ability, for a contrast-enhanced tumor, of the BCT and reconstruction algorithms based on the MTF or
about the detectability of this tumor influenced by the spatial resolution. To be able to draw these conclusions,
the measurements need to be redone using a different phantom.
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However, when solely basing the conclusion on the comparison of the reconstructed images and the visibility of
the dark rim, it can be concluded that the FDK back projection reconstruction algorithm in combination with
the Shepp-Logan filter and additional filtering comes out on top. This is also the case for the MTF graphs.

Overall, when looking past the unsuitability of the phantom, it can be concluded that the FDK back projection
reconstruction algorithm in combination with the Shepp-Logan filter and additional filtering is the best recon-
struction algorithm (combination) based on the reconstructed images and MTF.
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A APPENDIX

A Appendix

A.1 Generating an image

1 import numpy as np

2 import cv2

3 from skimage.util import random_noise

4 from skimage.filters import gaussian

5 from skimage.util import img_as_ubyte

6

7 DEBUG = True

8

9

10

11 def load_png_image(path=’testing2.png’):

12 img=cv2.imread(path)

13 # it is also possible to use cv2.imread(’name ’,0) to get a greyscale.

14 img_gray=cv2.cvtColor(img , cv2.COLOR_BGR2GRAY)

15

16 if DEBUG:

17 cv2.namedWindow("Display", cv2.WINDOW_NORMAL)

18

19 cv2.imshow(’Display ’,img_gray)

20 # when no waitkey is used , the image disappears immediately after

appearing. So go be able to actually look at the aquired image ,

waitKey (0) should be used.

21 cv2.waitKey (0)

22 # the image can be seen as an array of values (grayscale values), when

not automated these can be used for manually setting a threshold.

23 print(np.array(img_gray))

24 print(np.array(img_gray).shape)

25

26

27

28 return img_gray

29

30 def make_noise(img_gray):

31 var=np.arange (0.01 ,0.1 ,0.01)

32 #var =[0.01]

33 #var =[0.06]

34 #print(var)

35 sigma=range (1 ,10)

36 #sigma =[1]

37

38 for v in var:

39 for s in sigma:

40 v=np.round(v,2)

41 #otherwise it gives no rounded 6 and 7

42 #img_gray_ns = random_noise(img_gray ,mode=’gaussian ’,seed=None ,clip

=True ,var=v) #should be var=v

43 img_gray_ns = random_noise(img_gray ,mode=’gaussian ’,seed=None ,clip=

True ,var =0.02)

44 img_gray_ns = img_as_ubyte(img_gray_ns ,force_copy=False)

45

46 #img_gray_ns = gaussian(img_gray_ns , sigma =s, output=None , mode=’

nearest ’, cval=0, preserve_range=False ,truncate =4.0) #should be

simga=s

24



A.2 Determining the ESF A APPENDIX

47 img_gray_ns = gaussian(img_gray_ns , sigma =2, output=None , mode=’

nearest ’, cval=0, preserve_range=False ,truncate =4.0)

48 img_gray_ns = img_as_ubyte(img_gray_ns ,force_copy=False)

49 #print(v)

50 #print(s)

51 #print(img_gray_ns)

52

53 np.save(’.\data\image_ {0}_{1}. npy’.format(v,s),img_gray_ns)

54

55 if DEBUG:

56 img_gray_ns = random_noise(img_gray ,mode=’gaussian ’,seed=None ,clip=True

,var =0.02)

57 img_gray_ns = img_as_ubyte(img_gray_ns ,force_copy=False)

58

59 img_gray_ns = gaussian(img_gray_ns , sigma =2, output=None , mode=’

nearest ’, cval=0, preserve_range=False ,truncate =4.0)

60 img_gray_ns = img_as_ubyte(img_gray_ns ,force_copy=False)

61 cv2.namedWindow("Display2", cv2.WINDOW_NORMAL)

62

63 cv2.imshow(’Display2 ’,img_gray_ns)

64 # when no waitkey is used , the image disappears immediately after

appearing. So go be able to actually look at the aquired image ,

waitKey (0) should be used.

65 cv2.waitKey (0)

66

67 return img_gray_ns

A.2 Determining the ESF

1 import cv2

2 import numpy as np

3 import math

4 import matplotlib.pyplot as plt

5

6 DEBUG = False

7

8 def thresholding(img_gray_ns):

9 #ret ,thresh=cv2.threshold(img_gray_ns ,0,255,cv2.THRESH_TRIANGLE)

10 ret ,thresh=cv2.threshold(img_gray_ns ,0,255,cv2.THRESH_OTSU)

11 #for inverse: cv2.THRESH_BINARY_INV|cv2.THRESH_OTSU

12

13 if DEBUG:

14 print(ret)

15 cv2.namedWindow("Display3", cv2.WINDOW_NORMAL)

16 cv2.imshow(’Display3 ’,thresh)

17 cv2.waitKey (0)

18

19 return thresh

20

21

22 def center_coordinates(thresh):

23 contours , hierarchy = cv2.findContours(thresh , cv2.RETR_TREE , cv2.

CHAIN_APPROX_SIMPLE)

24 # an empty list is created so a list can be made with the coordinates of

the centroids.

25 coordinates =[]

26

25
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27 # a for -loop is made for c in contours , here the weighted average (moments)

are calculated and used for the determination of the centroids. This

loop is repeated for

28 # multiple (all) circles until no more are found.

29 if DEBUG:

30 cv2.namedWindow("Display4", cv2.WINDOW_NORMAL)

31

32 for c in contours:

33 M=cv2.moments(c)

34

35 # the general formula for the x and y coordinates of the centroid ,

respectively , is: cX = M10/M00 and cY = M01/M00

36 cX= int(M[’m10’]/M[’m00’])

37 cY= int(M[’m01’]/M[’m00’])

38

39 _,radius = cv2.minEnclosingCircle(c)

40 radius = int(radius)

41 print(’radius=’,radius)

42

43

44 if DEBUG:

45 # circles are drawn with certain radius and the determined

coordinates. These circles are not visible.

46 cv2.circle(thresh , (cX ,cY), 5, (200, 200, 200), -1)

47 # for visibility the centroids are marked.

48 cv2.putText(thresh , ’centroid ’, (cX - 25, cY - 25), cv2.

FONT_HERSHEY_SIMPLEX , 0.5 ,(200 ,200 ,200) ,1)

49

50 cv2.imshow(’Display4 ’, thresh)

51 cv2.waitKey (0)

52

53 # the coordinates are added into the previously empty list (as groups)

by using append. When new coordinates are found , they are added to

the list.

54 #print(cX,cY)

55 coordinates.append(cX)

56 coordinates.append(cY)

57

58

59

60 print(coordinates)

61 return coordinates , radius

62

63 def get_value(img_gray_ns , coordinates , radius):

64 the_values = []

65 distance= []

66 cX_1 = coordinates [0]

67 print("cX",cX_1)

68 cY_1 = coordinates [1]

69 print("cY",cY_1)

70 x_range = range (79) #100

71 y_range = range (79) #100

72 for x in x_range:

73 for y in y_range:

74 #print(x)

75 #print(y)
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76 dx=abs(x-cX_1)

77 dy=abs(y-cY_1)

78 if dx**2 + dy**2 <= radius **2:

79 values=img_gray_ns[y][x]

80 #print(values)

81 the_values.append(values)

82 dist=math.sqrt((dx**2)+(dy**2))

83 distance.append(dist)

84 print("values",np.array(the_values).size)

85 print("distance",np.array(distance).size)

86 val_dist=np.column_stack ((the_values , distance))

87

88 print(np.array(val_dist).shape)

89 plt.figure (0)

90 plt.plot(val_dist [:,1], val_dist [:,0], ’.’, label="distances")

91 plt.xlabel("Distance from the centre")

92 plt.ylabel("Pixel value")

93 plt.legend ()

94 plt.show()

95

96 return values , dist , val_dist

97

98 def get_plot_values(val_dist):

99 val_dist = val_dist[val_dist [: ,1]. argsort ()] #sorts input values

distribution based on second column which is distance from center

100

101 distances = val_dist[:, 1]

102 values = val_dist[:, 0]

103 max_distance = 30

104 distance_bins = 30 #number of bins for re-binning

105

106 new_distances = np.linspace(0, max_distance , distance_bins) #creates new

set of distances evenly spaced between 0 and max_distance

107 new_values = np.zeros(distance_bins)

108 for i in range(len(new_distances) -1): #loop iterates over new distances and

calculates mean value in each bin

109 bin_left = new_distances[i] #left and right boundaries of current bin

110 bin_right = new_distances[i+1]

111 values_in_bin = values [( distances >= bin_left) & (distances <=

bin_right)] #extracts value that falls within current bin

112

113 if len(values_in_bin) == 0: #if bin is empty the mean value is set to

minimum value in new_values (excluding zero), otherwise its set to

median of values in the bin

114 mean_value_in_bin = np.min(new_values[new_values > 0])

115 else:

116 mean_value_in_bin = np.median(values_in_bin)

117

118 new_values[i] = mean_value_in_bin #mean value is assigned to

corresponding position in new_values

119

120 plt.figure (0)

121 plt.plot(new_distances [:-1], new_values [:-1],’.’, label=’distances ’)

122 plt.xlabel("Distance from centre (re -binned)")

123 plt.ylabel("Pixel value")

124 plt.legend ()
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125 plt.show()

126

127 return new_values [:-1]

128 #values distribution is sorted by distance , re-binned values and plot re-binned

values

A.3 The Fourier transform

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4

5 # s=np.ones (100)

6

7 # s[ -50:] = 0

8

9

10

11 # plt.figure (0)

12 # plt.plot()

13 # plt.show()

14

15 def do_fourier(val_2):

16 val_2 = np.diff(val_2)

17 fft_signal = np.fft.fft(val_2)

18 freq_signal = np.fft.fftfreq(len(val_2), d=0.23)

19

20 fft_signal = np.fft.fftshift(np.abs(fft_signal))

21 freq_signal = np.fft.fftshift(freq_signal)

22

23 mask = freq_signal >= 0

24 fft_s =fft_signal[mask]

25 freq_s = freq_signal[mask]

26

27 return fft_s , freq_s

28 #fft_signal[mask], freq_signal[mask]

29

30

31 #fft_s , freq_s = do_fourier(val_dist - np.mean(val_dist))

32 def printing(fft_s ,freq_s):

33 # print(fft_s)

34 abs_fft=np.abs(fft_s)

35 max = np.amax(abs_fft)

36 min = np.amin(abs_fft)

37 norm_fft = (abs_fft - min)/(max -min)

38

39 plt.figure (1)

40 plt.plot(freq_s , norm_fft , label=’FFT’)

41 #plt.plot(freq_s , np.abs(fft_s), label=’FFT ’)

42 plt.xlabel("Spatial frequency")

43 plt.ylabel("MTF")

44 plt.legend ()

45 plt.show()

46 return

47

48 plt.show()

49
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50 list_of_files = [’image_0 .01_6.npy’, ’image_0 .01_7.npy’, ’image_0 .06_1.npy’, ’

image_0 .09_6.npy’]

51

52 for el in list_of_files:

53 # if ’6.npy’ in el:

54 # if ’0.09_’ not in el:

55 # print(el)

56

57 noise = float(el.split(’_’)[1])

58 if noise <= 0.08:

59 if ’6.npy’ in el:

60 if ’0.09_’ not in el:

61 print(el)

62 # print(noise)

A.4 Script for executing

1 from generate import load_png_image , make_noise

2 from circle import thresholding , center_coordinates , get_value , get_plot_values

3 from fourier import do_fourier , printing

4 import numpy as np

5

6 path=’testing2.png’

7 img_gray=load_png_image(path)

8 img_gray_ns=make_noise(img_gray)

9 thresh = thresholding(img_gray_ns)

10 coordinates ,radius = center_coordinates(thresh)

11 #radius = center_coordinates(thresh)

12 values , dist , val_dist = get_value(img_gray_ns ,coordinates ,radius *1.05)

13 val_2 = get_plot_values(val_dist)

14 fft_s , freq_s = do_fourier(val_2 - np.mean(val_2))

15 thing = printing(fft_s ,freq_s)
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B Appendix

B.1 Python code

1 import numpy as np

2 from circle import thresholding , center_coordinates , get_value , get_plot_values

3 import cv2

4 import matplotlib.pyplot as plt

5 import skimage

6 from skimage.draw import circle_perimeter , disk

7

8

9 def load_ct_data(file_path):

10 ct_image = np.load(file_path)[:, 120:240 , 100:200]

11 #ct_image = cv2.normalize(ct_image , None , 255, 0, cv2.NORM_MINMAX , cv2.

CV_8U)

12 print(ct_image.shape)

13 low , medium , high = extract_regions(ct_image)

14 return low , medium , high

15

16 #slices

17

18 def extract_regions(ct_image):

19 high_1 , high_2 = 575, 600

20 medium_1 , medium_2 = 315, 345

21 low_1 , low_2 = 240, 265

22

23 high = ct_image[high_1:high_2]

24 medium = ct_image[medium_1:medium_2]

25 low = ct_image[low_1:low_2]

26

27 return low , medium , high

28

29

30 def values_dist_3D(image):

31

32 vd_ = np.zeros(( image.shape[0], 1023, 2)) # you might need to change 689

and 2 depending on the data

33

34 for i in range(image.shape [0]):

35 cx, cy, radius = segment(image[i])

36

37 if len(cx) == 1: #checks if only one structure is detected in current

slice

38 if cx > 40:

39 if (radius >= 8):

40 _, _, val_dist = get_value(image[i], [cx[0], cy[0]], radius

+ 5)

41

42 print("Shape of values", val_dist.shape)

43

44 vd_[i, :len(val_dist), :] = val_dist

45

46 print("vdshape",vd_.shape)

47

48 return vd_

49
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50 #get the values of the pixels that are in the segmented section with the center

coordinates and within radius. Detecting structures in image and getting

values.

51

52 def segment(slice_2D):

53 chan_vese = skimage.segmentation.chan_vese(slice_2D , mu=0.01 , lambda1 =0.9)

54 # chan_vese = skimage.segmentation.clear_border(chan_vese)

55

56 hough_radii = np.arange(1, 15, 1)

57 hough_res = skimage.transform.hough_circle(chan_vese , hough_radii)

58 accums , cx , cy , radius = skimage.transform.hough_circle_peaks(hough_res ,

hough_radii , total_num_peaks =1)

59

60 return cx , cy , radius

61

62 #chan vese segmentation algorithm that aims to segment objects based on

intensity differences

63 #shape is detected by contrast , transformation is done where centre coordinates

are assumed/determined and radius to produce a circle based on the detected

shape without over or underestimating

64

65 if __name__ == ’__main__ ’:

66 l, m, h = load_ct_data(’./data/m1_FDK_shepp_no_filter.npy’)

67 l = l[:, :80, :80]

68 m = m[:, :80, :80]

69 h = h[:, :80, :80]

70 plt.imshow(h[10], cmap=’gray’)

71 plt.show()

72 vd_ = values_dist_3D(h)

73 vd_ = vd_.reshape ((vd_.shape [0]* vd_.shape[1], 2))

74 mask = vd_[:, 0] > 0

75 vd_ = vd_[mask]

76

77

78 plt.plot(vd_[:, 1], vd_[:, 0], ’o’)

79 plt.xlabel("Distance from centre")

80 plt.ylabel("Pixel value")

81 plt.show()

82

83 from fourier import do_fourier , printing

84 val_2 = get_plot_values(vd_)

85 fft_s , freq_s = do_fourier(val_2 - np.mean(val_2))

86 thing = printing(fft_s , freq_s)

87

88 #CT dataset loaded , slice extracted and displayed in grayscale. Value

distribution calculated and plotted. Fourier performed on plotted values.
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