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ABSTRACT
The physiological properties of alpha-motoneurons (MNs) can be es-

timated by computational models. These models represent a person-

specific tool for the assessment of neuronal adaptations after spinal

cord injury (SCI). This study characterizes the sensitivity of MN

model parameters and evaluates changes in the model optimization

set-up to maximize the performance of neural data-driven optimiza-

tion frameworks for capturing the in vivo firing characters of human

MNs in healthy conditions. The model performance is assessed by

a spike-by-spike comparison metric called gamma-factor. While an

extended region of optimization and additional filtering techniques

did not yield significant improvements to the simulated spike train

derived from experimental data, the study reveals that the sensi-

tivity of gamma-factor to model parameters is dependent on the

size of the MN. These findings contribute to the development of

computational tools translatable to the clinical setting for assessing

lesion-specific adaptations and neurorehabilitation interventions.

KEYWORDS
Neuronal modeling, alpha-motoneuron, gamma-factor, optimiza-

tion, sensitivity analysis

1 INTRODUCTION
Spasticity is a prevalent condition experienced by 65% of patients fol-

lowing spinal cord injury (SCI) [1]. It is characterized by a velocity-

dependent increase in muscle tone [2] and hyperreflexia, as indi-

cated by studies based on H- and stretch-reflexes assessment [3][4].

Following neuronal lesion, alpha-motoneurons (MNs) undergo

physiological adaptations, including imbalance in ionic mechanisms

[5], changes in size [6] and phenotype remodelling [7]. Although

these adaptations have been indicated as the underlying mecha-

nisms for the symptoms, non-invasive assessment is challenging. In

this context, computational models represent a person-specific tool

for the assessment of neuronal adaptations after neuronal lesion

and effective neurorehabilitation interventions.

The central nervous system regulates movement by modulation of

alpha-MNs. Alpha-MNs are key elements for the control of skeletal

muscle contraction [8]. They are distributed inmuscle-specific pools

along the ventral horn of the spinal cord. The axons of alpha-MNs

protrude outside of the vertebras and into the periphery, innervat-

ing effector skeletal muscles by synapsing on extrafusal muscle

fibers.

A single alpha-MN can innervate multiple muscle fibers, thereby

creating the motor unit [9]. In the coordination of voluntary move-

ment, a pool of MNs receives a shared common synaptic input

(CSI) [10]. This CSI effectively filters out independent inputs, and

its low-frequency components are linearly transformed into the

neural drive controlling muscle activation [11].

The response of each MN to the CSI depends on its membrane

properties. The action potential of the MN is produced through

either synaptic or junctional neurotransmission [12], resulting in

modified membrane permeability to certain ions. This triggers a

cascade that enables the inflow of sodium ions, depolarizing the

membrane until its firing threshold and a subsequent repolarization

to the resting potential by the outflow of potassium ions [8]. Once

initiated, the action potential propagates along the length of the

axon until reaching the neuromuscular junction (ie., synapse with

the muscle membrane), resulting in muscle contraction [13].

Modeling the ionic conductancemechanisms provides a non-invasive

way for estimating MN properties. Hodgkin and Huxley [14] es-

tablished equations to characterize the firing dynamics of a MN

based on its conductance properties. They described the activation

and inactivation of sodium, potassium and leakage channels in a

electrical circuit. Extensions of this model differ in level of detail

by inclusion of multiple compartments and more ion channels (e.g.,

persistent calcium and sodium channels in the dendrites) [15], and

generalizations of action potential generation [16][17] to decrease

computational load.

Several studies involving animal preparations [18][19] have

shown that parameter optimization of such models enable reproduc-

ing firing characteristics recorded in vitro. Furthermore, advanced

signal processing techniques allow the non-invasive reconstruction

of in vivo spike trains from human subjects via decomposition of

high-density electromyography (HD-EMG) recordings. A widely

used decomposition algorithm [20][21][22][21] is convolution ker-

nel compensation blind-source separation [23]. This method defines

a filter per MN to capture its contribution to the EMG signal. The

convolution between each filter and its corresponding source (i.e.,

MN spike train) is calculated after which the filter weights are it-

eratively adjusted to improve the match between the convolution

and the recorded EMG signal.

MN spike trains derived this way often undergo a quality-control

stage to filter out non-physiologically realistic MNs. This is assessed

based on their pulse-to-noise ratio (PNR), average discharge rate

(DR) and coefficient of variation (CoV) [20].

Previous studies performed a person-specific estimation of soma di-

ameter and slow potassium channel dynamics of in vivo spike trains

decoded from the tibialis anterior muscle of healthy human sub-

jects [24]. They optimized the model parameters by matching spike

events between experimental and model spike trains, by means

of a metric called gamma-factor [16]. This metric measures the

probability that the model spike trains occur at the same time as ex-

perimentally observed. However, this spike-per-spike comparison

involved solely the central spikes of a spike train. With this ap-

proach, the recruitment and derecruitment spiking characteristics

are ignored during optimization, while derecruitment features are

especially important in spasticity, because of self-sustained firing

[25].

Furthermore, their parameter selection during optimization should

be evaluated to gain insight into the model sensitivity to additional

ion channels. This knowledge enables the application of this frame-

work to SCI subjects, in which the ionic conductance mechanisms

are disturbed.

Moreover, the optimization results are highly related to the qual-

ity of the decomposition. The spike trains fulfilling the quality

control criteria may still include identification errors arising from



decomposition limitations [26]. These disturbances in the spike

trains may lead to poor optimizations of MN parameters when fit-

ting experimental data, because of the spike-per-spike comparison.

This project aimed at characterizing the sensitivity of model pa-

rameters to the gamma-factor. Additionally, this work evaluated

how the performances of the MN model optimization framework

is influenced by additional processing of the experimental data on

spike train level and enlarging the optimization window.

Altogether, this work provides further insight into the sensitivity

of MN model parameters and changes in the optimization set-up

to maximize the performance of neural data-driven optimization

frameworks for capturing the in vivo firing characters of human

MNs in healthy and impaired conditions. Thus contributing to the

development of computational tools translatable to the clinical

setting for assessing lesion-specific adaptations and neurorehabili-

tation interventions.

2 METHODS
2.1 Experimental Setup
Four subjects (age 27.4 ± 2.07 years, weight: 70 ± 12.34 kg, height:

173.6 ± 10.06 cm) with no known neurological disorders were in-

cluded in this study [24].

The task involved an isometric ankle dorsiflexion to study the

tibialis anterior (TA). Subjects were seated in a Biodex chair (M4

Biodex Medical Systems Inc., Shirley, NY, USA) and asked to per-

form ramp-and-hold contractions at target forces of 10, 20, 30, 40

and 50% of their maximum voluntary contraction (MVC). The rate

of force was set to 20% MVC/s for both reaching the ramp plateau

and returning back to the resting state. The targets for the force-

tracking task were presented to the subjects in real-time, together

with feedback about the task performance. Each condition was

performed five times.

Torque andHD-EMGs from the TAwere simultaneously recorded

using an in-house developed acquisition interface. The HD-EMG

was measured using an 8 × 8 electrode grid and a TMSi Refa multi-

channel amplifier (TMS International B. V., Oldenzaal, The Nether-

lands) at a sampling frequency of 2048 Hz. Torque was recorded

using a National Instruments Data Acquisition card (NI DAQ) at a

sampling frequency of 512 Hz.

2.2 Decomposition
The HD-EMGs were band-pass filtered between 20 and 500 Hz

using a zero-phase Butterworth filter. The filtered signals were

decomposed into individual MN spike trains by convolution kernel

compensation blind-source separation [23]. The spike trains under-

went a quality-control algorithm [20] in which MNs with a PNR >

20 dB, CoV > 0.3 and average DR > 30 Hz were excluded from the

further study.

2.3 Computational model
This study builds upon the model described in [24], where person-

specific conductance-based models of a single compartment where

established to represent MNs. They included the conductance of

leakage (𝑔𝑙 ), sodium (𝑔𝑁𝑎), slow (𝑔𝐾𝑠 ) and fast potassium (𝑔𝐾𝑓 )

channels to simulate the neuronal ionicmechanisms. Voltage-dependent

ion channels were described using a pulse-based model approach

[17], where the opening and closing of each specific ion channel is

described by the rate constants alpha (𝛼𝑖 ) and beta (𝛽𝑖 ). The sub-

script 𝑖 denotes the gating variables𝑚, ℎ, 𝑛, and 𝑞 for respectively

sodium activation (𝛼𝑀 , 𝛽𝑀 ), sodium inactivation (𝛼𝐻 , 𝛽𝐻 ), fast

potassium activation (𝛼𝑁 , 𝛽𝑁 ) and slow potassium activation (𝛼𝑄 ,

𝛽𝑄 ) [17].

Additionally, the model included soma diameter (𝐷𝑠 ), membrane

resistance (𝑅𝑚) and membrane capacitance (𝐶𝑚).

To account for the person-specificity, an excitability factor ΔIF
was calculated for each subject [24]. This factor functions as a gain

factor to translate the neural drive into the CSI.

The parameters were obtained by a double single-objective opti-

mization, as explained in [24]. Firstly, the error in first-spike time

was minimized by optimizing 𝐷𝑠 . Secondly, 𝛽𝑄 and 𝛼𝑄 were ob-

tained by minimizing differences in gamma-factor (Section 2.4). All

parameters not explicitly mentioned here were set to their default

values [27] throughout the optimization.

2.4 Coincident Spike-Match
Coincidence-factor Γ (1) is a measure to quantify the coincidence

of spikes between experimental and simulated spike trains [16]. A

value of one corresponds to identical spike trains, whereas zero

denotes complete randomness. The spiking coincidences in MNs

with Γ < 0.1 where considered random chance [22].

To obtain the parameters resulting in the highest Γ, the value of
(1) was maximized by minimizing (2) throughout the optimization.

Γ =
2

1 − 2𝛿 𝑓𝑒

(
𝑛𝑐 − 2𝛿 𝑓𝑒𝑛𝑒

𝑛𝑒 + 𝑛𝑚

)
(1)

2

���� 𝑓𝑒 − 𝑓𝑚𝑓𝑒

���� − Γ (2)

In (1) and (2) 𝑛𝑒 and 𝑛𝑚 denote the number of spike events

in respectively the experimental and simulated spike trains. The

number of coincident spikes is represented by 𝑛𝑐 . The coincidence

check was performed within a time window (𝛿) of 2 ms around each

experimental spike, because this is the approximate duration of an

action potential in cortical neurons [28]. 𝑓𝑒 and 𝑓𝑚 represent the

mean firing frequencies during the plateau phase of the exercise.

2.5 Spike Correction
After the quality-control algorithm filtered the MNs based on PNR,

CoV and average DR, the further analysis focused on evaluating the

individual spikes within the spike trains based on the interspike

intervals (ISIs). This assessment aimed to measure the dispersion

of spikes from the central distribution of discharge rates.

Unrealistic ISIs in the experimental data may arise from merged

spike trains of different MNs after decomposition (i.e., identifica-

tion errors [26]). Therefore, a pre-optimization spike processing

algorithm (referred to as Spike Correction) was established (Fig. 1)

to account for spike omissions and spurious firings [29] based on

the probability density function (PDF) of the ISIs of decomposed

spike trains. A gamma distribution [30] was fit to the experimental

ISIs by using MATLAB’s (The MathWorks, Inc., Natick, MA, USA)

function fitdist. This function uses an optimization algorithm to
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maximize the likelihood of the observed data being generated from

a gamma distribution.

The acceptable ISIs boundaries were defined by selecting the

first and last 10% of the cumulative distribution function (CDF)

per spike train. This percentage was chosen based on a manual

evaluation of the filter performance. Subsequently, the spike trains

were evaluated to identify ISIs outside this range. Accordingly, large

ISIs resulting from spurious firings and small ISIs resulting from

spike omissions, were both neglected from calculating the mean

discharge rate. For checking coincident spikes, spurious firings

were accounted for by neglecting the second spike of large ISIs.

Figure 1: Procedure to identify irregular ISIs. A gamma
PDF is fitted to the experimental ISIs. The first and last
10% of the CDF is filtered out. In green the second spikes
of small ISIs, resulting from spurious firings, are indi-
cated. In red the second spike of large ISIs, resulting
from spike omissions.

2.6 Sensitivity Analysis
To investigate the influence of the model parameters on gamma-

factor, a sensitivity analysis (SA) was performed using MATLAB’s

SAFE Toolbox for Global Sensitivity Analysis [31].

Parameter selection. Since 𝐷𝑠 defines MN recruitment through the

optimization of first-spike time error [22], and is therefore excluded

from the second optimization stage (Section 2.4), the SA considered

only the 𝛽𝑖 and 𝛼𝑖 of the ionic channels. Due to motor-unit type

specific parameter ranges and firing dynamics [32] [27] [24], the

SA was performed on a representative sample from each of the

three MN types: a low-, medium- and high-threshold MN (i.e., S-,

FR, FF-type), in which, generally, the first has the smallest 𝐷𝑠 and

the latter has the largest one.

Accordingly, the SA included 6 parameters (𝑀=6): 𝛽𝑄 , 𝛼𝑄 , 𝛽𝑁 ,

𝛼𝑁 , 𝛽𝐻 , 𝛼𝐻 were sampled based on PDFs adjusted for each MN

type following the parameter ranges described in [32]. The PDFs

were constructed as a normalized distribution around the midpoint

of the range (Table 1) with 95% of the values falling within one

standard deviation (Appendix, Fig. A6).

To account for interdependencies between MN parameters, the

AAT (All-At-a-Time) [33] sampling strategy was used. This method

involved randomly varying the parameter values simultaneously,

while keeping track of the values of the parameter of interest. The

resulting sensitivity index includes the direct influence of that pa-

rameter as well as the influence due to interdependencies.

PAWN. As gamma-factor does not yield a unimodal and non-skewed

distribution [33], the SAwas performed using the distribution-based

PAWN method [34]. Unlike traditional variance-based methods

[35], this method involved deriving the sensitivity indices moment

independently by using the entire gamma-factor distribution. Ac-

cordingly, the gamma-factor distribution was characterized by ap-

proximating the CDF instead of the PDF to avoid tuning parameters

(e.g., the bin width) and to reduce computational costs, because the

CDF follows directly from the obtained gamma-factor.

Gamma-factor was obtained by evaluating the model for each

parameter combination and comparing the simulated spike train

with a reference spike train. This reference spike train wasmanually

generated by running the model with a predefined set of parameters

(Table 1). This way, the spike trains generated by the model are

able to produce the same pattern as the reference spike train (i.e.,

gamma-factor = 1), which may not be the case for a for in vivo
decomposed spike train.

Fig. 2 illustrates the steps to find the sensitivity indices. The

sensitivity to each parameter (𝑥𝑖 ) is estimated by calculating the

difference between an unconditional CDF and 𝑛 conditional CDFs

[34]. The unconditional CDF is constructed by finding𝑁𝑢 parameter

combinations, varying all parameters simultaneously. To investi-

gate the influence of the𝑀 parameters, each parameter is assigned

𝑛 conditioning values within its range. For each conditioning value,

the model is evaluated for 𝑁𝑐 parameter combination in which all

parameters except 𝑥𝑖 are varied. Per conditioning point a condi-

tional CDF is constructed from the 𝑁𝑐 gamma-factors.

The sample sizes (𝑁𝑢 , 𝑛 and 𝑁𝑐 ) were based on a trade-off be-

tween computational load and sufficient convergence of the results.

They were chosen on a trial-and-error basis, by trying different

sample size combinations as recommended in [36].

Interpretation. The difference between unconditional and condi-

tional curveswas quantified by computing the Kolmogorov-Smirnov

statistic (KS), which is the normalized maximum vertical distance

(MVD) between the two CDFs [34]. Throughout this paper, the

Table 1: Parameter values for constructing the refer-
ence spike trains and centering the sample space PDFs.
Adapted from [32] by taking the midpoint of their spec-
ified ranges. The 𝐷𝑠 values are the midpoint of the size
clusters in [24].

Parameter Unit

Parameter values

S-type FR-type FF-type

𝐷𝑠 µm 47 106.5 177

𝛽𝑄 ms
-1

0.0315 5.5315 16.5125

𝛼𝑄 ms
-1

1.5000 6.6250 16.8750

𝛽𝑁 ms
-1

0.1000 5.5750 16.5250

𝛼𝑁 ms
-1

1.5000 1.6250 16.8750

𝛽𝐻 ms
-1

4.0000 8.5000 17.5000

𝛼𝐻 ms
-1

0.5000 5.8750 16.6250
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Figure 2:Workflow of PAWNmethod.𝑦 is themodel out-
put (i.e., gamma-factor). 𝑥𝑖 are the parameters that are
sampled within their specific distributions (Appendix,
Fig. A6). The unconditional CDF (red) is constructed
from 𝑁𝑢 random parameter combinations and com-
pared with the 𝑛 conditonal CDFs (black, here only one
shown) constructed from 𝑁𝑐 systematic parameter com-
binations. Copied from [34].

term MVD was used instead of KS to avoid confusion with the slow

potassium channels 𝐾𝑠 .

The sensitivity index of a parameter was computed from themax-

imum MVD [34]. The confidence bounds of the sensitivity indices

were derived by subsampling the conditional and unconditional

gamma-factors per CDF to construct a new CDF [37]. Each CDF

was reconstructed 500 times based on these subsets. Consecutively,

the new MVD values were calculated and a new MVD statistic

was subsequently extracted. This MVD statistic is the sensitivity

index from which the variability is examined across the different

subsamples. The variability provides insights into the uncertainty

associated with the SA results. Parameters with a confidence level

< 0.05 were considered non-influential [34].

2.7 Analysis
Different tests were performed to analyse the results of the changes

to the optimization framework and the SA.

Test 1: Optimization window for coincidence. Test 1 evaluated the dif-
ference of optimizing gamma-factor taking the entire ramp length

vs only the plateau section. This analysis was performed taking

a representative sample of four MNs per target MVC, including

the first- and last-recruited MNs and two in between (Appendix,

Fig. A1). After the two optimizations, gamma-factor was computed

both at plateau phase (Γ
plateau

) and total length (Γ
total

). Further-

more, for both optimization conditions derecruitment time error,

derecruitment DR error and recruitment DR error were quantified.

Additionally, the resulting parameter values (i.e., optimized for each

of the two conditions) were evaluated by studying the differences.

Test 2: Spike correction. The second test evaluated the influence

that the spike processing algorithm (Section 2.5), applied to the in
vivo spike trains, had on the optimization performance. Both irreg-

ular large and small ISIs were neglected in calculating the mean

frequencies in (2). Additionally, the second peak of the small ISIs

was removed during the optimization of Γ, as well as in calculating

𝑁𝑒 . The optimization was performed once with and once without

implementing the spike-correction, for the same MNs as in Test
1. The optimizations were compared by calculating Γ

plateau
and

evaluating the difference in parameter values.

For Test 1 and Test 2 the model was optimized for the same three pa-

rameters as in [24]: the soma diameter 𝐷𝑠 and opening and closing

rate constants 𝛼𝑄 and 𝛽𝑄 for activation of slow potassium ion chan-

nels. These parameters were optimized following the optimization

framework established in [22]. This was performed on experimental

data of one subject only because of computational load.

Test 3: Sensitivity Analysis. To investigate how much the parameter

selection during optimization influenced gamma-factor, a PAWN SA

was performed in Test 3. This involved evaluating the sensitivity of

𝛽𝑄 , 𝛼𝑄 , 𝛽𝑁 , 𝛼𝑁 , 𝛽𝐻 and 𝛼𝐻 for S-, FR and FF-type MNs separately.

Different sample sizes were used to investigate convergence. To

evaluate the repeatability of the SA, one SA was performed twice

with the same sample sizes.

Test 4: SA-based parameter optimizations. Based on the SA of Test 3,
Test 4 involved performing optimizations with different sets of pa-

rameters for the sameMNs as in Test 1 and Test 2. The parameter sets

included different combinations of the parameters which showed

significant sensitivity indices. The optimization performance was

evaluate by comparing the obtained spike trains by gamma-factor

and the trend of their instantaneous DRs (iDR). This evaluation

was conducted separately for the different MN size types.
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Figure 3: Evaluation of gamma-factor, derecruitment time
error, derecruitment DR error and recruitment DR error
when changing the window of parameter optimization from
plateau phase (black) to total ramp length (red). Per MVC
condition the mean of four MNs is calculated. A: The dotted
line represents the randomness threshold below which the
spike-match is considered random. The presented gamma-
factors were calculated over the total ramp length. C, D: DRs
were calculated during the initial and last second of spiking.

3 RESULTS
3.1 Optimization Window for Coincidence
In line with Test 1, Fig. 3A displays that Γ

total
improved for spike

trains of 30% and 50% MVC. The individual MNs (Appendix, Fig.

A2) showed an increase in 5, decrease in 10 and no change in 5 out

of 20 MNs. In both optimizations, the vast majority of MNs was not

above the threshold of randomness.

The mean error values did not vary much between the two op-

timizations (Fig. 3B, C and D). The error in derecruitment time

between the modelled and the experimental spike trains more fre-

quently increased (12 out of 20) than decreased (7 out of 20) after

optimizing at total length (Appendix, Fig. A3). For derecruitment

DR error, this ratio was 9 versus 10. There was no consistent re-

lationship between an increased Γ
total

and a decrease in the other

spiking feature errors.

For the recruitment DR error, the distribution of the mean values

was approximately the same for both optimizations within a MVC

condition (Fig. 3D), which resulted from a small change per MN

(Appendix, Fig A3).

For 𝛽𝑄 and𝐷𝑠 minor changes in parameter values were observed

between the two optimizations (Fig. 5). The values for 𝛼𝑄 showed

more significant variations with respect to the range of observed

parameter values.

Figure 4: Evaluation of gamma-factor with (red) and
without (black) correction of spikes during parameter
optimization. Per MVC condition the mean of four MNs
was calculated. The dotted line represents the random-
ness threshold below which the spike-match was con-
sidered random. The presented gamma-factors were
calculated at the plateau phase.

3.2 Spike Correction
Fig. 4 displays the resulting Γ

plateau
of Test 2. Only in 50%MVC, a sig-

nificant increase in the mean value was observed. Γ
plateau

increased

in 7 and decreased in 12 out of 20 MNs. There was no consistent

relationship between the CoV (Appendix, Fig. A1) and the change

of Γ
plateau

(Appendix, Fig. A4).

Fig. 5b shows similar patterns as Fig. 5a. The change in 𝐷𝑠 was

very limited and 𝛼𝑄 varied the most between the two optimizations.

Although the mean variation in 𝛽𝑄 was approximately the same as

in Fig. 5a, some exceptions were observed with larger differences.

3.3 Sensitivity Analysis
The results of Test 3 are shown in Fig. 6 and 7.

A high sensitivity was observed for the lower values of 𝛽𝑖 . Fur-

thermore, the shape of the CDFs showed that for S-type, the tuning

of 𝛽𝑖 allows for a more frequent reaching of higher gamma-factors.

In all MN types, the conditioning point corresponding to the

reference spike train (vertical dotted lines, Fig. 7) resulted in a low

sensitivity, except for 𝛽𝑄 and 𝛽𝑁 in S-type.

The sensitivity indices (Fig. 6) show a similar pattern for S- and

FR-type, displaying that gamma-factor was most sensitive to 𝛽𝑖 .

For FF-type, the sensitivity of 𝛽𝑁 was lower then in S- and FR-type,

while 𝛼𝑄 was higher.

Appendix Fig. A8, A9 and A10 include a comparison of different

sample sizes. The regional sensitivity within the parameter space

was observed at lower sample sizes as well. Both the smoothness of

the CDFs and the convergence of the sensitivity indices increased

with sample size. Although the exact values of these indices showed

some variations, a recurring pattern was seen in the relative contri-

bution of the parameters within one MN type.

Appendix Fig. A11 highlights the repeatability of a SA. Even

though different conditioning points were used, still the same

shapes of regional sensitivity within the parameter space were

present.

Some gamma-factors were observed multiple times in the SA

(Appendix, Fig. A7). The corresponding parameter values had a

wide spread distribution, whereas the corresponding DR errors

occurred in the same range.
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(a) (b)
Figure 5: Evaluation of parameter values when changing the window of parameter optimization from plateau phase to
total ramp length (a) or performing the optimization with and without correction (b). The difference in parameter values
between the two optimizations was computed per MN. The absolute parameter value ranges are indicated to put the
differences into perspective.

Figure 6: Sensitivity of gamma-factor to different pa-
rameters. Sensitivity indices were obtained by taking
the maximum of the MVDs in Fig. 7.
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Figure 7: MVD values corresponding to each conditional curve for the different MN types. The uncondi-
tional CDF is indicated in red. The color of the conditional CDFs (grey) is similar to the corresponding
conditioning point. The red (dashed) threshold indicates the 0.05 confidence level. The vertical dotted
lines show the parameter values used for the reference spike train. Results obtained with 𝑁𝑢 = 10 000,
𝑛 = 400, 𝑁𝑐 = 400. A comparison of different sample sizes is included in Appendix Fig. A8, A9 and A10.
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Figure 8: Comparison of the spike trains obtained from different parameter optimizations by instantaneous DR (iDR). For
each size cluster the outcomes of one MN are presented, with the corresponding gamma-factors per optimization. 𝐷𝑠 is
the mean value of all optimizations and the denoted CoV corresponds to the experimental spike train.

3.4 SA-based Parameter Optimizations
Fig. 8 and 9 show the comparison of the different parameter opti-

mizations of Test 4.
The different parameter choices had a small effect on the course

of the iDRs (Fig. 8). Although gamma-factor varied, the overall

spiking pattern did not change much compared to the experimental

graph. The recruitment and derecruitment features, in terms of

lower iDRs, were less observed in the FF-type MNs.

Gamma-factor demonstrated significant variation across differ-

ent optimizations (Fig. 9). For both S-type and FF-type, the mean

gamma-factors indicated that the combination of 𝛽𝑄 , 𝛽𝑁 , 𝛽𝐻 and

𝛼𝑄 outperformed the inclusion of 𝛼𝑁 . Individual MN analysis re-

vealed that for FF-type, in general, the highest gamma-factors were

achieved by the combination of 𝛽𝑄 , 𝛽𝑁 , 𝛽𝐻 and 𝛼𝑄 (Appendix,

Table A1).

Figure 9: Comparison of the model performance by
gamma-factor based on different parameters during
optimization. The MNs used in Section 3.1 and 3.2 are
clustered based on their soma diameter.
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4 DISCUSSION
In this study different aspects of gamma-factor as a measure of

model performance were investigated. This involved exploring

changes in the set-up of the optimization framework and perform-

ing a sensitivity analysis on selected model parameters.

4.1 Optimization Window for Coincidence
It was expected that optimization based on all present spikes would

result in a better model performance. However, in the majority

of MNs this was not the case. In most cases where Γ
plateau

de-

creased, Γ
total

decreased as well, probably because they both cover

the plateau phase of the ramp. Contrary to what might be expected,

Γ
plateau

(Appendix, Fig. A2) sometimes increased as well after en-

larging the optimization window to total ramp length.

The recruitment DR error is affected the least by the change of

optimization window. This may be due to the recruitment threshold

being set in the first step of the optimization procedure by 𝐷𝑠 . This

is the reason for the minor change in 𝐷𝑠 between the different

optimizations as well. Changes in 𝐷𝑠 are not related to the different

optimization approaches, but could only be the result of the intrinsic

variability of metaheuristic optimization.

The fluctuations in 𝛼𝑄 and 𝛽𝑄 were studied before in [24]. They

found that optimizing a MN under the same conditions can yield

quite different values for 𝛼𝑄 and minor changes in 𝛽𝑄 . Our findings,

resulting from optimization of a MN under different conditions,

align with these observations (Fig. 5a). From this analysis the in-

fluence of 𝛽𝑄 on gamma-factor can thus be concluded. To evaluate

the current parameter selection used to optimize the coincident

spike-match, a SA was performed.

From these results, it can be concluded that optimizing over the

plateau or the entire ramp length, does not consistently improve

model performance or significantly change the model parameters.

A larger optimization window, however, does come with a increase

in computational time. Therefore, it is suggested to optimize over

the plateau phase only.

4.2 Spike Correction
Regarding the parameter changes between the optimizations with

and without spike correction, the same patterns can be observed

for 𝐷𝑠 and 𝛼𝑄 (Fig. 5a) as for the change of optimization window

(Fig. 5b).

The detection of irregular ISIs was unbiased except for the 10%

boundaries. The ignorance of these irregular ISIs in calculating

the mean discharge frequency seemed reasonable. The question

remains, however, if it can be justified to delete the spurious firings

when checking the coincident spike-match. The choice to delete the

second spike from a small ISI and not the first, was unsubstantiated.

It would have been better to statistically investigate which spike

fitted better in the total spike train pattern.

Another critical point in the identification of these spike omis-

sions and spurious firings is that the difference between ramp tra-

jectories were not taken into account. The DR during recruitment

and derecruitment is lower than during the constant force delivery

at the plateau [38]. With the current approach, the 10% boundaries

were determined over the total ramp length. Consequently, in some

spike trains the recruitment and derecruitment spikes were filtered

out (Appendix, Fig. A5). A better approach would have been to base

the PDF fitting only on plateau phase and not filter the ascending

and descending ramp phases.

Furthermore, fitting a gamma distribution is only possible in the

case of a low CoVISI [39]. In spasticity, there is a higher variability

in spiking frequencies [40], for example because of sustained firing

[25]. As a result, an additional peak will be encountered in the ISI

distribution, resulting from the self-sustained firing. This means

that additional steps should be taken to fit a distribution function.

Throughout the study, the MVC conditions were split to in-

vestigate differences in the gamma-factor. These difference were

expected based on the different time span of recruitment and dere-

cruitment, because of the 20% MVC/s ramp speed during the as-

cending and descending part of the ramp (0.5, 1.0, 1.5, 2.0, 2.5 s

respectively). Because the plateau phase has the same duration

of 5s in all conditions, the proportion of the derecruitment and

recruitment features in higher MVC conditions is higher.

Unfortunately, this difference in recruitment and derecruitment

duration was forgotten to take into account in calculating the DR

during recruitment and derecruitment (Fig. 3C and D). For all con-

ditions this was done during the intial and last second of spiking,

whereas this should have been adjusted to the rate of recruitment

and derecruitment. For example, the last second of spiking in the

MVC10 condition also includes a portion of the plateau phase and

is thus biased.

Implementation of the spike correction more often decreased

than increased gamma-factor, thus suggesting that this change is

not beneficial for the optimization performance.

The choice for only one subject and the limited number of studied

MNs (4 MNs per condition) was made because of computational

limitations, but does not allow for drawing reliable conclusions or

observing trends. With the same amount of MNs, it would have

been better to focus on one MVC condition, and in a later stage

investigate the differences between the different MVC conditions.

Furthermore, because the PAWN results show that the sensitivity is

dependent on the MN size, studying the gamma-factor results per

MN size-cluster could also give us valuable information. This should

be handled with care, because boundaries between the size-clusters

are not clear-cut.

Moreover, the repeatability of every optimization should be in-

vestigated to conclude the effect of the implemented change more

reliably. This becomes particularly important when increasing the

number of parameters to be optimized, because the number of possi-

ble combinations will grow. This will give insight in the uniqueness

of the solutions.

4.3 Sensitivity Analysis
Given the sample size comparison and repeatability of the SA re-

sults, the chosen sample sizes (𝑁𝑢 = 10 000, 𝑛 = 400, 𝑁𝑐 = 400) were

sufficient to reach convergence of the sensitivity indices. How-

ever, the frequently observed gamma-factors (Appendix, Fig. A7)

could influence the CDF curves. The high occurrence of a specific

gamma-factor causes sharp transitions in the CDF curve. Since

this repetition of gamma-factor showed little relationship with the

corresponding parameter combinations, the shift of the curve did
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not imply something about the parameters sensitivity but overesti-

mated the MVD.

From Fig. 7 it can be concluded that the average influence of

𝛼𝑖 on gamma-factor is minimal. Non-influential parameters have

their MVD values all below the confidence level, indicating that the

conditional CDFs are approximately the same as the unconditional

CDF and thus have the same gamma-factor distribution. It is im-

portant to keep in mind that a high MVD does not directly imply

a higher gamma-factor, as the MVD is an absolute measure and

does not imply anything about the relative positioning between

the unconditional and conditional curves.

The overall observed higher sensitivity of 𝛽𝑖 than 𝛼𝑖 aligns with

the parameter differences observed in Fig. 5, where𝛼𝑄 showedmore

variation than 𝛽𝑄 . In the context of action potential dynamics,𝛼 and

𝛽 describe the opening and closing rate of voltage-dependent ion

channels respectively [41]. This implies that the model is sensitive

to the closing of Na+ channels, which terminates the depolarization,

and the closing of K+ channels, which terminates the refractory

period. The model is less sensitivity to the opening rate of these

channels.

The pulse-based model used in this study, describes the ion

channels dynamics of an action potential by pulses triggered when

the membrane potential exceeds the firing threshold [17]. Within

the pulse-based model, the ion channel dynamics are modelled by

a exponential relationship between 𝛽𝑖 and 𝛼𝑖 . The values of 𝛽𝑖 and

𝛼𝑖 describe the height of, either negative or positive, rectangular

pulses. The parameters 𝛼𝑄 , 𝛼𝑁 and 𝛽𝐻 are related, because their

values influence the channel dynamics during the action potential.

On the other hand, 𝛽𝑄 , 𝛽𝑁 and 𝛼𝐻 influence the behaviour in

between to action potentials.

With this knowledge, it is thus expected that the sensitivity of the

parameters within one group are related, but this was not observed

in Fig. 6.

The regional sensitivity to the lower parameter values suggest

that slow closing rates, which cause a longer depolarization and

refractory period, have a significant influence on the model perfor-

mance.

The larger FF-type MNs had a additional high sensitivity to 𝛼𝑄 ,

indicating the importance of the opening rate of slow potassium

channels. This may be to account for the lower DRs, as observed in

Fig. 8. The slow potassium channels play a role in the afterhyper-

polarization phase [42], in which the firing rates are determined by

controlling the refractory period.

An interesting observation is that the model optimizations re-

turns low 𝛽𝑄 values (Fig. 5) that are not within the ranges of [32]

(Table 1). This skewness of the 𝛽𝑄 distribution to the lower values,

was also observed in [24] in which a larger number of MNs was

investigated. These low 𝛽𝑄 values suggest a low closing rate of

the slow potassium channels, resulting in a longer action potential

duration [43].

The question arises whether the PDF spaces used in the SA

should be implemented in the optimization framework as well, to

obtain more representative (e.g., higher 𝛽𝑄 ) values.

The sampling space for the parameter values was constrained

by a PDF to increase the probability of finding combinations of

parameter values that were within the MN type [32]. Because of

the PDF, the conditioning points of, for example, FF-type were all

above 4 ms
−1

(Fig. 7). Since the maximum of most MVD values

was observed at the lower values, it would be interesting to see

if even higher sensitivities are achieved when sampling the lower

conditioning points as well.

4.4 SA-based Parameter Optimizations
FF-type MNs exhibited a high 𝛼𝑄 sensitivity (Fig. 6). Inclusion

of 𝛼𝑄 indeed appeared to result in higher gamma-factors (Fig. 9

and Appendix Table A1). To validate the alignment between the

outcomes of the model optimizations and the SA results, future

research should perform a confirmation by exclusion of parameters.

This is particularly important for 𝛽𝑄 , since this parameter was

currently included in all optimizations.

For S- and FR-type MNs, the comparison of gamma-factor be-

tween the different optimizations did not reveal a trend (Appendix,

Table A1).

The absence of recruitment and derecruitment features (e.g.,

lower DRs) in the larger MNs (Fig. 8) is probably because of a

miscalculation of the CoVwhile applying the quality control criteria.

The CoV was based on all present spikes, whereas this should

have been based on the central spikes only [44]. Therefore, the

CoV indicated in A1 were overestimated. This also means that the

selection of MNs is biased towards the spike trains in which the

difference between the DR at plateau and the DR during recruitment

and derecruitment is small.

Gamma-factors for FF-type MNs were on average lower than

for the smaller sized MNs (Fig. 9). Combined with the results of

the SA, in which different sensitivity indices were found for FF-

type than for S- or FR-type, this suggest a distinct optimization

approach for the differentMN types. Based on the𝐷𝑠 value obtained

in the first step of the optimization protocol, a different parameter

combination or different parameter ranges should be used in the

second optimization step. Again, these ranges should be handled

with care, because boundaries between the size-clusters are not

clear-cut.

Furthermore, the parameters that are not optimized were cur-

rently set to a default value independent of the MN size, it should

be considered to adjust these default values per size cluster as well.

Optimization based on more parameters requires re-calibration

of the optimization framework, which was not undertaken in this

study. Nevertheless, it can be observed that the mean discharge rate

and the overall pattern of recruitment and derecruitment features

were incorporated in the model in all optimizations (Fig. 8).

From Fig. 8 it can be concluded that, although the gamma-factors

varied, the different parameter combinations during optimization

did not influence the overall spiking pattern much. This is a impor-

tant observation regarding the suitability of using gamma-factor

to evaluate the model performance. The possible cause for these

large fluctuations in gamma-factor and frequently observed low

values is illustrated in Fig. 8. The experimental spike trains had

some exceptional variations in the discharge rate.

The optimization with and without spike corrections (Section

3.2) addressed this problem. The iDR course of these optimizations

showed a small difference when correcting for these unpredictable

iDRs as well (Appendix, Fig. A12). Since the most influential pa-

rameter value 𝛽𝑄 did not vary much (Fig. 5b), the optimization
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framework seems to nullify these unpredictable iDRs already by

optimizing Formula 2 in which the mean DR is incorporated. There-

fore, it might be better to base future comparisons on Formula 2

instead of gamma-factor (Formula 1) and explore other metrics to

assess model performance.

4.5 Spasticity
The main goal in this field of study is to establish tools for the

assessment and treatment of neuronal lesions. This study looked

into different aspects of optimizing gamma-factor as a metric to fit

a neurocomputational model to experimental data.

To evaluate the suitability of the PAWN methodology in neuro-

computational modeling applications, this work prioritized work-

ing with healthy subjects and a single-compartment model of the

soma to investigate the changes of gamma-factor. Since the clini-

cal application of this study field is to establish models represent-

ing spasticity, further research should evaluated this sensitivity in

two-compartment models [32][27] as well. These models have two

coupled compartments, representing the soma and a dendrite.

The importance of including a dendritic compartment lies in the

inclusion of calcium-dependent potassium, persisten calcium and

persistent sodium currents [45], which play a role in spasticity [46].

They are involved in the generation of plateau potentials, which

is a membrane potential from which, after initiation, a neuron can

fire without the need of a depolarizing current [25]. If the plateau

threshold is reached, certain voltage-gated channels get activated,

resulting in a persistent inward current (PIC). This manifests in

self-sustained firing, which causes hyperreflexia as one of the main

mechanisms responsible for spastic symptoms.

Therefore, future research should perform the SA for two-compartment

models and should investigate the contribution of other ion chan-

nels and currents as well.

5 CONCLUSION
This work contributes to the state of the art in the field of neu-

rocomputational models by new insights in the optimal setup to

perform parameter optimizations.

Additional processing techniques as filtering the spike train and

enlarging the region of optimization lead to fluctuating gamma-

factors. Nevertheless, the effect on both the parameter values and

the overall spiking features were insignificant and non-consistent.

These additional steps add to a higher computational load, thus it

is advised to exclude these steps to reduce the execution time of

the model.

A sensitivity analysis into the selection of parameters to be opti-

mized showed different results depending on the MN size. However,

these results were not prominently visible in the optimizations with

different parameter combinations.

From the observation that various gamma-factors lead to ap-

proximately the same spike train we can question the suitability

of gamma-factor as a metric to evaluate model performance. It is

therefore advised to explore alternative evaluation criteria to assess

the model performance.

The validity of these conclusions can be argued, remarking that

they are based on a small number of observations.

This work provides a methodology for studying the model sen-

sitivity to different model parameters. Working towards models

to represent MNs of spastic subjects, further research should in-

clude additional parameters (e.g., calcium channel dynamics) and

implementation of two-compartment models.
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APPENDIX

Figure A1: Overview of the experimental spike trains used throughout the optimizations. Per MVC condition 4 MNs were
selected, including the first- and last-recruited MNs and two in between. The CoVISI of each spike train is printed on the
left.

Figure A2: Evaluation of gamma-factor when changing
the window of parameter optimization from plateau
phase (gray) to total ramp length (colored) per MN. Per
MVC condition four MNs where investigated, including
the first (rightmost) and last recruited (leftmost) and two
MNs in between. The dotted line represents the random-
ness threshold below which the spike-match is consid-
ered random.

Figure A3: Evaluation of derecruitment time error, dere-
cruitment DR error and recruitment DR error when
changing the window of parameter optimization from
plateau phase (gray) to total ramp length (colored) per
MN. Per MVC condition four MNs where investigated,
including the first (rightmost) and last recruited (left-
most) and twoMNs in between. The DRs were calculated
during the initial and last second of spiking.
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Figure A4: Evaluation of gamma-factor when changing the window of
parameter optimization from plateau phase (gray) to total ramp length
(colored) per MN. Per MVC condition four MNs where investigated,
including the first (rightmost) and last recruited (leftmost) and two
MNs in between. The dotted line represents the randomness threshold
below which the spike-match is considered random.

Figure A5: Spike train of the first-recruited MN of MVC30 after correcting for identifica-
tion errors. The filtering algorithm seems to filter out the derecruitment spikes, because
of the lower DR, which was not taken into account.

Figure A6: Sample spaces of parameter values for PAWN. Based on values in [32] as indicated
by the peak values in Table 1
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Figure A7: Example to illustrate the fact that several gamma-factors were observed multiple times.
The corresponding parameter values showed a large spread, but the frequency (DR) errors were in the
same range.
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Figure A8: Comparison of different sample size combinations for S-type MN
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Figure A9: Comparison of different sample size combinations for FR-type MN
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Figure A10: Comparison of different sample size combinations for FF-type MN
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Figure A11: Repeatability of SA for FF-type MN

Figure A12: Comparison of the spike trains by instantaneous DR (iDR) after optimization with and without spike train
corrections. For each size cluster the outcomes of one MN are presented, with the corresponding gamma-factors per
optimization. 𝐷𝑠 is the mean value of all optimizations and the denoted CoV corresponds to the experimental spike train.
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Table A1: Gamma-factors resulting from the different parameter optimiza-
tions. MNs were sorted on 𝐷𝑠 . The color shades were tuned for each MN to
see which optimization resulted in the highest gamma-factors.

MN Gamma-factor

𝐷𝑠 𝛽𝑄 , 𝛼𝑄 𝛽𝑄 , 𝛽𝑁 , 𝛽𝐻
𝛽𝑄 , 𝛽𝑁 , 𝛽𝐻 ,

𝛼𝑄

𝛽𝑄 , 𝛽𝑁 , 𝛽𝐻 ,

𝛼𝑄 , 𝛼𝑁
32 0.139 0.139 0.159 0.119

51 0.134 0.153 0.229 0.132

61 0.044 0.019 0.019 0.054

63 0.069 0.088 0.069 0.225

S-type

65 0.196 0.238 0.173 0.194

106 0.109 0.064 0.063 0.004

121 0.122 0.057 0.187 0.014

121 0.094 0.017 0.075 0.16

123 0.057 0.018 0.018 0.008

FR-type

127 0.141 0.086 0.178 0.013

137 0.127 0.043 0.127 0.015

149 0.037 0.052 0.052 0.023

165 0.186 0.045 0.239 0.011

179 0.005 0.052 0.014 0.044

187 0.02 0.078 0.157 0.098

189 0.023 0.023 0.023 0.023

209 0.012 0.012 0.012 0.012

213 0.187 0.029 0.115 0.029

214 0.027 0.027 0.052 0.051

FF-type

219 0.01 0.019 0.01 0.019
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