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1 Abstract

The advances in Machine Learning (ML) models widened
the capabilities of biomedical signal processing. One
application of ML that garnered recent interest is the
estimation of physiological parameters using Deep Neural
Networks (DNN). With Cardiovascular Diseases (CVD)
posing a global health, recent literature has explored the
utility of Deep Neural Networks in estimating Arterial
Blood Pressure (ABP) waveforms using Biosignals such
as Photoplethysmography (PPG). PPG’s advantage is
that it is portable and noninvasive, however, it is heavily
influenced by motion artifacts (MA).

In this report, the common themes in this avenue
of literature will be explored. The advantages and
disadvantages of using DNN will be analyzed. From these
findings, a DNN model that estimates ABP waveforms
from PPG signals will be implemented and evaluated.
The data that the system will be tested with are acquired
from an experimental protocol that includes static and
dynamic activities. The dynamic activities are included
as most of the proposed ABP models in the literature
are trained on ABP and PPG data from the MIMIC
III biosignals database which contains data from ICU
patients exclusively.

A preprocessing pipeline will be designed to prepare the
PPG segments, followed by a signal quality assessment
algorithm that classifies PPG segments into high and low
quality, using the Short-Time Fourier Transform (STFT).
The high-quality segments will be used as inputs to the
model which does 1-to-1 regression from PPG segments
to ABP waveform segments.

From the acquired segments during static activities
64.55% & 56.16% for participants 1 and 2 of the proto-
col. However, none of the segments acquired during the
dynamic activities passed the signal quality assessment.
Finally, The model outputs ABP waveforms with valid
morphological features when the input segments are com-
posed of consistent high-quality PPG pulse waves.

2 Introduction & Background

2.1 Cardiovascular diseases
& Hypertension

Noncommunicable diseases (NCDs) are a global health
crisis, accounting for 71% of all deaths. Cardiovascular
diseases (CVDs) in particular are the leading cause of
morbidity and mortality caused by NCDs, with about
17.9 million lives lost each year due to CVDs [1]. An
imperative biomarker for the diagnosis and management
of CVDs is blood pressure which is measured during
intermittent medical check-ups [2].

Hypertension (HTN) is attributed with the strongest
risk factor of CVDs and it affects approximately 1.13
billion people globally. [3].
HTN is the elevation of outward pressure exerted by the
circulating blood on the arteries’ inner walls, causing
excessive strain on the cardiovascular system. Several
factors contribute to the exacerbation of HTN including
aging, family history, obesity, inactivity, tobacco use, high
sodium diets, and stress [4].

The diagnosis of HTN is done by measuring the Systolic
(SBP) and Diastolic (SBP) Blood Pressure of the patient
and inferring the type of HTN based on the range in which
both values lie. The stages of HTN and their ranges can
be found in table 1.

Table 1: Blood Pressure Ranges and Associated Condi-
tions [5]

Condition Systolic (mm Hg) Diastolic (mm Hg)
Normal Less than 120 Less than 80
Elevated 120-129 Less than 80

HTN Stage 1 130-139 80-89
HTN Stage 2 At least 140 At least 90
HTN Crisis Over 180 Over 120

2.2 BP Measurement Methods

One categorization of BP measurement methods is inva-
siveness. Before introducing photoplethysmography, the
method used in this assignment, the ”golden standard”
invasive and non-invasive methods will be briefly intro-
duced, as well as their use cases, pros, and cons.

2.2.1 Sphygmomanometers (Non-Invasive)

Cuff-based sphygmomanometer is a non-invasive BP mea-
surement technique. Sphygmomanometers are regarded
as the ”golden standard” for in- and out-of-office BP
measurement. This method is widely used in medical
testing due to its high accuracy, minimal cost, ease of use,
and most importantly its noninvasiveness [6].

Sphygmomanometers suffice in terms of diagnostic
utility for CVDs that only require SBP and DBP read-
ings. However, these devices measure the SBP and DBP
discrete values only.

In Figure 1, the working principle of a digital (Oscillo-
metric) sphygmomanometer can be seen. The device in
Fig 1 measures SBP of 120 mmHg over DBP of 80 mmHg,
which corresponds to the maximum and minimum Arterial
BP (ABP) values. As can be seen in 1(a), ABP fluctuates
quasi-periodically with every cardiac signal.
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Figure 1: Oscillometric sphygmomanometer: a) BP wave-
form, b) Cuff pressure measured, c) Oscillometric signal [7]

2.2.2 Intra-Arterial Cannulation (Invasive)

This method works by connecting an intra-arterial
cannula to a pressure transducer system that converts
the fluctuating intra-arterial BP to an electrical signal,
displayed as a real-time waveform. The method’s working
principle can be seen in Figure 2

Invasive cannulation is the most accurate continuous
ABP measurement method as it directly interfaces with
the arteries with minimal external influences on its read-
ing. However, Cannulation is reserved for use in critical
care patients during invasive surgery or in the ICU. A
patient has to be anesthetized prior to the insertion of
the cannula and the transducer has to be leveled based
on the patient’s resting position for accurate pressure
referencing [8].

The invasiveness of the method, not only comes at the
cost of comfort and ease of use but also the risk of serious
complications, such as thrombosis, hemorrhaging, arterial
injury, and infection [8] [9].

Figure 2: Diagram: Invasive Intra-Arterial Cannulization
for ABP measurement [8]

2.3 ABP Waveform

Between the SBP and DBP values, ABP fluctuates
continuously forming a pulse wave. The ABP waveform
provides more complete information about hemodynamic
stability and cardiovascular health.
Several features of the ABP pulse wave, seen in Figure
3, are used to characterize and monitor cardiovascular
insufficiencies in pertinent CV properties such as cardiac
output, vascular resistance, and left ventricle stroke
volume [10] [11] [12].

Figure 3: Example of BP Pulse Wave Features [13]

2.4 Photoplethysmography (PPG)

2.4.1 Core Principles

PPG is a non-invasive optical technique for monitoring
changes in arterial blood volume over time, most com-
monly used in pulse oximeters to measure blood oxygen
saturation. The blood is pumped through arteries,
carrying oxygenated hemoglobin in red blood cells.
Oxygenated hemoglobin highly absorbs most wavelengths
of light except for red wavelength light.
By illuminating red light on a skin segment that an artery
runs under, and then detecting the absorption/reflection
of that light using a photodiode, PPG signals are gener-
ated. High red wavelength light detection indicates high
oxygen saturation in the blood (SpO2) [14].

A diagram demonstrating a PPG pulse wave components
can be seen in Figure 4
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Figure 4: PPG Signal Components/ Features [15]

2.4.2 Recent Advances & Market Adoption

The bulk of scientific literature on PPG´s use in ABP
estimation was found in the past decade, with the
research output accelerating yearly. A paradigm shift
towards medical wearables accompanied by advances in
PPG sensor design, signal processing, and reduction in
hardware costs widened this avenue of research [16].

The global PPG biosensors market is projected to reach
USD 839.3 million by 2028 [17]. Most smartwatches on
the market house a PPG sensor, mainly for Heart Rate
Monitoring (HRM) which is done by measuring the time
interval between consecutive PPG systolic peaks.

Recent literature also explored PPG´s utility in detect-
ing arterial stiffness, atrial fibrillation, respiratory rate,
and even stress levels [18] [19] [20] [21] [22].

A histogram of the number of publications with the word
”Photoplethysmography” can be seen in Figure 5

Figure 5: Histogram of the number of publications with
the word ”Photoplethysmography” [22]

2.4.3 Challenges

Motion Artifacts (MA) are the main source of PPG
signals’ contamination. Several solutions were proposed
to circumvent this problem with moderate success, but

none eliminated it completely [23] [24] [25] [26] [27].

The mean absolute error (MAE) of HRM using PPG
was found to increase by 30%, on average, during move-
ment relative to the accuracy during resting conditions.
This is despite the fact that HRM only requires accuracy
in the time locality of the systolic peak intervals, as seen
in Figure 4. As the peak of the signal should be the
strongest component of the signal; Other more nuanced
features, both statistically and morphologically, are likely
to be even more prone to MA.

In some devices, PPG may also be sensitive to variabil-
ity in the user’s skin color, body hair density, and skin
density [28].

A visual representation of the sources of PPG signal con-
tamination can be seen in Figure 6

Figure 6: Sources of PPG signal noise [25]

To complicate the problem, inter-variability in cardio-
vascular & biological parameters can influence PPG fea-
tures [29]. Modern devices employ PPG arrays that emit
light with different wavelengths to improve Signal to Noise
Ratio (SNR), allowing the light to penetrate to ranging
depths within the tissue [30]. However, high-end PPG sen-
sors are less market-adopted as the salient usage of PPG
is to estimate HR and SpO2, both of which do not re-
quire high-accuracy signal acquisition. HRM on average
was found to only require 5 Hz sampling rate in healthy
subjects [31].

Sensing
Sensor geometry
Emitted light intensity
Sensor-skin interface
Photodiode sensitivity
Biological
Oxygen concentration
Organ characteristics
Microcirculation volume
Cardiovascular
Arterial blood volume
Interstitial fluids
Venous volume

Table 2: Other influential factors to PPG [29]
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2.5 PPG for ABP Estimation

PPG 4 and ABP 3 pulse waves are highly correlated [32].
A large body of literature has explored PPG’s utility for
ABP estimation using morphological and statistical fea-
tures extracted from the PPG data. A common theme
in these models is combining Electrocardiogram (ECG) in
conjunction with PPG to obtain a more accurate abstrac-
tion of the CV system [33] [34] [20].
The highest correlating PPG - ECG feature to ABP is
pulse amplitude time (PAT), seen in Figure 10. PAT di-
rectly correlates with arterial stiffness which in turn highly
correlates with ABP.

Figure 7: Three common modalities used to predict ABP
using PPG [35]

Multi-site PPG from different sensing sights is also
used for the same purpose. However, The higher accuracy
of multi-modal and multi-channel inputs comes at the
cost of mobility and ease of use as ECG is not commonly
integrated into daily smart wearables; So daily monitoring
will require specialized devices [35].

There are pulse oximeter BP monitoring devices on the
market; all of which estimate SBP & DBP discrete values
only, which suffices for out-of-office monitoring of HTN.
However, HTN is not the only CV phenomenon that is
monitored through ABP information. As stated earlier,
several physiological parameters can be estimated using
ABP waveform features. This leaves room for a broader
range of out-of-office diagnostic applications in which
ABP waveform features play a significant role.

2.5.1 Deep Neural Networks

Researchers have developed highly accurate ABP wave-
form estimation models with exclusively PPG inputs
using Deep Neural Networks (DNN) with several ar-
chitectures [36] [37] [38] [39] [40]. DNN expanded the
capabilities of this type of continuous signal prediction.

Figure 8: Commonly Used System Design for DNN Pre-
dicting Physiological Properties [41]

DNN models are trained to predict continuous wave-
forms based on the difference between their output data
and ground truth data. PPG signals are used as input to
the DNN and the output is a result of a series of algebraic
computations. The error resultant backpropegates to ad-
just the values of the variables of the DNN so that the
next prediction is closer to ground truth. As this process
is repeated iteratively over a large sum of data, the weights
of the DNN converge towards values that best predict the
ground truth label.

Unlike basic linear regression models, DNNs find non-
linear relationships between input and outputs implicitly.
The weights between the input nodes, hidden layer nodes,
and output nodes create an abstract model that predicts
the output based on the stimulus at the input. The
training data shapes this model to predict ABP waveform
samples at the output in a specific input feature space.
When the input feature space shifts the training data
space, the model’s abstraction does not always hold up.
This underscores the importance of using a diverse set
of training data in terms of all relevant variables to the
specific use of said model [42].

Figure 9: Example of DNN [42]
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While several publications developed DNN models with
relatively high estimation accuracy, most of these results
are only achieved on testing data that is a subset of the
same database that the training data was acquired from.
Only one publicly available database of time-synchronized
PPG & ABP, or subsets of it, is used to train DNN for
ABP estimation in most publications. This can be seen
in Figure 10.

Figure 10: List of datasets used for training DNN ABP
Estimation models [43]

For a continuous ABP waveform output, slight al-
terations in the PPG input features from the training
data features may lead to a shift in input space. If
the shift in input space is significant enough, the ABP
waveform prediction model may become invalid causing
an inaccurate output. For example, older age affects PPG
pulse wave features, which can be seen in Figure 11 [35].

Figure 11: Multiple classes of PPG signals relative to age
ranging from Class 1 (25) to Class 4 (65) [35]

2.5.2 MIMIC III

MIMIC III biosignals database comprises 67,830 record
sets for approximately 30,000 ICU patients, with a
median age of 65.8 years old. The record sets include
time-synchronized PPG, ECG, & Invasive ABP wave-
forms [44].

The data acquisition setup for this database can be seen
in Figure 12

Figure 12: MIMIC III Data Acquisition Setup [41]

This database exclusively contains data from ICU
patients, hence the signals are acquired using high-end
medical equipment that is well-calibrated and monitored.
ICU patients are immobile for long periods of time, which
substantially increases the quality of the acquired data
due to the lack of MA.

2.6 Gap in Literatures

Training the models with diverse datasets is necessary
to achieve good performance in real-world applications.
The problem lies in the lack of public ABP data in
uncontrolled environments. Given the aforementioned,
there is an evident gap in the literature for publications
that explore the utility of ABP estimation models using
single-sight PPG signals in uncontrolled/ semi-controlled
settings. This gap is to be expected as the avenue
of using DNN for Biosignal interpolation is still novel
and is gaining interest momentum along the simulta-
neous rise of interest in Deep Learning as a whole sub-field.

There are additional limitations that affect the mass of
literature that explores DNN ABP waveform estimation
models using PPG only. Most publications train DNN
with PPG & ECG. The multi-modality adds robustness
to the system as it provides more information to the
model from which a more accurate prediction model
can be constructed. Multi-modal features are also
harder to corrupt with noise that affects only one of
the multi-modalities. Therefore, more publications use
ECG + PPG inputs to DNN models that estimate ABP
waveform. The MIMIC III public database also contains
ECG signals. The limitation imposed by the lack of data
availability makes the PPG + ECG option more favorable.

To explore further, this report will analyze the effect
of a few basic daily activities on PPG data and then
examine the influence of the PPG data on the ABP
waveform output of DNN model. Utilizing wrist PPG
is specifically desirable since it broadens the PPG data
availability the most since its widespread integration
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with smartwatches. Up to date, no other publication
attempted diversifying the data setting and condition on
continuous ABP estimation using wrist PPG

3 Methodology

3.1 System Overview

In this assignment, a DNN developed & trained by
Ibtehaz et al. [45], will be set up and tested with PPG
data collected from a wearable watch. The data will be
processed to match the properties of the MIMIC III data.
Following, the PPG segments’ quality will be assessed
and classified as either good or bad quality. For Further
assessment of input, the time and frequency plots of
segments will be qualitatively inspected and compared to
optimal references of their subsequent plots.

Good quality signals will be used as input to the
model, and the corresponding ABP output segment will
be examined qualitatively in comparison to the input and
to the ideal waveform feature from Figure 3.
The whole system in this report is coded in Python. The
computer running the system uses an AMD Ryzen 7
6800HS.

Figure 13: System Overview

3.2 Experimental Design

3.2.1 Ethical Approval

The following protocol received approval for this protocol
from the Computer Information Sciences (CIS) Ethics
Committee at the University of Twente. The committee
reviewed the ethical aspects of this project and concluded
that it raised no ethical concerns.

3.2.2 Protocol

An experimental protocol is designed to collect wrist
PPG signals from 2 healthy participants with no history
of CVD. The PPG data will be used for testing the model
that estimates the ABP waveform.

The identity of the participants will remain anonymous,
and will not be shared with any third party. None of the

participants had an allergy to rubber, the material from
which the wristband is made.

Prior to the beginning of the protocol, an initial BP
measurement was taken; this will be used for denormal-
ization of output as SBPref & DBPref in Eq 3 & 4,
respectively.

The List of activities can be seen in Table 3

Activity Duration [min] Intensity
[A1] Static (sit) 2 .

[A2] Finger Tapping (sit) 2 Low
[A3] Standing 2 .
[A4] Walking 2 ≈ 0.8m

s

Table 3: Experimental Protocol Activities

Since PPG is an optical method, the two participants
were chosen to have different skin tones and arm hair
density, to test the effects of these variables on the results.
Skin tone was categorized based on the Fitzpatrick
scale, seen in Figure 14, and hair density was assessed
qualitatively using the scale in Figure 15 [46]. Wrist
circumference was also measured.

Figure 14: Fitzpatrich Scale [46]

Both participants consented to share the information
in Table 4. This information was taken for the sake of
completeness in case any of these variables affected the
data acquisiton.

Variable P1 P2
Age 22 22

Skin Tone Type I Type IV
Hair Density Sparse Dense

Wrist Circumference [cm] 16.2 15.7

Table 4: Participants Information
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Figure 15: Photographic Forearm Hair Scale [47]

3.2.3 Equipment

The wristwatch that was used to collect PPG signals is
Empatica’s E4 [48].
E4 is a research-grade wristwatch equipped with multiple
bio-sensors, including PPG, to provide real-time biometric
data. Several studies have used E4 for several purposes,
most popularly to examine HR variability under resting
conditions [49] [50].

The device streamed the real-time PPG data from each
recording via Bluetooth to a smartphone then the data
was transferred to the personal computer that will run
the model. The specifications of the device can be seen in
table 5

Manufacturer Empatica E4
Empatica Inc, Boston, MA, US

Certification CE class IIa
Body position Wrist, ankle
Biosignals ACC, EDA, PPG, TEMP
Sampling rates 32 Hz, 4 Hz, 64 Hz, 4 Hz
ACC range ±2 g
Battery life 24-48 h
Recording mode Device, streaming

Table 5: Specifications of Empatica E4 [51]

As per Empatica’s instructions, the E4 was fitted on the
user in the manner shown in Figure 16.

Figure 16: E4 correct positioning on the wrist [52]

The reference measurements were taken with a digital
sphygmomanometer, similar to the one in Figure 1.

3.3 Neural Network Model

The implemented estimation is comprised of two-stage
cascading U-NET, the first for approximating the ABP
waveform, and the second is for refining the output
waveform. The data pipeline can be seen in Figure 17

Figure 17: Data Pipeline Overview [45]

U-NET is a symmetrical encoder-decoder neural net-
work architecture. It is conventionally used for biomedical
image semantic segmentation. This model is a 1D variant
instead of the more commonly used 2D U-NET. A
few papers used this architecture for continuous ABP
estimation with high prediction accuracy [53] [45].

The model was trained with a subset of the MIMIC III
database. 10-Fold Cross-Validation was used by iterative
training with 90% of the data and testing with the other
10% to find the better-performing model parameters.

The model achieved a prediction mean absolute error
(MAE) for DBP of 3.449 ± 6.147 mmHg, SBP of 2.310 ±
4.437 mmHg, and Mean Arterial pressure (MAP) of 5.727
± 9.162 mmHg.
These results pass the British Hypertension Society’s
(BHS) Grade A standard and the criterion set by the
Association for the Advancement of Medical Instrumen-
tation (AAMI) for BP measurement instrumentation [54].

The specific architecture of the model is not a bottle-
neck for ABP prediction as several models have already
achieved similar performance. Hence, this method was
chosen as it provides excellent prediction performance
with clean input while being thoroughly documented by
Ibtehaz et al [45].

An overview diagram of the model’s architecture can be
seen in Figure 18.

Figure 18: [45]

3.4 Preprocessing

3.4.1 Sample Rate Conversion

The input PPG data was upsampled from 64 to 125 Hz.
tThe method chosen to upsample the input data is cubic
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spline interpolation upsampling. This method was chosen
as it provides high smoothness and accuracy, both of
which are necessary to maintain the features of biosignals
like PPG.

Cubic spline interpolation works by fitting third-order
polynomials between each two sample points of the input
and then resampling the signal at the desired rate.

3.4.2 Bandpass Filter: ChebyshevII

PPG signals contain undesired components such as
low-frequency baseline wander caused by respiration rate
& changes in blood perfusion [55] [20]. All the pertinent
frequency harmonics of PPG pulse wave line in between
0.5 to 8 Hz [56].

For this assignment, only the pulsatile component of
the PPG signal is needed, hence a bandpass filter was
implemented to filter out these undesired components. A
5th-order ChebyshevII bandpass filter was chosen specifi-
cally as it preserves pulse wave features more than other
popular filters such as Butterworth filter [57] [58] [43].
The high-order filter has a steeper negative slope between
the cutoff frequency and the stop band, which comes at
the cost of being more computationally demanding than
a lower-order filter.

The passband range is [0.5 8] Hz, as stated earlier, and
the stopband ripple was set to 0.5 dB for minimal inter-
ference from filtered bands.

3.4.3 Segmentation & Normalization

X =


x1

x2

x3

...
xN

 (1)

The input of the DNN is the 1024 samples of each 8.192-
second segment, sampled at 125 Hz. The E4’s PPG data
was segmented as such followed by the normalization of
the amplitude of each signal segment to range between
[0 1]. The normalization was done to each segment data

vector X⃗ by substituting it into equation 2; Xmin & Xmax

is the minimum and maximum input values of .

X⃗norm =
X⃗ −Xmin

Xmax −Xmin
(2)

Since the proposed DNN was trained and tested with
ground truth ABP data, it only outputs normalized ABP
segments. To denormalize the output amplitude, refer-
ence measurements were taken from the participants as
stated earlier, and used instead of the missing maximum

(ABPmax) and minimum (ABPmin) values in equations
3 & 4, respectively.
BP can fluctuate by 5% intermittently under resting
conditions, so the reference values are adjusted with this
margin accordingly [59].
This adds uncertainty to the precision of the output in
terms of baseline and scaling. However, this does not
affect the features of the output signal which will be the
main focus of the results.

ABPmax = SBPref ∗ 1.05 (3)

ABPmin = DBPref ∗ 0.95 (4)

3.4.4 Signal Quality Assessment

Qualitatively, PPG pulses can be classified into 3 cat-
egories: Excellent (G1), Acceptable (G2), and Unfit
(G3) for diagnostic purposes. G1 is described as having
clear [60] Most of the training data of the proposed DNN
are of the G1 & G2 category, as all the G3 segments were
removed from the dataset that trained and tested the
model.

Therefore, E4’s data segments need to be assessed in
terms of signal quality for the model to correctly predict
the output waveform as the model was not trained to
compute prediction with noisy inputs.

Figure 19: Categories of PPG Pulse Wave Quality [60]

To observe the data composition of each segment more
objectively, the discrete short-time fourier transform
(STFT) of each segment was computed and plotted on
a spectrogram. STFT gives a better perspective on the
pulsatile nature of each segment as it combines both time
and frequency information, although to a lesser resolution
than both [61].

9



With each peak, the signal energy spikes. The temporal
locality of each peak can be used to count beats per
segment, and the energy of each peak is concentrated
within a certain frequency band.

These properties were used to identify and discard
low-quality. The total energy of the highest intensity
STFT time sample is taken and used as a reference for
the rest of the pulses.

SFT =


S11 S12 . .
S21 S22 . .
. . . .
. . . .

 (5)

From matrix 5, if each column defined s⃗, the column with
the highest energy result when used in equation 6 is s⃗ref .

Es =

N−1∑
i=0

|s[i]|2 (6)

By iteratively taking the difference between the energy
of s⃗ref and the energy of each s⃗ in S, a threshold energy
ratio can be set to detect data discrepancies over time.

Eratio =
|Es|
|Eref |

(7)

For each instant where the ratio exceeds that threshold, a
beat is counted with variable r starting from zero.

IF(EThresh < Eratio) : r = r + 1 (8)

Given that a healthy person’s resting HR lies in the range
of [60 90] BPM, a good quality segment will have the
threshold exceeded 7 to 11 times by the end of the seg-
ment, no more & no less.

7 ⩽ r ⩽ 13 (9)

This way, if the segment contains an inconsistent
pulse(s) or a relatively high spike, then the s⃗ref will
be the anomaly vector and the whole segment will be
discarded. The threshold value through trial and error to
eliminate the corrupted G3 signals while passing G2 and
G1 signals as much as possible, based on the 3 categories
in Figure 19.
The discrete wavelet transform (DWT) was considered
but was not chosen as it is more computationally de-
manding than STFT without necessarily offering better
time-frequency resolution.

The Fast Fourier Transform (FFT) of the whole
segment will also be computed and plotted to gain insight
into the prominent frequency components of both high
and low-quality signals. FFT offers a broader image of
the signal composition than STFT, but given that a clean
segment has clean harmonics, a corrupted signal can be
easily identified.

Figure 20: Ideal FFT for PPG Segment [31]

Skewness also highly correlates with PPG signal
quality [60]. Skewness is a statistical measure of the
asymmetry of the sample distribution around the mean.
Skewness is calculated using equation 10. Skewness will
be used to assess signal quality however it will not be
used to eliminate signals based on its result.

Skew[X] =
1

N

N∑
i=1

(
xi − µ

σ

)3

(10)

In equation 10, µ refers to the mean, and σ refers to the
standard deviation of each segment.

4 Results

4.1 Model Setup

To start, The model was set up and tested with a segment
of the MIMIC III data to verify that the model was work-
ing properly prior to testing with the experimental data.
The data processing pipeline, seen in Figure 17 from raw
PPG data to ABP output takes anywhere from 0.8 to 3
seconds per 1024 sample-long segment. The resulting out-
put can be seen in Fig 21

Figure 21: Model output for random MIMIC III Segment
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4.2 Pre-Processing

The preprocessing stages all worked successfully. In Figure
22, the raw and upsampled pulse wave can be seen to
completely overlapping

Figure 22: 64 to 125 Hz Upsampled

As can seen in Figure 23 The Chebyshev II filter flat-
tened the pulse waves slightly but maintained their overall
shape. Small variations in amplitude should not cause the
prediction model as most of the morphological features
were maintained.

Figure 23: Bandpass Filter vs Unfiltered Pulse Wave

4.3 Experimental Data Analysis

4.3.1 Static [A1 & A3]

Given that no motion occurred, signals acquired from both
participants, while standing and sitting, exhibited the ex-
pected morphological features of a clean PPG pulse wave,
relative to Figure 4.
It can be seen from Figures 24 & 25, that the waveform is
class A relative to the categorization in Figure 11. This is
to be expected given both participants were under 25.
The Skewness of clean segments, from both participants,
ranges between -0.6 to -0.3.

Figure 24: Example of clean A1 segment

While standing up, systolic peaks have a higher ampli-
tude and a more pronounced notch. This was the case for
both participants as well.

Figure 25: Example of clean A3 segment

As can be seen in Figure 26, the FFTs of clean segments
are nearly identical to the reference FFT in Figure 20.

Figure 26: FFT: Fig 25

In Figure 27, each systolic peak appears as an intense
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line, and all the lines are composed of similar frequency
content with similar intensity.

Figure 27: Spectrogram: Fig 25

4.3.2 Dynamic [A2 & A4]

None of the data segments acquired from finger-tapping
and walking was classified as high quality.
In Figure 28, an example of a noisy PPG segment, taken
from finger-tapping, data can be seen.

Figure 28: Example of Noisy A2 Segment

From the spectrogram in Figure 29, the visible lack of
pulses indicates the low quality of segment 28

Figure 29: Spectrogram: Fig 28

While walking, the noise is significantly more powerful.
This can be seen in Figure 30

Figure 30: Example of A4 Segment

It can be inferred from the FFT in Figure 31, that the
noise bandwidth overlaps with the 3 PPG frequency com-
ponents.

Figure 31: FFT: Fig 30
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4.3.3 SQA

The threshold parameter was tuned iteratively to find its
optimal value. With each iteration, the classified segments
were observed, and based on the accuracy of the assess-
ment the threshold was adjusted. The optimal threshold
was 0.53 for P1 and 0.47 for P2.
During static conditions, 64.55 % of PPG segments passed
the SQA for P1 and 56.16 % for P2.
All the segments acquired during dynamic activities were
rejected due to the abundance of MA.

The assessment outcome of all segments from each ac-
tivity per participants each participant can be seen in table
6

Activity P1 P2
✓ × ✓ ×

A1 28 10 22 14
A2 0 38 0 35
A3 23 18 19 18
A4 0 37 0 39

Table 6: Good vs Bad Quality PPG Segments Per Activity
Per Participant

Figure 32: Example of Rejected Segment

4.4 ABP Output

The model outputs clean ABP waveforms, given that the
corresponding input segment is clean as well. The MAP
of all the segments that passed the SQA is 89.92 mmHg
for P1 and 94.01 mmHg for P2. The accuracy of this value
can not be qualitatively assessed.
In Figures 33 & 34, the morphological features of the out-
put waveforms are in line with what is to be expected;
most pulse waves have a clear peak and notch.

Figure 33: ABP Waveform Output (P1)

Figure 34: ABP Waveform Output (P2)

Strong oscillatory behavior in the PPG pulse wave
distorted the output pulse wave. The distortion scaled
with the oscillation component between the peak and
notch. This can be attributed to the young age of the
participants as seen in Figure 11.

The distortion can be seen in Figure 35

Figure 35: ABP Output of PPG Segment in Figure 25

In figure 36, the output waveform of a noisy input can
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be seen. No clear distinction between pulses can be made,
and all the pulse wave features are unrecognizable.

Figure 36: ABP Estimate for Rejected PPG Segment in
Figure 30

5 Discussion

5.1 E4 & PPG Signal Quality

The E4’s PPG sensor has proven to be very susceptible
to MA.
The rejected segment, seen in Figure 32, was taken
during a static measurement. The participant had a
tremor which caused the oscillatory interference at the
start of the segment. While reviewing the E4 integrated
accelerometer data, several instances of slight tremors
were seen as an intermittent deviation in position. An
example of this is in Figure 37.

Figure 37: Example of Motion Artifacts
Top: Raw PPG
Green, Red, Blue: ACC Z, X, Y

Active MA reduction is a must for any application that
requires PPG feature extraction. Accelerometer data has
been used in MA reduction techniques for PPG signals
[24]. Since the E4 is equipped with a 3-axis accelerometer,
it can be capitalized for MA reduction with no external
sensors. In some segments, slight MA were present but

the E4’s accelerometer did not pick up the motion.
For the aforementioned, the proposed system setup is not
fit for ABP estimation during dynamic activities.

In a publication by Böttcher et al., the E4’s PPG data
quality was examined throughout the day from six in and
outpatient cohorts. The study found that during the night
the PPG data segments were up to 40 % higher quality
than during the daytime primarily due to the lack of MA
[51]. A heatmap representation of E4’s PPG quality can
be seen in Figure 38.

Figure 38: 24H Heatmap of E4’s PPG quality [51]
Red: Lower Quality - Green: Higher Quality

The better night-time data quality makes the proposed
system much more effective for sleep monitoring. The
ABP estimation model can provide key insights into the
hemodynamic changes induced by sleep apnea [62] [63].

5.2 Segment Quality Assessment

The Bandpass filter eliminated the baseline wander
caused by the respiratory rate. However, baseline wander
is one of three respiratory modulations, the other two
being amplitude and frequency modulation [64].

Some segments with high amplitude modulation were
classified as low-quality and discarded despite all the seg-
ments’ pulse waves being morphologically accurate. The
increased amplitude of the systolic peaks over the segment
period caused the assessment algorithm to take the peak
pulse’s energy as a reference. The energy of the refer-
ence peak was significantly higher than the rest of the
peaks which excluded the count of clean pulse waves as
the ration was below the set threshold. An example of an
amplitude-modulated segment can be seen in Figure 39.
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Figure 39: Amplitude Modulated PPG Segment

The modulation effects do not pose a problem as the
training data was also not de-modulated. So the model
could use the modulation properties as features in the
estimation process.

The SQA algorithm proposed in this report can be used
as a preliminary filter that passes the most consistent
segments only. A second SQA algorithm could follow that
examines the segments deemed corrupted by the first one.
The second SQA could compute the cross-correlation
between periodic peaks in the segment to establish
consistency between each peak and the rest. A segment
of similar behavior to the one in Figure 32 is salvageable
using an MA reduction technique as the noise component
is both intermittent and does not dominate the pulse
amplitude.

Skewness was a poor metric of signal quality for the
acquired data in this assignment as several low-quality
segments had similar skewness to high-quality signals.
This was also observed by Ibtehaz et al. [45].

5.3 System Design

The U-NET model used in this assignment has two key
problems.
The first problem is the normalized output waveform
as denormalizing it requires maximum and minimum
ABP values. Hence, using it with no ground truth data
adds to the output error in terms of scale and offset. To
counteract this problem, another prediction model can
be added before the U-NET’s input to estimate the SBP
& DBP values for the denormalization of the waveform
output.
The added system will likely be another regression model
that suffers from the same problem that U-NET has, lack
of diverse training data. The errors of both systems will
aggregate. And while this solution could work, the com-
putational complexity of the whole system will increase
drastically relative to the value of gained information.

The second problem is the input segment length being
too long. As shown earlier, intermittent interference can
cause a segment to be discarded as low quality despite
the segment containing multiple clean pulse waves as in
Figure 32. This wastes usable data that can produce
more accurate estimations over time. With shorter
input segment length and the implementation of an MA
reduction method, the number of high-quality output
segments can increase substantially.

U-NET only uses the samples of the PPG segment as
input and implicitly does the feature extraction within the
network. An improved model would also intake other data
such as the age and height of participants. Personal bio-
metrics allow DNN models to create better predictions of
ABP by accounting for changes in input features caused
by these biometrics. Hence, the model would have a dif-
ferent abstraction of the output as the participants’ age
differs to mitigate the effect seen in Figure 35.

6 Conclusions

In this assignment, The utility of PPG signals to esti-
mate is explored and tested. Salient methods for ABP
measurement were analyzed and evaluated for their pros
and cons. Utilizing DNN was found to be the common
theme in this area of research as the advent of advanced
deep learning architectures bolstered researchers’ ability
to extrapolate ABP waveforms from biosignals such as
PPG signals only.

The core drawback of relying solely on DNN pre-
diction capabilities is the lack of ABP ground truth
data as only one publicly available database contains
time-synchronized ABP waveform and PPG. The esti-
mation accuracy presented as ”state-of-the-art” by many
publications was only achieved on testing data from the
same database (MIMIC III). Furthermore, acquiring ABP
and PPG data poses a difficult hurdle as continuous ABP
waveforms are measured invasively. This constricts the
data acquisition to exclusively controlled environments
and the demographic from which data is acquired to crit-
ical patients only. These issues led to a shortage of ABP
data collected during dynamic activities in uncontrolled
environments from diverse populations in terms of Age,
Cardiovascular Health, etc.

The MIMIC III biosignals database contains clean data
only as critical ICU patients are less likely to be mobile
so motion artifacts are circumvented. Unlike widespread
PPG sensors in daily smartwatches, ICU PPG sensors are
medical grade and optimized for the highest quality data
acquired. This leads to a disparity in quality between the
MIMIC III data and data acquired using daily wearables.
And since DNN models are trained on ICU PPG data,
data from daily wearables may not be adequate for the
ABP estimation performed by DNN in terms of quality,
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SNR, precision, and sampling rate.

To examine the issue further, a model was adopted
from another publication [45] that designed and trained a
2-stage cascading DNN to perform 1-to-1 regression from
8.192 second PPG signal segments to 8.192 ABP signal
segments. The model passed the BHS and the AAMI
standards criteria for accurate BP measurements.

PPG data from both static and dynamic activities was
acquired using a wristwatch with embedded PPG and
accelerometer sensors to gain insight into the effects of
activities on PPG signals.
A preprocessing pipeline was composed and coded to pro-
cess the data properties and clean the signal components
from undesired influences.
The STFT, FFT, and several statistical parameters were
computed and plotted to evaluate the acquired signal
quality in comparison to the optimal reference. A signal
quality assessment algorithm was implemented using
the STFT data to prune out corrupted signals prior
to the input of the ABP estimation model. The SQA
was successful in its task however multiple segments
were classified as corrupted due to minor fluctuations in
pulse wave amplitude induced by MA and Amplitude
modulation caused by respiratory.

The model successfully predicted a morphologically
correct ABP waveform for up to 64.55 % of PPG segments
acquired during static conditions. However, the model
failed to estimate any coherent outputs from dynamic
activities as these input segments were corrupted with
motion artifacts. Certain effects on PPG signals that are
affected by age caused the model to distort the output
signal which discounts it for reliable use in younger
individuals.

The high susceptibility of PPG to MA makes the pro-
posed system a poor fit for ABP estimation during daily
activities. The ABP waveform estimates can not be vali-
dated due to the lack of ground truth ABP data Nonethe-
less, with an added MA reduction technique and a more
capable SQA algorithm, the system shows promise in mon-
itoring ABP under static semi-controlled conditions in
older individuals.
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[51] S. Böttcher, S. Vieluf, E. Bruno, B. Joseph, N. Epi-
tashvili, A. Biondi, N. Zabler, M. Glasstetter,
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