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Abstract 

Background 
Mild traumatic brain injury (mTBI) is a very common condition, having an estimated incidence of over 600 

per 100,000 per year. Although most mTBI patients recover well within weeks to months, 15 – 30% suffer 

complaints long after trauma, interfering with outcome. Currently, no reliable method exists to, in an early 

stage, predict which mTBI patients are at risk of developing persistent complaints. In this explorative study, 

we searched for possible correlations between EEG characteristics and outcome after mTBI. 

Methods 
We used EEG-data from 23 acute (<24 hours after trauma) and 26 subacute (4 – 6 weeks after trauma) mTBI 

patients (23 overlap). After 6 months, the persistence of complaints was assessed with the Head Injury 

Symptom Checklist (HISC) and recovery was assessed with the Glasgow Outcome Scale – Extended (GOS-E) 

questionnaire. We performed signal analyses on the EEG-data using four different techniques: relative 

power, power variability, power symmetry and coherence. To correct for heterogeneity (of the trauma) of 

the patients and to limit the number of statistical comparisons, we only statistically analysed data from the 

leads or lead-pairs that, per patient, diverge most from healthy reference values. We used the Spearman's 

rank correlation coefficient test and the Mann-Whitney U-test to compare the results of the signal analyses 

to the HISC scores and to the GOS-E outcomes respectively. 

Results 
We found three possible correlations. First, patients with fewer or no persistent complaints have lower 

relative alpha power in the acute phase compared to the subacute phase (correlation value = -0.44, 

P = 0.04). Second, subacute patients with more persistent complaints have lower theta power variability 

than healthy average (correlation value = -0.43, P = 0.03). Third, acute phase patients have a lower 

coherence than healthy average and those with a poor recovery have an even lower coherence than those 

with good recovery (P = 0.04). 

Conclusion 
In our study we found three possible correlations between EEG characteristics and outcome after mTBI. We 

recommend to focus future research on validating our findings in large cohorts. Alternatively, future 

research could also be focused on implementing our findings in a machine learning system. 
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Samenvatting 

Achtergrond 
Licht traumatisch schedelhersenletsel (LTSH) is een veelvoorkomende aandoening; de incidentie wordt 

geschat op meer dan 600 per 100.000 per jaar. Alhoewel de meeste LTSH patiënten binnen weken tot 

maanden herstellen, behoudt 15 – 30% van de patiënten lang na trauma klachten. Momenteel bestaat er 

geen methode om vroegtijdig te voorspellen of een LTSH patiënt risico loopt op het ontwikkelen van 

aanhoudende klachten. In dit exploratieve onderzoek hebben we gezocht naar mogelijke correlaties tussen 

EEG karakteristieken en herstel na LTSH. 

Methode 
We gebruikten EEG-data van 23 acute (<24 uur na trauma) en 26 subacute (4 – 6 weken na trauma) LTSH 

patiënten (23 overlap). Na 6 maanden hebben we de aanhoudendheid van klachten in beeld gebracht 

m.b.v. de Head Injury Symptom Checklist (HISC) en hebben we herstel beoordeeld m.b.v. de Glasgow 

Outcome Scale – Extended (GOS-E) vragenlijst. We hebben vier technieken gebruikt om signaalanalyses op 

EEG-data uit te voeren: relatief vermogen, vermogen variabiliteit, vermogen symmetrie en coherentie. Om 

te corrigeren voor de heterogeniteit (van het trauma) van de patiënten en om de hoeveelheid statistische 

vergelijkingen te beperken hebben we alleen statistische analyses uitgevoerd op data van kanalen of 

kanaalcombinaties die, per patiënt, het meest afwijken van gezonde referentiewaarden. We hebben de 

Spearmans rangcorrelatiecoëfficiënt test en de mann-whitneytoets gebruikt om de resultaten van de 

signaalanalyses met respectievelijk de HISC scores en de GOS-E uitkomsten te vergelijken. 

Resultaten 
We hebben drie mogelijke correlaties gevonden. Ten eerste, patiënten met weinig of zonder aanhoudende 

klachten hebben minder relatief alfa vermogen in de acute fase vergeleken met de subacute fase 

(correlatiewaarde = -0,44, P = 0,04). Ten tweede, subacute patiënten met meer aanhoudende klachten 

hebben minder thèta vermogen variabiliteit dan gezonde mensen (correlatiewaarde = -0,43, P = 0,03). Ten 

derde, patiënten in de acute fase hebben een lagere coherentie dan gezonde mensen en diegenen met 

slecht herstel hebben een lagere coherentie dan diegenen met goed herstel (P = 0,04). 

Conclusie 
In ons onderzoek hebben we drie mogelijke correlaties gevonden tussen EEG karakteristieken en herstel na 

LTSH. We adviseren om toekomstig onderzoek te richten op het valideren van onze bevindingen. Als 

alternatief zou toekomstig onderzoek ook gericht kunnen worden op het implementeren van onze 

bevindingen in een machine learning systeem. 
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Background 
 

Mild traumatic brain injury (mTBI) can be defined as “… acute neurophysiologic brain dysfunction resulting 

from impact contact forces or sudden acceleration/deceleration causing a transient alteration of 

consciousness and/or a period of anterograde (and possibly retrograde) amnesia.” [1]. It is a common 

condition; the estimated incidence is over 600 per 100,000 [2]. Most mTBI victims recover well within weeks 

to months, although an estimated 15 – 30% experience symptoms long after trauma [3]. Currently, no 

proper method exists to predict which patients are at risk of suffering long-term complaints. This master 

graduation research focusses on predicting the risk for poor outcome using EEG. 

 

1. Definitions 
The severity of traumatic brain injury is defined by the Glascow Coma Scale (GCS), a scale ranging from 3 – 

15, measuring the depth of a coma directly after trauma [4,5]. TBI patients with a GCS score of 

13 – 15 are usually considered mild. Such a GCS range suggests that the patient is with conscious, though 

their consciousness can be slightly altered (for example, the patient can have a confused or inappropriate 

verbal response). Besides this GSC range, for a TBI patient to be considered of the mild category, a patients 

must have either a loss of consciousness not exceeding 30 minutes or a period of post-traumatic amnesia 

must not exceeding 24 hours [6]. 

 

2. Incidence and causes 
Most (70 – 90%) hospital treated TBIs are a mild TBI [2].  The global mTBI incidence is estimated at 100 – 

300 per 100,000 [2]. However, the true population based incidence, including mTBI victims not treated in 

hospitals (for instance when only visiting a primary care physician), may very well exceed 600 per 100,000 

[2]. 

In the Netherlands the incidence of all TBIs (including mild) is 213.6 per 100,000, based on data of TBI 

patients admitted to Dutch emergency departments [7]. Most TBIs are caused at home or while practicing 

leisure (47.9%), often due to falls. Traffic is also a major contributor to TBIs (33.5%) of which bicyclists seem 

to suffer most often (56.9% of traffic related TBI). Sport comes third as TBI contributor (8.1%). Assaults 

represented an estimated 6.5% of all Dutch TBIs. TBIs are most common in children, young adults and 

elderly. The incidence in males (241.9) is higher than in females (175.3) [7]. 

 

3. mTBI related forms of brain damage 
Several mechanisms may be involved in traumatic brain damage (not specifically considering mTBI). Most 

obvious is the neural and axonal damage caused by the direct impact itself. Another almost instant 

mechanism is the so called ‘diffuse axonal injury’, which is damage (partly) caused by rotational and 

shearing stresses due to deceleration of the brain [8]. Diffuse axonal injury sometimes also happens at the 

site opposite to the impact, due to the brain ‘bouncing back’ within the skull, which is known as the 

‘countrecoup effect’ [9]. It is assumed that in practice, mTBIs are most often caused by frontal impact (due 

to people falling over in a forward manner). Therefore, the most frequent site of mTBI would be the frontal 

lobe of the cortex, although the occipital lobe is therefore also likely to be often damaged due to the 

countrecoup effect. 
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4. Prognosis 
Most patients suffering mTBI recover well. Many though, suffer at least one symptom long after acquiring 

trauma. Estimates about this group range from 15 to 30% of all mTBI patients, which, calculated as an 

estimated incidence, would be 90 to 180 per 100,000, although it is not unlikely that the real incidence is 

even higher [2,3]. Many symptoms can be associated with chronic sequelae, including cognitive deficits 

(such as memory problems and attention difficulties), social inference (interpreting non-verbal and verbal 

social cues), psychological symptoms (anxiety, depression) and many physical problems (like fatigue, 

coordination problems and headache) [3]. 

mTBI is often associated with a reduced return to work (RTW) or school. Some studies report a return to 

work rate of 76% at 6 months and 5% to be on wage replacement benefits after 2 years [10]. These results 

are not unanimous and controversial findings have been reported. Cancelliere et al. report several factors 

(possibly) influencing an improved RTW including trauma related factors (such as absence of CT 

abnormalities), personal factors (such as 11+ years of formal education), and profession related factors in 

which professions having a more independent and decision-making latitude had a better RTW [10]. 

Although RTW and posttraumatic complaints are likely to be related, a one-to-one correlation cannot be 

assumed. Some predictors for poorer long-term mTBI recovery are older age, history of psychiatric 

conditions and lower educational level. It is speculated that individuals with mental health conditions prior 

to acquiring mTBI may have less reserve to deal with the additional burden of mTBI and individuals with a 

higher educational level may have developed better adaptive coping skills [11–13]. 

Besides the individual differences in presence and severity of posttraumatic complaints, the kind of 

complaints also differ. Gender may be a factor in these differences following mTBI [14]. High school females 

report complaints like drowsiness and noise sensitivity, while males more often had complaints like 

cognitive deficits and amnesia [14]. Females also tend to have more severe symptoms than males three 

months after trauma, possibly due to hormonal differences [15]. 

 

5. Prediction of posttraumatic complaints 
When attempting to predict recovery in mTBI patients, conventional computed tomography (CT) as well as 

conventional magnetic resonance imaging (MRI) seem to be insufficient [16,17]. In the Netherlands, 

assessing a TBI patient via CT is common [18]. mTBI patients do however not very often show abnormalities 

on CT; in those with a GCS of 15 only 5% portray abnormalities and this percentage is 20 for those with a 

GCS of 14 and 30 for those of a GCS of 13 [17]. CT and MRI are unable to detect abnormalities of 

microstructural and functional nature. These conventional imaging techniques are therefore unable to 

detect abnormalities that may correlate to long lasting complaints, such as changes in the integrity of white 

matter pathways, abnormal brain activity, focal hypoperfusion and metabolism [16,19,20]. Although CT and 

MRI do not succeed in making such predictions, several other techniques may be interesting candidates, 

such as diffusion tensor imaging, single photon emission CT, magnetoencephalography and functional MRI. 

However, these candidates have shown mixed results or are unapplicable in clinical practice [1,19–21]. 

Biochemical biomarkers have also been researched, like S100B, neuron-specific enolase, glial fibrillary acidic 

protein, tau and neurofilament light, which in TBI patients are linked to poor long-term outcome. 

MicroRNAs are also speculated to be a possible biomarker for risk of poor outcome [22–29]. 

Quantitative electroencephalography (qEEG) research has been done in mTBI patients [30], though no 

articles are found specifically addressing the qEEG outcome differences between mTBI patients suffering 

persistent complaints and those not suffering these complaints. Despite this particular setting not being 

researched, the setting in the research of Tewarie et al. [31] was quite similar, albeit in moderate and severe 

TBI patients (GCS ≤ 12). They combined several (EEG) features into one model designed to predict outcome. 

Some of the features that played a prominent role were the Brain Symmetry Index (as designed by Van 
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Putten et al. [32]), variability in the alpha band, relative power in the alpha band, absolute power in the 

beta band and coherence. In total sixteen features were used, which also included non-EEG features like 

age, glucose and haemoglobin levels. According to Tewarie et al. the model had a fair to good specificity 

and sensitivity [31]. Other research was often not based on a model, but focused on one or a few EEG 

features. Vespa et al. measured the percentage of alpha variability (change of alpha wave activity) in severe 

and moderate TBI patients (GCS ≤ 14) in a continuous monitoring setting. They concluded that percentage 

of alpha variability is a sensitive and specific method of prognosis that is able to indicate outcomes in these 

patients [33]. In a review paper, Arciniegas [30] stated that in about 10% of mTBI patients EEG abnormalities 

such as low posterior alpha waves and mild diffuse intermixed slowing will remain in the late post-trauma 

period [30]. A research by Korn et al. [34] concluded that, when comparing TBI patients with persistent 

complaints to healthy individuals, the patients had higher delta (in this case defined as 1.5 – 5 Hz) power 

and lower alpha (8.5 – 12 Hz) power [34]. Other EEG-abnormalities that are often reported in mTBI patients 

are reduced mean alpha frequency, increased theta activity, increased theta-alpha ratio, increase in theta 

power variability, smaller difference in alpha and beta power when comparing anterior and posterior 

cortical regions, reduced posterior alpha power and an increase in coherence and decrease in phase 

between frontal and temporal cortical regions [30,35–40]. EEG-abnormalities in the first 24 hours post-

trauma, in combination with other indicators may contribute to the prediction of poor long-term outcomes 

in TBI patients [30,31,41]. However, reports are inconclusive; some even report no EEG-abnormalities in 

TBI patients, even those with posttraumatic symptoms [30,42–46]. But even when EEG-abnormalities are 

found, causality may be questioned. Some of these abnormalities may be due to the effects of fatigue, 

anxiety and/or medication, according to Nuwer et al. [47]. 

 

6. Goal of study 
Considering the high incidence of mTBI, the large percentage of mTBI patients suffering chronic complaints 

and the lack of a reliable outcome prediction tool, development of such a tool is of high importance. 

Regardless of attempts to predict the persistence of complaints in mTBI patients by means of conventional 

neuroimaging techniques such as CT and MRI, no conclusive method has been found. Biochemical 

biomarkers may be promising, though need more research (specifically into mild TBI). Some qEEG research 

has been done, though not specifically addressing the differences between mTBI patients with and without 

persistent complaints. 

To develop such a tool, based on EEG, knowledge about the correlations between EEG characteristics and 

outcome is important. Therefore, the goal of this study is to search for potential correlations between EEG 

characteristics and the persistence of mTBI related complaints or the lack of recovery from mTBI. This study 

is of explorative nature, i.e. in this study we search for correlation candidates, rather than to prove 

correlations. Potential correlations found may (after validation in future research) contribute to the 

development of the needed prediction tool. 
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Methods 
 

1. Participants 

1.1 Patients group 
We included thirty-one adult mTBI patients, admitted to the Medisch Spectrum Twente hospital in 

Enschede, the Netherlands. Electrophysiological (EEG) measurements were performed on the patients 

within the first 24 hours after injury (acute phase) as well as four to six weeks after trauma (subacute phase). 

Six months after trauma, the patients received questionnaires (which are explained later on in this chapter). 

We used these questionnaires to get information from the patients about persisting symptoms and 

recovery. Four patients did not return the questionnaires; they were excluded for further research. After 

correcting for missing and poor quality EEG-data, we included 23 patients with acute phase recordings and 

26 patients with subacute phase recordings (23 overlap). 

The inclusion criteria for the patient group were: 

• The patient acquired a mTBI, in accordance with: 

o a Glasgow Coma Scale score of 13 – 15 during admittance at the emergency department 

with either 

o loss of consciousness, but not exceeding 30 minutes, and/or 

o post-traumatic amnesia, not exceeding 24 hours. 

• The patient must be 18 – 80 years of age. 

The exclusion criteria were: 

• Neurological or psychiatric co-morbidity. 

• Previous suffered TBI requiring hospital admission. 

• Drugs or alcohol abuse. 

• History of epilepsy. 

• Cognitive impairment, language barrier or illiteracy compromising understanding and therefore 

completing of questionnaires. 

 

1.2 Healthy control group 
We included data from a healthy control population of 120 subjects from the Medical Spectrum Twente 

hospital for comparison. All subjects are considered healthy at the time of recording. Similar to the patient 

group, the control group subjects had to be at least 18 and at most 80 years of age. We matched average 

age of the control population (46.5 years) to the average age of the patient group (47.9 years). 

 

2. Software 
To visually inspect EEG-data and its annotations we used NeuroCenter EEG (version 3.1.4., Clinical Science 

Systems). We established both signal and statistical analyses by using MATLAB (version 2022b, MathWorks). 

The EEG-data was delivered in ‘edf’ format files. These EEG-files were imported into MATLAB using 

MATLAB-files created by Clinical Science Systems. We validated the statistical analysis implementations in 

MATLAB using IBM SPSS Statistics (version 18.0.1.0, International Business Machines Corporation) by 

comparing results of some datasets. 
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3. Questionnaires 

3.1 Head Injury Symptom Checklist 
The Head Injury Symptom Checklist (HISC) is a questionnaire which evaluates the presence of symptoms 

after TBI. The HISC addresses 19 common complaints after TBI including physical (such as headache), 

cognitive (forgetfulness), and emotional (anxiety) complaints. Two of the 19 complaints, itchiness and dry 

mouth, are non-posttraumatic and can be used to assess a patient’s tendency to complain. All complaints 

are scored at a pre-trauma and current post-trauma status. The patients can score every complaint from 0 

to 2: 0 – never, 1 – sometimes and 2 – often. We dichotomised these scores into 1 if the frequency of 

complaints increased and 0 if no increase happened. The end-score of the HISC is the summation of all 

separate complaint-scores [48,49]. For a list of symptoms that are addressed in the HISC, see Table 1. See 

Appendix 1 for the full Dutch HISC. 

Table 1. Symptoms addressed in the Head Injury Symptom Checklist [48]. 

HISC-Symptoms 

Headache Forgetfulness Dry mouth 
Dizziness Poor concentration Neck pain 
Balance disorder Slowness Neck stiffness 
Tinnitus Irritability Arm pain 
Hearing loss Noise intolerance Itching 
Increased need for sleep Alcohol intolerance  
Fatigue Anxiety  

 
 

3.2 Glasgow Outcome Scale – Extended 
The Glasgow Outcome Scale – Extended (GOS-E) is a tool for assessing outcome after TBI. The predecessor 

to the GOS-E, the GOS, had five categories of outcome, ranging from 1 – dead to 5 – good recovery. The 

GOS-E version was proposed to increase sensitivity and is widely used (both clinically and for research 

purposes) to record outcome after mTBI. The scale ranges from 1 (death) to 8 (upper good recovery), and 

is explained in detail in Table 2 [50]. See Appendix 1 for the full Dutch GOS-E. 

Table 2. Explanation of the eight-point Glasgow Outcome Scale – Extended. Adapted from Wilson et al. [50]. 

GOS-E 8-point scale Domain Criteria 

1. Dead   
2. Vegetative State Consciousness  
3. Lower SD Function in home Unable to look after themselves for 8 h 
4. Upper SD Function in and outside home Unable to look after themselves for 24 h or 

unable to shop or unable to travel 
5. Lower MD Work/Study 

Social and leisure activities 
Family and friendships 

Unable to work/study or unable to 
participate or constant problems 

6. Upper MD Work 
Social and leisure activities 
Family and friendships 

Reduces work capacity or participation 
much less or frequent problems 

7. Lower GR Social and leisure activities 
Family and friendships 
Symptoms 

Participate a bit less or occasional problems 
or some symptoms affecting daily life 

8. Upper GR  No problems 
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4. Electroencephalography recordings 
According to the EEG recording protocol, the patients sat idle and were asked to keep their eyes closed for 

about two minutes, followed by two minutes having their eyes opened, after which both sessions were 

repeated once. However, different EEG-operators often used different durations and sometimes did not 

repeat the process. In six acute and four subacute cases, only one pair of epochs could be identified and 

considered suitable. 

 

4.1 Epoch timings 
We manually determined the eyes open and closed epoch timings in the patient group EEGs. All EEG-files 

included annotations created by the EEG-operators. We used NeuroCenter EEG software for inspecting 

these EEGs and annotations. Although the annotations were not always reliable, they gave a rough idea of 

the epoch timings. We inspected the EEG signals for two reasons: locate eyes open and closed epochs and 

localise undesired artifacts. To locate the eye epochs, we used a bipolar setting (Po2) to inspect for alpha 

waves, which are correlated with closed eyes, and eye blinking artifacts [51,52]. We used a monopolar 

setting (G19) to inspect for undesired artifacts. Based on the annotations, alpha waves, blinking artifacts 

and other artifacts we determined the eyes open and eyes closed epochs. If possible, we determined two 

as long as possible epochs per eye state in every EEG-file. If no two epochs per eye state were available, we 

determined one epoch per eye state. We made sure the epochs did not include (major) undesired artifacts 

and were at least 30 seconds long, otherwise the available data may be insufficiently long. Two of the signal 

analyses techniques used, had their window settings set at 10 seconds with 50% overlap. A 30 second epoch 

therefore results in five windows, which is considered to be the lowest amount of windows needed. Of all 

patient measurements we included, 39 had four suitable epochs and 10 had two epochs. 

We did not manually determine the timings of the eyes open and closed epochs in the healthy EEG-files. 

The existing annotations in the EEG-files were consistent in indicating the starts of eye open epochs and 

eyes closed epochs. Per EEG-file, we selected the two longest eye epochs per eye state by automatically 

locating the previously mentioned annotations. We corrected the epochs by cutting 5 seconds from start 

and end. A final automated check ensured the eye epochs were at least 50 seconds long. 

 

5. Signal processing 

5.1 Preprocessing 
We inspected the patient data for visual artifacts, which were excluded (see 4.1 Epoch timings). Apart from 

excluding visual artefacts, no further preprocessing was deemed necessary, due to the choice of signal 

analysis techniques and used frequency settings. The signal analysis techniques we used relied on power 

spectral density and coherence estimations, in which we could analyse in accordance with frequency bands 

to our choice. All frequency bands we used are within the range of 1 to 30 Hz. Therefore we could eliminate 

important causes of artifacts like DC-offset (< 1 Hz) and power-grid interference (50 Hz). 

 

5.2 Relative power 
The first approach in signal analysis was about determining the power of EEG signals within specific 

frequency bands. These powers were relativised to the power of the combined bandwidth of all used 

frequency bands. The used frequency bands, theta, alpha and beta, as defined by Tatum [53], are described 

in Table 3 and visualised in Figure 1. An important reason we did not use lower frequency bands, such as 

delta, was to prevent DC-offset interference. Powers within higher frequency bands, such as gamma, are 

low. Higher frequency bands may therefore have too little information to reliably analyse. We analysed the 
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‘eyes open’ and ‘eyes closed’ epochs 

separately. In case a measurement had 

two epochs of both eye states, we 

averaged the results of these separate 

epochs into one ‘eye open’ and one ‘eye 

closed' set of results. 

 

 

Table 3. The frequency bands (as 
described by Tatum [53]) which we used 
in the relative power and power 
variability approaches. 

Frequency 
band name 

Frequency band 
range (Hz) 

Theta 3.5 – 8 
Alpha 8 – 13 
Beta 13 –30 

 

 

First, we calculated the absolute powers. Per measurement and per lead, we cut the data into sections in 

accordance with the eyes open or closed epochs. Per data segment a power spectrum was created using 

the Welch’s method (3 second Hamming window with 50% overlap). Then, per frequency band, we 

calculated the absolute power 𝐴𝑃 as the area under the curve. This area was calculated by using a Riemann 

sum: 

 

 

𝐴𝑃 =  ∑ 𝑃𝑥𝑥(𝑓)∆𝑓

𝑓𝑐𝑢

𝑓𝑐𝑙

 (1) 

 

in which 𝑓𝑐𝑢 is the upper cut-off frequency, 𝑓𝑐𝑙  is the lower cut-off frequency and 𝑃𝑥𝑥(𝑓) represents the 

power spectrum values per frequency 𝑓. The ∆𝑓 (which is inverse related to the frequency resolution) was 

0.25 Hz in case of the patient recordings and 0.1221 Hz in case of the control population recordings (due to 

the different sample frequencies of 512 and 250 Hz respectively). The cut-off frequencies are in accordance 

to the earlier mentioned frequency bands. We calculated the overall power as the area in between the 

lowest cut-off frequency of the lowest band and the highest frequency of the highest band (3.5 and 30 Hz 

respectively). The relative power was calculated by dividing the power of one frequency band by the overall 

power. 

 

5.3 Variability of power 
We determined the variability of power by calculating the variance. The first step was to calculate an array 

of power values per patient per situation, that is to say per frequency band, per eye state, per lead (for 

example for patient 1, acute phase, alpha band, eyes open, Fp1-lead). We divided every data segment in 10 

second long windows with 50% overlap. At every window, we calculated the theta, alpha and beta powers 

like in the relative power approach. In this case however, we used the fast Fourier transform instead of the 

Welch’s method due to the short windows, and we did not relativised the powers. Each power value is 

stored in the previously mentioned power value arrays. We combined the arrays of the eyes open and eyes 

Figure 1. Power spectral density (PSD) estimate of some EEG-
data. Parts of the PSD representing theta, alpha and beta bands 
are marked. 
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closed into one array so that the variability of eyes open and closed together could be determined. The 

variance is calculated as follows: 

 

 
𝜎2 =

1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

 

(2)  

 

in which 𝑁 is the power value array size, 𝜇 the mean of the array and 𝑥𝑖  the individual power values. 

 

5.4 Power symmetry 
To calculate the power symmetry, first we calculated the power of EEG signals at the frequency band of 1 

– 25 Hz. This frequency band is in accordance with the original Brain Symmetry Index [32]. Given a 

measurement had two epochs of both eye states, we first averaged the powers of the two matching epochs. 

Per symmetric oriented lead pair, the power symmetry 𝑃𝑆 was calculated as the absolute value of the 

relative power difference: 

 

 
𝑃𝑆 =

| 𝑃𝐿 − 𝑃𝑅|

𝑃𝐿 + 𝑃𝑅
 

 
(3)  

 

in which 𝑃𝐿 is the power at the left lead and 𝑃𝑅 the power at the right lead. EEG-data from the leads at the 

centre line are not taken into account, since these are lagging a symmetric counterpart. See Table 4 for an 

overview of the lead-signal-pairs. 

Table 4. Lead-signal-pairs used in 
the power symmetry approach. 

Left lead Right lead 

Fp1 Fp2 
F3 F4 
F7 F8 
C3 C4 
T3 T4 
P3 P4 
T5 T6 
O1 O2 

 

 

5.5 Coherence 
Coherence was calculated in between neighbouring and symmetric oriented lead-signal-pairs. For an 

overview of lead-signal-pairs, see  

Table 5. We set the MATLAB coherence function to use 10 second windows with 50% overlap. It provides 

an array as output representing coherence levels at different frequencies. We only used coherence values 

representing the range 3.5 – 30 Hz (which is the combination of the theta, alpha and beta band). These 

values were averaged. In case a measurement had two epochs of both eye states, we averaged the results 

of these separate epochs into one ‘eye open’ and one ‘eye closed' set of results. 
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Table 5. The fifty-eight lead-signal-pairs used in the coherence approach. Every ‘X’ marks a combination. 

Leads Fp1 Fp2 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 T5 P3 Pz P4 T6 O1 

O2 
              

X X X X 

O1 
            

X X X 
   

T6 
          

X X X 
  

X 
 

P4 
         

X X X 
 

X X 
 

Pz 
        

X X X 
  

X 
  

P3 
       

X X X 
  

X 
     

T5 
       

X X 
        

T4 
     

X X X 
  

X 
     

C4 
    

X X X 
 

X X 
      

Cz 
   

X X X 
  

X 
        

C3 
  

X X X 
  

X 
         

T3 
  

X X 
              

F8 
 

X X 
  

X 
           

F4 
 

X 
 

X X 
            

Fz X X 
 

X 
              

F3 X 
 

X 
              

F7 X 
                 

Fp2 X 
                

 

 

6. Phase differences 
To take into account the development in between phases, we analysed the differences in between phase 

results as well. The acute phase results are subtracted from the subacute phase results per situation per 

patient (given data from both phases is available). 

 

7. Divergency selection 
mTBI is a heterogeneous disorder: patients acquire injury at different sites at the scalp and therefore EEG 

signals at different leads may be altered differently. We had to design our methods with this heterogeneity 

in mind. Another challenging aspect was the large number of datasets that could potentially be statistically 

compared, as a result of using different signal analyses approaches, phases, frequency bands and eye states. 

In total, 909 datasets could be compared to both HISC scores and GOS-E outcomes. For a full explanation 

on this number, see Appendix 2. This high number would potentially jeopardise the significance of the 

statistical analyses in this study. Therefore, we aimed to reduce the amount of statistical analyses, while 

also keeping the heterogeneity in mind. 
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To both reduce the number of datasets and also correct for heterogeneity, we designed an algorithm we 

called the ‘divergence-selection-algorithm’. We applied this algorithm in all four approaches. Per approach, 

we did not use all data of all lead-signals or lead-signal-pairs. Instead, given a certain situation (that is, given 

a certain patient, phase, frequency band and eye state) we picked out the most divergent lead-signals or 

lead-signal-pairs (depending on the approach) by comparing to the healthy control population average 𝐻𝐴. 

We relativised the results of the signal analysis 𝑅𝑒𝑠 to these averages, giving a relative result 𝑅𝑒𝑙𝑅𝑒𝑠: 

 

 
𝑅𝑒𝑙𝑅𝑒𝑠 =

𝑅𝑒𝑠 − 𝐻𝐴

𝑅𝑒𝑠 + 𝐻𝐴
 

 
(4)  

 

Given a certain patient and situation (based on phase, frequency band and eye state) a set of relative results 

represents the original results of all different leads or lead-pairs. We picked out the two results deviating 

most from the healthy population average (the lowest and highest relative results). We repeated this 

process for all patients. Therefore, instead of having a dataset for every lead-signal or lead-signal-pair given 

a certain situation, we created two data sets (one with lowest divergence values and one with highest 

divergence values). To determine the population averages of the control group, we also applied all signal 

analyses approaches to the control group EEG-data. Per situation (given a certain patient, phase, frequency 

band, eye state and lead-signal(-pair)) the average of the control group was calculated. 

We applied the divergence-selection-algorithm as just described to acute and subacute data. A similar 

algorithm is applied to the results of the phase differences, although in this case we did not relativised the 

phase-difference-results to healthy group averages. The picked-out values are the highest and lowest 

difference values. Not that in the same patient in different phases, different leads could be selected. After 

the divergence-selection-algorithm has been applied to all four approaches, 78 datasets were generated. 

See Appendix 2 for an explanation on this number. 

For a detailed example of the entire signal analysis and divergence-selection-algorithm process, see 

Appendix 4. 

 

8. Statistics 
We analysed the results of the signal analysis approaches twice, once in comparison with the HISC scores 

and once in comparison with the GOS-E outcomes. Since the population is small, we did not consider 

multivariable testing to be a proper approach, therefore all testing was restricted to univariable testing. 

Due to the explorative nature of this research, we only considered statistical comparison with significance 

values smaller than 0.01 to be significant. 

 

8.1 HISC scores 
Because of the explorative nature of this research, we considered linear regression not to be a suitable 

option to test the signal analysis data in comparison to the HISC scores. Therefore, we calculated correlation 

values. First, we tested the HISC scores and the logarithmic transform of the HISC scores of all patients for 

normality. Via a Shapiro-Wilk test the hypothesis, that (the logarithmic of) the HISC scores are normally 

distributed, was rejected (p = 0.001 and p < 0.001, latter logarithmic). Since the HISC data was not normally 

distributed, we applied the non-parametric Spearman's rank correlation coefficient test, which is suitable 

for non-normal distributed input data. The correlation scores vary in between -1 and 1; a score close to 0 

suggests little correlation, a scores close to -1 or 1 suggests a profound correlation. 
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8.2 GOS-E outcomes 
We transformed the scores of the GOS-E into binary outcomes. We labelled scores of 7 or lower as a poor 

outcome and scores of 8 as a good outcome, in accordance with literature [54]. 

We split every dataset into a good and a poor GOS-E outcome subset. We tested these subsets, as well as 

their logarithmic transforms for normality (see Table 6 more details). In many datasets, the results of these 

subsets turned out to be not normally distributed. Therefore, for sake of consistency, we used a Mann-

Whitney U test in further statistical analyses for all datasets to test for a significant difference in between 

the groups. 

Table 6. Overview of the amount of datasets that, according to the Shapiro-Wilk test were normally 
distributed, considering a significance value threshold of 0.05. These datasets were created by the divergence-
selection-algorithm after applying the signal analyses. # – Absolute number, % – Relative number in 
percentage. 

 Relative power Power variability Power symmetry Coherence 

# % # % # % # % 

Acute 0 0.0 1 8.3 0 0.0 0 0.0 
Acute logarithmic 11 45.8 4 33.3 3 37.5 2 25.0 
Subacute 2 8.3 5 41.7 1 12.5 0 0.0 
Subacute logarithmic 14  58.3 6 50.0 3 37.5 2 25.0 
Phase difference 1  4.2 6 50.0 2 25.0 0 0.0 
Phase difference 
logarithmic 6 25.0 0 0.0 1 12.5 0 0.0 
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Results 
 

1. Population characteristics 
We initially included 31 patients. We excluded one patient because of missing all EEG-data and five because 

of missing questionnaire data. Of the 26 remaining patients (average age of 47.9 ± 16.8 years), we 

proceeded to analyse the acute EEG-data of 23 patients (average age of 48.7 ± 16.5 years) due to data-loss. 

Subacute EEG-data was available from all 26 patients. The average age of the control group, which had a 

size of 120, was 46.5 ± 18.1 years. For an overview of the population characteristics, see Table 7. 

Table 7. Population characteristics of the participants in this study. All acute phase (mTBI-A) patients are 
included in the subacute (mTBI-S) population. 

 
mTBI-A (n = 23) mTBI-S (n = 26) Control (n = 120) 

Average age (years) ± SD 48.7 ± 16.5 47.9 ± 16.8 46.5 ± 18.1 

Male/female 14/9 14/12 63/57 

Abnormal CT scan 48% 46% - 

Medication 39% 35% - 

Questionnaire results 

Average HISC ± SD 4.5 ± 5.0 4.3 ± 4.8 - 

Good/poor GOS-E 12/11 13/13 - 

TBI causes 

Bicycle accident 57% 54% - 

Motor accident 9% 8% - 

Fall 22% 19% - 

Other 9% 12% - 

Unknown 4% 8% - 
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2. HISC scores and GOS-E outcomes 
When comparing the HISC scores and GOS-E outcomes, 

high HISC scores (> 4) correlate with a poor GOS-E 

outcome and a low HISC score usually implies a good 

GOS-E outcome (see Figure 2). Both the HISC scores and 

logarithmic transformed HISC scores were not normally 

distributed (tested with a Shapiro-Wilk test, P = 0.001 

and P < 0.001 respectively). 

 

3. HISC scores comparison results 
 When comparing the signal analysis datasets to the 

questionnaire results, no statistical significant 

comparisons were found, considering a significance 

value threshold of 0.01. In comparison to the HISC, five 

out of the 78 datasets showed a significance value 

smaller than 0.1 and an absolute correlation value 

larger than 0.3. These comparisons are reported below. 

For an overview of these five comparisons, see Table 8. 

For a complete overview of all comparison results, see 

appendix 5. 

 

 

 

Table 8. Overview of the reported Data-HISC scores statistical comparisons. All have absolute correlation 
values larger than 0.3 and significance values smaller than 0.1. RP – relative power, PV – power variability, 
PS – power symmetry. 

 

  

Approach Phase Band Divergence Eye state Correlation Significance Paragraph 

RP Difference Alpha Highest Closed -0.43 0.04 3.1 

PV Subacute Theta Highest - -0.43 0.03 3.2 

PS Difference - Highest Open -0.37 0.08 3.3 

PS Acute - Highest Closed 0.36 0.09 3.4 

PS Subacute - Lowest Open -0.34 0.09 3.5 

Figure 2. Visual comparison between the HISC 
scores and the GOS-E outcomes. HISC scores of 
five and higher are exclusively found in patients 
with a poor GOS-E outcome. HISC scores of four 
and lower are mostly found in the good GOS-E 
outcome patients. 
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3.1 Relative power and HISC 
 

 

Figure 3. Comparison between the HISC scores and the relative power, phase difference, high divergence 
values, alpha band, eyes closed dataset. The Spearman's rank correlation coefficient test resulted in a 
correlation score of -0.44 and a significance value of 0.04, making this comparison the best scoring HISC score 
comparison. Acute sc. – acute score, S.acute sc. – subacute score. 

In comparison to the HISC scores, the relative power, phase difference, alpha band, eyes closed, highest 

divergence values dataset scores a correlation value of -0.44 and a significance of 0.04 and shows a negative 

trend (see Figure 3). Patients with high HISC scores (more persistent complaints) tend to have similar 

relative alpha power scores in the acute and subacute phase, while patients with low HISC scores (less or 

no persistent complaints) have higher relative alpha powers in the subacute phase, considering the eyes 

closed measurements and the high divergency values. 

 

3.2 Power variability and HISC 
The power variability, subacute phase, theta band, highest divergence values dataset scores, in comparison 

to HISC scores a correlation value of -0.43 and a significance of 0.03. Patients with higher HISC scores tend 

to have lower theta power variability than healthy average (see Figure 4). Patients scoring low on the HISC 

tend to have scores above or around healthy average. 
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Figure 4. Comparison between the HISC scores and the power variability, subacute phase, high divergence 
values, theta band dataset. The Spearman's rank correlation coefficient test resulted in a correlation score of 
-0.43 and a significance value of 0.03. HA – healthy average. 

 

3.3 Power symmetry and HISC – phase differences 
 

 

Figure 5. Comparison between the HISC scores and the power symmetry, phase difference, high divergence 
values, eyes open dataset. The Spearman's rank correlation coefficient test resulted in a correlation score of -
0.37 and a significance value of 0.08. Acute sc. – acute score, S.acute sc. – subacute score. 
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In comparison to the HISC scores, the power symmetry, phase difference, eyes open, highest divergence 

values dataset scores a correlation value of -0.37 and a significance of 0.08. Symmetry scores of high HISC 

scoring patients tends to be comparable in both phases. Patients with low HISC scores tend to have higher 

symmetry scores (i.e. less symmetric EEG) in the subacute phase (see Figure 5). This dataset only considers 

the most asymmetric lead-pair per patient. 

 

3.4 Power symmetry and HISC – acute phase 
 

 

Figure 6. Comparison between the HISC scores and the power symmetry, acute phase, high divergence values, 
eyes closed dataset. The Spearman's rank correlation coefficient test resulted in a correlation score of -0.36 
and a significance value of 0.09. HA – healthy average. 

The power symmetry, acute phase, eyes closed, highest divergence values dataset scores, in comparison to 

the HISC, a correlation value of 0.36 and a significance of 0.09. Patients with lower HISC scores tend to have 

lower symmetry scores (display a more symmetric EEG) than the patients with higher HISC scores. Almost 

all patients score higher (less symmetric) than healthy average (see Figure 6). Like in the previous dataset, 

this dataset only considers the most asymmetric lead-pair per patient. 
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3.5 Power symmetry and HISC – subacute phase 
The final HISC comparison addressed in this chapter is the power symmetry, subacute phase, eyes open, 

lowest divergence values dataset. It scores a correlation value of -0.34 and a significance of 0.09. After 

plotting, the comparison seems inconclusive (see Figure 7), considering the low angle of the trendline 

compared to the vertical spread of the datapoints. These scores, which are only based on the most 

symmetric lead-pair per patient, seem to be lower (and thus more symmetric) than the healthy population 

averages. 

 

 

Figure 7. Comparison between the HISC scores and the power symmetry, subacute phase, low divergence 
values, eyes open dataset. The Spearman's rank correlation coefficient test resulted in a correlation score of 
-0.34 and a significance value of 0.09. Due to the low angle of the trendline compared to the vertical spread of 
the datapoints, the correlation may be considered inconclusive. 
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4. GOS-E outcomes comparison results 

Of all 78 datasets that were statistically compared to the GOS-E outcomes, four were considered for further 

analysis. Only these comparisons scored significance values smaller than 0.1. For an overview of these four 

comparisons, see Table 9Table 8. For a full overview of all comparisons, see appendix 5. 

 

Table 9. Data-GOS-E outcomes statistical comparisons considered to be of interest. All have significance values 
smaller than 0.1. Coh – Coherence, RP – relative power, PS – power symmetry. 

Approach Phase Band Divergence Eye state Significance Paragraph 

Coh Acute - Lowest Open 0.04 4.1 

RP Difference Alpha Highest Closed 0.08 4.2 

Coh Acute - Lowest Closed 0.08 4.3 

PS Subacute - Lowest Open 0.09 4.4 

 

 

4.1 Coherence and GOS-E – open eyes 

 

Figure 8. Comparison between the GOS-E outcomes and the coherence, acute phase, low divergence values, 
eyes open dataset. The Mann-Whitney U test resulted in a significance value of 0.04, making this comparison 
the best scoring GOS-E outcome comparison. Acute sc. – acute score, S.acute sc. – subacute score. 

In comparison to the GOS-E outcomes, the coherence, acute phase, eyes open, lowest divergence values 

dataset has a significance value of 0.04. Both patient groups tend to have coherence scores below the 

healthy average, with the poor outcome group scoring lower (see Figure 8). All coherence values below -

0.5 are exclusively found in the poor outcome group. This comparison only takes the least coherent lead-

pair per patient into account. 
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4.2 Relative power and GOS-E 

 

Figure 9. Comparison between the GOS-E outcomes and the relative power, phase difference, high divergence 
values, alpha band, eyes closed dataset. The Mann-Whitney U test resulted in a significance value of 0.08. 
HA – healthy average. 

The relative power, phase difference, alpha band, eyes closed, highest divergence values dataset 

comparison scores a significance value of 0.08. The comparison between this dataset and the HISC scores 

is described earlier (see paragraph 3.1). According to the comparison to the GOS-E outcomes, almost all 

patients have a higher relative alpha powers in the subacute phase than in the acute phase (see Figure 9). 

In the good GOS-E outcome group, these differences tend to be larger than in the poor outcome group. 

Difference values of larger than 0.2 are almost exclusively found in the good outcome group. This dataset 

only considers the highest scoring lead per patient, i.e. the lead with the largest relative power difference.  

 

4.3 Coherence and GOS-E – closed eyes 
The coherence, acute phase, eyes closed, lowest divergence values dataset scores a significance value of 

0.08 in comparison to the GOS-E outcomes. The poor outcome group has all its coherence scores below 

average (see Figure 10). The good outcome group has its scores mostly below health average. The average 

good outcome group score is not as low as the average poor outcome group score. This comparison only 

takes the lowest coherence scoring lead-pair per patient into account. 
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Figure 10. Comparison between the GOS-E outcomes and the coherence, acute phase, low divergence values, 
eyes closed dataset. The Mann-Whitney U test resulted in a significance value of 0.08. HA – healthy average. 

 

4.4 Power symmetry and GOS-E 

 

Figure 11. Comparison between the GOS-E outcomes and the power symmetry, subacute phase, low 
divergence values, eyes open dataset. The Mann-Whitney U test resulted in a significance value of 0.09. 
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The last dataset that is addressed in this chapter is the power symmetry, subacute phase, eyes open, lowest 

divergence values dataset. In comparison to the GOS-E outcomes, it scores a significance value of 0.09. The 

comparison suggests that patients within the poor outcome group tend to have lower symmetry scores, i.e. 

higher level of symmetry, than those from the good outcome group. (see Figure 11). Overall, all patients 

score lower (have higher levels of symmetry) than the healthy average. These scores are only based on the 

most symmetric lead-pair per patient. 

 

5. Overview results comparisons 
Table 10 and Table 11 provide an overview of the above described results. The result addressed in 

paragraph 3.5 is not included, considering the inconclusive correlation. 

Table 10. Overview of the top four scoring HISC score comparisons and their possible implications for mTBI 
patients, based on HISC score comparisons. For more details about the comparisons and the specific settings 
to which these implications apply, see paragraph 3. Par. – Paragraph, Res.# – result number, Cor. – correlation 
value, P – significance value. 

 

Table 11. Overview of the top four scoring GOS-E outcome comparisons and their possible implications for 
mTBI patients, based on GOS-E outcome comparisons. For more details about the comparisons and the specific 
settings to which these implications apply, see paragraph 4. Par. – Paragraph, Res.# – result number, 
P – significance value. 

Par. Summarised implications of GOS-E comparisons P 

4.1 Acute patients have a lower coherence than healthy controls. Those with a poor 
outcome have a lower coherence compared to those with a good outcome. 

0.04 

4.2 Patients have higher relative alpha powers in the subacute phase than in the acute 
phase. Differences are larger in those with a good outcome compared to those with a 
poor outcome. 

0.08 

4.3 Acute patients have a lower coherence than healthy controls. Those with a poor 
outcome have a lower coherence compared to those with a good outcome. 

0.08 

4.4 Subacute phase patients have a more symmetric EEG than healthy controls. Those with 
a good outcome have a less symmetric EEG compares to those with a poor outcome. 

0.09 

 

  

Par. Summarised implications of HISC comparisons Cor. P 

3.1 Patients with fewer complaints have lower relative alpha power in the acute 
phase compared to the subacute phase. 

-0.44 0.04 

3.2 Subacute patients with more complaints have lower theta power variability 
than the healthy average. 

-0.43 0.03 

3.3 Patients with fewer complaints have a less symmetric EEG in the acute phase 
compared to the subacute phase. 

-0.37 0.08 

3.4 Acute patients have a less symmetric EEG than healthy controls. Those with 
more complaints have a less symmetric EEG compared to those with few 
complaints. 

0.36 0.09 



27 
 

Discussion 
 

In this explorative study we searched for correlations between EEG characteristics and outcome after mild 

traumatic brain injury. These EEG characteristics included relative power, power variability, power 

symmetry and coherence. We used a self-designed algorithm to select the most abnormal lead or lead-pairs 

per patients to both account for the heterogeneity among patients and reduce the amount of statistical 

comparisons. Several interesting trends were identified, which are discussed below. 

The first trend implies that patients with few or no persistent complaints tend to have a higher relative 

alpha power in the subacute phase than in the acute phase, while patients with many persistent complaints 

tend to have a similar relative alpha power in both phases (correlation value = -0.44, P = 0.04). Literature 

suggest that TBI patients have reduced absolute alpha powers compared to healthy individuals [34,39]. Our 

findings suggest that patients with fewer complaints recover from a reduced to a normal alpha power in 

the first weeks after trauma. Such a recovery seems absent in patients with more persistent complaints. 

Previous studies suggested that the reduction in alpha power is caused by a reduced cortical excitability 

[39]. Acute reduction in excitability is linked to a neurometabolic cascade involving an efflux of potassium, 

release of amino acids, increase of glycolytic rates, accumulation of calcium and a reduction in cerebral 

blood flow [55]. We speculate that patients with a poor recovery from this reduced excitability state 

develop persistent complaints, and may be identified using EEG. 

Second, we found a trend that implies that patients with many persistent complaints have a lower theta 

power variability than the average of the healthy controls, while patients with few or no persistent 

complaints have a theta power variability comparable to or higher than healthy average (correlation value 

= -0.43, P = 0.03). This is in contradiction with the study from Williams et al. [40], which showed that mTBI 

patients had a higher theta power variability than controls. However, it must be noted that this particular 

study was focused on insomnia and had a small population of nine patients. Kaltiainen et al., who used a 

setting more comparable to ours, showed a major increase in spontaneous theta activity in seven out of 

twenty-seven mTBI patients [56]. The cause of this abnormal theta band activity is unknown. It may be 

related to changes in deep midline structures, to slowing of physiological alpha activity or to axonal damage 

causing a mild form of polymorphic delta activity [57]. 

Last, we identified a trend that all mTBI patients have lower coherence scores than the average of the 

healthy controls, and poor recovered patients have even lower coherence scores than well recovered 

patients (P = 0.04). Previous studies on coherence after mTBI report contradictory results and disagree on 

whether the coherence increases or decreases after mTBI [39,47,58]. Lewine et al. [59] suggested that a 

decrease in interhemispheric beta coherence may reflect callosal integrity and we suggest that it is plausible 

that the decrease in coherence in our result has a similar cause. If true, our result may suggest that poor 

recovering patients have a poorer callosal integrity compared to good recovering patients. However, since 

our selection-algorithm does not necessarily select interhemispheric lead-pair data, this suggestion is at 

most plausible. 

 

Strengths and limitations 
A strength of our study is that it is a prospective study with well-defined and clear inclusion and exclusion 

criteria. Some may consider the population size of this study (23 or 26, depending on phase) to be small. 

Yet, considering the explorative nature of this study, we consider the population size to be appropriate. 

With regards to age and gender, our patient population is comparable to other Dutch mTBI cohorts [11,60–

62]. All patients in our cohort were admitted to hospital for observation, whereas in the entire mTBI 

population most patients are either discharged from the emergency department or not admitted to the 
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emergency department at all [2]. Therefore, it might be argued that our cohort is at a more sever end of 

the mTBI spectrum, making the results of our study not extrapolable to the entire mTBI population. 

To make sure that the healthy group is representable to the patient group, the average age and 

male/female ratio were matched. Because all the healthy group individuals were patients at the outpatient 

clinic, it could be argued that the healthy group was not fully representative to a real healthy population. 

However, after assessment of their EEGs by medical professionals, their EEGs were judged to be normal. 

Therefore it is deemed acceptable to use these EEGs as healthy EEGs for their use in this study. 

Measuring the same patients in both acute and subacute phase is rather uncommon and provides 

interesting insights. The EEG measurements themselves were performed by experienced personnel in a 

setting specifically designed for EEG measurements, using high quality equipment. Therefore the measuring 

quality can be considered to be well sufficient. However, the measurement protocol for this study was not 

always applied equally in every measurement. This was due to different operators performing the 

measurements and difficulties with applying the protocol in some patients in the acute phase. According to 

the protocol, two two-minute epochs had to be measured of both eye states. Some EEGs had only one 

(suitable) epoch per eye state and/or short epochs. EEGs with too short epochs (<30 seconds) were 

excluded. The shorter epochs may have had influence on the results of the signal analyses. It is expected 

that the influence on the relative power, power symmetry and coherence, is limited. The influence on 

power variability may be more profound, because the chance of an increase in variability within a signal 

increases with signal length. 

The questionnaires used in this study have been validated and can therefore be considered as sufficiently 

reliable [48,63,64]. One disadvantage of the HISC questionnaire is that it relies on long-term memory; the 

patients have to score symptoms prior to their trauma, which is at least six months ago at the time of filling 

in the questionnaires. On one hand it is well possible that TBI effects the long-term memory of patients 

[65]. On the other hand patients may be effected by the ‘good-old-day’ bias, which is caused by the 

tendency of individuals to underestimate their past problems and consider themselves healthier in the past 

[66]. When scoring the differences between pre-injury and six months post-injury, any questionnaire will 

have the same dependency on the patients’ long-term memory and therefore no alternative is expected to 

do better in this regard. The GOS-E questionnaire can be considered to be too rudimentary for mTBI 

research. The patients in our study scored usually 7 or 8 points and in some instances 6 points; no patient 

scored 5 or lower. Due to this range in scores, the sensitivity of the GOS-E is limited. However, the GOS-E is 

a frequently used, validated questionnaire for TBI research [64]. 

The divergence-selection-algorithm was important to our study, because it was a solution to two problems. 

On one hand, the amount of statistical comparisons had to be reduced, to limit the impact on the 

significance value of the individual comparisons. On the other hand, the heterogeneity of the patient 

population may weaken the comparison results if a per-lead or per-lead-pair method is used. Different 

patients suffer impact at different sites at the scalp. Therefore, it is likely that the changes in EEG also differ 

per patient, i.e. EEG-data at different leads are affected in different patients. A per-lead or per-lead-pair 

method will not use the most affected EEG-data of all patients. The divergence-selection-algorithm does 

pick out the most deviating data per patient and therefore likely the most affected data. 

This divergence-selection-algorithm is newly created and its validation has been limited. We did validate 

the algorithm using self-created signals which were purposely designed for this validation and only reflect 

real EEG-data to a limited degree (see Appendix 3). This, however, did enable us to validate the basic 

functionality of the algorithm with a high degree of certainty. For full validation, a more elaborate set of 

tests are required, using a large amount of EEG-data with known EEG characteristics. Such an elaborate and 

labour intensive validation did not fit the scope of our study. 

We had to make decisions on what settings to use in the signal analysis techniques. The only relevant 

adjustable settings of the Welch’s method, used in the relative power and power symmetry approaches, 
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are the window shape and length. We used a Hamming window, which is commonly used in the Welch’s 

method. We set the window length at three seconds. No other lengths were tested, for this length was, to 

our experience, appropriate. Finetuning the window length may have unnecessarily complicated this study 

and may have increased the amount of statistical comparisons (depending on the number of different 

window lengths used). 

In the relative power and power variability approaches, the theta, alpha and beta bands were analysed 

separately. Within EEG analysis, separating this way is common practice, especially considering many 

studies focus on alpha band power [30,44,47]. Lower frequency bands were not used due to possible DC-

offset interference and higher bands were not used because these bands are expected to contain little to 

no useful information. The coherence approach used one single bandwidth covering the theta, alpha and 

beta bands. We could have separated the entire bandwidth into theta, alpha and beta bands as well, but 

this would have come with the disadvantage of increasing the amount of statistical comparisons, which 

may be disadvantageous for the significance level. 

We did not use the original BSI, because it does not analyse the symmetry of lead-pairs separately. Instead 

it first calculates the average powers of both hemispheres and then calculates the symmetry index. If a 

patient has a local trauma only affecting the EEG at one or two leads, it is likely it will barely have any effect 

on the BSI. Therefore we preferred a method in which the lead-pairs are analysed separately [67].  

 

Ethical implications of using a prediction tool 
Every year many new mTBI patients would potentially benefit from receiving preventive treatment right 

after acquiring mTBI. Currently it is insufficiently known which patients would benefit from such treatment. 

Research into correlations between chronic complaints and biomarkers, and by extension the development 

and application of a prediction tool, is therefore of high importance. It could however be argued that, if it 

is possible to predict a patients’ prospect, the medical scientific community is morally obliged to look into 

the possibility to develop suitable treatments. 

Having a prediction tool has major benefits, yet it also comes with risks. An important risk for prediction 

tools in general is that it may to some extent replace the judgment of medical professionals. After successful 

implementation, a hospital department could gradually rely more and more on the tool and could therefore 

neglect to give sufficient ‘human’ judgment. This can result in unnecessary errors introduced by the 

prediction tool. If errors occur, a difficult matter of responsibility may arise. The medical professionals using 

the tool or the manufacturers of the tool may be to blame and some could even argue that, in case of a 

very advanced AI tool, the tool itself can be blamed. However, when the tool is built on difficult to 

understand, complicated (AI) algorithms, addressing responsibility may not be straightforward. 

 

Prospect 
In our study we explored for potential correlations rather than to prove correlation between qEEG and 

presence of persistent complaints or lack of recovery. Future studies, preferably with larger patient 

populations and focused on the possible trends found, may prove or disprove these correlations. If such 

studies are only focussed on the setting (eye state, band, phase) and signal analysis technique in accordance 

to the found trends, the relative small amount of statistical comparisons may not necessitate a selection-

algorithm like in our study. However, these studies will still have to deal with the heterogeneity of (the 

trauma of) patients. Therefore, some selection mechanism, like the divergence-selection-algorithm in our 

study, is still recommended. 

Due to the current implementation of the divergence-selection-algorithm we did not acquire data on the 

effect the different impact sites in patients has on recovery or persistence of complaints. Maybe, future 
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studies focused on these possible effects could be valuable. It is well plausible that different impact sites 

have different prospects. A future study on interhemispheric coherence may also be valuable to support or 

disprove the idea that callosal integrity may reflect the recovery of mTBI patients. 

An alternative to studies focused on validating the trends found in this study, may be a study using machine 

learning algorithms with the trends found in this study as input. Tewarie et al. [31] showed that, in moderate 

and severe TBI patients, machine learning (in this case Random Forrest) is able to find correlations using 

many (inconclusive) trends as input. 

A category of signal analysis techniques not addressed in this study is entropy. Entropy has been used in 

some TBI EEG studies, yet (to our knowledge) not with a goal, method and setting comparable to our study 

[68–70]. Many forms of entropy exist and could be tested. One study seemed promising in predicting 

prognosis in severe TBI patients [70]. So, more research on entropy in mTBI can well be considered 

interesting. 
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Conclusion 
 

Three non-significant, yet possible correlations have been found when comparing EEG characteristics of 

mTBI patients with and without persistent complaints and with and without good recovery. These 

correlations are based on the results of relative alpha power, theta power variability and coherence 

analyses. 

Especially considering the fact that currently no proper prediction tool is available to distinguish the mTBI 

patients that are likely to acquire persistent complaints from the patients that will likely recover well, and 

considering the fact that many patients annually acquire (persistent) mTBI related complaints, more 

research into correlations between complaints and potential biomarkers is very important. Future research 

may be focused on validating the possible correlations found in our study or implementing these 

correlations into a machine learning system. A study comparable to ours into entropy could also be 

interesting. 

 

To conclude, we found some possible correlations that may be interesting to further research in an effort 

to create a prediction tool to better categorise mTBI patients.  
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Appendix 1 – Questionnaires 
 

Head Injury Symptom Checklist 
Wilt u aangeven of u last had/hebt van één of meer van de volgende klachten? Kruis steeds in 

de eerste kolom de situatie voor het ongeval en in de tweede kolom de klachten op dit 

moment 
 

 Voor het ongeval Heden, na het ongeval 

 

 Nee  Soms Vaak Nee Soms Vaak 

Hebt u last van hoofdpijn? O O O O O O 

Bent u duizelig of licht in het hoofd?  O O O O O O 

Hebt u last van evenwichtsstoornissen? O O O O O O 

Hebt u last van oorsuizen?  O O O O O O 

Hebt u last van gehoorsverlies? O O O O O O 

Hebt u veel slaap nodig?  O O O O O O 

Wordt u snel moe?  O O O O O O 

Bent u vergeetachtig? O O O O O O 

Hebt u moeite zich te concentreren? O O O O O O 

Bent u traag?  

 

O O O O O O 

Bent u prikkelbaar, snel kwaad?  

 

O O O O O O 

Kunt u slecht tegen lawaai?  

 

O O O O O O 

Kunt u slecht tegen alcohol? O O O O O O 

Bent u angstig of hebt u angstige dromen?

  

O O O O O O 

Hebt u last van een droge mond? O O O O O O 

Hebt u pijn in de nek? O O O O O O 

Hebt u een stijve nek? O O O O O O 

Hebt u pijn in de armen?  O O O O O O 

Hebt u last van jeuk? O O O O O O 
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Glasgow Outcome Scale – Extended 
Deze vragen gaan over het functioneren in het dagelijkse leven. 

 

1 Bent u in staat om te spreken of eenvoudige opdrachten uit te voeren? 

□ Nee 
□ Ja  

 

2a Heeft u hulp nodig bij bepaalde dagelijkse activiteiten? 
(wassen, aankleden, eten, eten klaarmaken) 
□ Nee ► Ga naar vraag 3 
□ Ja 

 

2b   Hoe vaak heeft u hulp nodig?  

□ 24 uur per dag 
□ Kan tot 8 uur per dag alleen zijn 

 

2c  Was u voor het ongeval thuis onafhankelijk?  □  Ja  □ Nee  

 

3a  Kunt u zonder hulp boodschappen doen?   □  Ja  □ Nee 

 

3b  Kon u dit voor het ongeval?     □  Ja  □ Nee 

 

4a  Kunt u zich zonder hulp in de buurt verplaatsen?  □  Ja  □ Nee 

 

4b  Kon u dit voor het ongeval?     □  Ja  □ Nee 

 

5a  Bent u momenteel in staat te werken/naar school te gaan of voor anderen to zorgen op uw oude 

niveau? 

□ Ja, volledig ► Ga naar vraag 6 

□ Nee, of slechts gedeeltelijk 
 

5b. Wat is de mate van arbeidsongeschiktheid? 

□ Gedeeltelijk 
□ Volledig, aangepast of ander werk dan voorheen 

 

5c. Werkte u voor het ongeval of was u werkzoekend? 

□ Ja 
□ Nee 
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6a  Heeft u uw reguliere sociale contacten en vrijetijdsbestedingen buitenshuis weer volledig hervat? 

□ Ja ► Ga naar vraag 7 
□ Nee 

 

 

6b  In hoeverre wordt u beperkt in de omgang met anderen en in uw vrijetijdsbesteding? 

□ Ik ben minder actief, maar ten minste op 50% van mijn oude niveau 
□ Ik ben veel minder actief, minder dan 50% dan voor het ongeval 
□ Ik doe nog maar zelfden of nooit wat buitenshuis 

 

6c  Had u voor het ongeval regelmatig omgang met anderen en vrijetijdsbesteding buitenshuis? 

□ Ja 
□ Nee 

 

7a  Is er bij u sprake van psychische problemen waardoor er problemen ontstaan zijn binnen het gezin, de 

familie of de vriendenkring (Bijvoorbeeld: opvliegendheid, prikkelbaarheid, irritaties, angsten, wisselend 

humeur, onredelijkheid of depressies) 

□ Ja  
□ Nee ► Ga naar vraag 8 

 

7b  Hoe vaak treden deze problemen op? 

□ Soms: minder dan wekelijks 
□ Vaak: een keer per week of vaker, maar acceptabel 
□ Constant: dagelijks en onverdraaglijk 

 

7c Als deze problemen anders dan voor het ongeval? 

□ Ja 
□ Nee 
□ N.v.t. 

 

8a  Zijn er op dit moment andere klachten ten gevolge van het ongeval die van invloed zijn op het 

dagelijkse leven? (Bijvoorbeeld: hoofdpijn, duizeligheid, moeheid, geheugen- en concentratiestoornissen) 

□ Ja 
□ Nee 

 

8b  Als deze klachten al voor het ongeval bestonden, zijn ze dan erger geworden? 

□ Ja 
□ Nee 
□ N.v.t. 

 

8c  Wat is voor u de belangrijkste veroorzaker van alle gevolgen na het ongeval? 

□ Het hoofd- en/of hersenletsel 
□ Letsel aan andere lichaamsdelen 
□ Een combinatie 
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Appendix 2 – Explanation on number of datasets 
 

For this research we used four signal analyses approaches (relative power, power variability, power 

symmetry and coherence). Per approach, many different situations could be distinguished, based on 

variables such as eye state (open and closed), phase (acute, subacute and differences in between the 

phases), frequency bands (theta, alpha and beta) and lead-signals (19) or lead-signal-pairs (up to 58). The 

number of variables differs per approach. All different situations of all four approaches combined come 

down to 909. This means that 909 datasets could be compared to both HISC scores and GOS-E outcomes. 

See Table 12 and Figure 12A for an explanation on this number. This high number would potentially 

jeopardise the significance of the statistical analyses in this study. Therefore, we had to reduce the amount 

of statistical analyses, and thus the amount of datasets had to be reduced. After applying the divergence-

selection-algorithm, the number of datasets was reduced to 78. See Table 13 and Figure 12B for an 

explanation on this reduction. 

 

Table 12. Explanation on the amount of data-sets generated by the signal analyses (all four approaches). Note 
that the numbers in each row are multiplied to get to the amount in the ‘Total’ column. We had to reduce the 
amount of datasets to limit the influence on the significance of the statistical tests that had yet to be 
performed. 1The acute phase, subacute phase and the difference between acute and subacute as the third 
‘phase’. 

Approach Phases1 Frequency bands Eye states Leads/lead-pairs Total 

Relative power 3 3 2 19 342 
Power variability 3 3 1 19 171 
Power symmetry 3 1 2 8 48 
Coherence 3 1 2 58 348 

Total number of possible datasets 909 
 

Table 13. Explanation on the amount of datasets generated after the divergence-selection-algorithm (all four 
approaches). Note that the numbers in each row are multiplied to get to the amount in the ‘Total’ column. 
This also represents the amount of datasets that we statistically analysed. 1The acute phase, subacute phase 
and the difference between acute and subacute as the third ‘phase’. 

Approach Phases1 Frequency bands Eye states Divergent leads/ 
lead-pairs 

Total 

Relative power 3 3 2 2 36 
Power variability 3 3 1 2 18 
Power symmetry 3 1 2 2 12 
Coherence 3 1 2 2 12 

Total number of possible datasets 78 

 



40 
 

 

Figure 12. A. Explanation on the amount of datasets generated by the signal analyses. One of four approaches, 
relative power, is taken as an example. In this approach, we had to analyse two phases and the differences in 
between these phases. Per phase, three frequency bands had to be analysed. Per band there are two eye 
states we analysed and per eye state are 19 lead-signals we could have analysed. B. Explanation on the amount 
after reduction by the divergence-selection-algorithm. Instead of generating a dataset for all lead-signals or 
lead-signal-pairs given every situation, two datasets are created given every situation. 1In case of the relative 
power signal analysis approach; numbers differ in other approaches. 
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Appendix 3 – Validation of the divergence-selection-algorithm 
 

We validated the divergence-selection-algorithm in all four approaches using simulations. A virtual brain 

was simulated for every approach with a given amount of simulated lead-signals. Three lead-signals 

represented a ‘healthy’ signal, at least one ‘unhealthy’ lead produced a signal that should in theory give a 

low score after signal analysis and one ‘unhealthy’ lead that should give a high score. We also created two 

‘decoy signals’ that should also score lower and higher than the ‘healthy signals’, but not as low and high 

as the previously mentioned unhealthy signals. Given the signal analyses approaches work well, they should 

be able to pick out the low and high scoring lead-signals and not the decoy or healthy signals. To acquire 

healthy population data we created an additional set of ten healthy signals. Since all lead-signals in the 

‘virtual brain’ have at default (in ‘healthy state’) similar properties, one set of healthy signals is sufficient to 

determine healthy population averages for the signal analysis results at all leads of the virtual brain. Per 

signal analyses approach, the above described simulation was repeated 1,000 times. 

 

The signals 𝑆𝑖𝑔𝑛𝑎𝑙𝑠𝑖𝑚 generated for the validation of the relative power, power variability and power 

symmetry approaches are a summation of a random signal and three sets of sinusoids: 

 

 𝑆𝑖𝑔𝑛𝑎𝑙𝑠𝑖𝑚 = 𝑆𝑖𝑔𝑛𝑎𝑙𝑟𝑎𝑛𝑑 + 𝐴𝑠𝑒𝑡 1  ∑ 𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑠𝑠𝑒𝑡 1 

+𝐴𝑠𝑒𝑡 2  ∑ 𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑠𝑠𝑒𝑡 2 + 𝐴𝑠𝑒𝑡 3  ∑ 𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑠𝑠𝑒𝑡 3 

 

(5)  

 

𝑆𝑖𝑔𝑛𝑎𝑙𝑟𝑎𝑛𝑑 is a signal with pseudorandom values within the interval -100 – +100 µV and has a uniform 

distribution. Amplitudes 𝐴𝑠𝑒𝑡 𝑛 are at default set at 3 µV. The sets of sinusoids are stored in a matrix and 

defined as: 

 

 𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑠𝑠𝑒𝑡 𝑛 = sin(𝑓𝑛 ∗ 2𝜋 ∗ 𝑡 ∗  𝜏) 
(6)  

 

Time variation 𝜏 is defined as: 

 

 𝜏 = [0.9 ∶ 0.01 ∶ 1.1] 
(7)  

 

We chose three base frequencies 𝑓𝑛 at 6, 10 and 20 Hz. These frequencies correspond to the theta, alpha 

and beta bands respectively while also complying to the 1 – 25 Hz range of the power symmetry analyses. 

See Figure 13 for a typical power spectral density estimate plot of 𝑆𝑖𝑔𝑛𝑎𝑙𝑠𝑖𝑚. 

 



42 
 

 

Figure 13. Power spectral density estimate of a ‘healthy’ signal used to validate the divergence-selection-
algorithm within the relative power approach. Note the increased power around the three sets of sinusoids 
(around 6, 10 and 20 Hz). 

 

To generate the ‘unhealthy’ signals, we adjusted the amplitudes. The default length of the signals was 2 

minutes with a sample frequency of 512 Hz. For a full overview of all generated signals per analyses 

approach, see Tables 14 – 17. 

 

Relative power 
To test the divergence-selection-algorithm in the relative power approach, we created ten ‘healthy’ 

signals, having default amplitudes, as well as ten test signals. Of these test signals, three were ‘healthy’ 

signals. To test the ability to pick out divergent signals at the theta band, one ‘target’ signal had an 

amplitude half that of the healthy signals of the 6 Hz sinusoids and one ‘target’ signal had a double 

amplitude at the same sinusoids. These signals ought to be picked out by the divergence-selection-

algorithm as the most divergent (low and high scoring) signals when analysing the theta band. To test the 

same principle at the alpha and beta band, similar target signals were created with adjusted amplitudes at 

the 10 and 20 Hz sinusoids. Two ‘decoy’ signals were created by one having all its sinusoid amplitudes 

being 0.75 times that of the default amplitude and one having sinusoid amplitudes of 1.5 times default. 

These signals should score more divergent than the healthy signals, yet not as divergent as the target 

signals and therefore ought not to be picked out by the selection-algorithm. For an overview of the signals 

we created to validate the relative power approach, see Table 14. 
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Table 14. Overview of signals created to validate the divergence-selection-algorithm in the relative power 
approach. 

Signal label Random signal 

amplitude (µV) 
+ 6 Hz sinusoids 

amplitude (µV) 

+ 10 Hz sinusoids 

amplitude (µV) 

+ 20 Hz sinusoids 

amplitude (µV) 

 10 healthy signals 
Healthy 100 1 3 3 
 Test signals 
Healthy 100 3 3 3 
Healthy 100 3 3 3 
Healthy 100 3 3 3 
Theta low 100 1.5 3 3 
Theta high 100 6 3 3 
Alpha low 100 3 1.5 3 
Alpha high 100 3 6 3 
Beta low 100 3 3 1.5 
Beta high 100 3 3 6 
Decoy low 100 3.75 3.75 3.75 
Decoy high 100 5.25 5.25 5.25 

 

 

Power variability 
To validate the divergence-selection-algorithm in the power variability approach, we used ten healthy 

signals and ten test signals. We created these signals by joining together two two-minute long signals with 

different amplitudes. Due to the differences in amplitude, the new created signals have a predictable level 

of variability. The first half of healthy signals has amplitudes of 3 µV (default) and the second half has 

amplitudes of 4.5 µV (1.5 times default). The set of test signals had three signals similar to the healthy 

signals. The test signal that should yield the highest variability in the alpha band has set the alpha 

amplitudes to 6 µV (2 times default) and the signal that should yield the lowest alpha band variability has 

set these same amplitudes to 3 µV (1 times default). In a similar way we created two signals that should 

yield the lowest and highest variability in the beta band and two signals in the theta band. Additionally, we 

created two ‘decoy’ signals; one had all its amplitudes set to 3.75 µV (1.25 times default) and one to 5.25 

µV (1.75 times default). The divergence-selection-algorithm should not pick out these decoy signals. For an 

overview of the created signals we used to validate the power variability approach, see Table 15. 

 

Power symmetry 
To test the divergence-selection-algorithm in the power symmetry approach, we performed a similar 

simulation. In this case, we did create and analyse not individual signals, but sets of signals. To gain the 

healthy population average, we created ten sets; ten signals as earlier described with default (3 µV) 

amplitudes were compared to signals with amplitudes of 4.5 µV (1.5 times default). We created seven test 

signal sets of which three sets were similar to the healthy sets (1 versus 1.5 times default amplitude). The 

remaining sets were comparable, although we adjusted the amplitudes of the 10 Hz sinusoids. In one set, 

the amplitude of the 10 Hz sinusoids is set to default (3 µV). This set should score the best symmetry score 

and therefore ought to be picked out by the algorithm. In another set, we set this amplitude to 2 times 

default and therefore this set should score lower in the symmetry calculations and ought to be picked out 

as well. The two final sets were decoys with intermediate amplitudes at 1.25 and 1.75 times default 

amplitude. For an overview of the created signals used to validate the power symmetry approach, see Table 

16. 
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Coherence 
To test the coherence approach, we created signals in another way. Signals created in a way similar to these 

used in the other approach validations were not useful for validating coherence due to having a random 

signal as base signal. Two signals with a random signal as base score high on coherence, more or less 

regardless of additional sinusoids. Therefore, we created signals using a section of EEG-data from one of 

the patients. We visually inspected that section for the presence of artefacts and undesired waves, so that 

a clean ‘neutral’ section of EEG was used. 

 

Figure 14. Power spectral density estimate (Welch’s method) and coherence plot of two signals we used to 
validate the divergence-selection-algorithm within the coherence approach. This combination of signals 
should score relative low on coherence, considering the limited overlap in common frequencies. Another 
combination of signals has even less overlap, scoring an even lower coherence. Therefore, the combination 
depicted in this figure should not be picked out by the divergence-selection-algorithm and is therefore labelled 
as a ‘decoy’ combination.  

We created signal-pairs to test the coherence approach, with each pair having the same base signal. This 

base signal is a rearranged version of the previously mentioned EEG-data section. The EEG-data section was 

cut at a random point and the two new sections were swapped. After the creation of the base signal, we 

bandpass filtered this signal twice to create the two signals which, in combination can be used to perform 

coherence calculations. The cutoff frequencies of the bandpass filters of the two signals overlap to a certain 

degree, depending on the desired level of coherence. See Figure 14 for a power spectral density estimate 

of such a signal-pair, displaying the overlap in frequencies. 
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For the ten healthy signal combinations, one signal was created using a 5 – 15 Hz bandpass filter (which is 

considered the default bandwidth), the other was created via a 10 – 30 Hz bandpass filter, having a 5 Hz 

range overlap. We created three test signal combinations using similar filters. The combination that should 

have the lowest coherence score had the second bandpass filter set at 14 – 42 Hz (1 Hz overlap). The 

combination with the highest coherence score had this filter set at 6 – 18 Hz (9 Hz overlap). The two decoy 

combinations we created had the filter set at 13 – 39 Hz (2 Hz overlap) and 7 – 21 Hz (8 Hz overlap). For an 

overview of all signals created to validate the coherence approach, see Table 17. 

Table 17. Overview of signals created to validate the divergence-selection-algorithm in the coherence 
approach. 

Signal label Low cut-off 
frequency 
(Hz) 

High cut-off 
frequency (Hz) 

 Low cut-off 
frequency (Hz) 

High cut-off 
frequency (Hz) 

 10 healthy signals 
Healthy 5 15 Compared to 10 30 
 Test signals 
Healthy 5 15 Compared to 10 30 
Healthy 5 15 10 30 
Healthy 5 15 10 30 
Low 5 15 14 42 
High 5 15 6 18 
Decoy low 5 15 13 39 
Decoy high 5 15 7 21 

 
 

Validation results 
In all four signal analysis approaches, the validation of the divergence-selection-algorithm resulted in a 

success rate of 100%, e.g. all validation attempts were successful, given the methods of validation and the 

settings as described above. 

Table 18. Succes rate results of the validation of the divergence-selection-
algorithm. 

Approach Success rate (%) 

Relative power 100.0 
Power variability 100.0 
Power symmetry 100.0 
Coherence 99.9 

 

  



48 
 

Appendix 4 – Example of relative power approach process 
 

First step in calculating the relative 

power scores is to select an EEG epoch. 

In this example, we used an eyes closed 

epoch in an EEG recording on a patient in 

the acute phase, specifically recorded at 

the Fp1 lead. 

After selecting the EEG epoch, a power 

spectral density estimate (PSD) is 

calculated (see Figure 15). Within the 

PSD, the area under the curve is 

calculated, corresponding to the total 

bandwidth of the three used frequency 

bands, i.e. 3.5 – 30 Hz (lower graph). In a 

same manner, the area under the curve 

is calculated for the individual frequency 

bands. The upper graph, displays the 

area corresponding to the alpha band (8 

– 13 Hz). In this example the power of the 

alpha frequency band is 100 µV2 while 

the power corresponding to all 

frequency bands is 141 µV2. Dividing 

these powers results in the relative 

power of 0.71. The relative power of the 

second eyes closed epoch in this 

particular EEG measurement is 0.72. The 

average of these relative powers is 0.71, 

which is stored as the closed eye score in 

this particular setting and patient (see 

Table 19 second column, bottom row 

and Tabel 20Fout! Verwijzingsbron niet 

gevonden. third column, bottom row). 

This process was repeated for all patients and control group subjects, for all frequency bands, leads, eye 

states (open/closed) and phases. The healthy group value corresponding to the example above (acute 

phase, alpha band, eyes closed, O2-lead) is 0.10. Therefore, the relative result in case of the patient in the 

previous example is 0.75 (see Equation 4 and see bottom row in Table 19). 

The final step of the divergence-selection algorithm is selecting the highest and lowest relative scores. Table 

19 displays the relative scores at all leads of the same patient and setting (alpha band, eyes closed) as in 

the example. The highest acute phase score is the O2 score (0.75) and the lowest is the T4 score (0.29). The 

O2 and T4 scores also happen to be the highest and lowest scores in the subacute phase (see Table 19). 

  

Figure 15. Power spectral density estimate used in one of the 
relative power approach calculations. The upper graph displays 
the area under the curve representing the alpha band (8 – 13 Hz). 
The lower graph represents the full bandwidth (theta, alpha and 
beta band combined, 3.5 – 30 Hz) 
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Table 19. Example of the divergence-selection-algorithm processing of acute and subacute phase data. This 
table represents data from one patient. The relative scores (fourth and seventh column) are calculated using 
the original scores (second and fifth column) and the healthy population averages (third/sixth column). See 
Equation 4 for the relative score calculation. Per patient, the highest and lowest scoring leads are selected 
(green and red respectively). 

 

A similar process is applied to the phase difference scores. Considering the example, the relative power 

score in the subacute phase is 0.64. The phase difference score therefore is -0.07 (subacute score minus 

acute score, see bottom row in Table 19Tabel 20). In this patient, the difference in phases with the highest 

score is 0.13 at C3 and the lowest is -0.07 at O2 (see Tabel 20). 

The process as described above is applied similarly to all other patients. This way a dataset is created for 

highest and lowest values for the acute phase, subacute phase and phase difference, for all frequency bands 

and for both eye states. These sets were statistically compared to the HISC scores and the GOS-E outcomes. 

Figure 16 and Figure 17 are examples of visualisations of these comparisons. These plots visualise the alpha 

band, eyes closed setting, which is the same setting as in the example. 

The dataset shown in Figure 16 has, in comparison to the HISC scores, a correlation value of 0.17 and a 

significance value of 0.43. In this case, the correlation value is fairly low, indicating a poor correlation. The 

correlation is visualised by the trendline in the scatterplot. The almost horizontal trendline (compared to 

the vertical range of the datapoints) coincides with a poor correlation. It seems that all patients had higher 

relative alpha power scores than the healthy average (zero value line). 

  

Lead Scores acute 
phase 

Healthy 
population 
averages 

Relative 
scores acute 
phase 

Scores 
subacute 
phase 

Healthy 
population 
averages 

Relative scores 
subacute phase 

Fp1 0.44 0.14 0.50 0.52 0.14 0.57 

Fp2 0.43 0.16 0.47 0.50 0.16 0.52 

F7 0.42 0.15 0.49 0.49 0.15 0.54 

F3 0.45 0.15 0.50 0.55 0.15 0.57 

Fz 0.47 0.14 0.54 0.56 0.14 0.60 

F4 0.49 0.16 0.51 0.53 0.16 0.54 

F8 0.41 0.16 0.45 0.47 0.16 0.50 

T3 0.37 0.17 0.36 0.43 0.17 0.43 

C3 0.37 0.19 0.33 0.50 0.19 0.45 

Cz 0.49 0.18 0.47 0.54 0.18 0.51 

C4 0.44 0.19 0.41 0.49 0.19 0.45 

T4 0.33 0.18 0.29 0.40 0.18 0.38 

T5 0.53 0.13 0.59 0.52 0.13 0.59 

P3 0.44 0.15 0.49 0.46 0.15 0.51 

Pz 0.41 0.15 0.46 0.45 0.15 0.51 

P4 0.48 0.14 0.54 0.54 0.14 0.58 

T6 0.55 0.12 0.63 0.67 0.12 0.69 

O1 0.70 0.11 0.74 0.67 0.11 0.73 

O2 0.71 0.10 0.75 0.64 0.10 0.73 
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Figure 17 shows the difference between the good GOS-E outcome and poor outcome group. This 

comparison scores a significance value of 0.15. Compared to the good GOS-E group, patients with a poor 

GOS-E outcome tend to have higher relative alpha power scores in the acute phase, considering the 

aforementioned setting. Both groups score above healthy average (zero value line). 

Tabel 20. Example of the divergence-selection-algorithm processing of phase difference data. This table 
represents data from one patient. The phase difference scores (fourth column) are calculated by subtracting 
the acute phase scores (third column) from the subtracting the acute phase scores (third column) from the 
subacute phase scores (second column). Per patient, the highest and lowest scoring leads are selected (green 
and red respectively). 

 

 

Lead Scores subacute phase Scores acute phase Phase difference scores 

Fp1 0.52 0.44 0.09 

Fp2 0.50 0.43 0.07 

F7 0.49 0.42 0.07 

F3 0.55 0.45 0.09 

Fz 0.56 0.47 0.09 

F4 0.53 0.49 0.04 

F8 0.47 0.41 0.07 

T3 0.43 0.37 0.06 

C3 0.50 0.37 0.13 

Cz 0.54 0.49 0.05 

C4 0.49 0.44 0.05 

T4 0.40 0.33 0.07 

T5 0.52 0.53 -0.01 

P3 0.46 0.44 0.03 

Pz 0.45 0.41 0.05 

P4 0.54 0.48 0.06 

T6 0.67 0.55 0.12 

O1 0.67 0.70 -0.03 

O2 0.64 0.71 -0.07 
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Figure 16. Example of a visualisation of the HISC-score – relative power scores comparison. In this case, no 
strong correlation can be seen; the trendline is close to horizontal, compared to the vertical range of the 
datapoints. This coincides with the correlation value of 0.17, found when applying the Spearmans Correlation 
coeficient test. 

 

Figure 17. Example of a visualisation of the GOS-E outcome – relative power scores comparison. In this case, 
the Mann-Whitney U test did not prove a significant result (P = 0.15). It seems that all patients score higher 
relative alpha powers than healthy average. The poor outcome group seems to score on average higher than 
the good outcome group. 
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Appendix 5 – All HISC and GOS-E comparison results 
 

Table 21. Overview of all HISC comparison results, ordered by statistical relevance (based on absolute 
correlation scores). Cor. – Correlation score, abs Cor. – Absolute correlation score, P – Statistical significance 
value. 

Approach Phase Band Divergence Eye state Cor. abs Cor. P 

Relative power Difference Alpha Highest Closed -0.43 0.43 0.04 

Power variability Subacute Theta Highest 
 

-0.43 0.43 0.03 

Power symmetry Difference 
 

Highest Open -0.37 0.37 0.08 

Power symmetry Acute 
 

Highest Closed 0.36 0.36 0.09 

Power symmetry Subacute 
 

Lowest Open -0.34 0.34 0.09 

Relative power Difference Theta Lowest Closed 0.33 0.33 0.12 

Coherence Acute 
 

Lowest Open -0.33 0.33 0.12 

Relative power Subacute Alpha Lowest Open 0.30 0.30 0.14 

Power variability Subacute Beta Lowest 
 

0.29 0.29 0.15 

Power symmetry Acute 
 

Lowest Closed 0.28 0.28 0.20 

Power variability Subacute Alpha Highest 
 

-0.26 0.26 0.19 

Relative power Subacute Alpha Highest Open 0.26 0.26 0.19 

Coherence Difference 
 

Lowest Open 0.26 0.26 0.23 

Coherence Acute 
 

Lowest Closed -0.26 0.26 0.23 

Coherence Difference 
 

Lowest Closed 0.24 0.24 0.27 

Power symmetry Subacute 
 

Highest Open -0.24 0.24 0.24 

Relative power Difference Alpha Highest Open 0.24 0.24 0.28 

Coherence Subacute 
 

Lowest Open 0.22 0.22 0.29 

Power variability Acute Theta Highest 
 

-0.21 0.21 0.34 

Power variability Subacute Theta Lowest 
 

0.21 0.21 0.31 

Power variability Difference Alpha Highest 
 

-0.20 0.20 0.35 

Power variability Difference Beta Highest 
 

-0.20 0.20 0.35 

Power variability Difference Theta Highest 
 

-0.20 0.20 0.35 

Power variability Subacute Alpha Lowest 
 

0.20 0.20 0.33 

Coherence Difference 
 

Highest Closed 0.19 0.19 0.38 

Coherence Subacute 
 

Lowest Closed 0.18 0.18 0.37 

Coherence Acute 
 

Highest Closed 0.18 0.18 0.42 

Coherence Difference 
 

Highest Open 0.18 0.18 0.42 

Relative power Subacute Beta Lowest Open 0.18 0.18 0.39 

Relative power Difference Theta Lowest Open -0.17 0.17 0.43 

Relative power Acute Alpha Highest Closed 0.17 0.17 0.43 

Relative power Subacute Beta Highest Open -0.17 0.17 0.40 

Relative power Difference Alpha Lowest Open 0.17 0.17 0.44 

Relative power Acute Alpha Lowest Closed 0.15 0.15 0.51 

Relative power Acute Alpha Highest Open 0.14 0.14 0.52 

Relative power Difference Theta Highest Closed 0.14 0.14 0.53 

Relative power Subacute Theta Highest Open -0.13 0.13 0.53 

Power symmetry Difference 
 

Lowest Closed -0.13 0.13 0.57 
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Relative power Difference Alpha Lowest Closed -0.12 0.12 0.58 

Coherence Subacute 
 

Highest Closed 0.12 0.12 0.56 

Coherence Subacute 
 

Highest Open 0.11 0.11 0.59 

Power symmetry Difference 
 

Highest Closed -0.11 0.11 0.62 

Relative power Subacute Theta Highest Closed 0.10 0.10 0.62 

Relative power Subacute Theta Lowest Closed 0.10 0.10 0.64 

Power variability Acute Theta Lowest 
 

0.10 0.10 0.66 

Relative power Acute Theta Lowest Closed -0.10 0.10 0.67 

Power symmetry Acute 
 

Lowest Open 0.09 0.09 0.68 

Relative power Acute Beta Highest Closed -0.08 0.08 0.72 

Relative power Acute Theta Highest Open -0.07 0.07 0.74 

Relative power Acute Theta Highest Closed -0.07 0.07 0.76 

Coherence Acute 
 

Highest Open 0.07 0.07 0.76 

Relative power Acute Alpha Lowest Open 0.06 0.06 0.77 

Relative power Difference Beta Highest Open 0.06 0.06 0.77 

Relative power Acute Beta Highest Open -0.06 0.06 0.78 

Relative power Acute Beta Lowest Open 0.06 0.06 0.78 

Relative power Difference Beta Highest Closed -0.06 0.06 0.79 

Relative power Subacute Theta Lowest Open 0.05 0.05 0.82 

Relative power Difference Beta Lowest Closed 0.05 0.05 0.83 

Power variability Subacute Beta Highest 
 

0.05 0.05 0.83 

Relative power Subacute Alpha Lowest Closed -0.04 0.04 0.84 

Relative power Difference Beta Lowest Open -0.04 0.04 0.87 

Relative power Subacute Beta Highest Closed 0.03 0.03 0.87 

Relative power Acute Beta Lowest Closed -0.03 0.03 0.88 

Relative power Difference Theta Highest Open -0.03 0.03 0.91 

Power variability Acute Beta Highest 
 

-0.02 0.02 0.91 

Power variability Acute Alpha Highest 
 

0.02 0.02 0.93 

Power symmetry Acute 
 

Highest Open -0.02 0.02 0.94 

Power symmetry Subacute 
 

Highest Closed 0.02 0.02 0.93 

Power symmetry Subacute 
 

Lowest Closed -0.01 0.01 0.94 

Relative power Subacute Alpha Highest Closed 0.01 0.01 0.94 

Relative power Subacute Beta Lowest Closed -0.01 0.01 0.95 

Power variability Acute Alpha Lowest 
 

-0.01 0.01 0.95 

Power variability Acute Beta Lowest 
 

-0.01 0.01 0.97 

Power symmetry Difference 
 

Lowest Open 0.01 0.01 0.97 

Relative power Acute Theta Lowest Open 0.00 0.00 0.98 

Power variability Difference Alpha Lowest 
 

0.00 0.00 0.99 

Power variability Difference Beta Lowest 
 

0.00 0.00 0.99 

Power variability Difference Theta Lowest 
 

0.00 0.00 0.99 
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Table 22. Overview of all GOS-E comparison results, ordered by statistical relevance (based on significance 
values). P – Statistical significance value. 

Approach Phase Band Divergence Eye state Ranksum P 

Coherence Acute 
 

Lowest Open 98 0.04 

Relative power Difference Alpha Highest Closed 103 0.08 

Coherence Acute 
 

Lowest Closed 103 0.08 

Power symmetry Subacute 
 

Lowest Open 142 0.09 

Relative power Difference Theta Lowest Closed 158 0.12 

Relative power Acute Alpha Highest Closed 156 0.15 

Power symmetry Acute 
 

Highest Closed 156 0.15 

Relative power Acute Theta Lowest Closed 110 0.19 

Coherence Difference 
 

Lowest Closed 154 0.19 

Relative power Subacute Alpha Highest Open 201 0.20 

Power symmetry Subacute 
 

Highest Open 150 0.20 

Power variability Subacute Beta Lowest 
 

200 0.20 

Relative power Difference Theta Highest Closed 153 0.21 

Coherence Difference 
 

Lowest Open 153 0.21 

Relative power Subacute Beta Highest Open 151 0.22 

Relative power Acute Alpha Lowest Open 152 0.24 

Power variability Subacute Beta Highest 
 

198 0.26 

Power variability Subacute Alpha Lowest 
 

197 0.27 

Relative power Difference Alpha Lowest Closed 114 0.29 

Relative power Acute Alpha Highest Open 149 0.32 

Power variability Acute Theta Highest 
 

116 0.35 

Power symmetry Acute 
 

Lowest Open 148 0.35 

Power symmetry Difference 
 

Highest Closed 116 0.35 

Power symmetry Difference 
 

Highest Open 116 0.35 

Power variability Acute Theta Lowest 
 

147 0.38 

Power symmetry Difference 
 

Lowest Closed 117 0.38 

Relative power Subacute Alpha Lowest Open 193 0.39 

Power symmetry Difference 
 

Lowest Open 146 0.41 

Relative power Subacute Alpha Highest Closed 192 0.42 

Relative power Acute Alpha Lowest Closed 145 0.45 

Relative power Acute Beta Highest Open 119 0.45 

Power variability Subacute Theta Lowest 
 

190 0.46 

Relative power Acute Theta Highest Closed 120 0.49 

Power variability Acute Alpha Highest 
 

143 0.53 

Coherence Acute 
 

Highest Open 121 0.53 

Relative power Subacute Beta Lowest Closed 163 0.54 

Coherence Subacute 
 

Lowest Open 188 0.54 

Relative power Acute Beta Highest Closed 122 0.57 

Coherence Difference 
 

Highest Closed 142 0.57 

Power variability Subacute Theta Highest 
 

164 0.58 

Relative power Difference Theta Lowest Open 124 0.65 

Power variability Acute Alpha Lowest 
 

140 0.65 



55 
 

Power symmetry Subacute 
 

Highest Closed 167 0.69 

Power symmetry Subacute 
 

Lowest Closed 184 0.69 

Relative power Acute Theta Highest Open 125 0.69 

Relative power Difference Alpha Highest Open 125 0.69 

Relative power Subacute Theta Lowest Closed 168 0.72 

Coherence Subacute 
 

Highest Closed 168 0.72 

Coherence Subacute 
 

Lowest Closed 183 0.72 

Relative power Acute Beta Lowest Closed 126 0.74 

Relative power Acute Beta Lowest Open 126 0.74 

Relative power Difference Theta Highest Open 138 0.74 

Power symmetry Acute 
 

Highest Open 126 0.74 

Power symmetry Acute 
 

Lowest Closed 138 0.74 

Coherence Acute 
 

Highest Closed 138 0.74 

Relative power Subacute Theta Lowest Open 182 0.76 

Coherence Subacute 
 

Highest Open 169 0.76 

Relative power Acute Theta Lowest Open 127 0.79 

Relative power Difference Beta Highest Closed 127 0.79 

Relative power Subacute Beta Highest Closed 170 0.80 

Relative power Subacute Beta Lowest Open 171 0.84 

Power variability Subacute Alpha Highest 
 

171 0.84 

Relative power Subacute Alpha Lowest Closed 172 0.88 

Power variability Difference Alpha Lowest 
 

129 0.88 

Power variability Difference Beta Lowest 
 

129 0.88 

Power variability Difference Theta Lowest 
 

129 0.88 

Relative power Difference Alpha Lowest Open 134 0.93 

Relative power Difference Beta Lowest Open 134 0.93 

Power variability Difference Alpha Highest 
 

130 0.93 

Power variability Difference Beta Highest 
 

130 0.93 

Power variability Difference Theta Highest 
 

130 0.93 

Coherence Difference 
 

Highest Open 134 0.93 

Power variability Acute Beta Lowest 
 

134 0.94 

Relative power Subacute Theta Highest Closed 174 0.96 

Relative power Difference Beta Lowest Closed 131 0.98 

Power variability Acute Beta Highest 
 

131 0.98 

Relative power Difference Beta Highest Open 132 1.00 

Relative power Subacute Theta Highest Open 175 1.00 
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Table 23. Overview of all relative power HISC comparison results, ordered by phase. Cor. – Correlation score, 
abs Cor. – Absolute correlation score, P – Statistical significance value. 

Phase Band Divergence Eye state Cor. abs Cor. P 

Acute Alpha Lowest Closed 0.15 0.15 0.51 

Acute Alpha Lowest Open 0.06 0.06 0.77 

Acute Alpha Highest Closed 0.17 0.17 0.43 

Acute Alpha Highest Open 0.14 0.14 0.52 

Acute Beta Lowest Closed -0.03 0.03 0.88 

Acute Beta Lowest Open 0.06 0.06 0.78 

Acute Beta Highest Closed -0.08 0.08 0.72 

Acute Beta Highest Open -0.06 0.06 0.78 

Acute Theta Lowest Closed -0.10 0.10 0.67 

Acute Theta Lowest Open 0.00 0.00 0.98 

Acute Theta Highest Closed -0.07 0.07 0.76 

Acute Theta Highest Open -0.07 0.07 0.74 

Subacute Alpha Lowest Closed -0.04 0.04 0.84 

Subacute Alpha Lowest Open 0.30 0.30 0.14 

Subacute Alpha Highest Closed 0.01 0.01 0.94 

Subacute Alpha Highest Open 0.26 0.26 0.19 

Subacute Beta Lowest Closed -0.01 0.01 0.95 

Subacute Beta Lowest Open 0.18 0.18 0.39 

Subacute Beta Highest Closed 0.03 0.03 0.87 

Subacute Beta Highest Open -0.17 0.17 0.40 

Subacute Theta Lowest Closed 0.10 0.10 0.64 

Subacute Theta Lowest Open 0.05 0.05 0.82 

Subacute Theta Highest Closed 0.10 0.10 0.62 

Subacute Theta Highest Open -0.13 0.13 0.53 

Difference Alpha Lowest Closed -0.12 0.12 0.58 

Difference Alpha Lowest Open 0.17 0.17 0.44 

Difference Alpha Highest Closed -0.43 0.43 0.04 

Difference Alpha Highest Open 0.24 0.24 0.28 

Difference Beta Lowest Closed 0.05 0.05 0.83 

Difference Beta Lowest Open -0.04 0.04 0.87 

Difference Beta Highest Closed -0.06 0.06 0.79 

Difference Beta Highest Open 0.06 0.06 0.77 

Difference Theta Lowest Closed 0.33 0.33 0.12 

Difference Theta Lowest Open -0.17 0.17 0.43 

Difference Theta Highest Closed 0.14 0.14 0.53 

Difference Theta Highest Open -0.03 0.03 0.91 
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Table 24. Overview of all relative power GOS-E comparison results, ordered by phase. P – Statistical 
significance value. 

Phase Band Divergence Eye state Ranksum P 

Acute Alpha Lowest Closed 145 0.45 

Acute Alpha Lowest Open 152 0.24 

Acute Alpha Highest Closed 156 0.15 

Acute Alpha Highest Open 149 0.32 

Acute Beta Lowest Closed 126 0.74 

Acute Beta Lowest Open 126 0.74 

Acute Beta Highest Closed 122 0.57 

Acute Beta Highest Open 119 0.45 

Acute Theta Lowest Closed 110 0.19 

Acute Theta Lowest Open 127 0.79 

Acute Theta Highest Closed 120 0.49 

Acute Theta Highest Open 125 0.69 

Subacute Alpha Lowest Closed 172 0.88 

Subacute Alpha Lowest Open 193 0.39 

Subacute Alpha Highest Closed 192 0.42 

Subacute Alpha Highest Open 201 0.20 

Subacute Beta Lowest Closed 163 0.54 

Subacute Beta Lowest Open 171 0.84 

Subacute Beta Highest Closed 170 0.80 

Subacute Beta Highest Open 151 0.22 

Subacute Theta Lowest Closed 168 0.72 

Subacute Theta Lowest Open 182 0.76 

Subacute Theta Highest Closed 174 0.96 

Subacute Theta Highest Open 175 1.00 

Difference Alpha Lowest Closed 114 0.29 

Difference Alpha Lowest Open 134 0.93 

Difference Alpha Highest Closed 103 0.08 

Difference Alpha Highest Open 125 0.69 

Difference Beta Lowest Closed 131 0.98 

Difference Beta Lowest Open 134 0.93 

Difference Beta Highest Closed 127 0.79 

Difference Beta Highest Open 132 1.00 

Difference Theta Lowest Closed 158 0.12 

Difference Theta Lowest Open 124 0.65 

Difference Theta Highest Closed 153 0.21 

Difference Theta Highest Open 138 0.74 
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Table 25. Overview of all power variability HISC comparison results, ordered by phase. Cor. – Correlation score, 
abs Cor. – Absolute correlation score, P – Statistical significance value. 

Phase Band Divergence Cor. abs Cor. P 

Acute Alpha Lowest -0.01 0.01 0.95 

Acute Alpha Highest 0.02 0.02 0.93 

Acute Beta Lowest -0.01 0.01 0.97 

Acute Beta Highest -0.02 0.02 0.91 

Acute Theta Lowest 0.10 0.10 0.66 

Acute Theta Highest -0.21 0.21 0.34 

Subacute Alpha Lowest 0.20 0.20 0.33 

Subacute Alpha Highest -0.26 0.26 0.19 

Subacute Beta Lowest 0.29 0.29 0.15 

Subacute Beta Highest 0.05 0.05 0.83 

Subacute Theta Lowest 0.21 0.21 0.31 

Subacute Theta Highest -0.43 0.43 0.03 

Difference Alpha Lowest 0.00 0.00 0.99 

Difference Alpha Highest -0.20 0.20 0.35 

Difference Beta Lowest 0.00 0.00 0.99 

Difference Beta Highest -0.20 0.20 0.35 

Difference Theta Lowest 0.00 0.00 0.99 

Difference Theta Highest -0.20 0.20 0.35 

 

Table 26. Overview of all power variability GOS-E comparison results, ordered by phase. P – Statistical 
significance value. 

Phase Band Divergence Ranksum P 

Acute Alpha Lowest 139.5 0.65 

Acute Alpha Highest 143 0.53 

Acute Beta Lowest 133.5 0.94 

Acute Beta Highest 131 0.98 

Acute Theta Lowest 146.5 0.38 

Acute Theta Highest 116 0.35 

Subacute Alpha Lowest 197 0.27 

Subacute Alpha Highest 171 0.84 

Subacute Beta Lowest 200 0.20 

Subacute Beta Highest 198 0.26 

Subacute Theta Lowest 190 0.46 

Subacute Theta Highest 164 0.58 

Difference Alpha Lowest 129 0.88 

Difference Alpha Highest 130 0.93 

Difference Beta Lowest 129 0.88 

Difference Beta Highest 130 0.93 

Difference Theta Lowest 129 0.88 

Difference Theta Highest 130 0.93 
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Table 27. Overview of all power symmetry HISC comparison results, ordered by phase. Cor. – Correlation score, 
abs Cor. – Absolute correlation score, P – Statistical significance value. 

Phase Divergence Eye state Cor. abs Cor. P 

Acute Lowest Closed 0.28 0.28 0.20 

Acute Lowest Open 0.09 0.09 0.68 

Acute Highest Closed 0.36 0.36 0.09 

Acute Highest Open -0.02 0.02 0.94 

Subacute Lowest Closed -0.01 0.01 0.94 

Subacute Lowest Open -0.34 0.34 0.09 

Subacute Highest Closed 0.02 0.02 0.93 

Subacute Highest Open -0.24 0.24 0.24 

Difference Lowest Closed -0.13 0.13 0.57 

Difference Lowest Open 0.01 0.01 0.97 

Difference Highest Closed -0.11 0.11 0.62 

Difference Highest Open -0.37 0.37 0.08 

 

Table 28. Overview of all power symmetry GOS-E comparison results, ordered by phase. P – Statistical 
significance value. 

Phase Divergence Eye state Ranksum P 

Acute Lowest Closed 138 0.74 

Acute Lowest Open 148 0.35 

Acute Highest Closed 156 0.15 

Acute Highest Open 126 0.74 

Subacute Lowest Closed 184 0.69 

Subacute Lowest Open 142 0.09 

Subacute Highest Closed 167 0.69 

Subacute Highest Open 150 0.20 

Difference Lowest Closed 117 0.38 

Difference Lowest Open 146 0.41 

Difference Highest Closed 116 0.35 

Difference Highest Open 116 0.35 
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Table 29. Overview of all Coherence HISC comparison results, ordered by phase. Cor. – Correlation score, 
abs Cor. – Absolute correlation score, P – Statistical significance value. 

Phase Divergence Eye state Cor. abs Cor. P 

Acute Lowest Closed -0.26 0.26 0.24 

Acute Lowest Open -0.33 0.33 0.12 

Acute Highest Closed 0.18 0.18 0.42 

Acute Highest Open 0.07 0.07 0.76 

Subacute Lowest Closed 0.18 0.18 0.37 

Subacute Lowest Open 0.22 0.22 0.29 

Subacute Highest Closed 0.12 0.12 0.56 

Subacute Highest Open 0.11 0.11 0.59 

Difference Lowest Closed 0.24 0.24 0.27 

Difference Lowest Open 0.26 0.26 0.23 

Difference Highest Closed 0.19 0.19 0.38 

Difference Highest Open 0.18 0.18 0.42 

 

Table 30. Overview of all Coherence GOS-E comparison results, ordered by phase. P – Statistical significance 
value. 

Phase Divergence Eye state Ranksum P 

Acute Lowest Closed 103 0.08 

Acute Lowest Open 98 0.04 

Acute Highest Closed 138 0.74 

Acute Highest Open 121 0.53 

Subacute Lowest Closed 183 0.72 

Subacute Lowest Open 188 0.55 

Subacute Highest Closed 168 0.72 

Subacute Highest Open 169 0.76 

Difference Lowest Closed 154 0.19 

Difference Lowest Open 153 0.21 

Difference Highest Closed 142 0.57 

Difference Highest Open 134 0.93 

 

 


