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Fig. 1. An example of a disaggregated energy consumption graph; the result of an energy disaggregation framework. Source: [1]

This research focuses on different event detection algorithms used in
Non-Intrusive Load Monitoring (NILM) systems for energy disaggre-
gation. The study will evaluate these algorithms and compare them
based on their accuracy, precision, recall, f1-score, and computational
complexity. The primary goal is to determine a suitable algorithm
for residential energy disaggregation using real-world data. Such an
algorithm could be incorporated into an energy disaggregation frame-
work, which generates a disaggregated energy consumption graph
similar to the one shown in Figure 1.

Additional Key Words and Phrases: NILM, Non-Intrusive Load Moni-
toring, Energy Disaggregation, Data-driven algorithms, computational
complexity

1 INTRODUCTION
In recent years, there have been two significant trends in the
energy sector: the increase in locally generated energy by
consumers and a surge in overall energy consumption. Both
trends highlight the need for consumers to gain insights into
their energy consumption and to help them align their energy
consumption with their energy production to maximize the
use of locally generated energy.

As depicted in Figure 2, there are two ways to derive the
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Fig. 2. A schematic overview of two approaches to create a disaggre-
gated energy consumption graph: ILM and NILM. Highlighted is the
event detection phase within a NILM system. Source: [2]

household’s total energy consumption from individual ap-
pliance usage: the intrusive and the non-intrusive way. The
intrusive method directly measures each appliance’s energy
usage, whereas Non-Intrusive Load Monitoring (NILM) lever-
ages data from a single measurement point and uses advanced
algorithms to deduce appliance-level usage patterns. This us-
age of this NILM technique has grown significantly in recent
years due to its cost-effectiveness, scalability, and ability to
ensure consumer privacy. However, NILM faces computational
complexity challenges, as it often relies on high-end hardware,
which limits the widespread adaption of this technique. It is
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therefore crucial to address to issue to make non-intrusive
energy disaggregation accessible to everyone. In addition to
the example framework in Figure 2, it is important to integrate
a validation step into the NILM system. This additional step
ensures the accuracy and reliability of the system’s outcome
and without this validation, any conclusions or discussions
based on these results would be fundamentally flawed.

This study fits into a niche that uses unsupervised learning
techniques for event detection in time-series data, evaluated
using supervised learning metrics, which puts it in a unique
position. In classification, an algorithm categorizes data into
predefined classes. Similarly, event detection algorithms clas-
sify data sequences into ‘event’ and ‘non-event’ categories.
The key difference is that event detection specifically identifies
significant occurrences within data streams. This approach
contributes to the broad field of Machine Learning (ML), par-
ticularly in the areas of unsupervised anomaly detection, time-
series analysis, and signal processing.

The evaluation consists of four event detection algorithms:
Local Threshold, Adaptive Threshold, K-means clustering, and
Derivate-based. Their performance is assessed using accuracy,
precision, recall, and F1-score metrics. During the evaluation,
a private dataset of Saxion University of Applied Sciences is
used, which has been manually labeled to serve as ground
truth and a median filter is applied before usage. Before the
evaluation, the algorithms undergo validation using a single
appliance signal of the UK-Dale dataset[3].

2 RELATED WORK
Energy disaggregation has become an increasingly popular
research area, and the development and evaluation of event de-
tection algorithms for energy disaggregation frameworks have
followed accordingly. Hart [4] initiated this field in 1992, aim-
ing to non-intrusively separate energy consumption into indi-
vidual appliance-level components. Approaches like Hidden
MarkovModels (HMM) [5] demonstrated their effectiveness in
capturing temporal dependencies within energy consumption
data about a decade ago, while optimization-based methods
[6] addressed the problem as a combinatorial optimization
task at about the same time. More recently, neural network-
based solutions [7] have gained attention for their ability to
learn complex patterns. As can be read in Figure 3, current
research primarily focuses on residential energy disaggrega-
tion. Tolnai et al. [8] also address correlated challenges, such
as the limited computational capacity of smart meters, which
hinders algorithm integration—highlighting the significance
of taking computational complexity into account when eval-
uating algorithms used for energy disaggregation frameworks.

The selection of four specific event detection algorithms for
the study, namely the Adaptive Threshold, Derivate, Local
Threshold, and K-Means clustering-based approaches, is based

Fig. 3. Research domain. Source: [8]

Fig. 4. Comparison of three event detection algorithms: k-means
clustering, peak detection, and local threshold-based. Source: [9]

on an evaluation of their performance and suitability in the
context of energy disaggregation. Islam and Shah’s research
[9] showcases a comparison of event detection algorithms,
namely Peak Value, K-Means Clustering, and Local Threshold-
based approaches. Their findings show that the peak value-
based algorithm underperformed compared to the other two
as can be seen in Figure 4, hence the K-Means Clustering and
Local Threshold-based methods are chosen for this study. This
study considers two more algorithms: an Adaptive Threshold
algorithm based on standard deviation, presented in a recent
paper [10] published in February 2023, and a derivative-based
algorithm [11] with promising results.

All algorithms have their own distinct way of detecting events.
For the Local Threshold-based algorithm as shown in Appen-
dix B, a windowing technique is used in which data is divided
into windows of a specific length, and statistical parameters
such as themean and standard deviation are computed for each
window to provide information about the overall behavior and
variability of the signal within each window. Additionally, the
mean and standard deviation of all windows are computed to
help comprehend the distribution of power fluctuations of the
overall signal. However, the threshold is mostly dependent
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on the mean of that window. The Adaptive Threshold-based
algorithm as shown in Appendix C works in a similar way
as it also makes use of the windowing technique and of the
mean and standard deviation. However, the most significant
difference lies in how the threshold is calculated. The Adap-
tive Threshold-based algorithm uses a more complex formula
involving the window size and the ratio of maximum to mean
power, whereas the Local Threshold-based algorithm uses a
simpler linear combination of mean and standard deviation.

The K-Means Clustering-based algorithm as shown in Ap-
pendix A first computes the optimal number of clusters using
the Silhouette method, this is a very computationally complex
task and therefore the algorithm only looks for the optimal
number between 2 and 7 clusters. After each measurement is
assigned to a specific cluster, the algorithm iterates over all
measurements and an event is detected when the previous
measurement is a different cluster than the current one. On
the other hand, the Derivative-based algorithm as shown in
Appendix D consists of three parts: preprocessing, changes-
detection, and peak-detection. During the preprocessing phase,
the aggregate power signal is altered to the current signal enve-
lope to avoid the algorithm being vulnerable to voltage drops,
as the electrical current is the immediate cause of appliance
activities and power also includes voltage. During the changes-
detection phase, a derivation is performed to only keep the
changes in the signal and filter out the steady states. Next, the
derived signal is squared to increase the gap between small
changes due to noise, and significant changes due to tran-
sient states. After that, the peaks are detected and only the
significant peaks are seen as events.

3 METHODOLOGY
During this research, our methodology is similar to the CRISP-
DM methodology and will consist of the following steps:

(1) Data understanding:Understand the data format that
will be used.

(2) Dataset preparation: Prepare various datasets to
ensure the dataset spans different periods, household
profiles, and appliance usage scenarios to capture real-
world dynamics.

(3) Implementation: Implementation of the algorithms.
(4) Ground truth annotation: Manually set the ground

truth for a subset of the data to serve as a benchmark.
This is important for validating the performance of each
algorithm.

(5) Validation: Validate the implementation of the algo-
rithms by using the UK-Dale single appliance data. In
case of incorrect results, return to the implementation
step.

(6) Evaluation: Evaluate the performance of the algo-
rithms on accuracy, precision, recall, F1-Score, and com-
putational complexity using the Saxion Data.

Fig. 5. Summary of the features of event-detection. Source: [12]

(7) Visualization: Presenting the results in informative
formats to show a good overview of the results and
understanding of each algorithm’s strengths and weak-
nesses.

By adhering to the prescribed steps, a clear overview of the
algorithm’s performance can be obtained, which can then be
used for a comprehensive discussion and as a foundation for
future research.

Due to the unavailability of the REDD dataset by MIT at the
time of this study, the publicly available UK-Dale dataset is
used during the validation step. More specifically, a subset of
the UK-Dale dataset that only measured the power signal of a
single appliance, is used to validate the algorithms. The Saxion
Data, which is not a publicly available dataset, was received in
an unlabeled format. To enable an algorithmic evaluation, the
data had to be labeled first. A 3-day interval of the Saxion Data
is taken at random for testing the algorithms on an aggregate
power signal. For a more comprehensive assessment, a 10-day
interval of the Saxion Data was randomly selected, which is
mutually exclusive to the 3-day interval. The algorithms were
then evaluated based on the specified metrics and compared
against each other.

The chosen algorithms can be categorized according to the
summary of features in Figure 5, which illustrates two main
types of event detection algorithms: state-based and event-
based. The Derivate, Adaptive Threshold, and Local Threshold-
based algorithms all align with the event-based category, as
they focus on mathematical event detectors to identify events.
In contrast, the K-Means Clustering algorithm falls into the
state-based category, as it relies on state changes rather than
event detectors to identify events. Additionally, a modification
is made to the K-Means Clustering algorithm, instead of the
proposed Elbow Method to identify the optimal number of
clusters, the Silhouette method is used to be able to automati-
cally evaluate the algorithm.

During the testing and evaluation phase, a standard set of
metrics is used to assess the algorithms, consisting of accu-
racy, precision, recall, and f1-score. The formulas to compute
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these metrics are listed below, including a description stating
their relevance. To determine the suitability for real-time appli-
cation, the time complexity is also included in the assessment
and verified using a plot.

Accuracy =
True Positives + True Negatives
Total number of measurements

(1)

Accuracy shows the overall correctness of an algorithm, but it
may not be as informative on its own, especially if the data
is imbalanced, where there are many more non-events that
events.

Precision =
True Positives

True Positives + False Positives (2)

Precision measures an algorithm’s ability to avoid false posi-
tives, important when the cost of falsely detecting an event is
high.

Recall =
True Positives

True Positives + False Negatives (3)

Recall is essential when missing an event is costly. It demon-
strates the algorithm’s capability to identify all actual events.

𝐹1-Score = 2 × Precision × Recall
Precision + Recall (4)

The F1-Score balances the precision and recall, which is par-
ticularly valuable when dealing with an imbalanced dataset
because it equally considers the algorithm’s performance on
the minority class, which are the events in this case.

4 RESULTS
As described in the methodology section, several steps are
undertaken to conduct a comprehensive evaluation of the four
event detection algorithms. Initially, the algorithms are val-
idated using the UK-Dale dataset by Kelly [3], to make sure
they perform as intended. The validation process can be seen
as the most important step to lay a robust foundation for up-
coming analyses.

Following the validation step, the time complexity of each
algorithm is computed, and the algorithms are then applied to
aggregate power signals. Firstly, parameter adjustments were
made to make them suitable for this specific use-case using
3-day data, and then 10-day data to determine their accuracy,
precision, recall, and f1-score. Allowing the discussion to be
done on accurate data, retrieved in a precise and above all,
reproducible manner.

4.1 Validation
The REDD dataset by MIT[13] was used in some of the papers
to receive the promising results. However, at the time of this
study, the REDD database is not available. So, to verify whether

Fig. 6. The power signal of the single appliance of the UK-Dale
dataset.

Fig. 7. The power signal of the single appliance of the UK-Dale dataset
with events detected by the Adaptive Threshold algorithm.

the algorithms indeed correctly detect events, the UK-Dale
dataset is used. Specifically, the subset: House 3, appliance 2,
between the first of March 2013 and the third of March 2013.
This subset is chosen at random, and the power signal of this
subset can be seen in Figure 6.

The use of the single appliance signal is because it is eas-
ily verifiable that the device was indeed turned on or off when
the algorithms detect an event. For context, according to the
labeling done in the dataset, this specific appliance is offi-
cially turned off when the power consumption is below 5W.
Anything below this threshold can be considered as standby
consumption. The results of all four algorithms are identical
and easily verifiable, as can be seen in Figure ?? showcasing the
resulting graph of the Adaptive Threshold-based algorithm.
All four algorithms appear to detect an event at approximately
600W. However, this event is not an error but rather a conse-
quence of the event detection methodology used. Events are
marked right before the signal reaches a steady state. Conse-
quently, when the transient state consists of a single measure-
ment, the event is marked at the end of the preceding steady
state, as this is the measurement right before the start of the
next steady state. This specific occurrence is enlarged in Figure
8, where it becomes evident that an additional measurement
exists between steady states by the difference in slope coeffi-
cient before and after the marker when the device is powered
on, as opposed to when it is turned off.
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Fig. 8. Enlargement of the "faulty" event detected by the algorithms.

Table 1. Time Complexity of the Algorithms

Algorithm Time Complexity
Local Threshold 𝑂 (𝑁 )
Adaptive Threshold 𝑂 (𝑁 )
Derivative 𝑂 (𝑁 )
K-Means Clustering 𝑂 (𝑁 2)

Fig. 9. Graph showing the time complexity of the algorithms.

4.2 Time complexity
As mentioned before, the time complexity of an algorithm
plays a crucial role in allowing the algorithm to run in real-
time at the consumer’s housewhere there is a common absence
of high-end hardware. The algorithms’ time complexity is
plotted in Figure 9 and noted in Table 1. As the Adaptive
Threshold-based algorithm’s implementation is making use
of highly optimized functions the scale is different from the
others. However, in Figure 10 we can see that the algorithm
also has a linear time complexity.

4.3 Testing
During the testing phase, it is important to ensure that the
algorithm’s parameters are suitable for the evaluation data.
It is striving for suitability rather than optimality to prevent
overfitting. To achieve this, a multi-day testing approach is em-
ployed, as opposed to testing on a single day, and by ensuring
the testing data includes a variety of appliances. This diversity

Fig. 10. Graph showing the time complexity of the Adaptive Threshold
algorithm.

Table 2. Performance Metrics for Testing

Algorithm Accuracy Precision Recall F1 Score
Local Threshold 0.9997 0.9219 0.8433 0.8778
Adaptive Threshold 0.9992 0.7657 0.8744 0.7761
Derivative 0.9995 0.8795 0.7206 0.7905
K-Means Clustering 0.9962 0.4167 0.7287 0.4521

Table 3. Performance Metrics for Evaluation

Algorithm Accuracy Precision Recall F1 Score
Local Threshold 0.9996 0.8661 0.7966 0.8276
Adaptive Threshold 0.9996 0.7847 0.9149 0.8335
Derivative 0.9995 0.8231 0.7601 0.7780
K-Means Clustering 0.9980 0.4428 0.7101 0.5195

is to give confidence that the evaluation data is reasonably
represented. The outcomes of the testing phase, conducted
on the 3-day Saxion Data, are summarized in Table 2. This
table provides the average values of the performance metrics
mentioned before. The tables in Appendix E contain more
detailed information on the three individual days.

4.4 Evaluation
During the evaluation phase, the algorithm’s parameters de-
termined in the testing phase are used and the algorithms are
executed and assessed on ten days of Saxion Data to get a
better understanding of their performance. This 10-day subset
of the Saxion Data is mutually exclusive with the 3-day subset
used in the testing phase. The results of the evaluation are
summarized in Table 3. This table contains the average values
of the performance metrics mentioned before. The tables in
Appendix F contain more detailed results of the first 2 days of
the 10-day subset.

5 DISCUSSION
Correctly detecting an event
In energy consumption monitoring, it is important for the de-
tection of events to determine exactly when an event happens.
This all starts with exactly pinpointing when an event starts
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and ends and marking it at the right spot to be able to auto-
matically use it in a later stage in the framework. We can mark
events in different ways. For example, at the beginning of an
edge or the end, but also right before the start of a steady state
as seen in Figure 8. In this study, the events are marked right
before they reach a steady state, which means right before the
device is on or off. I believe this shows the complete event
and allows a framework to detect the exact amount of energy
consumed by an appliance during a certain event, therefore
the Saxion Data is labeled in this manner.

Evaluation of the results
In this study, our results are generally a bit worse, except for
the K-Means Clustering algorithm, which performed notably
worse than in the referenced paper. A key difference could be
the method used to determine the optimal number of clusters
in the clustering algorithm. As described in the methodology,
this study made use of the Silhouette method instead of the
Elbow method to automate the process. This modification can
significantly impact the results in case the outcome of the
methods is different. Additionally, the dataset’s characteristics
and diversity of appliances included also play an important
role, which is further explained in another discussion section.
There is also the possibility that the author used different tun-
ing parameters to suit the specific datasets or slightly adjusted
the way the events are seen as correctly detected.

Apart from tuning the algorithm, there is also a preprocessing
part before the event detection part. Although the same filter
technique was used as in the proposed algorithm, there might
be more effective preprocessing techniques for our specific use
case. Understanding and realizing these nuances is important
for interpreting the differences in performance.

Finally, the poor results of the K-Means Clustering algorithm
could be explained according to the way the algorithm detects
events. The K-Means Clustering algorithm initially groups all
measurements into clusters, detecting events as the aggregate
power signal transitions between these clusters. However, this
method faces challenges with appliances like electric heaters,
which show significant fluctuations in energy usage – often
switching between full power and a near-off state for temper-
ature regulation. Consequently, the aggregate power signal
switches between clusters often, leading the algorithm to in-
terpret these fluctuations as multiple small events, rather than
a single major event. There are at least two ways to address
this issue, either preprocess the signal to smooth out such
fluctuations, though this could potentially lead to the loss of
information in the signal. Alternatively, postprocessing could
be used to combine closely occurring small events into a single
major event. Both these options could lead to an improvement
in precision and f1-score.

Automatic Hyperparameter Tuning
Determining the optimal number of clusters is part of a broader

concept called Automatic Hyperparameter Tuning and is an
expensive task with a time complexity of 𝑁 2, as can be seen
in the results section. Consequently, the Silhouette method
can take up to 30 minutes to determine the optimal number of
clusters between 2 and 7 on a MacBook Pro 2018 for a single
day of data.

Currently, there is still a lot of research done in this field
to optimize the way of finding the optimal number of clusters.
For example, the research done by Frank Huter to mimic the
early termination of bad runs using a probabilistic model [14]
or solving the problem with Sequential Model-based Bayesian
Optimization (SMBO) [15].

The impact of the dataset on the results
The results of any study, especially in event detection studies,
are heavily influenced by the dataset used. Each dataset has
its unique characteristics such as noise levels, types of events
and appliances, frequency of data collection, and overall data
quality. These factors can have a significant impact on the
performance of detection algorithms, which in turn affects the
outcome of the study.

For instance, a dataset with high noise levels may lead to more
false positives or negatives in event detection. Similarly, the
frequency of data collection affects the level of detail captured
by the event signatures, but it may also introduce more noise.
The variety and complexity of events in the dataset also play
a crucial role. Datasets with a wide range of event types, such
as different appliance usages or varying durations, require
more adaptable detection methods that may detect more false
positives in other settings.

Therefore, the dataset used in the study must be represen-
tative of real-world scenarios for which the event detection
system is designed. If the dataset does not accurately repre-
sent such scenarios, the results may not be applicable in such
settings. This lack of representativeness could lead to overfit-
ting, where the system performs well on a specific dataset but
poorly in real-world applications.

Practical implications in a real-world setting
An effective event detection algorithm in energy monitoring
has significant practical implications. Firstly, it can signifi-
cantly improve energy management and efficiency. By accu-
rately identifying when and how much energy is used by
specific appliances, consumers and businesses can optimize
their energy usage and align it with their energy production.
This level of understanding allows for the implementation of
smarter, more targeted energy-saving strategies, which can
help reduce the stress on the grid.

Furthermore, precise event detection helps in maintaining
and monitoring the health of electrical appliances. Detecting
anomalies or changes in typical energy consumption patterns
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can act as an early warning system for potential appliance mal-
functions or inefficiencies, allowing for timely maintenance
or replacement. In the context of smart homes and buildings,
an effective event detection algorithm is essential to automate
and optimize energy usage, contributing to the broader goal
of creating more sustainable and energy-efficient living envi-
ronments.

Further research
Further research following this event detection algorithms
comparison could delve into several areas to eventually de-
velop a comprehensive energy disaggregation framework. As
can be seen in Figure 2 there are several steps to be taken
before such a framework is finished. To make it easier for
the event detection algorithms, one could delve deeper into
preprocessing techniques. This includes noise filtering, data
normalization, and possibly handling missing data, which can
significantly improve the quality of input data and therefore
improve the performance of the event detection algorithm.

Another research field would be the postprocessing after the
events are detected. It is important to interpret all the events
correctly to for example correctly estimate the total energy
consumed per event or appliance. Furthermore, additional
research on event detection algorithms could be done by delv-
ing deeper into the algorithms that are state-based or newly
proposed as this Densely-connected Bi-directional Long Short-
Term Memory method [16]. Finally, research into the integra-
tion of NILM systems with other smart home technologies and
the broader smart grid infrastructure can lead to more com-
prehensive energy management solutions. This could include
automated control systems that respond to event detection
in real-time, optimizing energy use, and contributing to grid
stability.

6 CONCLUSION
In conclusion, this comparative study on four event detec-
tion algorithms for energy disaggregation in a NILM con-
text reveals several key findings. Noteworthy, the algorithms’
performance characteristics are distinct, with the K-Means
Clustering algorithm standing out due to its non-linear time
complexity and its precision and F1-score falling significantly
short compared to the other algorithms. On the other hand,
the local threshold algorithm demonstrates a relatively strong
precision and F1-score, whereas the adaptive threshold shows
a good recall compared to the others. The implementations of
the algorithms can be found on the GitHub page of the Am-
bient Intelligence (AMI) research group at Saxion University
of Applied Sciences in Enschede. Since the Saxion Data is not
a publicly available dataset, a request for access can also be
sent to the Ambient Intelligence research group.
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A APPENDIX A

Algorithm 1: Event detection using k-means.
Input← P𝑎𝑔𝑔 (𝑡)
P𝑚𝑒𝑑 ←𝑚𝑒𝑑𝑖𝑎𝑛𝑓 𝑖𝑙𝑡𝑒𝑟 (P𝑎𝑔𝑔 (𝑡))
n𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑀𝑒𝑡ℎ𝑜𝑑 (P𝑎𝑔𝑔 (𝑡))
k-means← n𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , 𝑖𝑛𝑖𝑡 = 𝑘 −𝑚𝑒𝑎𝑛𝑠 + +
k-means← P𝑚𝑒𝑑

return Clusterlabels
C← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑙𝑎𝑏𝑒𝑙𝑠

for 𝑖 in cluster labels do
if 𝐶 [𝑖] ≠ 𝐶 [𝑖 − 1] and 𝐶 [𝑖] = 𝐶 [𝑖 + 1] then

event index← 𝑖;
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B APPENDIX B

Algorithm 2: Local threshold based event detection.
Input← P𝑎𝑔𝑔 (𝑡)
P𝑚𝑒𝑑 ←𝑚𝑒𝑑𝑖𝑎𝑛𝑓 𝑖𝑙𝑡𝑒𝑟 (P𝑎𝑔𝑔 (𝑡))
for 𝑖 in P𝑚𝑒𝑑 do

Δ𝑃 ← 𝑝 [𝑖] − 𝑝 [𝑖 − 1]
Δ𝑃 ← 𝑎𝑏𝑠 (Δ𝑃)

n = 60
for 𝑖 in Δ𝑃 do

Δ𝑃𝑜𝑤𝑒𝑟 ← Δ𝑃 [𝑖 : 𝑖 + 𝑛]
for 𝑖 in Δ𝑃𝑜𝑤𝑒𝑟 do

𝜇 [𝑤] ← mean[ 𝑗]
𝜎 [𝑤] ← std[ 𝑗]

s𝑝 ←𝑚𝑒𝑎𝑛(𝜎 [𝑤]) +𝑚𝑒𝑎𝑛(𝜇 [𝑤])
s𝑎 = s𝑝/2
w𝑝 ← 𝑛𝑝.𝑤ℎ𝑒𝑟𝑒 (𝜎 [𝑤] > s𝑎)
for 𝑖 in (w𝑝 ) do

Perform peak detection
peaks← 𝑙𝑜𝑐 [Δ𝑃𝑜𝑤𝑒𝑟 [𝑖] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]
where Threshold← 𝑎 ∗ 𝜇𝑤 [𝑖] + 𝑏 ∗ 𝜎𝑤 [𝑖]
for 𝑗 in range(len(peaks[i])) do

event_index← (𝑛 ∗ w𝑝 [𝑖]) + 𝑝𝑒𝑎𝑘𝑠 [𝑖] [0] [ 𝑗]

Return event_index

C APPENDIX C

Algorithm 3: Adaptive threshold based event detec-
tion.
Input← P𝑎𝑔𝑔 (𝑡)
P𝑚𝑒𝑑 ←𝑚𝑒𝑑𝑖𝑎𝑛𝑓 𝑖𝑙𝑡𝑒𝑟 (P𝑎𝑔𝑔 (𝑡))
for 𝑖 in P𝑚𝑒𝑑 do

Δ𝑃 ← 𝑝 [𝑖] − 𝑝 [𝑖 − 1]
Δ𝑃 ← 𝑎𝑏𝑠 (Δ𝑃)

n = 60
for 𝑖 in Δ𝑃 do

Δ𝑃𝑜𝑤𝑒𝑟 ← Δ𝑃 [𝑖 : 𝑖 + 𝑛]
for 𝑖 in Δ𝑃𝑜𝑤𝑒𝑟 do

𝜇 [𝑤] ← mean[ 𝑗]
𝜎 [𝑤] ← std[ 𝑗]

threshold← 24∗𝜇√
𝑟
+ 0.4 ∗ 𝜎

for 𝑖, 𝑣𝑎𝑙𝑢𝑒 in enumerate(threshold) do
Perform peak detection
peaks← 𝑙𝑜𝑐 [Δ𝑃𝑜𝑤𝑒𝑟 [𝑖] > 𝑣𝑎𝑙𝑢𝑒]
selected_peaks =
peaks.where(Δ𝑃 [𝑖 + 𝑝𝑒𝑎𝑘𝑠] > 𝑣𝑎𝑙𝑢𝑒)

for 𝑗 in selected_peaks do
event_index < i + w

Return event_index

D APPENDIX D

Algorithm 4: Derivative-based event detection.
Input← P𝑎𝑔𝑔 (𝑡)
P𝑚𝑒𝑑 ←𝑚𝑒𝑑𝑖𝑎𝑛𝑓 𝑖𝑙𝑡𝑒𝑟 (P𝑎𝑔𝑔 (𝑡))
I𝑟𝑚𝑠 ←

√︁
P𝑚𝑒𝑑/220𝑉

for 𝑖 in I𝑟𝑚𝑠 do
ΔI𝑟𝑚𝑠 ← I𝑟𝑚𝑠 [𝑖] − I𝑟𝑚𝑠 [𝑖 − 1]

P𝑠 ←
√
ΔI𝑟𝑚𝑠

P𝑠 ← 𝑛𝑝.𝑤ℎ𝑒𝑟𝑒 (ΔI𝑟𝑚𝑠 < 0,−P𝑠 , P𝑠 )
r_edges
← 𝑓 𝑖𝑛𝑑_𝑝𝑒𝑎𝑘𝑠 (P𝑠 , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1250, ℎ𝑒𝑖𝑔ℎ𝑡 = 0.45)
f_edges
← 𝑓 𝑖𝑛𝑑_𝑝𝑒𝑎𝑘𝑠 (−P𝑠 , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1250, ℎ𝑒𝑖𝑔ℎ𝑡 = 0.45)
edges← 𝑛𝑝.𝑐𝑜𝑛𝑐𝑎𝑡 (𝑟_𝑒𝑑𝑔𝑒𝑠, 𝑓 _𝑒𝑑𝑔𝑒𝑠)
event_indices← 𝑛𝑝.𝑠𝑜𝑟𝑡 (𝑒𝑑𝑔𝑒𝑠)
Return event_index

E APPENDIX E

Table 4. Testing Results - January 24, 2023

Metric Local Adaptive Derivative K-Means
Threshold Threshold Based Clustering

FN 0.1181 0.0343 0.3157 0.1125
FP 0.2000 0.6488 0.2526 0.8600
TP 0.8000 0.3511 0.7473 0.1400
TN 0.8819 0.9657 0.6843 0.8875
Accuracy 0.9995 0.9979 0.9993 0.9954
Precision 0.8000 0.3511 0.7473 0.1400
Recall 0.8712 0.9108 0.7029 0.5544
F1-score 0.8341 0.5068 0.7244 0.2235

Table 5. Testing Results - January 25, 2023

Metric Local Adaptive Derivative K-Means
Threshold Threshold Based Clustering

FN 0.2150 0.2105 0.4166 0.0353
FP 0.0215 0.0421 0.0952 0.8648
TP 0.9784 0.9578 0.9047 0.1351
TN 0.7850 0.7895 0.5834 0.9647
Accuracy 0.9997 0.9997 0.9995 0.9932
Precision 0.9784 0.9578 0.9047 0.1351
Recall 0.8198 0.8198 0.6846 0.7927
F1-score 0.8921 0.8834 0.7794 0.2309
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Table 6. Testing Results - June 21, 2023

Metric Local Adaptive Derivative K-Means
Threshold Threshold Based Clustering

FN 0.9997 0.1190 0.2876 0.1875
FP 0.9992 0.0119 0.0136 0.0250
TP 0.9995 0.9880 0.7206 0.9750
TN 0.9962 0.8810 0.7124 0.8125
Accuracy 0.9962 0.9998 0.9997 0.9998
Precision 0.9962 0.9880 0.9863 0.9750
Recall 0.9962 0.8924 0.7741 0.8387
F1-score 0.9962 0.9378 0.8674 0.9017

F APPENDIX F

Table 7. Evaluation Results - February 1, 2023

Metric Local Adaptive Derivative K-Means
Threshold Threshold Based Clustering

FN 0.3235 0.0434 0.0962 0.1125
FP 0.4411 0.5217 0.6518 0.8600
TP 0.5588 0.4782 0.3481 0.1400
TN 0.6765 0.9566 0.9038 0.8875
Accuracy 0.9993 0.9992 0.9988 0.9954
Precision 0.5588 0.4782 0.3481 0.1400
Recall 0.6333 0.9166 0.7833 0.5544
F1-score 0.5937 0.6285 0.4820 0.2235

Table 8. Evaluation Results - February 2, 2023

Metric Local Adaptive Derivative K-Means
Threshold Threshold Based Clustering

FN 0.2087 0.0283 0.3012 0.0353
FP 0.0769 0.0566 0.0602 0.8648
TP 0.9230 0.9433 0.9397 0.1351
TN 0.7913 0.9717 0.6988 0.9647
Accuracy 0.9996 0.9998 0.9996 0.9932
Precision 0.9230 0.9433 0.9397 0.1351
Recall 0.8155 0.9708 0.7572 0.7927
F1-score 0.8659 0.9569 0.8387 0.2309
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