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Fig. 1. The proposed end-to-end pipeline

This paper presents an approach that integrates differential privacy with
Large Language Models (LLMs) for generating synthetic data, focusing on
sensitive content such as user chats. Unlike traditional methods reviewed
in the literature, our methodology employs a more heuristic approach to
guide generation, thereby enhancing utility and fidelity while maintaining
computational efficiency. Our method conditions LLMs with labels and the
initial words of input text using special tokens to ensure the preservation of
context and semantic integrity, a crucial aspect for sensitive data sources.
This approach contrasts with complex data generation methods that are
computationally intensive for larger datasets and do not guarantee high
utility and fidelity, nor the preservation of style in the synthetic dataset.
We assess data utility and fidelity through a comparative analysis of the
original and generated synthetic datasets, focusing on semantic and syntactic
properties. We notably observe a decrease in data utility and fidelity as
privacy levels increase. Non-private synthetic data show a 7% loss in utility
scores, while private synthetic data show a 35% loss, with semantic similarity
scores reflecting similar trends. This research underscores the complexities
of balancing privacy against the functional usefulness of synthetic data.
Our findings highlight the challenges in managing sensitive information,
particularly private chats, emphasizing the importance of balancing privacy
protection with the effectiveness of synthetic data. This balance is critical for
advancing research methodologies in sensitive fields without compromising
data confidentiality.

Additional Key Words and Phrases: Differential Privacy, LLMs, Text Genera-
tion, Synthetic Data

1 INTRODUCTION

Advancements in Al, particularly in Large Learning Models, have
significantly impacted synthetic data generation. Gartner’s 2021
report [1] highlights this trend: synthetic training data constituted
only 1% of all data but is projected to rise to 60% by the end of
2024. This shift underscores the growing relevance of synthetic data
across various sectors. In healthcare, synthetic data aids in training
medical professionals. In the financial industry, it plays a crucial
role in risk mitigation and fraud detection. Compared to traditional
data, synthetic data is more cost-effective and ethical. Its primary
advantage lies in preserving privacy, as it eliminates the risk of
exposing sensitive real-world data.

The University of Twente presents a case in point. During COVID-
19, the University adopted Discord, a messaging and VoIP platform,
for student-teacher interactions. These communications offer valu-
able insights into evolving educational dynamics since the intro-
duction of Al tools like ChatGPT. However, utilizing this data for
research is constrained by the GDPR (General Data Protection Regu-
lation, EU 2016/679), which mandates strict data privacy guidelines
and requires explicit consent for data usage. This is where synthetic
data becomes vital. By ensuring true anonymization—making it
impossible to trace data back to individuals—researchers can be
compliant with GDPR restrictions. This approach enables the eth-
ical use of data in research, particularly in sensitive areas where
privacy is important.



In 2006, Netflix released an anonymized dataset of subscriber
movie ratings for the Netflix Prize challenge. This incident uninten-
tionally revealed the limitations of traditional data anonymization
methods. Narayanan and Shmatikov [11] demonstrated that by us-
ing additional information from IMDb, they could de-anonymize this
dataset. Their research exposed a critical vulnerability: anonymized
datasets could be re-identified when merged with external data, com-
promising privacy. Responding to this challenge, Dwork et al. [7]
introduced Differential Privacy. This method offers a mathematical
guarantee of individual privacy protection. It significantly reduces
the likelihood of identifying individual data within a dataset. Differ-
ential Privacy represents a departure from conventional anonymiza-
tion, providing a more reliable and measurable privacy safeguard.
It not only defends against linkage attacks, where separate data
sources are combined to identify individuals, but also offers univer-
sality, composability, and flexibility. However, as the use of synthetic
data grows, integrating differential privacy into the synthetic data
generation process becomes crucial. This integration is essential to
maintain the highest standards of privacy. Yet, the exploration of this
integration remains underdeveloped. Further research in this area
is vital to ensure that synthetic data upholds privacy protections.

To address this, our research proposes an approach to integrate
differential privacy with Large Language Models, aiming to generate
synthetic data that maintains the utility of real data whilst ensuring
that it is private. This research will involve modifying the Large
Language Models (LLMs) training process to incorporate differential
privacy and evaluating the generated synthetic data against the
original dataset in terms of privacy, utility for its potential real-
world application, and fidelity in replicating key characteristics of
the original dataset.

Our research aims to integrate differential privacy into the train-
ing process of Large Language Models (LLMs), thereby generating
synthetic data that retains the real data’s utility while ensuring
privacy. This integration will involve modifying the LLMs’ training
process to implement differential privacy using dp-transformers
[17] library. Our evaluation will focus on three critical aspects: the
privacy level of the synthetic data compared to the original dataset,
its utility for potential real-world applications, and its fidelity in
replicating the original dataset’s key characteristics.

2 PAPER STRUCTURE

The next section, Related Works, provides an overview of the ex-
isting research. The Background section provides the theoretical
background necessary for understanding this research. The Pro-
posed Methodology section details our research approach. The Ex-
perimental Setup discusses this approach technically. The Results
section then presents the research findings, leading into the Discus-
sion where these results are interpreted and their implications are
explored. The paper concludes with the Conclusion, summarizing
the research and its broader impact.

3 RELATED WORKS

The study on Differentially Private Data Synthesis [20] presents
an innovative algorithm for creating synthetic datasets that are
differentially private. This research uniquely addresses the delicate
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balance between reducing information loss and retaining significant
data correlations, a critical aspect in ensuring both data utility and
privacy.

The paper also reviews insights from the NIST Differential Privacy
Data Synthesis Challenges [16], which detail practical experiences
in applying differential privacy to data synthesis. This research con-
tributes significantly to understanding the real-world challenges
and solutions in maintaining data privacy while ensuring the infor-
mativeness of the data.

Furthermore, the research on Synthetic Text Generation with
Differential Privacy [19], presented at the Association for Computa-
tional Linguistics meeting, offers a practical approach to generating
synthetic text within the boundaries of differential privacy. This
study aligns closely with creating privacy-preserving synthetic data
using Large Language Models, emphasizing the maintenance of data
utility alongside privacy. Furthermore, the research on Synthetic
Text Generation with Differential

This research addresses critical gaps in existing literature, partic-
ularly in the conditioning of Large Language Models (LLMs) using
labels and initial text segments for processing sensitive data. Pre-
vious studies have not thoroughly investigated this methodology,
nor have they adequately analyzed the balance between maintain-
ing privacy and preserving the utility of synthetic data generation.
Furthermore, the generation of synthetic data from highly sensitive
sources like personal conversations is a domain that has remained
largely unexplored in past research.

A key contribution of our work lies in its practical validation,
which extends the utility of these methods beyond theoretical con-
structs and into real-world applications. This aspect of our research
is particularly crucial, as it demonstrates the feasibility and effec-
tiveness of these methodologies in practical scenarios, something
that has been lacking in prior studies. Therefore, our research con-
tributes to advancing the field of synthetic data generation under
the constraints of differential privacy, paving the way for future
investigations and practical implementations in this area.

4 BACKGROUND KNOWLEDGE
4.1 Large Language Models

Large Language Models underwent a significant transformation
with the introduction of the Transformer model by Vaswani et al.
[15] in 2017. Central to this model is an attention mechanism that
revolutionizes the processing of sequential data. This mechanism
dynamically allocates varying levels of focus to different segments
of input data, depending on their assessed relevance. Such an ap-
proach allows Transformer-based models to contextualize each word
within the entire sequence, thereby enhancing the interpretation of
data. This contextual understanding is pivotal in language modeling,
particularly in generating synthetic data that closely mirrors the
original dataset. The comprehension afforded by the Transformer
model elevates the fidelity of synthetic data generation, ensuring
greater accuracy and relevance in linguistic applications. This at-
tention mechanism is given by the following equation:

. OKT
Attention(Q, K, V) = softmax - \% (1)
k
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In the attention mechanism, the components Queries (Q), Keys
(K), and Values (V) play crucial roles, represented as matrices. The
queries, denoted as Q, are representations of the current token,
effectively capturing its context within the input sequence. The
keys, represented by K, encapsulate the representations of all tokens
in the input sequence and are instrumental in computing attention
scores. Values, indicated by V, are also representations of the input
tokens but are distinct from keys in their function; they are utilized
to construct the output of the attention layer. The dimensionality of
the keys d, is a critical parameter that influences the effectiveness
of the attention mechanism by determining the scale of the dot
products used in calculating attention scores. This dimensionality
plays a vital role in balancing the model’s sensitivity to the input
sequence’s various features.

Layer: (6 | Attention: [Sentence A-> Sentence A v|

[CLS] [CLS]
the the
dog dog
sleeps sleeps
on on
inside inside
the the
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[SEP] [SEP]

Fig. 2. Attention for different words using BertViz

The Transformer model is composed of two principal components:
encoders and decoders. The encoders process input sequences in
parallel, transforming them into a set of attention vectors. These
vectors are then utilized by the decoder, in conjunction with its own
input, to generate the output sequence. Within this architecture,
BERT and GPT can be used as exemplary models. BERT uses the
encoder to process text inputs, enabling it to contextualize a word
within the range of surrounding words. Conversely, GPT uses the
decoder component to sequentially generate text, predicting each
subsequent word based on the cumulative context of preceding
words.

The computation of attention weights for each token as given
by the previous equation is a critical feature of this model. These
weights allow the model to retain and integrate contextual infor-
mation throughout the entire sequence. Consequently, the final
representation of each token is informed by the entire sequence,
rather than being limited to local neighboring tokens. This ability
to incorporate and utilize extensive context makes the Transformer
model particularly adept at complex language tasks, such as text gen-
eration, by providing a nuanced and comprehensive understanding
of language.

Figure 2 shows a representation of the attention mechanism from
the sixth layer of a transformer-based model. Specifically, this figure

illustrates a self-attention heatmap for a single sentence input using
BertViz, a visualization tool for attention. Each word, or token, in the
sentence ("the", "dog", "sleeps", "on", "inside", "the", "house") is aligned
in two columns, with the left column representing the focus tokens
and the right column representing the context tokens to which the
attention is being paid. The attention scores are visualized through
the gradient shading and connecting lines between the tokens. For
instance, the word "on" is connected to "sleeps” with a prominently
thick line and a highlighted box, indicating a strong attention link,
suggesting that in the context of this sentence, the model has learned
that "on" and "sleeps" have a significant contextual relationship. The
special tokens "[CLS]" and "[SEP]" are also visible, denoting the start
and end of the input sequence, respectively. These tokens are part
of the input formatting convention for certain transformer models
like BERT, where "[CLS]" is used for classification tasks and "[SEP]"
is used to separate or conclude input sequences. This visualization
helps understand and visualize how transformer models process
and relate different parts of the input data to generate an output or
make a prediction.

4.2 How is text generated?

Text generation in models like the Generative Pre-trained Trans-
former (GPT) begins with an initial text prompt. This prompt un-
dergoes tokenization-splitting text into smaller tokens and is sub-
sequently converted into a vector of numerical representations
through embeddings. These embeddings capture both the semantic
and syntactic properties of the prompt. The vector then progresses
through the transformer layers, ultimately reaching the Language
Modeling Head. This component contains comprehensive informa-
tion about all words known to the model and plays a crucial role in
the generation process.

In the Language Modeling Head, the vectors are mapped from
their numerical representations back to actual words, utilizing the
hidden states derived from the transformer layers. The head calcu-
lates the probability of each word in the model’s vocabulary being
the next word in the sequence, given the initial prompt. Decoder
models employ an autoregressive approach, wherein the model in-
corporates its previously generated outputs as part of the input for
generating subsequent outputs. After generating a word, this word
is appended to the input sequence, and the model iterates this pro-
cess for each subsequent word. Consequently, each word generated
is dependent on the context provided by the preceding words in the
sequence. The probability of a sequence of words in this model is
determined by the product of these conditional probabilities, given
as:

N

P(wordy, wordy, ..., wordy) = l_[ P(word;|wordy, wordy, ..., word;_1)

i=1

@

4.3 Differential Privacy

Differential Privacy is a privacy-preserving framework that offers
a formalized privacy guarantee. This guarantee asserts that the
addition or removal of a single data point within a dataset does not
substantially influence the outcome of an analysis. The framework



achieves this by the addition of controlled random noise to the data,
thereby masking individual data points. One of the key strengths of
Differential Privacy is its resilience against linkage attacks, where
an adversary attempts to re-identify individuals in anonymized
datasets. Additionally, its flexibility and composability allow it to be
integrated with other privacy-preserving frameworks effectively.

From a mathematical perspective, a randomized mechanism M
adheres to e-differential privacy if, for any two datasets D and D’
that differ by at most one element, and for all outcome sets S within
M’s output space, the following condition holds:

Pr[M(D) € S] < e* X Pr[M(D’) € S] (3)

This inequality signifies that the probability of any outcome from
dataset D occurring within set S is bounded by the exponential
function of ¢ times the probability of the same outcome from dataset
D’. Here, ¢ (epsilon) is a non-negative parameter that quantifies the
privacy loss, with lower values indicating stronger privacy guaran-
tees.

The effectiveness of Differential Privacy depends on several key
factors:

(1) Noise Distribution: The type of noise added, such as Laplace
or Gaussian noise, plays a crucial role in masking individual
data points.

(2) Privacy Budget: Defined by ¢, the privacy budget determines
the strength of the privacy guarantees. A lower ¢ value
typically means stronger privacy protection but may impact
the utility of the data.

(3) Query Sensitivity: This refers to the potential change in
output value with the removal of any one record from the

dataset. Differential Privacy is most effective with low-sensitivity

queries, where the output is less affected by changes in indi-
vidual data points.

4.4 DP-SGD

Differentially Private Stochastic Gradient Descent (DP-SGD) is an
adaptation of the traditional gradient descent algorithm, modified
to incorporate differential privacy, suitable for training machine
learning models. The fundamental intuition behind this approach
involves adding noise to the gradients during the model’s learning
process. In practice, gradients are calculated for a small batch of
data and then clipped to a predefined threshold. This clipping serves
to limit the influence of any single data point, ensuring that indi-
vidual contributions do not disproportionately affect the gradient
calculations. Subsequently, noise is introduced into the aggregated
gradients, with the magnitude of this noise being directly propor-
tional to the desired privacy level €. These modified gradients, now
imbued with noise, are utilized for updating the model parameters.
The updated model parameters are calculated as follows:

1 n
new = Oota =1 |~ > Clipc(VL(0,x1) + N (0,6°C%) | ()
i=1

In this equation, n represents the learning rate, n denotes the
number of samples in the batch, Clip. is the clipping function
applied to the gradients, and N (0, 0®C?) is the Gaussian noise added

Saad Khalil

to ensure privacy. This integration of noise and clipping into the
gradient descent process is pivotal in aligning the model training
with differential privacy principles.

5 PROPOSED METHODOLOGY

The proposed methodology, illustrated in Figure 1, is a framework
for generating a differentially private dataset using a fine-tuned
Large Language Model (LLM).

5.1 Input Dataset

We focus on the synthesis of datasets with labels. Labeled datasets
enable a direct comparison between models trained on synthetic
data and those trained on original data. This comparison is vital for
quantifying the utility of synthetic text and assessing its accuracy in
replicating real-world data. While labels are not inherently required
to create realistic synthetic text, they play a pivotal role in training
differentially private models. Labeled datasets are particularly useful
for synthetic text generation, as they provide the model with clear
guidance regarding the data’s context and intended outputs.

Hence, our primary hypothesis is that by appending the first three
words of the input text with the label to guide generation, the model
will produce synthetic text that closely mirrors the original in terms
of utility and fidelity. This approach is also expected to maintain text
privacy due to the integration of differential privacy. We hypothesize
that this method will preserve the inherent patterns and the initial
label of the text, thereby guiding the model to generate high-quality,
differentially private synthetic data. This hypothesis is supported
by the findings of Taub et al. (2020) [14] where they demonstrate
that labeled input data can improve the utility of synthetic data by
reducing uncertainty about the reliability and validity of results
derived from them.

5.2 Pre-processing

Conditioning a Large Language Model (LLM), as introduced by
Keskar [9], is a technique designed to generate text based on specific
contexts or attributes. This method involves a strategic modification
of the training data during the pre-processing phase. Each data entry
is prefixed with a relevant label or attribute, followed by special to-
kens indicating the beginning of the sentence [BOS] and separation
from the label [SEP]. Through this approach, the model is trained to
generate text that is directly influenced by the prepended labels, ef-
fectively conditioning the output. When a prompt is presented with
an associated label, the model demonstrates a heightened propen-
sity to produce text that is coherent with the specified label. This
technique offers refined control over the generated content with-
out necessitating changes to the model’s underlying architecture.
Moreover, it enhances the model’s ability to adhere to the seman-
tics, styles, tones, and topics inherent in the training data, thereby
amplifying its utility and fidelity in text generation tasks. This con-
ditioning approach, symbolized by the sequence "[BOS] [Label]
[SEP]," is instrumental in guiding the model towards generating
contextually relevant and stylistically consistent text.

In this stage, we ready the input dataset for processing by the
language model. Custom special tokens—BOS to denote the begin-
ning, SEP to separate label and text, and EOS to mark the end—are
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appended to each text entry. The labels (e.g., "N’ for negative, 'P’
for positive) as shown in Figure 1 are also integrated, providing the
model with explicit cues about the nature of the text to follow.
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Model Architecture [€ > Loss Function

[€—>| Optimizer Noise

Large Language Model ;

Input Data
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Fig. 3. The dotted arrows represent the potential areas where noise can be
added. The solid arrow is the proposed area.

5.3 Fine-Tuning

In this stage, the training involves fine-tuning a pre-trained model
with pre-processed data. Initially, the data undergoes tokenization
using a specialized tokenizer, and then a data collator further adapts
this tokenized data for training. A critical component in this process
is the privacy engine, which is tasked with integrating differential
privacy. This is achieved by meticulously adding noise to the training
process in a controlled manner.

The underlying intuition of our approach is to develop a gen-
eralized model that does not overly rely on memorizing specific
training data to achieve high accuracy. This concept aligns with the
principles of differential privacy, where the objective is to enable
accurate analysis while preventing the exposure of individual data
contributions. In a typical Large Language Model as shown in Figure
3, essential elements include the model architecture, its weights,
the loss function, and the optimizer. The optimizer plays a pivotal
role in minimizing losses. Adding noise later in the training process
is preferable, as introducing it too early necessitates adding more
noise overall. The primary goal is to ensure that the training is both
noisy and private, thereby achieving the desired privacy guarantees
with a minimized addition of noise. For this reason, we propose that
the optimizer, responsible for updating model parameters, is where
the noise is added to ensure the preservation of privacy.

5.4 Dataset Generation

The final stage uses the fine-tuned model to create a new dataset.
A prompt generator uses a prompt that retains the structure of the
input data, which the fine-tuned model uses to generate new text
data. This process results in a ’Generated DP Dataset’—a collec-
tion of texts paired with their corresponding labels that resemble
the original data in utility and fidelity but are generated to ensure
differential privacy.

6 EXPERIMENTAL SETUP
6.1 Dataset

The dataset we are using is the dair-ai/emotion dataset [13], which
is publicly available. This dataset comprises English Twitter mes-
sages labeled with six basic emotions: anger, fear, joy, love, sadness,
and surprise. The data fields in this dataset include a "text" string
feature and a "label" classification label, with the labels representing
the six emotions. The dataset is available in two configurations:
a split version with a total of 20,000 examples divided into train,
validation, and test splits, and an unsplit version with a total of
416,809 examples in a single train split. The dataset is intended for
educational and research purposes only, aligning with the objectives
of this project. Specifically, this dataset, which consists of English
Twitter messages labeled with emotions like joy, sadness, anger, etc.,
will be utilized to test and evaluate the model’s ability to generate
synthetic data. By applying differential privacy, we can explore the
model’s capacity to produce text that retains the original data’s util-
ity while ensuring privacy, especially in contexts involving sensitive
personal information. This approach will help assess the effective-
ness of integrating differential privacy with large language models
in generating privacy-preserving synthetic data.

6.2 Model Configuration

In our experimental setup, we utilize two distinct models: Bert-
base-uncased [5] and GPT2[12]. The selection of GPT2 is strategic,
chosen for its advantageous balance between computational effi-
ciency and the quality of synthetic data it generates [4]. Considering
that differential privacy significantly escalates computational costs,
employing a relatively smaller model like GPT2 is essential to test
our hypothesis effectively. We use Bert-base-uncased to perform
a comparative analysis of the synthetic data against the original
dataset and to compute the semantic similarity between them.

6.3 Preprocessing

The preprocessing stage comprises two critical steps. Firstly, we
ensure the absence of personal or confidential information in the
text inputs using Named Entity Recognition (NER). For this purpose,
we deploy the Bert-base-NER model to identify and subsequently
remove entities such as people and locations. This step is imperative
to ensure the anonymization of the data. Secondly, we append labels
to the actual text and incorporate special tokens. This is achieved
through a mapping process, thereby preparing the data for subse-
quent stages.
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6.4 Differential Privacy Pipeline

We take a closer look at how differential privacy works in our
pipeline. Initially, the dataset is partitioned into minibatches of
specific sizes (e.g., 32, 64, 128). In the forward pass, this data is
fed into the first layer of the network, where it operates with the
model’s parameters. The resulting weighted sum is then propagated
through subsequent layers. The deviation of the model’s predictions
from the true labels or values is utilized to compute the loss value.

During the backward pass as shown in Figure 4, the loss function
is propagated in reverse across each layer, leading to the update of
the model parameters. Before updating the parameters, however,
the gradients are subject to clipping. This is crucial, as unclipped
gradients may disproportionately reflect the influence of certain
data points, thereby increasing the sensitivity of the data. To man-
age this sensitivity, the gradients are clipped to a predetermined
threshold. Subsequently, these clipped gradients are aggregated,
and the predetermined noise is added to them. The resulting noisy
averaged, and clipped gradients are then used to update the model
parameters, ensuring the integration of differential privacy into the
training process.

6.5 Experminental Process

6.5.1 Finetuning. The preprocessed training dataset is given as
Dirain = {(xi, yi) Y1y )
We tokenize the preprocessed dataset Dyyqin and truncate and
pad it so it has the same sequence length. We load our model M
and set it to training. We use the dptransformers library for their
data collator which adapts the data preparation by automatically
creating the input tensors and using their trainer class to set the
training arguments and dynamically attach the differentially private
optimizer to the trainer. This trainer class handles the different
hyperparameters used in the finetuning. This library is a modified
version of Opacus which is the standard library used in integrating
differential privacy whilst allowing the integration into models like
GPT2. The transformers implementation of GPT2 uses a custom
layer type which is incompatible with Opacus which is why this
library is used to implement differential privacy. The trainer trains
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and saves the model weights and parameters which can then be
used to generate text. The model M is specifically fine-tuned to
the semantics of dataset Dyp,in as well as the labels to give us the
finetuned model M.

6.5.2 Generating Text. We generate two sets of synthetic datasets:
one incorporating differential privacy and the other without it. For
both scenarios, we follow the previously described procedure to
produce the fine-tuned model M. To explore the effects of differ-
ential privacy, we use varying ¢ epsilon settings for each version
of the generated model. These models are then utilized to generate
text, adhering to a specific prompting format. Specifically, we load
the models and initiate text generation by prompting them with a
sequence that follows our hypothesis: beginning-of-sentence (BOS)
label, separator (SEP), and the initial three words. For instance, a
prompt could be structured as "[BOS] sad [SEP] I will be"

We aim to generate datasets that mirror the original dataset’s
composition, particularly in terms of the number of samples for each
label. The generated text is assigned the same class as the original
text, based on our hypothesis that the synthetic text retains the same
class as its original counterpart. This approach allows us to assess
whether the differentially private synthetic dataset maintains the
fidelity and class consistency of the original dataset while preserving
privacy.

6.6 Evalutation Criteria

6.6.1 Utility. To measure the utility of the synthetic data generated,
we train a classifier Csypyover the synthetic data Dgynyp, and evalu-
ate its performance over the original test data Diegt. We compare
the performance of this classifier with the original training dataset
Diyain Which we take as the benchmark. For each dataset generated
under different epsilon settings, we calculate the accuracy of the
model over the test dataset. For the sake of standardization, we keep
the hyperparameters identical. The hyperparameters are listed in
the Appendix in Table 4.

6.6.2  Fidelity. To measure the fidelity of the synthetic dataset to the
original dataset, we perform semantic similarity. We use the model
sentence-transformers/all-MiniLM-L6-v2 which given an input text,
outputs a vector that captures the semantic information, to calculate
the similarity between the original data point and the synthetic data
point. We calculate the pairwise similarities for all the pairs of
sentences as this model uses sentence-level embeddings and then
aggregate the scores. The intuition here is that this provides us with
insight into the fidelity of the synthetic dataset.

6.6.3 Privacy. We measure the privacy of the synthetic dataset
using the privacy accountant. The privacy accountant calculates the
privacy loss whilst training. We measure two different measures of
privacy, RDP and PRV. RDP is based on the Renyi divergence which
is a generalization of Kullback-Leibler divergence. This provides a
more realistic epsilon value as it allows for a more efficient privacy
guarantee which leads to better utility. PRV is a more theoretical
measure and provides a more robust guarantee of privacy. Both of
them are measured in the training and the final calculated values
are used to assess the level of privacy protection. In our training,
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the RDP and PRV values always reached the desired epsilon level.
Hence, we do not include this in our results.

7 RESULTS

The tables in this section show the utility and semantic similar-
ity scores for text generated at different epsilon (¢) values, which
are parameters for differential privacy. Sample-generated texts are
also given to visualize these scores. The ‘Benchmark’ refers to the
original data. The oo values are generated after fine-tuning with no
differential privacy.

7.1 Utility

Table 1. Utility scores at different epsilon values

Epsilon (¢) | Utility

Benchmark | 0.925
00 0.861
16 0.652
8 0.592
3 0.569

This table shows that as ¢ decreases (which means privacy increases),
the utility scores decrease. This implies that texts generated with
higher privacy constraints are less useful or informative compared
to the benchmark.

7.2 Fidelity

Table 2. Semantic similarity scores at different epsilon values

Epsilon (¢) | Semantic Similarity
00 0.511
16 0.428
8 0.407
3 0.322

This table illustrates the semantic similarity between the generated
texts and the original data. A higher ¢ value (lower privacy) retains
more of the original text’s semantic properties, while a lower ¢ value
indicates that the texts are less similar in meaning to the original
data.

7.3 Generated Text Samples

The table shows text samples generated, specifically for Label 3:
Anger. The samples are grouped under different values of epsilon
(€). The ‘Benchmark’ row represents the original text for comparison,
while the other rows show texts generated at varying levels of pri-
vacy (with *oo’ indicating no privacy and descending values indicat-
ing increasing levels of privacy protection). As (¢) decreases, privacy
increases, meaning the generated texts are less likely to reveal in-
formation about individuals in the dataset. This table demonstrates
the effect of different privacy levels on the quality and coherence of
generated texts.

Table 3. Text Samples generated from dair-ai/emotion dataset for Label 3:
Anger

Epsilon (¢) | Text

Benchmark | i am just so sick of feeling like this and i
just want opinions please nothing rude
and imature

o i am just feeling overwhelmed with all
the things that i need to do in order to get
to the point where i feel like i am going
to be able to do what i want to do with
my life

16 iam just feeling a little annoyed at myself
for not being able to keep up with what
is going on in my life and i feel like i am
wasting my time and energy trying to
figure out what is wrong with me and
how to

8 i am just feeling a bit overwhelmed with
all the things that i have to do to make
my life a better place for myself and my
family and i feel like i am in the wrong
place at the wrong time in my life and i
3 i am just feeling a little dazed and con-
fused about what to do and how to do it
and i feel like i am wasting my time and
energy trying to figure out what i should
do and what i need to do to get there

8 DISCUSSION

In this paper, we present an approach to generate differentially
private synthetic data using Large language models. We hypothesize
that we can condition the model during its training by incorporating
the label and generating high-quality data by prompting the label
with the first three words of the original text to guide text generation.
The results indicate that the quality of data is directly correlated to
the privacy level and it has a significant impact on the utility and
fidelity. Specifically, as the epsilon value decreases so does the utility
and the fidelity of the generated data. While non-private data shows
only a 7% loss in utility as illustrated in Table 1, suggesting partial
validation of our hypothesis, it’s important to take into account that
when a model is trained on synthetic data, it learns more efficiently,
which could be because the data is less diverse and more uniform
yet it remains representative of the real-world data.

At lower privacy levels, utility and fidelity significantly decrease,
introducing more noise and raising the model’s perplexity. This
makes predictions less reliable and the synthetic data less represen-
tative of the original dataset. The benchmark represents the opti-
mal scores without privacy constraints, providing a comparison to
demonstrate the impact of increased privacy. The trade-off between
privacy and data quality is apparent: higher ¢ values (lower privacy)
maintain more utility and similarity, but as € decreases, these metrics
diminish. For instance, moving from e=00 to £=16 shows a notable
decline, and further decreases to ¢=8 and ¢=3 indicate diminishing
returns for utility against increased privacy. The choice of ¢ reflects



a balance between the need for data quality and privacy, depending
on the sensitivity of the data and the requirements of the research.

This research validates our proof of concept, demonstrating that
we can successfully guide and conditionally generate text in a man-
ner that captures the semantics as shown in Table 3 and retains the
utility of the original data. However, it’s important to recognize that
there are limitations to this approach. While we achieved success
in certain areas, such as accurately replicating data semantics, chal-
lenges remain in enhancing the model’s adaptability to diverse data
contexts. Further research could focus on refining this approach or
exploring more sophisticated methods to condition and guide the
text generation process.

The implications of our findings are particularly significant for
the University of Twente, as they offer a viable solution for generat-
ing differentially private synthetic data to support research. This
approach not only upholds data privacy standards but also ensures
the integrity and usefulness of the data for academic research. Fu-
ture research at the university level could therefore concentrate on
expanding the application of this methodology to various research
fields, thereby maximizing its utility and impact.

9 CONCLUSIONS

Our research validates the hypothesis that LLMs can be effectively
conditioned to generate high-quality, differentially private synthetic
data, but with certain limitations. The research demonstrates a
clear trade-off between maintaining data privacy and the quality
of synthetic data, with higher privacy levels (lower epsilon values)
leading to diminished data utility and fidelity. However, the findings
also underscore the potential of our approach in scenarios requiring
high data fidelity and utility, particularly in sensitive areas where
privacy is of utmost importance.

From a business perspective, our findings hold significant value.
In industries where handling sensitive data is a norm, such as
healthcare and communication services, the ability to generate high-
quality synthetic data while ensuring robust privacy protection is
invaluable. It enables these industries to leverage large datasets for
research and development, machine learning training, and analytical
purposes without risking the confidentiality of individual data. This
not only helps in complying with data privacy laws but also builds
trust with customers and stakeholders, enhancing brand reputation
and competitive advantage

Furthermore, the study underscores the critical need for busi-
nesses to balance data utility with privacy. In an era where data
is a key asset, our approach provides a pathway for companies to
innovate and extract value from their data assets in an ethically
responsible manner. It opens avenues for enhanced data-driven
decision-making, product development, and personalized customer
experiences, all while upholding the highest standards of privacy.

The research opens for further exploration in improving the con-
ditioning and generation process of differentially private synthetic
data, offering a viable solution for privacy-preserving data utiliza-
tion in research and beyond.
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