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ABSTRACT 
Spatial relationship detection in natural language poses a complex 
challenge due to the inherent ambiguity and nuances of human language. 
This paper explores the methodologies for detecting spatial relationships 
in natural language, considering how the various approaches deal with 
inherent ambiguity and implicit spatial information in text. The study 
compares past methodologies, introduces an experiment of its own, and 
discusses strategies employed to manage ambiguity in spatial relationship 
detection. 

1 INTRODUCTION 

Humans use language to describe the world around them. Vital 
part of using language is talking about physical objects and the 
relationship between them in some physical space. A sentence 
“The laptop is on the table and the mouse is to the left of it.” 
describes the relationship between 3 entities – the laptop, the 
table, and the mouse. To be more specific, it explains the position 
(or region) of the laptop relative to the table as well as the 
direction (or orientation) of the mouse with respect to the laptop. 
Detecting such spatial arrangements and learning the mapping 
onto a formal representation poses significant difficulties due to 
the inherent ambiguity of human language. 

Detecting spatial relationships within text holds substantial 
relevance across several domains, including robotics, traffic 
management, and image/graphics generation (Tappan, 2004). 
Spatial knowledge, however, is often implicit in natural language. 
This is one of the biggest challenges in enabling natural 
communication between people and intelligent systems (Chang, 
Savva, & Manning, 2014). For instance, if we want a robot to 
retrieve a mouse given the example sentence above, it needs to be 
inferred that the mouse is to the left of the laptop, even though it 
is not explicitly stated. In the scene generation application, using 
the same sentence, the scene generation software must have an 
understanding of the likely location of the table relative to the 
space it is in (the table location is not mentioned in the sentence). 

This research paper will focus on exploring and investigating a 
range of approaches and methodologies used in the spatial 
relationships detection task. By analyzing the strengths and 
weaknesses of various techniques, especially in contexts where 
spatial relationships are implicit or indirectly expressed, this 

research aims to contribute to managing the inherent ambiguity 
of human language in spatial relationship detection. 

2    PROBLEM STATEMENT 
Detecting spatial relationships in natural language presents 
complex challenges that become significantly more difficult due to 
the inherent ambiguity and implicit spatial cues within human 
discourse. Research shows that extracting spatial entities and their 
relationships from text can be achieved with high accuracy in 
simple sentences that include an explicit spatial indicator (a token 
that defines constraints on the spatial properties, e.g. in, on, behind) 
(Kordjamshidi, Van Otterlo, & Moens, Spatial role labeling: 
Towards extraction of spatial relations from natural language, 
2011), however, the task becomes notably more complex when 
dealing with multifaceted descriptions. Ambiguity is particularly 
found in sentences that describe more than one relationship. In 
such cases finding the correct, or the intended link between the 
objects described in text becomes a lot more difficult. Another 
example is sentences that utilize a verb instead of a preposition as 
a spatial indicator. These sentences usually require some “common 
sense” to determine whether the sentence describes a physical 
spatial relationship. For example, in the sentence “He left the room 
5 minutes ago”, the sentence semantics indicate that “He” is not in 
the “room” which is a spatial relationship between “He” and “room” 
A different sentence, “He left the church 10 years ago” describes the 
person’s faith – a fundamental change and not the spatial 
relationship between “He” and “church”. Both sentences use the 
same verb “left” but have different semantic meanings. Such 
sentences, that use motion indicators (Zlatev, 2006) are 
significantly more complex for spatial relationships detection task. 
Disambiguating such examples for spatial role labeling remains 
challenging, especially when spatial elements and their 
relationships span multiple sentences. 

This research has 2 objectives. The first objective is to analyze how 
various methodologies and techniques were used in the past to 
achieve spatial relationships detection in text. Spatial relationship 
detection has been an active topic of research in recent years, with 
researchers performing experiments by employing different 
methods on datasets of different languages. Some spatial role-
labeling models were designed on a context-specific dataset of a 
certain language while others had an objective to achieve context 
and language-independent solutions. By looking into and 
contrasting these methodologies, this research aims to uncover 
nuances of spatial relationship detection, considering the 
challenges of different linguistic structures and contexts. From 
exploring several different methodologies and approaches in spatial 
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relationship detection across various datasets, this research will 
dive deeper into the management of ambiguity inherent in natural 
language and implicit spatial information. The research will discuss 
how different methods tackle ambiguity as well as what are the 
remaining challenges in managing ambiguity and implicit spatial 
information. 

2.1 Research questions 
To address the challenges and goals outlined in the problem 
statement, this study will answer the following research questions: 

• RQ1: How do the existing approaches and methodologies 
for spatial relationship detection in natural language 
compare? 

• RQ2: How can natural language processing models 
effectively manage ambiguity and implicit spatial 
information to enhance the accuracy and contextual 
understanding of spatial relationships in text? 

3    RELATED WORK 
The spatial relationships detection problem in text is a relatively 
novel problem that became a subject of research in the early 2000s, 
In the research of this topic, application-dependent relations could 
be extracted from text in specific languages (Kelleher, 2003) 
(Tappan, 2004).  
In their 2010 paper, Kordjamshidi et al. (Spatial Role Labeling: Task 
Definition and Annotation Scheme.), have introduced the spatial 
role labeling problem as the extraction of generic spatial semantics 
from natural language and in their 2011 article (Spatial role 
labeling: Towards extraction of spatial relations from natural 
language), they tackled the problem of spatial role extraction from 
unrestricted natural language with machine learning methods. In 
this article, however, they have restricted their focus on 
prepositions only and have focused on machine learning 
techniques to achieve their goals. While taking a huge step forward 
in tackling the spatial role labeling problem in this research, the 
restriction of using sentences with prepositions only means that a 
lot of ambiguous sentences (such as ones involving motion 
indicators) were not used for spatial relationships detection.  
There has been research investigating spatial relations detection 
task from different angles, such as rule-based (Zhang, Zhang, & 
Jiang, 2010), and machine learning (Kordjamshidi, Van Otterlo, & 
Moens, Spatial role labeling: Towards extraction of spatial relations 
from natural language, 2011), (Wu & Zhang, 2023). The paper by 
Wu & Zhang similarly to my research objectives, aimed to compare 
different approaches to spatial relationship detection. Their 
investigation compared the pipeline and joint extraction 
approaches. 
In the following sections of this paper, you will find an in-depth 
analysis of the methods and results of each of the aforementioned 
papers to create a meaningful comparison between different 
approaches to spatial relationship detection. 
Managing ambiguity is quite a broad topic with many different 
examples in human language, and there has been different research 
tackling different examples of the problem. For example, in the 
previously mentioned 2011 article, Kordjamshidi et al. (Spatial role 
labeling: Towards extraction of spatial relations from natural 

language), use the research by Litkowski and Hargraves (SemEval-
2007 Task 06: Word-Sense Disambiguation of Prepositions) for 
preposition disambiguation.   
There has been research on managing ambiguity by resolving 
prepositional phrase attachments through visually guided spatial 
relationship detection – a multimodal approach taking both text 
and image for spatial relationship detection (Rahgooy, Manzoor, & 
Kordjamshidi, 2018).  
 
4   DATASETS 
This section serves as a vital introduction to addressing research 
question 1, aiming to compare different methodologies employed 
in past spatial relationship detection research. Understanding the 
nature and diversity of the datasets is an essential part of 
analyzing the diverse methodologies and techniques in spatial 
relationship detection research. This section describes the 
datasets utilized to evaluate each methodology under comparison 
within this paper. 
 
4.1    Machine Learning Approach 
In this research, I will examine several papers proposing solutions 
to spatial relationship detection via a machine-learning approach. 
Hence there is an extensive list of datasets to consider while 
evaluating different results. Here is the list of datasets that were 
employed in the research and their characteristics: 
a)  TPP dataset (Kordjamshidi, Van Otterlo, & Moens, Spatial role 

labeling: Towards extraction of spatial relations from natural 
language, 2011) 

TPP dataset was used for the preposition disambiguation task. It 
contains 34 XML files, totaling 16557 training and 8096 test example 
sentences in English, with each sentence containing one example 
of a preposition.  
b) GUM (Maptask) dataset (Kordjamshidi, Van Otterlo, & Moens, 

Spatial role labeling: Towards extraction of spatial relations 
from natural language, 2011) 

A subset of the GUM (Maptask) dataset was used for the spatial role 
labeling task. 100 English sentences were used in this dataset, with 
65 trajectors and 69 landmarks appearing in 112 spatial relations.  
c) CLEF dataset. (Kordjamshidi, Van Otterlo, & Moens, Spatial 

role labeling: Towards extraction of spatial relations from 
natural language, 2011) 

This dataset of textual descriptions of 400 images contains 686 
English sentences that contain 839 trajectors and 741 landmarks. 
The total number of spatial relations in this dataset is 869. 
d) DCP dataset (Kordjamshidi, Van Otterlo, & Moens, Spatial role 

labeling: Towards extraction of spatial relations from natural 
language, 2011), (Kolomiyets, Kordjamshidi, Moens, & 
Bethard, 2013) 

This dataset contains descriptions of locations situated at each of 
the latitude and longitude integer degree intersections in the world. 
Not all sentences are in English, unlike the previously mentioned 
datasets. In (SemEval-2013 Task 3: Spatial Role Labeling, 2013), 1789 
sentences from the corpus (in original orthography and formatting) 
were used with 2198 trajectors and 1353 landmarks appearing in 
2703 spatial relationships. In (Kordjamshidi, Van Otterlo, & Moens, 
Spatial role labeling: Towards extraction of spatial relations from 
natural language, 2011), however, only 250 sentences were used 
with 199 trajectors and 188 landmarks appearing in 222 spatial 
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relationships. This dataset is particularly interesting to consider as 
it is collected user data and hence a large proportion of the 
sentences involving a preposition did not describe a spatial 
relationship.  
e) IAPR TC-12 image Benchmark dataset (Kordjamshidi, Bethard, 

& Moens, SemEval-2012 Task 3: Spatial Role Labeling, 2012) 
This dataset contains images taken by tourists with text 
descriptions in different languages. This dataset consists of 1213 
sentences, in which 1593 trajectors and 1408 landmarks appear in 
1464 spatial relationships. 
 
6.1.1 Multi-modal datasets. 
As mentioned in the previous section, one of the approaches to 
managing ambiguity is using multimodal data for training. 
Therefore, the following datasets were considered: 
f) CLEF 2017 mSpRL dataset (Rahgooy, Manzoor, & 

Kordjamshidi, 2018) 
This dataset is a subset of the previously mentioned IAPR TC-12 
image Benchmark dataset which contains 613 images with 
descriptions of 1213 sentences. 
g) Visual Genome dataset (VG) (Rahgooy, Manzoor, & 

Kordjamshidi, 2018) 
The dataset contains 108077 images and 2316104 relation instances 
(the relationships component of this dataset contains relationships 
(prepositions) between two bounding boxes). 
h) ReferItGame dataset (Rahgooy, Manzoor, & Kordjamshidi, 

2018) 
It contains 120000 expressions which cover 99.5% of the regions of 
the SAIAPRTC-12 dataset which is an annotated version of the IAPR 
TC-12 image Benchmark dataset. 
 
4.2 Chinese Datasets 
The Encyclopedia of China (the geography section) has been used as 
a dataset in several papers researching spatial relationship 
detection from China. The rule-based approach (Zhang, Zhang, & 
Jiang, 2010) has utilized this dataset for their research. It is 
important to note that it is difficult to draw conclusions from the 
results of Chinese and English datasets due to linguistic nuances 
and structural differences between the languages. 
 
4.3 Experiment Dataset 
Summarizing the comprehensive overview of all the datasets (and 
their respective papers), it is noteworthy to highlight that I am 
going to use a subset of the IAPR TC-12 image Benchmark dataset 
when conducting my own experiment. The choice to use a subset 
of the IAPR TC-12 image Benchmark dataset for my experiment is 
motivated by its common use across several of the methodologies 
discussed in this paper, therefore allowing a more meaningful 
analysis and evaluation. Section 6.2 will describe the experiment in 
further detail. 
 
5    EVALUATION 
In answering Research Question 1 concerning the analysis of 
various methodologies and approaches in spatial relationship 
detection, a series of evaluation metrics must be defined to discuss 
their relative strengths and weaknesses. The comparison will be 
conducted based on the following criteria to provide a 

comprehensive understanding of each approach’s performance 
across different datasets. 
 
5.1    Performance Metrics 
The first and one of the most important criteria for evaluation is of 
course comparing the performance metrics across different models 
within the Machine Learning approach to the spatial relationship 
detection task. These metrics will include precision, recall, and F1 
score as they are the standard evaluation metrics employed by all 
the papers mentioned earlier.  
 
5.2    Dataset-specific Analysis 
As mentioned in the Datasets section, there are a lot of datasets to 
consider in this research. Recognizing the influence of the dataset, 
its characteristics, and preparation, on a model/methodology 
performance is vital to compare it with alternatives. To add to that, 
recognizing the dataset contents will help draw conclusions about 
how the methodology deals with ambiguity of natural language. 
Specific attention will be given to instances where the same dataset 
was used in different approaches – that gives a great chance to have 
a fair comparison of their relative performance.  
 
5.3    Contextual considerations 
Lastly, recognizing the diverse application of spatial relationships 
detection, an important consideration is the context of the research 
behind the solution proposed. Some approaches may have fine-
tuned their models to a specific context, such as the Geographic 
Information Systems (GIS) (Zhang, Zhang, & Jiang, 2010), while 
others have pursued a context-independent solution. In the 
evaluation of the results, the implications of the contextual choices 
on the methodologies’ performance must be considered. 
 
6    METHODOLOGIES 
This section will delve into the comprehensive methodologies 
employed in spatial relationship detection. Understanding the 
different choices made in previous research will help draw 
conclusions for cross-methodology comparison. This section will 
describe the nuances and processes of various machine learning 
approaches to the problem, uncovering the differences across 
multiple techniques. Additionally, it will illustrate how other non-
machine learning techniques contribute to the spatial relationship 
detection problem. Moreover, this section will introduce the 
discussion of how different methodologies handle ambiguity, 
which will be continued in the Results section. Lastly, in this 
section, you will find a detailed report of my experiment and how 
it differs from the rest of the methodologies considered in this 
research.  
 
6.1    Machine Learning Approach 
In the field of spatial relationship detection within natural 
language, the machine learning approach has emerged as the most 
common method for solving the problem. Numerous studies have 
employed the machine learning approach; however, I took the work 
of Kordjamshidi et al. across several papers and conferences as it is 
the most comprehensive solution proposed in recent years. 
Furthermore, analyzing the solutions presented in their collective 
body of work holds significance, given the interconnected nature of 
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their papers. The SemEval series forms a continuum, building upon 
prior contributions. This sequential progression allows for a 
nuanced examination of the evolution of techniques, pinpointing 
the variations instrumental in enhancing the outcomes and 
expanding the scope of the spatial relationship detection problem. 
This section will describe the machine learning solutions to the 
spatial relationships detection, outlining their differences, followed 
by a section describing my experiment, employing different choices 
in my approach to the ones employed in past research. All the 
machine learning methodologies described in this section aimed at 
context-independent models and were trained (mostly) on datasets 
in the English language. The comparison of the results within 
different machine learning models will be in the Results section.  
One of the most foundational works of research on spatial 
relationship extraction from the Machine Learning perspective is 
the paper (Spatial role labeling: Towards extraction of spatial 
relations from natural language) by (Kordjamshidi, Van Otterlo, & 
Moens) in 2011. This work, introducing the spatial role labeling 
task, delves deeply into machine learning methodology for spatial 
relationship detection, addressing ambiguity and implicit spatial 
information inherent in human discourse. 
The spatial role labeling task aims to assign the words in a given 
sentence one of the elements of the set of roles: trajector, landmark, 
spatial_indicator, or none. In this paper, only prepositions were 
considered as spatial indicators though. While the authors 
acknowledge that various word classes can act as a spatial indicator 
in a sentence, they argue that the most dominant form is the 
preposition. Therefore, another arguably common type of spatial 
pivot - a verb, was not considered in this research. The sentences in 
the datasets used by the researchers containing such examples of 
spatial indicators were omitted in data pre-processing. Hoverer, 
while such an example of the ambiguity of language was not 
addressed in this research, the paper did address a different problem 
- the implicit landmark or trajector. One of the most common kinds 
of ambiguity is the non-explicit subject of the spatial relationship, 
as in the example given in the introduction of this paper (the is 
implicit in the relation toTheLeftOf(mouse, laptop)). The approach 
of the authors of the (Spatial role labeling: Towards extraction of 
spatial relations from natural language) suggests another term 
“undefined”: to highlight the existence of implicit trajectors or 
landmarks in a sentence. Consequently, the authors have defined 
two steps for spatial role labeling: 1) the function that takes a word 
in the sentence as an input and classifies whether this word is a 
spatial indicator. They employ a probabilistic classifier for this. 2) 
Given the fact that some word is a spatial indicator, a multi-class 
classifier is employed to tag the rest of the words of the sentence 
into roles {trajector, landmark, none}. After the words in a sentence 
have been labeled with their roles corresponding to some spatial 
pivot, no learning is required to produce the spatial triplets. The 
results of the spatial elements extraction and the generated triplets 
will be compared with the following methodologies in the Results 
section. The performance of spatial role extraction (given a spatial 
pivot) will be evaluated in 2 settings: 1) Where the spatial pivot is 
known (ground truth) and 2) where the spatial indicator 
classification is used as input for trajector/landmark extraction. 
Based on the work of their previous paper that introduced the task 
of spatial role labeling, in their next work, (SemEval-2012 Task 3: 
Spatial Role Labeling), the authors focused on predicting the 
existence of spatial information at the sentence level as well as 

classifying the type of relation which can be direction, region or 
distance. 
The SemEval-2012 task was defined in three parts. 1) The extraction 
of the individual roles (spatial indicator, trajector, and landmark) 
from the input sentence. 2) The extraction of the spatial triples and 
3) The classification of the type of the spatial relation. As this 
approach to the spatial relationship detection follows from the 
previous work on the topic, the authors tackled implicit trajectors 
or landmarks with a special term “undefined”. As you notice this 
paper is essentially an extension of the previous work, with the first 
2 parts of the task being the same as the ones in (Spatial role 
labeling: Towards extraction of spatial relations from natural 
language). However, the methodology differs in producing the 
spatial relationships triplets. To produce spatial roles for the 
candidate triplets (spatial indicator, trajector, landmark) a joint 
classification was used, with 2 different runs which differed in the 
number of features. Then the binary support vector machine 
classifier was employed to predict whether a candidate triple is a 
spatial relationship or not, while in the previous work, since the 
extraction of trajector and landmark was based on the spatial pivot 
as input, the triplets were produced without learning and were not 
verified. After the spatial triplet has been verified, the type of the 
relationship is classified between the tree types mentioned above. 
Both runs (with larger and smaller numbers of features) will be 
compared to each other as well as to the other machine learning 
methodologies in the Results section. 
The second iteration of the task (Kolomiyets, Kordjamshidi, Moens, 
& Bethard, 2013) extends the previous work, by using an additional 
training corpus, which besides containing “static” spatial 
relationships (identified by a preposition), also contains motions. 
In the previous works, methodologies of which were previously 
described, the only spatial relationships considered were those 
between still objects. In addition to those, (SemEval-2013 Task 3: 
Spatial Role Labeling) paper introduced new spatial roles to capture 
dynamic relationships: such relationships contain an object whose 
location is changing in a sentence describing it. In this new 
annotation scheme, the roles are slightly different. Trajector of a 
dynamic spatial relationship denotes an object which moves in a 
sentence. A motion indicator (replacing the spatial indicator in a 
static relationship) is a word or a phrase that signals the motion of 
the trajector, which is usually a verb. A path is a role assigned to a 
word or a phrase that denotes a path of the motion that the trajector 
is moving along. A landmark is a secondary (and static) object of 
the spatial scene. Lastly, distance and direction have different 
meanings from the previous annotation scheme. In the 2012 paper, 
distance and direction were types of spatial relationships (which 
were classified for the triplet in the third part of the task). Here, 
distance is a role assigned to a word in a sentence if a sentence 
describes a motion that is performed for a certain distance. 
Similarly, direction is assigned to a word that mentions the direction 
of motion in the text. The goal of the SpRL-2013 can be summarised 
with the following 5 parts: 1) Identifying the words or phrases for 
three types of spatial roles such as trajector, landmark, and spatial 
indicator. Essentially, this part is the same as before as just static 
relationships would be considered here 2) Identifying the triplets 
that connect the roles identified in part 1. 3) Identifying the words 
or phrases for all spatial roles such as trajector, landmark, spatial 
indicator, motion indicator, path, direction and distance. 4) 
Identifying n-tuples that connect the roles identified in part 3. 5) 



 

5 

Semantic classification of the spatial relationships. In tasks 1 and 3, 
each word in a sentence is classified with respect to the possible 
spatial roles. To avoid overfitting on the training data, another vital 
contribution of this methodology was the use of shallow 
grammatical features instead of the full syntax of the sentence. Like 
the previous SpRL papers, this methodology first classifies spatial 
and motion indicators and then uses these predictions for the 
remaining spatial roles to be classified. For classifying spatial and 
motion indicators, lexical features such as lemmas, part-of-speech 
tags, and lexical context representations were used by the classifier. 
For task 2, similarly to the (SemEval-2012 Task 3: Spatial Role 
Labeling) paper discussed in this section, a support vector machine 
classifier would verify whether candidate triplets are spatial 
relationship triplets. 
 
6.2    My Experiment 
As an extension of my exploration into diverse machine learning 
approaches for spatial relationship detection, this section describes 
my experiment which was aimed to use the insights from the 
previous research, however, differs in approach from some of the 
methodologies described in the section above. 
Before I dive into describing (in more detail) the dataset used for 
my experiment and the model, to be consistent with the rest of the 
approaches’ descriptions I have summarized my experiment’s goal 
in the following 3 parts. 1) Assign a spatial label (spatial_indicator, 
trajector, landmark, or none) to each word in the sentence 
simultaneously. (Spatial Role Labelling) 2) Generate candidate 
spatial relationships triplets and 3) Verify if the candidate triplet is 
indeed a spatial relationship. The general approach is quite similar 
to (a combination) of approaches that I have previously discussed. 
However, part 1 differs in the fact that I label the sentence words 
without taking a spatial pivot into account. The reasoning behind 
this choice is to investigate how labeling the words simultaneously 
differs in terms of performance. 
6.2.1 Dataset description and preprocessing 
As mentioned previously, for my experiment I have used the same 
dataset that was used in a number of approaches, for instance in 
(Kordjamshidi, Bethard, & Moens, SemEval-2012 Task 3: Spatial 
Role Labeling, 2012). Before describing the experiment, I will 
describe the dataset in more detail, as well as how I chose to 
preprocess it. The IAPR TC-12 dataset is an XML file of the 
following structure: 
 
<TEXT> 
  The entire text corpus 
</TEXT> 
 
<TAGS> 

<TRAJECTOR text="text" end="end_index" 
start="start_index" id="id" /> 
 
<LANDMARK text="text" end="end_index" 
start="start_index" id="id" /> 
 
<SPATIAL_INDICATOR text="text" end="end_index" 
start="start_index" id="id" /> 

 
<RELATION general_type="region" 
spatial_indicator_id="S_id" 
landmark_id="L_id"trajector_id="T_id" id="id" /> 

</TAGS> 
 

The <TEXT> field contains a total of 599 sentences which contains 
716 trajectors and 661 landmarks that a total of 765 spatial 

relationships consist of. As you may have noticed, the dataset I am 
using for my experiment is a subset of the dataset that was used in 
(Kordjamshidi, Bethard, & Moens, SemEval-2012 Task 3: Spatial 
Role Labeling, 2012), which had almost double the amount of 
sentences. 
To achieve part 1, the dataset needed to be preprocessed to create a 
train and test sets for spatial role labeling. The preprocessing for 
part 1 resulted in the dataset of the following structure: 
 
<SENTENCES> 
  <SENTENCE> 
 <TEXT /> 
 <LABELS /> 
  </SENTENCE> 
</SENTENCES> 
 

The <TEXT> field of the original dataset was used together with the 
<TAGS> to produce a dataset where for each <SENTENCE> in 
<SENTENCES> there are 2 subfields: <TEXT> and <LABELS> which would 
contain the human text (tokenized on the word level and labels for 
each word. Here is an example entry from this dataset: 
 
<SENTENCE> 
 <TEXT> 
  ['a', 'rock', 'hole', 'in', 'the', 'ground', 
'surrounded', 'by', 'sand', '.'] 
 </TEXT> 
 
 <LABELS> 
  ['TRAJECTOR', 'TRAJECTOR', 'TRAJECTOR', 
'SPATIAL_INDICATOR', 'LANDMARK', 'LANDMARK', 
'SPATIAL_INDICATOR', 'SPATIAL_INDICATOR', 'LANDMARK', 'NONE'] 
 </LABELS> 
</SENTENCE> 
 

All sentences were padded and words were converted to numerical 
values for the model to use. 479 sentences would be used for 
training (80% train test split). 
6.2.2 Model 
Initially, I started my experiment with the intent of using the BERT 
(Bidirectional Encoder Representations from Transformers) model 
which is renowned for its contextual understanding of natural 
language. To add to that, I have seen limited research on the 
machine learning approaches using BERT for spatial role labeling 
task. However, during the experimentation phase, the training time 
required for BERT and the attained poor results motivated me to 
switch gears and explore simpler models that would be more 
advantageous for a  small dataset such as the one I am using. 
Therefore, a different method was a sequential model that uses 
LSTM layers. The model was provided an encoded input text and 
would predict a spatial role for each element of the input sequence. 
After the fine-tuned model reached acceptable results, the output 
was used for parts 2 and 3. Generating candidate spatial 
relationship triplets required no learning similar to (Spatial role 
labeling: Towards extraction of spatial relations from natural 
language). For step 3, a binary classifier was used to verify if a 
candidate triplet is a spatial relationship or not. The approach was 
to train the binary classifier on the ground truth data (the true 
triplets from the dataset) and then use the trained classifier on the 
generated triplets in part 2. 
The results of my experiment will be discussed and compared to the 
rest of the approaches in the Results section. 
 
 



 

6 

  

6.3    Rule-based approach 
The work of (Zhang, Zhang, & Jiang, 2010) proposed a rule-based 
approach to the spatial relationship detection. Besides a completely 
different approach, this work also differs in both language and 
context. The dataset employed for this research is the Chinese 
encyclopedia (Geography section) as the original data, obviously in 
the Chinese language. The context of the research was the 
Intelligent geographical information systems, therefore the spatial 
relation corpus mainly consisted of relationships between named 
geographical entities. Based on the dataset, more than fifty 
syntactic patterns were identified. After these have been identified, 
the GATE platform was used as the natural language processing 
tool to implement the automatic rule-based extraction of spatial 
relationships. JAPE (a Java Annotation Patterns Engine) which is a 
module of GATE provides the ability to create the rules based on 
the patterns that were identified. Based on that, a natural language 
rule library was built. Before the experiment could be run, some 
modifications to the GATE platform were introduced due to a lack 
of support for Chinese word processing. 1) A new plugin was 
developed and added to GATE which segmented and POS-tagged 
Chinese text. 2) The annotations of geographical named entities and 
spatial relationships were defined in GATE. 
 
7    RESULTS & DISCUSSION 
In this segment, the outcomes of my research will be discussed. The 
performance across different methodologies and approaches will be 
evaluated based on the evaluation metrics defined earlier. Besides 
evaluating the performance of the models and comparing the 
results with dataset and context considerations, this section will 
compare how each approach manages ambiguity, addressing 
research question 2. 
 
7.1    Ambiguity  
Before diving into comparing the performance of different 
approaches and methodologies, this sub-section will reflect on how 
different methodologies manage ambiguity.  
7.1.1 Spatial Indicator Ambiguity 
When dealing with static spatial relationships that use a preposition 
as a spatial pivot (which has been the case for most of the machine 
learning approaches discussed in this paper), the prepositions’ 
sense can be ambiguous. From my experiment, when analyzing the 
dataset, I encountered the following sentence: “About 20 kids in 
traditional clothing and hats waiting on stairs.”. In this sentence, 
there is an “in” preposition which has no spatial meaning, and an 
“on” proposition which does. Such examples are very common in 
human language for static as well as for dynamic relationships that 
usually have a verb as a motion indicator (remember the example 
in the introduction, “He left the room 5 minutes ago” vs. “He left 
the church 10 years ago”). The (Spatial role labeling: Towards 
extraction of spatial relations from natural language) paper has 
addressed this by performing preposition disambiguation as “step 
0” in their approach. They have used Naïve Bayes and Max-Entropy 
classifiers for the detection of spatial vs non-spatial preposition 
senses. They conducted the experiment by training the classifiers 
on the TPP dataset and compared the results with the (Litkowski & 
Hargraves, 2007). The results in Table I show that the proposed 
solution to preposition disambiguation significantly outperforms 
the results of (SemEval-2007 Task 06: Word-Sense Disambiguation 

of Prepositions) and conclude that these high-frequency 
prepositions can be reliably disambiguated, and hence can be 
identified correctly as spatial pivots in a sentence. The researchers 
implemented 34 classifiers for the prepositions based on the 
evaluation results. For some prepositions (for example “opposite”), 
no classifier existed at the time of the research. Therefore, the 
researchers had to omit the examples where “opposite” was in a 
sentence – as there was no reliable way to identify if the sentence 
containing the “opposite” preposition had spatial sense. Such 
practice of removing examples to avoid ambiguity turned out to be 
a common approach to ambiguity management for spatial 
relationship detection. 
 

Table I. Results of Preposition Disambiguation on frequently 
used prepositions in the TPP Dataset  

 
Preposition 

Naïve Bayes MaxEnt SRL (2007) 
Pre Rec F1 Pre Rec F1 Pre Rec F1 

on 0.733 0.963 0.832 0.788 0.950 0.861 0.707 0.399 0.510 

after 0.500 0.900 0.643 0.540 0.700 0.609 0.000 0.000 0.000 

in 0.660 0.920 0.769 0.697 0.882 0.779 0.558 0.906 0.691 

before 0.670 0.857 0.750 0.800 0.570 0.666 0.500 0.428 0.461 

 
In my own experiment, part 1 of my approach was to label the 
spatial elements simultaneously, including the spatial pivot 
(preposition). For such common prepositions as the ones in Table I, 
the dataset used for my experiment contained examples with 
prepositions of both spatial and non-spatial meanings. Therefore, 
for such prepositions, there was ambiguity in some sentences of the 
dataset (such as the example given above). Since the train set of my 
experiment provided to the model is a sentence and corresponding 
labels, the train set contains examples of both spatial and non-
spatial prepositions with correct labels. Therefore, my assumption 
is that the model learns to differentiate them in the learning 
process. After looking at the results, of spatial labeling of sentences 
(part 1)  that contained common prepositions (such as those in 
Table I), I can conclude that the model labels the sentences with 
good performance. Table II shows the precision, recall, and F1 score 
of the spatial role labeling model for sentences with “on”, and “in” 
prepositions. As the dataset used for my experiment was limited, 
there were 0 examples of sentences with “after” prepositions and 
only 1 example of a sentence with a “before” preposition. Mind that 
these results should not be directly compared with those in Table 1 
as the preposition disambiguation classifies the preposition as 
being spatial or non-spatial while my spatial role labeling model 
labels all words in a sentence with their spatial roles. Nevertheless, 
the results in Table II demonstrate that with enough examples in 
the training set, the preposition can be disambiguated by the model 
with a simultaneous spatial role labeling approach. 
 
Table II. Results of Spatial Role Labelling of sentences with “on” and “in” 

prepositions 
Preposition num_of_sentences Pre Rec F1 
on 112 0.849 0.837 0.839 
in 353 0.934 0.930 0.931 

 
Consequently, it is important to mention that the approach of 
labeling all words simultaneously suffers at labelling sentences 
which have a preposition that is uncommon in the training data. 
The approach taken by Kordjamshidi et al. across several papers 
of classifying the spatial indicator first and then using that as 
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input for extracting its corresponding trajector(s) and landmark(s) 
performs better for low-frequency spatial indicators. 
7.1.2 Motion Indicator Ambiguity 
As described in the Methodology section, in (SemEval-2013 Task 3: 
Spatial Role Labeling), the authors have considered dynamic spatial 
relationships as well as static. Therefore, besides dealing with 
spatial pivots’ ambiguity, motion indicators (verbs) can have spatial 
and non-spatial meanings as well. As the motion indicators are 
classified first before the rest of the new spatial roles are assigned, 
by looking at the results of the motion indicator classification, we 
can make conclusion on how this methodology managed motion 
indicator ambiguity. The precision, recall and F1 score for the 
motion indicator classification was 0.892, 0.294 and 0.443 
respectively. The F1 score already suggests that recognizing the 
motion indicator is no “easy” task, compared to classifying a spatial 
indicator with an F1-score of 0.926 reported by the authors after 
evaluating part 1 of their experiment (classification of static roles: 
trajector, landmark and spatial indicator). The low recall of 0.294 
may suggest that the model incorrectly classifies a motion indicator 
as non-spatial, meaning a high number of False Negatives. These 
results of motion indicator classification suggests that ambiguity of 
human language is difficult to manage in context of dynamic spatial 
relationship detection. 
7.1.3 Ambiguity management in Rule-based approach 
Thus far, this subsection has discussed how different machine 
learning methodologies address management of ambiguity within 
the spatial relationship detection in text. However, as my research 
extends to understanding how ambiguity is managed across 
different approaches, it is important to analyze the results of the 
rule-based approach. 
The rule-based approach has not gathered as much attention in the 
spatial relationships detection research community as could be 
deduced from a brief description of this methodology in the section 
above. Notably, the sole paper that proposed rule-based solution 
differs drastically from the machine learning methodologies 
analyzed in this research. Besides the (Rule-Based Extraction of 
Spatial Relations in Natural Language Text) paper aiming to extract 
spatial relationships in Chinese language (resulting in potentially 
significantly different rules due to linguistic structural differences 
to English), the authors also specifically targeted to solve the 
problem within GIS domain. This makes ambiguity discussion for 
the rule-based approach less relevant, as due to the nature of the 
context of the dataset, there are no examples of ambiguous 
sentences, unlike context-independent sentences present in a 
variety of datasets employed by the machine learning approaches. 
As there is a lack of context-free rule-based solutions in the field of 
spatial relationships detection, it is challenging to draw conclusions 
to the effectiveness of this method’s ambiguity management. 
However, I expect that ambiguity would be a great problem in 
context-free rule-based spatial relationship detection. The root of 
the challenge is because rule-based approaches determine spatial 
relationships by comparing the input sentences against defined 
rules, which, in turn rely on part-of-speech tags of the input, which 
is exactly where most of the ambiguity inherent in human language 
occurs. 
7.1.4 Ambiguity due to multiple relationships in a sentence 
Another sentence encountered in my dataset was “there are red 
umbrellas in a park on the right.”. There are clearly 2 spatial 
relationships described in the sentence. However, it is unclear what 

are the 2 spatial triplets that should be accepted in part 3. One 
spatial relationship is very clear - in(red umbrellas, park). However, 
the last part of the sentence creates ambiguity. Is the spatial 
relationship onTheRight(red umbrellas, park)? Or is it 
onTheRight(park, undefined) - is the park a trajector instead of a 
landmark with the landmark being implicit (on the right from the 
perspective of the person viewing the park). The true labels of 
spatial roles of the sentences have park labeled as a landmark and 
hence that implies that the correct 2nd spatial relationship is 
onTheRight(red umbrellas, park) (which is verified by looking at the 
<RELATION> tag in the dataset). By looking at the predictions, the 
model correctly simultaneously predicts both spatial indicators of 
the sentence (”in” and “on the right”) as well as the trajector - “red 
umbrellas”. However, due to this ambiguity, it fails to label the 
“park” with neither landmark nor trajector, instead labelling it with 
none. Because of this, the outcomes of part 2 will result in incorrect 
triplets which in turn will impact the verification in part 3. 
One approach suggested in the (Visually Guided Spatial Relation 
Extraction from Text), aims to resolve such examples, where there 
are multiple spatial relationships causing ambiguity, by exploiting 
the help of the associated image. The image would be used to find 
the right relationship in such cases. While the results of evaluating 
that approach did show that using associated images resulted in 
improved ambiguity resolution, the consequence of needing an 
image as well as text as input to the model raises practical concerns 
to this solution. 
7.1.5 Ambiguity - conclusion 
In conclusion of this subsection discussing research question 2, the 
exploration of diverse machine learning methodologies shows that 
there are common cases of ambiguity that can be effectively 
managed. Spatial indicator can be determined quite well with 
multiple approaches able to disambiguate prepositions. Dynamic 
relationships are more challenging as motion indicators (which are 
usually a verb) are evidentially way “harder” to determine to have 
spatial or non-spatial meaning.  
The story of managing ambiguity is a story of managing 
expectations. Realistically, “universal ambiguity management” is 
not feasible, as due to linguistic intricacies of human language. In 
the example in section 7.1.4, both interpretations of the ambiguous 
second spatial relationship are semantically valid, however only 
one option is the ground truth in the dataset. The pragmatic truth 
to ambiguity management is that while common instances can be 
feasibly addressed, some cases simply need to be overlooked. That 
can include removal of edge cases from the dataset (something that 
has been done by the approaches I analyzed), or more domain 
specific resolution. For example, if a spatial relationships detection 
model is utilized for 3D scene generation, and an ambiguous 
sentence is given as input, for such example the model may return 
all semantically valid options (such as the 2 options of the example 
above) back to the user in the form of a generated 3D scene, and a 
final user input is required to resolve the ambiguity.  
 
7.2    Performance Analysis 
This sub-section will discuss and compare the performance of the 
diverse approaches and methodologies discussed in this paper. The 
performance will be analyzed based on the performance metrics 
stated in the Evaluation section. 
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7.2.1 Spatial Role Labelling 
While methodologies differed slightly, the general first step of each 
machine learning approach was assigning spatial roles to the 
elements of the input sentence. Table III lists the precision, recall, 
and F1 score of each methodology’s results discussed in this paper, 
including my experiment. For the (Spatial role labeling: Towards 
extraction of spatial relations from natural language, 2011) paper, 2 
settings are compared (rows 2 and 3), using ground truth 
prepositions and the classified prepositions as input. The 
performance metrics for the spatial indicator were not reported by 
the authors for row 3 which is why they are missing from this table. 
From (SemEval-2012 Task 3: Spatial Role Labeling, 2012) research, 
2 runs (rows 4 and 5) are compared which differed in the number 
of inputs (larger and smaller number of inputs respectively. Lastly, 
the results of the approach employed in (SemEval-2013 Task 3: 
Spatial Role Labeling, 2013) are used in the comparison, with 
UNITOR-1.1 using the IAPR TC-12 image Benchmark dataset and 
UNITOR-2.1 stating results using the Conference Project dataset 
(which contained the dynamic relations as well as static). Important 
to note that my experiment, approach taken in 2012 runs and 
UNITOR-1.1 (2013) use the same dataset, which makes the 
comparison of the results more meaningful. The results of the 2011 
methodology have used a different dataset for training which 
explains surprisingly much better results than the following 
SemEval papers. 
 

Table III. Results of Spatial Role Labelling of different methodologies 
 

Method 
Trajector Landmark Spatial Indicator 

Pre Rec F1 Pre Rec F1 Pre Rec F1 
My 
experiment 

0.940 0.876 0.907 0.395 0.939 0.556 0.905 0.859 0.881 

Pip-ground 
truth 
(2011) 

1.000 0.969 0.983 0.947 1.000 0.971 N/A N/A N/A 

Pip-PP-
input 
(2011) 

0.934 0.945 0.936 0.720 0.760 0.727 - - - 

UTDSpRL-
1 (2012) 

0.731 0.621 0.672 0.871 0.645 0.741 0.928 0.712 0.806 

UTDSpRL-
2 (2012) 

0.782 0.646 0.707 0.894 0.680 0.772 0.940 0.732 0.823 

UNITOR-
1.1 (2013) 

0.684 0.681 0.682 0.741 0.835 0.785 0.967 0.889 0.926 

UNITOR-
2.1 (2013) 

0.565 0.317 0.406 0.661 0.476 0.554 0.612 0.481 0.538 

 
As mentioned in the Methodologies section, the SpRL papers 
analyzed in my research have been employing a different approach 
to the one I have in my experiment. Looking at the results, the 
classification of the spatial indicator first and then extraction of its 
corresponding landmark(s) and trajector(s) has a significant 
advantage for classifying the Landmark class. That is where my 
proposed methodology evidently suffers with low precision 
implying many false positives. However, Trajector is classified 
significantly better in my simultaneous approach in comparison to 
the other methodologies that use the same dataset for training. In 
addition, the contribution of (SemEval-2013 Task 3: Spatial Role 
Labeling) paper - the use of lexical features such as lemmas and 
part-of-speech tags in classifying the spatial indicator gives 
significant improvement (as seen in UNITOR-1.1 row) relative to all 
other approaches. 
 
 

7.2.3 Triplets generation performance 
All approaches’ next step is the generation of triplets. The 
performance of this approach is summarized in Table IV which 
includes the results of the Rule-based approach as well. The 
performance metrics are based on the binary classifier that verifies 
the generated triplets. 
 

Table IV. Results of Spatial Triplets generation across Machine Learning 
approaches and the Rule-based approach 
Method Precision Recall F1-Score 

My experiment 0.470 0.680 0.550  
UTDSpRL-1 (2012) 0.567 0.500 0.531 
UTDSpRL-2 (2012) 0.610 0.540 0.573 
UNITOR-1.1 (2013) 0.431 0.306 0.358 

Rule-based approach (2010) 0.742 0.654 0.694 

 
The results demonstrate that the generated triplets’ are “difficult” 
to verify. Looking at the table above, some might assume that the 
rule-based approach suddenly is a clear dominant way of extracting 
spatial relationships from natural text. However, the reason for the 
high performance of the model is because of a very specific context, 
and hence cannot be compared to the machine learning approaches 
above. Thus, a valid conclusion can be made that for niche domains, 
a rule-based approach to relationship detection can be 
advantageous. 
7.2.2 Dynamic Relationships 
Lastly, the Dynamic spatial relationships detection results of 
(SemEval-2013 Task 3: Spatial Role Labeling) will be discussed. 
UNITOR-2.1 model was used for part 3 of the experiment and has 
not reached desirable results as of the time of the research. With F1 
scores of 0.443, 0.427, 0.264, and 0.490 for motion indicator, path, 
direction, and distance labels respectively, it is clear that more 
complex text in the data leads to rather poor model performance. 
To add to that, as seen in the last row of Table III, the classification 
of the static roles (Trajector, Landmark, and Spatial Indicator) in 
the dataset which includes both static and dynamic relations, has 
produced poor results. 
 
8    CONCLUSION 
In this paper, a thorough comparison of spatial relationship 
detection approaches and methodologies was conducted. The 
results of the investigation show the impact that differences 
between approaches have had on the performance and how the 
context of the data can affect the choice of methodology for spatial 
relationship detection. A detailed discussion of how different 
approaches deal with ambiguity reveals that many cases can be 
dealt with in a variety of techniques. However, due to the nature of 
human language, some edge cases will always remain. 
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