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Measuring heart rate is usually done with the use of invasive technologies,
such as an electrocardiogram which uses electrodes. However, this may
not always be the optimal method. Non-invasive methods for measuring
heart rate are often preferred due to their simplicity and reduced discomfort
for the individual. Using Millimetre-wave frequency modulated continuous
wave radars (FMCW) to detect chest movements and extract vital signs
is a promising possible alternative due to its non-invasive nature. In this
paper we use Fast Fourier transformations, the Savitzky–Golay filter, Elliptic
filters, and the Kalman Filter to explore the feasibility of real-time contactless
heart rate estimation using FMCW radar. Across all datasets, using a 2.5s
monitoring window, an average Mean Absolute Percentage Error (MAPE) of
5.56%was achieved. Remarkably, on an individual dataset, theMAPE reached
an impressive low of 3.41%, highlighting the robustness of the approach in
advancing real-time contactless heart rate estimation with FMCW radar.
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1 INTRODUCTION
Monitoring an individual’s heart rate can be a crucial indicator for
assessing their overall health. The significance of monitoring an
individual’s heart rate extends beyond assessing overall health. For
instance, it can play an important role in early detection of car-
diovascular conditions. This quite significant, since cardiovascular
diseases are the most common cause of death in the entire world
[3]. It is possible to detect potential heart issues by monitoring the
heart rate of a person [9].

In the context of our research, contact-based measurements play
an important role in assessing vital signs, particularly focusing on
the heart rate. These measurements require direct physical contact
with the subject, with an electrocardiogram’s electrodes being ex-
ample. While we do not delve further into these contact-based tech-
niques in this paper, it is essential to acknowledge their importance
in the broader field. Numerous studies, have extensively explored
and validated the effectiveness of contact-based measurements in
monitoring the heart rate [7], [8] [5]. By citing these established
works, we place our research in the context of existing knowledge,
laying the groundwork for our examination of FMCW Radar in the
following sections.
Monitoring vital signs is utilized across various sectors. Non-

contact vital sign monitoring based on thermal imaging, camera
imaging, and radar has experienced in increase in interest. Non-
contact monitoring is the preferred method due to its non-invasive
nature. Radar has various advantages over imaging-based monitor-
ing, including protecting the personal privacy, reliability, and low
complexity [1] [6].
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Among non-contact methods, Frequency Modulated Continuous-
Wave (FMCW) radar stands out, offering detailed information by
dividing the acquired radar signal into multiple ranges. This makes
it a promising tool for monitoring vital signs, including heart rate.
Within our study we leverage FMCW radar as a crucial component
for monitoring heart rate. FMCW radar is technique that continu-
ously modulates the frequency of the signal it transmits, allowing for
precise measurement of the heart rate of an individual. In existing
literature the efficacy of FMCW radars in diverse applications has
been investigated and validated, including heart rate and respiration
rate measurement.[4].
Currently, there is no accurate real-time method for measuring

heartbeats without contact. Unlike [2], which uses a 10-second
window, the newly proposed approach uses a 2.5-second window,
greatly improving real-time processing.

In this research, we propose a novel algorithm utilizing the elliptic
filter, Fourier transformations, and the Kalman filter. Our approach
aimed to optimize real-time heart rate estimation using FMCW radar.
The heart rate reference values were obtained from the Polar H10
Heart Rate Sensor, and the AWR16422 radar from Texas Instruments
was utilized in our study. By doing so, we aim to contribute valuable
insights into the enhancement of real-time heart rate estimation. Our
approach is dedicated to advancing the field of non-contact heart
rate monitoring towards real-time, paving the way for improved
applications in healthcare, surveillance, and various other domains.

2 PRELIMINARIES
FMCW radar is a helpful technology in vital signs monitoring due to
its ability to detect object position and movement remotely. FMCW
radar generates and sends out a signal that is called a chirp. A chirp
is a transmission which frequency increases linearly over time. Of
this chirp a number of samples are taken depending on the chirp
duration and sample rate. The emitted signal is then reflected of
an object, such as the human chest. This reflected signal is mixed
with the original transmitted signal and the resulting signal is called
an IF signal. The IF signal is a sinusoid with the frequency equal
to the differences of the input sinusoids (transmitted and reflected
signal) and the phase is equal to the difference of the phase of the
input sinusoids. By keeping track of the phase changes over time
it is possible to extract information regarding the movement of
the object on which the signal was reflected. This can be done to
determine the chest displacement of the target.

The inherent advantage of FMCW radar lies in its ability to cap-
ture minuscule displacements, translating these subtle motions into
a distinguishable radar signal. In the context of vital signs monitor-
ing, particularly heart rate estimation, FMCW radar makes use of
the chest displacements caused by heartbeats. As the heartbeats, it
generates tiny movements in the chest of the target. These displace-
ments alter the radar signal, creating a pattern that correlates with
the heartbeats.
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3 SIGNAL PROCESSING

3.1 Pre-processing
After the radar captures the reflected signal and creates an IF signal,
Fast Fourier Transformation (FFT) is applied on the data which
converts a time domain signal into a frequency domain signal. This
process, known as spectral analysis, decomposes the radar signal
into its constituent frequency components. Afterward the output is
stored in windows. We use this to detect the target and filter out all
of the clutter. After that the phase changes are extracted out of the
filtered data.

The captured data might contain noise or irregularities that could
have an impact on the data analysis. For this reason the effect of
Savitzky-Golay filter has been used to smooth the data and increase
the precision of the phase changes. It works by fitting a polynomial
to a window of adjacent data. Increasing the window size generally
leads to a smoother output. However, too large a window size might
lead to a loss of important features. A higher polynomial order al-
lows for capturing more complex data. Yet, it also brings the risk of
overfitting, making it more sensitive to noise. Both increasing the
polynomial order and window size increase the computational com-
plexity. After systematically testing uneven Savitzky-Golay window
sizes ranging from 3 to 50 (equal to the sample window size) explor-
ing combinations with polynomial orders from 1 to the respective
Savitzky-Golay window size. It was found that a Savitzky-Golay
window size of 13 and a polynomial order of 3 resulted in the highest
accuracy.

3.2 Heartbeat filtering
Now that the phase changes have been extracted, the displacements
caused by the heartbeats must be isolated. This is done with the
use of a band-pass filter. In our case the elliptic filter. Meaning
that it is able to achieve a faster transition between the pass-band.
The elliptic filter’s steep roll-off reveals its advantageous role in
efficiently isolating heart-induced displacements from the extracted
phase changes. The cut-off frequencies were initialized as 0.8 ... 3
Hz, which corresponds to a heart rate of 48 ... 180 bpm (beats per
minute). It is essential to select appropriate cut-off frequencies for
the band-pass filter. If the cut-off frequencies are too broad, the risk
of obtaining unwanted frequencies is high. And in the case that the
cut-off frequencies are too narrow, the chances of blocking the heart
rate increases. The cut-off frequencies are updated as the windows
are processed, shortening the range and leading to a more accurate
filtering of the heartbeat. As the heart rate dynamics evolve, the
adaptive adjustment of cut-off frequencies ensures the filter remains
adaptable and responsive to varying physiological conditions. How
this is done is explained in more detail in 3.4.

3.3 Heart Rate Estimation
After isolating the displacement from the heartbeats, we attempt
to determine the heart rate within this data using Fourier trans-
formations to identify the frequency in the data. This was done
using the scipy.fftpack python library. Before performing the FFT
we made use of zero padding. Zero padding involves adding zeros
to the end of the input signal to increase the length of the signal.
While zero padding enhances frequency domain analysis, it doesn’t

alter the time-domain characteristics of the signal. Due to the in-
creased number of points in the signal, it leads to a finer frequency
resolution in the Fourier Transform. This finer resolution enables a
more precise identification of frequency components in the signal,
contributing to improved accuracy in detecting the heart rate. The
zero padding technique effectively provides a higher level of detail
in the frequency domain, allowing for a more accurate determina-
tion of the heart rate frequency. The proposed algorithm makes use
of zero padding with a factor of 2, effectively doubling the number
of data points in the input signal.

3.4 Optimizing Heart Rate Estimation
Kalman filtering is employed in cases where observed values contain
unpredictable errors. In this case the Kalman filter is applied on
the observed heart rate values. The choice of Kalman filtering for
optimizing heart rate estimation in this research is motivated by its
effectiveness in handling observed values that contain unpredictable
errors. In the context of heart rate estimation using FMCW radar, the
observed heart rate values may be subject to noise or irregularities.
The Kalman filter is designed as a constant acceleration model in
this research, enabling it to adapt to changes in heart rate dynamics
over time. This adaptive nature of the Kalman filter is particularly
valuable when dealing with real-world data, where unexpected
variations or errors in observed heart rate values can occur. By
iteratively updating the heart rate estimates based on both observed
values and the model’s predictions, the Kalman filter contributes to
the robustness and accuracy of the heart rate estimation process.
The state vector used for this research is as follows:

𝑥 =
[
ℎ ¤ℎ ¥ℎ

]𝑇
Which is initialized as:

𝑥 =
[
60 0 0

]𝑇
Where ℎ, ¤ℎ, ¥ℎ represents the heart rate in beats per minute, the first
derivative, and second-order derivative respectively. In this research
the Kalman filter is designed as a constant acceleration model. The
state transition model is expressed as:

𝑥𝑘+1 |𝑘 = 𝐴𝑥𝑘 |𝑘 =


1 Δ𝑡 0.5Δ𝑡2
0 1 Δ𝑡
0 0 1

 𝑥𝑘 |𝑘
With Δ𝑡 being the time between consecutive frames. The state ob-
servation model is as follows:

𝑦𝑘+1 = 𝐻𝑥𝑘+1 |𝑘 =
[
1 0 0

]
𝑥𝑘+1 |𝑘𝑠

The process noise covariance is modeled as:

𝑄 =


𝑤𝑘 0𝑡 0
0 𝑤𝑘 0
0 0 𝑤𝑘


where 𝑤𝑘 is the process noise at time k, The algorithm works by
processing each window and applying the band-pass filter with the
initial cut-off frequencies. Then the heart rate is observed either
via FFT. The observed value might be an outlier. These outliers are
usually caused by the subject moving or signal interference. For
this reason, the z-score of the new estimate is calculated and only
considered if it does not qualify as an outlier, with the threshold
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Fig. 1. Flow chart of the main part of the proposed algorithm.

set at 2.0. Only if the resulting value is not an outlier it is added
to a list of observed values which is passed to the Kalman method,
resulting in a list of estimates of the heart rate. In the case of an
outlier we use the Kalman method to predict the next value. Finally
the band-pass cut-off frequencies are updated, with the lower bound
as the maximum of the current lower bound and the most recent
estimate in bpm decreased by 10 converted to Hz. For the upper
bound the minimum is taken of the current upper bound and the
most recent estimate in bpm increased by 10 converted to Hz. The
main steps of the algorithm can be seen in Figure 1.

4 EXPERIMENTAL SET-UP
The performance of the proposed algorithm was evaluated using
the Mean Absolute Error (MAE) and the Mean Absolute Percentage
Error (MAPE). In this evaluation we used 4 recordings of the same
individual sitting on a chair in front of the radar. The experimental
setup ensured a standardized testing environment for a comprehen-
sive evaluation. With the radar being placed at chest height. During
the recording the Polar H10 Heart Rate Sensor was utilized to serve
as a reference value.
The radar was set up to face the subject at chest height at a dis-

tance of approximately 0.80 meters. The radar was oriented at a
straight angle with the subject and forms a 90-degree angle with
the ground. The only objects between the subject’s chest and the
radar were the clothing the subject was wearing during the record-
ings. This deliberate exclusion of any objects between the subject’s

Table 1. Radar Parameters

Parameter Value
number of samples 250
number of chirps 128
number of frames 1200
number of transmitters 1
number of receivers 1
ramp time 50 / 1000000 s
frequency slope 80000 ∗ 109 Hz/s
sample rate 6250000 samples/s
window size 50 (number of frames)

Fig. 2. Unwrapped Phase Changes

chest and the radar, except for the clothing worn during record-
ings, minimizes interference, maintaining the purity of the captured
signals for robust analysis. During the recordings the subject was
instructed to sit still and not make any sudden movements. Ensuring
the subject stays still during recordings avoids artifacts and provides
a stable baseline for evaluating the radar’s ability to capture subtle
physiological variations.
To enhance the radar’s capabilities, a careful consideration of

parameters such as a ramp time of 50 microseconds, a frequency
slope of 80000 ∗ 109 Hz/s, and a sample rate of 6250000 samples/s
was employed. The window size was set at 50 frames contributed to
the comprehensive data collection process. The parameters of the
radar can be found in Table 1.

5 RESULTS
After applying the Savitzky-Golay (SG) filter on the unwrapped
phase changes we were able to acquire smoother phase changes.
A visual representation of the phase changes before applying the
SG filter can be seen in Figure 2 and after applying can be seen
in Figure 3. An example of a heart rate estimation can be seen in
Figure 4. In this figure heart rate observations estimates of solely
the FFT (yellow), FFT after Savitzky-Golay filtering (green), and
Kalman filtering after both FFT and Savitzky-Golay filtering (red)
are plotted along the reference value (blue). It is noticeable that a
subtle distinction is observed between the yellow and green lines.
It also reveals that the green line, indicative of FFT after Savitzky-
Golay filtering, maintains sensitivity to outliers. In contrast, the
red line, representing Kalman filtering after both FFT and Savitzky-
Golay filtering, exhibits a reduction in sensitivity, resulting in a
more stable and consistent measurement.
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Fig. 3. Savitzky-Golay Filtered Unwrapped Phase Changes

Fig. 4. Observed Heart Rate Over Time of Recording 3

Table 2. Experimental Results of the Proposed Algorithm

Recording MAE MAPE (%)
1 2.55 3.41
2 6.21 7.91
3 3.16 4.02
4 5.42 6.90

average 4.34 5.56%

The final performance of the algorithm onwindows of 2.5 seconds
can be seen in Table 2. Here we see that the MAE ranges from 2.55
bpm to 6.21 bmp with an average of 4.78 bmp. The MAPE ranges
from 3.41% to 7.91% with an average of 5.56%.

6 CONCLUSION
In conclusion, this research introduces a novel approach for contact-
less heart rate estimation using Frequency Modulated Continuous-
Wave (FMCW) radar. By leveraging advanced signal processing
techniques such as elliptic filters, Fourier transformations, and the
Kalman filter, the proposed algorithm optimizes real-time heart rate
estimation with impressive results. The use of a 2.5-second win-
dow for real-time processing enhances the efficiency of the method
compared to existing approaches using the same methods.

The study demonstrates the capability of FMCW radar to detect
chest movements caused by heartbeats, offering a non-invasive
alternative to traditional electrode-based methods. The evaluation of

the algorithm’s performance, using the Polar H10 Heart Rate Sensor
as a reference, showcases an average Mean Absolute Percentage
Error (MAPE) of 6.12%, indicating the robustness of the approach
across different datasets.
Due to the small sample size of just 4 recordings used in this

study, this limited sample size may not fully capture the diversity of
physiological conditions and external factors that can influence the
heart rate estimation. Future research should consider expanding
the dataset to include a more diverse population, accounting for vari-
ations in age, gender, and activity levels, to ensure the algorithm’s
generalizability across a broader spectrum.

The inclusion of Fast Fourier Transformation and Savitzky-Golay
filtering into the the pre-processing steps of the signal processing
pipeline, contribute to the accuracy of heart rate estimation. The
introduction of the Kalman filter further enhances the algorithm’s
adaptability to unpredictable errors in observed heart rate values.

Overall, this research provides valuable insights into the advanc-
ing of non-contact HR monitoring towards real-time monitoring.
The achieved results underscore the effectiveness of the proposed
algorithm, paving the way for advancements in real-time contact-
less heart rate estimation with FMCW radar technology. Notably,
the implementation of a remarkably short window time in our al-
gorithm stands out as an achievement, setting a new standard for
real-time contactless heart rate estimation.
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