Using LLM Chatbots to Improve the Learning Experience in Functional

Programming Courses

JULIAN VAN SANTEN, University of Twente, The Netherlands

Large Language Model chatbots are used in many different disciplines, but
applications in education stay behind. Students increasingly utilize the LLM
chatbots, without proper supervision from teachers. Functional program-
ming requires a problem-solving mindset, which can be difficult for students
just learning the paradigm. By finding out which learning objectives stu-
dents find the most difficult, we aim to find new ways to help students learn
functional programming using LLM chatbots like ChatGPT. We demonstrate
how LLM chatbots can be restricted by teachers, to provide a helpful tool
for students learning functional programming and its concepts.

CCS Concepts: » Social and professional topics — Computer science
education.

Additional Key Words and Phrases: Large Language Models, code explana-
tion, functional programming, computer science education

1 INTRODUCTION

Large Language Models are changing the way we search for infor-
mation. ChatGPT is being used to find information, assist in writing
in a broad sense, solve problems in programming. Kasneci et al. [14]
describe the benefits and challenges of using Al in education. They
mention the chance for assistance for university students in the
area of problem-solving: a crucial skill when one is programming
in a functional language. They conclude with the statement that the
risks are manageable, and more research should be conducted to
find best practices in the branch of education.

We apply this educational strategy to functional programming
in particular. Hughes [13] showed the importance of the functional
programming discipline to modularize software, which he deemed
an important factor in software development today. By teaching
functional programming, students learn about the concepts neces-
sary to design software in a modular fashion. This approach makes
it possible to easily parallelize software components [11].

To create an environment where students can be hinted towards
valid and qualitative solutions, we first analyze which learning goals
and objectives are experienced as most difficult by students who
have no experience in the functional programming paradigm. In
section 4, we analyze introductory functional programming exams
and find the difficulties in the tested learning objectives.

After identifying the learning objectives that have a lower average
score than their counterparts, we look at connections among these
learning objectives, the concepts they stem from and the related but
different material offered during previous courses. We look at the
connections of functional programming to mathematics, imperative
programming and other functional programming concepts. This
analysis is presented in section 5.

TScIT 40, February 2, 2024, Enschede, NL

© 2024 Copyright held by the owner/author(s). Publication rights licensed to University
of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Finally, these previous findings are utilized to test prompt pro-
grams. Recent literature in the field of prompt engineering provides
abstract patterns to be used in different applications, which are used
to create three applied prompts for the functional programming use
case. The applied prompts are the first prompt programs written for
the education of functional programming. The performance of each
prompt is measured against metrics defined in section 3. The results
of the prompts are presented in section 6.

2 RELATED WORK

Although not much ink has been put to paper on using Al in the
context of learning functional programming in a university course,
related studies did look at other programming languages and para-
digms in different ways. Since the mainstream release of ChatGPT,
work has been done and is still being done in the applications of
Large Language Model tools. Research done in this field of LLMs is
recent, spanning only this decade, with most papers published in
2023. Most papers presented exhibit a cumulative progression, each
building upon the findings of the preceding ones.

2.1 Language Model Reasoning and Prompt Engineering

After Brown et al. [3] published their findings on Few-Shot learning
of Large Language Models, a hunt for better-performing approaches
started. Kojima et al. [17] showed an interesting insight: adding the
line “Let’s think step by step” at the end of a single prompt resulted
in far more correct results than without this prompt. This Zero-Shot
Chain of Thought approach was one of the first examples of prompt
engineering, which is developed further in later papers.

The Zero-Shot Chain of Thought approach was extended by Wang
et al. [25]. They introduced a Plan-and-Solve (PS) strategy: the phrase
“Let’s think step by step” is replaced with “Let’s first understand the
problem and devise a plan to solve the problem. Then, let’s carry out the
plan and solve the problem step by step”. The method was tested on
the text-davinci-003 model, and all but the MultiArith questions
dataset scored better with their PS+ (more specified prompt) than
regular CoT. Just using the PS approach mentioned before also
resulted in higher scores in most question datasets. By asking for
more elaboration, the quality of LLM output can be improved. This
notion is used in the development of the presented prompt programs.

As more and more discoveries are made in prompt engineering,
multiple approaches have been found to work for various purposes.
White et al. [27] have written a catalog with prompt patterns, gener-
alizing some of the work done by the previously mentioned authors.
This catalog contains useful patterns, which have been used to create
more specific prompts for the use case of functional programming
education. The use of the Persona pattern introduced in this frame-
work is of particular interest. By adopting the fictional role of a
functional programming instructor, the LLM chatbot is equipped to
provide more accurate and relevant responses to student inquiries.
The Question Refinement pattern and the Flipped Interaction pattern

TScIT 40, February 2, 2024, Enschede, NL

are also useful. These patterns return questions to the user, thereby
fostering the development of advanced questioning techniques and
encouraging users to contemplate potential solutions independently.

2.2 Programming Education

Work has been done measuring the usefulness of Al assistants such
as ChatGPT in computer science education. Wang et al. [26] took 187
problems from many computer science topics and asked ChatGPT
to explain the answers. There is room for applying similar strategies
in the area of functional programming, as none of these subjects
tested the Al assistants for functional programming questions and
patterns.

Keuning et al. [15] looked at ways teachers could help students
improve code quality. They asked 30 teachers of Computer Science
related courses about the involvement of code quality in their teach-
ings. Furthermore, they gave the teachers code samples of popular
answers from students to programming questions. Out of these
code samples, teachers then gave various hints to improve the code.
Although these hints are applied to a Java-like language, some code
quality hints could be transferred to a functional language. The inter-
action study has served as an inspiration to create student-friendly
prompt programs.

The same group of Keuning et al. [16] provided another contribu-
tion during the same conference, in which they analyzed automatic
feedback generation tools for programming exercises. Although
no Al-based tools are analyzed, some do give elaborate feedback.
High-quality responses have been taken as inspiration for testing
the output of ChatGPT.

Gerdes et al. [10] have created Ask-ELLE, a tool for students who
are learning Haskell. The tool provides an online environment, in
which teachers can define exercises, along with hints. It can analyze
incomplete Haskell code to provide the given hints, thus making it
context-aware. The hints generated by Ask-ELLE have to be entered
in by teachers, thus it becomes more labor-intensive for teachers
to create the environment in Ask-ELLE. It also means that as the
exercises grow in size, more hints have to be written. Letting a Large
Language Model analyze incomplete code can alleviate work for
teachers, as there will be no need for teachers to define hints. It is
relevant to see how students interact with Ask-ELLE, as it tells how
students prefer to receive their feedback.

3 METHODOLOGY AND APPROACH

The statistics of the results from introductory functional program-
ming tests were analyzed. The data was gathered from a first-year
course. The exam had answers to multiple-choice questions, which
were statistically retrieved. The exam data comes from exams made
between 2019 to 2022. The questions test the knowledge of the stu-
dent on Functional Programming concepts and Haskell notation
based on a one-week introduction course.

The questions asked on each available exam primarily test one
learning objective. A few questions examine multiple learning goals,
which have been scrapped from the dataset for the sake of clarity
in the data. The data presented in section 4 show the results of the
exam questions grouped by category.

Julian van Santen

3.1 What do the difficult learning objectives have in
common?

To provide useful feedback for students who are starting with func-
tional programming, an analysis of the concepts they learn is pre-
sented. This is done by looking at both the mathematical and pro-
gramming history of the concepts: where do they originate from
and which language was the first to introduce an implementation of
it? Furthermore, this analysis aims to ascertain the reasons for its in-
troduction in these preceding languages. Lastly, the analysis focuses
on identifying the features associated with functional methods in
the languages where they were introduced. These findings are then
connected to the assumed background of students participating in
introductory functional programming courses.

3.2 Creating prompts for ChatGPT

By utilizing the prompt engineering patterns written by White et
al. [27], novel prompt preambles are constructed and tested for Chat-
GPT with GPT-4. The exams analyzed in section 4 offer insight into
the results of different learning objectives during the introductory
functional programming course. These results are used, together
with the connections among the concepts discussed in section 5, to
form a framework inside ChatGPT, which can be used by future
students in functional programming courses.

To measure the quality of content generated by ChatGPT, quan-
titative and qualitative analyses are both performed. Introductory
functional programming questions are fed into ChatGPT, along
with a preamble under test. Each preamble gets the same set of
programming questions. The responses are analyzed according to
three quantitative metrics:

(1) Does the response contain any code?’

2) Does the response adhere to all tasks given by the prompt?
P g y promp

(3) Does the response answer the question verbatim?

Furthermore, the groups of questions are qualitatively analyzed.
In this analysis, the following aspects are taken into account:

e Does the response contain any incorrect information?

e Does the response contain relevant information per the input
question?

e Does the response cater to functional programming specifi-
cally (e.g., are there no strictly imperative hints given)?

4 ANALYSIS OF INTRODUCTORY FUNCTIONAL
PROGRAMMING EXAMS

The introductory Functional Programming course exams focus on
several different learning objectives. The learning objectives, along
with their labels, can be found in Table 1. These labels correspond to
a (part of) a concept of functional programming, or Haskell features
and notation specifically. Statistics of questions from the 2019 test, as
well as the tests ranging from 2021 to 2023, were categorized. Exam
questions created in 2019 were already labeled by the teacher upon
creation, while later exam questions were manually labeled before
the analysis. Some categories deal with subsections of functional
programming concepts, hence some categories are connected. As the

This only includes code blocks, inline code fragments are ignored

Using LLM Chatbots to Improve the Learning Experience in Functional Programming Courses

Table 1. Exam question categories

List comprehension
Abbreviation Meaning

APP Function application / currying, arguments

COND Conditional logic (guards/if-then-else)

FARG Functions as arguments (writing higher-order
functions)

HFUN Using higher-order functions

INFL Infinite lists / lazy evaluation

LCFT List comprehension with predicates

LCGN List comprehension general (without predi-
cates)

LPAT List pattern matching

LSTC List constructors

LSTT List types

RECL Recursive functions with lists

RECV Recursive functions with general variables

RFUN Recursive functions

TPLT Tuple/list theory

TYPE Function type definition

VPAT Variable pattern matching

QuIC QuickCheck question

SYN Haskell syntax

Table 2. Computed averages per category, spanning all exams

’

Category 3, 2, p oy’ rit Tir

APP 8 2304 0.642 0.221 0.407 0.327
COND 10 2845 0.773 0.168 0.332 0.260
FARG 8 2303 0.707 0.094 0.467 0.389
HFUN 11 3179 0.651 0.092 0.437 0.353
INFL 9 2637 0.720 0.160 0.384 0.304
LCFT 13 3694 0.841 0.080 0.420 0.356
LCGN 3 975 0.645 0.202 0.380 0.299
LPAT 5 1679 0.852 0.100 0.397 0.338
LSTC 5 1679 0.553 0.151 0.377 0.289
LSTT 5 1391 0.364 0.281 0.183 0.097
RECL 5 1616 0.739 0.120 0.522 0.455
RECV 7 2158 0.866 0.103 0.344 0.286
RFUN 8 2303 0.778 0.080 0.415 0.341
TPLT 3 912 0.824 0.013 0.373 0.301
TYPE 10 2908 0.792 0.137 0.337 0.265
VPAT 4 1408 0.685 0.158 0.434 0.358
QUIC 2 479 0.721 0.061 0.305 0.211
SYN 2 479 0926 0.078 0.254 0.204

questions of the tests are still used in the course, the exact questions
and their answers will not be published.

Statistics from the tests, such as the average p’- and rj--value
are shown in Table 2. The p’-value denotes the ratio between the
average accomplished score and the maximum achievable score,
with correction for guessing. This notation offers a more balanced
view than the p-value (Dousma et al. [8, p. 128]).

TScIT 40, February 2, 2024, Enschede, NL

4.1 Lists and list comprehension

Table 2 shows that questions asking about list constructors and types
score the lowest on average. The list type (LSTT) questions exhibit a
notably low mean score, yet they also display a comparatively high
variance in the questions’ p’-values. The average of list constructor
(LSTC) questions is higher than the LSTT questions but is still low
compared to other categories. Furthermore, the average r;--value
is also more in line with the other categories, as opposed to the
rir-value of the LSTT category.

Multiple explanations can be made for these values, such as un-
clear or missing explanations by the teacher, a lack of practice
material, confusing wording in the questions, or another unforeseen
issue with either the question or the learning objective. Subsection
5.1 delves into the analysis of list notation and the interrelationship
among mathematical concepts taught throughout the course.

An example of a list comprehension without predicates presented
in exam questions can be found in Listing 1. This question examines
whether participants understand the generation of combinations
within a list comprehension. When asked the length of Icomp, partic-
ipants must see that the resulting list will have length xs « length ys
items. The incorrect option length xs may be chosen as an answer
instead. The fact that variable y is not used in the final result may
hint at excluding the entries of list ys altogether, but this is false. In
subsection 5.2, the origins of list comprehension as a programming
concept are discussed, together with the connection to set (builder)
theory. When asking questions to a chatbot, it is important to utilize
this detail to produce valuable guidance on this topic.

lcomp :: [a] -> [a] —-> [a]
lcompxs ys = [x | x <xs, y<-ys]

~

Listing 1. Example of list comprehension question context

4.2 Partial application, currying and higher-order
functions

Questions in the category of function application and currying (APP)
score below the average p” of 0.726. The high deviation between
these results means that not every question scores this low, but the
category average is still noteworthy. The relatively high average r;;-
value suggests that the questions regarding function application do
not discriminate heavily between participants who have answered
correctly out of knowledge and those who have guessed the answer
correctly by accident. All these statements together suggest that the
questions are not well made. The concept of function application
and currying is explained in subsection 5.3.

In essence, questions about function application aim to assess
the student’s understanding of employing constructs like tuples, as
opposed to utilizing multiple arguments. An example of a function
that can be partially applied can be seen in Listing 2. The goal of the
question is to test if the participant understands that the function
takes in a tuple of values. Thus, the attempted evaluation f 1 2 will
result in a function type error.

1 f(y) =x+y

Listing 2. Example of function application question context

TScIT 40, February 2, 2024, Enschede, NL

Currying questions look alike but instead use multiple arguments.
An example of a function that questions the knowledge of currying
can be seen in Listing 3. The participant will have to recognize the
validity of a function call such as (g 1) 1. As opposed to Listing 2,
It is important to note that the types of the functions in function
application/currying questions are left out. Exam participants are
required to comprehend the types by analyzing the function defini-
tions and infer the type definition based on this understanding.

1MgXy=X+Yy

Listing 3. Example of currying question context

Higher-order function questions also score relatively lower than
other categories. In particular, questions that utilize higher-order
functions (HFUN). Questions that ask students to define their imple-
mentation of a higher-order function (FARG) have a slightly higher
average, but these questions follow a similar learning goal. With a
p’-value of 0.651 and a relatively low deviation of only 0.092, the
higher-order function questions seem to be more challenging than
other questions on the conducted introductory functional program-
ming exams. The concepts of function applications and higher-order
functions lie close to each other, which might explain the similar
results for the respective questions. In subsection 5.3, the connec-
tions between function applications and higher-order functions
are explained, as well as the educational background necessary to
understand them.

5 THE SOURCE OF CONFUSION: A FUNCTIONAL
PROGRAMMING CONCEPT ANALYSIS

The start of the functional programming paradigm dates back to 1936
when Church and Rosser [7, 18] laid the foundation of the lambda
calculus. The study of the lambda calculus is one of mathematical
rules, expressed with definitions [2]. Others have already analyzed
the history of functional programming and the origins of notations
and language features, notably, Hudak [12], and later Turner [23].
The origins of functional language features are traced back to their
foundational mathematical and linguistic roots, thereby elucidat-
ing the reasons behind the inadequate comprehension of several
previously mentioned learning objectives. Learning objectives, pre-
viously assumed to be understood in the introductory course and
unrelated to functional programming, are linked with the concepts
treated in the course.

The first module of the study program briefly looks at different
Computer Science topics found later in the program. In the first
three weeks of the study, the students learn about low-level pro-
gramming using Arduino, explore various searching and sorting
algorithms, and learn the SQL language and databases, each topic
covered in consecutive weeks. The fourth week tackles the topic of
functional programming, culminating in an exam. The data analyzed
in this study were derived from the results of this exam. All the
while, students concurrently take a mathematics course. This course
explains the basics of set theory, and then the focus will shift to
introductory calculus.

Julian van Santen

5.1 Functional lists and list constructors

When students with only knowledge of imperative programming
attempt to program in a functional language, they will find that
constructs work fundamentally differently. In an earlier week, stu-
dents are introduced to algorithms following the Pearls of Computer
Science module. They implement searching and sorting algorithms
in Python. Many of the operations on lists are in place, and func-
tions that students have to write have to use for-loops and other
strategies not found in functional programming.

In one of the exercises, the idea of a tuple is introduced. The
module does not formally introduce the proper tuple notation but
instead uses the Python list. The non-homogeneous property of lists
in Python is used [9]. This is done to keep the content of the course
within reason. The functional programming component teaches
students to work with tuples using parentheses, which is also used
in the context of currying. An example of a “tuple” using a list in
Python can be seen in Listing 4.

1| tup = ["a”, 1, True]

Listing 4. A tuple defined as a list in Python

Haskell is a polymorphic typed language in the definition given
by Cardelli and Wegner [5], with both universal and ad-hoc forms of
polymorphism. Lists in Haskell are universally polymorphic, which
becomes apparent from its type definition [] = [a], which indicates
a list with values of any type a. This is in contrast to Python, where
a list is allowed to have elements of different types.

5.2 List comprehensions

Turner [23, p. 11] stood at the cradle of the list comprehension in
programming languages, inspired by the “set expressions” proposed
by Burstall and Darlington [4]. The SASL language that introduced
so-called ZF-expressions was later used as inspiration for the Miranda
programming language. This idea was renamed to list comprehension,
which can be found in many programming languages today.

Although the implementation details of the list comprehension
construct have changed over time, the origins remain the same.
Set theory is introduced to students before the introductory func-
tional programming component starts, thus students are expected
to understand how to work with the set-builder notation.

The high school curriculum is of more influence to the prior
knowledge of freshmen in introductory university courses. Impor-
tant to note in this regard is the focus of the university in question:
the prerequisite knowledge for Dutch students to join the Computer
Science program is to have a voorbereidend wetenschappelijk onder-
wijs (vwo) diploma, with a mathematics level B (wiskunde B). Dutch
students are free to take the more challenging subject of mathemat-
ics level D (wiskunde D), which offers more advanced mathematics
than the B variant. Because this specific strand of mathematics is
not taught in all high schools in the Netherlands, no university
bachelor program in the Netherlands requires this course. Neither
of these high-school subjects explicitly mention set theory in their
curriculum [20, 21], meaning that participation in Mathematics D
does not confer an advantage to students over their counterparts
who did not engage in this course.

Using LLM Chatbots to Improve the Learning Experience in Functional Programming Courses

Computer science as a high school subject offers no significant
advantage either. Computer science is an optional subject for both
pupils and organizational staff. The structural shortage of high
school computer science teachers percentage-wise measures to be
the second highest out of all subjects [24, p. 10]. The curriculum
consists of mandatory and optional domains, with the Programming
Paradigms domain being optional [22].

5.3 Learning function types: function application, currying
and higher-order functions

Function application and currying are often mentioned together in
functional programming courses. At first inspection, the concepts
appear analogous, and their application within functional programs
seems to be somewhat identical. Currying a function produces a
new function that can be partially applied, but the two concepts are
not interchangeable. From subsection 4.2 it becomes apparent that
students score lower on these learning objectives than the average
case.

The Python course teaches students how to structure their code
with functions using an imperative explanation: a function can have
many arguments and will return a value. Functions in Haskell work
differently: any function that does not represent a variable is a func-
tion f = a -> b, where b might be a (partially applied) function
or a function that represents a variable. Where a Python function
func(a,b,c) needs all arguments filled?, an equivalent Haskell imple-
mentation with type func = a ->b -> ¢ -> d can return a partial
applied function if func is called with only one argument.

In the functional programming history summary by Turner [23],
the isomorphism that lies at the core of currying is also noted:
(AXB) - C = A — (B — C).In this study stage, no formal
introduction to mathematical proofs has been made, let alone proofs
specified in set- or even category theory. Although it is unnecessary
to understand this isomorphism and its proof in detail, its result
proves the validity of currying (and for that matter, uncurrying).

The study of lambda calculus is focused on the “process of step-
ping from argument to value”, instead of the “graph, that is the set
of pairs of argument and associated value” [2, p. 1092]. Although
this explanation might feel trivial for functional programmers and
people working with any form of lambda calculus, it contradicts
the mathematical approach that students are taught in Dutch high
schools. Functional programming is a product of lambda calculus,
meaning this difference can be seen as one of the fundamental
learning concepts to achieve.

5.4 Conclusion

While numerous factors may contribute to students’ difficulty grasp-
ing certain functional programming concepts, they ultimately stem
from disparities in their prior knowledge. Dutch high school mathe-
matics subjects do not tackle set theory or the lambda calculus style
of working with functions. The high school mathematics curriculum
only deals with functions as generators of graphs.

ZPartial application can be achieved using the functools package or lambda in
Python, but this is not part of the course material.

TScIT 40, February 2, 2024, Enschede, NL

6 PROMPT ENGINEERING FOR ASSISTING
INTRODUCTORY FUNCIONAL PROGRAMMING

Prompt programming or prompt engineering is the way a Large
Language Model can be programmed to generate output to input
prompts. The output can be influenced by adding extra context, ex-
amples, tasks, or other information before giving the LLM a specific
question. This topic has seen a significant rise in research inter-
est, with many papers published in the last three years. Below, we
present three novel functional programming-specific prompt pro-
grams, inspired by the current state-of-the-art prompt patterns. The
programs are presented in boxes, where text in italics is the written
program and the text in bold is the input questions of the student.

6.1 Applied prompts for introductory functional
programming

The Master Translator pattern. Reynolds and McDonell [19, p. 3]
created a Master Translator pattern, to improve the performance
of text translation with GPT-3. This pattern provides a context for
the Large Language Model, increasing the chance of successful
translation from a source to a target language. This pattern was
created as one of the first pattern-like prompt programs and can be
changed to suit the educational functional programming use case.
The performance of this prompt program might be different on the
new GPT-4 model.

A question is asked by a student: "[student question]”

The teacher of the Introductory Functional Programming course
helps the student without providing code:

ChatGPT response: ...

The Questioning Teacher pattern. The Questioning Teacher pattern
is built from multiple prompt patterns presented by White et al [27].
The Persona pattern has been implemented, with the role of a teacher
teaching an introductory functional programming course. The Ques-
tion Refinement pattern is used to return three new questions for
the student in the same context of the question asked. This method
gives students room to explore their knowledge gaps further [1, 6].

You are a teacher of an introductory functional programming course.
I'am a student who asks you questions about functional program-
ming. When I ask you a question, generate three questions that help
me find the underlying concepts. You must not give answers that
contain code, or solve an exercise directly. Here are the questions:
[student question]

ChatGPT response: ...

The FP Context Manager pattern. The Context Manager pattern [27,
p- 16] guides the answer of the LLM to the appropriate context.
When the context is focused only on functional programming and is
told not to give code, the answers are less likely to spoil the learning
objectives.

TScIT 40, February 2, 2024, Enschede, NL

Table 3. (Pre)prompt performance metrics

(Pre)prompt Code Tasks complete Verbatim
No preprompt 63.3% 100.0% 100.0%
Master Translator 3.3% 96.7% 73.3%
Questioning Teacher ~ 0.0% 96.7% 6.7%
FP Context Manager 13.3% 90.0% 60.0%

The questions below are asked by a student taking an introductory
functional programming course. Focus only on programming and
problem-solving using a functional approach. Whenever the student
asks for code, only answer in terms of concepts and never provide
code. Here are the questions:

[student question]

ChatGPT response: ...

6.2 Results

The prompts given above are evaluated using a small set of questions
related to the functional programming course. These questions can
be found in Appendix A3.

In Table 3, the quantitative analysis of three prompts is presented,
along with the performance of ChatGPT with no (pre)prompt. In all
non-conceptual questions (e.g., the student asks for an implemen-
tation, or asks something related to an algorithm), plain ChatGPT
returned a block of code with a solution. In the answer to question
10, the Master Translator pattern gave a code block with types, but
not the actual implementation. In all cases, the responses contained
the answer verbatim (e.g. instructions on how to write the code).

The Questioning Teacher pattern answered with three questions
in all tested cases. In one instance, the prompt contained the answer
to the question asked by the student, disguised as a question. The
answer to question 10 contained concrete examples of concepts, but
with appropriate questions per concept. The answer to question 24
contained the answer verbatim in an inline code snippet.

The FP Context Manager pattern contained some code blocks. In
the answer to question 22, the code block was a repetition of the
question statement. In questions 16, 19, and 25, code blocks in the
response contained the verbatim answer. All questions where a
direct answer could be given without providing a block of code, it
was provided. The answers to questions that requested a block of
code returned instructions and tips on how to write the code.

6.3 Quality of the output

Out of all tested prompt patterns, only the Questioning Teacher pat-
tern did not generate any code blocks. For the other prompts, there
is still a small chance that ChatGPT will generate code blocks. The
Master Translator pattern adheres to the command of not generat-
ing code but interprets this concept widely. It still generated a type
signature in a code block. If a solution to a question specifically asks
for a type signature, this pattern is to be avoided.

The Questioning Teacher pattern did not provide any code blocks.
In all cases, ChatGPT returned three questions. The quality of the
questions varies, as some questions were not relevant to the given

3The response data is made available as an artifact on https://doi.org/10.5281/zenodo.
10590830

Julian van Santen

prompt or were repetitions of one another. Answers to questions 26
to 30 sometimes contained questions that lead the student to believe
they are on the right track. In question 30, the third generated ques-
tion asks about the use of the map function, which is incorrect for
the use case. ChatGPT asks the student to think about the workings
of map, instead of referring to different higher-order functions. The
strictness offers a safety net for the actual answer but the usefulness
of the questions is not guaranteed.

7 CONCLUSION AND DISCUSSION

We showed the effectiveness of three proposed prompts for educa-
tional functional programming. The presented prompts offered an
advantage over plain ChatGPT without restrictions, as the percent-
age of verbatim answers was lower for all prompts. The Questioning
Teacher pattern was the most conservative in its answer, with al-
most no verbatim answers and no code blocks given. The questions
generated by this pattern were not always useful, but in most cases,
it gave enough background for a student to proceed. The small num-
ber of misleading questions generated was a bigger problem, but
most of these occurrences were surrounded by useful questions.

The quality of the answers given by ChatGPT varied and with
more restrictions to the chatbot, less correct information was given.
ChatGPT adhered to the tasks given by the prompt in most cases,
but it was not airtight. The prompt patterns presented perform well
overall, but adaptations for certain use cases can be made. Questions
focusing on conceptual explanations were best asked to the Ques-
tioning Teacher pattern to prevent a verbatim answer. The Master
Translator pattern also performed well with questions that asked
for implementations of algorithms, where the answers contained
a step-by-step guide on how to build the algorithm without spoil-
ing the learning objectives. In general, all three patterns presented
perform at promising levels that will protect the learning objectives
significantly better than asking ChatGPT directly.

8 ACKNOWLEDGEMENTS

We kindly thank the Computer Architecture for Embedded Systems
group of the Faculty of Electrical Engineering, Mathematics, and
Computer Science at the University of Twente, for providing access
to ChatGPT Plus.

A FUNCTIONAL PROGRAMMING QUESTION SET

Below are 4 categories containing 5 questions each. Each question
is in the context of introductory functional programming exercises.

A.1 Questions regarding Haskell specifically

(1) What does () do in Haskell?

(2) Why is [1,2,3] the sameas1 : 2 : 3 : [] in Haskell?

(3) How does QuickCheck in Haskell work?

(4) What are the differences between sets and lists?

(5) What is the difference between list comprehension and set
builder notation?

A.2 Questions about concepts

(6) What is the difference between a Python list and a Haskell
list?

https://doi.org/10.5281/zenodo.10590830
https://doi.org/10.5281/zenodo.10590830

Using LLM Chatbots to Improve the Learning Experience in Functional Programming Courses

(7) What is the difference between partial application and curry-
ing?
(8) What is the difference between bubble sort in Python and in
Haskell?
(9) What is a higher-order function?
(10) Explain the mathematics behind functional programming.

A.3 Questions asking about direct implementations

(11) How do I write a discriminant function in Haskell?

(12) How do I write a function in Haskell that computes the di-
viders of a given number?

(13) How do I write bubble sort in Haskell?

(14) Define a higher order function itn (for “iterate n times”) with
three arguments f, a, n in Haskell.

(15) Define a higher order merge sort function hoSort in Haskell,
in which the relation by which a list should be sorted is given
as an argument r.

A.4 Verification and debugging

Questions in red are negative, e.g. they ask for a correct/alternative
implementation, which may not be given.

Invalid function type/function polymorphism. I have to write
a function incr that checks if each number in a list is greater than
its immediate predecessor. I wrote the function given here:

1| incr = [a] -> Bool

2| incr [] = True

3| incr [x] = True

4| incr (x:y:xs) = x <y &&incr (y:xs)

I get the following error:

No instance for (Ord a) arising from a use of ’<

(16) How do I fix this?

(17) Why am I not able to use the < operator?

(18) What does Ord a mean?

(19) Give an implementation without this error.

(20) Implement this function using a higher-order function.

Currying/uncurrying. A function is given:

fxy=x+y

When I call the function with f (1, 2), I get the following error:

No instance for (Show ((Integer, Integer) -> (Integer, Integer))
) arising from a use of ’print’
(maybe you haven’t applied a function to enough arguments?)

~

(21) What does this mean?

(22) How do I fix this?

(23) How can I use the function f with (1, 2)?

(24) Give a function call that works.

(25) Generate example code that explains how to use function f.

TScIT 40, February 2, 2024, Enschede, NL

Higher order functions. This code sample contains an error that
is unnoticed by the coder: the function divisers is incorrectly defined.
The predicate should be n ‘mod‘m == 0.

I want to define a primes function, which takes in a list of numbers
and returns a list of all the prime numbers in the given list. T have
defined the following functions:

1| divisers = Int —> [Int]

2| divisers n=[m| m<- [1.n], m‘mod' n==0]

4| isPrime = Int -> Int

5| isPrime n = divisers n == [1, n]
6

7| primes = [Int] -> [Int]

s| primes = map (isPrime)

When I load the file Main. hs into GHCI, I get the following error:

Couldn’t match expected type ’Int’ with actual type ’Bool’
In the expression: divisers n == [1, n]
In an equation for ’isPrime’: isPrime n = divisers n == [1, n]

But when I change the type of isPrime, I get the following error:

Couldn’t match type *Bool’ with ’Int’
Expected: Int —> Int
Actual: Int -> Bool
In the first argument of “map’, namely ’(isPrime)’
In the expression: map (isPrime)
In an equation for ’mysum’: mysum = map (isPrime)

(26) How can I fix this?

(27) Why should the type of isPrime be Int -> Bool? I want to
make primes = [Int] -> [Int], but if I make isPrime : Int
-> Bool, the type will become [Int] -> [Bool].

(28) How else can I define primes?

(29) Rewrite the given code such that it works.

(30) Generate a function primes which gives all prime numbers
out of a given list.

REFERENCES

[1] Patricia Albergaria Almeida. 2012. Can I ask a question? the importance of
classroom questioning. Procedia - Social and Behavioral Sciences 31 (2012), 634-638.
https://doi.org/10.1016/j.sbspro.2011.12.116

[2] Henk P. Barendregt. 1977. The Type Free Lambda Calculus. In Studies in Logic
and the Foundations of Mathematics. Vol. 90. Elsevier, North-Holland Amsterdam,
1091-1132. https://doi.org/10.1016/S0049-237X(08)71129-7

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, and Tom Henighan.
2020. Language Models are Few-Shot Learners. Advances in neural information
processing systems 33 (Dec. 2020), 1877-1901.

[4] R.M.Burstall and John Darlington. 1977. A Transformation System for Developing
Recursive Programs. J. ACM 24, 1 (Jan. 1977), 44-67. https://doi.org/10.1145/
321992.321996

[5] Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction,

and polymorphism. Comput. Surveys 17, 4 (Dec. 1985), 471-523. https://doi.org/

10.1145/6041.6042

Christine Chin and Jonathan Osborne. 2008. Students’ questions: a potential

resource for teaching and learning science. Studies in Science Education 44, 1

(March 2008), 1-39. https://doi.org/10.1080/03057260701828101

Alonzo Church and J. B. Rosser. 1936. Some properties of conversion. Trans.

Amer. Math. Soc. 39, 3 (1936), 472-482. https://doi.org/10.1090/S0002-9947-1936-

1501858-0

[8] T. Dousma, A. Horsten, and J. Brants. 1997. Tentamineren (3e dr ed.). Wolters-
Noordhoff, Groningen. OCLC: 743244623.

G

[7

https://doi.org/10.1016/j.sbspro.2011.12.116
https://doi.org/10.1016/S0049-237X(08)71129-7
https://doi.org/10.1145/321992.321996
https://doi.org/10.1145/321992.321996
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1080/03057260701828101
https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.1090/S0002-9947-1936-1501858-0

TScIT 40, February 2, 2024, Enschede, NL

[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Python Software Foundation. 2024. Python Documentation: Data Structures.
https://docs.python.org/3/tutorial/datastructures.html#id2

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen.
2017. Ask-Elle: an Adaptable Programming Tutor for Haskell Giving Automated
Feedback. International Journal of Artificial Intelligence in Education 27, 1 (March
2017), 65-100. https://doi.org/10.1007/s40593-015-0080-x

Kevin Hammond. 2011. Why Parallel Functional Programming Matters: Panel
Statement. In Reliable Software Technologies - Ada-Europe 2011 (Lecture Notes in
Computer Science), Alexander Romanovsky and Tullio Vardanega (Eds.). Springer,
Berlin, Heidelberg, 201-205. https://doi.org/10.1007/978-3-642-21338-0_17
Paul Hudak. 1989. Conception, evolution, and application of functional pro-
gramming languages. Comput. Surveys 21, 3 (Sept. 1989), 359-411. https:
//doi.org/10.1145/72551.72554

J. Hughes. 1989. Why Functional Programming Matters. Comput. . 32, 2 (Feb.
1989), 98-107. https://doi.org/10.1093/comjnl/32.2.98

Enkelejda Kasneci, Kathrin Sessler, Stefan Kiichemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke
Hiillermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel,
Jurgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt, Tina Seidel,
Matthias Stadler, Jochen Weller, Jochen Kuhn, and Gjergji Kasneci. 2023. ChatGPT
for good? On opportunities and challenges of large language models for education.
Learning and Individual Differences 103 (April 2023), 102274. https://doi.org/10.
1016/.1indif.2023.102274

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How Teachers Would
Help Students to Improve Their Code. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education. ACM, Aberdeen
Scotland Uk, 119-125. https://doi.org/10.1145/3304221.3319780

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2019. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Transactions on Computing Education 19, 1 (March 2019), 1-43. https://doi.org/
10.1145/3231711

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2023. Large Language Models are Zero-Shot Reasoners. http://arxiv.
org/abs/2205.11916 arXiv:2205.11916 [cs].

Hans-Wolfgang Loidl, Ricardo Pefia, David Hutchison, Takeo Kanade, Josef Kit-
tler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopou-
los, Doug Tygar, Moshe Y. Vardi, and Gerhard Weikum (Eds.). 2013. Trends in

[19

[20

[21

[23

[24

[26

[27

]

]

Julian van Santen

Functional Programming. Lecture Notes in Computer Science, Vol. 7829. Springer
Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40447-4
Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. http://arxiv.org/abs/2102.07350
arXiv:2102.07350 [cs].

Rijksoverheid. 2013. Examenprogramma Wiskunde D vwo. https://www.
examenblad.nl/system/files/2013/examenprogramma_wiskunde_dvwo.pdf
Rijksoverheid. 2014. Examenprogramma Wiskunde B vwo. https:
//www.examenblad.nl/system/files/2014/Examenprogramma_wiskunde_
B_vwo0%20_%20versie_van_OCW_CORRECTIE_DEC_2017.pdf

Rijksoverheid. 2018. Examenprogramma informatica havo/vwo. https://www.
examenblad.nl/system/files/2018/examenprogramma_Informatica_havo-vwo.pdf
D. A. Turner. 2013. Some History of Functional Programming Languages. In Trends
in Functional Programming, David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug
Tygar, Moshe Y. Vardi, Gerhard Weikum, Hans-Wolfgang Loidl, and Ricardo Pefia
(Eds.). Vol. 7829. Springer Berlin Heidelberg, Berlin, Heidelberg, 1-20. https:
//doi.org/10.1007/978-3-642-40447-4_1 Series Title: Lecture Notes in Computer
Science.

Marcia den Uijl, Hendri Adriaens, Maartje Elshout, and Suzan Elshout. 2024.
Personeelstekorten voortgezet onderwijs. https://zoek.officielebekendmakingen.
nl/blg-1122086.pdf

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and
Ee-Peng Lim. 2023. Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-
Thought Reasoning by Large Language Models. http://arxiv.org/abs/2305.04091
arXiv:2305.04091 [cs].

Tianjia Wang, Daniel Vargas-Diaz, Chris Brown, and Yan Chen. 2023. Exploring
the Role of Al Assistants in Computer Science Education: Methods, Implications,
and Instructor Perspectives. In 2023 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). Washington, DC, USA, 92-102. https:
//doi.org/10.1109/VL-HCC57772.2023.00018 arXiv:2306.03289 [cs].

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023. A Prompt
Pattern Catalog to Enhance Prompt Engineering with ChatGPT. (2023), 1-19.
https://doi.org/10.48550/ARXIV.2302.11382 Publisher: arXiv Version Number: 1.

https://docs.python.org/3/tutorial/datastructures.html#id2
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1007/978-3-642-21338-0_17
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
https://doi.org/10.1007/978-3-642-40447-4
http://arxiv.org/abs/2102.07350
https://www.examenblad.nl/system/files/2013/examenprogramma_wiskunde_dvwo.pdf
https://www.examenblad.nl/system/files/2013/examenprogramma_wiskunde_dvwo.pdf
https://www.examenblad.nl/system/files/2014/Examenprogramma_wiskunde_B_vwo%20_%20versie_van_OCW_CORRECTIE_DEC_2017.pdf
https://www.examenblad.nl/system/files/2014/Examenprogramma_wiskunde_B_vwo%20_%20versie_van_OCW_CORRECTIE_DEC_2017.pdf
https://www.examenblad.nl/system/files/2014/Examenprogramma_wiskunde_B_vwo%20_%20versie_van_OCW_CORRECTIE_DEC_2017.pdf
https://www.examenblad.nl/system/files/2018/examenprogramma_Informatica_havo-vwo.pdf
https://www.examenblad.nl/system/files/2018/examenprogramma_Informatica_havo-vwo.pdf
https://doi.org/10.1007/978-3-642-40447-4_1
https://doi.org/10.1007/978-3-642-40447-4_1
https://zoek.officielebekendmakingen.nl/blg-1122086.pdf
https://zoek.officielebekendmakingen.nl/blg-1122086.pdf
http://arxiv.org/abs/2305.04091
https://doi.org/10.1109/VL-HCC57772.2023.00018
https://doi.org/10.1109/VL-HCC57772.2023.00018
https://doi.org/10.48550/ARXIV.2302.11382

	Abstract
	1 Introduction
	2 Related Work
	2.1 Language Model Reasoning and Prompt Engineering
	2.2 Programming Education

	3 Methodology and Approach
	3.1 What do the difficult learning objectives have in common?
	3.2 Creating prompts for ChatGPT

	4 Analysis of Introductory Functional Programming Exams
	4.1 Lists and list comprehension
	4.2 Partial application, currying and higher-order functions

	5 The Source of Confusion: a Functional Programming Concept Analysis
	5.1 Functional lists and list constructors
	5.2 List comprehensions
	5.3 Learning function types: function application, currying and higher-order functions
	5.4 Conclusion

	6 Prompt Engineering for assisting introductory Funcional Programming
	6.1 Applied prompts for introductory functional programming
	6.2 Results
	6.3 Quality of the output

	7 Conclusion and Discussion
	8 Acknowledgements
	A Functional Programming question set
	A.1 Questions regarding Haskell specifically
	A.2 Questions about concepts
	A.3 Questions asking about direct implementations
	A.4 Verification and debugging

	References

