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This study explores the complex field of population genetics known as "selec-
tive sweep detection," in which the fast spread of particular genetic variations
within a population creates patterns in the genome. The ASDEC framework
and the novel SweepNet architecture have made noteworthy advancements
in genomic scan sensitivity, success rates, and detection accuracy. However
running these CNNs requires a lot of resources, which presents a signif-
icant obstacle. Extensive experiments revealed that quantizing the layers
separately produces encouraging outcomes. The majority of layers show a
notable decrease in the required precision; some layers only require 2 bits,
and in other circumstances, 1 bit is sufficient. By optimising resource utili-
sation and decreasing the memory requirement of these CNNs’ operations,
the layer-by-layer quantization technique makes these models run faster
with fewer available resources.
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1 INTRODUCTION
A selective sweep in population genetics refers to a specific phe-
nomenon in population genetics where a particular genetic variant,
often associatedwith a beneficial trait, rapidly increases in frequency
within a population. Unique patterns are imprinted on the genetic
terrain by selective sweeps. The area around the selected genetic
variant usually shows reduced genetic diversity, as other variants
in the neighbourhood get swept up with the selected variant’s in-
creasing frequency. Acknowledging this reduced diversity is an
important signal for scientists searching for genomic areas affected
by selection sweeps. Revealing these genomic areas is critical for
comprehending population dynamics, identifying genes associated
with adaptive characteristics, and gaining important knowledge
about which factors are shaping genetic diversity. Selective sweep
detection can be used to develop more potent pharmacological ther-
apies as well as to explain how and why organisms survive in a
given environment.

Originally, neural networks were used to tackle this problem, but
with recent developments, a paradigm change has occurred where
the problem is now framed as one of image classification. Convolu-
tional Neural Networks (CNNs) have become essential tools in this
context for efficiently handling the complexities of the classification
problem. Significant improvements have been made over time to
maximise these techniques’ accuracy and speed.
ASDEC [10] is a notable framework that has been created to enable

genome-wide scans to identify specific sweeps. This novel method
highlights the continuous improvement and development in compu-
tational genomics. Furthermore, a thorough investigation of hyper-
parameters has led to significant advancements in CNN architecture,
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including the development of SweepNet [9]. SweepNet has a higher
training efficiency than existing CNNs and requires considerably
fewer epochs to achieve high validation accuracy. Furthermore, it
performs consistently better in the presence of confounding factors
[9].

When used for genomic scanning, the ASDEC framework performs
better in terms of increased sensitivity, success rates, and detection
accuracy. Additionally, the SweepNet design demonstrates a more
consistent training behaviour in comparison to modern CNNs com-
monly used in population genetics. It demonstrates the capacity to
distinguish between neutrality and a selective sweep even when con-
founding variables are present. Furthermore, SweepNet consistently
achieves higher validation accuracy with fewer training epochs.
Specifically, it uses raw genetic data from photos to classify them,
saving time on data preparation by not depending on summary
statistic distributions.

1.1 Motivation
Although the previously mentioned improvements improve selec-
tive sweep detection by tackling issues like speed and accuracy, a
drawback of the proposed strategy is the amount of computing re-
sources needed to run these CNNs. For a large bulk of data, running
the model takes a very long time. It is essential to speed up this
process, which can be done by quantization and building specialised
hardware. To see if building specialised hardware makes sense, the
quantization option should be tested first. Quantization aims to
reduce the number of resources required to run the network in the
field. If per-layer quantization is carried out without sacrificing a
reasonable degree of accuracy, it could help speed up the image clas-
sification task. This can speed up research. In some cases, when the
CNN is not very big, it could even make it possible to run on smaller
and lighter devices. Selective sweep detection on more compact and
lightweight devices could greatly expand research possibilities. This
problem leads to the following questions:

1.2 ResearchQuestions
The problem statement will lead to the following research question:
How does layer-specific quantization enhance the efficiency of CNNs
in selective sweep detection for population genomics?
And as a sub-question:What insights can be gained by quantizing
specific layers of CNNs in selective sweep detection for population
genomics?

1.3 Overview
This paper explores the existing literature on the quantization of
CNNs for selective sweep detection. The first sections lay a solid
basis by introducing CNNs and highlighting relevant related re-
search. The methodology section explores the model’s structure,
the datasets that were employed, and the experimental setting to
justify the choice to apply a layer-wise quantization strategy. The
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outcomes of these experiments are then shown in the results section.
The results are summarised in the discussion that follows, which
also points out the study’s limitations and makes recommendations
for other research directions. The paper concludes by answering
the previously mentioned research questions.

2 LITERATURE
To maximise model performance, speed, and resource consumption,
researchers have investigated a variety of approaches in the field
of quantizing CNNs. This section explores the relevant literature,
beginning with a summary of basic CNN principles to help lay
the groundwork for comprehension of the quantization approach
exploration that follows. In light of this background, significant
contributions to the literature are emphasised, presenting a range of
methods, instruments, and conclusions that have influenced the un-
derstanding and utilisation of quantization in the context of CNNs.

2.1 Context
A basic understanding of CNNs becomes essential when delving
into the complexities of quantization in the context of CNN-based
selective sweep detection. This research goes into the complicated
procedures of quantizing CNNs and clarifies its consequences for
selective sweep detection. Understanding the foundations of CNNs
is necessary to appreciate the significance of quantization:

2.1.1 Convolutional Neural Network (CNN). A CNN is a type of
artificial neural network [6] designed for tasks involving images
and visual data. CNNs are particularly effective in image recognition,
object detection, and other computer vision tasks. The key feature
of CNNs is the use of convolutional layers, which apply convolution
operations to input data.

2.1.2 Quantization. Quantization is the division of a quantity into
a discrete number of small parts [5]. In the context of CNNs, this
refers to the process of reducing the precision or representation of a
set of values. The range of values that can be represented effectively
decreases when an operation’s bit width is reduced. As a result, this
decrease increases the likelihood of round-off errors and their size.
Such a drop in precision causes loss and hurts operating accuracy.
Yet, quantization to smaller bit widths has several advantages despite
these difficulties. It reduces the memory needed and speeds up
processes on hardware platforms that can effectively handle smaller
bit widths.

2.1.3 Layers. To attain an understanding of the behaviour of the
quantization on the different layers, it is required to understand
what the layers do. The different tasks that the layers carry out affect
how the model reacts to quantization, which means it is required
for understanding the results attained in this study:

(i) Convolution Layer: Convolutional operations involve slid-
ing a small filter (also known as a kernel) over the input data,
performing element-wise multiplications and summing the
results. This operation allows the network to capture local
patterns and features in the input data [6].

(ii) Max Pooling Layer: This downsamples the input along
its spatial dimensions (width and height). It does this by
computing the maximum value of its input window for each

input channel. The input window is defined at the time of
creating the layer (using the pool_size argument for Keras)
[2].

(iii) Global Average Pooling Layer: This downsamples the in-
put along its spatial dimensions, similar to (ii), but computing
the average instead of the maximum. This also does not use
a local region size. The global version goes over the entire
spatial dimension [2].

(iv) Activation Layer:Activation layers apply an activation func-
tion to an output. A neural network’s (NN) activation func-
tions are mathematical operations that are applied to each
neuron’s output to give the model non-linearity [7]. An acti-
vation function essentially maps the input to a certain output
range. NNs require non-linearity for the network to under-
stand intricate linkages and patterns in the input. Since the
composition of linear processes is still linear, an NN without
activation functions would be effectively a linear model Sig-
moid, ReLu and Softmax are used in SweepNet, you can find
the formulas of these activation functions in Appendix A.

(v) Multiply Layer: Performs element-wise multiplication [2].
(vi) Dense Layer: Also called the fully-connected layer. Mathe-

matically, for a Dense layer with 𝑛 neurons, given an input
vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑚] from the previous layer, the out-
put 𝑦𝑖 of the 𝑖th neuron in the Dense layer is calculated as
[2]:

𝑦𝑖 = activation ©«
𝑚∑︁
𝑗=1

𝑤𝑖 𝑗 · 𝑥 𝑗 + 𝑏𝑖
ª®¬

• 𝑤𝑖 𝑗 is the weight of the connection between the 𝑗 th neuron
in the previous layer and the 𝑖th neuron in the Dense layer.

• 𝑏𝑖 is the bias term associated with the 𝑖th neuron.
• activation(·) is an activation function applied element-wise
to the result.

2.2 Related Work
Coelho Jr. et al. [3] present the QKeras library, which is an exten-
sion of the Keras library [2]. QKeras allows for heterogeneously
quantized versions of deep neural network models, through drop-in
replacement of Keras layers. These models are trained quantization-
aware, where the user can trade off model area or energy con-
sumption by accuracy. The training and deployment of extremely
low-resource, low-latency heterogeneously quantized deep neural
networks on-chip using QKeras and hls4ml is made possible by the
authors’ fully automated design methodology. By taking advantage
of QKeras’s ability to swap out Keras layers easily, this method
makes it easier to create models with varying levels of precision for
each layer, all the while being trained with quantization awareness.

Wu et al. [8] proposed an efficient framework to simultaneously
accelerate and compress CNNs. Their Quantized CNN approach
focuses on quantizing filter kernels in convolutional layers and
weighting matrices in fully connected layers to minimize estimation
errors, achieving remarkable speed-up and compression rates. The
experiments conducted on the ILSVRC-12 benchmark demonstrated
a 4∼6× speed-up and 15∼20× compression with merely a one per-
centage loss of classification accuracy. Additionally, the authors have

2



Exploring Layer-specific Quantization in CNN-based Selective Sweep Detection TScIT 40, January 28, 2024, Enschede, The Netherlands

implemented their Q-CNN framework into an Android application
designed for CNN-based image classification on mobile devices. The
experiments were conducted on a single CPU core without GPU
acceleration. Notably, the Q-CNN framework achieved a remarkable
3× speed-up for AlexNet and a 4× speed-up for CNN-S. Moreover,
storage consumption was compressed by 20×, and the required
run-time memory was reduced to only one-quarter of the original
model. In light of these improvements, the loss in top-5 classification
accuracy did not exceed 1%. Consequently, the proposed approach
enhances run-time efficiency across multiple aspects, making the
deployment of CNN models feasible on mobile platforms.
There has been a growing interest in recent years in exploring

the impact of quantization techniques on deep learning models,
particularly in the context of CNNs. Gluska et al. [4] have made
a contribution to this field with their paper, where they research
the layer-specific aspects of quantization and its application to the
specific task of selective sweep detection in CNNs.

3 METHODOLOGY
The methodology of this research consists of four main steps: con-
verting the existing CNN, generating test data, quantizing the model
and evaluation.

The existing CNN, SweepNet, has been converted to a parameter-
based quantized version using TensorFlow [1] and QKeras. Due to
SweepNet being developed in the Python programming language,
it was used for this research too.
In-house software was used to generate test data in the form of

images. This software is hosted in the same repository as SweepNet.
These images are specifically generated from simulated genomic
areas, offering a regulated and repeatable dataset for in-depth exam-
ination. SweepNet’s repository also contains a link to the datasets
used.
The CNN’s classification performance for various degrees of

quantization has been measured. This was done strategically to
reach optimal configurations as fast as possible. For every configu-
ration, 10 training epochs were used for each dataset. The choice of
conducting 10 training epochs stems from various considerations.
Firstly, a longer training duration was deemed impractical due to
the significant time required for training various configurations,
which would substantially impede the timely completion of the re-
search. Additionally, the decision aligns with the example command
from SweepNet, chosen for its adequacy in addressing this study’s
objectives. Furthermore, empirical evaluations indicated that the
quantization outcomes settled after the 10th epoch.
The research results were evaluated and an optimal configura-

tion, with the least amount of bits used, was created. This optimal
configuration can be found in Table 6.

3.1 Layer-wiseQuantization
There are several reasons why it is important to implement quanti-
zation layer-by-layer. Because each layer in a CNN serves a distinct
purpose and responds differently to quantization, quantizing layer-
wise enables fine-grained optimisation. The layer-wise approach
also makes it easier to carry out an iterative optimisation procedure

in which the effects of quantization on each layer are examined sep-
arately. This analysis keeps going until the accuracy loss becomes
appreciable at a certain point in the overall size of themodel. Further-
more, the layer-wise method improves analysis and interpretability
by independently looking at quantization’s impacts on each layer.
This contributes to increased interpretability and transparency in
understanding how quantization affects the internal representations
of the model by offering insightful information about the model’s
behaviour.

3.2 Model Structure
The model structure is an important aspect of defining the per-
formance and functionality of the research model. Furthermore, it
serves as a crucial determinant in illustrating how the model re-
sponds to the quantization process. SweepNet’s layer structure was
kept the same, however, some layers were swapped out with their
QKeras’ equivalent, and given names to allow for quantization and
easier visualization of the changes. The detailed information about
the model can be observed in Table 1.

Not all layers were able to be quantized, due to the lack of support
in QKeras. An overview of the layers that could be quantized using
QKeras is shown in Table 1. All layers which got a different layer
type (notably, with a Q-prefix) are layers from QKeras and could be
quantized. The other layers which were kept the same between old
and new did not have a QKeras equivalent.

3.3 Datasets
The quantization process was done using 6 different datasets avail-
able via SweepNet’s repository. The datasets were converted using
the tool win2img.py. This tool converts the .txt files of the binary
matrices into images, as illustrated in Figure 1. Of the 6 different
datasets, 2, 4 and 5 were the most difficult. The examination of these
datasets was particularly thorough to ensure that the observed lack
of significant accuracy reduction during quantization was not lim-
ited to straightforward datasets. Rather, it was verified that even
more challenging datasets maintained their performance under the
quantization process.
The datasets contain training and test data. The training data

is split between training and validation data. A validation split of
0.2 is used to assess the model’s performance during training. The
datasets contain 2 image classes, neutral and selection, containing
neutrality and selective sweep data respectively.

Each dataset comprises 1000 images for training data, distributed
between training and validation sets, and an additional 1000 images
for testing.

3.3.1 Difficulty. The differences in difficulty stem from how the
datasets were generated. Three different demographic models con-
found selective sweep detection simulated, i.e., population bottle-
necks, migration, and recombination heterogeneity [9]. These de-
mographic models introduce unique confounding factors, detailed
in Table 2. Notably, due to these factors, datasets 2, 4, and 5 present
the most challenges.
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Table 1. The structure of SweepNet, the model used during research.

Layer Index Layer Name Old Layer Type New Layer Type Architecture Component
0 sweepnet_first_conv Conv2D QConv2D SweepNet

1 sweepnet_first_max_pool MaxPooling2D MaxPooling2D SweepNet

2 sweepnet_second_conv Conv2D QConv2D SweepNet

3 sweepnet_second_max_pool MaxPooling2D MaxPooling2D SweepNet

4 sweepnet_third_conv Conv2D QConv2D SweepNet

5 sweepnet_third_max_pool MaxPooling2D MaxPooling2D SweepNet

6 se_block_first_global_avg GlobalAvgPool2D GlobalAvgPool2D SE_block

7 se_block_first_conv Conv2D QConv2D SE_block

8 se_block_first_activation Activation QActivation SE_block

9 se_block_second_conv Conv2D QConv2D SE_block

10 se_block_second_activation Activation QActivation SE_block

11 se_block_first_multiply Multiply Multiply SE_block

12 sweepnet_first_dense Dense QDense SweepNet

13 sweepnet_first_global_avg GlobalAvgPool2D GlobalAvgPool2D SweepNet

14 sweepnet_second_dense Dense QDense SweepNet

Mutation compared with baseline
No mutation compared with baseline

Piece of DNA sequence
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s

(a) N-Raw

Sorted on frequency of
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Fig. 1. The images converted from the .txt data from the datasets.

Table 2. The confounding factors for each dataset [9].

Dataset Confounding Factor
1 Mild bottleneck
2 Severe bottleneck
3 Recent migration
4 Old migration
5 Low intensity recombination
6 High intensity recombination

3.4 Experiments
The quantization process was executed (almost) exclusively using
QKeras’ quantized_bits quantizer. Table 5 provides the average
accuracy of the non-quantized model for each dataset, serving as
a baseline against which the results of other configurations can be
compared.

3.4.1 Bit widths. This study conducted an extensive look into quan-
tization by examining several bit widths. The bit widths chosen were
1, 2, 4, 6, 8, and 32 bits. By including these various bit widths, a more
nuanced understanding of how quantization affects model correct-
ness across a range of precision levels was provided. Additionally,
the selection of 32 bits was crucial due to it being the default preci-
sion of a non-quantized model. This meant the accuracy could be
compared to the baseline accuracy, offering a full examination of
the influence of quantization across the whole range of bit widths
evaluated.

3.4.2 Initial Quantization. First, each layer of the neural network
was quantized separately. Every layer was quantized using all the
chosen bit widthsmentioned previously. This provided a comprehen-
sive insight into the impact of each bit width on both the accuracy
and loss of the model. Additionally, it shed light on how the choice of
a specific bit width for a single layer influenced the overall accuracy
and loss of the entire model.

3.4.3 UniformQuantization. After the initial quantizationwas done,
all layers were quantized uniformly. They were quantized uniformly
to speed up the process of finding the best configuration. Due to the
knowledge gained during the initial quantization, it was expected
that most layers do not need a high amount of bits.

3.4.4 Quantization Using 1 Bit. Building upon the earlier findings,
additional rounds of quantization were executed. It was observed
that reducing the bit width to 2 bits marked the threshold before a
notable decline in accuracy was evident. The next step following the
previous findings was quantizing all layers to have 2 bits, but every
time only 1 layer would have 1 bit. The results gained prompted
further testing with layers 7 and 9 using only 1 bit at the same time.

3.4.5 Activation Layers. The activation layers (layers 8 and 10) were
then quantized. All the quantization experiments involved treating
the two layers separately, using the same base model configuration
as depicted in Table 3. Subsequently, the activation layers were both
quantized at the same time.
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Table 3. The accuracy and loss of the model with all layers quantized to use
2 bits, aside from layers 7 and 9, which used only 1 bit.

Reference Accuracy1 Accuracy Loss
Dataset 1 0.9925 0.9900 0.0269

Dataset 2 0.8999 0.9024 0.2985

Dataset 3 0.9850 0.9875 0.0359

Dataset 4 0.8324 0.8600 0.3776

Dataset 5 0.8025 0.8650 0.3295

Dataset 6 0.9925 0.9875 0.0330

1 The reference or non-quantized model accuracy, which is
also found in Table 5.

4 RESULTS
A range of results was revealed by the in-depth examination of
various quantization configurations described in 3.4. The results of
some configurations are presented in Table 5, offering a detailed
overview across all datasets.

4.1 Initial Quantization
In the experimental phase of quantizing each layer separately, de-
tailed examinations were carried out on the impact of various bit
widths on both accuracy and loss for the entire model. To visualize
the findings, Figure 2 presents the accuracy of every layer separately
quantized on dataset 2.

In this phase, it was discovered that most precisions did not cause
any significant accuracy drop, however when using 1 bit the model
started to exhibit a substantial decrease in accuracy. This observa-
tion prompted further investigation into the optimal bit width for
maintaining accuracy while achieving quantization benefits.

4.2 UniformQuantization
While the majority of configurations showcased minimal accuracy
loss, a significant reduction in accuracy was observed at 1 bit, in-
dicating that this bit width proved insufficient for the majority of
layers. This substantial decrease in accuracy is visually depicted
in Figure 3. The significant accuracy drop is illustrated alongside
the accuracies corresponding to all other uniform bit widths across
each dataset.

4.3 Quantization Using 1 Bit
In this phase, all layers were quantized to use 2 bits, but every
time only 1 layer would have 1 bit. These configurations resulted
in mostly significant loss, aside from 2 layers. Layers 7 and 9 did
not drop the accuracy significantly when quantized to only use
1 bit. Both layers using 1 bit at the same time also maintained
approximately the same level of accuracy without experiencing any
significant decline, as shown in Table 3.

4.4 Activation Layers
No noticeable degradation in precision was observed for the lower
bit widths as outlined in Table 4. The activation layers required only
1 bit each, which did not result in a reduction in accuracy.

Table 4. The accuracy and loss of the model with all layers quantized to use
2 bits, aside from layers 7-10, which used only 1 bit.

Reference Accuracy1 Accuracy Loss
Dataset 1 0.9925 0.9900 0.0228

Dataset 2 0.8999 0.9024 0.2931

Dataset 3 0.9850 0.9825 0.0334

Dataset 4 0.8324 0.7425 0.5466

Dataset 5 0.8025 0.7875 0.4920

Dataset 6 0.9925 0.9674 0.1156

1 The reference or non-quantized model accuracy, which is
also found in Table 5.

4.5 Test
The outcomes of the experiments, as detailed in the preceding sub-
sections, reveal an optimal configuration. Table 6 presents this con-
figuration, specifically emphasizing the bits utilized per layer in the
model.
The test accuracy is a crucial metric that validates the general-

ization capability of the trained model on unseen data. In addition
to the validation/train accuracy, the corresponding test accuracy
results can be found in Table 7.

5 DISCUSSION
This study has demonstrated that implementing per-layer quanti-
zation in a CNN can significantly reduce the model size without
a substantial loss in accuracy. Detailed configurations and their
accuracy are presented in Table 5. The optimal configuration (Ta-
ble 6), a result of the entire quantization process described in 3.4,
leverages previous findings to maintain high accuracy while achiev-
ing a noteworthy reduction in model size. Remarkably, the optimal
configuration is only approximately 6.2% of the size of the non-
quantized model, while maintaining a comparable level of accuracy.
Upon examining the results, several interesting observations emerge,
shedding light on the effects of quantizing SweepNet layer-wise.
The results shown in Table 7 indicate that the model had dif-

ficulties with the selection dataset, suggesting that the dataset is
particularly challenging. Interestingly, the selection datasets show
a more noticeable deterioration in accuracy, suggesting a possible
higher need for precision. These findings point to a potential higher
bit width requirement for the datasets used in the selection process.
Further research is needed to confirm these speculations.
A noteworthy trend appears in Figure 3, where datasets 4 and

5 decline accuracy when using more than 4 bits. This behaviour
could perhaps result from the model’s overfitting tendencies. Higher
precisionmaymake overfittingmore effective, while lower precision
makes overfitting less effective. More research is needed to support
this hypothesis.
Tables 7 and 5 show that dataset 4 has a more noteworthy drop

in precision compared to the other datasets. Table 7 shows the lost
accuracy for neutral and selection separately (0.010 for neutral and
0.082 for selection). Even separately, dataset 4 has still lost the most
accuracy out of all of them. This seems to be suggesting that the
confounding factor used to create dataset 4, makes the model require
more precision to operate. The previously mentioned overfitting
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Fig. 2. The accuracy achieved by quantizing every layer separately on dataset 2.

Table 5. Details of varying configurations where the accuracy after the last epoch is provided for every dataset.

Configuration Model Size (Bits) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6
Non-quantized 310400 0.9925 0.8999 0.9850 0.8324 0.8025 0.9925

All layers 2 bits1 19400 0.9925 0.9100 0.9900 0.7450 0.8700 0.9725

Optimal2 19238 0.9900 0.9024 0.9825 0.7425 0.7875 0.9674

1 Aside from the activation layers as mentioned in 5.1.1.
2 The optimal configuration is displayed in Table 6.
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Fig. 3. The accuracy achieved by uniformly quantizing the model across all
6 datasets.

problem could also be playing a role here. More research is needed
to ascertain the validity of these claims.

Table 6. The bits used per layer for the optimal configuration.

Layer Index Layer Name Bits Used
0 sweepnet_first_conv 2

1 sweepnet_first_max_pool 2

2 sweepnet_second_conv 2

3 sweepnet_second_max_pool 2

4 sweepnet_third_conv 2

5 sweepnet_third_max_pool 2

6 se_block_first_global_avg 2

7 se_block_first_conv 1

8 se_block_first_activation 1

9 se_block_second_conv 1

10 se_block_second_activation 1

11 se_block_first_multiply 2

12 sweepnet_first_dense 2

13 sweepnet_first_global_avg 2

14 sweepnet_second_dense 2

5.1 Challenges
This study was not conducted without any obstacles:
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Table 7. The test accuracy for neutral and selection classification for each
dataset across some configurations.

Non-quantized Optimal1

Dataset 1 Neutral 1.0 1.0

Dataset 1 Selection 0.995 0.983

Dataset 2 Neutral 0.879 0.878

Dataset 2 Selection 0.915 0.909

Dataset 3 Neutral 0.988 0.988

Dataset 3 Selection 0.993 0.992

Dataset 4 Neutral 0.939 0.929

Dataset 4 Selection 0.781 0.699

Dataset 5 Neutral 0.856 0.887

Dataset 5 Selection 0.863 0.803

Dataset 6 Neutral 0.969 0.984

Dataset 6 Selection 0.998 0.986

1 The optimal configuration is displayed in Table 6.

5.1.1 Missing Quantizers. The activation layers (layers 8 and 10)
were not initially quantized due to the difference in how their quan-
tizers were defined. All other layers have a separate kernel_quan-
tizer and bias_quantizer. The bias_quantizer does not do any-
thing significant in this case. Only the kernel_quantizer was of
importance. The activation layers are different. They do not have a
kernel_quantizer and bias_quantizer, they only have an acti-
vation. The activation itself decides what activation method to
use and also if it is quantized. Since using the same quantized_bits
quantizer would change the activation method, a different one was
used. quantized_relu for the first activation layer (layer 8) since
it uses the relumethod. The second activation layer (layer 10) used
the sigmoid function that was not documented to be implemented.
Later quantized_sigmoid was found to be implemented but not
documented, prompting its incorporation into the methodology for
subsequent use.

5.1.2 Activation Layers. Although no noticeable degradation in
precision was observed for any bit width as mentioned in 4.4, this
was not the case for 32 bits. The quantized_relu and quantized_-
sigmoid quantizers both dropped to a flat zero accuracy across all
datasets when utilizing 32 bits and NaN1 for the loss. The outcomes
observed with 32 bits suggest a potential bug; however, its impact
was relatively small, as the performance with other bit widths re-
mained consistent.

5.2 Limitations
In acknowledging the scope and constraints of this study, certain
limitations deserve consideration.

5.2.1 Quantizers. In this study, the employed quantization methods
include quantized_bits for the majority of layers, while the two
activation layers utilize quantized_relu and quantized_sigmoid
respectively. QKeras, however, encompasses numerous quantizers

1NaN (Not a Number) denotes an invalid or undefined value for floating-point numbers,
such as the outcome of 0/0 or

√
𝑋,𝑋 < 0.

that were not subjected to testing, potentially yielding diverse re-
sults.

5.2.2 Model Structure. In the scope of this study, it is noteworthy
that the structural elements of SweepNet’s model, including layer
types, layer order, layer count, and input sizes, remained unaltered.
The focus solely centred on exploring the effects of quantization
on the existing architecture. The structure itself plays an important
role in the effects of quantization.

5.2.3 Data. This study utilized the 6 datasets the developers of
SweepNet provided. The analysis was conducted using the ’quick
example’ command provided by the developers. It’s important to
note that variations in datasets and inputs to the command may
yield different results

5.2.4 Hardware Acceleration. Quantization diminishes the memory
requirements for parameter storage, enabling the operation of CNNs
on systems with fewer resources available. However, it brings forth
the challenge of lacking hardware acceleration. While most CPUs
natively support 32-bit precision, lower precisions such as 2-bits
are not native, resulting in a slowdown in model execution that
necessitates specialized hardware for acceleration.

However, this issue primarily pertains to general-purpose CPUs;
specialized hardware is often built to natively support such low-
precision operations, facilitating hardware acceleration.

5.3 Future work
The study primarily focused on layer-specific quantization using
varying bit widths. A potential area for further exploration involves
experimenting with different quantizers and exploring additional
parameters within the quantized_bits quantizer, particularly in-
teger and symmetric. The integer parameter dictates the number
of bits to the left of the decimal point, while the symmetric param-
eter determines whether the bit representation represents an equal
amount of positive and negative numbers.
Future research could also focus on different model structures

and test data.
The absence of hardware acceleration on non-specialised hard-

ware may incentivize further investigation into the trade-offs be-
tween achieving low memory usage and circumventing the require-
ment for specialized hardware to accelerate quantized models when
specialised hardware is not desired.

6 CONCLUSION
In the context of resource-intensive CNNs, such as SweepNet, this
study highlights the potential for significant resource reduction
through layer-specific quantization, thereby addressing the resource
demands associated with training and running complex models. In
light of the potential resource reduction demonstrated through
layer-specific quantization, the research questions stated can be
answered:
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6.1 Sub-question: What insights can be gained by
quantizing specific layers of CNNs in selective sweep
detection for population genomics?

Research on quantizing individual CNN layers for population ge-
nomics selective sweep detection shows that per-layer quantization
leads to a significant reduction in model size with high accuracy.
Problems arise, especially when it comes to the selection datasets,
suggesting that increased precision may be required because of the
apparent decline in accuracy. More than 4 bits appear to be associ-
ated with decreased accuracy for some datasets, which may be due
to overfitting behaviours driven by precision levels. The precision
of dataset 4 significantly decreases, suggesting a higher precision
need that may be caused by confounding factors. These findings
highlight the importance of carefully selecting precision based on
dataset characteristics and conducting further investigation to vali-
date claims and improve model effectiveness.

6.2 ResearchQuestion: How does layer-specific
quantization enhance the efficiency of CNNs in
selective sweep detection for population genomics?

The study demonstrates that layer-specific quantization in a CNN
dramatically lowers the model size without sacrificing a significant
amount of accuracy. The quantization method resulted in an ideal
configuration that retains similar accuracy but achieves a notable
reduction in model size, about 6.2% of the non-quantized model’s
size. These results demonstrate how layer-specific quantization in
resource-intensive CNNs such as SweepNet can lead to significant
resource reduction.

Layer-specific quantization has efficiency benefits, but some draw-
backs must also be considered. Specialised hardware is required
because quantized bit lengths are not supported natively on most
general-purpose CPUs, which might cause significant slowdowns.
Nonetheless, because of the reduced memory requirements, the
specialised hardware need not be as large as that required for com-
parable non-quantized models.
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A ACTIVATION FUNCTIONS
The activation functions used in SweepNet are [7]:

• Sigmoid:

𝜎 (𝑥) = 1
1 + 𝑒−𝑥

,

𝜎 (𝑥) ∈ (0, 1)
• ReLu:

ReLU(𝑥) = max(0, 𝑥),
ReLU(𝑥) ∈ [0, +∞)

• Softmax:

Softmax(𝑥𝑖 ) =
𝑒𝑥𝑖∑
𝑗 𝑒

𝑥 𝑗
,

Softmax(𝑥𝑖 ) ∈ (0, 1)
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