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ABSTRACT
This research project explores the application of autoencoders (AEs)
for anomaly detection in medical images. The project investigates
the performance and limitations of autoencoders inmedical imaging
scenarios where the quality of the dataset plays a pivotal role.
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1 INTRODUCTION
Image anomaly detection is a field within computer vision and
machine learning that focuses on identifying unusual or anomalous
patterns in images. The goal is to develop algorithms that can differ-
entiate between normal and anomalous images, where anomalies
could represent defects, irregularities, or unexpected variations in
the visual content. This has applications in various domains.

Anomaly detection is an unsupervised task that involves learning
a standard profile based on normal data examples and subsequently
recognizing samples that deviate from this norm as anomalies. One
approach to address this task is by utilizing an autoencoder (AE),
a type of neural network trained to reconstruct its input. Using
autoencoders for identifying outliers is commonly utilized in the
realms of cybersecurity, industry, finance, and healthcare. In this
document, we will look at autoencoders for anomaly detection in
medical images. Due to an AE’s ability to train in an unsupervised
way, it can be applied to medical datasets that are often unlabeled.
[1]

An AE consists of an encoder, a compressed representation layer,
and a decoder. (Figure 1) The encoder takes input data and trans-
forms it into a compressed representation. This compressed rep-
resentation layer is called the latent space/bottleneck layer. The
decoder takes the compressed representation generated by the
encoder and reconstructs the original input data. For anomaly de-
tection, the goal is to produce an output that resembles the input
data as closely as possible. The underlying assumption is that a
well-trained autoencoder will capture the latent subspace of normal
samples. After training, the autoencoder is expected to exhibit a
low reconstruction error (commonly the Mean Squared Error or
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Binary Cross-Entropy) for normal samples and a high reconstruc-
tion error for anomalies. In essence, an anomaly does not represent
the bottleneck layer well enough and therefore the decoder will
perform worse in reconstructing the original input. [1]

AE’s have been used successfully for anomaly detection. How-
ever, there are limitations. The main difficulty is choosing an effec-
tive dissimilarity metric and searching for the right degree of com-
pression (the size of the bottleneck). Moreover, general drawbacks
of using autoencoders are the limited interpretability of extracted
features, overfitting, choosing the right architecture for the task,
and its computational cost. Medical images have additional chal-
lenges. The datasets themselves are limited and consist of pictures
without clearly defined shapes. The images hold a large amount of
data and are frequently of high resolution. Anomalous cases are
often very similar to normal cases and are hard to discern. [2]

1.1 Research Questions
To see how an AE performs in anomaly detection concerning medi-
cal data, I propose the following research questions:

(1) How well can AEs reconstruct medical images?
(2) What is the performance of AEs in detecting artificial anom-

alies in medical images?
(3) What is the performance of AEs in detecting real anomalies

in medical images?
(4) What is the computational cost of reconstructing medical

images with AEs?

Figure 1: Autoencoder, Schematic Representation

The paper is structured as follows: Section 2 is about the cutting-
edge research being done in anomaly detection using AE’s, both in
general and for medical datasets. Section 3 is about themethodology
to conduct my experiments. The results will be presented in Section
4. Section 5 is a discussion about the results of the study and Section
6 is the conclusion where answers to the research questions are
given.
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2 STATE OF THE ART / RELATEDWORK
Ever since the introduction of AE’s, constant research has taken
place in this field of study, resulting in valuable improvements.
[12][13]While deep learning usingAE’s hasmade significant strides
in identifying image anomalies, it remains challenging to apply
these methods to complex images, such as those within the medical
domain. Given the dynamic nature of this field, researchers per-
sist in exploring new architectures and techniques to enhance the
performance of autoencoders, but despite a large number of anom-
aly detection methods that appeared in recent years, only several
papers included medical images in their experiments. As there is
no general approach to utilizing autoencoders in the medical field,
researchers have tried to suggest new baselines for anomaly detec-
tion for different medical imaging scenarios resulting in complex
models. [2][3] Other research has shown that while deep learning-
based autoencoders could have great potential in the medical field,
the way of determining performance using the reconstruction er-
ror is outdated. New ways to regulate anomaly scores have been
introduced. [4] While there is evidence of advanced autoencoders
achieving high accuracy for outlier detection in medical datasets,
there are complications for these models. Like any other expert
system, the proposed models are highly dependent on the training
data. As a result, when unseen data is fed as an input, the system
calls it an anomaly, which is a problem for AE’s in general. [5] This
work examines if relatively simple AE’s can be used to address the
anomaly detection challenge for medical datasets of manageable
complexity. To examine the limitations and potential in a transpar-
ent and systematic matter in the given time frame, it is practical to
start with working AE code that is readily available.

3 METHODOLOGIES
In this section, we outline the framework that guides the study,
encompassing the critical aspects of the research process. First,
the experiment environment and datasets are described, then the
way of conducting the experiments is explained and the evaluation
metrics are given.

3.1 Environment
Google Colab will be the main application used to implement code
in Python Notebooks, it is favored for data science due to its free
access to GPUs, eliminating the need for local setup. It comes with
pre-installed libraries like TensorFlow and Pandas. It also integrates
with Google Drive for easy online work. Colab supports data visu-
alization libraries for creating informative visualizations and with
an active community and many educational resources, it is a good
choice for this research project. [8]

3.2 Datasets
In order to effectively apply the autoencoder technology, the datasets
that are used must be of high quality. Medical data, and therefore
medical datasets are more difficult to obtain and use for machine
learning purposes. Legal constraints and lack of medical profession-
als to create and label the data inputs make medical datasets more
sparse. Nevertheless, there are useful and trusted datasets available
.

3.2.1 MNIST. A well-known and publicly available dataset is the
MNIST (Modified National Institute of Standards and Technol-
ogy) dataset. This labeled dataset is a collection of 28×28×1 pixel
grayscale images of handwritten digits (0-9) and is often used as a
starting point to develop and test computer vision algorithms. It
has 60.000 training images and 10.000 testing images. While the
simplicity of the dataset makes it widely used and acknowledged,
getting a high accuracy on MNIST doesn’t necessarily translate to
success on more challenging tasks. [6]

3.2.2 PneumoniaMNIST. The PneumoniaMNIST is based on a prior
dataset of 5,856 pediatric chest X-Ray images. The dataset holds
normal lung scans and lung scans where pneumonia is the diagnosis.
The source images are gray-scale, and their sizes are
(384–2,916)×(127–2,713). The images are center-cropped with a
window size of the length of the short edge and are resized to
28×28×1 [7]. Due to the large amount of information in X-Ray
images, the randomness/entropy is high [11]. This dataset is a good
representation of a complex medical dataset.

3.2.3 OCTMNIST. The OCTMNIST is based on a prior dataset of
109,309 valid optical coherence tomography (OCT) images for reti-
nal diseases. The dataset is comprised of 4 diagnosis categories, of
which 3 are malignant. The source images are gray-scale, and their
sizes are (384–1,536)×(277–512). The images are center-cropped
with a window size of the length of the short edge and are resized
to 28×28×1[7]. Although the randomness in the images is less than
that of the Pneumonia dataset, the OCT dataset visually resembles
the MNIST dataset more and is interesting to investigate.

3.3 Procedure
The way of carrying out the experiments will be the same for each
dataset, starting with the MNIST dataset to establish a baseline of
trusted results and then switching focus to the medical datasets.
With each of the 4 experiments, we try to focus on 1 of the 4 research
questions. Due to the small size of the images, having a simple but
easy-to-adjust autoencoder architecture will be productive. It is
crucial that the architecture of the autoencoder is the same while
tackling the different datasets.

3.3.1 Preprocessing. All of the datasets contain images with a res-
olution of (28x28x1). Since we are trying to establish the difference
between the baseline dataset and the medical datasets, it is benefi-
cial to work with images that are of the same size since the input
shape of the autoencoder should match the image resolution.

3.3.2 Model architecture. The starting model architecture is one
that works well in detecting anomalous images after training on
the MNIST dataset. Having a high accuracy using MNIST allows
for comparison with medical datasets.

Figure 2 is a visual representation of the AE architecture. It is
clear that by definition of an AE, the output shape should be the
same as the input shape (28x28x1). The network uses convolutional,
maxpooling and upsampling layers. Convolutional layers are a fun-
damental building block of convolutional neural networks (CNN’s),
which are widely used in computer vision. The primary use of con-
volutional layers is to detect patterns and features in the input data.
It has been shown that using a convolutional network is a good
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choice for medical imaging [9].
Max pooling is a down-sampling operation commonly used in con-
volutional neural networks to reduce the spatial dimensions of the
input feature maps. It helps retain the most important information
while discarding less relevant details. We use max pooling layers
in the encoding part of the network.
Upsampling is the counterpart to the max pooling operation. The
purpose is to reconstruct the input data from the learned compact
representation. The upsampling layers can be found in the decoding
part of the network.
The model is trained in 25 epochs with a batch size of 60. Adam
optimizer is used. More details about the network can be found at
the end of this document. (Figure 6)

Figure 2: Autoencoder Architecture, Schematic Representa-
tion

3.3.3 Experiment 1: Reconstruction Error. To determine the success
of the autoencoder reconstructing the input images we can use the
commonly used Binary Cross-entropy (BCE). The BCE loss is a mea-
sure of the difference between the input data and the reconstructed
output. As our input values are in range [0,1], it is appropriate to
use. The mathematical expression for BCE loss in the context of
autoencoders is as follows:

BCE Loss = − 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 · log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) · log(1 − 𝑦𝑖 )) (1)

Where:
𝑁 is the number of training examples.
𝑦𝑖 represents the true binary value (0 or 1) for the 𝑖-th example.
𝑦𝑖 represents the predicted probability that 𝑦𝑖 equals 1 for the 𝑖-th
example.

3.3.4 Experiment 2: Artificial anomaly detection. After training the
model on the training data, we can test it on images that we know
to be anomalies. For example, we can test 500 anomalies and see
how many of them the model classifies correctly. To classify, we
have to create a threshold for whether we consider the input image
to be an anomaly. The threshold is based on the mean and standard
deviation of the reconstruction error for training images. Having
the threshold be 2 standard deviations below and above the mean
gives a trustworthy metric to base our anomaly decision on.
For detecting artificial anomalies we distinguish 2 different cases.

1: The anomaly is an image that is not part of the dataset. We use
the fashionMNIST dataset for this purpose [10].
2: The anomaly is an image of the dataset, corrupted by Gaussian
noise. (Same amount of noise for every anomalous image for every
dataset. Scale = 0.2)

3.3.5 Experiment 3: Real anomaly detection. To detect real anom-
alies in the data, we train the autoencoder on normal images. After
this training, the AE should have learned relevant features in the
normal data and the reconstruction error for anomalous data should
be higher. The MNIST dataset holds no real anomalies, so testing
for this won’t yield a result.

3.3.6 Experiment 4: Computational cost. The computational cost
of a neural network depends on various factors, most of them being
part of the training process (model architecture, amount of training
data, etc.) By using the same architecture and training process for
different datasets we can determine whether medical datasets have
different computational costs by comparing the time it takes to
train the model.

3.4 Evaluation
Experiment 1 will measure the reconstruction error, we will use
the Binary Cross-entropy for this.
Experiments 2-3 will use the percentage of anomalies the model
correctly classifies as anomalies given the standard deviation metric.
500 anomalies are tested.
Experiment 4 measures the amount of training input images divided
by how long it takes to train the model in seconds.

4 RESULTS
Results of the autoencoder’s performance on the datasets are avail-
able in Table 1. Figures 3-4 show samples of the PneumoniaMNIST
dataset, both original and reconstructed. Figure 5 shows an ex-
ample of the reconstruction error of 100 normal samples and 100
anomalous samples after the network is trained.

Figure 3: Original Input Images

Figure 4: Reconstructed Output Images

5 DISCUSSION
This research paper evaluated the performance of a simple au-
toencoder structure on detecting anomalies in medical imaging. It
strived to demonstrate whether the autoencoder can tackle medical
data.
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Table 1: Performance Statistics

Recon. Error (BCE) An. fashionMNIST An. Gaussian noise An. Real Computational Cost
MNIST 0.3408 96.2 87.3 n/a 11000/324.35 =33.91
PneumoniaMNIST 0.7381 86.2 82.5 26.0 5232/145.52 = 35.95
OCTMNIST 0.5146 69.8 85.9 19.0 11000/336.17 = 32.72

Figure 5: Reconstruction error for 100 normal and 100 anoma-
lous samples

Although the desired result of having a high accuracy in detect-
ing real anomalies in medical imaging was not achieved, there are
still useful conclusions to be made. In this section, some general
observations are highlighted and explained. Then the quality of the
dataset and model are interpreted in terms of model performance
and future work is suggested.

5.1 General observations
When looking at the results, the model scored well on the MNIST
dataset. We can see that the reconstruction error of the Pneumo-
niaMNIST is very high, likely because the images don’t contain
clearly defined shapes. The OCTMNIST resembles the MNIST bet-
ter, the reconstruction error is lower.
Interestingly, training on the OCTMNIST and then feeding it fash-
ionMNIST anomalies yielded only a score of 69.8%. A reason for this
could be that the fashionMNIST contains images that look like the
retinal scans or the OCTMNIST images not always being correctly
centered.

Adding the same artificial noise to the images resulted in an
MNIST anomaly set where the 0-9 handwritten numbers were still
recognizable. The corrupted medical data, especially the Pneumoni-
aMNIST set, resembled random data to the bare eye. It was however
possible to find a noise ’sweet spot’, where it was possible to see
that the anomalies were X-Ray images of lungs/retinal scans while
still achieving an accuracy of >75%. The computational cost for the
medical datasets didn’t differ from the MNIST dataset.

5.2 Dataset quality
During this research, only well-known and trusted datasets were
used. Having a small image size was practical for doing experiments
and it matched with our simple AE architecture. The MNIST dataset
was regarded as ’normal’ data due to its relevance, this is a point of
discussion.
Medical data is difficult data, often containing complex structures,
textures, and anatomical variations. The high variability in normal
anatomy results in more diverse patterns, making it challenging for
AE’s to accurately capture and reconstruct all variations. Because of
this reality, the reconstruction error is high, this in term means that
finding anomalies is inconvenient, as the anomaly reconstruction
error should be even higher for detection. Medical datasets are
dissimilar, the relevant features are different for every dataset. In
addition, medical anomalies are often subtle, and labeling the data
is a demanding task, even for medical professionals.

5.3 Model quality
The model used in the experiments reached high accuracy on the
MNIST dataset. Putting this model to the test in medical imaging
proved that autoencoder performance is very dependent on the
task at hand and the data available.
In cutting-edge research, the advanced AE models used are custom-
designed to successfully carry out the anomaly detection challenge
for a particular dataset and anomaly. Addressing this challenge
involves careful architecture selection, regularization, appropriate
data preprocessing, and collaboration with domain experts.
It is clear that to use this technology efficiently in the medical realm,
knowledge about multiple expert fields is required.

5.4 Future work
There are avenues for future work that can be explored to address
the limitations identified in this study. Future work could involve
exploring a more diverse range of medical datasets. Some datasets
might resemble the MNIST dataset more closely, resulting in better
performance.
The way of tackling artificial anomalies created by Gaussian noise
could be improved. The generation of synthetic anomalies that
mimic the characteristics of real anomalies could help in fine-tuning
the model architecture.

6 CONCLUSION
In conclusion, this study delved into how well AEs perform in
reconstructing and detecting anomalies in medical images. The
results indicate that AEs struggle with accurately reconstructing
complex medical images due to their high resemblance to random
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data, making it challenging for AEs to pick up on relevant features.

When it comes to spotting artificial anomalies in medical images,
AEs do well when trained on authentic medical data. However,
finding the right amount of artificial noise is crucial for optimal
performance, especially as medical data requires a higher degree of
noise.

In terms of detecting real anomalies in medical images, the
study’s experiments didn’t yield impressive results. Despite this,
the literature proves that it is possible to reach high accuracy with
custom-made models.

On the computational side, the cost of reconstructing medical
images with AEs depends on factors like image size, model design,
and training methods. The nature of the data itself doesn’t play a
significant role in this aspect.
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