
Developing Effective Autonomous Driving for Sim Racing
through Reinforcement Learning in Assetto Corsa

Jurre de Ruiter
j.deruiter-3@student.utwente.nl

University of Twente
Enschede, The Netherlands

ABSTRACT
This study contributes insights into the intersection of reinforce-
ment learning (RL), sim(ulation) racing, and autonomous driving,
specifically within Assetto Corsa (AC) as a sim racing environment.
The difference in RL algorithms is explained with a reasoning for
the suitability of the Soft-Actor-Critic (SAC) algorithm for an au-
tonomous car racing agent in AC. Based on this, a system design
is presented for using AC as an experimentation environment for
training the model-free, off-policy SAC algorithm. Specific policy
details, hyperparameters, and reward factors are discussed in the
context of addressing the lap-completion problem. Here, the objec-
tive is to find a policy that achieves completion of a given track
with a given car. Results are presented for five different reward
functions, on which we conclude the fifth (using the heading and
off-center errors) to be the most effective. Future steps for research
are laid out with the goal of actually completing a full lap, and
ultimately optimizing the minimum-time problem as well. Here the
goal is not only to finish, but finish with minimal time.

KEYWORDS
sim racing, reinforcement learning, autonomous driving, assetto
corsa, esports, racing performance, soft-actor-critic, data analysis

1 INTRODUCTION
Simulation racing, also known as ’sim racing’, is the concept of
virtual racing taking place on simulated software [21]. Here, the
term “simulated” refers to the accuracy of the real-world like vari-
ables being mimicked by the cars and tracks in the software. Where
traditional ’Arcade’ racing video games focus on a more abstracted
entertainment experience for the every-day gamer, sim racing aims
to replicate the intricacies of real-world racing, providing highly
realistic driving experiences. In recent years, the concept of sim
racing has gotten significantly more popular through the rise of
esports. Esports has seen significant growth [13], and countries
are beginning to recognize professional gamers as athletes [16].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TScIT 40, February 2, 2024, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Additionally, the 2021 Olympics even featured an official esports
event, including a sim racing tournament [4]. According to video
game distribution platform Steam [5], the most popular realism
focused sim racing games at the time of writing are Assetto Corsa
(AC) [32], Assetto Corsa Competizione [31], Automobilista 2 [33],
rFactor 2 [1], and iRacing [15].

The fact that sim racing environments simulate reality to a close
extent, makes them candidate for a platform for research and ex-
perimentation with potential real-world impact. Simulated cars
and real-world inspired tracks can generate vast quantities of data,
offering a unique opportunity to blend the fields of autonomous
driving and simulated racing. In autonomous driving, an agent
takes full control over a vehicle, relying on environment analy-
ses, decision-making processes, and precise control to navigate
autonomously. Autonomous racing is a subfield of autonomous
driving where the goal is to drive around a race track as fast as
possible. Analyzing autonomous racing agents offers insights into
novel strategies, providing the opportunity for racers to enhance
their racing performance.

Central to the development of autonomous racing agents is the
application of Artificial Intelligence (AI), in particular the field of
Reinforcement Learning (hereafter referred to as ’RL’). RL considers
an agent interacting with the environment, learning a policy, by
trial and error, for sequential decision making problems in a wide
range of fields in both natural and social sciences, and engineering
[24]. By utilizing RL algorithms and training strategies, we can aim
to develop a self-driving bot car capable of effectively navigating
dynamic racing environments.

To ensure clarity of the problem at hand, we define the au-
tonomous racing problem as the combination of two sub-problems:

• The Lap-Completion Problem: The aim to find a policy that
achieves completion of a given track with a given car.
• The Minimum-Time Problem: The aim to find a policy that
minimizes the total lap time for a given car and track.

While classical approaches for addressing autonomous racing
problems have been researched extensively and have demonstrated
impressive results, there is a noticeable gap in the literature re-
garding the utilization of AC as an environment for such studies.
Despite being recognized as one of the leading racing simulators in
its domain, known for its realism and support for extensive modifi-
cations, no prior research has explored the application of RL within
the AC environment. Given the realism and widespread adoption
of AC, establishing a framework for employing RL in this simulator
is significant for professional racers who use AC as their training
platform and for future research endeavors in the field.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

TScIT 40, February 2, 2024, Enschede, The Netherlands Jurre de Ruiter

The primary challenge in this context is to design a framework
capable of seamlessly collecting and processing data in real-time.
There are several possible methods for data collection, and selecting
the approach that offers the highest reliability and lowest latency
is essential to a successful RL implementation. Additionally, the
chosen RL algorithm must be not only effective but also tailored
to suit the demands of sim racing environments, which tend to be
relatively complex. Furthermore, it is imperative to make fitting
observations to acquire the right data, so that a reward function
can be developed for training the RL model to learn an effective
policy.

This paper addresses these challenges by presenting a system
design for using AC as an RL environment. It describes how the
model-free, off-policy Soft-Actor-Critic (hereafter referred to as
’SAC’) algorithm can be applied to achieve autonomous racing
in AC. Furthermore, various reward functions are designed and
tested using different observations as parameters. This is done
with the aim of addressing the primary research question (RQ),
which is the following: "What factors and configuration enable a
reinforcement learning algorithm to autonomously navigate a sim
racing car to finish within Assetto Corsa?". This effectively means the
focus of the research lies on addressing the lap-completion problem
of the autonomous racing problem. In order to properly answer this
research question, this study covers three sub-questions, which are
the following:

RQ1: What are existing RL algorithms, and how do they differ in
terms of use case?

RQ2: How can real-time data be effectively extracted from AC to
enable the design of a system for autonomous driving?

RQ3: How can successful autonomous driving within sim racing
be quantified into a reward function?

1.1 Contributions of this paper
By answering the research questions, this study aims to achieve
the following contributions:

• Present a clear overview of the difference in algorithms
within the RL domain, to inform future research of the av-
enues that can be taken to achieve autonomous racing.
• Explain the suitability and potential of the SAC algorithm
in the domain of autonomous sim racing. The overarching
goal here is to stimulate more research into the use of this
algorithm, as it shows potential for further advancement of
autonomous racing.
• Provide a technical system design for utilizing the racing
simulator Assetto Corsa (AC) as an experimentation envi-
ronment for training an RL model, effectively and efficiently
managing real-time input and output. Given that no research
has been done on RL in AC before, this system design aims
to serve as a framework for future research using AC.
• Provide an overview of the observations, actions, completion
signals, hyperparameters, and reward functions enabling ef-
fective utilization of SAC for developing an autonomous
racing agent. The aim here is to inspire future research to
build upon this study and address the minimum-time prob-
lem of the autonomous racing problem.

1.2 Outline of this paper
Section 2 serves as an in-depth literature review, providing the theo-
retical background for the subsequent sections. Here, the theoretical
and technical aspects of RL and the SAC algorithm are explained
in detail. Furthermore, work related to the present study is men-
tioned, aiming to highlight the strengths and limitations of prior
approaches, thereby reinforcing the contributions of this paper and
identifying gaps that this research aims to address. Section 3 details
the methodology employed in this research, focusing on the data
collection, preparation, processing, and evaluation processes. This
is supported by an overview of algorithmic input, output, hyperpa-
rameters, and the experiment setup. Section 4 presents the design of
the system used for utilizing AC as an RL environment throughout
the experiments. The subsequent section will present the results of
the experiments outlined in the research methodology, supported
by graphical overviews. Finally, conclusions will be drawn based
on these results and suggestions will be made for future research
based on a discussion of the conclusions.

2 LITERATURE REVIEW
In this section, background information will be provided upon
which the subsequent sections of the paper will be built. In addition,
existing work related to the relevant domains will be highlighted.

2.1 Assetto Corsa
Assetto Corsa (AC) [32], developed by Kunos Simulazioni, is a
popular racing simulator known for its realism and support for
extensive modifications. The game provides a diverse range of cars
and tracks, offering a dynamic and immersive racing experience.

AC supports custom Python apps, which can be loaded into
a session at runtime. To support this, the game provides an API
(Application Programming Interface) [25] and shared memory ref-
erence [2]. This extensibility is a necessity for this research, as the
ability to access simulator data in real-time allows for effective
communication between the autonomous driving agent and the
simulator environment.

There are several limitations to AC’s API and modification sys-
tems. Most notably, the Python version (3.3.5) [9] supplied to ex-
ternal apps is dated, and the API’s lap invalidation flag is not per-
sistent. Understanding these limitations is crucial for the effective
implementation and testing of a system for this research. In the sub-
sequent sections, we will explore how these considerations shaped
the methodology and implementation of the SAC algorithm for
achieving autonomous driving in the AC simulation environment.

2.2 Reinforcement learning
In machine learning, various methods exist to train learning and
decision-making. These methods can be divided into three groups:
(I) supervised learning, (II) unsupervised learning, and (III) rein-
forcement learning approaches.

(I) Supervised learning involves a dataset with both data and
corresponding ground truth labels, prompting agents to predict
these labels. A notable sub-method within supervised learning is
imitation learning. This approach involves training the agent to
replicate the behaviour of a human based on a labeled dataset

Developing Effective Autonomous Driving for Sim Racing through Reinforcement Learning in Assetto Corsa TScIT 40, February 2, 2024, Enschede, The Netherlands

of their actions. An example of existing research within the au-
tonomous driving domain is that of Farag et al. [8], where recorded
driver data was used as input for a Convolutional Neural Network
to learn safe driving behavior and smooth steering maneuvering.

(II) Unsupervised learning still involves a dataset, but without
the corresponding ground truth labels, requiring agents to discern
patterns and group data based solely on its inherent structure.

(III) Reinforcement learning is the approach of this research.
Here, the focus lies on learning what to do –how to map situations
to actions– to maximize a numerical reward signal by trial and
error. The learner is not told which actions to take, but instead
must discover which actions yield the most reward by trying them
and generating its own data [24]. In autonomous driving, RL-based
approaches can be used to teach an agent to navigate the racing
environment, make decisions, and optimize its behavior over time
without any prior knowledge.

The main components of RL are the agent, and the environment
[20]. The environment is the world that the agent lives in and
interacts with. At every step of interaction 𝑡 , the agent sees a set
of observations of the state of the world and a reward for how
good the particular state is, and then decides on an action to take
based on its policy 𝜋𝜃 (𝑠). This agent-environment interaction loop
is a Markov Decision Process (MDP), depicted in Figure 1. This
loop occurs a finite number of times, after which the sequence
of states and actions in the environment is called an episode, 𝜖 =

(𝑠0, 𝑎0, 𝑠1, 𝑎1, ...).

Figure 1: Agent-environment interaction loop

The goal of the agent is to maximize its gain𝐺 , which is the sum
of future rewards 𝑟 at every timestep 𝑡 , discounted by 𝛾 :

𝐺𝑡 =

∞∑︁
𝑘=𝑡

𝑟𝑘𝛾
𝑘−𝑡 (1)

A discount factor of 1 implies the agent has no preference for short
term or long term rewards. A discount value smaller than 1 im-
plies a preference for immediate rewards. This preference becomes
stronger as the discount factor gets closer to 0. At every timestep,
the reward 𝑟𝑘 is determined through a reward function 𝑅. Design-
ing an effective reward function (reward shaping) is an essential
part of solving the autonomous racing problem.

2.2.1 Types of RL algorithms. In RL, algorithms are categorized as
either model-based or model-free, based on whether the agent has
access to a model of the environment.

Model-based methods utilize a learnt model of the environment,
allowing for potential gains in sample efficiency but introduc-
ing challenges in implementation and tuning. In the model-based

domain, research has been conducted using classical approaches
where the autonomous driving problem is broken down into tra-
jectory planning and trajectory tracking. Model Predictive Control
(MPC) [17][26] is a promising approach here, but has limitations
such as possibly high computational complexity and the lack of
flexibility in the cost function design.

Model-free methods are favored for their ease of implementation
and tuning. The biggest advantages in the context of sim racing
and AC is that they do not require perfect knowledge about the
vehicle and its environment. Given that it is more widely useful to
develop a generalized and adaptive learning system, this research
focuses on the more popular model-free space. Within model-free
learning, another critical branching point is the question of what
to learn. The two main approaches are:

• Policy-based Learning: This approach involves learning
an approximator 𝑉𝜙 (𝑠) for optimizing the parameters 𝜃 of
the policy 𝜋𝜃 (𝑎 |𝑠). Policy optimization is often on-policy, as
it only uses data collected while acting according to the most
recent policy. The approximator function is denoted by:

𝑉 𝜋 (𝑠) = 𝐸
𝜏∼𝜋
[𝑅(𝜏) |𝑠0 = 𝑠] (2)

• Value-based Learning: In this= approach, an approxima-
tor 𝑄𝜃 (𝑠, 𝑎) is learnt for the optimal action-value function
𝑄∗ (𝑠, 𝑎). This optimization is almost always off-policy, as
each update can use data collected at any point during train-
ing. The corresponding policy is obtained via the connection
between 𝑄∗ and 𝜋∗ through 𝑎(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝜃 (𝑠, 𝑎). The
optimal action-value function provides the expected return
when starting in state 𝑠 , taking an arbitrary action 𝑎, and
then forever after acting according to the optimal policy:

𝑄∗ (𝑠, 𝑎) = max
𝜋

𝐸
𝜏∼𝜋
[𝑅(𝜏) |𝑠0 = 𝑠, 𝑎0 = 𝑎] (3)

2.2.2 Existing applications. The application of RL algorithms has
already proven to be highly effective in achieving AI advancements
in virtual game domains, such as Atari [19], Go [27][28], StarCraft
[37], and Dota [3].

Within the autonomous racing space, several papers have been
published about applying computational intelligence techniques
to achieve autonomous driving. To create an autonomous driving
agent, there are three main tasks involved, namely Recognition,
Prediction, and Planning. In one of the earliest of these papers by
Pyeatt and Howe [22], adaptable agents were designed for highly
dynamic environments, testing tuning, decomposition, and coordi-
nation of the low level behaviours. Togelius and Lucas [34][35][36]
pioneered further research by conducting several studies where
neural networks were evolved to drive autonomously, and simu-
lated rangefinder sensors were used as primary inputs.

Research within the context of overtaking in autonomous racing
has been conducted by Y. Song et al. using RL in Gran Turismo Sport
[30]. Additionally, investigations by P. Wurman et al. [39] and F.
Fuchs et al. [10] explore the application of deep RL to optimize track
completion speed. These studies utilize a SAC algorithm implemen-
tation. Numerous studies [23][14][18][38] have been conducted on
the utilization of Deep Deterministic Policy Gradients (DDPG) with

TScIT 40, February 2, 2024, Enschede, The Netherlands Jurre de Ruiter

TORCS (The Open Racing Car Simulator) as the designated environ-
ment. These studies offer valuable insights into observation spaces
and effective reward shaping strategies. An important observation
is that a predominant focus on the DDPG algorithm is evident in
these studies, leaving the exploration of the SAC algorithm within
this context relatively unexplored. This is another gap this study
aims to address.

2.2.3 Soft-Actor-Critic. The algorithm used in this research is Soft-
Actor-Critic (SAC), introduced by Haarnoja et al. in 2018 [12]. Actor-
critic algorithms are model-free and combine policy-based and
value-based methods for more effective learning. The actor repre-
sents the policy, defining the mapping from states to actions. It is
responsible for deciding which actions to take in a given state. The
critic evaluates the actions chosen by the actor by estimating the
expected cumulative reward, representing the value function from
value-based learning. The actor subsequently uses feedback from
the critic to improve its policy, and the critic is updated based on
the observed rewards and the actor’s chosen actions.

The objective function of SAC is to maximize the expected sum
of rewards, including an entropy term:

J (𝜃) = E𝜏∼𝜋𝜃

[∞∑︁
𝑡=0

𝛾𝑡 (𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛼H(𝜋𝜃 (·|𝑠𝑡)))
]

Here, 𝜋𝜃 represents the policy, 𝜏 is a trajectory, 𝛾 is the discount
factor, 𝑟 (𝑠𝑡 , 𝑎𝑡) is the immediate reward, and H(𝜋𝜃 (·|𝑠𝑡)) is the
entropy of the policy.

3 METHODOLOGY
In this section, the methodology adopted for this research is out-
lined. First, the data collection and preparation process is explained.
Second, an in-depth breakdown of the policy network details the
data processing through an overview of inputs, outputs, and config-
uration of the SAC algorithm. Additionally, the reasoning behind
the use of the SAC algorithm for this research is explained. Third,
reward shaping is covered, presenting various reward functions
that determine how the effective policy is learnt. Last, the experi-
ment setup used to acquire results is presented. This section aims
to lay the groundwork for the presentation of results.

3.1 Data collection
The data collected for the experiments consists of quantitative data
produced by the AC environment. This data collection is achieved
through communication with AC’s internal API. The data is conse-
quently prepared into a standardized dictionary format in Python,
after which it is ready to be processed as observation data. Techni-
cal details of the data collection are provided in Section 4: System
Design.

3.2 Policy network
In the SAC algorithm, the actor learns a policy 𝜋𝜃 through its policy
network. This network takes the collected data observations from
the environment as input and applies data processing to produce
corresponding actions, instructing the virtual controller on how to
interact with the environment.

The SAC algorithmwas chosen as method for the data processing
for a number of reasons:

• Continuous Action Spaces: SAC is suitable for problems
with continuous action spaces, making it a fitting choice
for the autonomous racing problem where the action space
involves a range of steering angles, throttle, and brake values.
• Entropy Regularization: The inclusion of entropy regular-
ization encourages exploration in the learning process. This
is particularly beneficial when the agent needs to navigate
complex and diverse environments, such as that of AC
• Sample Efficiency: SAC tends to be sample-efficient com-
pared to other RL algorithms. The exploration from the en-
tropy regularization and (self-tuning) temperature parameter
encourages the agent to explore different actions and states,
leading to more efficient learning. Furthermore, having two
Q-functions helps in stabilizing the learning process and mit-
igating overestimation biases, which can lead to improved
sample efficiency. This is beneficial as sim racing games of-
ten involve a large state and action space, and collecting
samples can be computationally expensive.
• Robustness to Hyperparameters: SAC is relatively robust
to hyperparameter choices, making it more forgiving during
the tuning phase.

3.2.1 Observation Space. The observation space is described in
Table 1. We denote the observation space vector as
𝑜𝑡 = [𝜌𝑡 , 𝑣𝑡 , 𝜂𝑡 , 𝑖𝑡 , 𝑐𝑡 , 𝜌𝑡−1, 𝜙𝑡 , 𝜃𝑡 , 𝑑𝑐𝑡]. These observations are used
as input to the neural networks. 𝜌𝑡 represents a value between [0, 1],
corresponding to how far the car has come along the track spline,
effectively indicating its progress to passing the finish line. This
value does not decrease if the car moves back in the wrong direction,
but instead remains at the furthest point reached in the lap. 𝑣𝑡
represents the speed of the car at a given time in kilometers per hour.
The car’s coordinates in the world at a given time are represented
by the vector 𝜂𝑡 = [𝜂𝑥𝑡 , 𝜂𝑦𝑡 , 𝜂𝑧𝑡]. There is a binary flag 𝑖𝑡 , which
is set to 1 when a lap should be considered invalid. As the native
AC API flag for lap invalidation malfunctions, 𝑖𝑡 is set to 1 once
more than 2 tires get off the track. The lap count 𝑐𝑡 is provided to
correctly determine whether a lap has been completed. In addition
to the track progress factor 𝜌𝑡 , the progress value of the preceding
episode timestep is represented as 𝜌𝑡−1, allowing for computation
of the progress increment between episodes Δ𝜌 = 𝜌𝑡 − 𝜌𝑡−1. The
velocity of the car is represented as 𝜙𝑡 = [𝜙𝑥𝑡 , 𝜙𝑦𝑡 , 𝜙𝑧𝑡]. Finally, the
heading error 𝜃𝑡 is defined as the angle between the car and track’s
center axis in radians, while the off-center error 𝑑𝑐𝑡 is defined as the
distance between the car and the track’s center axis. These errors
are visualized in Figure 2.

3.2.2 Action Space. The action space is described in Table 2. We
denote the action space vector as 𝑎𝑡 = [𝜔𝑡 , 𝛿𝑡]. Through the use of
a virtual controller, AC can receive signals for throttle, brake, and
steering. Therefore, these are the three independent continuous
actions in the action space. Because the throttle and brake are
rarely engaged at the same time, and for the sake of simplicity, the
agent has one combined continuous action dimension for throttle
and brake 𝜔𝑡 = [−1, 1]. Here, 𝜔𝑡 = −1 denotes full braking, 𝜔𝑡 = 1
denotes full throttle, and𝜔𝑡 = 0 denotes neither throttle nor braking.

Developing Effective Autonomous Driving for Sim Racing through Reinforcement Learning in Assetto Corsa TScIT 40, February 2, 2024, Enschede, The Netherlands

Table 1: The observation space (𝑜𝑡 ∈ R11 × {0, 1}2)

Symbol Description Space
𝜌𝑡 Track progress factor R
𝑣𝑡 Car speed (km/h) R

𝜂𝑡 World location coordinates R3

𝑖𝑡 Binary flag for lap invalidation {0, 1}
𝑐𝑡 Lap count {0, 1}
𝜌𝑡−1 Previous track progress R

𝜙𝑡 Car velocity vector R3

𝜃𝑡 Heading error R
𝑑𝑐𝑡 Off-Center error R

Figure 2: Heading error 𝜃 and Off-Center error 𝑑𝑐

The steering angle is denoted by 𝛿𝑡 = [−1, 1]. A value of 𝛿𝑡 = −1
refers to a full left turn and a value of 𝛿𝑡 = 1 refers to a full right
turn. The effective steering angle in degrees depends on the steering
sensitivity settings and car being used. The Ferrari 458 GT2, for
instance, has a range of [−270, 270] degrees when using the settings
described in the experiment setup. It is important to note that, for
the sake of simplicity, gear switching is handled automatically.

Table 2: The action space (𝑎𝑡 ∈ R2)

Symbol Description Space
𝜔𝑡 Throttle-brake signal R
𝛿𝑡 Steering angle factor R

3.2.3 Hyperparameters. The effectiveness of the SAC algorithm
is influenced by several hyperparameters that govern its learning
dynamics. Considering common values (mostly default values pro-
posed by the original paper) and the context of autonomous driving,
the following hyperparameters were selected:
• Learning Rate (𝑙𝑟): 10−3. This is the rate at which the model
adapts its policy based on the feedback received.
• Discount Factor (𝛾): 0.99. This parameter determines the
importance of future rewards in the learning process. A
higher value emphasizes long-term rewards, while a lower
value focuses more on immediate rewards.
• Entropy Coefficient (𝛼entropy): 0.02. This coefficient reg-
ulates the importance of the entropy term in the objective
function, balancing between exploration and exploitation.
• Polyak Coefficient (𝜌): 0.995. The interpolation factor in
polyak averaging for target networks. This is close to 1 to

slow down the rate at which the target networks are updated,
creating a more stable and less volatile estimate of the value
function.
• Batch Size: 100. The number of experiences sampled from
the replay buffer in each iteration.
• Replay Buffer Size: 106. The capacity of the replay buffer,
which stores past experiences for learning.
• Initial Random Steps: 104. The number of steps where
uniform-random action selection is used to help exploration,
before running the real policy.
• Update After: 104. The number of environment interactions
to collect before starting gradient descent updates.
• Update Every: 50. The number of environment interactions
that should elapse between gradient descent updates.

These hyperparameters were fine-tuned through iterative experi-
mentation to optimize the training process and results.

3.3 Reward Shaping
In formulating the reward function, several variables come into
play. The primary objective of the reward function is to guide
the learning agent along the correct trajectory towards the finish
line, ensuring it adheres to the track boundaries, with the goal of
solving the lap-completion problem. To explore various strategies,
five distinct reward functions were designed and iteratively refined
throughout the research. The subsequent reward functions were
explored:

(1) Speed: A reward is given for the normalized speed:

𝑅1 = 𝑣𝑡/𝑣𝑚𝑎𝑥 (4)

(2) Speed, Progress:A reward is given for the normalized speed
and the track progress factor:

𝑅2 = 𝑣𝑡/𝑣𝑚𝑎𝑥 + 𝜌𝑡 (5)

(3) ΔProgress: A reward is assigned based on the difference
between the current observed track progress factor and the
track progress factor observed in the previous step:

𝑅3 = Δ𝜌𝑡 = 𝜌𝑡 − 𝜌𝑡−1 (6)

(4) Speed, ΔProgress:

𝑅4 = 𝑣𝑡/𝑣𝑚𝑎𝑥 + Δ𝜌𝑡 (7)

(5) Speed, Track Errors: This reward function places empha-
sis on track-related information rather than progression.
Drawing inspiration from the dissertation by B. Evans [7],
it penalizes based on two track-related errors: the heading
error 𝜃 and the off-center error 𝑑𝑐 , demonstrated in Figure 2.
Four functions were evaluated using these errors, which also
take inspiration from existing studies [38][11]:

𝑅51 = 𝑉𝑡 (𝑐𝑜𝑠 (𝜃) − 𝛼𝑠𝑖𝑛(𝜃) − 𝛽 |𝑑𝑐 |) (8)

𝑅52 = 𝑉𝑡 + (𝑐𝑜𝑠 (𝜃) − 𝛼𝑠𝑖𝑛(𝜃) − 𝛽 |𝑑𝑐 |) (9)

𝑅53 = 𝑉𝑡 +𝑉𝑡 (𝑐𝑜𝑠 (𝜃) − 𝛼𝑠𝑖𝑛(𝜃) − 𝛽 |𝑑𝑐 |) (10)

𝑅54 =
𝑣𝑡

𝑣𝑚𝑎𝑥
𝑐𝑜𝑠 (𝜃) − 𝑑𝑐 (11)

TScIT 40, February 2, 2024, Enschede, The Netherlands Jurre de Ruiter

All reward functions were tested with –and without– fixed penal-
ties for the car going off-track or coming to a halt. Furthermore,
an additional bonus was included in the final reward if the car
successfully completed a lap. The signal indicating the end of an
episode was determined through either:
• Termination:Occurredwhen a lapwas finished, the progress
goal was reached (allowing for checkpoints), or the lap was
invalidated due to the car going off-track.
• Truncation: Applied if the episode exceeded a specified
number of steps before reaching the end goal of completing
a lap.

It is crucial to highlight that multiple experiments were under-
taken, systematically examining the consequences of both including
and excluding the reward and termination signals mentioned above.

3.4 Experiment Setup
For the experiments, an environment setupwas carefully configured
to ensure consistency and reproducibility. The following settings
are employed in the experiment setup:
• Mode: Practice Mode is used and "Silverstone 1967" is se-
lected as the track as it has a relatively simple layout. The
starting point is set to "Starting Line" to ensure the car starts
right in front of the starting/finish line.
• Vehicle: The "Ferrari 458 GT2" is used as the designated
vehicle. The default tire options are employed to maintain a
standard baseline for the experiments.
• Opponents: To focus solely on the autonomous driving
agent’s performance, the number of AI opponents is set to 0.
• Conditions: To simplify the problem space, the conditions
are set to ideal. Penalties are enabled to enable off-track
detection.
• Framerate: The framerate is intentionally limited to 30 FPS
to limit the amount of steps the agent has to take per second.
• Controls: Gamepad is selected as the control input device.
Additionally, specific settings are adjusted for the gamepad to
ensure responsiveness and accuracy. These settings include
setting speed sensitivity to 0, steering speed to 100%, steering
gamma to 100%, and steering filter to 0%.
• Automatic Gear Switching: Automatic gear switching is
enabled to simplify the control scheme and allow the au-
tonomous agent to focus on steering and acceleration with-
out manual gear management.

Each experiment used a computing environment with an NVIDIA
GeForce RTX 3070. Moreover, the NVIDIA CUDA toolkit was in-
stalled on each machine to allow for effective training on the GPU.
To initiate an experiment, the system is executed, and subsequently
the training process is started by clicking the "Start Training" but-
ton within AC. This streamlined approach ensures a controlled and
standardized environment for evaluating the autonomous driving
agent’s performance.

4 SYSTEM DESIGN
A core objective of this research is to establish a robust technical
framework for utilizing AC as an experimentation environment
for training an RL model. Based on the methodology needs, this

section presents a system design to achieve the aforementioned
goal with focus on reproducibility and shaping a solid path for
future research. Three different methods were considered for the
data collection, of which the third method was ultimately chosen for
the final implementation. The first and second method were merely
prototyped and consequently discarded for their lower reliability
and/or higher latency in comparison to the third method.

(I) In-app: The initial approach involves running all code within
an AC application (app). The app reads data from the API and
uses this as input to the SAC model. All output handling is handled
within AC as well. This approach was discarded due to compatibility
issues, as AC apps run on Python 3.3.5, which is insufficient for
modern machine learning libraries like PyTorch.

(II) Screengrab The second method incorporates an AC app
and a separate standalone app running on the same machine. Here,
the AC app displays real-time API observations on a window in
the AC game environment. The standalone app continuously grabs
screenshots of the screen, which it analyzes through an Optical
Character Recognition (OCR) engine like Google’s Tesseract [29].
The observation data from the OCR is used as input to the RL
model, running on the standalone application. This method was
deemed suboptimal, as several tests exhibited an average latency of
400-600ms. This high of a latency is unsuitable for a real-time RL
algorithm where we want to execute, analyse, and train multiple
steps per second.

(III) Socket: The final method maintains the structure of the
second method: an AC app and a separate standalone app, both
running on the same machine. However, instead of retrieving data
through OCR, data is communicated via a local socket. The AC app
listens for data observation requests from the socket, reads API
data, and sends it back over the socket. The standalone application
uses this observation data to train the SAC model. After several
tests, this method was deemed to be most suitable due to its low
latency (0-1ms) and reliability of local socket communication.

Upon selecting the socket method, the system illustrated in Fig-
ure 3 was developed. This system comprises two separate com-
ponents running on the same machine: an Assetto Corsa Python
application and a standalone Python application, connected through
local socket communication and input devices. The implementation
details and technical architecture of both components are explained
in the following subsections. The code for the full system is publicly
available on GitHub [6].

Figure 3: System overview

Developing Effective Autonomous Driving for Sim Racing through Reinforcement Learning in Assetto Corsa TScIT 40, February 2, 2024, Enschede, The Netherlands

4.1 Assetto Corsa Application
The AC application performs two critical functions: communicating
observation data from the API and facilitating the reset of the car
to its initial state. For the first task, the app continuously listens for
a "next_state" message in bytes. Upon reception of this message, it
retrieves observation data in the observation space from its API,
which it will return over the established local socket connection.
For the second task, a dedicated thread continuously listens for a
keypress event, specifically from the "F10" key. Upon detection of
this keypress, the application triggers an internal command within
AC to initiate a reset to the start session screen. Additionally, it
issues a command to start the session. AC will move the car based
on controller inputs from the virtual controller, managed by the
standalone application running on the same machine.

4.2 Standalone Application
The standalone application is responsible for the RL aspect of the
system. It establishes a connection to the local socket, and com-
mences the training loop with the specified hyperparameters. A
high-level pseudocode of the training loop is given in algorithm 1.
Following the authors of the SAC paper [12], the SAC agent is
configured with a squashed Gaussian Multilayer Perceptron (MLP)
for the actor network and two MLP Q-networks for the critics. The
SAC Network Architecture, depicted in Figure 4, showcases these
networks, each comprising two hidden layers of 256 neurons. ReLU
activations are applied to the hidden layers and Gaussian distri-
butions on actions, with TanH activation on the output layer. In
addition to the networks, the standalone application implements a
"First In, First Out" (FIFO) replay buffer. This buffer stores actions,
observations, and rewards from the policy network (actor) and fa-
cilitates mini-batch sampling by the Q-networks (critics) during the
learning process. The actions generated by the policy network are
transmitted to a virtual Xbox 360 controller, which in turn maps
throttle to the right trigger, brake to the left trigger, and steering
to the left joystick. Upon the completion of an episode, the policy
network triggers a reset by simulating a virtual F10 keypress, effec-
tively signaling the Assetto Corsa application to reset for the next
episode.

5 RESULTS
In this section, the results from training the SAC agent with the
various reward functions will be illustrated. A full overview of the
average distance, highest distance, average speed, and standard
deviation of distance reached for every reward function can be
found in Table 3. Moreover, the results for the distance reached (in
percentage) are depicted in Figure 5, and the results for the average
speed (in km/h) are depicted in Figure 6. The convergence curves
for the reward values are depicted in Figure 7.

As for reward function 𝑅5, a multitude of experiments was con-
ducted, which led to the following observations:

• 𝑅51 : The agent learns to just stand still, as this minimizes the
negative reward by lowering the speed factor.
• 𝑅52 : The agent now understands that actually making speed
compensates the negative penalties. It also tries to stay on
the center of the road.

Algorithm 1: SAC Training Loop
for each episode do

observation = reset_environment();
while not step_done do

if total steps < initial random action steps then
action← random_action();

else
action← sample_action_space();

observation_, reward, step_done =
step_environment(action);
store_in_replaybuffer(observation, action, reward,
observation_, done);
observation← observation_;
if time to learn then

batch← sample_replaybuffer();
update_networks(batch);

• 𝑅53 : The agent no longer learns to stand still, but it goes off-
road to end the run quickly andminimize penalties. After this
experiment, the end signal for going off-road was omitted.
• 𝑅54 : The agent, again, learns to just stand still, as this mini-
mizes the negative reward by lowering the speed factor.

The reward function 𝑅52 was chosen for the depiction of the
final results in Figure 5 and Figure 6, as its results were the most
valuable.

When looking at the results, we find that the car was not able to
finish a lap on the track; it has not even managed to pass the 10%
progress mark. Nevertheless, the depicted results are still valuable.
It is clear that considering speed for the reward function (𝑅1) gives
the highest average speed, as expected. It, however, also came with
a relatively high average distance and the highest total distance.
This can be explained by the fact that the track starts out straight,
so the agent just gets quite far because of the track’s design, not
because the agent understand the track particularly well.

Table 3: Results per reward function 𝑅

R Avg Dist (%) Dist High (%) Avg 𝑣 (km/h) Std. Dist
𝑅1 2.578 9.841 77.825 1.449
𝑅2 1.163 3.961 22.894 0.463
𝑅3 2.132 7.422 74.410 1.386
𝑅4 2.309 7.367 19.288 1.290
𝑅52 2.862 7.682 17.158 2.343

6 CONCLUSION
A thorough research has been conducted on the RL space with an
explanation of why the SAC algorithm is suitable for autonomous
sim racing. In addition to this, a technical framework has success-
fully been developed for utilizing AC as a real-time RL environment.
Now that we have results, a conclusion can be made on the most
suitable reward function.

TScIT 40, February 2, 2024, Enschede, The Netherlands Jurre de Ruiter

(a) SAC 𝜋𝜙 Policy Network (Actor) (b) SAC𝑄𝜃1 Network (Critic 1) (c) SAC𝑄𝜃2 Network (Critic 2)

Figure 4: SAC Network Architecture

Figure 5: Distance reached (%) over episodes

Figure 6: Average speed (km/h) over episodes

Figure 7: Convergence curves for reward over episodes

Looking at speed and progress (𝑅2) gave the worst results, so
this should not be used for future research. Ultimately, 𝑅5 seems
to show the most promise with a growing convergence curve for
reward. This should be used for future research, as more training
time could bring better results as the reward curve continues to
grow.

6.1 Future Directions
The principal contribution of this research is a solid framework
upon which future research can build. There are three key avenues
that should be explored in future research. The first avenue for
future research should be the perfection of the reward function

for solving the lap-completion problem, as none of the reward
functions presented were able to facilitate that yet. The next avenue
considers adding the lap time to the observation space, which can
then be analyzed to minimize the minimum-time problem. This
would make for a full solution of the autonomous racing problem.
The last suggested avenue for future research is generalization.
Only one singular track was used in this research, making the
agent vulnerable to overfitting and solely learning the specifics
of the particular track. By running experiments with a multitude
of tracks, this can be mitigated. Furthermore, generalizations may
be made over the sim racing domain as a whole, expanding the
research outside of the AC environment.

Developing Effective Autonomous Driving for Sim Racing through Reinforcement Learning in Assetto Corsa TScIT 40, February 2, 2024, Enschede, The Netherlands

REFERENCES
[1] Studio 397. 2013. rFactor 2. https://www.studio-397.com/rfactor2/ Accessed:

January 14, 2024.
[2] assettocorsamods. 2014. Assetto Corsa Shared Memory Reference. https:

//assettocorsamods.net/threads/doc-shared-memory-reference.58/ Accessed:
January 14, 2024.

[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christo-
pher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub W. Pachocki,
Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Sali-
mans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski, and Susan Zhang. 2019. Dota 2 with Large Scale Deep Reinforce-
ment Learning. ArXiv abs/1912.06680 (2019). https://api.semanticscholar.org/
CorpusID:209376771

[4] International Olympic Committee. 2021. IOC makes landmark move into
virtual sports by announcing first-ever Olympic Virtual Series. https:
//olympics.com/ioc/news/international-olympic-committee-makes-landmark-
move-into-virtual-sports-by-announcing-first-ever-olympic-virtual-series
Accessed: November 28, 2023.

[5] Valve Corporation. 2003. Steam. https://store.steampowered.com/ Accessed:
January 14, 2024.

[6] Jurre de Ruiter. 2024. ACRL: Assetto Corsa Reinforcement Learning. https:
//github.com/Jurredr/ACRL. Accessed: January 21, 2024.

[7] Benjamin David Evans. 2023. Accelerating Deep Reinforcement Learning for
Autonomous Racing. Ph. D. Dissertation. Stellenbosch University. https://scholar.
sun.ac.za/bitstream/handle/10019.1/127272/evans_deep_2023.pdf?sequence=1

[8] Wael Farag and Zakaria Saleh. 2018. Behavior Cloning for Autonomous Driving
using Convolutional Neural Networks. In 2018 International Conference on Inno-
vation and Intelligence for Informatics, Computing, and Technologies (3ICT). 1–7.
https://doi.org/10.1109/3ICT.2018.8855753

[9] Python Software Foundation. 2014. Python 3.3.5. https://www.python.org/
downloads/release/python-335/ Accessed: January 14, 2024.

[10] Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, and Peter
Dürr. 2020. Super-Human Performance in Gran Turismo Sport Using Deep
Reinforcement Learning. IEEE Robotics and Automation Letters 6 (2020), 4257–
4264. https://api.semanticscholar.org/CorpusID:221151057

[11] Kıvanç Güçkıran and Bülent Bolat. 2019. Autonomous Car Racing in Sim-
ulation Environment Using Deep Reinforcement Learning. In 2019 Innova-
tions in Intelligent Systems and Applications Conference (ASYU). 1–6. https:
//doi.org/10.1109/ASYU48272.2019.8946332

[12] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. arXiv:1801.01290 [cs.LG]

[13] Johanna Hamilton. 2019. The Rise of Esports. ITNOW 61 (09 2019), 28–29.
https://doi.org/10.1093/itnow/bwz068

[14] Zhiqing Huang, Ji Zhang, Rui Tian, and Yanxin Zhang. 2019. End-to-End Au-
tonomous Driving Decision Based on Deep Reinforcement Learning. In 2019 5th
International Conference on Control, Automation and Robotics (ICCAR). 658–662.
https://doi.org/10.1109/ICCAR.2019.8813431

[15] iRacing.com Motorsport Simulations. 2008. iRacing. https://www.iracing.com/
Accessed: January 14, 2024.

[16] Daniel Kane and Brandon Spradley. 2017. Recognizing ESports as a Sport. The
Sport Journal 19 (05 2017).

[17] Alexander Liniger, Alexander Domahidi, andManfredMorari. 2014. Optimization-
based autonomous racing of 1:43 scale RC cars. Optimal Control Applications and
Methods 36, 5 (July 2014), 628–647. https://doi.org/10.1002/oca.2123

[18] Kai Liu, Qin Wan, and Yanjie Li. 2018. A Deep Reinforcement Learning Algo-
rithm with Expert Demonstrations and Supervised Loss and its application in
Autonomous Driving. In 2018 37th Chinese Control Conference (CCC). 2944–2949.
https://doi.org/10.23919/ChiCC.2018.8482790

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. https://doi.org/10.48550/arXiv.1312.5602
arXiv:1312.5602 [cs.LG]

[20] OpenAI. 2018. Spinning Up in Deep Learning. https://spinningup.openai.com/en/
latest/spinningup/rl_intro.html Accessed: January 21, 2024.

[21] D. Perel. 2021. What is Sim Racing and How Do I Get Started? https:
//coachdaveacademy.com/tutorials/what-is-sim-racing/ Accessed: November 28,
2023.

[22] Larry D. Pyeatt and Adele E. Howe. 1998. Learning to Race: Experiments with a
Simulated Race Car. In The Florida AI Research Society. https://api.semanticscholar.
org/CorpusID:15433604

[23] Adrian Remonda, Sarah Krebs, Eduardo Veas, Granit Luzhnica, and Roman Kern.
2022. Formula RL: Deep Reinforcement Learning for Autonomous Racing using
Telemetry Data. arXiv:2104.11106 [cs.AI]

[24] Andrew G. Barto Richard S. Sutton. 2018. Reinforcement Learning: An Introduction
(second edition). The MIT Press.

[25] Giovanni Romagnoli. 2017. Assetto Corsa API documentation. https:
//www.assettocorsa.net/forum/index.php?threads/python-doc-update-25-05-
2017.517/ Accessed: January 14, 2024.

[26] Ugo Rosolia and Francesco Borrelli. 2019. Learning How to Autonomously Race
a Car: a Predictive Control Approach. arXiv:1901.08184 [cs.SY]

[27] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature 529 (2016), 484–489. https://api.semanticscholar.
org/CorpusID:515925

[28] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy P. Lillicrap, Fan Hui, L. Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without
human knowledge. Nature 550 (2017), 354–359. https://api.semanticscholar.org/
CorpusID:205261034

[29] R. Smith. 2007. An Overview of the Tesseract OCR Engine. In Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), Vol. 2. 629–633.
https://doi.org/10.1109/ICDAR.2007.4376991

[30] Yunlong Song, HaoChih Lin, Elia Kaufmann, Peter A. Duerr, and Davide Scara-
muzza. 2021. Autonomous Overtaking in Gran Turismo Sport Using Curriculum
Reinforcement Learning. 2021 IEEE International Conference on Robotics and
Automation (ICRA) (2021), 9403–9409. https://api.semanticscholar.org/CorpusID:
232404855

[31] KUNOS Simulazioni Srl. 2018. Assetto Corsa Competizione. https://assettocorsa.
gg/assetto-corsa-competizione/ Accessed: January 14, 2024.

[32] KUNOS Simulazioni Srl. 2019. Assetto Corsa. https://assettocorsa.gg/ Accessed:
November 28, 2023.

[33] Reiza Studios. 2020. Automobilista 2. https://www.game-automobilista2.com/
Accessed: January 14, 2024.

[34] Julian Togelius and Simon M. M. Lucas. 2005. Evolving controllers for simulated
car racing. 2005 IEEE Congress on Evolutionary Computation 2 (2005), 1906–1913
Vol. 2. https://api.semanticscholar.org/CorpusID:1073693

[35] Julian Togelius and Simon M. M. Lucas. 2006. Arms Races and Car Races. In
Parallel Problem Solving from Nature. https://api.semanticscholar.org/CorpusID:
14233196

[36] Julian Togelius and Simon M. M. Lucas. 2006. Evolving robust and specialized
car racing skills. 2006 IEEE International Conference on Evolutionary Computation
(2006), 1187–1194. https://api.semanticscholar.org/CorpusID:7659584

[37] Oriol Vinyals, Igor Babuschkin,WojciechM. Czarnecki, MichaëlMathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L.
Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets,
Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky,
James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai
Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature 575 (2019), 350 – 354. https://api.
semanticscholar.org/CorpusID:204972004

[38] Sen Wang, Daoyuan Jia, and Xinshuo Weng. 2019. Deep Reinforcement Learning
for Autonomous Driving. arXiv:1811.11329 [cs.CV]

[39] Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik
Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eck-
ert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih
Lin, Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D.
Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead,
Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. 2022. Outracing
champion Gran Turismo drivers with deep reinforcement learning. Nature 602
(2022), 223 – 228. https://api.semanticscholar.org/CorpusID:246701687

https://www.studio-397.com/rfactor2/
https://assettocorsamods.net/threads/doc-shared-memory-reference.58/
https://assettocorsamods.net/threads/doc-shared-memory-reference.58/
https://api.semanticscholar.org/CorpusID:209376771
https://api.semanticscholar.org/CorpusID:209376771
https://olympics.com/ioc/news/international-olympic-committee-makes-landmark-move-into-virtual-sports-by-announcing-first-ever-olympic-virtual-series
https://olympics.com/ioc/news/international-olympic-committee-makes-landmark-move-into-virtual-sports-by-announcing-first-ever-olympic-virtual-series
https://olympics.com/ioc/news/international-olympic-committee-makes-landmark-move-into-virtual-sports-by-announcing-first-ever-olympic-virtual-series
https://store.steampowered.com/
https://github.com/Jurredr/ACRL
https://github.com/Jurredr/ACRL
https://scholar.sun.ac.za/bitstream/handle/10019.1/127272/evans_deep_2023.pdf?sequence=1
https://scholar.sun.ac.za/bitstream/handle/10019.1/127272/evans_deep_2023.pdf?sequence=1
https://doi.org/10.1109/3ICT.2018.8855753
https://www.python.org/downloads/release/python-335/
https://www.python.org/downloads/release/python-335/
https://api.semanticscholar.org/CorpusID:221151057
https://doi.org/10.1109/ASYU48272.2019.8946332
https://doi.org/10.1109/ASYU48272.2019.8946332
https://arxiv.org/abs/1801.01290
https://doi.org/10.1093/itnow/bwz068
https://doi.org/10.1109/ICCAR.2019.8813431
https://www.iracing.com/
https://doi.org/10.1002/oca.2123
https://doi.org/10.23919/ChiCC.2018.8482790
https://doi.org/10.48550/arXiv.1312.5602
https://arxiv.org/abs/1312.5602
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://coachdaveacademy.com/tutorials/what-is-sim-racing/
https://coachdaveacademy.com/tutorials/what-is-sim-racing/
https://api.semanticscholar.org/CorpusID:15433604
https://api.semanticscholar.org/CorpusID:15433604
https://arxiv.org/abs/2104.11106
https://www.assettocorsa.net/forum/index.php?threads/python-doc-update-25-05-2017.517/
https://www.assettocorsa.net/forum/index.php?threads/python-doc-update-25-05-2017.517/
https://www.assettocorsa.net/forum/index.php?threads/python-doc-update-25-05-2017.517/
https://arxiv.org/abs/1901.08184
https://api.semanticscholar.org/CorpusID:515925
https://api.semanticscholar.org/CorpusID:515925
https://api.semanticscholar.org/CorpusID:205261034
https://api.semanticscholar.org/CorpusID:205261034
https://doi.org/10.1109/ICDAR.2007.4376991
https://api.semanticscholar.org/CorpusID:232404855
https://api.semanticscholar.org/CorpusID:232404855
https://assettocorsa.gg/assetto-corsa-competizione/
https://assettocorsa.gg/assetto-corsa-competizione/
https://assettocorsa.gg/
https://www.game-automobilista2.com/
https://api.semanticscholar.org/CorpusID:1073693
https://api.semanticscholar.org/CorpusID:14233196
https://api.semanticscholar.org/CorpusID:14233196
https://api.semanticscholar.org/CorpusID:7659584
https://api.semanticscholar.org/CorpusID:204972004
https://api.semanticscholar.org/CorpusID:204972004
https://arxiv.org/abs/1811.11329
https://api.semanticscholar.org/CorpusID:246701687

	Abstract
	1 Introduction
	1.1 Contributions of this paper
	1.2 Outline of this paper

	2 Literature Review
	2.1 Assetto Corsa
	2.2 Reinforcement learning

	3 Methodology
	3.1 Data collection
	3.2 Policy network
	3.3 Reward Shaping
	3.4 Experiment Setup

	4 System Design
	4.1 Assetto Corsa Application
	4.2 Standalone Application

	5 Results
	6 Conclusion
	6.1 Future Directions

	References

