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Abstract

Goal The goal of this thesis was to explore how the tracheomalacia severity in neonates born with an

esophageal atresia could objectively be assessed, using bronchoscopy videos.

Method Three subgoals were established to achieve the goal. The first subgoal aimed to determine the

appropriate region of interest and image representation, considering the ’red, green, blue’ (RGB), ’hue,

saturation, value’ (HSV), and gray color-spaces. The second subgoal aimed to select the most suitable

segmentation techniques, considering Otsu-thresholding, Multi-Otsu thresholding, K-means clustering, and

Canny edge detection. The final subgoal aimed to develop an objective scoring system, using the obtained

segmentations. Therefore, the area and anteroposterior : transverse (APT) diameter ratio was calculated

for the end-inspiratory and -expiratory phase at the malacia and non-malacia part of the trachea. Five

formulas were proposed to relate the APT-ratio outcomes from these frames to the clinically estimated

tracheal lumen collapse (TLC). Linear regression was used to assess whether the calculated outcomes could

predict the percentage of TLC.

Results The pixel values corresponding to the tracheal lumen exhibit a different range than the cartilage

ring and posterior wall in the red-, value- and gray channel. Following dice similarity coefficient (DSC)

values were obtained for tracheal lumen segmentation in these channels; Otsu-thresholding: DSCred=0.9567,

DSCvalue=0.9571 & DSCgray=0.9584; Multi-Otsu thresholding: DSCred=0.9674, DSCvalue=0.9681 &

DSCgray=0.9615; K-means clustering: DSCred=0.9650, DSCvalue=0.9638 & DSCgray=0.9667. Linear

regression resulted in the following outcomes; Formula 1: R2=0.046, RMSE=22.12 & p=0.365; Formula 2:

R2=0.064, RMSE=21.91 & p=0.283; Formula 3: R2=0.003, RMSE=22.61 & p=0.819; Formula 4: R2=0.007,

RMSE=22.56 & p=0.718; Formula 5: R2=0.002, RMSE=22.62 & p=0.840.

Conclusion The tracheal lumen is the ROI that can be segmented from a bronchoscopy video. The highest

DSC value (DSC = 0.9681) was obtained for three-threshold Multi-Otsu thresholding in the value channel.

However, the examined techniques had all quite similar DSC values. It remains uncertain whether this

particular combination is really the best, given the constraints of the limited data. The APT-ratio seems

not to be a useful measurement because none of the proposed formula’s had a statistically significant linear

regression analysis. Further research should focus on how the area could be used as measurement.

Keywords Bronchoscopy; Computer Vision; Esophageal atresia; Tracheal lumen collapse; Tracheomalacia.
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Abbreviations

APT Anteroposterior : transverse

CSA Cross-sectional area

CSAexp End-expiratory cross-sectional area

CSAinsp End-inspiratory cross-sectional area

DSC Dice Similarity Coefficient

EA Esophageal atresia

FOI Field of interest

HSV Hue, saturation, value

RGB Red, green, blue

ROI Region of interest

TLC Tracheal lumen collapse

TM Tracheomalacia

WKZ Wilhelmina Children’s Hospital

3D Three-dimensional
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1
General introduction

This chapter provides clinical background information about tracheomalacia, the problem synthesis, and the

goal of this thesis.

1.1 Congenital tracheomalacia

Approximately 1 in 2100[1][2][3] children suffer from tracheomalacia[4] (TM), a condition in which the tracheal

lumen can (partly) collapse during expiration due to tracheal weakness. TM is one of the most common

congenital tracheal malformations. Besides congenital (primary TM), it can also be acquired (secondary

TM) for example due to prolonged intubation, external compression, trauma, or inflammation. However,

secondary TM will be outside the scope of this thesis.

The typical congenital malformation associated with TM is esophageal atresia[5] (EA). Normally, the esophagus

is a direct connection from mouth to stomach, see Figure 1A. In patients with EA, the esophagus is

interrupted, resulting in a blind upper pouch, see Figure 1B. There are different types of EA, but around

90% of the neonates born with EA have a tracheo-esophageal fistula[6]: an abnormal connection between

the trachea and the distal esophagus, see Figure 1C. This could be explained embryologically because the

trachea and esophagus both develop from the foregut. Around 87%[5] of the neonates born with an EA

suffer from TM, especially those with a tracheo-esophageal fistula. This fistula is transected during the EA

surgery. A suture is placed in this fistula, followed by cutting through the fistula. The distal esophagus is

now disconnected from the posterior wall of the trachea. The tension of this posterior wall is also removed,

resulting in an improved floppiness of this posterior wall.
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1.2 Anatomy

The trachea[8] is located in the thoracic cavity as part of the respiratory tract, which can be divided into

an upper- and a lower tract. The trachea is part of the lower respiratory tract, which originates at the

larynx and runs down to the carina. Here, the trachea separates into the left- and right main bronchus. The

heart, and the aorta are located anterior from the trachea. Posteriorly, the esophagus is directly adjacent

to the trachea with a common wall, and thereafter the spine. The trachea consists at the anterior side of

15 to 20 C-shaped, rigid cartilage rings which are connected via intercartilaginous membranes. The pars

membranacea is located on the posterior side, which contains the tracheal muscle.[1][9]

1.3 Physiology

Along the respiratory cycle[10][11], the tracheal diameter changes, see Figure 2. During expiration, the

tracheal lumen narrows due to inward movement of the posterior wall, resulting in acceleration of the airflow

and clearance of the mucus. Normally, this narrowing ranges between 10-20%[2][10].

Tracheal compliance[1] is increased in TM, making the trachea more susceptible to tracheal lumen collapse

(TLC) along the respiratory cycle. Several factors[10][11][12][13] can contribute to this; The cartilage rings can

have a lower intrinsic strength or a flattened shape, and the posterior wall can be too floppy and broader

than normal.

Figure 1: Anatomy visualisation.

A: Normal esophagus and trachea;

B: Esophageal atresia in combination with a tracheo-esophageal fistula;

C: Closer view of tracheo-esophageal fistula.Adapted from: [7]

2



Figure 2: Cross-section of the trachea along the respiratory cycle.Adapted from: [14]

A: Normal trachea;

B: Tracheomalacia.

1.4 Symptoms

Common symptoms[1][2][3][4][15] of TM include abnormal breathing sounds (inspiratory stridor, expiratory

rhonchi, wheezing), and a barking, ineffective cough. Clearing secretions may be challenging, making these

patients susceptible to airway infections. A severe manifestation of TM are ’brief resolved unexplained

events’[12]: the neonate stops breathing, turns blue, and becomes unresponsive. In a worst case, the neonate

may need a resuscitation to recover.

1.5 Diagnostics

TM is diagnosed[1][2][3][15] before the surgery required for EA repair starts. A bronchoscopy is performed

under general anesthesia while the neonate is spontaneously breathing, without the use of positive

end-expiratory pressure[4][16]. This procedure provides a cross-sectional view of the trachea, see Figure 3.

Typical aspects of TM observed in the bronchoscopy videos are a flattened cartilage shape and a (broader)

posterior muscle wall, which intrudes into the tracheal lumen. The severity of TM is subjectively assessed

during the procedure. In some cases, a bronchoscopy is not possible due to respiratory instability. Those

neonates are not checked for TM. Since the neonates are about 3-5 days old during this procedure, they may

be fragile. Especially those who are born too early.

There is no universally accepted grading system for TM. According to Wallis et al [15], the following

(descriptive) classification is used for grading the severity of TM in pediatrics: 50-75% TLC is mild, 75-90 %

TLC is moderate, and >90% TLC is severe. Clinical symptoms are not considered in the classification. In

the The Wilhelmina Children’s Hospital (WKZ, Utrecht, The Netherlands), they use a grading system[5][12]

for neonates with EA to assess the severity of TM prior to EA repair; <33% TLC is mild, 33-66% TLC is

moderate, and >66% TLC is severe. If the TLC is >33%, surgery seems to be required. This classification

considers the increased floppiness of the posterior wall after transection. However, there is insufficient
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evidence to establish this classification as a generally accepted grading system.

For three reasons, it is not preferred to do the bronchoscopy after tracheo-esophageal fistula transection.

First, the neonate already received muscle relaxation medication. This is not a realistic scenario for TM

assessment. Second, the neonate is positioned on the left side. Therefore, it will be challenging to position

the neonate on the back, which is required for the bronchoscopic assessment. Last, not all neonates have a

fistula so it is essential to check this before the EA repair.

Figure 3: Bronchoscopy video in a tracheomalacia patient.Adapted from: [1]

A: Inspiration;

B: Expiration.

1.6 Treatment

Around 16-33%[12] of the neonates with EA and a tracheo-esophageal fistula suffer from symptomatic TM.

The gold standard for treatment is in most hospitals an aortopexy[2]. During this surgery, the aorta is sutured

to the sternum, resulting in decompression on the anterior side of the trachea. In the WKZ, a thoracoscopic

posterior tracheopexy[5][17] is the gold standard. During this surgery, the posterior wall of the trachea is

sutured with non-absorbable sutures at one to three places to the spinal ligament, see Figure 4. Due to this

suturing, the posterior wall is stabalised under traction, preventing collapse of the tracheal lumen.

Figure 4: Posterior tracheopexy.Adapted from: [18]

A: Anatomy before a posterior tracheopexy;

B: Anatomy after a posterior tracheopexy.
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1.7 Impact on life

Not treating or failing to treat TM can result in various consequences. As described in Paragraph 1.4,

TM can result in ’brief resolved unexplained events’ which could be fatal for the neonate. Such events

occur particularly when the intrathoracic pressure[1] is increased, for example during feeding, crying, and

coughing. Sometimes, tube feeding or a gastrostomy tube (a tube inserted into the stomach via a surgically

made opening in the abdomen) is required to feed the neonate. This is disadvantageous because it is crucial

for a neonate to learn how to drink and eat. Parents are required to receive training where they learn how to

respond in a non-breathing situation, including resuscitation. However, non-breathing events could still be

a reason for the child to remain in the hospital for a longer time, causing concerns for the parent(s) and/or

relatives. When the TM is not severe enough, the child can go home, but it may raise other concerns, like

sending the child to daycare or entrusting a nanny. In severe cases, the neonate may need a tracheostomy

(a surgically created tracheal opening at the front of the neck) as temporary measure until a second surgery

is performed.[5][12][19]

Neonates who do not undergo surgery will always keep some form of TM because it is not possible to

grow out of it. During the years, the symptoms could become less[2] because the trachea grows, and

the cartilage matures. Children with TM are susceptible to recurrent infections of the respiratory tract,

exhibiting symptoms similar to those of asthma- and croup patients, and they could have apnea. Prolonged

treatment with antibiotics and corticosteroids is often required, which is undesirable. About 27%[12] of the

patients have permanent lung damage due to these respiratory infections. Additionally, children with severe

TM may experience a reduced quality of life, and growth delay.[5][12][19]

1.8 Problem synthesis

As mentioned before, the determination of the TLC percentage relies on a subjective estimation by the

otolaryngologist and the pediatric surgeon, which makes it susceptible to inter- and intra-observer variability.

To enhance the outcome for the children suffering from TM, it would be helpful if an accurate and objective

assessment could be made to determine whether a posterior tracheopexy is warranted or not. Especially for

the neonates born with an EA it will be beneficial if this can be done during the the primary surgery for

EA repair. This prevents a challenging second surgery due to adhesions from the previous surgery. Besides,

it could prevent or limit the worse consequences associated with TM.

1.9 Related work

Several papers have been published on the quantification of TM. Hysinger et al.[1] explored the use of

self-gated ultrashort echo-time magnetic resonance imaging to quantify TM. They measured the

end-inspiratory cross-sectional area (CSAinsp) and end-expiratory cross-sectional area (CSAexp), which

they used to calculate the percentage change in cross-sectional area (CSA), using Formula 1. Douros et

al.[20] explored the use of helical multi-detector computer tomography To quantify TM. They used a ratio

between CSAexp and CSAinsp as a measurement. Ciet et al.[21] explored the use of spirometer-controlled cine
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magnetic resonance imaging to quantify TM. They measured the anteroposterior diameter end-inspiratory

and end-expiratory at one point, which they used to calculate the percentage of diameter change. Ebrahimian

et al.[13] explored automatic segmentation and measurement of the tracheal collapsibility in adult TM

patients from a Computed Tomography (CT)-scan. They segmented the trachea from the CT-scan and

used a commercial software to measure automatically the diameter and area; both along the trachea and

at one single point (at the height of the aortic arch). For quantification, they used the difference between

inspiratory and expiratory measurement outcomes, concluding that measurements along the whole trachea

are more accurate than at one single point.

∆CSA =
CSAinsp - CSAexp

CSAinsp
(1)

Only one study has been published which quantified the tracheal lumen area based on bronchoscopy videos.

This study was published in 2005 by Masters et al.[22]. They developed a method for measuring the tracheal

lumen by outlining the airway lumen using a color histogram. Recently, it has been investigated whether

this technique is also suitable for the bronchoscopy videos available at the pediatric surgery department of

the WKZ. However, the results were not accurate. Therefore, another approach should be explored.

1.10 Research aim

The main research question of this thesis is: ’How can the percentage of tracheal lumen collapse in neonates

born with esophageal atresia objectively be assessed, using bronchoscopy videos? ’. Three subquestions are

formulated to answer this question; The first subquestion is: ’What image representation is appropriate for

cartilage ring and posterior wall, or tracheal lumen recognition in bronchoscopy videos? ’, see Chapter 2. The

second subquestion is: ’What image segmentation technique is suitable for the segmentation of cartilage ring

and posterior wall, or tracheal lumen? ’, see Chapter 3. The last subquestion is: ’What measurement (a

calculation based on the segmentation) is usable for determining the percentage of tracheal lumen collapse? ’,

see Chapter 4.
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2
Color-space analysis

In this chapter, various image representations will be explored that could be useful for segmenting a relevant

structure for the objective assessment. Histogram analysis will be used to gain insight into the pixel value

distribution of the structures in multiple image color-space channels. This type of analysis is known as

color-space analysis.

2.1 Introduction

Images can be visualized in different color-spaces to gain a better understanding of their characteristics,

and explore various aspects of the image. Commonly used color-spaces are: ’Red, green, blue’ (RGB)[23],

’hue, saturation, value’ (HSV)[23], and grayscale. RGB and HSV images consist of three channels, which

can be separated into individual channels to represent different aspects. The three primary colors, red,

green and blue, can individually be explored via the RGB color-space. The HSV color-space represents

additional characteristics. Hue represents the pixel color itself, saturation the intensity of each pixel,

and value the brightness each pixel. A grayscale image is a one channel image which also represents the

brightness. However, the difference between grayscale and value is the formula[24] used for the new pixel

value computation, resulting in different outcomes. The gray color space[25][26] is commonly used for image

processing tasks related to objects with prominent edges that can easily be discriminated from a background.

This chapter aims to answer the first subquestion of this thesis: What image representation is appropriate

for cartilage ring and posterior wall, or tracheal lumen recognition in bronchoscopy videos? In order to

understand the intensity distribution of colors, and other features of the image, multiple (region-specific)
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pixel intensity histograms are used. It is decided to focus on the tracheal lumen, cartilage ring, and posterior

wall based on the expectation that these regions could probably provide useful measurements for objective

TLC assessment.

2.2 Materials & method

2.2.1 Materials

Three bronchoscopy videos from neonates with EA were used. All patients received treatment in the WKZ

in 2022, and were 2 and 10 days old. The algorithm used for the color-space analyses was developed with

Python as programming language.

2.2.2 Method

Image pre-processing In Figure 5, a schematic overview is given of the image pre-processing method. One

end-inspiratory frame was extracted per video. Each frame was converted using binary thresholding. The

minimum and maximum, non-zero pixels in the x and y directions were used for cropping the original frames

to the field containing the bronchoscopy view. This was defined as the field of interest (FOI).

Figure 5: Overview of the image pre-processing steps for image cropping to the field of interest.

Histogram analysis Pixel intensity histograms were extracted from the three cropped frames. The individual

channels from the following color-spaces were used: RGB, HSV, and gray. Besides, region-specific pixel

intensity histograms were extracted for each color-space channel individual. The following regions of interest

(ROI) were manually defined on each frame: cartilage ring, posterior wall, and tracheal lumen. Exactly

the same regions were analysed across the different color-spaces. Furthermore, single-channel images were

generated for each of the RGB and HSV channels individually, to gain a comprehensive understanding of

the general pixel value distribution throughout the whole FOI.

2.3 Results

In Figures 6, 7 and 8, the extracted histograms are visualized for each patient. In each sub-figure, the

upper histogram represents the pixel intensity distribution of the whole image. The other three histograms

represent the region-specific pixel intensity distribution. The x-axis of each histogram represents the pixel

value, and the y-axis the number of pixels corresponding to each pixel value. In the RGB histograms, the

blue line represents the distribution for the blue channel, the green line for the green channel, and the red
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line for the red channel. In the HSV histograms, the magenta line represents the distribution for the hue

channel, the turquoise line for the saturation channel, and the yellow line for the value channel. In the gray

histograms, the blue line represents the distribution for the gray channel. On the right side of the RGB and

HSV plots, the single-channel images are visualized. The color bar represents the corresponding pixel value.

In this paragraph, the pixel value ranges extracted from Figures 6, 7 and 8 are presented per channel, and

patient in the following order: cartilage ring/posterior wall/tracheal lumen.

Red channel The following ranges are roughly observed in the red channel: 80-150/60-160/10-100 for patient

1, 210-250/140-245/45-145 for patient 2, and 175-205/105-250/30-75 for patient 3. The cartilage ring, and

posterior wall have quite similar ranges in each patient.The tracheal lumen has in general another range than

the cartilage ring and posterior wall. The values corresponding to all three ROI’s varies among the patients.

Green channel The following ranges are roughly observed in the green channel: 25-75/0-50/0-70 for patient

1, 95-155/30-130/5-90 for patient 2, and 95-140/30-210/0-45 for patient 3. All three ROI’s have quite similar

ranges in each patient. The values corresponding to all three ROI’s varies among the patients.

Blue channel The following ranges are roughly observed in the blue channel: 25-70/0-50/0-60 for patient 1,

125-195/50-170/15-115 for patient 2, and 110-150/45-230/10-50 for patient 3. All three ROI’s have quite

similar ranges in each patient, except for the tracheal lumen in patient 3 which has another range than the

cartilage ring and posterior wall in this patient. The values corresponding to all three ROI’s varies among

the patients.

Hue channel The following ranges are roughly observed in the hue channel: a peak at 0 & 180/a peak

at 0 & 180/0-15 & 170-180 for patient 1, 165-175/165-180/165-180 for patient 2, and 170-180/160-175/a

peak at 0 & 160-180 for patient 3. All three ROI’s have quite similar ranges in each patient.

Saturation channel The following ranges are roughly observed in the saturation channel: 145-195/180-250/

95-250 for patient 1, 100-145/115-195/70-240 for patient 2, and 85-125/50-190/95-220 for patient 3. All

three ROI’s have quite similar ranges in each patient.

Value channel The following ranges are roughly observed in the value channel: 80-145/60-170/20-95 for

patient 1, 210-250/ 125-240/45-145 for patient 2, and 180-205/105-250/30-75 for patient 3. The cartilage

ring, and posterior wall have quite similar ranges in each patient. The tracheal lumen has in general another

range than the cartilage ring and posterior wall. The values corresponding to all three ROI’s varies among

the patients.

Gray channel The following ranges are roughly observed in the gray channel: 40-95/25-80/0-75 for patient

1, 135-190/ 55-160/15-110 for patient 2, and 120-155/55-225/15-55 for patient 3. The cartilage ring, and

posterior wall have quite similar ranges in each patient. The tracheal lumen partly. The values corresponding

to all three ROI’s varies among the patients.
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Figure 6: Pixel intensity distribution analysis in multiple color spaces for the same frame of the bronchoscopy

video from patient 1.

A: RGB color-space;

B: HSV color-space;

C: Gray color-space.
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Figure 7: Pixel intensity distribution analysis in multiple color spaces for the same frame of the bronchoscopy

video from patient 2.

A: RGB color-space;

B: HSV color-space;

C: Gray color-space.
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Figure 8: Pixel intensity distribution analysis in multiple color spaces for the same frame of the bronchoscopy

video from patient 3.

A: RGB color-space;

B: HSV color-space;

C: Gray color-space.
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Single-channel map Considering the single-channel maps for all three patients, the three ROI’s can primarily

be recognized in the red-, and value channel. In the blue-, green-, and hue channel maps this is overall not

possible. In the saturation channel map from patient 2, and 3, it is possible to recognize the cartilage rings

separately but these values appear quite similar to those of the tracheal lumen.

2.4 Discussion

The goal of this chapter was to investigate which image color-space and ROI could be appropriate for

objective TLC assessment. As mentioned before, the ROI’s were the cartilage ring, posterior wall, and

tracheal lumen. It is expected that the tracheal lumen could be segmented from the red-, value, and gray

channel based on the distinctive pixel value ranges for the three ROI’s. An overlap in ranges for the three

ROI’s was observed for the blue-, green, hue-, and saturation channel, suggesting that they may not be

useful. In the single-channel images was observed that the tracheal lumen could only be clearly identified

in the red- and value channel images. This aligns with the results from the histogram analysis. For none of

the explored channels, it was possible to detect the cartilage ring and posterior wall individually.

It is not possible to correlate the results with other studies. It depends on the goal, application, and the

data which image channel could best be used. One study was found were they tried to segment the tracheal

lumen in bronchoscopy video’s, published by Masters et al.[22] in 2005. They used manual adaptation of the

color balance, which is not comparable to the investigation in this chapter. No study was found related to

cartilage ring and posterior wall segmentation.

There are six limitations in this study. First, one bounding box per ROI was used. When multiple bounding

boxes for the same ROI are drawn, it could be possible to check if the pixel distribution is the same at all

these points, for example along the whole shape of a cartilage ring. Second, the bounding box of the posterior

wall was quite large, instead of just in the continuation of one cartilage ring. Therefore, the histogram was

too general. Third, only three frames were used. Maybe, one of the used frames was an outlier. More

frames would be recommended for the next time to improve the understanding of the data. Fourth, one

frame per video was chosen. How the distribution changes along multiple frames was not considered. Fifth,

only end-inspiratory frames were used. In an end-expiratory frame, the depth of field could be changed.

Therefore, it could be relevant to consider the pixel distribution of the tracheal lumen relative to the other

structures in that stage. Last, the inter-cartilage tissue was outside the scope of this study. However,

considering the saturation images, this could probably be used as an outline of the lumen. Therefore, it

would be recommended to include this ROI the next time.

Initially, it was uncertain whether pixel intensity or brightness majorly contributed to the dark, red color

observed deeper in the tracheal lumen compared to the tracheal lumen near to the bronchoscope. Based

on the conclusion that the value channel is usable while the saturation is not, it could be concluded that

brightness contributes to this effect. This brightness is likely to be the consequence of the illumination

provided by the bronchoscope.In general, the tracheal lumen had a lower pixel value range compared to the

other two ROI’s. However, in the red-, value-, and gray channels was also some pixel value range overlap

between the three ROI’s for some patients. This is not expected to be problematic due to the limited
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overlap. Another important observation is that the ranges of the tracheal lumen varied among the patients.

Therefore, it is recommended to use a segmentation technique based on an automatic principle.

2.5 Conclusion

The red-, value- and gray channel are considered suitable for tracheal lumen segmentation. For none of the

used color-spaces, it was possible to detect the cartilage ring and posterior wall separately. The subquestion

addressed in this chapter is answered.
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3
Tracheal lumen segmentation

In the previous chapter was concluded that the tracheal lumen could probably be segmented from the

red-, value-, and gray channels. In this chapter, the appropriate segmentation technique for tracheal lumen

segmentation in those channels will be explored. Multiple techniques will be tried, and evaluated, with the

use of labeled ground truths to determine the most suitable segmentation technique.

3.1 Introduction

Image segmentation is one of the tasks computer vision[27][28][29] tackles, with the purpose of processing

and analyzing images high-detailed on the pixel level. The goal of image segmentation is to divide an

image into various regions by assigning all the pixels into a class, based on shared characteristics. In this

way, it is possible to process only the ROI’s[30] instead of the whole image. Common computer vision

segmentation techniques rely on the following principles[30][31][32][33]: thresholding, regions, or boundaries.

It depends on the images and purpose which technique would be appropriate. Thresholding is a relatively

easy and fast technique. It filters pixels based on the pixel value distribution in the image. However, this

technique is susceptible to differences in pixel values between the image frames and patients, and overlapping

pixel intensities of ROI’s. Region-based image segmentation relies on clustering the pixels that meet the

same criteria, for example pixel intensity or texture, and takes the spatial relationship (pixel connectivity)

into account for defining multiple regions within an image. However, it could be challenging to define the

boundaries in regions with quite similar characteristics while they actually not belong to the same region.

Furthermore, it could be too time consuming for complex images as it analyzes individual regions of an

image. Boundary-based segmentation relies on abrupt pixel value changes, which works well in images with
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limited number of prominent edges. However, it may not be useful in images with a lot of edges, and blurred

edges due to noise.

Performance of a technique can be evaluated via evaluation metrics. These compare the segmentation relative

to a (manual) labeled ground truth. A commonly overlap-based metric is the Dice Similarity Coefficient[34]

(DSC), see Formula 2. A DSC value ranges between 0 and 1. A value of 0 indicates no overlap between the

segmentation and ground truth, while a value of 1 indicates a full overlap between segmentation and ground

truth.

This chapter aims to answer the second subquestion of this thesis: What image segmentation technique

is suitable for the segmentation of cartilage ring and posterior wall, or tracheal lumen? The following

segmentation techniques are explored: Otsu-thresholding, Multi-Otsu thresholding, K-means clustering, and

Canny edge detection. The DSC is used as evaluation metrics.

DSC =
2×Area of overlap

Total area
(2)

3.2 Materials & method

3.2.1 Materials

Six bronchoscopy videos from neonates with EA were used. All patients received treatment in the WKZ in

2022, and their ages ranges between 2 and 10 days old. The algorithms used for the segmentation techniques

and calculating the DSC value were developed with Python as programming language. Data labeling was

performed using Label studio.

3.2.2 Method

Based on the results of Chapter 2, it was decided to use the red-, value, and gray channels for tracheal lumen

segmentation in this chapter.

Data extraction From each bronchoscopy video, four frames were extracted; An end-inspiratory, and an

end-expiratory frame from both the malacia and non-malacia segment of the trachea. It was decided to use

these specific frames based on the fact that they correspond to the points along the respiratory cycle where

the lumen is at its maximum (end-inspiratory) and minimum (end-expiratory). The frames were extracted

from a malacia and non-malacia segment of the trachea in order to establish a patient-specific reference value

for what a normal collapse value is for that patient.

Image pre-processing The same method as described in Paragraph 2.2.2 was used for image pre-processing

all the frames. Normalization of the image was not performed.
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Segmentation techniques It was decided to include at least one threshold-based, one region-based, and one

edge-based segmentation technique for better understanding which type would be useful at all. The focus was

placed on relatively easy, and already known techniques. Especially because of the limited amount of time.

Algorithms for the following segmentation techniques were developed and individually applied to the three

channel representation of all frames: Otsu thresholding, Multi-Otsu thresholding (three thresholds), K-means

clustering (with K=3 and K=5), and Canny edge detection. For Multi-Otsu thresholding, various numbers

of thresholds were explored by plotting these in the histograms of Chapter 2. Using three thresholds resulted

in the best thresholds considering the tracheal lumen pixel value range. Gaussian filtering, a Sobel kernel,

and hysteresis between 20 and 100 were used for the Canny edge detection. Furthermore, local gradients

were extracted using a Scharr kernel (first-order derivative). The segmentation algorithms were applied

to each frame and image representation (red-, value-, and gray channel) individually. Several operations

were conducted to improve the segmentation mask generated by the segmentation algorithms. Especially

to remove the outline of the FOI that remained in the segmentation mask, and remove some structures,

unrelated to the tracheal lumen. The used operations will be described in the following paragraph.

Mask post-processing A segmentation mask was generated after applying the segmentation technique. This

mask was closed to ensure that regions belonging to the tracheal lumen were not removed. The center of the

tracheal lumen was defined in the mask via interactive pixel selection. A circular area was defined around

this point, with a radius equal to 0.3 times the image height. This radius was chosen because it was observed

that none of the tracheal lumens had a larger radius than 0.3 times the image height. Any structure outside

this defined area that did not belong to the tracheal lumen itself was removed, and the contours of the

remaining structures were determined. The object with the largest boundary was defined as the tracheal

lumen and used as the final segmentation mask. This mask was applied to the corresponding cropped RGB

frame, resulting in an image that only contained the tracheal lumen.

Evaluation The ground truths were manually labeled, using the cartilage ring at the light/dark transition in

the RGB image as guidance. The lumen enclosed by this cartilage ring was defined as tracheal lumen ground

truth. All DSC values were calculated, using Formula 2. The mean DSC value and standard deviation were

calculated for each combination of segmentation technique and image representation channel. The evaluation

included the following techniques: Otsu thresholding, Multi-Otsu thresholding (using the middle threshold

value) and K-means clustering (using K = 5). For this last technique, the cluster representing the tracheal

lumen was used as the segmentation.
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3.3 Results

Otsu thresholding In Figure 9, some examples of the results for Otsu thresholding are visualized. A white

outline, representing the segmentation, is drawn at the cropped frames. Each column belongs to one input

frame. The images in row A belong to using the red channel as input, row B to the value channel, and row

C to the gray channel. The aimed goal to segment was the dark, red area deeper in the lumen. It can be

observed that it was not always successful to include this whole area in the segmentation, resulting in an

undersegmentation. Due to this, the segmentation is not in the same plane relative to the camera, when

considering a three-dimensional (3D) space. Furthermore, it can be observed that some segmentations are

just a circle, for example in row ’C’, the first, and fifth column.

Figure 9: Some examples of using Otsu thresholding including mask post-processing. Each column belongs to one

input frame, and the white outline represents the segmentation.

A: Red channel;

B: Value channel;

C: Gray channel.
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Multi-Otsu thresholding In Figure 10, some examples of the results for the middle value Multi-Otsu

thresholding are visualized. A white outline, representing the segmentation, is drawn at the cropped frames.

Each column belongs to one input frame. The images in row A belong to using the red channel input,

row B to the value channel, and row C to the gray channel. The aimed goal to segment was the dark, red

area deeper in the lumen. It can be observed that it was not always successful to include this whole area

in the segmentation, resulting in an undersegmentation. Due to this, the segmentation is not in the same

plane relative to the camera, when considering a 3D space. Furthermore, it can be observed that some

segmentations are just a circle, for example in row ’C’, the first column.

Figure 10: Some examples of using the middle value threshold, based on Multi-Otsu thresholding. These results

include mask post-processing. Each column belongs to one input frame, and the white outline represents the

segmentation.

A: Red channel;

B: Value channel;

C: Gray channel.
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K-means clustering In Figure 11, some examples of using the tracheal lumen cluster defined via K-means

clustering with K=5 are visualised. A white outline, representing the segmentation, is drawn at the cropped

frames. Each column belongs to one input frame. The images in row A belong to using the red channel input,

row B to the value channel, and row C to the gray channel. The correct cluster was manually extracted.

The aimed goal to segment was the dark, red area deeper in the lumen. It can be observed that it was not

always successful to include this whole area in the segmentation, resulting in an undersegmentation. Due to

this, the segmentation is not in the same plane relative to the camera, when considering a 3D space.

Figure 11: Some examples of using K-means clustering (K = 5), including mask post-processing. Each column

belongs to one input frame, and the white outline represents the segmentation.

A: Red channel;

B: Value channel;

C: Gray channel.
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Canny edge detection In Figure 12, some examples of using Canny edge detection are visualized. Each

column belongs to one input frame. The images in row A belong to using the red channel as input, row

B to the value channel, and row C to the gray channel. The aimed goal to segment was the same area as

aimed in the first, second, and third column of Figures 9 and 10. It is in none of the images plot in Figure

12 possible to recognise an enclosed tracheal lumen.

Figure 12: Some examples of the results for Canny edge detection, using different image channels. Each column

belongs to one input frame.

A: Red channel;

B: Value channel;

C: Gray channel.
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Gradients In Figures 13, 14, and 15, some examples of the corresponding local gradient maps are visualized.

These gradients were extracted via a Scharr kernel in the x- and y-direction independently. Each column

belongs to one input frame. The images in row A belong to the x-direction gradient, and row B to the

y-direction gradient. The aimed goal to segment was the same area as aimed in the first, second, and third

column of Figures 9 and 10. In all images plot in Figures 13, 14 and 15, a considerable amount of gradients

were detected in each channel and in both directions. It is in none of these images, it is possible to recognise

an enclosed tracheal lumen.

In Appendix A, the results for the segmentations without mask post-processing, the effect of all three

thresholds determined with Multi-Otsu thresholding, and the effect of K=3 and K=5 clustering can be

found.

Figure 13: Some examples of Scharr gradients in the red channel. Each column belongs to one input frame.

A: Scharr filter in x-direction;

B: Scharr filter in y-direction.

Figure 14: Some examples of Scharr gradients in the value channel. Each column belongs to one input frame.

A: Scharr filter in x-direction;

B: Scharr filter in y-direction.
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Figure 15: Some examples of Scharr gradients in the gray channel. Each column belongs to one input frame.

A: Scharr filter in x-direction;

B: Scharr filter in y-direction.

DSC value In Table 1, the mean DSC value, including the standard deviation, for each technique and channel

combination can be found.The DSC values were all quite similar to each other. The lowest DSC value (DSC

= 0.9567) was observed for Otsu thresholding in the red channel. The highest DSC value (DSC = 0.9681)

was observed for Multi-Otsu thresholding in the value channel.

Table 1: Mean DSC and standard deviation for multiple segmentation technique and image channel combinations

(n = 24).

Segmentation technique Red channel Value channel Gray channel

Otsu thresholding 0.9567 ±0.03234 0.9571 ±0.03201 0.9584 ±0.02706

Multi-Otsu thresholding 0.9674 ±0.02191 0.9681 ±0.02207 0.9615 ±0.02032

K-means clustering 0.9650 ±0.02061 0.9638 ±0.02016 0.9667 ±0.02005

3.4 Discussion

The goal of this chapter was to investigate which segmentation technique would be appropriate for tracheal

lumen segmentation in the bronchoscopy videos. The highest mean DSC value was achieved with Multi-Otsu

thresholding in the value channel. Nonetheless, the results for all techniques were all quite similar. Therefore,

it is not possible to claim that this combination is really the best for tracheal lumen segmentation. Edge-based

techniques will not be appropriate for tracheal lumen detection because the frames are too complex.

Two relevant studies were found. The first was published in 2005 by Masters et al.[22]. They also used

color-based tracheal lumen segmentation for objective TM assessment. Considering their results, the images

look quite similar to the segmentations in this study; deep into the lumen. They used manual thresholding

and did not use ground truths. Therefore, the results of the DSC can not be compared. The second

was published in 2023 by Keuth et al.[35]. They used a Convolutional Neural Network for tracheal lumen
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segmentation based on a depth map instead of a color-based technique. They also used DSC for performance

evaluation, but their results are higher than 1 without understanding how they calculated this so it is not

possible to compare both results with each other. Furthermore, it can be doubted if it would be beneficial

to use such a complex technique while the simpler techniques used in this study results in good results.

However, a monocular depth map could probably be used to force the segmentation to have the same

distance relative to the bronchoscope. Normally, depth could be estimated by using two camera’s. However,

this is not possible with the bronchoscope. Pre-trained Deep Learning models are available for monocular

depth map estimation, which could probably be used. Considering bronchoscopic (and endoscopic in general)

segmentations, Deep Learning gains more attention for segmentation. For now, this is not preferred because

it could be overkill. Besides, it requires a lot of data, takes a long time to train the network, and dedicated

hardware is required.

There are four limitations in this study. First, a limited number of 24 images was used. More data would be

recommended for the next time. Second, the ground truths were manually labeled by one person, making

the results less reliable. It is recommended to let multiple persons do the labelling, also a multiple times,

to improve the inter- and intra-observer reliability. Third, frames near to the carina were eliminated on

purpose. Therefore, the results are not generalisable for the whole trachea. Fourth, the segmentations equal

to the mask processing circle are difficult to reproduce exactly the same every time. Hence, the DSC results

could be different when the same frames are used multiple times.

It was not expected that thresholding and cluster techniques would perform this well. Thresholding and

cluster-based segmentation techniques[30][31][36] are relatively easy and fast, but are susceptible to differences

in color values between the image frames and patients, and overlapping pixel intensities of ROI’s. The pixel

intensity difference between frames and patients was overcome by using automatically determined thresholds

and clusters. The pixel intensity overlap between ROI’s was minimized by the used image channels, based

on the conclusion of Chapter 2. All this contributed to the promising results.

As mentioned before, it is not possible to state that Multi-Otsu thresholding in the value channel is really

the best to use. However, there was one disadvantage in this study related to K-means clustering which

supports the advice to focus on threshold-based segmentation techniques. The cluster corresponding to the

tracheal lumen was manually selected each time because the corresponding number belonging to this cluster

varied among patients. This manual selection will not be optimal and is time consuming, especially when it

is desired to analyse the whole trachea.

Three problems were noticed in the segmentations. First, some segmentations were just a circular shape.

The lumen in these frames was still in connection with the FOI border before the mask post-processing was

used. Therefore, the circular segmentation shape was just the circular area used for mask processing. A

typical aspect of these frames was a lumen close to the border of the frame. It was checked what the result

would be when multiple frames before and after the extracted frame were used. The circular segmentation

was gone when the same lumen was captured somewhere in the middle of the frame. However, the minimal

distance between the lumen boundary and the FOI boundary was not established. Therefore, it would be

recommended to set the requirement that the tracheal lumen should be somewhere around the middle of

the frame. Second, frames near to the carina were not usable because this resulted in segmentation of one
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of the main bronchi. Third, not all segmentations were in a perpendicular plane relative to the camera,

considering a 3D space. This phenomenon could probably be assigned to two aspects. The first aspect is the

bronchoscope position. The trachea is larger than the bronchoscope, so there can be variation in position and

angles. Additionally, the rigid bronchoscope barrel appeared sometimes curved, as seen in the frames with

a metal structure around the FOI border. As a result, the light source was not in the middle of the trachea,

resulting in an unequal illumination of the left/right and posterior/anterior side of the tracheal lumen. This

could be overcome during the procedure by keeping the bronchoscope somewhere in the middle and paying

attention to equal illumination. However, this can not be adjusted in the available data. Therefore, this

could be relevant to keep in mind for the future. The second aspect is related to the use of the largest

object boundary as segmentation. In single-channel images, like those used in Chapter 2, it was visually

observed that the intercartilaginous tissue sometimes had another pixel value than the tracheal lumen. In

the segmentations of this chapter, it was observed that the segmentation boundary was at the transition of

the cartilage ring to the intercartilaginous tissue. Therefore, it could be possible that the missing part of

the segmentations was not connected to the tracheal lumen (the largest object boundary), so, not included

in the segmentation.

The similarity in DSC values could probably be explained by the results from Chapter 2; The pixel intensity

distributions for the red- and value channels were quite similar, as well as for the gray channel, but in another

range. These distributions were utilized in the segmentation techniques for determining the thresholds and

clusters. This could probably explain the similarity in DSC values. Some frames had a lower DSC value in

all three channels, which could probably be assigned to an inaccurate ground truth.

3.5 Conclusion

Using Multi-Otsu thresholding in the value channel resulted in the highest DSC value (DSC = 0.9681).

However, the DSC values were all quite similar. Therefore, it is not possible to claim that this combination

is really the best. The subquestion addressed in this chapter is answered, based on limited evidence.
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4
Scoring system development

In the previous chapter was concluded that Multi-Otsu thresholding in the value channel resulted in the

highest DSC value. In this chapter, the application of the segmentations for an objective tracheomalacia

severity assessment will be explored. Two measurements that could potentially be useful (the area and

the anteroposterior : transverse diameter ratio) will be calculated based on the segmentations. These

measurement outcomes will be used as input for a linear regression model to explore the feasibility of

developing a scoring system.

4.1 Introduction

After extracting the tracheal lumen, measurements can be calculated for objective collapse assessment. Two

measurement are expected to be meaningful: the tracheal lumen area, and the anteroposterior : transverse

(APT) diameter ratio of the tracheal lumen, see Figure 16. The area is clinically used, but not calculated.

The disadvantage of using the area as objective measurement is that distances relative to the camera should

be involved. This is not possible in the bronchoscopy videos. If the bronchoscope remains in the same

position during the end-inspiratory and end-expiratory phases, it could be possible to analyze the CSA

(cross-sectional area) change along the respiratory cycle using Formula 1. However, this is not a measure

for TM unless it can be related to the CSA change in a non-malacia tracheal segment. It is assumed that

the TLC (tracheal lumen collapse) is normal (no collapse) directly below the vocal cords. The CSAinsp and

CSAexp should be calculated at two crucial points in the trachea: just below the vocal cords and at the

malacia part. However, it is currently unknown how these should be related to each other.
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The second potential, and distance-independent measure, could be the APT diameter ratio[1][13]. This

ratio could provide insight into the diameter change along the respiratory cycle. It is hypothesized that the

real transverse diameter does not change along the respiratory cycle because this diameter relates to the

(rigid) cartilage ring. However, the shape of the tracheal lumen is usually asymmetrical. An average of the

diameters, measured at various points in the segmentation, should be used for both the anteroposterior and

transverse diameter.

This chapter aims to answer the third subquestion of this thesis: What measurement (a calculation based on

the segmentation) is usable for determining the percentage of tracheal lumen collapse? In order to translate

the measurement outcomes into a clinical assessment, the relationship between outcomes and real TLC must

be established. Otherwise, it is not known how a calculated measurement should be interpret. To address

this relationship, linear regression[37][38] will be used.

Figure 16: Visualization of the proposed objective measurements.

A: Cross-sectional area;

B: Anteroposterior : transverse diameter.

4.2 Materials & Method

4.2.1 Materials

19 bronchoscopy videos from neonates with EA were used. However, 36 neonates were included, but not all

had an available bronchoscopy video or they lacked a determined percentage of TLC in the surgical report.

These patients were excluded. All patients received treatment in the WKZ in 2022 and 2023, and their ages

ranges between 2 and 10 days old. The algorithm used for segmentation and measurement calculation was

developed with Python as programming language. IBM SPSS statistics (version 28.0) was used for linear

regression analysis.

4.2.2 Method

Based on the results of Chapter 3, it was decided to use Multi-Otsu thresholding in the value channel as

segmentation technique in this chapter.
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Data extraction From each bronchoscopy video, four frames were extracted; An end-inspiratory and

end-expiratory frame from both the malacia and non-malacia segment of the trachea. This is similar to

Paragraph 3.2.2. The clinically determined TLC was extracted from the surgery report.

Algorithm development An algorithm was build and rendered for each frame individual. The frame was

loaded and cropped to the FOI, as described in Paragraph 2.2.2. Next, the segmentation was performed

using the algorithm developed in Chapter 3. Most of the segmentations were not aligned to the horizon

due to bronchoscope rotation along the video. It was necessary to do a horizontal alignment, otherwise it

would be difficult to calculate the diameters of the segmentation. Two points were interactively defined on

the resulted segmentation mask: the left and right corners of the cartilage ring/posterior wall transition, see

Figure 17A. A vector was defined through these points. The angle between the horizon and this vector was

used to rotate the segmentation and align it with the horizon, see Figure 17B. As mentioned in Chapter 3, not

all segmentation were in a perpendicular plane relative to the bronchoscope. This should be compensated to

ensure an accurate measurement of the diameters. It was decided to use manual perspective correction over

an automatic method because it was expected that compensation for depth distance would be challenging

via object movement tracking across multiple frames. A transformation matrix was calculated based on

interactive corner selection of a plane in the horizontal aligned segmentation, see Figure 17C. This matrix

was applied to the segmentation, see Figure 17D, and followed by binary thresholding. The area, and

APT-ratio were calculated based on this resulting segmentation.

Figure 17: Segmentation position correction.

A: One vector is drawn between the left and right corners of the cartilage ring/posterior wall transition, and one

vector equal to the horizon;

B: Horizontal segmentation alignment;

C: Interactive corner selection for a plane in the rotated segmentation;

D: Result after applying the transformation matrix.
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Figure 18: Points where the diameters were automatically measured.

A: Anteroposterior diameters;

B: Transverse diameters.

Measurement calculations The area was calculated by summation of the number of white pixels in the

binary image. The diameters were automatically calculated. Therefore, the minimum and maximum x- and

y boundary values were extracted from the binary segmentation. Based on these ranges, the diameters were

automatically calculated at five points (1/6th, 2/6th, 3/6th, 4/6th, and 5/6th of the ranges), as shown in

Figure 18. The mean diameter for each direction was calculated, followed by the APT-ratio.

Scoring system Five different formulas were explored to assess how the measurements could be used. The

APT-ratios per frame were used as input. One paper, published by Hysinger et al.[1] was found were they

used the area to calculate the CSA change along the respiratory cycle, see Formula 1. This formula takes

the correlation between the malacia and non-malacia segment of the trachea not into account. Therefore,

self-established formula’s were also explored since relevant literature was not found. In general, two types of

formula’s were established: those comparing the malacia versus the non-malacia segment (see Formula’s 3,

4 and 5), and those comparing end-inspiratory versus end-expiratory (see Formula’s 6 and 7). A scatterplot

was made for the outcomes of each formula, where the calculated outcomes (independent variable) were

plotted against the estimated TLC (dependent variable). Furthermore, linear regression was performed,

using ordinary least squares for the fitting. The following descriptive statistics are used for evaluation: the

coefficient of determination (R2), the root mean squared error, and a p-value of 0.05.

The first model corresponds to Formula 3. The same formula as used by Hysinger et al.[1] is used to calculate

the APT change ratio along the respiratory cycle for the malacia and non-malacia segment individually. A

ratio between these two values is calculated.

TLC =

APT Minsp - APT Mexp

APT Minsp

APT Ninsp - APT Nexp

APT Ninsp

(3)

The second model corresponds to Formula 4. The APT-ratio difference along the respiratory cycle is

calculated for the malacia and non-malacia segment individually. This distinguishes model 2 from model

1 because now the actual value change is used instead of a ratio change itself, and the impact of the

end-inspiratory APT value (the denominator in model 1) is now limited. A ratio between these two actual

value changes is calculated which should be interpret as how many times smaller the change along the

29



respiratory cycle is for the malacia segment relative to the non-malacia segment.

TLC =
APT Minsp - APT Mexp

APT Ninsp - APT Nexp
(4)

The third model corresponds to Formula 5. This formula is based on the principle of proportion. Basically,

the concept is ’part divided by whole’, so it should be interpret as how many times smaller the end-expiratory

APT-ratio is relative to the end-inspiratory APT ratio. The APT-ratio proportion along the respiratory

cycle is calculated for the malacia and non-malacia segment individually. An overall ratio is calculated

which should be interpret as how many times smaller the APT-ratio change along the respiratory cycle is for

the malacia segment relative to the non-malacia segment. In both segments, the end-inspiratory APT-ratio

was considered as the ’whole’ value because it corresponds to the maximum tracheal lumen dimension at

that point.

TLC =

APT Mexp

APT Minsp

APT Nexp

APT Ninsp

(5)

The fourth model corresponds to Formula 6. This formula is similar to Formula 4, but now it considers

end-inspiratory versus end-expiratory instead of malacia versus non-malacia segment. The APT-ratio

difference between the malacia and non-malacia segment is calculated for end-inspiratory and -expiratory

individually. A ratio between these two actual value changes is calculated which should be interpret as

how many times smaller the end-expiratory change between the two tracheal segments is relative to the

end-inspiratory change.

TLC =
APT Nexp - APT Mexp

APT Ninsp - APT Minsp
(6)

The fifth model corresponds to Formula 7. This formula is similar to Formula 5, but now it considers

end-inspiratory versus end-expiratory instead of malacia versus non-malacia segment. The APT-ratio

proportion between the malacia and non-malacia is calculated for the end-inspiratory and -expiratory

individually. An overall ratio is calculated which should be interpret as how many times smaller the

end-expiratory change between both segments is relative to the end-inspiratory change between both segments.

In both respiratory cycles phases, the non-malacia APT-ratio was considered as the ’whole’ value because it

corresponds to the maximum tracheal lumen dimension for that specific respiratory cycle phase.

TLC =

APT Mexp

APT Nexp

APT Minsp

APT Ninsp

(7)
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4.3 Results

In Figure 19, the scatterplots including a linear regression curve (red line) are plotted. Corresponding

equation is also visualised in each scatterplot. Each blue dot corresponds to one patient. The x-axis represents

the calculated outcome, based on each model formula. The y-axis represents the clinically determined TLC.

In Table 2, corresponding statistics can be found.

Model 1 A positive relationship between the calculated value and the amount of tracheal lumen collapse

is observed in model 1. The calculated value has an overall range between -1.0 and 1.9, with an outlier

at x=3.7 It is not possible to cluster two groups, considering the cut-off value (33%) for determining the

necessity of treatment. This observation holds for other percentages as well. Following descriptive statistics

are observed: R2=0.046, RMSE=22.12, and p=0.365, indicating statistically insignificance. The outlier had

a high APT-ratio change along the respiratory cycle of the malacia segment, and not for the non-malacia

segment. However, the impact of this outlier is limited, as its absences does not substantially improve the

overall results.

Model 2 A positive relationship between the calculated value and the amount of tracheal lumen collapse

is observed in model 2. The calculated value has an overall range between -1.0 and 1.9, with an outlier

at x=3.3. It is not possible to cluster two groups, considering the cut-off value (33%) for determining the

necessity of treatment. This observation holds for other percentages as well. Following descriptive statistics

are observed: R2=0.064, RMSE=21.91, and p=0.283, indicating statistically insignificance. The outlier is

the same as in model 1, having a similar reason and impact.

Model 3 A positive relationship between the calculated value and the amount of tracheal lumen collapse

is observed in model 3. The calculated value has an overall range between 0.004 and 0.065, with an outlier

at x=0.1. It is not possible to cluster two groups, considering the cut-off value (33%) for determining the

necessity of treatment. This observation holds for other percentages as well. Following descriptive statistics

are observed: R2=0.003, RMSE=22.61, and p=0.819, indicating statistically insignificance. The outlier had

a small APT-ratio change along the non-malacia segment, which has more influence in this formula than for

models 1 and 2. However, the impact of this outlier is limited, as its absences does not substantially improve

the overall results.

Model 4 A negative relationship between the calculated value and the amount of tracheal lumen collapse

is observed in model 4. The calculated value has an overall range between -2.9 and 5.9, with an outlier at

x=72.4. It is not possible to cluster two groups, considering the cut-off value (33%) for determining the

necessity of treatment. This observation holds for other percentages as well. Following descriptive statistics

are observed: R2=0.007, RMSE=22.56, and p=0.718, indicating statistically insignificance. The outlier is the

same patient as in model 3. This patient had a large difference between the end-expiratory APT-ratio of the

non-malacia and malacia segments, which was not observed in the end-inspiratory phase. This discrepancy

results in this high value.
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Figure 19: Scatterplots and linear regression curve (red line) for each explored model. Each blue dot corresponds

to a patient. Each x-axis represents the calculated outcome, based on each model formula. Each y-axis represents

the tracheal lumen collapse during the intervention.

A: Model 1 | TLC =

APT Minsp - APT Mexp
APT Minsp

APT Ninsp - APT Nexp
APT Ninsp

B: Model 2 | TLC =
APT Minsp - APT Mexp

APT Ninsp - APT Nexp

C: Model 3 | TLC =

APT Mexp
APT Minsp
APT Nexp
APT Ninsp

D: Model 4 | TLC =
APT Nexp - APT Mexp

APT Ninsp - APT Minsp

E: Model 5 | TLC =

APT Mexp
APT Nexp
APT Minsp
APT Ninsp
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Model 5 A negative relationship between the calculated value and the amount of tracheal lumen collapse is

observed in model 5. The calculated value has an overall range between 0.7 and 1.7, without an outlier. It

is not possible to cluster two groups, considering the cut-off value (33%) for determining the necessity of

treatment. This observation holds for other percentages as well. Following descriptive statistics are observed:

R2=0.002, RMSE=22.62, and p=0.840, indicating statistically insignificance.

Table 2: Descriptive statistics corresponding to the linear regression in the scatterplots (n = 19).

Descriptive statistic Model 1 Model 2 Model 3 Model 4 Model 5

Coefficient of determination (R2) 0.046 0.064 0.003 0.007 0.002

Root mean squared error (RMSE) 22.12 21.91 22.61 22.56 22.62

p-value 0.365 0.283 0.819 0.718 0.840

4.4 Discussion

The goal of this chapter was to translate a measurement outcome into a clinically usable scoring system

for TLC assessment. The APT-ratio seems not to be the right measurement because none of the developed

models is usable, considering the p-value. General differentiation between the requirement for a tracheopexy

or not (considering the cut-off value of 33%) is also not possible based on the results. This supports also the

conclusion that the APT-ratio is not useable.

It is not possible to correlate the results with other studies because similar studies were not found. One

relevant paper was found, published by Hysinger et al.[1]. They calculated the CSA change for the malacia

and normal segment separately without correlating them with each other.

There are eight limitation in this study. First, the end-inspiratory and -expiratory frames were manually

selected with guidance of the changing point in posterior wall movement direction. However, it was sometimes

difficult to check which frame was really end-inspiratory and -expiratory. It would be recommended to

calculate the measurement along a video, instead of just one frame. Based on the biggest and largest

value, it should be possible to extract which frame is the end-inspiratory and -expiratory frame. Second,

the clinically estimated TLC was subjective. Some patients had a dubious estimated TLC value. For

example, the trachea was almost fully collapsed but it was graded as 20% collapse. It is doubted if this

value was correct. It would be recommended to let multiple people do the TLC estimation, also multiple

times. This minimizes the inter- and intra-observer variability. Third, it was assumed that just below the

vocal cords would be a normal collapse. However, there could be patients with a malacia in this trachea

segment. Fourth, a small sample size was used making the results not generalizable. More patients would

be recommended for the next time. Fifth, not all TLC percentages were represented. Data of the patients

treated in 2022 and 2023 was used to get a diverse population. However, this was not successful. Sixth,

the manual perspective correction varied each time which makes it unreliable. It was explored if manual

correction would be better than not using any perspective correction. The APT-ratio was determined for

multiple (following) frames of the same cartilage ring. It was observed that manual correction resulted in an
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APT-ratio which better matched the ratio calculated in a perpendicular view at the cartilage ring. However,

repeatedly performing this for the same segmentation resulted in different values. Seventh, it is expected that

the inaccuracy is increased relative to the original segmentation due to all manual segmentation adaptions

like horizontal alignment and the perspective correction. Last, the lens distortion was ignored in this study.

It is recommended to consider if this aspect would be relevant or not since this distortion could be the same

in all frames.

For further research, it is recommended to focus on how the area could be used as measurement. A monocular

depth map could be considered, which is already discussed in Paragraph 3.4. It is hypothesized that the area

is a better measurement. It might be possible to correlate multiple segmentation area’s when a correction

factor for the segmentation depth could be established. This could also help overcome the limitation of the

subjective clinically determined TLC used for linear regression.

It was hypothesized that the transverse diameter would not change along the trachea. However, this is

not true. This variation along the trachea supports also the conclusion that the APT-ratio is not a usable

measurement. Furthermore, it was hypothesized that the anteroposterior diameter would be smaller than

the transverse diameter. This is also not true. Some patients had a larger anteroposterior than transverse

diameter which affects the APT-ratio because it is a fraction. A wide range of calculated values was observed,

depending on whether the numerator or denominator was the largest value.

It can be doubted if linear regression was the best choice. However, it is hypothesized that using another type

of regression would not result in a generalized model due to the small sample size. Outliers in the y-direction

were dismissed, as it is likely the result of using an inappropriate measurement for tracheal lumen collapse.

4.5 Conclusion

The anteroposterior : transverse diameter ratio seems not to be a useful measurement for determining the

percentage of tracheal lumen collapse. Further research should focus on how the area could be used as

measurement. The subquestion addressed in this chapter is not answered.
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5
Discussion

In Chapter 2, color-space analysis was used to identify the ROI suitable for segmentation from bronchoscopy

frames. In Chapter 3, various image segmentation techniques were explored and evaluated. In Chapter 4,

the feasibility of developing a scoring system was explored. This chapter aims to answer the main research

question of this thesis: How can the percentage of tracheal lumen collapse in neonates born with esophageal

atresia objectively be assessed, using bronchoscopy videos? Additionally, the relevance of this thesis will be

discussed.

It is possible to segment the tracheal lumen with straightforward segmentation techniques. However, this

thesis showed limited evidence that using Multi-Otsu thresholding in the value channel could best be used.

The APT-ratio seems not to be a useful measurement as none of the used formula’s resulted in a statistically

significant linear regression analysis in Chaper 4.

There were six main limitations in this thesis. First, multiple manual steps were involved. The ROI’s

for the pixel value histograms and frames were manual selected, and manual segmentation adaptations were

performed which could result in an increase the inaccuracy. Second, limited data was used, resulting in

limited evidence. The population of neonates born with EA is small, and an online database containing

bronchoscopy video’s was not found. Third, only the subjective estimated TLC percentage was available.

For further research, it is important to let multiple people do the TLC estimation, also a multiple times.

However, this will still be subjective estimations. Fourth, the linear regression was not assessed using the

ground truths, which would result in more evidence that the APT-ratio is not usable. Fifth, some neonates

were excluded due to insufficient information. The population is small so it is crucial to obtain the missing

information to ensure inclusion of these patients. Last, the algorithm was not applicable to all data. This
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must be overcome to analyse the whole trachea.

The mortality and patient outcomes of neonates born with EA are improved during the years.[39] But

still, there is no generally accepted grading system for tracheomalacia in these patients. More profit can

be made to further improve the patients outcome. It is necessary that a patient-specific decision can be

made. This requires the understanding of the crucial factors in clinical decision making. Nowadays, crucial

decisions on the necessity of a posterior tracheopexy still rely on subjective estimations. This is not a

problem in case of severe or hardly any TLC. However, there are also neonates with moderate collapse.

Specifically these will benefit from an accurately quantified percentage. TLC quantification is crucial since

the decision is based on a cut-off value, where 1% difference could be decisive in deciding the necessity of a

tracheopexy. The WKZ aims to do a primary tracheopexy during the initial EA surgery. However, the effect

of this primary intervention is unknown. To address this, the department will conduct a randomised trial.

Maybe, 33% is not the right cut-off value, or other factors should also be considered to identify the neonates

benefiting from a tracheopexy. Addressing such questions requires enhanced diagnostics accuracy regarding

the percentage. This thesis contributes to that specific part because it presents the initial steps towards

an objective quantification. When understanding deepens regarding all contributing factors, the potential

emerges to develop a scoring system which supports the medical professionals in making patient-specific

treatment decisions. This is advantageous for the neonate as it prevents a second surgery which could be

challenging due to adhesions owing to the previous surgery. Besides, it could prevent the worse consequences

of ’brief resolved unexplained events’, like feeding difficulties and an extended hospital stay. For some, it

will prevent an unnecessary tracheopexy.

As discussed in Paragraph 1.9, existing literature has tried to quantify the TM severity, primarily focusing

on adults rather than neonates. These studies[1][13][20][21] used imaging techniques which are not preferred

for neonates for various reasons. CT-scans pose risks to neonates due to radiation exposure, and it lacks

the ability to visualise the dynamic posterior wall movement. MRI is challenging in neonates. For example

sedation is required, they are connected to monitors, and they have a replogle tube in situ (a tube for

continuous secretion drainage from the upper esophageal part, to prevent aspiration into the respiratory

tract). Furthermore, it is also not possible to visualise the dynamic posterior wall movement. Rigid

bronchoscopy is the gold standard, so more research is necessary on how this could be used for objective

assessment instead of other diagnostics.

This thesis relied on trial-and-error due to limited literature, but it resulted in new insights. The simpler

segmentation techniques used in this thesis performed well for tracheal lumen segmentation, so Deep Learning

seems to be overkill for the segmentation itself. This is advantageous since it requires a lot of data, takes a long

time to train a network, and dedicated hardware like a powerful graphics processing units are necessary. The

translation from segmentation towards a clinical scoring system is still unresolved in this thesis. Additionally,

the relationship between end-inspiratory and -expiratory frames in the malacia and non-malacia tracheal

segments is still unresolved.

From a clinical point of view, several requirements are established regarding the objective assessment. It is

essential that additional elements are not necessary in the trachea during the procedure, as bronchoscopy

is a risky intervention. Real-time analysis of the bronchoscopy video is not required. However, the analysis
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should be completed within 10 minutes after the procedure because this determines the surgery approach.

Ideally, the whole trachea should be analysed, eventually per tracheal segment. This helps in comparing

the percentages during subsequent bronchoscopies, or determine the appropriate suture placement for a

tracheopexy. A fully automatic algorithm is not required, as long as an interactive approach enhances

objectivity. For now, it is not known whether under- or over-quantifying the TLC would be worser. The

outcomes of the proposed trial could contribute to establishing the requirement regarding this. In the end,

a clinical study must be performed to prove the reliability of the algorithm. When this is successful, the

objective assessment tool could be integrated into the clinical workflow.
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6
Conclusion

In this thesis, color-space analysis was used to investigate which ROI can be segmented from bronchoscopy

frames. Various image segmentation techniques were examined and evaluated. Finally, an attempt was

made to explore the feasibility of scoring system development. All aimed at addressing the following

research question: How can the percentage of tracheal lumen collapse in neonates born with esophageal

atresia objectively be assessed, using bronchoscopy videos?.

The tracheal lumen is the ROI that can be segmented from a bronchoscopy video. The highest DSC value

(DSC = 0.9681) was obtained for three-threshold Multi-Otsu thresholding in the value channel. However,

the examined techniques had all quite similar DSC values. It remains uncertain whether this particular

combination is really the best, given the constraints of the limited data. The APT-ratio seems not to be a

useful measurement because none of the proposed formula’s had a statistically significant linear regression

analysis. Further research should focus on how the area could be used as measurement.
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[26] F. Garcia-Lamont, J. Cervantes, and A. López et al., “Segmentation of images by color

features: A survey,” Neurocomputing, vol. 292, pp. 1–27, 5 2018. [Online]. Available:

https://doi.org/10.1016/j.neucom.2018.01.091

[27] J. Chai, H. Zeng, and A. Li et al, “Deep learning in computer vision: A critical review of emerging

techniques and application scenarios,” Machine Learning with Applications, vol. 6, p. 100134, 12 2021.

[Online]. Available: https://doi.org/10.1016/J.MLWA.2021.100134

[28] N. O. Mahony, S. Campbell, and A. Carvalho et al, “Deep Learning vs. Traditional Computer Vision,”

vol. 943, 10 2019. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-17795-9
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A
Segmentations

In this appendix, the segmentation results without the mask post-processing are visualized. Additionally,

the effect of using three-threshold Multi-Otsu thresholding, and K-means clustering with K=3 and K=5 are

visualized.

A.1 Otsu thresholding

In Figure 20, some examples using Otsu thresholding are visualized. Each column belongs to one input

frame. The images in row A belong to using the red channel as input, row B to the value channel, and row

C to the gray channel. In general, the tracheal lumen is present in the segmentations. It was observed that

the outline of the field of interest (FOI) was still present in the segmentation, also some other (irrelevant)

parts. Therefore, it was decided to use mask post-processing to remove these parts.
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Figure 20: Some examples of using Otsu thresholding without mask post-processing. Each column belongs to one

input frame.

A: Red channel;

B: Value channel;

C: Gray channel.

A.2 Multi-Otsu thresholding

A.2.1 Threshold value effect

In Figure 21, some examples of the segmentations using different thresholds determined with Multi-Otsu

thresholding are visualized. In this case, three thresholds were used. The results are without mask

post-processing and belong all to the same input frame. The images in row A belong to using the red channel,

row B to the value channel, and row C to the gray channel. The first column is the segmentation using the

lower threshold, the second column using the middle threshold and the third using the upper threshold. The

fourth column are the segmentations using the range between the lower and middle threshold, and the last

column is the range between the middle and upper threshold.

Using the low threshold resulted in too limited segmentations for all image representations. In most frames,

it resulted in just a few spots deep into the tracheal lumen. The middle threshold resulted in segmentation

of the lumen itself. Therefore, this method was considered as potential. However, for the gray channel it was

in general too broad. The high threshold resulted in segmentations outside the tracheal lumen, making this

threshold inappropriate at all. The lower range is the difference between the lower and middle threshold.
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The outline tracheal lumen is segmented. However, the outline is the same as for the middle threshold.

Therefore, there seems not to be an added value for this range because the lower threshold was also useless.

The upper range is the difference between the high and middle threshold. This range is also not useful

because the outline was far too broad for the segmentations. Considering all, it was decided to focus only

on the middle threshold value.

Figure 21: The effect of using each of the three thresholds and corresponding ranges, based on Multi-Otsu

thresholding. All results belong to the same input frame.

A: Red channel;

B: Value channel;

C: Gray channel.

A.2.2 Middle threshold value

In Figure 22, some examples of using the middle threshold determined with Multi-Otsu thresholding are

visualized. It has to be noticed that the inverse of the segmentation mask is used, otherwise the desired area

would be removed instead of segmented. Each column belongs to one input frame. The images in row A

belong to using the red channel as input, row B to the value channel, and row C to the gray channel.

The tracheal lumen is present in the segmentations. It was observed that the outline of the FOI was

still present in the segmentation, also some other (irrelevant) parts. Therefore, it was decided to use mask

post-processing to remove these parts.
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Figure 22: Some examples of using the middle value threshold, based on Multi-Otsu thresholding. These results do

not include mask post-processing. Each column belongs to one input frame.

A: Red channel;

B: Value channel;

C: Gray channel.

A.3 K-means clustering

A.3.1 Number of clusters

In Figure 23, some examples of K-means clustering using K=3 are visualized. In Figure 24, some examples

of K-means clustering using K=5 are visualized. In both figures, each column belongs to one input frame.

The images in row A belong to using the red channel as input, row B to the value channel, and row C to the

gray channel. Using five clusters seemed to be better than three clusters because the amount of irrelevant

tissue was limited in the cluster for the tracheal lumen.
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Figure 23: Some examples of using K-means clustering with K=3. Each column belongs to one input frame.

A: Red channel;

B: Value channel;

C: Gray channel.

Figure 24: Some examples of using K-means clustering with K=5. Each column belongs to one input frame.

A: Red channel;

B: Value channel;

C: Gray channel.
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