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A B S T R A C T

Gait analysis performed with wearable and non-wearable sensors is necessary to evaluate gait
for biomechanical research, clinical rehabilitation and physical performance optimization. By
utilizing a setup consisting of only IMU, a method can be actualized that is non-intrusive, has
comparatively low costs and can be used outside of lab-constrained environments. This thesis
presents the utilization of a novel algorithm for the detection of gait events in both healthy
and post-stroke subjects, using key points in joint angles derived from IMU data. In addition,
it was attempted to use data from one leg to estimate gait events from the contralateral leg.
IMU and GRF data from three healthy subjects recorded at 0.9, 1.8, 2.7, and 3.6 km/h, and
two post-stroke subjects recorded at a self-selected comfortable speed and their fastest walk-
ing speed were utilized for evaluation of the algorithm. Joint angles of the hip, knee, and
ankle were computed utilizing Opensim. IMU-derived time points were compared with the
reference data that was obtained from the GRF, and calculated in the form of offset and RMSE.
Results showed that at 0.9 and 1.8 km/h, the algorithm did not perform precise and accurate
enough time points to be valid. At speeds 2.7 and 3.6 km/h, the methodology showed better
results, with an offset and RMSE that were often lower than 60ms. For post-stroke subjects,
the algorithm did not perform up to standards for both walking speeds, due to high offset
and RMSE. It was concluded that the utilized algorithm did not perform to the standards of
clinical gait detection. However, it has shown that there is potential in IMU-based setups that
utilize joint angles for gait phase detection.
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1
I N T R O D U C T I O N

Human gait, the intricate repeating pattern of movement while walking, has been intrigu-
ing researchers for a long time due to its importance for assessing health and physical per-
formance. The evaluation of the human gait is called gait analysis and has significance in
multiple fields, including biomechanical research[1] clinical rehabilitation[2] and physical per-
formance optimization[3]. In the context of clinical applications, performing gait analysis is
crucial for devising targeted interventions to address gait-related abnormalities[4], to measure
the efficacy of rehabilitation[5], to monitor and diagnose diverse musculoskeletal and neuro-
logical diseases such as Parkinson, multiple sclerosis and stroke[5, 6]. The methodologies
used for gait analysis have evolved from subjective visual assessment to instrument-assisted
methodologies. For subjective visual assessment, subjects were often filmed and footage was
reviewed based on scoring systems. Points were given to observed gait scales such as gait pa-
rameters, body segment positions or performance on timed tasks[7]. The main advantages are
the speed to evaluate major abnormalities and the method being non-obtrusive and inexpen-
sive due to the absence of measurement devices. However, the method is relatively subjective
in nature and it may lead to poor validity, reliability, sensitivity, and specificity compared to
instrumented gait analysis[8]. The current technological devices that are used to perform gait
analysis can be classified into two approaches: non-wearable sensors and wearable sensors.
Non-wearable sensors can be further classified into methodologies that use force platforms or
pressure measurement systems as floor sensors and those using camera-based tracking sys-
tems that utilize motion capture with or without markers. Floor sensors are used to measure
ground reaction forces or quantify pressure patterns, while camera-based tracking systems
are used to obtain joint kinematics and kinetics, and establish a three-dimensional motion
analysis. The methodology for wearable sensors uses different types of sensors located on the
body, including accelerometers, gyroscopes, magnetometers, force sensors and electromyog-
raphy. These sensors are used to measure various data to characterize human gait such as
acceleration, angular velocity, sensor orientation, ground reaction forces and relative muscle
tension[5].

The data from the wearable and non-wearable sensors can be correlated to each gait phase
by utilizing the biomechanical characteristics of each phase. Ground reaction forces can be uti-
lized to obtain certain gait parameters, such as gait cycle duration, frequency and symmetry,
due to the start and end of the measured force in each gait cycle. The kinematic and kinetic
data can be utilized for movement modeling and calculating changes in joint angles, moments
or velocity. The change of velocity of body segments, such as the shank or foot, or certain
positions of joint angles can be used to determine gait events. Gait events indicate the start
and end of gait subphases and are crucial for gait analysis.

Despite the advancements in gait analysis, accurate gait phase detection remains a challeng-
ing process in clinical applications. The gold standard for gate phase detection often involves
advanced setups bound to a laboratory, consisting of a multi-camera motion capture system in
combination with force plates [9]. This gold standard setup provides the best accuracy and in-
formation on related gait dynamics. However, the employment of such setups is quite limited
due to their costs, the time constraints, the intrusiveness of equipment, and the lab-constrained
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2 introduction

environment. Contrary, Inertial Measurement Units Inertial Measurement Unit (IMU)s offer
the advantage of non-intrusiveness, comparatively low costs and usage in a non-restricted
working environment. Thereby creating a possible solution for gait phase detection outside of
lab-constrained working environments such as private clinics.

However, there are a few challenges with employing IMUs instead of utilizing the gold stan-
dard setup for gait phase detection. First of all, comparable accuracy needs to be achieved
while utilizing a lesser quantity of sensors. In addition, IMUs have the disadvantage of in-
troducing inherent noise and errors, due to factors such as signal drift, inconsistent sensor
placement and synchronization[10]. These challenges can mostly be solved by strict setup
methodology and using filters during data processing. Furthermore, the use of IMUs limits
the complexity of the setup by reducing setup duration and inconsistencies in sensor place-
ment.

Research on gait phase detection utilizing only IMUs has already been conducted with var-
ious methodologies. In the study of Soliman et al.[11] the angular velocity of the shank was
utilized to obtain initial and final contact by correlating them to peaks in the angular velocity.
Due to its sample size, the study was limited in its usage on people with neurological or major
physical impairments. In addition, by only using one IMU the study was only able to measure
kinematic data for one segment of the body, limiting further expansion by utilizing f.e. joint
angles. A study by Lora-Millan et al.[12] utilized four IMUs on the pelvis, right thigh, shank
and foot with an extended Kalman filter to obtain joint angles. Gait events were correlated to
maxima, minima and distinct angles. The methodology was only limited by the requirement
of a rich enough movement around the sagittal axis to fulfill the one-axis restriction in the
knee joint. In addition, the methodology was not utilized on data sets from impaired subjects.
All these methods are explained in more detail in section 2.3

The main aim of this bachelor thesis is to develop an IMU-based strategy for gait phase detec-
tion, by utilizing a strategy that uses key points in joint angles. Furthermore, there are two
additional aims:

• An additional aim is to see if the methodology can be utilized on both healthy and
post-stroke subjects

• In addition, gait event estimations on the non-recorded contralateral leg will be per-
formed with the data of the recorded leg. To determine if it is possible to use data from
the recorded leg to obtain gait event data for both legs.

This thesis is structured as follows: chapter 2 will provide an overview of existing literature on
gait analysis and gait phase detection techniques with IMUs. chapter 3 discusses the adopted
methodology, including data collection, sensor configuration, and data processing algorithms.
chapter 4 presents the results, showcasing the effectiveness of the proposed strategy. In chap-
ter 5, a discussion of the results can be found with limitations of the proposed methodology
and recommendations for future research. Lastly, chapter 6 provides a summary of the thesis’s
findings.



2
T H E O RY

This chapter describes the fundamental theory of human gait, IMU gait phase detection and
the utilized software to process data.

2.1 human gait

Human gait consists of a repeating cyclic pattern divided into two main phases, stance and
swing phase. These phases can be further classified into sub-phases, which are bordered by
gait events, as can be seen in figure 1. The stance phase, i.e., the part of the gait cycle where
the foot contacts the surface while bearing body weight, occupies around 60% of the gait
cycle. It can be classified into five sub-phases: the heel strike, loading response, midstance,
terminal stance and the preswing. These sub-phases correspondingly start from the following
gait events: Heel Strike (HS), Foot Flat (FF), Midstance (MSt), Heel-off (HO) and Toe-off (TO).
The swing phase is the part of the gait cycle where the foot has no contact with the surface,
in other words, the period between TO and HS. It can be classified into three sub-phases: the
initial swing, Mid-swing (MSw) and the late swing[13, 14].

Each gait phase is characterized by well-defined biomechanical features. Information on the
dictating gait events and changes in joint angles of each sub-phase is explained in the follow-
ing list[13, 14]:

1. Initial contact

The gait cycle starts with the stance phase, initiating a double limb support by
initial contact with the right leg. The corresponding gait event is the HS. The knee
is in a stable, fully extended position while the ankle is dorsiflexed. The hip slowly
extends from full flexion, starting the transition to the loading response.

2. Loading response

The loading response starts at FF, where the foot is fully planted on the support
area. The knee starts a slight flexion wave that dips to 15-20

◦ after which it extends.
The ankle creates further forward propulsion by plantar flexion and the hip slowly
moves into extension. At the end of FF, the body is fully supported on one leg and
while moving forward, transitions towards midstance.

3. Midstance

When the greater trochanter of the femur is directly above the middle foot, the body
is at MSt and starts the midstance sub-phase. The knee is fully extended, ending the
flexion wave. The ankle supinates and dorsiflexes, and the hip moves from flexion
to extension.

4. Terminal stance

After MSt, the gait transitions into the terminal stance at HO, which is the mo-
ment when the heel leaves the surface. The full bodyweight will be focused on
the metatarsal heads of the foot. The knee flexes slightly, the ankle supinates and
plantar flexes, and the hip first hyperextends, to then go into flexion.

3



4 theory

5. Preswing

At the end of the terminal stance, the contralateral leg will start initial contact by
HS, once again initiating double limb support. While the body moves forward, it
pushes off the surface and goes into the preswing at TO, where the knee flexes to
35-40

◦, the ankle further plantar flexes and the hip is less extended. During TO the
toes are pushed into the ground creating a burst of forward propulsion, ending
surface contact and entering the swing phase.

6. Initial swing

In the initial swing the knee flexes to 40-60
◦, the ankle starts dorsiflexing until it is

in a neutral position and the hip transitions from extension to flexion while laterally
rotating.

7. Mid-swing

The mid-swing starts at the MSw event, which is where the foot passes the contralat-
eral foot. The knee flexes to 60

◦ and then quickly extends by approximately 30
◦.

The ankle dorsiflexes and the hip will have maximum flexion.

8. Terminal swing

After the mid-swing, the gait cycle enters the terminal swing, where the leg is
preparing to reestablish double limb support and restart the gait cycle. The knee
goes to full extension, the ankle moves gradually to a neutral position towards the
end of the terminal swing and the hip has a slight extension. The terminal swing
is the end of the swing phase and the gait cycle. It transitions into initial contact,
starting the stance phase and restarting a new gait cycle.

Figure 1: Illustration showing the gait cycle phases and its stances, including double and single leg
support stances[15]

2.2 inertial measurement units

Inertial Measurement Units have proved to be very useful in biomechanics and motion anal-
ysis due to their compact size, portability, and comparatively low cost. A typical IMU always
consists of at least two sensors, a 3-axis accelerometer and 3-axis gyroscope, and sometimes
has a third sensor, a 3-axis magnetometer. These sensors establish either a six or nine degrees
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of freedom IMU that can measure specific aspects of an object’s motion, providing valuable
data for gait and motion analysis. This section provides an overview of the key components
and principles of IMUs[16].

Accelerometers are designed to measure linear acceleration. They operate based on the fun-
damental principle of Newton’s second law, which states that the force acting on an object is
directly proportional to the rate of change of its linear velocity. Within an accelerometer, there
is a proof mass that gets displaced by an exertion of force due to acceleration. This displace-
ment can be detected by a pick-off and is converted into an electrical signal, which can be
scaled to indicate acceleration. The sensor’s output is typically expressed in units of gravity
(g), where 1 g represents the acceleration due to gravity. By integrating the accelerometer’s
output over time, the velocity and thus the displacement information can be obtained[16, 17].

Gyroscopes are sensors that measure angular rates for an inertial frame of reference. Gyro-
scopes utilize the principle of angular momentum conservation. When an angular acceleration
is applied, a torque is exerted on the gyroscope, which causes its precess around an orthogo-
nal axis. The gyroscope’s output is proportional to the rate of this precession and can be used
to calculate angular rates. By integrating the angular rates over time, the change in angle con-
cerning an initial reference angle can be obtained. The change in angle can be further utilized
to determine the angular position or orientation of an object[16, 17].

As said before, some IMUs are equipped with magnetometers, which are sensors that mea-
sure the strength and direction of a magnetic field. These sensors are mainly utilized for
applications where knowledge of the device’s orientation relative to the Earth’s magnetic field
is essential. In gait analysis, they can be used to determine the orientation of the IMU to the
Earth’s magnetic north, providing additional information about the sensor’s spatial orienta-
tion. When combined with the data from the accelerometer and the gyroscope, an absolute
heading can be determined[16, 17].

One of the key challenges of IMUs is the need for precise calibration and sensor fusion. Due
to inherent sensor biases, scale factor and other systematic errors, IMU data can drift over
time, leading to inaccuracies in its motion estimation. To minimize these issues, calibration
procedures are essential. This involves characterizing and correcting sensor errors to ensure
the accuracy and reliability of the IMU measurements[16, 17].

Sensor fusion is another critical aspect that combines data from the sensors within the IMU.
Sensor fusion algorithms, such as complementary filters or Kalman filters, integrate data from
multiple sensors to provide a more accurate estimate of motion and orientation. In addition,
sensor fusion can be utilized as a method to eliminate errors from sensors. For example, if
the gyroscope has a small, consistent angular rate, but the magnetometer and accelerometer
show no sign of motion. Then it can be inferred that the gyroscope is giving a false output
that needs to be adjusted[16, 17].

2.3 inertial measurement units for gait phase detection

There are multiple methods to establish gait phase detection, including image processing,
force sensors and wearable sensors[5]. Where an image processing method utilizing opto-
electronic systems is generally considered the gold standard, due to their high accuracy in
kinematic feature measurements[9]. However, this thesis will focus on a strategy that deviates
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from the gold standard by only utilizing wearable IMU sensors.

Most research that involves gait phase detection by IMUs focuses on two phases, whereas
most publications mainly focus on the separation between stance and swing, indicated by the
heel strike and toe-off. These studies contain several methods that often utilize either one or
two IMUs to obtain events for one side. One of these methods is based on angular rate mea-
surements. An example is Sarshar et al.[18], which is a proof of concept where raw data was
obtained by an IMU at the shank and processed to a smoothed angular velocity magnitude.
This data was then put through three Long short-term memory (LSTM) algorithms that ex-
tracted HS, MSt and TO events as data comprising the probability in a time series. It concluded
that LSTM models could be used to predict gait phases, however, the LSTM model might need
to be retrained and improved for better results. While this study shows that HS, MSt and TO

can be detected with the angular rate of the shank, the applied algorithm was too complex
to replicate. Another study from Soliman et al.[11] utilized an IMU setup similar to Sarshar
et al.[18] to detect initial and final contact in straight-line walking. The initial and final con-
tacts were related to the negative peaks in the mediolateral angular velocity. This showed that
the events of HS and TO could be predicted by detecting certain points in the mediolateral
angular velocity of the shank. This would be one of the methodologies that could detect the
most important gait events and parameters with the least amount of IMUs, however, obtaining
gait event outside of HS, MSt and TO would be quite hard with angular velocity data. Not only
due to missing key points but also having significant noise artifacts.

Another method that is utilized is based on joint angles obtained from combining the IMU

kinematic data with Inverse Kinematics (IK). For instance, the study by Park et al.[19] used
seven IMUs placed on the pelvis and for both legs on the frontal distal thigh, frontal medial
shank and upper foot. For the reference, they used a motion capture system. The study con-
cluded that the hip-joint angle during walking showed no significant difference (p > 0.05),
while the knee and ankle joints did show significant differences in certain variables (p < 0.05).
However, the differences were in maximum, minimum and range of motion variables. All
three joints showed decent comparability along the gait phase in terms of local maxima or
minima. While this study is more focused on comparing joint angles, it is a good foundation
to be utilized in gait phase detection, seeing as the joint angles along the gait phase were
adequately comparable. This could potentially open up the possibility to utilize key points in
the joint angles for gait events, as done with the angular velocity in the study of Soliman et al.
One more study that is based on joint angles is Lora-Millan et al.[12] evaluated an Extended
Kalman Filter for gait detection with sagittal lower limb kinematics. The filter that was uti-
lized to conduct the evaluation was established in earlier original work and adapted for their
more recent study.[20] They performed the study with four IMUs, strapped to the pelvis, right
thigh, right shank and right foot. For gait event detection, certain maxima, minima and dis-
tinct angles were noted as key points. For example, a maximum angle for the knee indicated
an early stance and a maximum angle from the hip indicated a mid-stance. This study shows
that joint angles from the hip, knee and ankle could be utilized to identify the six gait events
from the IMU applied to the leg. The study concluded that the algorithm could be utilized
as a controller for wearable robotic devices. However, while they applied their methodology
on eight healthy subjects, they did not test the algorithm on impaired subjects. In addition,
the study only evaluated the gait events from the right leg, without looking at bipedal events.
There might be a possibility to also evaluate the left leg with certain key points from the right
leg.
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2.4 movement modelling

To simulate movement and obtain joint angles, an open-source software program called Open-
Sim was utilized.[21]
To be able to utilize this program, a model needs to be constructed, which involves a codified
description of the topology and dynamics of a biomechanical system. This can not only in-
clude skeletal, neural and muscular structures, but also components of non-biological nature,
such as exoskeletons. This can be done manually by defining the components such as rigid
bodies and muscles, that will prompt OpenSim to generate a system that includes equations
that control the kinematics and dynamics of that constructed model. These computations are
done by the program Simbody, using an order-N recursive formulation. Simbody is one of the
various tools that OpenSim utilizes to operate. If one does not have all the necessary data to
construct a model, a generic model provided by OpenSim to simulate data can be chosen[22].

To get a more accurate simulated subject, the model can be scaled in OpenSim[23]. This can ei-
ther be done by measurement-based or manual scaling. For measurement-based scaling, a file
containing all markers on the model and experimental marker positions needs to be provided.
By comparing the distance between the experimental and virtual marker positions, scale fac-
tors are created for individual segments. These individual factors can also be combined into
an overall scale factor, which can be used to generally scale all segments. Manual scaling
provides the possibility to scale any individual segment manually. The scale factors can be
determined by manually measuring the length of segments of a subject, which has a higher
precision than scaling the full model by the difference in height between a generic model and
the subject. Based on these provided scale factors, an algorithm will scale all body frames and
their related objects, such as joint frame locations and muscle attachment points. In addition,
by inputting the body mass of the simulated subject, the body mass of the model can be scaled
proportionally, by scaling factors and thus changing the body mass of the model or by scaling
factors while body mass stays preserved.

2.5 inverse kinematics

Inverse Kinematics IK is a mathematical approach used to determine the joint angles and posi-
tions of a kinematic chain given the desired end-effector position and orientation. For motion
analysis of gait with OpenSim, IK can be performed either using IMU or marker data to esti-
mate joint angles and positions of body segments.

Applying IK on IMU data first requires the use of the IMU placer tool, which places virtual
IMUs onto the model by utilizing quaternion data,i.e., IMU sensor orientation, of a calibration
motion file. Once each IMU is registered to a specific body segment, the IMUIK tool can be
used to simulate experimental movement by computing coordination values for each time
frame of motion. The coordination values position the model in a pose that best reflects the
experimental IMU orientation. In a mathematical context, the ’best match’ is expressed by the
weighted least squares problem. The solution to this problem aims to minimize orientation
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errors and is computed by the IMUIK tool[24]. The solution provided by the IMU IK tool can
be defined as:

Weighted Least Squares Equation = min
q

∑
i=IMUs

wiθi
2

(1)

Where q is the vector of the generalized coordinates, wi is the weights corresponding to each
IMU orientation, and θi is the angle component of the orientation errors expressed by an axis-
angle representation.



3
M E T H O D S

This chapter will describe the methods that were utilized for data collection, data processing,
and results interpretation.

3.1 human gait data collection

The data that was utilized for this thesis was recorded in the Biomechanical Engineering lab
in the Horst-complex at the University of Twente. In total, data for three healthy subjects
(subject 1-3) were obtained during the research of Wang et al.[25] and data of two post-stroke
subjects (subject 4-5) were obtained during the research of Simonetti et al.[26] with participant
information for body mass, height, age and gender that can be seen in table 1. Post-stroke
subjects data was only available in the form of average data across all subjects.

Table 1: Participant information of body mass, height, age and gender of subjects

Subject body mass(kg) height(m) age(years) gender

1 75.2 1.80 23 M

2 65.1 1.71 23 F

3 56 1.68 23 F

4-5 88.9± 16.5 179± 5.1 57± 8.7

3.1.1 Protocol for healthy subjects

An experimental setup including eight IMUs and a split-belt instrumented treadmill was uti-
lized. Eight IMUs (Xsens Link, Enschede, The Netherlands) recording at a frequency of 240 Hz,
were used to measure the kinematics of the lower limbs and trunk. They were placed with
straps on the sternum, pelvis, lateral side of the thighs, frontal side of the shanks, and the
dorsal side of the feet. In addition, 33 reflective markers were placed on the lower limbs and
trunk of the subjects. A split-belt instrumented treadmill (Motek-Forcelink BV, Culemborg,
The Netherlands) was used to acquire the GRF data of the individual legs at 100 Hz.

A synchronization protocol was established that started and stopped measurements for the
experiments, which can be found in Wang et al.[25]. This protocol caused the recording of
data of all sensors to start and stop at the same time. First, a measurement was made where
the subject stood on the treadmill and performed a 10 s standing trial for later calibration.
After that, subjects were instructed to perform six walking trials (0.9, 1.8, 2.7 and 3.6 km/h)
on the treadmill for around 60 seconds and each walking speed was recorded once.

9
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3.1.2 Protocol for post-stroke subjects

The experimental setup included eight IMUs (Xsens Link, Enschede, The Netherlands) record-
ing at a frequency of 100 Hz were used and placed on the pelvis, lateral side of the thighs,
frontal side of the shanks and the dorsal side of the feet. Two force plates were used for ac-
quiring the GRF data at a frequency of 1000 Hz.

First, a measurement was made where the subject performed a static standing pose in a neutral
position for ten seconds for later calibration. After, all subjects were recorded while walking
at a self-selected comfortable speed and their fastest walking speed. A minimum of ten gait
cycles were recorded across all measurement systems for each walking speed.

3.2 acquisition of joint angles

The data from the IMUs recorded with the Xsens software included velocities, accelerations,
gyroscopic data, magnetometer data, and quaternions. Afterward, OpenSim was utilized for
computing joint angles from IMU sensors orientation, i.e., quaternions. Using MATLAB, the
quaternions were converted into motion files for the OpenSim software. For the musculoskele-
tal model, the generic model gait2392_simbody was used for all subjects. This is a generic
model provided by OpenSim that is primarily used for lower extremity analysis.

3.2.1 Scaling

Establishing a model for every subject that compared the most with their real anthropome-
try was done by utilizing the ’Scale Model’ tool in OpenSim. Each model started with the
gait2392_model which is about 1.68 m tall and has a body mass of 75.16 kg. This model was
scaled for all subjects according to the following steps:

1. Changing the body mass of the model with that of the subject

2. Selecting ’Preserve mass distribution during scale’

3. Deselecting ’Adjust Model Markers’

4. Changing all scales in ’Scale Factors’ by the factor Heightsubject
1.8

3.2.2 IMUs inverse kinematics

First, the IMUs needed to be placed on the model, for which the ’IMU placer’ tool was used.
This tool took a data transformation of space-fixed Euler angles from the IMU coordinate space
to the OpenSim coordinate space as input. After placing the IMUs without any rotations and
the OpenSim frame having the x-axis toward the front, the y-axis upwards and the z-axis
toward the left, all IMUs needed to be rotated around the X-axis by −90° to obtain a representa-
tive placement of the IMU. The next input was an orientation file during the standing pose of
which the first frame of quaternions is used to calibrate the initial positions and orientations
of the IMUs on the pelvis, right tibia, femur and calcaneus. To obtain a correct singular frame
for the static pose, the mean was taken of all frames of quaternions recorded during the static
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data recordings. This singular mean frame was then converted to the orientation file and uti-
lized.

After the IMUs were placed, the ’IMU Inverse Kinematics’ tool was used to produce motion
files containing joint angle data. This tool has two inputs, data transformation and sensors
orientation file. For the data transformation, a rotation around the X-axis by −90° was needed.
The sensor orientation file was the motion file of the desired walking speed. IMU IK was re-
peated for all walking speeds and for all subjects.

3.3 gait event detection

3.3.1 Ground reaction forces

The ground reaction forces were used as a reference for the gait events. The raw data was first
filtered with a low-pass Butterworth filter to reduce noise. The data acquired at 100 Hz was
filtered with a 4-th order filter and a cut-off frequency of 5 Hz. Parameters were chosen based
on filters used in other articles with similar sampling frequency and comparing filter results
in the range of 2-10 Hz[27, 28].The raw data acquired at 2048 Hz was filtered with a 6-th order
and a cut-off frequency of 25 HZ. The high sampling rate increased the amplitude and fre-
quency of the noise causing the need for a higher-order filter to be able to attenuate the data
more aggressively and remove higher-frequency noise, a higher cut-off frequency was chosen
to minimize the amount of lost information. Filter results with cut-off frequency in the range
of 10-50 Hz were tested for optimal results.

Six gait events were automatically extracted for both legs. TO, HS and MSt were acquired by
using the unfiltered data of the GRF and utilizing the MATLAB R2021b islocalmin command
with the flatselection option. For each leg the first flat point of each cycle correlated with the
TO, the center point with the MSw and the last point with the HS. For the last point, a mini-
mum prominence needed to be utilized due to false positives in the non-zero data. Using the
filtered data, the remaining FF, MSt and HO time data were obtained by utilizing the MATLAB
findpeaks command. The first and second maxima, with a minimum peak height of 50% of
maximum peak height to minimize false positives, indicated respectively the FF and HO. The
minima with a minimum peak height of 50% of maximum peak height indicated the MSt.

For extra prevention of false positives, a minimum separation distance between peaks was
used for MSt that was based on the mean distance between MSw. In addition, using MSw as
reference points, every stance phase was verified for two maximum peaks and one minimum
peak. If the amount of data points differed from expectations (two maxima, one minimum) all
data points between the twoMSw data points were returned as false results.

3.3.2 IMU-based strategy

The joint angles from the IMU data were first filtered with a low-pass Butterworth filter to
reduce noise. The data acquired at 100 Hz was filtered with a 3-th order filter and a cut-off
frequency of 5 Hz. The raw data acquired at 240 Hz was filtered with a 4-th-order filter and
a cut-off frequency of 2 Hz. Parameters were chosen due to the need for a smooth signal
that contained as little noise as possible to keep false positives at a minimum. For the higher
sampling rate data, a higher order with a lower cut-off frequency showed to be optimal in
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comparison to a filter with equal order and higher cut-off frequency.

Key points in the hip and knee extension/flexion, and ankle plantar-dorsi flexion were de-
fined and correlated to six gait events. as seen in table 2 and fig. 2. In addition, based on
the phenomenon of reciprocal leg movement, it was assumed that when the right leg is at a
certain gait event, the contra-lateral leg will be in a gait event that is half of a gait cycle further.
For example, when the right leg is at the HS gait event, the left leg is assumed to be at the HO

event, three gait events further. With this assumption, it was possible to estimate gait events
for both legs while only utilizing IMU on one leg.

Joint Key point Gait event

knee First extension maxima HS R/HO L

Second flexion minima FF R/TO L

Second extension maxima MST R/ MSW L

Minimum flexion TO R/FF L TO R/FF L

hip Minimum flexion MSW R/MST L

Maximum flexion HO R/HS L

Table 2: Key point definitions that correlate with gait events. Where R stands for the gait event for the
right leg and L for the gait event for the left leg.

Figure 2: Graph of one gait cycle with hip, knee and ankle joint angles with points on the joint angles
to visualize key point allocations. Where the red circles indicate the key points of the hip joint
angle, and the blue circles indicate the key points of the knee joint angle.

An automated Matlab script based on the functions localmin and localmax gave the time of
the six key points. To reduce false positives and false negatives a similar method is utilized as
described in section 3.3.1. The minimum knee flexion is used as a reference point, as this was
a reliable joint angle dip caused by the TO gait event, occurring right before gait initiation. The
amount of maxima and minima between each n and n+1 knee joint angle dip is calculated for
the knee and hip joint angles. If the amount of data points differed from expectations (two
maxima, one minimum and one maximum, one minimum) all data points between the two
knee joint angle dip data points were returned as false positives and indices were adjusted to
prevent an impact on further processing.

In addition, to prevent false positives and negatives due to startup variation, the algorithm
started at the maxima of the hip joint angle at the first gait cycle. The algorithm deleted all data
points for all gait events that start at an earlier data point than the first hip joint maximum.
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3.4 pre-processing gait event detection

To be able to verify the results of the GRF and the IMU-based gait detection, they needed to
have an equal amount of data points that also correlate with each other over the full gait mea-
surement. Otherwise, the false positives will cause problems. First, the start of data collection
needs to be streamlined, so both GRF and IMU data need to start at the same gait event. This
required a data point that always has a high prominence and accuracy, to obtain a consistent
data point. For both cases, this was the maxima of the hip joint angle. So all data points for
both GRF and IMU data before the first maximum hip joint angle were deleted. In addition to
a starting point, there was also an endpoint that needed to be established, because the data
measurement did not consistently stop at certain time intervals. To accommodate as much
data for each measurement, an array was created that contained the length of all IMU gait
event data indices. Then the minimum value of the array was taken, which became the new
maximum number of indices used for both GRF and IMU-based gait events.

3.5 assesment of gait event detection

For assessment of the gait events extracted using GRF and IMU data, the mean offset with
the standard deviation, the Root Mean Square Error (RMSE), and the false positives and false
negatives were used. To show the accuracy of the utilized strategy, the mean offset with stan-
dard deviation was acquired by subtracting time data points of the GRF from the IMU time
data points and applying a MATLAB standard deviation function on all acquired offsets. To
show the precision of the utilized strategy, the false positives and negatives were acquired
by verifying if the amount of measured data points was higher or lower than the expected
amount. If the amount of data points was lower than expected, there was a false negative, if
the amount of data points was higher than expected, there was a false positive. The RMSE was
calculated with the MATLAB function rmse, where a value of 0 indicates a perfect fit with the
GRF reference data, this value can be defined by the following equation:

RMSE =

√∑
i=1n tGRF

i − tIMU
i

2

n
. (2)

In this equation n stands for the total number of data points, i is a certain data point, tGRF
i is

data point number i from the GRF data and tIMU
i is data point number i from the IMU data.
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R E S U LT S

This chapter shows results obtained from processing the IMU data and the assessment of the
methodology used for gait phase detection described in chapter 3.

4.1 joint angles from imu inverse kinematics

In fig. 3 the results are shown from the IMU inverse kinematics for a healthy subject. It shows
the knee, ankle, and hip joint angles at various walking speeds. Notable is that the basic
outline of the hip stays consistent, while the knee and ankle joints both lost the amplitude
hence showing smaller peaks at the slowest speed. In addition, an overall improvement in
standard deviation can be observed with the increase in walking speed, suggesting that gait
cycles became more consistent at higher walking speeds.

Figure 3: Joint angle results from IMU inverse kinematics from a healthy subject. Red lines show the
mean angle across all gait cycles for each walking speed and joint, while the shaded area
represents the standard deviation. From left to right are shown walking speeds of 0.9, 1.8, 2.7,
3.6 km/h. From top to bottom are shown knee, ankle, and hip flexion angles

4.2 comparison of reference gait events to joint angle key points

A comparison of gait event time points obtained from the reference GRF data to the joint angles
is shown in fig. 4. This figure shows the overlap due to bipedal movement between the gait
events of the right and left legs. It is noticeable that the combination of FF and TO was the only
combination that had a larger time discrepancy with reference data. In addition, the figure
shows an overlap with the defined key points. As seen table 2 in the method section. Looking

14
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at the figure for the joint angles, a large offset can already be seen between the key points
extracted from IMU IK and the reference method. Especially for the MSt R/MSw L lines in black
and brown and the HO R/HS L lines in pink and purple. These events correspond, respectively,
with the key points defined as the small flexion wave and the second extension of the knee.

Figure 4: Comparison of reference gait events to joint angles. With GRF data in the upper figure and
joint angles in the lower figure. Inserted lines indicate gait event time points from the GRF

reference data of subject three at 2.7 km/h. The lines from GRF are also plotted in the joint
angle data. The solid lines and dotted lines depict the gait events of, respectively, the right
and left leg. The TO, MSw, HS, FF, MSt and HO are shown in the colors blue, brown, purple,
red, black and pink, respectively

4.3 assessment of gait event detection

4.3.1 Gait event detection in healthy subjects

The data of gait event detection comparison for each subject can be found in tables 6 to 8. The
data for the lowest walking speed of 0.9 km/h was omitted, due to the extreme offsets and
RMSE values. This is also noticeable in the 1.8 km/h walking speed, having the lowest overall
accuracy. This is reflected in both the offset and the RMSE which are above 100ms for most gait
events. At walking speeds of 2.7 and 3.6 km/h, accuracy improved, showcased by the lower
offset and RMSE. The data for each gate event was averaged for all three subjects to obtain
more precise data for the detection accuracy of each gait event. All average data can be found
in table 3, while tables 9 to 20 show the average and individual subject data for single gait
events.

The algorithm often identifies the predicted gait events before the reference gait event at
1.8 km/h, both before and after the reference at 2.7 km/h and often after the reference at 3.6
km/h. This indicates a trend where the time points of the key points increase when gait veloc-
ity increases. The data of 1.8 km/h walking speed has a very low accuracy compared to the
other two walking speeds. This is reflected in both the offset and RMSE values that are above
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100ms for most gait events. With the RMSE depicting the best method to validate accuracy.
When looking at the data at 2.7 km/h and 3.6 km/h, it is noticeable that most gait events have
much better accuracy at one of the walking speeds compared to the other. When looking at
the gait events of the right HS, TO and MSw, and the left HS, HO, and MSw it can be seen that
the data at 2.7 km/h have an RMSE and Offset that is lower than those at 3.6 km/h.

Table 3: Average gait events of all healthy subjects at three different walking speeds of 1.8, 2.7 and 3.6
km/h for all discussed gait events of both legs. Data for both offsets as the RMSE is shown
in milliseconds. The offset was obtained by averaging the difference between the reference
key points and predicted key points in time, with the standard deviation showing variability
between the gait cycles. Lastly, the RMSE shows the average difference between the predicted
and the reference key points in time

Gait event v=1.8 km/h v=2.7 km/h v=3.6 km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

HS R 91±50 131±89 -2±31 43±14 -79±20 82±9

FF R 253±74 283±118 83±32 116±81 -3±20 55±17

MSt R 42±55 82±31 -1±35 42±19 -40±24 50±21

HO R 29±37 54±8 42±24 52±9 3±17 21±7

TO R 89±46 107±38 -16±27 36±16 -94±12 96±15

MSw R 134±37 149±64 16±23 38±8 -78±16 81±16

HS L 118±31 124±29 59±40 71±18 -5±38 38±26

FF L 155±39 163±39 65±28 73±23 -28±35 46±15

MSt L 119±55 135±36 43±36 57±10 -36±34 51±20

HO L 24±64 107±48 -14±36 47±13 -74±20 76±9

TO L 186±69 226±123 4±30 72±34 -72±18 77±27

MSw L 63±47 98±54 -26±23 44±21 -91±20 93±10
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4.3.2 Gait event detection in stroke subjects

The knee showcased an extension higher than 0
◦, however, OpenSim does not simulate the

knee joint above 0
◦ which caused multiple key points to show constant false negatives and

false positives. The only key points that were consistent and usable were the maximum and
minimum angles of the hip flexion and the maximum flexion of the knee, corresponding to
the right HS, HO and FF, and the left HS HO and TO gait events. The ground reaction forces
showed quite a few aberrations, with dissimilar force peaks. In addition, at certain gait cycles,
there was a large noise artifact right before the measured data, which caused the need for
more manual acquisition of reference data. In addition, the GRF of stroke subject 1 only had
GRF data for the left leg, leaving the right leg with no reference, and thus no usable reference
for this subject.

In tables 4 and 5, the gait event detection data can be found for the stroke subjects. The
data shows an increase in accuracy at the fast speed in nearly all gait events, the left HO of
subject 2 being an exemption. This means a more streamlined gait detection at higher walking
speeds when utilizing the proposed strategy. However, the acquired Offset and RMSE values
are still high in all but two gait events (right FF and left TO), showcasing an overall low ac-
curacy with the algorithm when utilized with patients that have a walking impairment. The
algorithm consistently identifies the predicted gait events of the left HS and right HO before
the reference points, while all other gait events, except for right FF, are consistently identified
after the reference point.

Table 4: Gait events of stroke subject 1 at two different walking speeds of 1.8 and 3.6 km/h the HS, HO
and TO of the left leg. Data from both offset and RMSE is shown in milliseconds.

Gait event pref fast

Offset (ms) RMSE(ms) Offset(ms) RMSE (ms)

HS L -122±58 134 -67±50 82

HO L 149±52 157 104±63 120

TO L 39±48 61 37±44 56

Table 5: Gait events of stroke subject 2 at two different walking speeds of 1.8 and 3.6 km/h for the HS,
FF and HO gait events on the right leg, and the HS, HO and TO of the left leg. Data from both
offset and RMSE is shown in milliseconds.

Gait event pref fast

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

HS R 269±97 284 42±72 79

FF R 208±235 301 -19±23 28

HO R -175±148 222 -63±128 134

HS L -309±182 352 -197±115 224

HO L 60±59 81 58±71 88

TO L 87±32 92 20±19 27
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D I S C U S S I O N , L I M I TAT I O N S & R E C O M M E N D AT I O N S

This thesis aimed to establish a IMU-based methodology for gait phase detection by utilizing
key points in joint angles. that can be used on both healthy and post-stroke subjects, utilizing
extracted joint angles to detect gait events. In addition, the methodology tried to perform gait
phase detection of both legs with the data of only one leg. The results showed that for healthy
subjects at lower speeds of 0.9 and 1.8 km/h, the methodology did not perform precise and ac-
curate enough time points to be valid. At speeds 2.7 and 3.6 km/h, the methodology showed
better results, with offset and RMSE that was often lower than 60 ms. For post-stroke subjects,
the methodology did not perform up to standards for both walking speeds, due to high off-
set and RMSE. The faster walking speed did perform better than the preferred walking speed.
These results show that the main aim of the thesis has been partially achieved, the methodol-
ogy can be utilized to perform limited gait phase detection on healthy subjects but is severely
limited in its detection and accuracy when utilized on post-stroke subjects. The additional aim
of performing gait estimation for the non-recorded leg was fully achieved. While the utilized
strategy to accomplish this was very rudimentary, the results showed that the gait estimation
performed decently, with average RMSE values between 38 and 93 ms. Overall it has higher
offset and RMSE values than the recorded right leg.

IMU-based strategies that utilized accelerometer data achieved offsets between 11 and 34 ms
for the HS and TO gait events[29, 30]. When comparing those offsets with the ones in tables 6

to 8, it is noticeable that the range of offset error is large for lower walking speed at 1.8 km/h
for healthy subjects and the preferred walking speed in post-stroke subjects. The results show
offsets and RMSE that are too high for the data to be valid in a clinical setting. Mainly due
to the lower walking speed increasing stance time and variability of gait event timing. The
low accuracy signified that the proposed strategy is not utilizable for lower walking speeds.
Higher walking speeds of 2.7 and 3.6 km/h showed more promising results, especially the
data at 2.7 km/h. Where both the offset and RMSE are often lower than 60 ms. Subjects 2 and 3

show the best results in terms of accuracy. However, due to a small sample size of subjects, it is
hard to draw complete conclusions on the overall accuracy of the used strategy. Seeing as the
results between all healthy subjects are varied in terms of accuracy for certain gait events. For
example in the left TO at 2.7 km/h, for which the offsets of all subjects are 93± 36, −19± 28

and -62± 24 ms.

From the results of the stroke subjects in tables 4 and 5 it is clear that subjects walking at
a comfortable speed do not give valid results. When the subjects walked at their fastest pos-
sible speed, accuracy improved, but the data still consisted of high offsets. At this speed, the
combined key point of the right FF and left TO gait events gave acceptable results in subject 2.
Nearly all stroke subject data for gait event detection results were not accurate enough to be
considered valid.

Lower overall accuracy was already expected for the left leg in healthy subjects, due to com-
bining gait event detection for the right leg with gait events on the left leg. When looking at
table 2, key points to identify gait events for the right leg are combined with gait events on the
left leg, based on contra-lateral movement during walking. The data in tables 6 to 8, showed

18
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that gait event estimation of the left leg is less accurate than the gait event detection of the
right leg at 2.7 km/h for healthy subjects, with the left FF gait event being an extreme outlier
for subject 1. In stroke subjects, it was expected that the left leg would have a lower accuracy,
due to it being the impaired leg of the subject. Thus altering joint angles and influencing the
results from chosen key points. However, this could not be evaluated due to missing reference
GRF data and knee angle data that was capped at 0

◦ by the utilized modeling software, limit-
ing the number of key points that could be evaluated for post-stroke subjects.

Another influence on accuracy could have been due to the varying accuracy of IMU IK. During
the acquisition of joint angles, certain data sets or models had rotations in the y or z direc-
tions, potentially influencing the accuracy of the obtained joint angles. In addition, for the
stroke subjects, all data sets had the knee limited to 0

◦ by OpenSim when extending, some-
times creating an angle of 0

◦ for more than half of the stance phase. This caused the key points
of the knee angle at the two full extensions and the small flexion wave in between to be unus-
able, severely limiting the proposed gait phase detection method. The inconsistencies during
IMU IK could be attributed to the tendency of the IMU-measured angular rate to be affected
by noise signal and sensor bias. Seen as the orientation is usually acquired by integration of
the angular rate[31]. The noise caused by the integration of the angular rate was one of the
reasons why ankle angles were not utilized. The angular velocity is lower in the ankle joint
during the gait cycle compared to the hip and knee joint, causing an inferior signal-noise ratio
These inconsistencies could also be caused by sub-optimal calibration measurements, shifting
of IMUs during movement, or a wrongly chosen IMU heading.

The inconsistencies during IMU IK in combination with the factor of each subject having
a different gait or an impaired gait created a high possibility of lower accuracy in the data.
Especially with lower speeds, where joint angles showed large standard deviation, as seen in
fig. 3. This limited the thesis to mainly show that a setup consisting of four IMUs, can provide
rudimentary gait event detection at certain speeds in healthy subjects. In addition, gait event
detection was severely limited when applying the strategy to post-stroke subjects. The limited
usage was mainly due to the inability of the algorithm to filter out all the inconsistent joint
angle trajectories and the artifacts in reference GRF data. Results were also limited due to the
knee angle data that was capped at 0

◦ by the utilized modeling software, limiting the number
of key points that could be evaluated for post-stroke subjects.

Firstly for further recommendations, an increase of sample size would give a more validated
overview of the accuracy. Secondly, possibly looking into an algorithm based on height, sex,
or basic gait parameters to calculate angles at which certain gait events happen. For example,
shortly after the knee reaches full flexion, at a flexion of around 40-50

◦, the opposite leg will
be in a flat foot position.[12] This way the FF could potentially become more accurate. The left
and right FF at walking speeds of 1.8 and 2.7 km/h in tables 6 to 8, are the values that have
the largest inaccuracy. Furthermore, To create more potential key points to identify gait events,
the angular velocity of the foot could be integrated into the algorithm. This could lead to more
accurate values of the HS, FF, HO and potentially TO on the right leg for healthy subjects and
left leg for stroke subjects, as done in the research of Soliman et al.[11]. HS and HO events could
also be detected by utilizing data from pressure insoles as done in Donahue et al.[32]. Lastly,
a methodology utilizing a more advanced algorithm such as an extended Kalman filter can
be incorporated to obtain the gait events. The study of Lora-Millan et al.[12] already showed
that this setup can achieve accurate gait phase detection.
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C O N C L U S I O N

As said in chapter 1, this thesis aimed to establish a IMU-based methodology for gait phase
detection by utilizing key points in joint angles. Additional aims were to see if the methodol-
ogy could be used on data from post-stroke subjects and to see if gait phase estimation of the
non-recorded contralateral leg is possible with the data of the recorded leg.

Results in table 3 showed that the methodology does have the potential to accomplish the
main aim. The gait phase detection was not accurate enough to replace the gold standard in
a clinical setting. However, the data from healthy subjects did show that the gait events can
be detected with an algorithm that utilizes key points in joint angles retrieved by IMUs. The
second aim of the thesis could not be determined with the utilized algorithm and subject data.
The algorithm did not achieve accurate full gait event detection for the post-stroke subjects
with current data, showcased by the missing gait events and high RMSE values. The third aim
was partially achieved, as seen from results in table 3 and tables 4 and 5. These showed that,
while the gait events from the leg with recorded data were overall more accurate than those
of the contralateral leg, the gait events of the contralateral leg could somewhat be estimated.

With the findings of this thesis, it can be concluded that the algorithm based on identify-
ing key points in joint angles retrieved by IMUs has the potential to be utilized for gait phase
detection. If the used algorithm can be optimized or expanded further upon with more refined
processing techniques, accuracy could be improved to the standard needed for clinical usage.

If the golden standard for gait phase detection can be replaced by an IMU-based strategy,
data recordings can be made outside of the lab-constrained environments. First of all caus-
ing a considerable reduction in costs, intrusiveness and set-up time. Secondly, widening the
range of recordable environments, especially in terms of long-term real-world activities that
show more realistic gait patterns. This could provide athletes, researchers and clinicians with
a higher quantity and wider range of data.
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Table 6: Gait events of subject 1 at three different walking speeds of 1.8, 2.7 and 3.6 km/h.

Gait event v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

HS R 206±53 212 40±39 56 -89±21 91

FF R 397±56 401 183±36 186 67±27 72

MSt R 88±69 110 5±19 19 -23±17 29

HO R 59±21 63 52±21 56 15±16 22

TO R 136±48 144 -2±33 32 -94±6 95

MSw R 201±42 205 38±26 46 -69±16 71

HS L 127±30 130 71±27 76 -1±14 14

FF L 199±46 204 87±38 94 -21±47 51

MSt L 167±50 174 53±40 66 -41±45 60

HO L 141±64 154 23±44 49 -80±18 82

TO L 340±53 344 93±36 100 -40±12 42

MSw L 113±64 129 -17±17 24 -90±9 90
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Table 7: Gait events of subject 2 at three different walking speeds of 1.8, 2.7 and 3.6 km/h.

Gait event v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

HS R 29±48 56 -26±31 40 -77±21 80

FF R 202±76 215 64±30 70 -30±24 39

MSt R -21±45 48 -28±49 56 -65±25 70

HO R -7±51 50 23±35 41 -14±23 27

TO R 43±55 69 -41±28 50 -109±17 111

MSw R 68±40 78 -20±26 32 -97±20 99

HS L 84±32 90 44±23 49 -5±19 19

FF L 125±39 131 42±23 48 -44±32 55

MSt L 81±75 109 25±40 47 -49±34 60

HO L -53±63 81 -41±40 57 -77±23 80

TO L 125±67 141 -19±28 33 -90±17 91

MSw L -21±16 26 -62±15 64 -103±12 104

Table 8: Gait events of subject 3 at three different walking speeds of 1.8, 2.7 and 3.6 km/h.

Gait event S6 v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

HS R 39±50 61 -21±19 28 -72±17 74

FF R 161±87 181 3±30 30 -46±19 50

MSt R 59±48 75 21±37 42 -33±28 43

HO R 35±34 48 51±6 57 9±10 13

TO R 89±32 94 -5±17 18 -80±11 81

MSw R 134±28 137 30±16 34 -69±11 70

HS L 142±31 146 61±59 84 -9±62 62

FF L 140±29 143 66±20 69 -20±19 27

MSt L 108±31 113 51±27 57 -17±19 25

HO L -16±64 63 -23±21 31 -64±18 66

TO L 92±84 122 -62±24 66 -85±23 88

MSw L 96±48 106 2±33 32 -79±32 85
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Table 9: Offset and RMSE values of right HS gait event for all subjects at three different walking speeds
of 1.8, 2.7 and 3.6 km/h.

HS R Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 206±53 212 40±39 56 -89±21 91

2 29±48 56 -26±31 40 -77±21 80

3 39±50 61 -21±19 28 -72±17 74

Average 91±50 131±89 -2±31 43±14 -79±20 82±9

Table 10: Offset and RMSE values of right FF gait event for all subjects at three different walking speeds
of 1.8, 2.7 and 3.6 km/h.

FF R Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 397±56 401 183±36 186 67±27 72

2 202±76 215 64±30 70 -30±24 39

3 161±87 181 3±30 30 -46±19 50

Average 253±74 283±118 83±32 116±81 -3±20 55±17

Table 11: Offset and RMSE values of right MSt gait event for all subjects at three different walking
speeds of 1.8, 2.7 and 3.6 km/h.

MSt R Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 88±69 110 5±19 19 -23±17 29

2 -21±45 48 -28±49 56 -65±25 70

3 59±48 75 21±37 42 -33±28 43

Average 42±55 82±31 -1±35 42±19 -40±24 50±21

Table 12: Offset and RMSE values of right HO gait event for all subjects at three different walking
speeds of 1.8, 2.7 and 3.6 km/h.

HO R Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 59±21 63 52±21 56 15±16 22

2 -7±51 50 23±35 41 -14±23 27

3 35±34 48 51±6 57 9±10 13

Average 29±37 54±8 42±24 52±9 3±17 21±7
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Table 13: Offset and RMSE values of right TO gait event for all subjects at three different walking
speeds of 1.8, 2.7 and 3.6 km/h.

TO R Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 136±48 144 -2±33 32 -94±6 95

2 43±55 69 -41±28 50 -109±17 111

3 89±32 94 -5±17 18 -80±11 81

Average 89±46 107±38 -16±27 36±16 -94±12 96±15

Table 14: Offset and RMSE values of right MSw gait event for all subjects at three different walking
speeds of 1.8, 2.7 and 3.6 km/h.

MSw R Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 201±42 205 38±26 46 -69±16 71

2 68±40 78 -20±26 32 -97±20 99

3 134±28 137 30±16 34 -69±11 70

Average 134±37 149±64 16±23 38±8 -78±16 81±16

Table 15: Offset and RMSE values of left HS gait event for all subjects at three different walking speeds
of 1.8, 2.7 and 3.6 km/h.

HS L Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 127±30 130 71±27 76 -1±14 14

2 84±32 90 44±23 49 -5±19 19

3 142±31 146 61±59 84 -9±62 62

Average 118±31 124±29 59±40 71±18 -5±38 38±26

Table 16: Offset and RMSE values of left FF gait event for all subjects at three different walking speeds
of 1.8, 2.7 and 3.6 km/h.

FF L Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 199±46 204 87±38 94 -21±47 51

2 125±39 131 42±23 48 -44±32 55

3 140±29 143 66±20 69 -20±19 27

Average 155±39 163±39 65±28 73±23 -28±35 46±15
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Table 17: Offset and RMSE values of left MSt gait event for all subjects at three different walking speeds
of 1.8, 2.7 and 3.6 km/h.

MSt L Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 167±50 174 53±40 66 -41±45 60

2 81±75 109 25±40 47 -49±34 60

3 108±31 113 51±27 57 -17±19 25

Average 119±55 135±36 43±36 57±10 -36±34 51±20

Table 18: Offset and RMSE values of left HO gait event for all subjects at three different walking speeds
of 1.8, 2.7 and 3.6 km/h.

HO L Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 141±64 154 23±44 49 -80±18 82

2 -53±63 81 -41±40 57 -77±23 80

3 -16±64 63 -23±21 31 -64±18 66

Average 24±64 107±48 -14±36 47±13 -74±20 76±9

Table 19: Offset and RMSE values of left TO gait event for all subjects at three different walking speeds
of 1.8, 2.7 and 3.6 km/h.

TO L Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 340±53 344 93±36 100 -40±12 42

2 125±67 141 -19±28 33 -90±17 91

3 92±84 122 -62±24 66 -85±23 88

Average 186±69 226±123 4±30 72±34 -72±18 77±27

Table 20: Offset and RMSE values of left MSw gait event for all subjects at three different walking
speeds of 1.8, 2.7 and 3.6 km/h.

MSw L Subject v=1.8km/h v=2.7km/h v=3.6km/h

Offset (ms) RMSE (ms) Offset (ms) RMSE (ms) Offset (ms) RMSE (ms)

1 113±64 129 -17±17 24 -90±9 90

2 -21±16 26 -62±15 64 -103±12 104

3 96±48 106 2±33 32 -79±32 85

Average 63±47 98±54 -26±23 44±21 -91±20 93±10
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