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Abstract

Fast and accurate time integrators for Molecular Dynamics (MD) simulations are needed to in-
vestigate the properties of materials without the experimental costs. This thesis illustrates the
implementation and benefits of a structure-preserving time-integration method for structured MD
models. We compare the Trapezoidal Munthe-Kaas (TMK) method, a Lie group integrator, with
the widely used Verlet method for MD simulations. The Verlet method fails to conserve additional
symmetry present in model simulations, leading to the development of asymmetry and inaccurate
particle trajectories. In contrast, the TMK method, implemented with Flaschka variables, conserves
additional symmetry of model simulations and exhibits qualitatively different behavior compared to
the Verlet method. Preserving the structure and conserving the constants of motion in the governing
equations through MD simulations can provide significant advantages. We demonstrate the effec-
tiveness of the TMK method through multiple small and generic MD models that feature different
potential forces, including the Lennard-Jones potential. Our approach could easily be extended to
real MD simulations, which indicates the promising application of the TMK method for MD.



Contents

1 Introduction 1

2 Time-integration methods 6
2.1 Verlet method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Lie group theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Trapezoidal Munthe-Kaas method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 TMK for MD - Methodology 31
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Flaschka variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Choice of group structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Qualitative symmetry breaking in structured MD simulations 43
4.1 Symmetry loss with the Verlet method . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Characterizing simulations and outcomes . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Demonstration TMK application and advantages . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Demonstration of working for a two-particle model . . . . . . . . . . . . . . . 48
4.3.2 Escape for a three-particle model . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Symmetry in a five-particle model with periodic boundary conditions . . . . . 58
4.3.4 Symmetry in an eight-particle model with periodic boundary conditions . . . 62

5 Discussion and Conclusion 66
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Outlook 69
6.1 TMK as a time-integration method for MD . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Learning TMK for MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Higher-order Lie group integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 G-strands for MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



CONTENTS

A Appendix 72
A.1 Example implementation group structure . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Additional model simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.2.1 Three-particle ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.2.2 Eight-particle ring with less extreme initial conditions . . . . . . . . . . . . . 74

A.3 Additional figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.3.1 Energy conversion - three particles on a line . . . . . . . . . . . . . . . . . . . 76



Chapter 1

Introduction

Fast and accurate time integrators for Molecular Dynamics (MD) simulations are needed to investi-
gate the properties of materials without the experimental costs. In this thesis, two time integration
methods are compared. We compare the commonly used energy-preserving Verlet method (Verlet,
1967) to the Trapezoidal Munthe-Kaas (TMK) method, a structure-preserving Lie-group integrator
(Engø and Faltinsen, 2001). The TMK method, implemented with Flaschka variables (Flaschka,
1974a), shows qualitatively different behavior as compared to the Verlet method. This indicates
possible advantages that can be obtained in MD simulations to explicitly preserve structures, sym-
metries, and conserved quantities in the governing equations. We illustrate the new time integrator
with a number of MD models.

The evolution of a physical system can often be described with differential equations. Sometimes we
can find the exact solution to these equations and calculate their outcomes at any given moment in
time. However, more often than not, the exact analytical solution is not available to us. Instead, we
approximate the evolution of a system using time steps and discrete approximations of the governing
continuous-time equations (Hairer et al., 2006). The adopted time integration scheme captures how
this is done. Depending on the scheme’s construction, different numerical errors are made, impacting
the calculated outcomes’ reliability.

We focus on an N-body system consisting of an interacting set of molecules. With MD simula-
tions, we want to predict the motion of those molecules as governed by a force field. If we can
predict a material’s (changing) geometric structure, we can predict many of its properties (Hook
and Hall, 2013). Experimentally investigating the properties of many different materials is expensive.
Instead, we would seek methods that enable accurate MD simulations to predict their characteris-
tics (Frenkel and Smit, 2001). The general class to which this type of system belongs is the class of
Hamiltonian systems. An analytical solution for such systems cannot be constructed for the N-body
problem (Valtonen and Karttunen, 2006). Therefore, a numerical scheme and time integrator are
employed. The commonly used method is the Verlet method.

The Verlet method is one of the most famous time integrators for MD simulations. This method
has been reinvented throughout history under various names, including the Strömer, Leapfrog, and
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CHAPTER 1. INTRODUCTION

Encke methods (Hairer et al., 2003). One of the first demonstrations of this method is given in the
Principia, written by Newton himself in 1687. Nowadays, this scheme is extensively used in MD
simulations (Coretti et al., 2022),(Lindahl, 2015). The Verlet scheme has many great properties, like
energy conservation, symplecticity, and time-reversal symmetry. These properties and its simple for-
mulation make it an excellent integrator for Hamiltonian systems. Other well-known integrators, like
the fourth-order Runge-Kutta method, do not preserve energy or require a much more complicated
and expensive implementation (Hairer et al., 2006). We will elaborate further on this in Chapter
2. However, Verlet is also known to have some issues, which may result in qualitative differences
between the true and the computed system orbits. Although there is some evidence of true orbits
close to computed system orbits, this has not been proven in general. In (Frenkel and Smit, 2001)
the following is stated:

”Our trust in MD simulations as a tool is based largely on belief ... let us say that
there is clearly still a corpse in the closet”.

In this thesis, we will show that the Verlet scheme may fail qualitatively for a generic type of MD-like
system. We will also demonstrate another structure-preserving integrator, the TMK method, which
does not fail in these instances.

We argue that another integrator, the TMK method, is a promising integrator for MD simula-
tions that does not have the same complications. The method is also energy-preserving like the
Verlet method but preserves additional structure. We expect that this method is more accurate
and ultimately less costly due to its structure-preserving properties. Structure and symmetry have
been connected to the conservation of quantities ever since the famous theorem of Noether (Noether,
1971). Structure-preserving integrators can be constructed via Lie-group methods as described in
(Engø and Faltinsen, 2001), based on methods such as the RKMK developed by (Munthe-Kaas,
1999). This is further described in Chapter 2. Traditionally, these integrators are used in highly
symmetric Lie-Poisson problems, like the heavy-top or the rigid body (Marsden and Ratiu, 1999).
This thesis uses structure-preserving methods to calculate MD simulations instead. To our knowl-
edge, this has not been investigated before. Furthermore, we will show that the TMK method does
not fail in a class of MD systems where the Verlet integrator fails.

This thesis aims to develop more accurate MD methods using the structure-preserving TMK method
instead of the famous Verlet method. One of the challenges lies in comparing the outcomes of the
TMK method with the outcomes of the Verlet method. We employ simple potentials to compare
the behavior of the two integrators. The models build up from a two-particle system towards an
n-dimensional system with periodic boundary conditions. This way, we can identify the two in-
tegrators’ characteristic behavior and extend the conclusions to larger systems. A fourth-order
Runge-Kutta method is used as a reference for the numerical solutions. In conclusion, the study
demonstrates the possibilities of structure-preserving methods in MD simulations.
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CHAPTER 1. INTRODUCTION

Figure 1.1: A unit cell of a cubic perovkite structure.

Figure 1.2: Phases of perovskite. From left to right; Cubic, Tetragonal, Orthorhombic.

Motivation

The motivation for this work stems from a particular type of material for MD simulations, namely
the group of perovskites. In this section, we will motivate the interest in perovskites, briefly describe
their lattice structure, and illustrate the importance of accurate simulations for these structured MD
systems.

Materials with perovskite structures have demonstrated many properties, like superconductivity and
ferroelectricity (Hook and Hall, 2013). Furthermore, certain perovskites are photovoltaics, materials
that transform light into electricity, making them interesting materials for solar cells. Research has
increased the power conversion efficiency of perovskite materials from 2.2 to 20.5 percent between
2006 and 2020 (Gao et al., 2019). Solar cells are only one of the many applications of perovskites.
Other applications show that perovskites can act as lasers (Dereń et al., 2008), as LEDs Stranks and
Snaith (2015), and for photoelectrolysis (Luo et al., 2014).
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CHAPTER 1. INTRODUCTION

Perovskites are materials with a certain lattice structure ABX3 where A, B are positively charged
ions, cations, while the X is a negatively charged ion, an anion. The expected structure of a unit cell
in the cubic phase is sketched in figure 1.1. Under certain conditions, like decreasing temperature, a
perovskite can undergo a displacive phase transition and distort to a tetragonal structure with less
symmetry. Such a phase transition can occur again when even less energy is available in the system,
where even more symmetry loss leads to an orthorhombic structure. The structures of the cubic,
tetragonal, and orthorhombic phases are sketched in figure 1.2.

Depending on the phase of the perovskite structure, the material has different characteristics. For
example, BaTiO3 does not have an electric polarization in the absence of an applied field when it
is in the cubic phase. However, in the tetragonal and orthorhombic phases, there is a spontaneous
electric polarization (Hook and Hall, 2013). Researchers can determine the suitability of particular
perovskites for specific applications by predicting phase transitions and long-time stability. De-
termining this experimentally is costly. Therefore, accurate simulations of perovskites, respecting
symmetries in the crystal structure are needed.

In order to perform MD simulations, we need to define the forces present in the system. Tradi-
tionally, the force field is approximated through density functional theory (DFT) calculations at
each time step during the simulation. DFT calculations use the local electron density and incorpo-
rate quantum effects to calculate a force field. These calculations are accurate but costly. Ways to
circumvent this cost with machine learning have been investigated (Lahnsteiner and Bokdam, 2022).
Another possible approximation of the forces is to use DFT-informed potentials. In (Schelling et al.,
2001),(You et al., 2023), and (Qu et al., 2021), force fields are calculated via interatomic potentials
based on DFT calculations. This way, a system can be integrated in time with fewer DFT calcula-
tions. The interatomic potentials may be the sum of only a few classical force terms multiplied by
parameters, which are fitted using a DFT database. The used force terms include Coulomb forces,
Lennard-Jones potential forces, and exponential Toda-like forces. The results of this approach also
predict the phase transitions and are cheaper to calculate.

The force fields are commonly integrated in time with the Verlet method. The Verlet method
calculates the movement of each molecule separately, which is costly, and the exact trajectories are
likely not recovered. (See Chapter 2). It makes little sense to have accurate force approximations
but inaccurate time integration. The symmetries in the perovskite structure can be exploited to
overcome these problems. The use of TMK in MD simulations to conserve symmetries is pursued
in this thesis. To investigate the performance of the two integrators, i.e., Verlet and TMK, we will
employ simulations of potential models with a quadratic, Toda, and Lennard-Jones potential. As
these types of potentials are generic and also appear in the DFT-informed potential models, the
simulations will indicate the quality of the integrators for real MD simulations.

Outline

The organization of this thesis is as follows. Chapter 2 of this thesis consists of an overview of the
Verlet and Trapezoidal Munthe-Kaas (TMK) methods and gives a summary of the Runge-Kutta
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CHAPTER 1. INTRODUCTION

methods since these are the basis of the TMK method. Furthermore, the chapter will provide
the reader with enough information or references to other sources to understand the methods. In
Chapter 3 the approach to implement TMK for MD for one-dimensional models is sketched. Chapter
4 discusses the simulations demonstrating differences in the numerical methods and simulations that
resemble the perovskite structure. The thesis will be discussed and concluded in Chapter 5. Ideas
for further research are given in Chapter 6.
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Chapter 2

Time-integration methods

We are interested in the differences in performance of two types of time integrators for molecular
systems. We study the accuracy and computational cost difference between the widely used Ver-
let method and a Lie group integrator, the structure-preserving Trapezoidal Munthe-Kaas method
(TMK). In this chapter, we introduce the structure of both methods and discuss some of their fea-
tures, such that we can employ and compare these methods for our simulations.
First, we will introduce and discuss the Verlet method in section 2.1. Next, we discuss the Runge-
Kutta methods in section 2.2, since the methods form the basis of the Munthe-Kaas methods and
are therefore used as a benchmark for all simulations in this thesis. Next, we provide some back-
ground information on Lie-group integrators in section 2.3. Finally, in section 2.4 the Munthe-Kaas
integrators and specifically the TMK integrator are discussed. We will use a time-independent step
size for simplicity, but all integrators allow for adaptive time-stepping.

2.1 Verlet method

As mentioned in the introduction, the Verlet method is also known as the Strömer, Leapfrog, or
Encke methods. The different names result from the same method being reinvented multiple times
throughout history in different fields. The method even appears in the Principia written by Newton
himself in 1687 (Hairer et al., 2003) To this day, the Verlet method is used extensively as a basis for
Molecular Dynamics simulations (MD), for example, in the new algorithm of (Coretti et al., 2022).
Also, MD software packages, like GROMACS (Lindahl, 2015), have the Verlet method as their basis.
GROMACS is used to calculate the stability of materials (Michl et al., 2019), enzyme simulations
(Yu and Dalby, 2020), and Free Energy calculations (Gotzias, 2022). Like GROMACS, there are
many optimized software packages to perform MD simulations for which a Verlet method is still at
the basis of the software. A demonstration of these software packages’ huge role in MD simulations
is the existence of a Wikipedia article dedicated to the comparison between the different software,
of which many, if not all, use Verlet. 1 The popularity of this integrator is not without reason. This
section will introduce the scheme and mention some of its features.

1https://en.wikipedia.org/wiki/Comparison_of_software_for_molecular_mechanics_modeling
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CHAPTER 2. TIME-INTEGRATION METHODS

The scheme

The Verlet method is a time integration scheme used to evaluate equations of the form:

q̈ = f(q) (2.1)

Or, equivalently, as:
v̇ = f(q), q̇ = v (2.2)

In principle, any equation of this form can be solved with the Verlet method. However, in anticipation
of our application to molecular dynamics, let us use q, v to denote the position and velocity of a
particle respectively. Let us denote the discretized versions of these variables and the function f(q)
by:

v(t = t0 + n∆t) = vn (2.3)

q(t = t0 + n∆t) = qn (2.4)

f(qn) = fn, (2.5)

The Verlet method uses a staggered grid to evaluate this type of system, splitting the evaluation
of velocity v and position q at intermediate and integer time steps, respectively. Each step of the
scheme is given by:

vn+ 1
2
= vn− 1

2
fn∆t (2.6)

qn+1 = qn + vn+ 1
2
∆t (2.7)

This formulation of the method poses a challenge for the initialization of the scheme, as the velocity
is not defined at t = t0. Commonly, a ’kick-drift-kick’ form of the method is employed that solves
the initialization of the staggered grid. Even though strictly the velocity only needs to be evaluated
at the intermediate time steps, in the ’kick-drift-kick’ form it is also calculated at the integer time
steps. The velocity ’kick’ is split into two kicks from vn to vn+ 1

2
to vn+1. This solves the computation

of the first v 1
2
term.

Below, the ’kick-drift-kick’ form of the Verlet method is given, which is further illustrated schemat-
ically in figure 2.1. Now that we know the structure of the Verlet algorithm, we can identify some
of its features.
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CHAPTER 2. TIME-INTEGRATION METHODS

Figure 2.1: Staggered grid of the Verlet scheme. i indicating the ith grid point of the spatial
discretization, n indicating the nth grid point of the temporal discretization. Blue and Red indicate
the points at which the momentum and position are defined respectively.

Integrator 1 - Verlet
For systems of the form in equation 2.2, the positions and velocities at each new time step,
tn+1 = tn +∆t, are computed with the Verlet scheme as follows:

vn+ 1
2
= vn +

1

2
fn∆t

qn+1 = qn + vn+ 1
2
∆t (2.8)

vn+1 = qn+ 1
2
+

1

2
fn+1∆t

where ∆t is the time step size.

Note that one commonly writes q̈ = f(q) = A(q). The function A(q) is called the
acceleration function.

Features

The Verlet method has numerous characteristics that make it a popular method. These include
its second-order convergence, reversibility with respect to time, preservation of linear first integrals,
preservation of some quadratic integrals, and symplecticity (Hairer et al., 2003). Due to these fea-
tures, Verlet is near-preserving the total energy and exactly preserving total linear and angular
momentum for the N-body Hamiltonian system. While remaining a simple scheme with little com-
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CHAPTER 2. TIME-INTEGRATION METHODS

putational cost, it has excellent long-time behavior.

Firstly, it is a relatively simple scheme, with only one additional explicit step than the basic Euler
forward method, but with an improved order of convergence of order two. This makes it a compu-
tationally cheap but rapidly converging method.

Secondly, the Verlet integrator is symmetric with respect to time. This implies that it is also
reversible. After the next time-step is calculated, tn+1, we can apply the same integrator to calcu-
late a time-step backward,tn, and obtain the same state in phase space up to rounding errors as we
initially started with. This implies that the method exactly retains the time-reversal symmetry of a
Hamiltonian system.

Furthermore, the Verlet method is a symplectic integrator. Hamiltonian systems have a symplectic
phase space structure. The symplectic integrator preserves this structure. One could also state
that the flow of a Hamiltonian system is a symplectic transformation. Therefore, preserving the
symplecticity is connected to preserving the Hamiltonian nature of the system.

Let us demonstrate this in some more detail. For some Hamiltonian system Q = (q1, q2, ..., qn)
the phase space can be identified as the cotangent bundle T ∗Q = (q1, q2, .., ., p1, p2, ..., pn). The
phase space is an underlying symplectic structure, namely, it is a symplectic manifold. This means
that the phase space is a smooth manifold that is symplectic with respect to a closed non-degenerate
2-form. The 2-form is given as:

ω =
n∑

i=1

dpi ∧ dqi (2.9)

Where the wedge operator is the product of the exterior algebra. In coordinates, the 2-form is given
by:

ω(ek, el) =

n∑
i=1

det

[
qi(ek) qi(el)
pi(ek) pi(el)

]
, q, p given in the basis ek, el ∈ R2n (2.10)

This can be written as:

ω(ξ, η) = ξTJη, with J =

[
0 I
−I 0

]
(2.11)

Any transformation A that preserves this form is a symplectic transformation. This condition can
be written as:

ATJA = J ⇄ ω(Aξ,Aη) = ω(ξ, η), ∀ξ, η ∈ R2n (2.12)

A symplectic transformation acting on ξ, η in a one-dimensional system is sketched in figure 2.2.
A Hamiltonian system inherently contains a symplectic structure, which can be formulated in the
following Theorem (Hairer et al., 2006):
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Figure 2.2: Symplecticity (area preservation) of a linear mapping. (Hairer et al., 2006)

Theorem 3.1
Let f : U → R2n be continuously differentiable. Then, d

dt((p, q)) = f((p, q)) is locally Hamil-
tonian if and only if its flow ϕt((p, q)) is symplectic for all (p, q) ∈ U and for all sufficiently
small t.

Note that the flow dictates the mapping that advances the solution in time:

ϕt(p0, q0) = (p(t, p0, q0), q(t, p0, q0)) (2.13)

If an integrator does not preserve the symplectic geometry, the numerical solution is no longer a
Hamiltonian flow. Fortunately, the Verlet method is symplectic, as proven by (De Vogelaere, 1956).

Symplectic methods have a linear global error growth and long-time near-preservation of first inte-
grals as opposed to quadratic error growth and drifting first integrals of non-symplectic methods2

(Hairer et al., 2003). As the total energy is a first integral, it must be near-preserved within some
error bounds by the Verlet method. Bounds have been constructed from the symmetry and symplec-
ticity of the Verlet method by (Benettin and Giorgilli, 1994) and (Hairer and Lubich, 2000). The
error bounds are given by equation 2.14. This means that although the method does not preserve
the exact total energy, the energy will not drift for long-time simulations but will remain within
these bounds.

|H(pn, qn)−H(p0, q0)| ≤ C(∆t)2 + CN (∆t)N t, for 0 ≤ t = n∆t ≤ (∆t)−N (2.14)

where N is a arbitray positive integer, C and CN are independent of t,∆t.

The near-preservation of the total energy, the Hamiltonian, may be explained via the modified
equation. Through backward analysis in (Hairer et al., 2003) it is shown that the Verlet method
does not solve the exact system, but rather a perturbation of the system. This can be formulated in a
modified equation. The Hamiltonian that is conserved exactly by the Verlet method is the modified
equation’s Hamiltonian, which is commonly referred to as the shadow Hamiltonian. For short times,

2A first integral is some function I((p, q)) that is constant, or invariant along the solution, such that
I ′((p, q))f((p, q)) = 0 for all (p, q), where f((p, q)) =

(
dp
dt
, dq
dt

)
and I ′((p, q)) = ( ∂I

∂p
, ∂I
∂q

).
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CHAPTER 2. TIME-INTEGRATION METHODS

the real Hamiltonian only varies with O(h2) from this shadow Hamiltonian. The long-term behavior
is captured in the error bound in equation 2.14.

As mentioned, the Verlet method is symplectic and, therefore, near-preserving of first integrals.
However, we can make an even stronger statement. We can state that the Verlet method exactly
preserves linear first integrals (Hairer et al., 2003). This implies that the Verlet method conserves
total linear momentum. Furthermore, a certain type of quadratic first integrals is also conserved
by the Verlet method. For Hamiltonian systems, quadratic first integrals of the following form are
conserved by the Verlet method:

I(p, q) = p⊤(Bq + b) (2.15)

were B is a constant square matrix, b a constant vector and I the first integral.
For the N-body Hamiltonian system, this means that the Verlet method preserves total angular
momentum but not the Hamiltonian.

The Verlet method is not unconditionally stable, and we require a sufficiently small time step to
assure stability. A commonly used criterion for the time step size as compared to the highest eigen-
frequency of the system is given in equation 2.17. This criterion is derived from the solution of a
harmonic oscillator and ensures that the eigenvalues of the propagation matrix are modulus one for
constant ∆t (Hairer et al., 2003). The propagation matrix, or sometimes called the amplification
matrix of a numerical method applied to a continuous system A is given by

(pn+1, qn+1) = A((pn, qn)) (2.16)

The eigenvalues of this matrix should be smaller or equal to 1 to prevent exploding numerical errors.
This is a stability criterion.

|∆tω| ≤ 2 (2.17)

where ω is the largest eigenfrequency of the system.

In conclusion, the Verlet method is stable for sufficiently small time steps and remains near-energy
preserving for long-time simulations. Furthermore, for the N-body system, total linear momentum
and total angular momentum are conserved exactly by Verlet. These excellent features, in combi-
nation with its low computational costs, make the Verlet method a seemingly ideal time-integration
method for large MD simulations. However, the Verlet method does not conserve all first integrals
of a system, which might lead to incorrect solutions such as the calculated trajectory.

2.2 Runge-Kutta methods

Runge-Kutta methods form the basis of many time-integration methods. For example, the Munthe-
Kaas methods are essentially Runge-Kutta methods constructed on manifolds. Furthermore, the
fourth-order Runge-Kutta method is used as a reference method for the performed simulations.
Runge-Kutta methods, as defined in definition 3.1, are time integration schemes used to solve equa-
tions of the form:

ẏ = f(t, y), y(t0) = y0 (2.18)
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This holds for y in vector form. Therefore, we can solve systems of the form of equation 2.1 rewritten
in the form of equation 2.2 with a Runge-Kutta method.

ẏ =

[
v̇
q̇

]
=

[
f(q)
v

]
= f(q, v),

[
v(t0)
q(t0)

]
=

[
v0
q0

]
(2.19)

Let us review the definition of a Runge-Kutta method:

Definition 3.1
An s-stage Runge-Kutta method is given by:

ki = f

t0 + cih, y0 + h

s∑
j=1

aijkj

 , i = 1, ..., s (2.20)

y1 = y0 + h
s∑

i=1

biki (2.21)

where bi, aij , ci are real numbers.

In each time step of the Runge-Kutta method, the solution of the system is approximated by a
polygonal line. The line is composed of s parts with varying slopes. The number of parts, s, are
called the stages of the Runge-Kutta method. The slopes and portion of each part of the line are
determined by the constants (aij , ci, bi). This is visualized for some three-stage explicit method in
figure 2.3. Since the constants characterize the method, a method can be described entirely by a
Butcher Tableau as follows:

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

(2.22)

The Runge-Kutta methods can be explicit or implicit. For explicit methods, the matrix A = (aij)
is strictly triangular. If the A is not strictly triangular, the coefficients ki cannot be calculated
explicitly, and the method is implicit.
An arbitrary combination of coefficients in the Butcher Tableau will generally not produce a reason-
able numerical method. Several conditions on these coefficients are needed for stability, consistency,
and convergence, but this will not be further explored in this thesis. The reader is referred to the
book (Hairer et al., 2006) for further information.

If the coefficients of the Butcher Tableau satisfy equation 2.23, then the corresponding Runge-Kutta
method conserves quadratic first integrals and it is symplectic.

biaij + bjaji = bibj , for all i, j = 1, .., s. (2.23)

Numerous numerical methods can be classified as Runge-Kutta methods. Famous examples are the
Euler forward method, the Crank-Nicholson method, and Heun’s method. The Butcher Tableau’s

12
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Figure 2.3: A three-stage explicit Runge-Kutta time step.(Hairer et al., 2006)

of these examples are shown in equation 2.24.

0 0

1
,

0 0 0
1 1/2 1/2

1/2 1/2

,

0 0 0
1 1 0

1/2 1/2

, (2.24)

One of the most famous Runge-Kutta methods is the fourth-order Runge-Kutta method (RK4).
This method is celebrated for its fourth-order global error O(h4) and thus its fast convergence.
Therefore, RK4 is often used in large simulations. Because of its accuracy, we will use RK4 as a
reference method in simulations. The Butcher tableau of this method is given by:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 2/6 2/6 1/6

(2.25)

As can be seen in the tableau, the matrix A = (aij) is strictly triangular, which implies that the
method is explicit. No explicit Runge-Kutta method is energy preserving (Celledoni et al., 2009).
By the Butcher Tableau in 2.25, we note that the RK4 method is explicit and thus can not be
energy-conserving. Instead, a drift in total energy may be expected. This causes issues for long-time
simulations, which should be considered when using this method. Furthermore, it is not symplectic
by equation 2.23, making it unsuitable for solving Hamiltonian systems. The RK4 method is also
formulated below.

13
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Integrator 2 - Fourth-order Runge-Kutta (RK4)
For systems of the form in equation 2.18, the solution at each new time step, tn+1 = tn +∆t,
is computed with the RK4 scheme as:

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4) (2.26)

with:

k1 = f(tn, yn)

k2 = f

(
tn +

∆t

2
, yn +

∆t

2
k1

)
k3 = f

(
tn +

∆t

2
, yn +

∆t

2
k2

)
k4 = f (tn +∆t, yn +∆tk3)

where ∆t is the time step size.

2.3 Lie group theory

Despite the many appealing features of the Verlet algorithm, we would like to consider a different
time-integration method. Since the Verlet method does not conserve all possible constants of motion
or symmetries of the system, another method might be more suited for calculations on a system with
additional structure. Therefore, we introduce a Runge-Kutta Munthe-Kaas method, which solves
the equation with a Runge-Kutta method on a manifold. Specifically, the Trapezoidal Munthe-Kaas
(TMK) method will be used, as this method is also energy-conserving. Since the 1990s, Lie group
integrators have been developed more systematically and extensively by, among others, (Crouch
and Grossman, 1993) and (Munthe-Kaas, 1999). These time-integration methods are based on a
coordinate-independent description of the equations, which will be detailed in this section. Since
Lie group integrators have not yet seen general application-based implementations, we explore how
these integrators can be applied to molecular systems in Chapter 3.

The essence of this chapter is captured in Figure 2.6. The Verlet method solves a differential
equation Rn in some space. To apply the TMK method, the differential equation is first transformed
to a Lie group formulation, G = M . Then, the differential equation is solved by locally transforming
it to a differential equation on the Lie algebra g.

In other words, Lie group integrators integrate differential equations over the Lie group. A Hamil-
tonian system can be described in a Lie group formulation. This approach differs from simply
integrating the canonical Hamiltonian formulation. The advantages of this approach become ap-
parent whenever the Hamiltonian problem has an additional structure such as invariance under a

14
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specific action. For these Hamiltonian problems, the group formulation can reduce dimensions whilst
exactly preserving the additional structure. By integrating over a Lie group in the corresponding
Lie algebra, the solution satisfies the Lie group structure. Therefore, by an appropriate choice of Lie
group, symmetries of the system that are incorporated in the group can be preserved. By the famous
paper Noether (Noether, 1971), the continuous symmetries of the system dictate the existence of
corresponding conserved values. Thus, preserving symmetry and structure is essential to integrate
a system appropriately.

For a general introduction to Lie group integrators, the reader is referred to (Hairer et al., 2006).
A particularly clear overview of Lie group integrators is given by (Celledoni et al., 2014). A more
theoretical introduction on Lie groups and algebras can be found in (Holm et al., 2009) and more
formally in (Marsden and Ratiu, 1999).

In the following subsections, we will introduce the most important notions of a Lie group, Lie
algebra, and introduce some group actions. With these notions, we can describe how a Hamiltonian
system can be described in a Lie group formulation. This background knowledge will be useful for
the construction and use of the TMK integrator.

The Lie group

The origin of the Lie group stems from a desire to construct a collection of continuous transforma-
tions. A minimal structure of this collection on which differentiability and continuity can be defined
was constructed by (Lie, 1874). Let us look at the definition of a group:

Definition 3.2
A group G is a non-empty set together with a binary composition law, here denoted with
the dot ·, that has the following properties:

1. Closure. The composition of any two elements, g, h ∈ G is called the product and is
in itself an element of G:

g, h ∈ G =⇒ g · h ∈ G (2.27)

2. Associativity. The composition law is associative:

g, h, k ∈ G =⇒ ((g · h) · k) = (g · (h · k)) (2.28)

3. Identity. There exists an element called the unit or identity, denoted by e or I, such
that:

g · e = e · g = g, ∀g ∈ G (2.29)

4. Inverses. Every element g ∈ G has an inverse denoted by g−1 which is also in G, such
that:

g−1 · g = g · g−1 = e (2.30)
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Clearly, a group is a set with an operation that upholds certain laws. To be able to consider
differentiability and continuity, the group needs to also be a smooth manifold. Specifically, we
will consider an n-dimension topological manifold that is also smooth. The definition of a (smooth)
manifold is quite technical and deserves more background information than provided here. Therefore,
the reader is referred to (Marsden and Ratiu, 1999) or (Holm et al., 2009) for more information3.
However, we can give an intuitive description of a smooth manifold.

Intuitive description smooth manifold
A manifold is a (topological) space that locally resembles Rn. Such, one can construct a
complete collection of transformations called charts that map the manifold to open subsets
of Rn. A smooth manifold has the property that any smooth function in the domain of one
such chart, ϕk, must also be smooth in the same domain mapped by any other chart ϕm.

With the definition of a group and of a smooth manifold, we can finally define a Lie group, as
done by (Marsden and Ratiu, 1999), or (Holm et al., 2009):

Definition 3.3
A Lie group is a smooth manifold G that has a group structure consistent with its manifold
structure in the sense that the group multiplication

µ : G×G → G, g · h → gh, (2.31)

is a C∞ map. (Infinitely differentiable).

The Lie algebra

Having obtained some notion of a Lie group, being a smooth manifold with smooth group multipli-
cation, we must look further into the Lie algebra. Tangent spaces, as defined by (Holm et al., 2009),
enable us to describe the Lie algebra, a vector space that can be closely related to the Lie group. A
sketch of the tangent space notion is given in Figure 2.4.

Definition 3.4
Let M be an submanifold of Rn. A tangent vector to M is g′(0) for some smooth path
g : R → M such that g(0) = x. The tangent space to M at point x is the set of all tangent
vectors based at x, denoted TxM . Every tangent space is a vector space.

With the notion of the tangent space, a Lie algebra corresponding to a Lie group can be defined:

3For the curious reader, there is a very nice lecture series available on Youtube of Fredic Schuller that provides a
clear explanation of the topic. https://www.youtube.com/@FredericSchuller.
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Figure 2.4: The Lie algebra sketched as the tangent space at the identity element of the group
manifold G. The manifold is sketched as a sphere, but it need not be this shape. Also, the dual
Lie algebra corresponding to the Lie algebra on which the solution is calculated is sketched. From
(Holm, 2011).

Definition 3.5
A Lie algebra g is the tangent space at the identity TeG of a Lie group G, together with the
corresponding Lie bracket.

A Lie algebra is a tangent space equipped with an operation, the Lie bracket. This operation
has to uphold some properties as follows:

Definition 3.6
The Lie bracket is an operation denoted by [·, ·] on elements in the Lie algebra. It satisfies
bilinearity, alternativity, and the Jacobi identity.

The corresponding Lie algebra is unique for a Lie group up to isomorphisms. However, a Lie
algebra can be constructed without a Lie group or/and belong to multiple Lie groups. Furthermore,
in this thesis, we only consider finite-dimensional Lie algebras. The elements of any finite-dimensional
Lie algebra can be mapped to the Lie group via the exponential map.

Definition 3.7
The exponential map maps an element of the Lie algebra to the Lie group:

exp : g → G (2.32)
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The dual space of the Lie algebra will be denoted by g∗ and referred to as the dual Lie algebra.
In this thesis, only finite-dimensional Lie algebras are considered, which are finite dimensional vector
spaces. Since the dual of any finite-dimensional vector space exists, the dual of the considered Lie
algebra exists too.

Tangent bundle

Another notion that will be useful is that of the tangent bundle and cotangent bundle.

Definition 3.8
Let M be an submanifold of Rn. The tangent bundle of M denoted by TM , is the union
of all the tangent spaces to M :

TM =
⋃
x∈M

TxM (2.33)

The cotangent bundle is the dual space of the tangent bundle denoted by T ∗M .

Group actions

Group action on the group

The actions of a Lie group on an element of the Lie group should follow the rules of a group. A
Lie group action on the Lie group itself can be defined as the left translation, Lg : G → G given by
h → gh. Also, a right translation can be identified, as Rg : G → G as h → hg.

Group action on a manifold

A group G can also act on a manifold. For example, the set of invertible linear transformations in
Rn is a (matrix) Lie group. It remains to show how exactly a group action on a manifold is defined.
Let us look at the definition as given by (Marsden and Ratiu, 1999):

Definition 3.9
Let M be a manifold, and let G be a Lie group. A smooth left action of a Lie group G on a
manifold M is a smooth mapping Φ : G×M → M such that:

(i) Φ(e, x) = x for all x ∈ M ;
(ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and x ∈ M .

The left action of the group g ∈ G on a point in the manifold x ∈ M could also be expressed at
the tangent level by some infinitesimal action of a Lie group element ξ ∈ g. To be more precise, a
smooth path at the element x in time can be constructed with the Lie group element:

t → (exp(tξ))x = path ∈ M (2.34)

18



CHAPTER 2. TIME-INTEGRATION METHODS

Figure 2.5: The Adjoint and Coadjoint actions working on the Lie algebra and dual Lie algebra,
respectively. From (Holm, 2011).

At each point, x ∈ M a tangent vector to this smooth path can be identified and is called the
infinitesimal generator associated with ξ at x ∈ M . The infinitesimal generator is given by:

ξM (x) :=
d

dt

∣∣∣∣
t=0

(path) ∈ TxM (2.35)

By definition, the Lie algebra g consists of the tangent space of the Lie group at the identity of the
Lie grou,p and with elements of the Lie algebra, we can describe the infinitesimal action ξM (x) ∈ g
on x ∈ M that generates the Lie group action. The infinitesimal action of g on M is given by:

g×M → TM, (ξ, x) → ξM (x) (2.36)

Group action on the Lie algebra

Another group action is the action of the group on the Lie algebra or the dual of the Lie algebra.
These actions are called the Adjoint Action and Coadjoint Action of G on g and g∗ given in equation
2.37 and 2.38. The actions are sketched in Figure 2.5.

Ad : G× g → g, Adg(ξ) = TeIg(ξ) = Te(Rg−1 ◦ Lg)ξ (2.37)

Ad∗ : G× g∗ → g∗,
〈
Ad∗gµ, ξ

〉
= ⟨µ,Adgξ⟩ (2.38)

for all µ ∈ g∗, ξ ∈ g, g ∈ G, and ⟨·, ·⟩ : g∗ × g → R is the natural pairing.

Similarly to the infinitesimal action of the group action, the Coadjoint or Adjoint action can also be
expressed by Lie algebra elements related to the tangent vectors at the Lie algebra or the dual Lie
algebra element on which the Coadjoint or Adjoint acts. These infinitesimal actions are called the
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adjoint and coadjoint operators and are defined as:

ad : g× g → g, adξ(η) = (ξ, η) → d

dt

∣∣∣∣
t=0

Adexp tξ(η) (2.39)

ad∗ : g × g∗ → g∗,
〈
ad∗ξµ, η

〉
= ⟨µ, adξη⟩ (2.40)

for all η, ξ ∈ g, µ ∈ g∗.

Matrix Lie groups

In this thesis, we consider a particular type of Lie group known as a matrix Lie group. The elements of
these groups can be represented by matrices, where matrix multiplication is used as the composition
law. Moreover, the exponential map for matrix Lie groups is given by the exponential of matrices.

exp : g → G (2.41)

exp(ξ) = I +
ξ

1!
+

ξ2

2!
+ ... (2.42)

for an element ξ ∈ g, with I being the identity matrix.

For matrix Lie groups, the Lie bracket is given by the matrix commutator:

[ξ, η] = ξη − ηξ, ξ, η ∈ g (2.43)

The Adjoint action, Coadjoint action, adjoint operator, and coadjoint operator for matrix Lie groups
are given by (Holm et al., 2009):

AdRξ = RξR−1 (2.44)

Ad∗R−1µ = R−TµRT (2.45)

adξη = [ξ, η] (2.46)

ad∗ξµ = −[µ, ξ⊤] (2.47)

for all R ∈ G, ξ, η ∈ g, µ ∈ g∗ and with [·, ·] the Lie bracket.

Differential equations and Lie groups

We can introduce differential equations on a manifold using the following theorem.

Theorem 3.2
Let M be a real n-dimensional manifold. The problem ẋ = f(x) is a differential equation on
the manifold M if and only if

f(x) ∈ TxM for all x ∈ M (2.48)
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Using this theorem and the exponential map, (Hairer et al., 2006) showed that the tangent space
of the matrix Lie group G at element g is the action of some Lie algebra element to the group
element. Therefore, the whole tangent space at g can be constructed with Lie group elements ξ:

TgG = {ξg | ξ ∈ g} (2.49)

Using theorem 3.1, for a matrix Lie group, we note that the differential equation must be in the
tangent space of the group:

ġ = f(g) ∈ TgG (2.50)

However, it was just stated that the tangent space at g can be constructed with elements of the
Lie algebra. Therefore, we note that f(g) must be equal to ξg for some element of the Lie algebra.
Which Lie algebra element this is depends on g and we write ξ(g) to indicate that the Lie algebra
element is now a function dependent on g. Using this, we can write down the following theorem
(Hairer et al., 2006):

Theorem 3.3
Let G be a matrix Lie group and g its Lie algebra. If ξ(g) ∈ g for all g ∈ G, then the solution
of:

ġ = ξ(g)g (2.51)

satisfies g(t) ∈ G for all t.

This implies that the differential equation stays on the Lie group and that we can write the
differential equation as a Lie algebra action. This is used in the Runge-Kutta Munthe-Kaas (RKMK)
methods.

From Hamiltonian system to Lie group formulation

As introduced, the phase space of a Hamiltonian system has a symplectic structure. In particular,
the phase space of a Hamiltonian system may be described on the cotangent bundle of the real space
T ∗Rm, which has an underlying symplectic structure.

H : T ∗Rm → R (2.52)

We can transform the motion of the Hamiltonian system to a formulation on the cotangent bundle
of a Lie group G instead of the cotangent bundle of Rm.

H : T ∗G → R (2.53)

The specific Lie group applicable depends on the symmetries and invariances of the Hamiltonian
system in question. Let us sketch the mapping of the Hamiltonian problem to Lie group formulation
and Lie algebra formulation in figure 2.6. For completeness, the Lagrangian formulation is included
as well.
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Lie-Poisson structure

A large class of Hamiltonian problems can be formulated using Lie-Poisson formalism. The sym-
plectic structure relates to a Lie-Poisson structure. Namely, the Hamilton’s equations for a given
H : T ∗M → R are equivalent to (Holm et al., 2009):

Ḟ = {F,H} , for all differentiable F : T ∗M → R (2.54)

Where {·, ·} are the canonical Poisson brackets on T ∗M . For a system with (q1, q2, ..., qn, p1, ..., pn)
the canonical Poisson brackets are given by:

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
(2.55)

A more general Poisson bracket than the canonical Poisson bracket can be defined for other struc-
tures. In fact, any dual Lie algebra carries a Poisson bracket. For further information see (Holm
et al., 2009).

Let us demonstrate briefly how a canonical Hamiltonian formulation is rewritten to a Lie-Poisson
system. A Hamiltonian system can be described in canonical coordinates on the phase space as:

dp

dt
= −∂H

∂q
,

dq

dt
=

∂H

∂p
(2.56)

where H = H(p, q) and p, q ∈ Rn. Alternatively, with µ = (p; q) ∈ Rn we can write:

dµ

dt
= −J∇H(µ) (2.57)

where J(µ) is a skew-symmetric matrix given by:

J =

[
0 In

−In 0

]
(2.58)

As discussed in section 2.1, the Hamiltonian system has a symplectic structure in phase space,
described by:

w(ξ, η) = ξTJη (2.59)

Let us now change from the canonical formulation to the Lie-Poisson formulation. The skew-
symmetric matrix J was constant for the canonical system but will depend linearly on elements
of g∗ in what follows. Furthermore, let µ be an element of the dual Lie algebra g∗. Let us express
µ and J(µ) for finite dimensional systems on the basis of the dual algebra, {ek}dk=1, where d is the
dimension of the system and Cij are the structure constants.

µ =

d∑
k=1

µkek, (J(µ))ij =

d∑
k=1

Ck
ijµk (2.60)
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Figure 2.6: Lagrangian and Hamiltonian formulation on Euclidean space, manifolds (Lie groups),
and the Lie algebra. Green denotes the application of Verlet, Blue of TMK. The horizontal arrows
indicate the (reduced) Lagrange transforms.

As mentioned, any Lie algebra carries a linear Poisson. It can be shown that this implies the
following4:

ad∗σµ = −J(µ)σ (2.61)

for any σ ∈ g and any µ ∈ g∗.

For the Lie-Poisson equations associated with a Hamiltonian, we can therefore write the differential
equation as:

dµ

dt
= ad∗∇Hµ = −J(µ)∇H (2.62)

These are the Lie-Poisson equations.

Casimirs

On the dual Lie algebra, we will define the Poisson bracket as done in (Engø and Faltinsen, 2001):

{F,G} (µ) = ∇F (µ)⊤J(µ)∇G(µ) (2.63)

Any function F for which {F,G} = 0 for all other functions G on the manifold is called a Casimir.
The first integrals as defined in section 2.1 are Casimirs.

2.4 Trapezoidal Munthe-Kaas method

In the previous subsection, we introduced matrix Lie groups, their actions and we have rewritten an
ODE on a matrix Lie group. In this subsection, we describe the Trapezoidal Munthe-Kaas method,

4The reader is referred to (Luesink et al.,2022).
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which is a method for solving differential equations on the Lie group while adhering to the group
structure. First, the Runge-Kutta Munthe-Kaas (RKMK) methods are described. Then, the TMK
method, which is an RKMK method, is discussed.

For derivations of the methods, see the original papers (Munthe-Kaas, 1999) and (Engø and Faltin-
sen, 2001). Another paper providing a particularly clear and more extensive overview for the learning
reader is (Iserles et al., 2000). The method can be extended to stochastic processes as described by
(Luesink et al., 2021).

The RKMK methods

Munthe-Kaas has developed methods to integrate ODEs on manifolds with Runge-Kutta meth-
ods (Munthe-Kaas, 1999). These are now known to be the Runge-Kutta Munthe-Kaas methods
(RKMK). At each time step, a RKMK method constructs an ODE on a Lie algebra and advances
that ODE. The result is then transformed into the result on the manifold. The strength of the
RKMK approach lies in the achievable order of accuracy. The order of accuracy of the RKMK
methods can be as high as that of the underlying Runge-Kutta method. Since Runge-Kutta meth-
ods of any order can be constructed, the approach of Munthe-Kaas leads to arbitrarily high-order
methods on manifolds. Due to this property, the RKMK methods greatly impacted the field of Lie
group integrators. We will review the RKMK methods for Lie groups only, but the reader should
know that the RKMK methods apply to more general manifolds.

We have seen in the previous subsection that ODEs on Lie groups can be rewritten to functions on
the Lie algebra. This step is crucially needed for the RKMK methods to hold. For clarity, we will
rewrite this in a slightly different notation once more, although essentially the same is stated in the
previous section, now we will allow for time dependency in the notation.5

Let us consider an ODE on a Lie group of the following form:

ġ = f(t, g), g(0) = g0, f : R ×G → G (2.64)

The ODE can be rewritten for matrix Lie groups with a function f̃ mapping to the Lie algebra
instead of the Lie group.

ġ = f̃(t, g)g, g(0) = g0, f̃ : R ×G → g (2.65)

With this notion, we can jump to the main point of the RKMK methods. Namely, the differential
equation can be transformed into a differential equation on the Lie algebra for small time steps. The
derivation from equation 2.65 to this result can be reviewed in the sources mentioned above.

5In the approach by Munthe-Kaas this is regarded to be an assumption.
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The solution of equation 2.65 for small t ≥ 0 is given by:

g(t) = exp(σ(t))g0 (2.66)

where σ ∈ g satisfies:
σ̇ = dexp−1

σ(t)(f(t, g)), σ(0) = 0 (2.67)

In other words, the solution of the system can be found by solving the differential equation on
the Lie algebra at each time step. The solution of this differential equation is transformed into the
solution of the original differential equation with the exponential map.

The operator dexp−1
σ stems from the inverse of the differential of the exponential mapping and

is a mapping given by:
dexp−1

σ : g → g (2.68)

dexp−1
σ =

∞∑
k=0

Bk

k!
adkσ (2.69)

where Bk is the k-th Bernoulli number.

In the RKMK method, the inverse map is approximated by a summation to q − 1, where q is
the desired order of the scheme with the following expression:

dexpinv(σ, v, q) =

q−1∑
k=0

Bk

k!
adkσ(v) (2.70)

Munthe-Kaas showed that an RKMK method remains on the manifold and has an order of conver-
gence of at least q for any Lie group action on any manifold. Below, we will give the algorithm of
the RKMK method.
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RKMK method for Lie groups
For ODEs on Lie groups of the form 2.64, the Runge-Kutta Munthe-Kaas method computes
the solution at each new time step t1 = t0 + ∆t with an s-stage Runge-Kutta method. A
single (time) step of the method is given by:

g(t) = g0

for i = 1, 2, ..., s

σi = ∆t

s∑
j=1

aij k̃j

ki = f(∆tci, exp(σi)g0)

k̃i = dexpinv(σi, ki, q)

end

σ = ∆t
s∑

j=1

bj k̃j

g(t+∆t) = exp(σ)g0

where g0, g ∈ M , σi, ki, k̃i ∈ g and aij , bi, ci are s-stage Runge-Kutta coefficients. The function
f (·, ·) is the function as given by the ODE in equation 2.64

The TMK method

(Engø and Faltinsen, 2001) have applied the RKMK methods to Lie-Poisson systems, preserving
Casimirs as well as the Hamiltonian. The connection and transformation of canonical Hamiltonian
equations and the Lie-Poisson structure have been discussed along with the theory in section 2.3.
Let us show how the Lie-Poisson equation is solved with the RKMK method where the trapezoidal
rule is used as the Runge-Kutta method.

Let us denote the Lie-Poisson equation in terms of the coadjoint operator on the dual Lie group, as
in equation 2.62:

µ̇ = ad∗∇H(µ)µ (2.71)

for h ∈ G, µ ∈ g∗ .
It is shown by (Luesink et al., 2021) that the solution of this equation is given by:

µ(t) = Ad∗gµ0 (2.72)

for some g ∈ G.
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With the RKMK method, we locally represent the solution to the differential equation with g =
exp(σ) for some Lie algebra element σ ∈ g:

µ(t) = Ad∗exp(σ)µ0, for small t ≥ 0 (2.73)

Which leads to the differential equation on the Lie algebra of the form:

σ̇ = dexp−1
σ (∇H(µ)) (2.74)

Since we transformed the Hamiltonian system to an equation on the Lie algebra, we can use the
RKMK method to solve this system in terms of sigma. For the Runge-Kutta coefficients, we use the
trapezoidal method. This method is only second order, so we can truncate the summation in the
inverse of the differential of the exponential map to q = 2. For q = 2, the operator dexp−1 reduces
to the identity operator, and we condense the calculation of σ to the following (trapezoidal) form:

σn =
1

2
∆t (∇H(µn) +∇H(µn+1)) (2.75)

The resulting scheme is implicit. By the approach of (Engø and Faltinsen, 2001) we solve this
iteratively with the Chord method. This method is an approximate version of the Newton-Raphson
method. Instead of calculating and inverting the Jacobian term Df for each iteration, the Chord
method approximates it with the initial Jacobian Df(0)−1.

σ[k+1] = σ[k] −
(
Df(σ[k+1])

)−1
f(σ[k], µn) Newton-Raphson method iteration (2.76)

σ[k+1] = σ[k] − (Df(0))−1 f(σ[k], µn) Chord method iteration (2.77)

The TMK method is given as follows:

Integrator 3 - Trapezoidal Munthe-Kaas (TMK) method
For systems of the form in equation 2.62, the solution at each new time step, tn+1 = tn +∆t,
is computed with the TMK method to order q as follows.

Df(0) = I +
∆t

2
D2H(µn)J(µn)

σ = 0

while error > tolerance :

k = k + 1

σ[k+1] = σ[k] − (Df(0))−1 f(σ[k], µn)

error = |σ[k+1] − σ[k]|
g = exp(σ)

µn+1 = Ad∗gµn

where ∆t is the (constant) time step size and f(σ) is given by:

f(σ, µ) = σ −∆t

(
∇H

(
1

2
µ+

1

2
exp(ad∗σ)µ

))
(2.78)
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Features of the TMK method

The TMK method has particular features that make it a suitable integrator for Hamiltonian systems.
It preserves the Casimirs exactly6. Also, energy preservation of TMK is demonstrated in (Engø and
Faltinsen, 2001) as well as a linear global error growth. Furthermore, by (Munthe-Kaas, 1999), the
TMK method stays on the manifold. Therefore, any symmetries assumed by the group structure
will be preserved.

The TMK method appears to have many features that the Verlet method has. In addition, one
should note that the TMK method preserves the additional structure of the group and all con-
stants of motion related to this structure. In contrast, we have seen that the Verlet method only
preserves linear first integrals and some quadratic first integrals. Additional constants of motion
and symmetries will not be preserved with the Verlet method but will be preserved with the TMK
method.

Example: The rigid body

A classic example that demonstrates the excellent performance of the TMK method is the rigid
body with a fixed point (Marsden and Ratiu, 1999). A rigid body consists of three or more mass
points of which the distances within the body do not change; a non-deformable body. Furthermore,
it is fixed at one point in some inertial frame. Therefore, we can reduce the dynamics to rotational
motion around the fixed point. The rigid body can be described as a Lie-Poisson system on the
Lie algebra so(3) associated with the rotation group SO(3), consisting of rotation matrices R. The
elements of the Lie algebra so(3) are traceless, skew-symmetric matrices ξ̂ ∈ R3×3. All matrix Lie
group rules apply as the Lie group is a matrix Lie group. The Lie algebra can be denoted in vector
representation in R3 via the hat map as follows:

(̂ ) : R3 → so(3), ξ = (ξ1, ξ2, ξ3) → ξ̂ =

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 (2.79)

The Hamiltonian of the rigid body is given by the kinetic energy:

H =
1

2
π · I−1π (2.80)

where π ∈ R3 is the angular momentum vector and I = diag(I1, I2, I3) ∈ R3×3 is the matrix
representation of the moment of inertia tensor.
The equation of motion is given by:

π̇ = π × I−1π (2.81)

The Casimir of the rigid body is given by:

C = π · π (2.82)

The Casimir as well as the total energy should remain constant. The TMK method is energy pre-
serving and Casimir preserving. We expect the solution to have a conserved Hamiltonian as well as

6In fact, it preserves the coadjoint orbit and, therefore the Casimirs. However, we have not introduced this notion.
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Figure 2.7: Intersection lines of level set H with sphere of radius ||π|| from (Marsden and Ratiu,
1999).

a conserved Casimir. Therefore, the solution for the angular momentum should at all times be on
the intersection of level sets of the Casimir and the Hamiltonian, specified by the initial condition.
A sketch of possible solution orbits on the sphere is given in Figure 2.7.

The numerical solution is computed an initial intertia of I0 = diag
(
7
8 ,

5
8 ,

1
4

)
, and initial angular

momentum of π = (0.875, 0.625, 0.250)T with TMK and RK4. The initial conditions are scaled s.t.
I = I0

||I0|| , pi =
π

||π|| . The time step is set to ∆t = 0.1. The solutions are plotted in Figure 2.8.

From the figures, one can see that the RK4 method has a drift in both the Casimir and the Hamil-
tonian, while, using the TMK method, they remain constant up to machine precision. We should
not trust the RK4 method for long-time accurate simulations as this drift will build up the error.
The change in π is still small enough that it appears to remain on the sphere of radius ||π|| for both
methods for this short-time simulation. However, for long-time simulations, the non-conservation of
the Casimir and Hamiltonian will result in visible incorrect errors.
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Figure 2.8: Casimir and total energy of a rigid body as a function of time for TMK and RK.
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Chapter 3

TMK for MD - Methodology

The purpose of this section is twofold. First of all, we want to inform the reader of our choice of
models for the N-body system. This is done in section 3.1 by describing the geometry of the models
and the chosen potentials. Secondly, we describe our implementation of the trapezoidal Munthe-
Kaas (TMK) integrator for Molecular Dynamics (MD) simulations. In section 3.2 we will introduce
the Flaschka variables that are employed. Then, in section 3.3 the choice of Lie group is described,
and its link to the physical system is explained. Also, a step-by-step plan of how to obtain all the
needed expressions to implement the TMK method is given. Finally, in section A.1, an example is
given for n = 3 particles on a line.

In this chapter, we describe our approach to implementing TMK for MD. However, this is not
by any means the only approach possible. The TMK method is used in this thesis as it has many
beneficial properties that make it a good choice for MD simulations. Other MD simulation methods
are discussed in Chapter 2. For other possible approaches that might be of interest to implement a
Lie group integrator for MD, see Chapter 6.

3.1 Setup

We consider a one-dimensional lattice with point particles in which neighboring particles interact via
a potential. The models are Hamiltonian systems of the form 3.1 and are implemented as particles
on a line and ring by imposing free and periodic boundary conditions. The setup is sketched in
figure 3.1. In the one-dimensional setting, these are the only two topologically inequivalent cases.

The total energy of the system is given by the Hamiltonian H:

H =

n∑
k=1

1

2
p2k + V (rk) (3.1)

where n is the total number of particles, pk is the momentum of the kth particle. We consider equal
masses of unity, which implies that pk = vk, where vk is the velocity of the kth particle. Furthermore,
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Figure 3.1: Sketch of one-dimensional lattice models with n particle without periodic boundary
conditions (top), and with periodic boundary conditions (bottom).

rk is the distance between two neighboring particles given by:

rn = qk − qk−1,

{
k = 2, 3, ..., n for free BC,

k = 1, 2, ..., n for periodic BC.
(3.2)

where qk is the distance of the kth particle with respect to its equilibrium distance. The positions
are sketched in figure 3.2

The dynamics of the system are governed by Newton’s equations with a potential V :

mkq̈k = − ∂V

∂qk
, k = 1, 2, ..., n (3.3)

This is equivalent to Hamilton’s canonical equations for the Hamiltonian, given by:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(3.4)

Both notations are also equivalent to the Euler-Lagrange equations for certain Langrangians1 denoted
by:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (3.5)

where the Lagrangian is related to the Hamiltonian as:

H(q, p) := p · (q̇)(q, p)− L(q, q̇(q, p)) (3.6)
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Figure 3.2: Positions of particles q with respect to their equilibrium position in the lattice indicated
with a dashed line. Here, qk = 0, qk+1 < 0, qk−1 > 0.

Figure 3.3: Interatomic potentials V (r) as a function of the distance between particles with respect
to their equilibrium distance, r. From left to right: the Toda potential, the quadratic potential of
the harmonic oscillator, and the Lennard-Jones potential.
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The Potentials

The potentials that are considered are the quadratic potential for the harmonic oscillator, the Toda
potential 2, and the Lennard-Jones potential, as given in equations 3.7-3.9. The potentials are
functions of the distance r with respect to the equilibrium distance r̃ between the particles.3The
three potentials and resulting accelerations as a function of r are plotted in figure 3.3.

VHarm(r) =
1

2
r2 (3.7)

VToda(r) = e−r + r − 1 (3.8)

VLJ(r) = 4

[(
1

r

)12

−
(
1

r

)6
]

(3.9)

The Harmonic oscillator potential is a quadratic function in r. The quadratic function is symmetric
with respect to req and tends to infinity as r tends to ±∞. Because of this, particles can not escape
this potential in case of energy conservation. The one-dimensional harmonic oscillator, n = 2, is an
integrable system in one dimension of which the analytical solution is known. This fact allows us to
compare numerical methods with the analytic solution.

The Toda potential contains an exponential function and a term that is linear in r. For r > req, the
linear term dominates the potential, and the potential increases linearly with r. The exponential
term dominates for r < req, resulting in a steep, exponentially increasing barrier. This ensures
strong short-range repulsion between particles and a softer long-range attraction. The Toda lattice
is a well-studied system that is integrable for any n. Due to this asymmetry and exponentially
increasing potential on one side, trajectories with sharper corners and, thus, more numerical errors
are expected.

The Lennard-Jones potential consists of rational polynomial terms down to order minus twelve.
These result in a strong short-range repulsive and soft long-range attractive force. Unlike the Har-
monic and Toda potential, due to the asymptotic approach to zero for r → ∞, particles with enough
energy can escape from this potential.

The simulations start from the two-body system with the Harmonic potential, for which we ex-
pect little numerical errors and smooth trajectories, to the most chaotic situation, for eight-body
systems with the Lennard-Jones potential, for which interesting behavior and errors are expected.
Furthermore, we will consider free and periodic boundary conditions for an increasing number of
particles.

1Hyperregular Lagrangians to be precise. See (Holm et al., 2009).
2A one-dimensional chain connected by Toda potentials is a famous completely integrable system known as the

Toda lattice.(Toda, 1970)
3It should be noted that the potentials are functions of rn, where req = 0 corresponds to the equilibrium distance

of the potential for the Harmonic oscillator and Toda lattice, while req = 2
1
6 corresponds to the equilibrium distance

for the Lennard-Jones potential. Such, the positions are denoted with respect to their true equilibrium distance in the

lattice as sketched in figure 3.2. We can write rn = (qn − qn−1)− for Toda and Harmonic, and rn = (qn − qn−1) + 2
1
6

for the Lennard-Jones potential.
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3.2 Flaschka variables

In our approach to implementing a Lie group integrator for MD-like simulations, we use Flaschka
variables. These variables were first introduced in (Flaschka, 1974a) and (Flaschka, 1974b) to demon-
strate the complete integrability of the Toda lattice. Namely, using Flaschka variables, the dynamics
of the Toda lattice could be represented by the evolution of Lax pairs. With the Lax pair, it can
be shown that the dynamics of the n-particle Toda lattice are governed by n distinct real eigenval-
ues that are preserved in time. Therefore, the system has a full set of conservatives and is integrable.

However, Flaschka variables are more than a trick to show integrability. In (Bloch et al., 2017),
the Flaschka transformations are generalized to an abstract Flaschka transformation concept. Many
exciting properties of the abstract Flaschka transformation are shown, and its use for many different
problems is demonstrated. Even the rigid body problem could be rephrased as a Toda system up
to some parameterization. These results indicate the generalization and possibilities of the Flaschka
transformation beyond the Toda lattice. In this thesis, we will employ this transformation for all
potentials.

Flaschka variables transform a Hamiltonian expressed in canonical coordinates (p, q) to a system
expressed in Flaschka variables a, b. This transformation is given by:

ak =
1

2
e−(qk+1−qk)/2 (3.10)

bk = −1

2
pk (3.11)

for k = 1, ..., n.

For the different potentials, the Hamiltonian expressions under Flaschka transformation are given
by equation 3.12-3.144:

HToda =
n∑

k=1

1

2
b2k +

m+1∑
k=2

a2k +
1

2
ln

(
1

2ak

)
− 1

4
(3.12)

HHarm =

n∑
k=1

1

2
b2k +

m+1∑
k=2

1

2
ln

(
1

2ak

)2

(3.13)

HLJ =
n∑

k=1

1

2
b2k +

m+1∑
k=2

(
2 ln

(
1

2ak

)
+ 2

1
6

)−12

−
(
2 ln

(
1

2ak

)
+ 2

1
6

)−6

(3.14)

where n is the number of particles in the chain and m is the number of connections. For periodic
boundary conditions m = n, otherwise m = n = 1.

4Note that the Hamiltonians are scaled by a factor 1/4.
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3.3 Choice of group structure

Since we would like to improve MD simulations by conservating any additional structure of the
system, the implementation of a Lie group In order to implement a Lie group integrator, we need to
construct a suitable Lie group. For example, we have seen that the dynamics of the rigid body were
invariant under rotations in three dimensions, and therefore the SO(3) group was applicable. Now,
we are considering a one-dimensional chain of particles in Flaschka variables. The construction of the
Lie group and its action will be described in five steps. These steps are carried out for the n = 3 and
n = 2 models with and without boundary conditions. We can generalize the resulting expressions to
the n particle system. For one n = 3 model, the steps and calculations are demonstrated in section
A.1, as well as the construction for arbitrary n.

Step 1. The state of the system

Let us consider the one-dimensional lattice model as described in section 3.1. The state of the
system can completely be described by a b coefficient for each particle and an a coefficient for each
interaction. This can be expressed by the following vector in R2n−1 :

µ = (a1, a2, ..., an−1, b1, b2, ..., bn) ∈ R2n−1 (3.15)

In case of periodic boundary conditions the vector becomes R2n with an additional an term:

µ = (a1, a2, ..., an−1, an, b1, b2, ..., bn) ∈ R2n−1 (3.16)

Step 2.1 Transformations of the system

After each time step, the state of the system is updated. However, the underlying structure of
the system must be respected. The allowed set of state vectors the system can be in arises from
considering transformations under which the system is invariant. Following the Toda lattice approach
of (Holm and Lucas, 2013) let us consider scaling transformations of the a variable and shearing
transformations of the b variable:

S : (a1, a2, ..., an−1) →
(
eβ1−β2a1, e

β2−β3a2, ..., e
βn−1−βnan−1

)
(3.17)

W : (b1, b2, ..., bn) → (b1 − α1a1, b2 + α1a1 − α2a2, ..., bn + αn−1an−1) (3.18)

Such that the state vector under these transformations is given by:

µ̃ =
(
eβ1−β2a1, e

β2−β3a2, ..., e
βn−1−βnan−1, b1 − α1a1, b2 + α1a1 − α2a2, ..., bn + αn−1an−1

)
Step 2.2 Physical interpretation of Transformations

Note that the interacting particle system is invariant under the change to Flaschka variables. Also,
note that the choice of these transformations does not dictate the way the state vector changes in
time. The values of coefficients β and α are not set by the choice of group structure. Instead,
the choice of these transformations merely dictates the allowed configurations of the system. The
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most naive choice would be to allow any scaling and translation of a and b. However, there is more
structure in the physical system, which can be put into the transformations. Let us discuss how this
has been done for the scaling and shearing transformations separately.

By construction, the Flaschka variable ak is related to the positions of the particles given by qk, qk+1.
Similarly, the variable ak±1 are related to qk−1, qk, qk+1, qk+2. Therefore, we know that there is a
relation between the states ak and ak±1, dictated by the allowed positions q. This relation can
be constructed into the transformation. In the physical system, any set of positions q might be a
solution. Let us consider the translation freedom of q:

(q1, q2, ..., qn) → (q1 + β1, q2 + β2, ...qn + βn) (3.19)

The scaling transformation of the Flaschka variables ak corresponds to a translation transformation
of the positions q. This is demonstrated below by the Flaschka transformation of the translation
transformation of qk and qk+1, which results in a scaling transformation of the Flaschka variable ak

FL(T (qk)) = FL(qk + βk) (3.20)

=
1

2
e−((qk+1+βk+1)−(qk+βk))/2 (3.21)

= eβk−βk+1ak (3.22)

− eβk−βk+1FL(qk) (3.23)

= S(FL(qk)) (3.24)

where T is the translation transformation, S the scaling transformation and FL the Flaschka trans-
formation.

We restrict the transformation by only allowing scaling of the form eβk−βk+1 . Such, we imple-
ment the structure of ak to ak±1 imposed by the relation of the variables to qk, qk±1.

For the interpretation of the transformation of the momentum variable, b, let us consider the line
of particles. The momenta of the particles change in time due to the nearest neighbor potential
forces present. The perturbed distance between two particles creates a potential felt by each of
the two particles. Since the masses of all particles are equal, the contribution of this potential to
the momentum of the two involved particles must be equal. Therefore, the structure between the
momenta of neighboring particles up to the initial momenta must be present. In other words, the
momenta of neighboring particles did not change independently. Therefore, instead of allowing any
transformation of the momenta, we can restrict the transformation R to be a function of the left
and right displacements as follows:

R(pk) = −2pk + ck

(
1

2
e−(qk−qk−1)/2

)
− ck+1

(
1

2
e−(qk+1−qk)/2

)
(3.25)

where ck is some multiplication factor.
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For the Flaschka variables b this transformation is given by:

FL(R(pk)) = FL

(
−2pk + ck

(
1

2
e−(qk−qk−1)/2

)
− ck+1

(
1

2
e−(qk+1−qk)/2

))
(3.26)

= FL (−2pk + ckak − ck+1ak+1) (3.27)

= bk −
1

2
ckak +

1

2
ck+1ak+1 (3.28)

= bk − αkak + αk−1ak−1 (3.29)

= W (bk) (3.30)

where αk = −1
2ck is some multiplication factor.

It can be noted that the shear transformation of bk corresponds to another shear transformation
of pk, denoted by W and R respectively. By shear transforming the momenta in this fashion, each
momentum can be changed with respect to its initial conditions, but with the limitation that the
change in momentum of the particle is the same as the change in momentum of its neighbors with
respect to their inter distance.

Note once more that the shear and scaling transformations do not dictate the dynamics of the
line of particles since the values of α and β are not determined here. The transformations un-
der which the system is invariant merely describe the allowed geometric structures allowed in the
simulation.

Step 3. Lie group and groups element

The transformations described in step 2 result in a semi-direct product Lie group G = S ⊗W . For
more information on semi-direct product groups see (Holm et al., 2009) or (Marsden and Ratiu, 1999).
We consider a group element g ∈ G in following matrix representation, such that G = S ⊗ T ∈ GL:

g =



eβ1−β2

eβ2−β3

. . .

eβn−1−βn

O(n−1)×n

−α1

α1 −α2

α2
. . .
. . . −αn−1

αn−1

In×n


(2n−1)×(2n−1)

The top left matrix is a diagonal matrix with eβk−βk+1 on the diagonal and describes an element
of the scaling group S. The bottom left matrix has −αk on the diagonal and αk on the lower
sub-diagonal and is an element of the shearing group W . In×n is an identity matrix of size n by n.
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O(n−1)×n is a matrix filled with zeros of size n− 1 by n. 5

In the case of periodic boundary conditions, the dimension of the problem is increased by one,
accounted for by the extra interaction term an. The group element represented in matrix form
becomes:

g =



eβ1−β2

eβ2−β3

. . .

eβn−1−βn

eβn−β1

On×n

−α1 αn

α1 −α2

α2
. . .
. . . −αn−1

αn−1 −αn

In×n


2n×2n

Step 4. Lie algebra element

The Lie algebra g of a matrix Lie group G is identified with the tangent space at the identity TIG.
Hence, one can construct the Lie algebra element ξ ∈ g of G as done by (Holm and Lucas, 2013) as:

ξ :=
[
g−1ġ

]
t=0

(3.31)

For notational convenience, we will introduce vector representation in R2n−1 for the Lie algebra and
the dual Lie algebra. This can be done if there is an isomorphism from the Lie algebra and its dual
to the vector space R2n−1. For more information see Chapter 5.3 of (Holm et al., 2009). 6 The
matrix structure of the Lie algebra including the identification of the vector elements is given by:

ξ =



ξn − ξn+1

ξn+1 − ξn+2

. . .

ξ2n−2 − ξ2n−1

O(n−1)×n

−ξ1
ξ1 −ξ2

ξ2
. . .
. . . −ξn−1

ξn−1

On×n


(2n−1)×(2n−1)

5Note that the matrix structure of the group element is typical for a semi-direct product group. For comparison:

the SE(3) group, a semi-direct product group of R3 and SO(3), has the form

[
R v
0 1

]
where R ∈ SO(3), v ∈ R3 .

6Note that the vector representation of a Lie algebra is not at all uncommon. A commonly known example is the
hat representation of the so(3) Lie algebra.
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where ξ is an element of the Lie algebra g. Here, the matrix form is displayed, in which the elements
of the vector representation are identified. The Lie algebra element is represented with the vector
(ξ1, ξ2, ..., ξ2n−1) ∈ R2n−1, of which the elements are identified as denoted in the matrix.

In the case of the periodic boundary conditions, the matrix Lie algebra element can be written
as:

ξ =



ξn+1 − ξn+2

ξn+2 − ξn+3

. . .

ξ2n−2 − ξ2n−1

ξ2n−1 − ξn

On×n

−ξ1 ξn
ξ1 −ξ2

ξ2
. . .
. . . −ξn−1

ξn−1 −ξn

On×n


2n×2n

The structure of the dual Lie algebra elements, µ ∈ g∗, are of a similar structure to the Lie algebra
elements, but transposed. The dual Lie algebra elements can be represented with vectors as well
(µ1, µ2, ..., µ2n−1), of which the entries are identified in the matrix representation of a dual Lie algebra
element:

µ =


µn − µn+1

µn+1 − µn+2

. . .

µ2n−2 − µ2n−1

−µ1 µ1

−µ2 µ2

. . .
. . .

−µn−1 µn−1

On×(n−1) On×n



Note that the letter µ has been used for both a state vector and for an element of g∗. We identify
the Flaschka variables as the entries of the vector representation of µ:

(a1, a2, ..., an−1, b1, b2, ..., bn) = (µ1, µ2, ..., µ2n−1) (3.32)

Step 5. Lie group actions

As described in chapter 2, the TMK method employs the coadjoint action of the Lie group G on
the Lie algebra g and the adjoint operator of Lie algebra g on itself. These can be constructed as
follows (Holm et al., 2009):

1. Compute the Adjoint action of the Lie group G on the Lie algebra g. For matrix Lie algebras
this is given by:

Adgξ : G× g → g (3.33)

Adgξ = gξg−1 (3.34)
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and identify its vector elements (Adξη)1, (Adξη)2, ..., (Adξη)n, in the vector representation of
the lie algebra g.

2. Use the relation for the Coadjoint action of Lie group G on the dual Lie algebra g∗ to find the
elements of the Coadjoint action. The relation is given by:〈

Ad∗gµ, ξ
〉
= ⟨µ,Adgξ⟩ (3.35)

3. Write the Coadjoint action in matrix form.

4. Compute the adjoint operator of Lie algebra g on itself. For matrix Lie algebras this is given
by the commutator:

adξη : g× g → g (3.36)

adξη = [ξ, η] = ξη − ηξ (3.37)

and identify its vector elements (adξη)1, (adξη)2, ..., (adξη)n, in the vector representation of the
lie algebra g.

A demonstrative example of the step-by-step process is given in section A.1 of the Appendix. From
the example, the structure of the Coadjoint action and adjoint operator become apparent. From this,
we can construct expressions for the Coadjoint action and adjoint operator for any one-dimensional
n-particle system with or without boundary conditions.

Adjoint operator structure

For the Lie algebra corresponding to the group S ⊙W , the adjoint operator adξη in vector repre-
sentation is given by:

(adξη)1
(adξη)2

...
(adξη)n−1

(adξη)n
(adξη)n+1

...
(adξη)2n−1


=



ξ1(ηn − ηn+1)− η1(ξn − ξn+1)
ξ2(ηn+1 − ηn+2) + η2(ξn+1 − ξn+2)

...
ξn−1(η2n−2 − η2n−1) + ηn−1(ξ2n−2 − ξ2n−1)

0
0
...
0


(3.38)
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For the same algebra, but incorporating periodic boundary conditions, the Coadjoint action can be
represented in vector notation as:

(adξη)1
(adξη)2

...
(adξη)n
(adξη)n+1

(adξη)n+2
...

(adξη)2n


=



ξ1(ηn+1 − ηn+2)− η1(ξn+1 − ξn+2)
ξ2(ηn+2 − ηn+3) + η2(ξn+2 − ξn+3)

...
ξn(η2n−1 − η2n) + ηn(ξ2n−1 − ξ2n)

0
0
...
0


(3.39)

Coadjoint action structure

For the group S ⊙W , and corresponding Lie algebra, the Coadjoint action Ad∗gξ in vector represen-
tation is given by:

(Ad∗gξ)1
(Ad∗gξ)2

...
(Ad∗gξ)n−1

(Ad∗gξ)n
(Ad∗gξ)n+1

...
(Ad∗gξ)n+k

...
(Ad∗gξ)2n−2

(Ad∗gξ)2n−1



=



µ1e
β2−β1

µ2e
β3−β2

...
µn−1e

βn−βn−1

µ1e
β2−β1α1 + µn

−µ1e
β2−β1α1 + µ2e

β3−β2α2 + µn+1
...

−µke
βk+1−βkαk + µk+1e

βk+2−βk+1αk+1 + µn+k
...

−µn−2e
βn−1−βn−2αn−2 + µn−1e

βn−βn−1αn−1 + µ2n−2

−µn−1e
βn−βn−1αn−1 + µ2n−1



(3.40)

For the same group, but incorporating periodic boundary conditions, the Coadjoint action can be
represented in vector notation as:

(Ad∗gξ)1
(Ad∗gξ)2

...
(Ad∗gξ)n
(Ad∗gξ)n+1

(Ad∗gξ)n+2
...

(Ad∗gξ)n+k
...

(Ad∗gξ)2n−1

(Ad∗gξ)2n



=



µ1e
β2−β1

µ2e
β3−β2

...
µne

β1−βn

−µne
β1−βnαn + µ1e

β2−β1α1 + µn+1

−µ1e
β2−β1α1 + µ2e

β3−β2α2 + µn+2
...

−µk−1e
βk−βk−1αk−1 + µke

βk+1−βkαk + µn+k
...

−µn−2e
βn−1−βn−2αn−2 + µn−1e

βn−βn−1αn−1 + µ2n−1

−µn−1e
βn−βn−1αn−1 + µne

β1−βnαn + µ2n



(3.41)
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Chapter 4

Qualitative symmetry breaking in
structured MD simulations

As described in Chapter 2, the Verlet method does not conserve all possible conserved quantities of
a system or its additional symmetries. Therefore, to obtain more accurate simulations, a Lie group
integrator that can preserve symmetries and the corresponding constants of motion is considered.
The Trapezoidal Munthe-Kaas (TMK) method is used because of its structure preservation and
energy conservation. In this chapter, we apply the Verlet, RK4, and TMK methods to a range of
model simulations and compare the outcomes. For all simulations performed in this thesis, the time
step size ∆t is chosen rather small to ensure meeting the stability criteria.

In the following sections, we will investigate the implementation of the TMK method and com-
pare its solutions with those of the Verlet and RK4 methods for several models. First, we will
demonstrate the possible issues arising from symmetry loss with the Verlet method in section 4.1.
The way we will compare outcomes of the simulations is discussed in section 4.2. In section 4.3, we
will demonstrate the loss of symmetry in some model simulations integrated with the Verlet method
and compare them to the same simulations but integrated with the TMK and RK4 methods. This
is done with several models with and without periodic boundary conditions as described in Chapter
3.

4.1 Symmetry loss with the Verlet method

So far, we have not demonstrated that the shortcomings of the Verlet method lead to any issues.
Let us do so with the following example. Consider six particles surrounding a center particle at
(x, y, z) = (0, 0, 0). The six particles are symmetrically positioned and have the same distance to
the center particle of

√
x2 + y2 + z2. The initial momenta are zero for all particles. The initial

positions are indicated in Figure 4.1 by stars. Each particle experiences a Lennard-Jones potential
force from all the other particles present. The structure of this example is inspired by the structure
and symmetry of a perovskite unit cell without the A cations.

As we calculate the time evolution of this system, four particles overcome the attractive poten-
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tial force of the other particles and break free with constant velocities. This is shown in figure 4.1,
in which the distance to the center (0, 0, 0) is denoted as the radius, and trajectories of this distance
are plotted. For two of the four escaping particles, the escape happens at t ≈ 37. The two other
escaping particles demonstrate a similar escape at t = 55. Meanwhile, a system of three particles
oscillating on a line remains.

As the initial configuration of this three-dimensional setting is symmetric, each particle should
experience the same net force but in different directions. At each moment in time, the potential
and kinetic energy of each particle surrounding the center particle should be equal. The system has
no reason to change its symmetries. However, in the simulation calculated with the Verlet method,
it does change to a less symmetric system which demonstrates a true fundamental issue with the
popular Verlet algorithm.

A similar phenomenon is observed in a two-dimensional setting. Suppose we place three parti-
cles on a two-dimensional plane with equal distances r as sketched in figure 4.2. In that case, the
system breaks into a binary system moving in a direction opposite to the direction in which the
escaped particle moves. The initial distances between the particles are given by:

ri =
√
(xi − xi−1)2 + (yi − yi−1)2 (4.1)

r1 = r2 = r3 (4.2)

r1 =
(
1.5 + 2

1
6

)
(4.3)

Escape from the n-body problem

For the general three-body problem, this type of escape is not at all uncommon. For example, in
systems of self-gravitating bodies, it is statistically speaking certain that at one point in time, a sys-
tem of three bodies will break into a binary system moving in the opposite direction of the escaped
body (Manwadkar et al., 2021). As described by (Valtonen and Karttunen, 2006), the three-body
system is chaotic, inherently unstable, and only for a small part of the initial value space, the escape
phenomenon should not occur—for example, the symmetric initial conditions. However, symmetric
initial conditions might be more common for structured materials than for bodies in space, and this
small part of the initial value space might be more important than considered before, especially in
the case of simulation of material properties of n interacting bodies.

One should note that a symmetric escape for the Lennard-Jones potential is also perfectly pos-
sible when the initial energies are large enough. Furthermore, if the system is not symmetric, the
system’s energy can be passed on to some particle that can, in turn, escape the potential. However,
if the system is symmetric, this type of energy transfer is not physical and should not lead to an
asymmetric escape. As such, these constitute fundamental tests of time integrators for dynamical
systems, which clearly indicate possible issues for particular integrators.
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Figure 4.1: Position (x, y, z) and radius plot
√
x2 + y2 + z2 for a 3D model with n = 7 particles

with initial positions such that
√
x2 + y2 + z2 =

(
1 + 2

1
6

)
and initial velocities v1,2,...,7 = 0 centered

around a particle at (0, 0, 0) integrated with the Verlet method with ∆t = 10−3.

Figure 4.2: Position (x, y) and radius plot
√

x2 + y2 for a 2D model with n = 3 particles with initial

distances of r1,2 = 1.5+2
1
6 and initial velocities v1,2,3 = 0 centered around (0, 0) integrated with the

Verlet method with ∆t = 10−3.
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4.2 Characterizing simulations and outcomes

In order to compare different integrators, multiple one-dimensional models are considered, which
enable us to distinguish between proper capturing of the dynamics and qualitative deviations due to
numerical shortcomings. The total linear momentum and total energy should be conserved (within
error bounds) for both integrators as described in Chapter 2. Therefore, we should check these
observables, but we do not expect any irregularities for either integrator. The change in the Hamil-
tonian will be given in ratio to the initial total energy:

Relative Energy change =
H(t)−H(0)

H(0)
(4.4)

The change in total linear momentum is given absolutely, as it is often equal to zero in our models:

Momentum change = P (t)− P (0) (4.5)

Additionally, we can inspect and compare the particle trajectories computed with the different inte-
grators. It has been observed in the previous section that the trajectories do not need to be identical,
which can inform us of what method results in the correct behavior. However, only inspecting the
trajectories might not always give us valuable information. Especially for larger chaotic systems, it
is less clear which trajectory is correct, as small errors may lead to completely different trajectories
as stated by the Lyapunov instability.

Therefore, we will also measure the conservation of symmetry by the time-integration schemes.
Along the line of symmetry present in the initial conditions, the difference in the trajectories or
energies in time can be plotted as a measure of symmetry.
For example, in the case of three particles of which the outer two are perturbed with the same
amount, a line of symmetry in the middle particle can be identified. This is sketched in figure 4.3
Such, we can measure symmetry for this setup by:

|r1 − r2| = |q2 − q1 + q3 − q2| (4.6)

|E1 − E3| = |V (r1) +
1

2
p21 − V (r2)−

1

2
p23| (4.7)

Similarly for other numbers of particles and symmetry lines, a difference between the left and right
displacement w.r.t. the symmetry line is used as a measure of the (a)symmetry.

4.3 Demonstration TMK application and advantages

This section aims to demonstrate the application and advantages of the TMK method for MD
simulations. We will start by demonstrating the working and implementation of the TMK method
for a two-particle model for several potentials in subsection 4.3.1. The results of the Verlet, RK4, and
TMK methods will be similar. This will enhance our trust in the TMK method. In subsection 4.3.2
the escape phenomenon for a three-particle model with varying initial conditions is investigated with
the TMK and Verlet methods. The loss of symmetry with the Verlet method is not observed with

46



CHAPTER 4. QUALITATIVE SYMMETRY BREAKING IN STRUCTURED MD SIMULATIONS

Figure 4.3: Three particles with a symmetry line for (q2 − q1) = r1 = r2 = (q3 − q2).

the TMK method. Then, in section 4.3.3, a five-particle system with periodic boundary conditions
and structural symmetry is employed to demonstrate a similar phenomenon of symmetry loss with
periodic boundary conditions. In section 4.3.3 the same five-particle model is used, and it is shown
that decreasing the time step size does not overcome the asymmetry build-up with the Verlet method.
Finally, a more chaotic, eight-particle model with periodic boundary conditions is employed in
subsection 4.3.4. This model shows us that the loss of symmetry of the Verlet method can be
measured even when the periodicity of the displacements can not be identified. Furthermore, the
symmetry conservation of the TMK method is confirmed once more. This is summarized below:

1. Demonstration of working with a two-particle model with Harmonic oscillator, Toda and
Lennard-Jones potential.

2. Investigation of escape phenomenon with a three-particle model with the Lennard-Jones po-
tential.

3. Investigation of symmetry loss with a five-particle model with periodic boundary conditions
and the Lennard-Jones potential.

4. Investigation of time step size dependency of symmetry loss in Verlet with the five-particle
model.

5. Investigation of symmetry loss with a (more chaotic) eight-particle model with periodic bound-
ary conditions.
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4.3.1 Demonstration of working for a two-particle model

In this section, we will demonstrate the performance of TMK, RK4, and Verlet for simple two-particle
models without additional symmetry for several potentials. This section aims to demonstrate the
working of the TMK method by presenting similar results as for the Verlet method. This will en-
hance our trust in implementing and applying the TMK method.

For the two-particle model, the Harmonic oscillator potential, the Toda potential, and the Lennard-
Jones potential are used. The results of the two-particle model with the Harmonic oscillator potential
are plotted in Figure 4.4. Furthermore, the outcomes of the two-particle model with a Toda potential
are given in Figure 4.5. Similarly, using a Lennard-Jones potential, the outcomes are given in Figure
4.6. The initial displacement of the Toda potential is chosen to be q2 − q1 = 8, while the initial
displacement for the Lennard-Jones and Harmonic oscillator potential is chosen to be q2 − q1 = 2.
The initial momenta are zero for the Lennard-Jones and Harmonic oscillator potential and non-zero
for the Toda potential. This is merely to explore different initial settings.

Displacement trajectories

From Figures 4.4(a), 4.5(a), and 4.6(a), it can be noted that the calculated displacements are similar
for all three methods for all potentials. This enhances our trust in the working of the TMK method.
Furthermore, it can be noted that the oscillation of the displacement with the Toda potential in
Figure 4.5(a) is not symmetric with respect to the distance r = q2 − q1. Namely, it is clear that
the repulsion for r < 0 is stronger than the attraction for r > 0. The repulsion for r < 0 of the
Lennard-Jones potential in Figure 4.6(a) is even stronger with respect to its attraction for r > 0.
This should be expected, looking at the slopes of the potentials in figure 3.3. Although the oscillation
is still smooth, the sharper character due to the strong repulsion could induce larger errors.

Total energy

From Figure 4.4(c) one can note that the total energy is conserved exactly for all three time-
integration methods for the harmonic oscillator potential within this time frame. For the Toda and
Lennard-Jones potential, we note in Figure 4.5(b) and 4.6(c,d) the energy change has a periodic
character for the TMK and Verlet method. The bounds within which this periodic behavior occurs
are of a similar order of magnitude for the TMK and Verlet method, which is remarkable. From the
theory in Chapter 2, we know that the methods are near-preserving of energy rather than exactly
preserving. Therefore, this periodic behavior is expected and will remain within bounds for long-time
simulations. For the Lennard-Jones potential, we note that the amplitude of the periodic energy
oscillation is much larger compared to the Toda potential. This could be due to the Lennard-Jones
potential’s sharply increasing nature, which introduced high gradients into the problem that are al-
ways harder to capture. Furthermore, the peaks in the energy plots (Fig. 4.5(b),4.6(c)) correspond
to the sharp oscillation peaks which are the result of the repulsion for the shortest distance q2 − q1.

For the fourth-order Runge-Kutta method, there appears to be no energy change for the Lennard-
Jones and Toda potential in this order of magnitude plot. However, if we only inspect the energy
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change of the RK4 method solely in Figure 4.6(e), we note that the energy drifts. The magnitude of
the energy change for this short-time simulation is much smaller than the magnitude of the energy
change of the TMK and Verlet method. However, those changes are bound, while the energy change
of RK4 will likely increase and drift even further as longer-time simulations are done. The RK4
method is unsuitable for long-time MD simulations as it is not energy-conserving (Cf. section 2.2).

Total linear momentum

The total linear momentum is conserved exactly for all three Harmonic oscillator and Lennard-Jones
potential methods (Figure 4.4(d), 4.6(b)). All methods conserve the total linear momentum up to
machine precision for the Toda potential (Figure 4.5(c)). This simulation is the only one with non-
zero initial momenta. This might induce the difference in conservation. Furthermore, as energy for
the RK4 method is not conserved, it is expected that the momentum will not be conserved either
for longer-time simulations. For the TMK and Verlet methods, the conservation of momentum is as
expected.

Displacement error

For the quadratic potential of the Harmonic oscillator, an analytic solution is available. Therefore,
we can compare our solutions to the analytic solution:

Displacement Error =
∣∣∣(∆q)numerical − (∆q)analytical

∣∣∣ (4.8)

where r = ∆q = q2−q1 and the analytical solution for two free particles with initially no momentum
is given by:

(∆q)analytical = 2 cos

(
t
√

(∆q)initial

)
(4.9)

The error of the three methods is plotted in figure 4.4(b). It can be noted that the TMK method
has the largest error, followed by the fourth-order Runge-Kutta method. In this figure, the error of
the Verlet method is not even visible. It is known that the global error of both TMK and Verlet
increases linearly. However, it is clear that for the Harmonic oscillator potential, the error is much
more significant for the TMK method with the same discretization. The difference in complexity of
the methods could explain this. The TMK method consists of many calculation steps, as described
in section 2.4. Many calculation steps, including a Newton solver and matrix inversion, could be
responsible for more roundoff errors. The Verlet method, with only three lines of code, is much
preferred here because of its simplicity.

Summary two-particle model

In conclusion, we observe that all three methods, TMK, Verlet, and RK4, obtain the correct trajecto-
ries for short-time simulations of two particles. The TMK method has a larger error than the Verlet
method in the trajectory for the Harmonic oscillator potential. The momenta appear conserved for
all methods, and the energy is bound for the TMK and Verlet method. Energy drift is present for
the RK4 method, making it unsuitable for long-time MD simulations. We can conclude that the
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TMK method appears suitable for MD simulations, but the Verlet method has better results for the
smooth, integrable, harmonic oscillator.
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(a) Displacement q2 − q1. (b) Displacement error.

(c) Total energy change in percentages. (d) Total momentum change.

Figure 4.4: Two particle model with the Harmonic oscillator potential, with ∆t = 10−2 and initial
displacement (q2 − q1) = 2, and initial momenta p1 = p2 = 0.
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(a) Displacement q2 − q1. (b) Total energy change in percentages.

(c) Total momentum change.

Figure 4.5: Two particle model with the Toda potential, with ∆t = 10−2 and initial displacement
q2 − q1 = 8, and initial momenta p1 = 2 , p2 = −2

3 .
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(a) Displacement q2 − q1. (b) Total momentum change.

(c) Total energy change in percentages. (d) Zoomed in on (c).

(e) Energy change of the Runge-Kutta method.

Figure 4.6: Two particle model with the Lennard-Jones potential, with ∆t = 10−2 and initial
displacement (q2 − q1) = 2, and initial momenta p1 = p2 = 0.
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4.3.2 Escape for a three-particle model

Let us now create a three-particle model in which symmetry as described in section 4.2 is present.
Namely, the outer two particles have the same initial distance and velocities but with opposite
directions, with respect to the middle particle. This is sketched in figure 4.3. Let us use the
Lennard-Jones potential, as we expect the largest differences to be observed for this potential. The
initial perturbed distances are chosen to be r1 = r2 = 21/6 + 1. The initial potential energy should
not be large enough for the particles to escape the potential in a symmetric manner. Instead, we
expect a symmetric oscillatory motion for both distances r1, r2. The results are plotted in Figure
4.7.

Displacement trajectories

In Figure 4.7(a) we notice that the three methods do not recover the same or even similar trajectories.
The behavior of the Verlet method is similar to the two-dimensional and three-dimensional cases
described before. After some initial oscillations, a particle escapes with constant velocity with respect
to the remaining two oscillating particles. The TMK and RK4 methods do not demonstrate this
escape. Instead, the initial oscillations continue with these methods.

Total linear momentum and energy

Even though the trajectories display surprising and different behavior, the energy and momentum
plots do not display erroneous behavior. The momentum of the Verlet system is still conserved, and
the total energy is conserved within reasonably small bounds. If one looks closely, it can be noticed
that the periodic behavior of the energy change of Verlet changes as the particle escapes. However,
this would not be easily noticeable.

Symmetry

The difference between the displacements r1 and r2 is plotted in Figure 4.8. In Figure 4.8(a) we
note that there is no symmetry loss for the TMK and RK4 methods. The differences are zero to
machine precision. Furthermore, it can be noticed in the logarithmic plot, Figure 4.8(b), that the
increasing differences of the Verlet method are not instantaneous upon escape but are building up
starting at the first time step. With the first time steps, symmetry is lost with the Verlet method
while preserved for time steps with the TMK and RK4 methods.

As described in section 4.1, the energy of an asymmetric system can be transferred between particles.
In such a way, the energy of a single particle may become enough for an escape, while an escape was
initially not possible. In section A.3.1 of the appendix the energy of each particle is plotted for the
TMK and Verlet methods and energy transfer can be identified for the Verlet method, which allows
for the escape of a particle after some time as if the system was asymmetric.
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Escape for different initial conditions

In symmetric situations with enough energy or asymmetric situations with enough total energy, es-
cape is a natural phenomenon. Furthermore, in asymmetric situations, an escape might occur due to
the transfer of energy within the system. Let us map the escapes for different initial displacements
q2−q1, q3−q2. All initial momenta are zero p1 = p2 = p3 = 0. In Figure 4.9 these maps are given for
the TMK and Verlet methods. Dark blue squares indicate no escape, while yellow squares indicate
an escape. The escape is registered as having obtained a distance larger than the tolerated distance
within a running time t = 1000. The maps may be different for even longer or shorter running times.

In Figures 4.9(a),(b) we notice that both TMK and Verlet indicate escapes for small distances
q2 − q1, q3 − q2. This corresponds with the intuition that there is such a large repulsive initial po-
tential energy for small distances between particles that escape is likely. The large repulsive energy
apparently is large enough to escape the asymptotic gradual attractive force. Furthermore, we notice
that for an ‘intermediate’ distance between particles, no escape is present for Verlet and TMK. This
yellow region corresponds to having a total energy that is not large enough for a single particle to
escape.
For larger distances in the asymmetric cases r1 ̸= r2, the system’s total energy is large enough such
that transfer to a single particle may result in the escape phenomenon. In Figures 4.9(a),(b) it
can be noted that escape indeed takes place for asymmetric cases with enough energy due to either
rather small or rather large displacements or combinations thereof.

However, for symmetric cases, the particles should not transfer their energy. The initial energies of
the individual particles are not enough to escape for large initial distances q2−q1, q3−q2. Therefore,
the symmetric cases should not result in escape phenomena for larger distances. However, this is
where a discrepancy between the TMK and Verlet map is observed. The TMK map has a diagonal
of no escapes for r > rsym−escp where rsym−escp is given by VLJ(rsym−escp) > 0. We note that on
this diagonal, the Verlet map indicates escapes.

Summary three-particle model

In conclusion, for the three-particle model with symmetry, the Verlet method demonstrates symme-
try loss while the TMk method demonstrates symmetry conservation. This does not result in loss
of total momentum or energy conservation. The asymmetry in the Verlet method is shown to build
up from the first time step and may result in an escape phenomenon. This escape phenomenon is
observed for asymmetric cases with both methods when the total energy is sufficiently large or in
the symmetric case when initial individual energies are sufficiently large. However, in symmetric
cases, the escape phenomenon always occurs with the Verlet method, while this does not happen
with the TMK method. One should note that this additional symmetry is not pre-programmed into
the TMK method. Only the initial conditions are changed.
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(a) Displacement q2 − q1.

(b) Total momentum change, (c) Total energy change in percentages.

Figure 4.7: Three-particle model with the Lennard-Jones potential, with ∆t = 10−4 and initial
displacement r1 = r2 = 21/6 + 1, where ri = (qi+1 − qi) and initial momenta p1 = p2 = p3 = 0.
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(a) Linear plot. (b) Logarithmic plot.

Figure 4.8: Displacement difference |r1 − r2| for the three-particle model with the Lennard-Jones
potential, with ∆t = 10−4 and initial displacement r1 = r2 = 21/6 + 1, where ri = (qi+1 − qi) and
initial momenta p1 = p2 = p3 = 0.

(a) TMK (b) Verlet

Figure 4.9: Maps indicating escape of a particle (Yellow) or no escape (Blue) in a three-particle
model with the Lennard-Jones potential and different initial displacements r1 = q2− q1, r2 = q3− q2
with same initial momenta p1 = p2 = p3 = 0, with ∆t = 10−4.
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Figure 4.10: The five-particle model with periodic boundary conditions and symmetry with respect
to its center particle. δ indicates the equilibrium distance and ϵ the perturbation with respect to
the equilibrium distance.

4.3.3 Symmetry in a five-particle model with periodic boundary conditions

The five-particle ring is symmetric with respect to its middle particle. The positions of the two
particles neighboring the center particle are perturbed with respect to the equilibrium distance.
Such, the distance between the particles is given by:

q2 − q1 = r1 = δ + ϵ (4.10)

q3 − q2 = r2 = δ − ϵ (4.11)

q4 − q3 = r3 = δ − ϵ (4.12)

q5 − q4 = r4 = δ + ϵ (4.13)

qghost − q5 = r5 = δ (4.14)

q1 − qghost = r5 = δ (4.15)

where δ is the equilibrium distance for the potential and ϵ the perturbation. For the Lennard-Jones
potential, the equilibrium distance is δLJ = 21/6. The chosen perturbation is ϵ = 0.1. The setup is
sketched in Figure 4.10.

Displacement trajectories

We will not plot all trajectories for the five-particle ring in a single figure. Instead, let us inspect
only the trajectory of the displacement r4 for the different time-integration methods in Figure 4.12.
It is clear that the TMK method and RK4 method result in a periodic oscillatory displacement. The
Verlet method initially returns the same displacement trajectory but distorts clearly at t ≈ 200.

Symmetry

In figure 4.13 we inspect the symmetry in the system by inspecting the difference of the left and
right displacement with respect to the middle particle,|r2 − r3|. It can be noted that the TMK and
RK4 methods result in zero symmetry loss in Figure 4.13(a). In Figure 4.13(b) one can note that
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the Verlet method displays significantly increasing symmetry loss until t = 250. The asymmetry
builds up from the first time step., but a maximum is reached. This is different from the symmetry
loss for the thee-particle in Figure 4.8. The nature of the periodic boundary conditions can explain
this. The boundary conditions do not allow a change in position outside of the periodic domain.
Therefore, the possible differences in position, (qi − qi−1), is limited by the system.

Time step size dependency of symmetry loss

In Figure 4.11, the symmetry loss as a function of time is plotted for time step sizes of varying orders
of magnitude. The model remains the same five-particle model with periodic boundary conditions.
The initial conditions are kept constant and are the same as for the five-particle ring discussed
before. For these time step sizes and intermediate step sizes, the maximum error within t ∈ {0, 400}
and their approximate time to reach asymmetry of order 10−1, denoted T10−1 , is given in table 4.1.

∆t max|r2 − r3| T10−1

1× 10−3 0.2687 237
5× 10−3 0.2564 222
1× 10−4 0.2692 212
5× 10−4 0.2581 228
1× 10−5 0.2682 196

Table 4.1: Maximum symmetry loss |r2 − r3| within t ∈ {0, 400} and the approximate time it took
for the symmetry loss to become 10−1 for different time step sizes for the five-particle model with
periodic boundary conditions.

From Figure 4.11 and table 4.1 we note that a smaller time step does not correspond with a
better result. Contrary to the intuition that a smaller time step solves all numerical errors, the
smallest time step appears to have the fastest initial increase in symmetry loss.

For the smallest time step, more calculations are done within the same time frame. The increase in
symmetry error appears to start at the computer’s precision error and could start as an accumulation
of rounding errors. In this line of reason, it is not strange that a smaller time step corresponds to a
faster symmetry loss.

Summary five-particle model

For the five-particle model with symmetry and periodic boundary conditions, a build-up in asymme-
try has been found for the Verlet method similar to the case of the three-particle model. However,
due to the periodic boundary conditions, the location of the particles, and thus the difference therein
is bounded. Furthermore, it has been demonstrated that decreasing the time step does not solve the
asymmetry issue of the Verlet method. In contrast, the asymmetry is found to build up faster for a
smaller time step.
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Figure 4.11: Displacement difference |r3 − r2| for the five-particle model with the Lennard-Jones
potential, with a varying time step size ∆t =

(
10−3, 10−4, 10−5

)
and initial displacements r1 = r4 =(

21/6 + 0.1
)
, r2 = r3 =

(
21/6 − 0.1

)
, r5 = rghost =

(
21/6

)
, where ri = (qi+1 − qi) and initial momenta

p1 = p2 = ... = p5 = 0.
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Figure 4.12: Five-particle ring with the Lennard-Jones potential, with ∆t = 10−4, and initial
displacements r1 = r4 =

(
21/6 + 0.1

)
, r2 = r3 =

(
21/6 − 0.1

)
, r5 = rghost =

(
21/6

)
, where

ri = (qi+1 − qi) and initial momenta p1 = p2 = .. = p5 = 0.
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(a) Linear plot. (b) Logarithmic plot.

Figure 4.13: Symmetry of the five-particle ring with the Lennard-Jones potential, with ∆t = 10−4,
and initial displacements r1 = r4 =

(
21/6 + 0.1

)
, r2 = r3 =

(
21/6 − 0.1

)
, r5 = rghost =

(
21/6

)
, where

ri = (qi+1 − qi) and initial momenta p1 = p2 = .. = p5 = 0.

4.3.4 Symmetry in an eight-particle model with periodic boundary conditions

The eight-particle ring is symmetric with respect to a line between the middle particles. The positions
of the two center particles are perturbed. Such, the distances between the particles are given by:

r1 = r2 = r6 = r7 = r8 = δ

r3 = r5 = δ + ϵ

r4 = δ − 2ϵ

where δ is the equilibrium distance for the potential and ϵ the perturbation. For the Lennard-Jones
potential, the equilibrium distance is δLJ = 21/6. The chosen perturbation is ϵ = 0.1. The setup is
sketched in Figure 4.14.

Displacement trajectory

For the eight-particle ring, the displacement of only r4 = q4 − q3 is plotted in Figure 4.15. One can
note that the three methods do not yield the same trajectories. Their deviation starts relatively
early in time; from t ≈ 30 differences in all three methods are observed. For an even larger time,
t ≈ 415, we can see that the three methods surely do not result in the same trajectories. Also, it
can be noted that the trajectories are chaotic. The Lyapunov instability may be the cause of these
entirely different trajectories. Furthermore, we cannot indicate which of these might be the ‘correct’
trajectory and which may be wrong, if not all.
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Figure 4.14: The eight-particle model with periodic boundary conditions and symmetry with respect
to its center particles. δ indicates the equilibrium distance and ϵ the perturbation with respect to
the equilibrium distance.

Symmetry

Although the trajectories do not indicate the time-integration method’s correctness, the symmetry
between the left and right parts can be measured. We do this by measuring the difference between
the displacements left and right of the two middle particles, |r5 − r3|.1 This is plotted in Figure
4.15(a),(b). In Figure 4.15(b) it can be noted that the asymmetry of the results of the Verlet method
builds up from the first time step to significant amounts in the order of 10−1. In contrast to what is
seen before, the results of the RK4 method also lose its symmetry. The results computed with the
TMK method, on the other hand, remain symmetric with |r3 − r5| exactly zero for all time stepss.2

This can be seen in Figure 4.15(a).

Summary eight-particle model

Symmetry loss with the Verlet and with the RK4 method similar to the five-particle model is
observed for the eight-particle model with additional symmetry. The TMK method is observed to
conserve this symmetry once again. Unlike the three-particle and five-particle models, it has become
impossible to indicate a change from periodic to non-periodic behavior in the displacement plot, as
the trends have become rather chaotic. However, as the RK4 and Verlet methods lose symmetry,
these displacement trajectories may already be regarded as incorrect.

Summary of all results

In conclusion, without symmetry in the system, all three time-integration methods result in the
same trajectories for simple three-particle models with periodic boundary conditions and short-
time simulations. Even for a five-particle model with symmetry, initially, similar trajectories are
observed. The Verlet method builds up asymmetry from the first time step, resulting in a trajectory
distortion after some time. This feature is not resolved by decreasing the time step size. This is
also observed for the RK4 method for a larger number of particles. In all cases, the TMK method

1This can also be chosen to be |r1 − r7| or |r2 − r6|.
2Note that the TMK method is not plotted in the logarithmic plots. It is chosen to leave it out, as all zeros will

not show in a logarithmic plot.
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conserves symmetry exactly or up to machine precision. However, for models with a larger number
of particles, the trajectories are not the same anymore, and identifying the ’correct’ trajectory
becomes impossible. The conservation or loss of symmetry might be a good indicator. Namely,
if symmetry is lost, the trajectories can not be correct for sure. For models with less extreme
initial displacements, the symmetry error takes longer to build up, but eventually, the same order
of magnitudes of asymmetry will be recovered.
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(a) Linear symmetry. (b) Logarithmic symmetry.

(c) Displacement for t ∈ {0, 55}. (d) Displacement for t ∈ {411, 418}.

Figure 4.15: Eight-particle ring with the Lennard-Jones potential, with ∆t = 10−4, and initial
displacements r1 = r2 = r6 = r7 = rghost = 21/6, r3 = r5 =

(
21/6 + 0.1

)
, r4 =

(
21/6 − 0.2

)
, where

ri = (qi+1 − qi) and initial momenta p1 = p2 = .. = p8 = 0.
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Chapter 5

Discussion and Conclusion

In this chapter, we will discuss and conclude the results of this thesis. Interpretation and discussion
of the results are already given within Chapter 4. In the discussion section 5.1, rather than discussing
the results we will discuss some issues arising from the work presented in this thesis. We will critically
examine the approach taken in this work and give some remarks. In section 5.2, we will summarize
and conclude the work presented in this thesis.

5.1 Discussion

This thesis investigates the suitability of the TMK method for MD simulations and demonstrates its
performance compared to the well-known reference Verlet method. Some issues have not been in-
vestigated or addressed in detail and remain open for research. These aspects will be considered next.

First of all, in the thesis, the conservation of symmetry with the TMK method as opposed to
the loss of symmetry when using the Verlet method is demonstrated with model simulations. These
models provide us with a clear indication of the added value of using the TMK method as opposed
to the Verlet method for MD simulations. However, this demonstration rests on example simulations
and does not provide a rigorous proof of symmetry conservation when using the TMK method. This
is an important open issue that needs theoretical consideration.

Secondly, the application of TMK in MD simulations might be limited by the computational costs
of the method. It is mentioned that the TMK method is more costly than the Verlet method. A
critical examination of the computation time and the complexity of the method will be extremely
helpful for further development. Opportunities for dimension reduction with Lie group integrators
could be an interesting line of work to pursue to avoid these costs.

Furthermore, the symmetry loss of the Verlet method as opposed to symmetry conservation with the
TMK method has the most focus in this thesis. It would be of interest to look closer into the differ-
ences between the methods when near-symmetry is present. True symmetry might not be present in
materials. Therefore, the results and arguments presented in this thesis should be developed further
toward the requirements of actual MD applications.
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Lastly, the relatively good performance of the fourth-order Runge-Kutta method in the model sim-
ulations may be observed. Energy drift is also demonstrated, which makes it a less suitable method
for long-time MD simulations. However, it does demonstrate the advantages of higher-order meth-
ods for accurate solutions. The use of a higher-order Runge-Kutta-Munthe-Kaas method can be of
interest. The TMK method is not the only option to consider.

Concluding this discussion, there is still some work to be done in proving the application of structure-
preserving Lie group integrators in MD. However, a clear indication of an advantage of the TMK
method as opposed to the Verlet method is given, and it would be interesting to investigate its
extension to full MD simulations.

5.2 Conclusion

In this thesis, we have introduced a Lie group integrator, the Trapezoidal Munthe-Kaas integrator
(TMK), to Molecular Dynamics (MD) simulations. We have demonstrated the use of this time inte-
grator for one-dimensional model simulations and compared its outcomes with those computed with
the Verlet and fourth-order Runge-Kutta (RK4) methods. The models used are one-dimensional
lattices that build up from consisting only of two particles with free boundary conditions to eight
particles with periodic boundary conditions. Several potentials are tested to observe the behavior
of the integrators, namely, the Harmonic oscillator potential, the Toda potential, and the Lennard-
Jones potential. The latter is used in most of our simulations as it can be argued to represent
features of realistic force fields in MD simulations.

The Verlet and TMK methods are observed to preserve momentum and to near-preserve energy
for all models, as expected for the N-body problem. Furthermore, an energy drift is observed for
the RK4 method, which rules the RK4 method out for any long-time MD simulations. The com-
puted trajectories for two- or three-particle models without additional symmetry are the same for
all three methods for short-time simulations. Furthermore, we have seen that the Verlet method is
more accurate for the Harmonic oscillator potential than the TMK or RK4 method. The number of
computation steps is significantly lower for the Verlet method than for the TMK or RK4 method,
reducing computational costs. Therefore, Verlet can be the cheapest and best integrator for simple
problems without additional symmetry.

The Verlet method has been observed to fail to conserve symmetry for models with additional
symmetries, which can not be resolved by decreasing the time step size. We have noted that this
leads to incorrect trajectories and even incorrect break up of systems without periodic boundary
conditions. The RK4 method has been shown to conserve this symmetry for some, but not all
model simulations. The TMK method does conserve this symmetry in all tested cases. Models with
a larger number of particles display chaotic behavior, and all three methods may result in differ-
ent trajectories, but the TMK method was found to preserve the symmetry of the system, regardless.

The reader should note that the results computed in this thesis for the TMK method depend on the
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implementation. The choice of the Lie group and the resulting allowed states of the system might be
crucial to its performance. The added symmetry in the discussed models is not pre-installed into the
TMK method. However, some structure about the lattice behavior is pre-installed. Depending on
the exact system, this may reduce the dimensions of the problem and be of great additional value,
for example, to reduce computational costs.

In conclusion, TMK is computationally more expensive but better performing than the commonly
used Verlet method. For systems with additional symmetry, the Verlet method fails to conserve the
additional symmetry and could compute incorrect outcomes independent of the time step size. The
TMK method outperforms the Verlet method for the one-dimensional models with additional sym-
metry considered in this thesis, as it conserves these symmetries. We demonstrated the promising
use of TMK for MD simulations. Namely, some structure may be assumed in MD simulations, and
additional symmetries are usually present. Furthermore, the system is typically chaotic and enor-
mous, and MD simulations are performed with periodic boundary conditions. We have demonstrated
for a similar system that simulations break additional structural symmetry with the Verlet method
and not with the TMK method. It remains to extend our approach to realistic MD simulations.
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Outlook

Further investigation following the results of this research could be numerous. This chapter will
discuss future steps in section 6.1. Also, we would like to mention the possible use of learning
methods with Lie group integrators for MD simulations in section 6.2. Furthermore, during the
fruitful discussions leading up to this thesis, multiple ideas and approaches have been discussed that
were not yet pursued. The main idea that might still be very interesting to pursue is the use of
G-strands, which will be addressed shortly in section 6.4.

6.1 TMK as a time-integration method for MD

Future research we wish to conduct consists of expanding the current approach to real MD simu-
lations. To that end, the next natural step to make would be to apply TMK to multi-dimensional
systems. TMK for multi-dimensional models with lattice structures can be achieved with an ap-
proach similar to the one taken in this thesis for one-dimensional models. Additionally, the extension
from nearest-neighbor potentials to potentials for m neighboring particles can be easily implemented
and feasible for the TMK method. These additions will make MD simulations with potential forces
calculated with TMK possible.

If multi-dimensional models with multiple particle potential interactions have been achieved, tem-
perature fluctuations and the need for a thermostat for MD simulations may be investigated. An
idea to implement the fluctuations can be achieved via the stochastic approach for the TMK solver
as implemented by (Luesink et al., 2021).

Furthermore, the computational costs of the TMK method, as opposed to the Verlet method, have
not been investigated yet in this thesis. It is discussed that the Verlet method is much cheaper and
more simple, but exact measures are desirable. Namely, this could indicate when the additional
value of the TMK method overrules its costs and indicate whether the use of the TMK method for
large MD simulations is even feasible.

Another line of future research resulting from these results is a more theoretical one. Analysis
of the methods should be performed such that we will not only demonstrate but also prove the
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symmetry aspects of the two methods.

To summarize, an extension of the implementation of the TMK method is needed before realis-
tic MD simulations can be performed. Apart from this, an analysis of its computational costs and
an analysis of the symmetry conservation of the method is desired. Only then can we truly prove
the potential of the TMK method for MD simulations.

6.2 Learning TMK for MD

Machine learning methods have been employed in MD simulations to construct force fields more
efficiently (Lahnsteiner and Bokdam, 2022). However, learning methods to approach Hamiltonian
systems can be combined with Lie group integrators of the Runge-Kutta Munthe-Kaas (RKMK)
type, as shown in (Celledoni et al., 2023). Not only may we preserve structure when integrating the
solutions in time, but we may also preserve structure when computing the force field of the system.
This side of the MD simulations has not been discussed in this thesis.

6.3 Higher-order Lie group integrators

It could be of interest to consider higher-order Runge-Kutta methods as the basis of the Runge-
Kutta-Munthe-Kaas method. In the model simulations, it is observed that the fourth-order Runge-
Kutta method performs rather well, despite the observed energy drift. Therefore, a higher-order
energy-conserving method as the basis of the RKMK method might be interesting to investigate.

6.4 G-strands for MD

Other approaches are possible to implement a Lie group integrator to MD simulations. An exciting
approach would be to consider G-strands. G-strands have been constructed by (Holm et al., 2012)
and can be thought of as coupled individual Lie groups. In a lattice formation, G-strands are
called G-branes. Each unit cell of a material can be thought of as an individual heavy top, for
example, that can be described with the Lie group SE(3). The traveling of distortions through
the unit cells can be represented by the coupling of individual SE(3) elements. Similarly, phonon
modes could be described by individual G-strands of which the coupling depends on the other G-
strands. Choosing coupling and groups to represent the physical phenomena of a material would be
challenging. Still, the correct implementation might be much more computationally efficient than
the TMK implementation discussed in this thesis.

70



Aknowledgements

This thesis represents the current standpoint of an exciting journey. At the beginning of the project,
we had many ideas, engaging discussions, and unexpected findings that shaped the direction of the
project. Although the report appears complete, the work is far from finished. In fact, we are left
with more questions to ask and research to pursue than at the very beginning. There are many ways
to extend this work and even more other ideas that are yet to be explored. I feel like I have only
scratched the surface of this field and have so much more to learn and there is so much more to be
done. Apparently, this is inherent to learning and research in general, and I am eager to see where
this journey will take me.

I want to express my gratitude to everyone who has helped and contributed to this project. Ever
since I started working in the 3MS group, I have felt very welcome. I want to thank everyone for
contributing to the enjoyable working environment present at the 3MS group: Arnout, Bernard,
Erwin, Hyunjong, Kevin, Linda, Olena, Sagy, Sem, Stijn, and Viktoriia. The kind atmosphere is
amazing and should not be taken for granted. I want to thank Arnout, Bernard, Erwin, and Menno
for our meetings, discussions, and their many great ideas. Apart from helping me with insightful
thoughts and critical comments, they have given me the freedom to explore multiple hunches and
follow my own path within this project. This way, I have learned many things I could have never
learned without this freedom. Special thanks go out to Erwin, who introduced me to the exciting
world of Lie group integrators. His joy and passion for (this field in) mathematics are highly con-
tagious. The road towards this project has not been the most straightforward, and I would like
to thank Bernard for his guidance and support. He has given me great advice on the content of
the work and everything that comes along with it. Furthermore, I thank Claudia Filippi and Felix
Schwenninger for their time reading this (not-so-short) report and being committee members. At
last, I would like to thank my family and friends, who had to endure my monologues on heavy tops
and bouncing particles. Thank you for your support and patience.

71



Appendix A

Appendix

A.1 Example implementation group structure

Let us follow the steps described in section 3.3. We will demonstrate the process for n = 3 with free
boundary conditions.

The state of the system is given by the following state vector:

µ = (a1, a2, b1, b2, b3) (A.1)

For n = 3 a group element g ∈ G and its inverse g−1 can be represented in matrix form as:

g =


eβ2−β1 0 0 0 0

0 eβ3−β2 0 0 0
−α1 0 1 0 0
α1 −α2 0 1 0
0 α2 0 0 1

 , g−1 =


eβ2−β1 0 0 0 0

0 eβ3−β2 0 0 0
α1e

β2−β1 0 1 0 0
−α1e

β2−β1 α2e
β3−β2 0 1 0

0 −α2e
β3−β2 0 0 1

 (A.2)

An element from the Lie algebra, ξ ∈ g, and an element from the dual Lie algebra, µ ∈ g∗ can be
denoted in matrix form as:

ξ =


ξ3 − ξ4 0 0 0 0

0 ξ4 − ξ5 0 0 0
−ξ1 0 0 0 0
ξ1 −ξ2 0 0 0
0 ξ2 0 0 0

 , µ =


µ3 − µ4 0 −µ1 µ1 0

0 µ4 − µ5 0 −µ2 µ2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (A.3)

The adjoint operator is constructed and written by the vector representation of g:

adξη = [ξ, η] = ξη − ηξ (A.4)

adξη =


0 0 0 0 0
0 0 0 0 0

−ξ1(η3 − η4) + η1(ξ3 − ξ4) 0 0 0 0
ξ1(η3 − η4)− η1(ξ3 − ξ4) −ξ2(η4 − η5) + η2(ξ4 − ξ5) 0 0 0

0 ξ2(η4 − η5) + η2(ξ4 − ξ5) 0 0 0

 (A.5)
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
(adξη)1
(adξη)2
(adξη)3
(adξη)4
(adξη)5

 =


ξ1(η3 − η4)− η1(ξ3 − ξ4)
ξ2(η4 − η5) + η2(ξ4 − ξ5)

0
0
0

 (A.6)

The Adjoint action is constructed and written by the vector representation of g:

Adgξ = gξg−1 (A.7)

Adgξ =


(ξ3 − ξ4) 0 0 0 0

0 (ξ4 − ξ5) 0 0 0
eβ2−β1(−α1(ξ3 − ξ4)− ξ1) 0 0 0 0
eβ2−β1(α1(ξ3 − ξ4) + ξ1) eβ3−β2(−α2(ξ4 − ξ5)− ξ2) 0 0 0

0 eβ3−β2(α2(ξ4 − ξ5) + ξ2) 0 0 0

 (A.8)


(Adgξ)1
(Adgξ)2
(Adgξ)3
(Adgξ)4
(Adgξ)5

 =


eβ2−β1(α1(ξ3 − ξ4) + ξ1)
eβ3−β2(α2(ξ4 − ξ5) + ξ2)

ξ3
ξ4
ξ5

 (A.9)

Let us use this to find the Coadjoint action:〈
Ad∗gµ, ξ

〉
= ⟨µ,Adgξ⟩ (A.10)

⟨µ,Adgξ⟩ =µ1(Adgξ)1 + µ2(Adgξ)2 + µ3(Adgξ)3 + µ4(Adgξ)4 + µ5(Adgξ)5

=µ1

(
eβ2−β1 (α1(ξ3 − ξ4) + ξ1)

)
+ µ2

(
eβ3−β2 (α2(ξ4 − ξ5) + ξ2)

)
+ µ3ξ3 + µ4ξ4 + µ5ξ5

=
(
µ1e

β2−β1

)
ξ1 +

(
µ2e

β3−β2

)
ξ2 +

(
µ1e

β2−β1α1 + µ3

)
ξ3 + ..

..+
(
−µ1e

β2−β1α1 + µ2e
β3−β2α2 + µ4

)
ξ4 +

(
−µ2e

β3−β2α2 + µ
)
ξ5

By rewriting the expression, we identify the elements of the Coadjoint action.
(Ad∗gξ)1
(Ad∗gξ)2
(Ad∗gξ)3
(Ad∗gξ)4
(Ad∗gξ)5

 =


µ1e

β2−β1

µ2e
β3−β2

µ1e
β2−β1α1 + µ3

−µ1e
β2−β1α1 + µ2e

β3−β2α2 + µ4

−µ2e
β3−β2α2 + µ5

 (A.11)

In matrix form, the Coadjoint action follows the dual Lie algebra mapping:
(3)− (4) 0 −(1) (1) 0

0 (4)− (5) 0 −(2) (2)
0 0 0 0 0
0 0 0 0 0

 (A.12)

Now, we have obtained the group actions that are needed to implement the TMK integrator for the
case of n = 3 with free boundary conditions.
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A.2 Additional model simulations

A.2.1 Three-particle ring

The three-particle ring has asymmetric initial conditions with r1 =
(
21/6

)
, r2 =

(
21/6 − 1

10

)
and

r3 =
(
21/6 + 1

)
. For the three-particle ring, we observe similar results in Figure A.1 as before

for cases without additional symmetry. The TMK, RK4, and Verlet methods result in the same
displacement trajectories. We do note that the system becomes rather chaotic. The trajectories
are not as neatly periodic as seen in other examples. This is also observed in the energy change.
Although it is not as elegant as before, the total energy still appears to be near-conserved, and the
total momentum is conserved up to machine precision as seen before.

A.2.2 Eight-particle ring with less extreme initial conditions

In Figure A.2, the symmetry of the eight-particle ring with smaller distortion is plotted for the
different methods. The distortion of the initial displacements is half of the eight-particle model
observed before. It can be noted that the asymmetry builds up for the RK4 and Verlet methods but
takes a much longer time to become of significant magnitude. The TMK method does not show the
build-up in asymmetry.
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Figure A.1: Three-particle ring with the Lennard-Jones potential, with ∆t = 10−2, and initial
conditions r1 =

(
21/6

)
, r2 =

(
21/6 − 1/10

)
, r3 =

(
21/6 + 1

)
, p1 = p2 = p3 = 0.
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Figure A.2: Symmetry of the eight-particle ring with the Lennard-Jones potential, with ∆t = 10−4,
and initial conditionsr1 = r2 = r6 = r7 = rghost = 21/6, r3 = r5 =

(
21/6 + 0.05

)
, r4 =

(
21/6 − 0.1

)
,

p1 = p2 = .. = p8 = 0.

A.3 Additional figures

This section provides the reader with additional figures for the model simulations discussed in Chap-
ter 4.

A.3.1 Energy conversion - three particles on a line

For the three-particle model without periodic boundary conditions, one can illustrate the energy
transfer from the left to the right particle, E1 to E3. The oscillatory energy of E2 is due to the
oscillatory potential energies. However, the left and right particles should have the same constant
energy E1 = E3. It can be seen that indeed the distribution of energy changes in the Verlet method
corresponding to the escape of one particle leaving an oscillating binary system.

The difference between energies E1 and E3 are plotted in Figure A.3.
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(a) Linear plot. (b) Logairthmic plot.

Figure A.3: Energy difference |E1−E3| for the three-particle model with the Lennard-Jones potential,
with ∆t = 10−4 and initial conditions r1 = r2 = 21/6 + 1, v1 = v2 = v3 = 0.

(a) TMK. (b) Verlet.

Figure A.4: Energies E1, E2, E3 for the three-particle model with the Lennard-Jones potential, with
∆t = 10−4 and initial conditions r1 = r2 = 21/6 + 1, v1 = v2 = v3 = 0.
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