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Hospitals find themselves in an increasingly uncertain financial situation. A
key reason for this being the increase in patient related costs. Specifically
laboratory costs stand out after having increased at a compound annual
growth rate of 8.54% in the last decade.

This study addresses the predictive capabilities and comparative perfor-
mance of various time series forecasting models (SARIMAX and Prophet),
within a major Dutch hospital in order to aid in the forecasting ability of
microbiology laboratory volumes. The findings of the study reveal that SARI-
MAX and Prophet both exhibit comparable predictive efficacy in forecasting
microbiology laboratory test volumes. both models demonstrate a cluster
with satisfactory performance, as the error metrics fall below the desig-
nated thresholds. Satisfactory being phrased as a Symmetric Mean Absolute
Percentage Error (SMAPE) under 30%, and a Mean Absolute Scaled Error
(MASE) below 1.00.

Nevertheless, the presence of several outliers suggests that SARIMAX and
Prophet may not be optimal fits for certain datasets.

Key Words: Microbiology, Laboratory Volumes, Time Series Forecasting,
SARIMAX, Prophet

1 INTRODUCTION
According to a recent report [2] published by the Dutch Assocation
of Hosptials (NVZ) using data from 56 Dutch hospitals, which ac-
count for 93% of the country’s Zorgverzekeringswet (Zvw) budget,
11% of hospitals are suffering from contract violations or liquid-
ity issues. By the end of 2023, this number is expected to climb to
40% . There were a number of issues raised, including rising labor
costs, energy costs, and patient-related costs such as laboratory tests.
Within the last decade, Dutch national costs for medical laboratories
(such as microbiology, pathology or toxicology) have grown at a
compound annual growth rate of 8.54% according to the Central
Statistics Bureau [1]. Another reason for concern listed was a po-
tential change in contract terms such as tariff compensation [2].
When discussing contract terms and pricing structures hospitals
use a variety of data analysis and data management tools to support
their understanding of anticipated expenses. However, these could
still be improved upon. While addressing contract terms and pric-
ing structures, hospitals employ various methods to enhance their
comprehension of expected expenses, yet there is room for further
improvement with the increasing accessibility of newer and more
powerful methods.
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Various studies [3–6; 15; 21; 38; 40; 41] have explored predictive
methodologies in relation to forecasting healthcare related met-
rics, such as medical waste [5; 21], emergency department visits
[3; 6; 15; 20; 40] or COVID related metrics [38]. There is an absence
of research, using patient data, for the use case of forecasting of
laboratory volumes.

Thus this study aims to address this gap by specifically focusing on
forecasting microbiology laboratory test volumes using real-world
laboratory data from a prominent Dutch hospital. The primary objec-
tive of this study is to assess the predictive efficacy of SARIMAX and
Prophet in forecasting microbiology laboratory test volumes. Addi-
tionally, the study aims to evaluate the comparative performance of
SARIMAX and Prophet in this context. Finally the financial impact
of the forecasts and their implications for management will also be
discussed.

2 RELATED WORK
The practice of making forecasts in healthcare related settings has a
longstanding history. Noteworthy are the recent studies examining
machine learning models and time series models with the aim of
forecasting a diverse range of healthcare related metrics. Even now
a distinct knowledge gap exists in the forecasting of laboratory
volumes. This section provides an overview of literature focusing
on forecasting and comparing accuracy of machine learning and
time series models in healthcare settings.

Numerous studies, as detailed in Table 1, have extensively examined
the performance of diverse models in forecasting a broad spectrum
of medical metrics. The effectiveness of these models appears to be
highly dependent on the specific use case, with performance exhibit-
ing variations across the examined time series. Notably the Seasonal
Autoregressive Integrated Moving Average Exogenous model (SARI-
MAX) emerged as a consistently robust performer in multiple stud-
ies. SARIMAX however is described to be computationally intensive
[38] and requires proper parameter selection. In a notable work by
Ghysels et al. [23] focusing on forecasting seasonal time series, the
authors highlighted that linear models and some of their variants
require fewer observations compared to their more complex peers.
This attribute can prove advantageous in scenarios with limited
data availability. Additionally another time series model, Prophet,
is recognized for its flexibility and built in support for covariates
such as Dutch holidays. Moreover, Prophet demonstrates resilience
against outliers and trend shifts, exhibiting flexibility even when
dealing with non-stationary data. This adaptability is particularly
advantageous, considering that real-world time series data often de-
viates from perfect stationarity even after undergoing mathematical
transformations.

1



TScIT 40, February 2, 2024, Enschede, The Netherlands Louis Daniël Lizarazo Fuentes

Models Metrics Accuracy Metric Validation Authors

SARIMA, Prophet, LR, RF, XG-
Boost, LSTM

Pharmacy purchase orders MAE Growing Window Prequential Almentero et al.
(2021) [4]

Rolling Average, Holt-winters,
VAR, Schweigler et al, Whitt et
al, SARIMAX

Emergency department hourly
occupancy

MAE, MAPE, MSE Holdout OOS (73/27) Cheng et al.
(2021) [15]

AR, Holt-Winters, SARIMA,
Prophet, LR, ElasticNet, XG-
Boost, GLM, Ensamble

Daily emergency department
arrivals

MAE, MAPE, R-squared, Pear-
son correlation

Holdout OOS (86/14), Growing
Window Prequential

Álvarez-Chaves
et al. (2023) [6]

Cubist tree, SVM Hospital Length of Stay PMAE, R-squared, precision,
Recall, Accuracy, AUC

Holdout OOS (75/25) Turgeman et al.
(2017) [41]

RF, AdaBoost, GBMs, Ensamble Medical waste quantities MAE, RMSE, R-squared, MAPE K-fold CV (k=5) Erdebilli et al.
(2022) [21]

Kernel-based SVM, Maxout ac-
tivation Deep Learning

Medical waste quantities MAE, RMSE, R-Squared Holdout OOS (70/30) Altin et al. (2023)
[5]

LR, SVR, ESM, SARIMAX,
BSTS, Prophet, RF, XGBoost,
LSTM

Number of COVID fatalities RSME Growing Window Prequential Simmons et al.
(2023)[38]

SARIMA, SARIMAX, GLM,
Prophet

Total daily arrivals, Daily peak
occupancy

MAPE, Accuracy, Sensitivity,
Specificity, AUC

Growing Window Prequential,
Holdout OOS (68/32)

Tuominen et al.
(2021)[40]

XGBoost, AdaBoost, MLP Admission status of emergency
patients

AUC, sensitivity, specificity, F1,
accuracy

Holdout OOS (80/20) Ahmed et al.
(2022) [3]

Table 1. LR Linear Regression, AR AutoRegressive, SARIMA Seasonal AutoRegressive Integrated Moving Average, VAR Vector AutoRegressive, ESM
Exponential Smoothing Model, GLM Generalized Linear Model, RF Random Forest, SVM Support Vector Machine, GBM Gradient Boosting Machine, SVR
Support Vector Regression, BSTS Bayesian Structural Time Series, LSTM Long Short-Term Memory,MLPMulti-Layer Perceptron,MAEMean Absolute
Error,MAPEMean Absolute Percentage Error, PMAE Precision Mean Absolute Error, RMSE Root Mean Squared Error, AUC Area Under the Curve, OOS
Out-of-Sample, CV Cross-Validation

3 METHODOLOGY
As previously mentioned two models stand out, SARIMAX and
Prophet, which will be implemented, tuned and evaluated in this
study.

3.1 SARIMAX
Seasonal Autoregressive Integrated Moving-Average with Exoge-
nous Regressors (SARIMAX) is an extension of the ARIMA model
which was initially proposed by Box and Jenkins [11]. SARIMAX
incorporates the capability to account for both seasonality and
exogenous variables, making it a versatile time series forecasting
model. SARIMAX among other time series models have been ex-
tensivly lined out by Hyndman and Athanasopoulos in their book
Forecasting: Principles and Practice [27].

The SARIMAX model consists of several components:

(1) Autoregressive order AR(p):
In an autoregression model, we forecast the variable of inter-
est using a linear combination of past values of the variable.
The term autoregression indicates that it is a regression of the
variable against itself.

Thus, an autoregressive model of order 𝑝 can be written as

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + · · · + 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 ,

Where 𝜀𝑡 is white noise. This resembles a multiple regression
but with lagged values of 𝑦𝑡 as predictors. We refer to this as
an AR(𝑝) model, an autoregressive model of order 𝑝 .
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(2) Moving Average order, MA(q):
Rather than using past values of the forecast variable in a re-
gression, a moving average model uses past forecast errors in a
regression-like model.

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + · · · + 𝜃𝑞𝜀𝑡−𝑞,
Where 𝜀𝑡 is white noise. We refer to this as an MA (𝑞) model, a
moving average model of order 𝑞.

(3) Differencing order I(d) : An ARIMAmodel is an ARMAmodel
yet with a preprocessing step included in the model that we
represent using I(d). I(d) is the difference order, which is the
number of transformations needed to make the data stationary.

(1 − 𝐵)𝑑𝑦𝑡︸       ︷︷       ︸
↑

𝑑 differences

(4) Seasonality
A seasonal ARIMA model is formed by including additional
seasonal terms in the ARIMA model. It is written as follows:

ARIMA (𝑝, 𝑑, 𝑞)︸  ︷︷  ︸
↑

Non-seasonal part
of the model

(𝑃, 𝐷,𝑄)𝑚︸      ︷︷      ︸
↑

Seasonal part of
of the model

Where𝑚 = number of observations per year (sometimes also
denoted as 𝑠). Uppercase notations are used for the seasonal
parts of the model, and lowercase notations are used for the
non-seasonal parts of the model.

The seasonal part of the model consists of terms that are simi-
lar to the non-seasonal components of the model, but involve
backshifts of the seasonal period. The additional seasonal terms
are simply multiplied by the non-seasonal terms.

𝑦𝑡 = 𝑐 +
𝑝∑︁

𝑛=1
𝛼𝑛𝑦𝑡−𝑛 +

𝑞∑︁
𝑛=1

𝜃𝑛𝜖𝑡−𝑛 +
𝑃∑︁

𝑛=1
𝜙𝑛𝑦𝑡−𝑠𝑛 +

𝑄∑︁
𝑛=1

𝜂𝑛𝜖𝑡−𝑠𝑛 + 𝜖𝑡

(5) Exogenous (X):This component includes the impact of external
factors or predictors on the time series. Exogenous variables are
additional features that are not part of the time series but can
influence its behavior.

𝑟∑︁
𝑛=1

𝛽𝑛𝑥𝑛𝑡

This results in the following overall model for SARIMAX:

𝑦𝑡 = 𝑐+
𝑝∑︁

𝑛=1
𝛼𝑛𝑦𝑡−𝑛+

𝑞∑︁
𝑛=1

𝜃𝑛𝜖𝑡−𝑛+
𝑟∑︁

𝑛=1
𝛽𝑛𝑥𝑛𝑡 +

𝑃∑︁
𝑛=1

𝜙𝑛𝑦𝑡−𝑠𝑛+
𝑄∑︁
𝑛=1

𝜂𝑛𝜖𝑡−𝑠𝑛+𝜖𝑡

Where:

• 𝑦𝑡 is the observed time series at time 𝑡 .

• 𝛼𝑛, 𝜙𝑝 are autoregressive parameters.

• 𝜃𝑛, 𝜂𝑛 are moving average parameters.

• 𝛽𝑛 is the coefficient for the exogenous variable 𝑋𝑡 .

• 𝜖𝑡 is the white noise error term.

Various manners of calculating or estimating the aforementioned
parameters exist. A widely used approach is to employ automated
model selection techniques, and one popular method is the Au-
toARIMA algorithm.

AutoARIMA is an automated time series forecasting algorithm that
systematically searches through different combinations of param-
eters to identify the optimal model for a given time series. The
algorithm uses criteria such as Akaike Information Criterion (AIC)
or Bayesian Information Criterion (BIC) to evaluate the goodness
of fit for each model candidate [27].

The steps involved in the AutoARIMA algorithm are as follows:

Step 1: Initial Model Fitting
Start with an initial model, often a simple (S)ARIMA model, and fit
it to the time series data.

Step 2: Iterative Model Search
Iteratively explore different combinations of parameters, including
autoregressive order (𝑝), differencing order (𝑑), moving average
order (𝑞), seasonal autoregressive order (𝑃 ), seasonal differencing
order (𝐷), and seasonal moving average order (𝑄). The search is
guided by minimizing AIC or BIC.

Step 3: Select Optimal Model
Choose the model with the lowest AIC or BIC as the optimal Au-
toARIMA model.

Step 4: Refit and Forecast
Refit the selected model to the entire time series data and make
future forecasts.

The AutoARIMA algorithm provides a convenient way to automati-
cally identify the most suitable model for a given time series, saving
time and effort in manual model selection and parameter tuning.
However this process is time consuming and puts a lot of weight
into a single evaluator. Another method is to determine the parame-
ters using various mathematical methods. This can save time due to
not having to explore the entire solution space. Due to the number
of time series being evaluated in this study this was chosen as the
preferred method.

• Auto-regression order (p)
The estimation of p is done through the use of the auto correla-
tion function (ACF) [11; 27; 30; 37]. The ACF defines how data
points in a time series are related, on average, to the preceding
data points.

• Differencing order (d)
Various methods of calculating the required order of differncing
are available. Very commonly used ones are the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) [28], the augmented Dicky-Fuller
test (ADF) [19] and the Phillips-Perron test (PP) [32].
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(1) ADF:
ADF is commonly used to test for the presence of a unit root
in the time series, indicating non-stationarity. It is suitable
when you want to determine the order of differencing (𝑑)
needed to achieve stationarity.

(2) KPSS:
KPSS complements the ADF test by testing the null hypothesis
of stationarity around a deterministic trend. It is useful for
checking whether a series is trend-stationary.

(3) PP:
PP is an alternative to the ADF test and is used to test for the
presence of a unit root in a time series.

Some of these methods complement each other thus generally
multiple tests are examined [18]. In this study only ADF is
used to determine the required differencing order, consequently
additional tests remain a point for future work.

• Moving average order (q)
The estimation of q is done through the use of the partial auto
correlation function (PACF) [27; 30; 37]. The PACF provides the
partial correlation of a stationary time series with its own lagged
values, adjusting for the values of the time series at all shorter
lags. This is in contrast to the ACF, which does not account for
the influence of other lags.

• Seasonal auto-regressive order (P)
The estimation of P is done through the use of the ACF, similarly
to the calculation of the auto-regression order 𝑝[27; 30; 37].

• Seasonal differencing order (D)
Literature mentiones different preferences for seasonal unit root
tests in order to estimate the appropriate seasonal differencing
order. Tests also complement each other [26].

(1) Dickey, Hasza, Fuller (DHF) [17]
This test is employed for assessing the presence of unit roots
in a time series. It is particularly useful for testing the station-
arity of a series.

(2) Phillips-Perron (PP) [32]
The Phillips-Perron test is another method for testing the null
hypothesis of a unit root in a time series. It is often used as
an alternative to the Dickey-Fuller test.

(3) HylleBerg, Engle, Granger, Yoo (HEGY) [25]
The HylleBerg, Engle, Granger, Yoo test is a test for unit roots
that considers various lag structures. It offers flexibility in
capturing different patterns in the data.

(4) Osborn, Chui, Smith and Birchenhall (OCSB) [31]
The Osborn, Chui, Smith, and Birchenhall test is designed to
assess the null hypothesis that a seasonal unit root is present
in a time series. It specifically focuses on detecting seasonality-
related non-stationarity.

(5) Canova and Hansen (CH) [12]
The Canova and Hansen test examines the absence of a sea-
sonal unit root in a time series. It is particularly relevant for

analyzing time series data with seasonal patterns, providing
insights into the stationarity of the seasonal component.

Various studies, as illustrated by Lopes, Rodrigues and Osborn
[16; 34], showcase preferences for different methods. This diver-
sion highlights the absence of a consensus on a single method
suitable for all cases. In this paper, the OCSB method will be
employed based on the findings of Rodrigues and Osborn, who
identified it as a performing and effective approach [34].

• Seasonal moving average order (Q)
Similarly to its non-seasonal counterpart, the seasonal mov-
ing average order (𝑄) is calculated using the PACF[27; 30; 37].
It helps determine the number of lagged observations of the
seasonal moving average component to include in the model.

• Length of the seasonal cycle (s/m)
This parameter (𝑠 or 𝑚) denotes the number of observations
between successive occurrences of a seasonal pattern. In this
case, as there are 12 months in a year, the length of the seasonal
cycle (𝑠/𝑚) is set to 12 for monthly data. In the case of quarterly
data this parameter would be set to 4 [27].

3.1.1 Invertible models. Ensuring invertibility is essential for both
Moving Average (MA) and AutoRegressive (AR) models, and sub-
sequently expanded models such as SARIMAX. An invertible MA
model ensures that lagged forecast errors’ coefficients remain stable,
contributing to the model’s interpretability and forecast accuracy.
Similarly, invertibility in AR models guarantees well-behaved au-
toregressive coefficients, maintaining model stability [27].

3.2 Prophet
The Prophet model was proposed by Taylor and Letham [39]. It is
designed for time series forecasting and decomposes a time series
into three main components: trend (𝑔(𝑡)), seasonality (𝑠 (𝑡)), and
holidays (ℎ(𝑡)), along with an error term (𝜖𝑡 ). The model can be
expressed as:

𝑦 (𝑡) = 𝑔(𝑡) + 𝑠 (𝑡) + ℎ(𝑡) + 𝜖𝑡

3.2.1 Trend Function (𝑔(𝑡)). The trend function captures nonperi-
odic changes in the time series. For forecasting problems without
saturating growth, the trend is modeled as a piece-wise constant
rate of growth:

𝑔(𝑡) =
(
𝑘 + a(𝑡)⊤𝜹

)
𝑡 +

(
𝑚 + a(𝑡)⊤𝜸

)
Where 𝑘 and𝑚 are constants, a(𝑡) is a vector of binary indicators
for holidays, and 𝜹 and 𝜸 are vectors of coefficients.

3.2.2 Seasonality (𝑠 (𝑡)). Seasonality captures periodic changes in
the time series, such as weekly and yearly patterns. The seasonality
component is modeled as a sum of harmonic functions:

𝑠 (𝑡) =
𝑁∑︁
𝑛=1

(
𝑎𝑛 cos

(
2𝜋𝑛𝑡
𝑃

)
+ 𝑏𝑛 sin

(
2𝜋𝑛𝑡
𝑃

))
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Where 𝑃 is the period of the seasonality, and 𝑎𝑛 and 𝑏𝑛 are coeffi-
cients.

3.2.3 Holiday Effects (ℎ(𝑡)). The holiday component represents the
effects of holidays, which may occur irregularly. Holiday effects are
incorporated by assuming independence and assigning a parameter
k𝑖 for each holiday 𝑖 . A matrix of regressors 𝑍 (𝑡) is generated,
representing indicator functions for each holiday.

𝑍 (𝑡) = [1 (𝑡 ∈ 𝐷1) , . . . , 1 (𝑡 ∈ 𝐷𝐿)]

The holiday component is then defined as:

ℎ(𝑡) = 𝑍 (𝑡)𝜅

Where𝜅 is a vector of parameters for each holiday. To capture effects
for a window of days around a holiday, additional parameters are
included, treating each day in the window as a holiday itself.

In summary, Prophet provides a flexible framework for time series
forecasting by considering trends, seasonality, and holiday effects
in a decomposed manner such as initially described by Harvey and
Peters. [24]. The model parameters are estimated using a Bayesian
approach, and the forecast is generated by combining these compo-
nents.

3.3 Validation methods
As shown in the related works section (Table 1), a plethora of ac-
curacy metrics are used for evaluating forecasts. Botchkarev [10]
categorized numerous performance metrics and provided a clear
overview of available metrics based on the method of determining
point distance, method of normalization, and method of aggregation
of point distances over a dataset.

Several were considered for application in this study, Botchkarev
[10] noted that no consensus exists on the ever increasing list of
metrics. In this context, the metrics chosen are Mean Absolute Error
(MAE), Symmetric Mean Absolute Percentage Error (SMAPE) and
Mean Absolute Scaled Error (MASE), each with distinct advantages
such as laid out in Table 2.

Various methods for estimating model performance are used to
showcase accuracy metrics. However in the literature, a consensus
regarding the optimal approach has not been found, as evidenced by
several studies on the subject [7–9; 13; 14; 29; 35]. In the context of
time series forecasting, Cerqueira et al. [13] systematically examined
various techniques. The general categories and commonly used
methods examined are laid out in Table 3. As laid out by Cerqueira
et al. [13] a repeated OOS Holdout approach showed competitive
performance in real world data sets. Consequently, the same method
is used in this study.

In order to compare the performance of both models, a paired t-test
is employed. The paired t-test is a widely used statistical method for
comparing the means of paired samples. The paired t-test is deemed
suitable under certain assumptions. These include a paired design,
normality of differences, independence of observations, and interval
data [42].

3.4 Anomalies
The presence of anomalous historical data points can exert a notable
impact on forecasting accuracy. In addressing this challenge, Free-
man et al. [22] provided a comprehensive framework for selecting
anomaly detection methods. Ultimately, inspired by the work of
Almentero et al. [4], a binary dummy variable approach was adopted
to accommodate prolonged anomalous periods, specifically during
the COVID-19 pandemic.

4 STUDY DESIGN
A systematic approach for designing and executing data-related
projects is the Cross-Industry Standard Process for Data Mining
(CRISP-DM) [36], comprising six main components:

(1) Business Understanding: To comprehend project objectives
and requirements from a business perspective.

(2) Data Understanding: Collection and analysis of data to gain
a preliminary understanding of information availability and
quality.

(3) Data Preparation: Cleaning, transforming, and preparing data
for analysis.

(4) Modeling: Selection and application of various modeling tech-
niques to prepared data.

(5) Evaluation: Assessing the efficacy of the model in meeting
business objectives.

(6) Deployment: Ensuring the project delivers value to stakehold-
ers.

4.1 Business Understanding
The hospital sought deeper insights into future costs and worrying
trends, making volume forecasting a crucial step towards achieving
this objective.

4.2 Data Understanding
The dataset utilized in this paper comprises confidential historical
microbiology order records obtained from a prominent Dutch hos-
pital. The data spans from January 2016 to August 2023. The key
attributes included in the dataset which were considered relevant
for the purposes of this study were the inquiry code, count, and
amount.

4.3 Data preparation
The first step was to remove redundant columns, then split by code
and sum the counts on a monthly basis. Certain codes only came
into use more recently and thus did not have a full history from
January 2016 to August 2023.

Series with less than 48 months of non-zero counts or an overall
count of tests under 700 in their respective time periods were omit-
ted. This was done in order to ensure the relevance of the predictions
for the stakeholders.
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Metric Description

Mean Absolute Error (MAE) MAE measures the average absolute differences between predicted and actual values. It is particularly useful
for comparing different models on the same dataset, providing a clear indication of the magnitude of errors
in the predictions.

• Less sensitive to outliers then squared metrics.
• Not scale-independent

Symmetric Mean Absolute Percentage
Error (SMAPE)

SMAPE is a percentage-based metric that considers both the magnitude and direction of errors. It is chosen
over the traditional MAPE due to its symmetry, treating overestimation and underestimation equally. SMAPE
is scale-independent, making it suitable for comparing forecasting accuracy across different datasets. It
expresses errors as a percentage of the actual values, providing a relative measure of accuracy.

• Symmetric, treating overestimation and underestimation equally.
• Scale-independent, suitable for diverse datasets.
• Percentage-based interpretation.
• Sensitive to small actual values.

Mean Absolute Scaled Error (MASE) MASE is a scale-independent metric that evaluates the accuracy of predictions by considering the mean
absolute error relative to the mean absolute error of a naïve baseline model (calculated from the training
set mean). It provides a normalized measure of accuracy, allowing for comparisons between models and
datasets.

• Scale-independent.
• Provides a normalized measure of accuracy.
• Assumes the baseline model is always available and effective.

Table 2. Accuracy Metrics [10]

Method Description

Out-of-Sample (OOS)

Holdout A method where a portion of the dataset is set aside for validation.

Rep-Holdout Repeated application of the holdout method to different subsets of
the data.

Cross-Validation (CV)

Standard, Randomized K-Fold Cross-Validation Randomly partitions the data into K folds for training and testing.

Blocked K-Fold Cross-Validation Divides data into blocks before applying K-fold cross-validation.

Prequential

Prequential Evaluation in Blocks in a Growing Fashion Incrementally evaluates model performance as new data is added.

Prequential Evaluation in Blocks in a Sliding Fashion Continuously assesses model performance in a sliding window fash-
ion.

Table 3. Evaluation Methods [7–9; 13; 14; 29; 35]
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4.4 Modeling
SARIMAX and Prophet were implemented using Jupyter Notebooks
in Visual Studio Code. SARIMAX was chosen as it performed quite
well in several studies and lower data requirements while Prophet
was chosen due to it’s flexibility in adding covariates such as the
Dutch holidays, handling outliers, handling trend shifts and han-
dling non stationary data.

Both models were further enhanced by incorporating a binary
COVID dummy variable similarly to Alementero et al. [4]. This
variable served as a reinforcing factor, introducing a binary distinc-
tion related to the presence or absence of COVID-related influences.
The period from February 2020 to February 2022 was classified as
the COVID period.

Forecasts were clipped at a value of zero as volumes can only be
zero or positive.

4.4.1 SARIMAX. SARIMAX parameters were calculated in the fol-
lowing manner:

(1) Autoregressive Order (𝑝): Significant lags are selected based
on the common 95% confidence interval leading to a significance
value of 0.5 to be applied on the ACF [11; 27; 30; 37].

(2) Differencing Order (𝑑): The input is differenced until the null
hypothesis can be rejected from a ADF test [19], with a maxi-
mum value of 2.

(3) Moving Average Order (𝑞): Significant lags are selected based
on the common 95% confidence interval leading to a significance
value of 0.5 to be applied on the PACF [27; 30; 37].

(4) Seasonal Autoregressive Order (𝑃 ): Significant seasonal lags
are selected based on the common 95% confidence interval,
leading to a significance value of 0.5 to be applied on the seasonal
ACF [11; 27; 30; 37].

(5) Seasonal Integrated Order (𝐷): The input is seasonally differ-
enced until the null hypothesis can be rejected using the OCSB
test [31], with a maximum value of 2.

(6) Seasonal Moving Average Order (𝑄): Significant seasonal
lags are selected based on the common 95% confidence interval,
leading to a significance value of 0.5 to be applied on the seasonal
PACF[27; 30; 37].

(7) Seasonal cycle length (𝑠/𝑚): The seasonal cycle length (s/m)
is predetermined as 12, given the monthly nature of the data.

4.4.2 Prophet. Certain configurations for the Prophet model were
adjusted from the default settings to align with the unique charac-
teristics of the data. Given that seasonality could not be presumed
to have a constant additive factor, Prophet was configured to adopt
multiplicative seasonality. This deliberate choice ensures that sea-
sonality, holiday effects, and any additional regressors are all mod-
eled in a multiplicative manner. Subsequently Dutch holidays and a
binary COVID dummy variable were incorporated into the model
to account for their potential impact. The implementation adhered
to established conventions outlined in [33].

4.5 Evaluation
This study uses a Repeated Out-of-Sample (REP-OOS) approach
based on the findings of Cerqueira [13] in order to estimate model
performance.

The REP-OOS testing approach had 10 repetitions per code. In each
iteration, a random starting point was selected within the time series
where at least 60% of the dataset was available for training. The
subsequent 10% was allocated for testing.

The training and testing sets were defined by slicing the time series
accordingly, allowing for a comprehensive evaluation of the mod-
els’ predictive capabilities. The evaluation metrics, including Mean
Absolute Error (MAE), Symmetric Mean Absolute Percentage Error
(SMAPE), and Mean Absolute Scaled Error (MASE), were calculated
for each repetition.

Statistical significance tests, more specifically standard T-tests, are
applied to determine differences in overall averages between SMAPE
and MASE between SARIMAX and Prophet.

4.6 Deployment
The primary objective of this study is to assess the predictive efficacy
of SARIMAX and Prophet on real-world microbiology laboratory
data. The results are communicated and provided through various
channels to ensure clarity and usability.

(1) Confidential Results: Post-sample forecast plots, extending
up to December 2025, are exclusively shared with hospital stake-
holders. These visualizations incorporate confidence intervals,
providing a nuanced understanding of future forecasts, an illus-
trative plot 3. The results are further aggregated into an annual
table for each model. Due to the nature of the data a mathe-
matical transformation has been applied on the absolute values,
additionally historical volumes are multiplied by average prices
(post sample volumes are multiplied by the same average price).
The values will be indexed on the last year of full data (2022).

(2) Performance Metrics: Performance metrics for each model
and their respective results are systematically recorded into
a local database. These metrics serve as key indicators of the
models’ predictive capabilities. The aggregated results are pre-
sented through various figures, allowing for both individual
and comparative performance assessments. To enhance inter-
pretability, an interactive 3D illustration is offered, see Figure 4
for an illustrative example, enabling stakeholders to explore the
performance of each model on specific codes across the three
metrics: MAE, SMAPE, and MASE.

Adopting this deployment strategy ensures that stakeholders receive
not only a thorough evaluation of the models’ predictions but also an
interface for exploring and understanding the performance metrics
at a granular level.
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5 RESULTS
The primary focus of this study is the evaluation of the predictive
efficacy of SARIMAX and Prophet in forecasting microbiology labo-
ratory test volumes. Overall results are assessed using SMAPE and
MASE metrics. Per code values are recorded for SMAPE and MASE
and split per model.

For SARIMAX the average SMAPE was 30.41%. For Prophet the
average SMAPE was 35.62%. Among the forecasts with SMAPE <
30%, Prophet achieved this threshold in 20 out of 32 cases, while
SARIMAX achieved it in 23 out of 32 cases. Prophet outperformed
SARIMAX on this metric in 13/32 cases while in the remaining
19/32 cases SARIMAX outperformed Prophet. Refer to Figure 1 and
5 respectively for an overview and the full detailed results. Overall
in total 43 out of 64 instances had a SMAPE under 30%. Prophet
demonstrates superior performance on SMAPE in 13 out of 32 codes,
while SARIMAX surpasses Prophet in 19 cases (refer to Figure 1).

In terms of MASE SARIMAX averaged 1.13 while Prophet averaged
1.31. In terms of MASE < 1, indicating a better than naïve fore-
cast, Prophet achieved this threshold in 10 out of 32 cases, while
SARIMAX achieved it in 12 out of 32 cases. Prophet outperformed
SARIMAX on this metric in 13/32 cases while in the remaining 19/32
cases SARIMAX outperformed Prophet. Refer to Figure 2) and 4
respectively for an overview and the full detailed results. Overall
in total 22 out of 64 instances had a MASE under 1.00. Prophet
outperforms SARIMAX on MASE in 13 cases, whereas SARIMAX
outperforms Prophet in 19 cases for this particular metric (refer to
Figure 2).

As illustrated in Figures 1 and 2 results tend to cluster with a mod-
erate amount of outliers. The clustered codes illustrate a decent fit
for SARIMAX and Prophet.

However themodelsmay have encountered difficulties in adequately
fitting to specific outlier datasets. Notably, Code_19 in Table 4 ex-
hibits a remarkably high SMAPE of 159.95%, also the highest in the
whole study, coupled with a competative MASE of 0.35. This code is
characterized by a pattern of plateauing and sudden steep drops, po-
tentially attributed to management decisions specific to this inquiry
type. On the other hand, Code_2, also presented in Table 4, records
the highest MASE in the study at 4.28. However, it is essential to ac-
knowledge that this code corresponds to a unique dataset featuring
an exceptionally large COVID peak, approximately 500% greater
than regular seasonal peaks, with subsequent seemingly long term
irregularities in seasonality.

While the average SMAPE for SARIMAX is 5.21 points lower than
that of Prophet, and the average MASE is 0.18 lower, these differ-
ences were not found to be statistically significant.

Moreover, it is crucial to consider the practical implications of these
metrics in the context of this study’s stakeholders. While SARIMAX
exhibits a slight advantage in average performance, the absence of
statistical significance suggests that both models may offer compa-
rable forecasting capabilities in this specific setting. Stakeholders
indicated the intention to evaluate the forecasts on not yet seen
data (September 2023 to December 2023). To aid in this, a table

comprising the distinct combined top 5 for both SMAPE and MASE
per model. For the purposes of this study the codes are obfuscated
and the data indexed. See Table 7 for the SARIMAX post sample
forecast and Table 6 for the Prophet post sample forecast.

The challenges posed by the absence of benchmark measures in
similar real-world datasets underscore the need for rigorous sta-
tistical approaches to draw meaningful and reliable conclusions
regarding model performance. This acknowledgment emphasizes
the complexity of evaluating forecasting models in healthcare and
the necessity for nuanced interpretations of the results.

Additionally the run time for both SARIMAX and Prophet was
recorded. For this was SARIMAX between 10 and 20 minutes for 32
codes * (10 Validation repetitions + 1 post sample forecast) forecasts,
for Prophet the overall run time was between 2 and 3 minutes for
the forecasts indicating a similar discrepancy as noted by [38].

5.1 Limitations
An important note to make is that the naïve forecast in used in
calculating MASE was the mean of the train set. One potential bias
is when the time series data has a strong seasonality or periodic
pattern. If the mean method is used as the naïve forecast, and the
training set contains multiple seasons or cycles of the time series,
the mean would capture the average value across all seasons. In
such cases, the mean might align well with the central tendency of
the data, resulting in a low MASE compared to more sophisticated
forecasting methods. The mean is also heavily impacted by outliers.

Note that variations in the validation data can result in different
accuracy metrics for the same average MAE. This discrepancy arises
from the usage of different test sets for the same codes.

6 CONCLUSION
This study adds novel insights to the field of time series forecasting
by offering a comparative evaluation of SARIMAX and Prophet in
forecasting microbiology laboratory test volumes. By utilizing real-
world data from a major Dutch hospital, this research contributes
to understanding the applicability and performance of these models
in a this setting.

The findings of the study reveal that SARIMAX and Prophet both
exhibit comparable predictive efficacy in forecasting microbiology
laboratory test volumes. Specifically, SARIMAX achieved SMAPE
values below 30% in 23 out of 32 datasets and MASE values below
1.00 in 12 datasets. In contrast, Prophet, with 20 datasets below 30%
in SMAPE and 10 datasets below 1.00 in MASE, displays slightly
less favorable performance.

The averaged performance metrics provide additional insights into
the models’ reliability. On average, Prophet exhibits an SMAPE of
35.62% and a MASE of 1.31. In comparison, SARIMAX maintains
an average SMAPE of 30.41% and an average MASE of 1.13. Impor-
tantly, the comparative analysis reveals no statistically significant
differences in predictive accuracy between SARIMAX and Prophet.

Clustering appeared in both SMAPE and MASE around adequate
(SMAPE < 30.0%: 43/64, MASE < 1.00: 22/64) performance values,
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indicating that SARIMAX and Prophet displayed a good fit. Nev-
ertheless, the presence of several outliers suggests that SARIMAX
and Prophet may not be optimal fits for certain datasets.

Stakeholders at the hospital indicated great interest in comparing
the results with not yet modeled data and continuing research in
this direction.

7 FUTURE WORK
Integration of Change Points in Prophet Model: The potential
enhancement of forecasting precision through the integration of
change points in the Prophet model is a noteworthy suggestion.
Adjusting the default change points allows the model to adapt to
abrupt shifts or variations in the time series data more accurately.
This adjustment could lead to improved accuracy, especially in the
presence of sudden changes such as seen throughout the COVID-19
pandemic.

Consideration of External Factors: Recognizing the impact of ex-
ternal factors on forecasting accuracy, the exploration of additional
variables such as weather conditions, regional population dynamics,
and other relevant factors is recommended. Including these external
variables in the models might provide a more comprehensive un-
derstanding of the influencing factors, potentially leading to more
accurate predictions.

Investigation of Alternative Models: Evaluating additional mod-
els beyond SARIMAX and Prophet could uncover alternatives that
might better capture underlying trends better. Combining the strengths
of multiple models could lead to more reliable predictions.

Clipping at 0 Instead of Log Transformation: The choice of clip-
ping forecasts and bounds at 0, as opposed to transforming, raises
an methodological consideration. The impact of this choice on the
bias of the forecasts should be thoroughly examined, as different
transformations can influence the handling of outliers and skewed
distributions. As Hyndman and Athanasopoulos noted a Box-Cox
transformations could be an option given that the backtransforma-
tion is adjusted for bias [27].

Additional evaluation procedures: Including additional metrics
beyond SMAPE and MASE could provide a more comprehensive
evaluation of the models’ performance. Additional validation meth-
ods such as variants of cross validation and prequential approaches
could be beneficial.

Generalizability and Applicability:While the models were ap-
plied across a diverse set of financial codes, a deeper understanding
of their applicability and generalizability is deemed essential. In-
vestigating how the models perform in relation to underlying test
volumes and cross-relations can contribute to refining their practical
utility.
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9 APPENDIX

Code MAE SMAPE MASE

Code_1 29.3 20.06 1.14

Code_2 577.01 127.56 4.28

Code_3 21.43 97.5 1.51

Code_4 8.4 38.6 1.21

Code_5 20.77 65.28 2.32

Code_6 3.6 50.96 1.01

Code_7 74.25 12.43 0.91

Code_8 67.47 8.19 0.86

Code_9 13.64 28.0 1.63

Code_10 45.36 11.31 0.77

Code_11 51.1 13.95 1.23

Code_12 427.45 32.71 0.86

Code_13 151.57 32.06 1.93

Code_14 133.73 12.96 1.71

Code_15 12.85 26.9 1.48

Code_16 14.66 93.41 1.2

Code_17 4.49 45.14 0.91

Code_18 28.06 16.35 1.4

Code_19 21.2 159.95 0.35

Code_20 30.39 27.53 1.11

Code_21 81.46 14.58 1.03

Code_22 396.61 18.7 1.17

Code_23 130.68 17.91 0.95

Code_24 14.19 16.35 1.19

Code_25 7.54 12.86 0.77

Code_26 98.4 9.05 1.05

Code_27 396.47 8.06 1.09

Code_28 5.99 25.75 1.34

Code_29 9.29 38.47 1.77

Code_30 123.02 13.39 2.02

Code_31 84.52 6.82 0.78

Code_32 10.15 37.13 0.82

Table 4. Average results for each code over 10 repetitions Prophet

Code MAE SMAPE MASE

Code_1 19.68 13.46 0.91

Code_2 396.81 159.76 3.67

Code_3 19.44 75.55 1.09

Code_4 7.94 35.93 1.14

Code_5 13.93 38.96 0.9

Code_6 3.44 50.82 1.0

Code_7 114.74 18.5 1.16

Code_8 75.84 9.31 0.95

Code_9 10.26 22.73 1.33

Code_10 85.28 19.54 1.3

Code_11 50.09 14.07 1.11

Code_12 355.54 22.73 0.71

Code_13 116.61 27.82 1.32

Code_14 231.1 21.46 2.07

Code_15 11.9 25.91 1.41

Code_16 16.5 107.87 1.76

Code_17 5.11 54.52 1.03

Code_18 26.69 14.88 1.37

Code_19 18.35 41.46 0.3

Code_20 31.18 27.36 1.28

Code_21 94.2 16.62 1.02

Code_22 370.91 16.26 1.13

Code_23 129.39 17.12 1.01

Code_24 14.17 15.27 1.01

Code_25 6.64 11.24 0.69

Code_26 113.37 10.22 1.1

Code_27 664.77 13.12 1.64

Code_28 5.51 22.8 1.09

Code_29 10.93 40.55 1.62

Code_30 89.21 9.62 1.38

Code_31 100.11 8.15 0.89

Code_32 11.36 42.59 1.01

Table 5. Average results for each code over 10 repetitions SARIMAX
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Code 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Code_8 101.09 98.03 97.34 96.2 98.54 100.58 100.0 104.03 105.4 106.04

Code_10 104.3 153.25 130.57 113.92 104.28 103.01 100.0 105.47 100.08 97.77

Code_19 1071.26 720.73 502.34 310.86 104.61 95.76 100.0 59.68 0.0 0.0

Code_25 86.48 82.46 86.48 88.36 96.12 99.42 100.0 108.85 112.44 113.4

Code_26 109.0 97.76 97.23 91.89 90.19 94.48 100.0 105.83 109.4 111.97

Code_27 124.44 105.43 104.25 98.27 96.16 102.15 100.0 104.73 105.02 105.64

Code_31 93.37 91.86 97.28 95.04 96.03 101.92 100.0 104.17 105.76 107.09

Code_32 136.09 137.13 131.11 120.21 80.51 73.54 100.0 133.68 119.41 118.04
Table 6. Prophet: Adjusted historical data and forecasts for distinct top 5 of combined SMAPE/MASE, index year 2022

Code 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Code_5 41.59 26.55 35.39 45.13 143.79 252.21 100.0 63.8 32.4 39.91

Code_8 101.09 98.03 97.34 96.2 98.54 100.58 100.0 104.83 104.35 104.95

Code_12 47.17 43.4 42.13 41.28 51.86 54.67 100.0 99.91 96.12 95.76

Code_19 1071.26 720.73 502.34 310.86 104.61 95.76 100.0 74.29 2.2 0.0

Code_25 86.48 82.46 86.48 88.36 96.12 99.42 100.0 108.14 108.82 111.32

Code_26 109.0 97.76 97.23 91.89 90.19 94.48 100.0 104.38 105.0 105.02

Code_27 124.44 105.43 104.25 98.27 96.16 102.15 100.0 104.48 105.76 105.69

Code_30 112.01 107.04 103.03 98.66 94.48 101.72 100.0 106.24 105.96 105.91

Code_31 93.37 91.86 97.28 95.04 96.03 101.92 100.0 104.59 104.81 106.11
Table 7. SARIMAX: Adjusted historical data and forecasts for distinct top 5 of combined SMAPE/MASE, index year 2022
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Fig. 1. SMAPE scatterplot for SARIMAX and Prophet on each code.
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Fig. 2. MASE scatterplot for SARIMAX and Prophet on each code.

Fig. 3. Illustrative plot of Code_31 including the REP-OOS test forecasts and a post sample forecast with confidence intervals.
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Fig. 4. 3D plot of Code_31 illustrating the model differences on MAE, SMAPE and MASE.
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