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This paper examines the impact of attention mechanisms starting from their
initial use cases up to their present-day roles in the field of Natural Lan-
guage Processing (NLP). Traditional machine learning models struggle to
capture contextual dependencies, which have been largely resolved by incor-
porating attention mechanisms into NLP models. Through an exploration
of attention mechanisms, this research offers a comprehensive overview,
looking into their evolutionary trajectory, performance enhancements, in-
herent limitations, and visualization techniques. Key findings highlight the
remarkable performance improvements brought by attention mechanisms,
particularly evident in tasks like Machine Translation and Sentiment Analy-
sis. Challenges, including computational complexity and interpretability, are
discussed, providing insights into the more nuanced landscape of attention
in NLP.
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1 INTRODUCTION
When processing human language, the individual components of
the source text contribute differently, depending on the task that
has to be done. Certain words may be important in one instance, but
may not matter in another. This becomes problematic for machines,
as they have trouble discerning context and prioritizing certain
information. For us humans, this is no problem, as we prioritize
information in a dynamic and nuanced way.
Traditionally, NLP models used a combination of feature extrac-

tion and a classifier, to classify text [25]. The main limitation in
these models’ accuracy lies in the feature extraction process. The
problem with these processes, particularly Bag-Of-Words, is that
they treat each input element as a single thing, resulting in a loss
of its context, and thus treating every word with the same level of
significance.

As an example, consider the sentence "The bank was crowded, so I
had to stand in line". In this sentence, the word "bank" holds a dual
meaning; namely one as a financial institution and the other as a
physical space. The early NLP models mentioned earlier, struggle
with this. They used to process each word in isolation, ignoring the
word’s context within a sentence [25].

While the feature extraction processes worked for their time,
they were still limited across many NLP tasks. Word2vec [37] and
GloVe [42] were introduced as advanced embedding techniques to
address some of the limitations of the traditional feature extrac-
tion processes, such as semantic meaning, by providing continuous,
distributed representations of words. They capture semantic rela-
tionships and consider contextual information, allowing for more
effective modeling of language semantics and improving the perfor-
mance of all kinds of NLP tasks.
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Ultimately, these early approaches to understanding text fail to
emulate the way we humans process language. People understand
text by reading individual words, whose meaning and context are
incrementally integrated with the preceding context, to finally build
up the sentence’s meaning [16]. This difference between how the tra-
ditional machine learning models process text and how we humans
understand text becomes especially evident in Natural Language
Processing (NLP), where precise comprehension and interpretation
of text are crucial.

To address this inherent difference, DeepNeural Networks (DNNs)
emerged as a potential solution. One of the first successful attempts
were Recurrent Neural Networks (RNNs) [44]. They excel in cap-
turing sequential dependencies in language since they process se-
quences by maintaining hidden states that carry information from
previous steps to the current one. While they showed promise in
capturing temporal dependencies, they are not capable of handling
long-range dependencies between words. These networks also suf-
fer from the vanishing gradient problem [19], further limiting their
effectiveness in practice.

Despite the advancements, these early DNN structures struggled
to capture the nuanced and hierarchical relationships that exist in
natural language. The breakthrough came with the introduction of
attention mechanisms.
Attention was first introduced to aid in the machine translation

of text by Bahdanau et al. [5]. They found that the translation from
a model utilizing a form of attention performed significantly better
than just the conventional encoder-decoder model at the time. The
results showed that the use of attention improved their model’s
performance by about 50%. This paved the way for the widespread
adoption of attention mechanisms across the field of NLP.
This paper aims to elucidate the history of how attention mech-

anisms have enhanced a model’s understanding of text. Section
6 provides insights into the historical development of attention
mechanisms. In Section 7, the performance improvements that have
happened over the last decade are explored, since the introduction
of attention. Furthermore, in Section 8, inherent challenges and
drawbacks associated with attention mechanisms are examined, as
well as potential ways to mitigate them. Lastly, Section 9 looks at
some common visualization techniques for attention mechanisms.

2 TECHNICAL BACKGROUND
Traditionally NLP models grappled with the challenge of correctly
processing human language, where the significance of words varies
depending on the context. These models consisted of a feature ex-
traction and a classifier [25], where the feature extraction process
was the main limitation in the model’s accuracy.

Early Feature Extraction approaches:

• Bag-Of-Words (BOW): One of the initial techniques was
BOW [66]. This method transforms sentences into a map-
ping array, linking unique words to their total occurrences
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in a dataset. This way, a computer can easily understand the
extracted features, but a word’s context is lost in the process.

• N-Grams: N-Gram models, such as Trigrams, improve on
BOW by considering combinations of words and their prob-
abilities of occurrence in the dataset [9]. Essentially, it is
a sliding window of size N going over the input. For large
datasets, this provided an efficient and quick way to check
for spelling errors for its time.

• TermFrequency-InverseDocument Frequency (TF-IDF):
TF-IDF introduces a numerical representation of term impor-
tance by combining local information (term frequency, TF),
with global information (inverse document frequency, IDF)
[4]. It combines this information to identify terms that are
both frequent in a document, as well as across the entire
dataset.

In the pursuit of better semantic representation, Word2Vec [37]
and GloVe [42] were introduced. Word2Vec generates continuous
vector representations of words using either the Continuous Bag-
Of-Words or SkipGram model, resulting in dense word embeddings
that capture some semantic relationships and linguistic regularities.
GloVe, on the other hand, operates globally, constructing a word-to-
word co-occurrence matrix to optimize the embeddings, resulting
in vectors with linear structures that contain meaningful algebraic
operations. Both models meaningfully contributed to advancing
NLP models to process human language.

As the NLP models evolved, RNNs emerged to capture sequential
dependencies in language by maintaining hidden states that carry
information from previous steps to the current one [44]. However,
RNNs faced problems with vanishing gradients during learning
[19], which limited their practical ability. Long-Short Term Memory
(LSTM) networks and Gated Recurrent Unit (GRU) networks were
introduced as variations on RNNs to overcome the vanishing gra-
dient problem [19]. These networks use mechanisms to selectively
update and forget information, which improves their handling of
long-range dependencies.

3 PROBLEM STATEMENT
Within Natural Language Processing, traditional machine-learning
models struggle to capture nuanced relationships and the contextual
dependencies that exist in human language. This is due to the idea
behind these models, as they treat each word as a separate input,
consequently losing the important context [25]. For instance, in
the example from the Introduction, the word "bank" can refer to
either a financial institution or a physical space. The failure to
accurately disambiguate such terms leads to misinterpretations of
text and thus reduces the model’s accuracy in all kinds of NLP
tasks, ranging from Machine Translation and Sentiment Analysis
to Question Answering.

3.1 ResearchQuestion
The problem statement leads to the following research question:

How do attention mechanisms enhance the contextual understanding
and performance of natural language processing tasks?

This research question will be answered by the following sub-
questions:

1. How have attention mechanisms evolved since their initial
use cases?

2. What performance improvements do attention mechanisms
offer over traditional machine-learning models?

3. What are the inherent challenges and limitations of attention
mechanisms, and how can they be mitigated or addressed?

4. How can the visualization of attention mechanisms help with
the interpretability of NLP models?

4 RELATED WORK
In the last decade, numerous studies have looked into the challenges
that are associated with traditional machine-learning models. No-
tably, the work of Bahdanau et al. [5] laid the foundation for incorpo-
rating attention mechanisms in NLP models, especially focusing on
the translation of human language. While not called attention at the
time of their paper, the underlying principle is the same. Their model
demonstrated a remarkable improvement in translation accuracy
compared to the state-of-the-art recurrence-based encoder-decoder
models of the time [5].
Building on Bahdanau’s work, subsequent research introduced

the concept of global and local attention mechanisms, further refin-
ing the adaptability of attention [33]. The global attention mecha-
nism allows a model to consider the entire input sequence when
assigning weight to different elements, while the local mechanism
narrows its focus to a specific region. This increases efficiency and
performance in all kinds of sequence-to-sequence tasks.
Furthermore, in 2017 the Transformer model was presented, an

advancement that uses newly introduced multi-head attention to
attend to differently attend to different parts of the input, along with
a self-attention mechanism to process input sequences in parallel
so that the limitations of sequential processing could be overcome
[58]. Ever since, the Transformer architecture has become a vital
component of the modern NLP models, demonstrating a state-of-
the-art performance in a multitude of NLP tasks. The self-attention
mechanism allows the model to weigh the importance of each word
in the context of the entire sequence, close to how we humans
understand language.
Attention mechanisms have not only proven to be effective in

sequence-to-sequence tasks but also in tasks that require contextual
understanding, such as sentiment analysis. In 2016, an attention-
based neural network was proposed for sentiment analysis and
demonstrated high performance in capturing nuances in sentiment
across different inputs [64].
In the context of information extraction, research into more re-

fined transformer architectures stands out, as they employed atten-
tion mechanisms to improve the extraction of relevant information
from unstructured text [32]. This model showed superior precision
in identifying key entities and relationships, highlighting the poten-
tial of attention mechanisms in tasks demanding very fine-grained
analysis of text.
While models with attention mechanisms have shown great

promise, some studies have explored their limitations [50]. A com-
prehensive analysis of attention mechanisms has been done and
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revealed problems with computational complexity, as well as the
challenge of interpretability. These findings show that it is needed
to think carefully before utilizing attention mechanisms for every
model.

5 METHODOLOGY
Due to the inherent limitations of traditional machine learning
models in NLP and how attention mechanisms solve many of the
problems, the proposed methodology aims to explore the evolution,
performance improvements, challenges, and visualization aspects
associated with attention mechanisms in a comprehensive way,
using literature.

5.1 Literature Search
To ensure a comprehensive review, the literature search was con-
ducted on the following reputable scientific databases: Google Scholar
and IEEE Explore.
Papers were retrieved using a systematic search strategy that

uses relevant keywords on the scientific databases. Additionally,
a snowballing technique was employed, to find relevant papers
through citation analysis and references in retrieved papers.

5.1.1 Keywords Selection. To improve the precision and relevance
of the review, a set of keywords was used to find relevant papers.
The choice of keywords was iterative, refined through trial searches,
and changed depending on the terms commonly found in the titles.

The following is a list of used keywords: "Attention Mechanisms,
NLP, Transformer, Challenges in AttentionMechanisms, Self-Attention,
Multi-Head Attention, Machine Translation, Sentiment Analysis, Ques-
tion Answering, Text Summarization".

Finding papers by year for the Performance Improvements section
slightly breaks away from this, due to the sheer number of retrieved
papers. As such, finding the relevant papers is done in a slightly
different way. For each of the tasks, the dataset along with the
evaluation metric is entered in either of the scientific databases,
after which the publication date can be altered to the desired year.
This way, a limited number of more relevant papers is retrieved and
we can be near-certain that papers presenting new performance
improvements were not missed.

5.1.2 Inclusion Criteria. The inclusion criteria for selecting papers
are as follows:

• Papers focusing on the evolution, performance improvements,
challenges, and visual aspects of attention mechanisms

• Papers published in reputable conferences or journals 1

• Papers written in English

5.1.3 Exclusion Criteria. Papers will be excluded if they:
• Are not related to attention mechanisms in NLP
• Are not published in reputable conferences or journals
• Are not written in English

5.1.4 Data Collection. The data extraction process will involve
extracting relevant information from each selected paper, such as

1Conferences are checked for their credibility by their Publication Forum rating, done
via https://www.tsv.fi/julkaisufoorumi/haku.php?lang=en

the publication year, key findings, methodologies, datasets used,
and performance on the analyzed task.

5.1.5 Quality Assessment. To ensure the credibility of the selected
papers, a quality assessment was performed, and factors such as the
credibility of the conference or journal were considered.

5.1.6 Paper Selection Process. The selected papers for review were
chosen based on their alignment with the research objectives. Specif-
ically, these papers provide valuable insights into the evolution,
performance gains, challenges, and interpretability of attention in
NLP. The inclusion criteria ensure that the chosen papers are from
reputable sources, are directly related to the research focus, and are
written in English, to make sure that the reliability and relevance of
the information synthesized in this review is of good quality.

6 EVOLUTION OF ATTENTION MECHANISMS
Attention mechanisms have emerged as a transformative solution
in NLP, addressing many of the inherent challenges of the earlier
machine learning models. The conventional approach of treating
each word in isolation is inherently flawed in capturing a word’s
nuance and context in a sentence. This limitation became especially
evident [5] in tasks like machine translation, where the translation
of a word heavily depends on the context of the entire sentence.
Before the introduction of attention mechanisms, the conven-

tional machine learningmodels faced challenges and limitations that
reduced their effectiveness in capturing contextual dependencies.
One prevalent model for sequence-to-sequence tasks, like machine
translation, was the recurrence-based encoder-decoder architecture
[55]. In this architecture, an encoder processes the input text into a
fixed-size context vector, which is then used by a decoder to gener-
ate the output sequence. It showed good performance in machine
translation tasks and can handle medium-length sequences and
maintain syntactic structure. However, this rigid one-size-fits-all
approach fails in handling longer sequences and capturing very
small nuances between the words in varying contexts.
In 2014, the field of NLP experienced a huge advancement, as

the first attention mechanism was introduced and implemented
[5]. They recognized that in translation, the importance of a word
may vary significantly based on its context within a sentence. Their
insight led to the introduction of a mechanism that allowed a model
to dynamically focus on different parts of the source sequence when
generating each word of the translation. It was found that this
performed significantly better than a state-of-the-art RNN encoder-
decoder model of the time. While these results were very promising,
the newly proposed model still struggled with the translation of
rare words.
After the introduction of the first attention mechanism in ma-

chine translation, subsequent research built upon the previous work
by introducing Global and Local attention mechanisms [33]. Global
attention allowed a model to consider the entire source sequence
when assigning weights to the different elements. This made the
model have a broader perspective, which facilitated a more com-
prehensive understanding of the input context to overcome the
limitations of the one-size-fits-all approaches seen up to that point.
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Concurrently, their introduction of a Local attention mechanism
allowed a model to narrow its focus to specific regions within the
source sequence [33]. This refinement increased the model’s effi-
ciency by concentrating on relevant portions of the input, which
turned out to be particularly advantageous when processing lengthy
sequences. With these new attention mechanisms, they performed
significantly better than the other state-of-the-art machine transla-
tion models of the time. Furthermore, it was shown that for machine
translation, attention-based models are superior to non-attentional
ones in many cases, such as translating names and handling long
sequences [33].
The next advancement came in the form of self-attention, also

known as intra-attention, introduced by Cheng et al. [10]. They
recognized the limitations of the existing attention mechanisms in
capturing dependencies within a sequence. Traditional attention
mechanisms, while effective at attending to different parts of the
input sequence, were inherently sequential in their processing. This
leads to constraints in capturing more complex relationships and
hinders a model’s ability to consider all possible positions of the
input sequence.
Self-attention addresses this limitation by enabling a word to

attend to all other words in the sequence simultaneously [10]. Each
word in the input sequence could dynamically adjust its attention
weights based on its relationship with every other word. This allows
the model to process the input in parallel, which not only signifi-
cantly speeds up computation, but also allows the model to capture
long-range dependencies in the input [10].
This laid the groundwork for the biggest advancement yet: the

introduction of the Transformer model [58]. This model marked a
paradigm shift in NLP architectures. The primary innovation of the
Transformer model lies in the incorporation of self-attention, as well
as the introduction of Multi-Head attention. Each attention head
focuses on a different part of the input, allowing the model to attend
to multiple representations of the input sequence simultaneously.
The Transformer architecture proved to be highly scalable and

efficient, being able to handle long sequences with ease [58]. It
quickly became a cornerstone in NLP, achieving state-of-the-art
performance in many NLP tasks.

Expanding on the multi-head attention introduced with the Trans-
former model, subsequent research has explored its applications in
capturing diverse representations in input sequences. It has shown
promising results in many NLP tasks, such as machine translation
[12], semantic role labeling [54], and subject-verb agreement task
[56], among others. The reason for these performance gains is that
multi-head attention allows a model to attend to information from
different representation subspaces at different positions, from the
same input [58]. This flexibility becomes especially beneficial in the
aforementioned tasks, where a holistic understanding of language
is important for getting good performance.
Inspired by Self-attention, relative attention was introduced to

improve the modeling of relationships within the input. Relative
attention mechanisms use the positional information of words, to
address challenges related to word order and positional encoding
[51]. This led to small performance gains in the machine translation
task, compared to absolute position representations.

7 RESULTS
The evolution of attention mechanisms, as explored in the preceding
section, shows their transformative impact on NLP. From their initial
use cases to the more sophisticated adaptations seen in current state-
of-the-art models, attention mechanisms are seen as indispensable
tools for capturing contextual nuances within input sequences. This
section delves into the outcomes of this evolution, by looking at
the performance improvements that attention mechanisms have
brought to a specific subset of NLP tasks.

As these attention mechanisms evolved, they not only addressed
inherent limitations but also showed remarkable enhancements in
handling diverse NLP challenges. This section will illuminate some
of the advancements achieved by attention mechanisms in a selected
set of tasks, showcasing their performance compared to earlier
models in tasks such as machine translation, sentiment analysis,
text classification, question answering, and text summarization. By
looking into these tasks, this section aims to show the benefits that
attention mechanisms bring to NLP.

7.1 Machine Translation
Machine translation is perhaps the most popular NLP task. It in-
volves the translation of one language to another, done by a machine
translation system. Evaluating the performance of machine transla-
tion systems commonly employs metrics like BLEU (Bilingual Eval-
uation Understudy), which quantifies the similarity between the
generated translation and one or more human reference translations
[41]. A higher BLEU score generally indicates a better translation
quality. For this section, the WMT2014 English-French [7] dataset
will be used due to the large number of models that have been tested
on it over the years, providing a decade’s worth of results from NLP
models.

Before the integration of attention mechanisms, machine transla-
tion models relied on RNNs with encoder-decoder architectures. In
these models, the encoder processed the entire input sequence into
a fixed-size context vector, which the decoder used to generate the
output sequence [55]. With this approach, a BLEU score of 26.71
was achieved [5].

With the incorporation of attention for the same model archi-
tecture, the BLEU score was improved to 36.15 [5]. While not the
best performance for that year, this laid the groundwork for future
machine translation models to incorporate attention mechanisms,
as the performance was greatly improved by just incorporating
attention.
A significant improvement was made in 2021, with the intro-

duction of the Re-Transformer [28]. This transformer-based model
focused on reducing the number of parameters andmodifying the ra-
tio of self-attention to feed-forward layers in the encoder layer. This
adjustment was aimed at further increasing the model’s understand-
ing of natural language and to improve the translation efficiency.
Using this new model architecture, a large improvement was made
in the achieved BLEU score, where the score jumped from 46.4 to
55.6. Another advantage of this model comes in its total training
time, which is much less than comparable models. Compared to
the regular Transformer, the training time was 44% shorter, while
achieving a score that is 17.5 BLEU points higher [28].

4



Attention Mechanisms in Natural Language Processing TScIT 40, February 2, 2024, Enschede, The Netherlands

Table 1. Performance on the WMT2014 English-French Dataset

Year Model name BLEU Reference
2014 LSTM Ensemble + PosUnk 37.5 [34]
2015 " " "
2016 Deep-Att. Ensemble + PosUnk 40.4 [67]
2017 ConvS2S (10 models) 41.6 [14]
2018 Noisy Back-translation 45.6 [13]
2019 " " "
2020 Transformer + Back-translation 46.4 [31]
2021 Re-Transformer-2 55.6 [28]
2022 X-Transformer 55.63 [29]
2023 " " "
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Fig. 1. Performance over the years of the best-performing model per
year. This figure illustrates the evolution of the best-performing models of
the past decade, showing the transformative impact of attention mecha-
nisms and model optimizations, and showcasing the continual progress in
this NLP task. If a certain year has no new best-performing model, the year
is skipped in the graph.

The current state-of-the-art inmachine translation is the X-Transformer
model, which is a refinement of the Re-Transformer [29]. The main
architecture of this model is similar to that of the Re-Transformer,
with minor changes made. With this, a state-of-the-art score of 55.63
was achieved (Figure 1, Table 1).

7.2 Sentiment Analysis
Sentiment analysis is a task in NLP that involves determining the
sentiment expressed in a piece of text, typically classified as posi-
tive, negative, or neutral. Assessing the performance of sentiment
analysis models is usually done via accuracy metrics on standard-
ized datasets. The accuracy metric quantifies the ratio of correctly
predicted sentiments to the total number of instances in the dataset.
This provides a clear measure of a model’s ability to discern and
classify sentiments correctly. There are many standardized datasets
for sentiment analysis, each with its downsides and benefits. For this
section, the SST-2 Binary Classification [52] dataset will be analyzed
due to the number of models that have been benchmarked with it,
and due to there being accuracy metrics of models before the use of
attention.

Before attention, the best performance on sentiment analysis was
seenwith convolutional neural networks [23]. They used pre-trained
word embeddings from Word2Vec [37] to improve the accuracy of
the final model. In the end, the best-performing model of this era
achieved an accuracy of 88.1%.

Table 2. Performance on the SST-2 Binary Classification Dataset

Year Model name Accuracy Reference
2014 CNN-multichannel 88.1 [23]
2015 DMN 88.6 [24]
2016 Neural Semantic Encoder 89.7 [38]
2017 Block-sparse LSTM 93.2 [15]
2018 BERTLARGE 94.9 [11]
2019 T5-11B 97.5 [45]
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Fig. 2. Best-performing models over the years. The figure shows the
performance of models on the dataset since its introduction in 2014. Since
no model has beaten the performance of T5-11B, the graph only shows data
up to 2019.

The first use of attention in sentiment analysis was seen in 2015
when a Dynamic Memory Network employed an attention mech-
anism [24]. The model was used on a variety of NLP tasks, like
Question Answering, Sequence Tagging, and Sentiment Analysis.
The accuracy of this model on the SST-2 Binary classification dataset
came to 88.6%, a 0.5 percent-point increase above the model that
did not use attention. While not a large increase in itself, it showed
the potential that attention could have in this NLP task.
In 2017, the Block-Sparse LSTM brought a substantial improve-

ment in sentiment analysis, introducing highly optimized GPU ker-
nels for gradient-based learning with block-sparse weights [15].
This innovation allowed the model to scale up to much wider states
than typically used in LSTMs, achieving state-of-the-art results for
the time.

The current state-of-the-art in sentiment analysis involves transformer-
based architectures. They make heavy use of attention mechanisms
to perform very well on a variety of NLP tasks. The current highest-
ranking model on the SST-2 Binary Classification dataset is T5-11B,
with an accuracy of 97.5% [45], a substantial improvement over the
Dynamic Memory Network that first utilized attention (Figure 2,
Table 2). Since this performance in 2019, no other model has beaten
the accuracy score of 97.5 on the SST-2 dataset. Models like RoBERTa
Large + MUPPET have gotten close with an accuracy of 97.4 [1], but
none have surpassed T5-11B in the sentiment analysis task.

7.3 Question answering
Question Answering is an NLP task that involves designing models
that are capable of providing accurate responses to questions posed
in natural language.
Evaluating the performance of QA systems often relies on stan-

dardized datasets, with the Stanford Question Answering Dataset
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Table 3. Performance on the SQuAD1.1 Dataset

Year Model name EM-score Reference
2016 BIDAF 73.3 [49]
2017 R.M-Reader 82.3 [18]
2018 BERTLARGE 87.4 [11]
2019 XLNet 89.9 [63]
2020 LUKE 90.2 [61]
2021 ANNALARGE 90.6 [21]
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Fig. 3. Performance of the best QA models over the past years. The
figure illustrates the performance over the last few years. If a certain year
has no new best-performing model, the year is skipped in the graph.

(SQuAD1.1) [46] being a widely adopted benchmarking dataset. The
dataset consists of questions posed on a set of Wikipedia articles,
with corresponding answers. The Exact Match (EM) score measures
the percentage of the model’s given answers that match the human-
annotated answer. This dataset was chosen for comparison due to
its diversity, complexity, and real-world relevance.
Given the recency of the SQuAD1.1 dataset, the first models

tackling this challenge already incorporated attention mechanisms.
In 2016, the year the dataset was released, the best-performing
model was BIDAF, which achieved an EM score of 73.3 [49]. This
model used a bi-directional attention flow to attend to information
from the passage and the question simultaneously. In contrast to
other attention mechanisms, this allowed it to capture not only
local dependencies within the passage but also intricate semantic
relationships between both the question and the passage.
Attention mechanisms as a whole play a crucial role in improv-

ing the performance of QA systems. Since the introduction of the
SQuAD dataset, every best-performing model by year has utilized a
form of attention.
As of the latest advancements in QA, the Approach of Noun-

phrase based language representation with Neighboraware Atten-
tion (ANNA) model stands as the current state-of-the-art model,
with an EM score of 90.6 [21] (Figure 3, Table 3). With this model,
a new attention mechanism was proposed; a neighbor-aware self-
attention mechanism. This attention mechanism is aimed at miti-
gating a recognized limitation in traditional transformer encoders,
where a single self-attention layer may prove to be insufficient to
understand certain nuanced relationships between words [6]. The
goal of the neighbor-aware self-attention mechanism is to overcome
this limitation by disregarding the diagonality in the attention ma-
trix, meaning that the computed attention weights focus more on
other tokens than the token itself.

Table 4. Performance on the GigaWord dataset.

Year Model name ROUGE-1 Reference
2015 Abs+ 31.0 [48]
2016 MRT 36.5 [3]
2017 FTSumg 37.3 [8]
2018 " " "
2019 ControlCopying + BP Norm 39.4 [53]
2020 BART + R3F 40.5 [2]
2021 Pegasus + DotProd 40.6 [22]
2022 GENIE 45.7 [27]
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Fig. 4. Performance of the text summarization models over the last
years. It illustrates the increase in performance of the models operating on
the GigaWords dataset. If a certain year has no new best-performing model,
the year is skipped in the graph.

7.4 Text Summarization
Text Summarization is an NLP task that involves distilling the essen-
tial information from a given text while retaining its core meaning.
It is relevant in various domains, aiding in information retrieval,
and content condensation.

The evaluation of text summarization models is done by using the
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric
[26]. This metric assesses the quality of summaries by comparing
them to reference summaries. Often, performance is measured in
ROUGE-1, ROUGE-2 or ROUGE-L. ROUGE-1 and ROUGE-2measure
the overlap of unigrams and bigrams respectively, while ROUGE-L
measures the longest overlapping sequence. This section looks at
just the ROUGE-1 metric.

For rigorous evaluation, the annotated GigaWord dataset [40] is
commonly used due to its extensive collection of news articles, that
encompass a wide variety of topics and writing styles.
The use of attention in text summarization models was rather

quick since the first models tested on GigaWord already used atten-
tion mechanisms back in 2015. The best-performing model of this
time was the tuned Attention-Based Summarization system (Abs+),
with a ROUGE-1 score of 31.0 [48]. This model used a local attention
mechanism, which allowed the model to generate each word of the
output summary conditioned on the input sequence. It proved to be
structurally simple, while also scaling well to large amounts of data.

As of the latest advancements in text summarization, the current
state-of-the-art is represented by the Diffusion Language model,
named GENIE, which achieves an exceptional ROUGE-1 score of
45.7 [27] (Figure 4, Table 4). GENIE introduces a groundbreaking
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diffusion language model pre-training framework for text genera-
tion, comprised of an encoder and a diffusion-based decoder. This
enables it to generate coherent text sequences by gradually trans-
forming sequences of random noise. Another feature of GENIE is the
use of cross-attention. This form of attention allows for enhanced
interaction between the transformer’s encoder and decoder.

8 DISCUSSION
The evolution of attention mechanisms has significantly shaped how
NLP models understand human language. Starting from traditional
methods like Bag-Of-Words and N-Gram, the field transitioned to
more sophisticated methods like Word2Vec and GloVe, to address
some of the limitations of traditional models.
The advent of RNNs aimed to capture sequential dependencies,

but ultimately lacked practical use cases due to challenges with long-
range dependencies and the vanishing gradient problem. Attention
mechanisms emerged as a breakthrough, initially applied tomachine
translation tasks. Soon enough, attention would be adopted in many
NLP applications.
With its Self-attention mechanism, the Transformer model rev-

olutionized NLP further, demonstrating scalability and efficiency
in handling long input sequences. Subsequent research, inspired
by self-attention, introduced variations like sparse attention and
co-attention.

Performance improvements across tasks like machine translation
and sentiment analysis showcased the improvement brought by
the incorporation of attention mechanisms into NLP models. For
Question Answering and Text Summarization, the chosen dataset
does not provide enough details to compare the attention models to
the models before the introduction of attention.
For Question Answering, looking at an older dataset like Wik-

iQA [62] may provide insights into the performance improvements
brought by the introduction of attention. The first model utilizing
attention on this dataset was an LSTM, with a score of 0.664 [36]. In
the same paper, they implemented an LSTM without any attention
mechanism, and achieved a score of 0.655, showcasing not much
of an improvement. This is backed by Hao et al. [17], who showed
that using an attention mechanism for their Question Answering
models increased the score by at most 5%, suggesting that attention
mechanisms may not be as important for the Question Answering
task as initially thought.
Performing the same analysis on the Text Summarization task,

research done in 2016 [39] provides useful information. In it, a
model was trained with a temporal attention model with their newly
introduced CNN/Daily Mail dataset and compared it to a baseline
model that did not utilize attention. They found that the model with
temporal attention achieved a full-length ROUGE-F1 score that is
almost 10% higher than the baseline. It is important to note that
the full-length ROUGE-F1 metric was used to evaluate their models,
to not unfairly favor long summaries, while not imposing a length
restriction.
While the BLEU and ROUGE performance metrics have been

widely used in NLP as evaluation metrics, it is important to note
that they are not perfect tools for evaluating NLPmodels. These met-
rics are based on n-gram overlap, which may not capture nuanced

improvements made by models and the incorporation of attention.
The main problem with these metrics is that they do not account
for word synonyms and their order in the sentence, producing a
worse score than otherwise [43].

An important consideration in this paper is the selection of the
NLP tasks and the analyzed datasets. The chosen datasets often have
inherent biases, and the selected tasks may not fully represent the
diversity of real-world applications. Extending the exploration to
a more extensive range of datasets and tasks would yield a better
understanding of the effectiveness of attention across NLP.

8.1 Challenges and Limitations
Attention mechanisms have significantly advanced the capabilities
of NLP models by allowing them to dynamically focus on relevant
parts of the input sequence. However, the integration of attention
mechanisms introduces challenges and limitations that need to be
considered.

8.1.1 Computational Complexity. One of the challenges associated
with attention mechanisms in NLP models is their computational
complexity. The nature of attention requires the calculation of at-
tention scores for each element in the sequence concerning all other
elements. As such, the complexity scales to 𝑂 (𝑛2). In large-scale
Transformer models, this process becomes resource-intensive, lead-
ing to longer training times [60].
One way to mitigate this is to re-implement a version of atten-

tion that is of a lower time complexity. A recent study showed an
implementation of an attention mechanism that is of linear time
complexity and demonstrated that the proposed "EcoFormer" has
an on-chip energy footprint reduction of 73%, while only dropping
performance by 0.33% [30].

Sparse attention offers another potential solution to the problem.
Instead of having each element attend to every other element in the
sequence, Sparse attention has a subset of the sequence for each
token to attend to [57]. This way, the time complexity ultimately
scales to 𝑂 (𝑛), greatly reducing the number of calculations. How-
ever, this form of attention comes with its own problem, as it is
difficult to determine what tokens are relevant for the subset that
each token may attend to.

8.1.2 Interpretability. While attention mechanisms improve model
interpretability compared to the traditional approaches, their black-
box nature remains a limitation. Understanding the inner workings
of attention, particularly how the model assigns importance to spe-
cific elements in a sequence, is a complex topic.
The challenge lies in interpreting attention scores effectively.

While it has been shown that the highest-weighted words do have
more impact on the model’s decisions, the assumption that atten-
tion directly corresponds to importance is much more nuanced
[50]. Serrano and Smith’s comprehensive examination of attention’s
role in interpretation suggests that attention does not always align
perfectly with the significance of elements in a sequence.

8.1.3 Limited Sequence Length. Deep Transformer models utilizing
attention may also encounter problems with the vanishing gradient
problem when processing long input sequences [65]. As the input
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sequence grows in length, gradients can diminish during backpropa-
gation, which hinders the effective training of the Transformer. The
vanishing gradient problem is especially pronounced in deep archi-
tectures, where the influence of gradients diminishes exponentially
with every layer.

One way to deal with this is to use depth-scaled initialization,
which scales down parameters by a certain factor depending on the
layer [65]. This method addresses the vanishing gradient problem
by adapting the initialization of the weights based on the depth
of the model. Depth-scaled initialization has the advantage of not
having to change the model’s architecture, and as such is much
easier to implement.

8.2 Visualization and Interpretation
Understanding attention mechanisms usually involves visualizing
attention weights to gain some insights into a model’s decision-
making process. Visualization techniques vary depending on the
type of attention that is used. For NLP models using self-attention,
attention heatmaps show how much focus the different parts of
an input sequence receive during processing [35]. These heatmaps
display the calculated attention weights as gradients or colors and
provide a view into what the model focuses on.
However, it is crucial to note that while visualization offers in-

sights into a model, it does not provide a comprehensive under-
standing of a model’s decision-making process [20, 50]. Attention
weights do not fully explain the reasons behind a model’s decision
due to the non-linear nature of neural networks. Despite this, it still
provides useful in helping to interpret an NLP model by showing
what parts of an input sequence the model attends to [5].

8.2.1 Attention Heatmap. An attention heatmap is a common visu-
alization technique used to understand how attention mechanisms
distribute their focus across an input sequence [5, 47, 48]. These
heatmaps display the attention weights as a gradient of color, giving
a visual representation of what information a model attends to. An
example can be found in Appendix A.

8.2.2 BertViz. BertViz is a powerful tool for visualizing the multi-
head attention weights in a Transformer model [59]. It offers sev-
eral visualizations of attention, the first one being the Multi-Head
View, which can be used to interpret how different attention heads
contribute to the overall understanding of the input. Besides this,
BertViz also offers a Model View, as well as a Neuron View. The
Model View shows all attention heads simultaneously, providing a
birds-eye view of the underlying attention weights. It shows users
how attention patterns evolve through the layers of the model. Fi-
nally, the Neuron View shows how individual neurons of the model
interact with each other to calculate the final attention weights.
While the Multi-Head View and the Model View show what patterns
the Transformer learns, the Neuron View shows how they learn the
patterns. Appendix B shows the visualizations offered by BertViz.

9 CONCLUSION
In conclusion, the trajectory of attention mechanisms in NLP has
reshaped how computer models understand language. Beginning
with the limitations of traditional feature-extraction approaches

like Bag-Of-Words and N-Gram, the field transitioned to more so-
phisticated methods such as Word2Vec and GloVe, addressing some
contextual challenges but still falling short. RNNs initially showed
promise in capturing sequential dependencies but struggled with
long-range dependencies and the vanishing gradient problem. The
pivotal moment came with the introduction of attention mecha-
nisms, particularly highlighted by the impact of the Transformer
architecture. Subsequent variations like sparse attention and co-
attention, contributed to scalability and efficiency.
However, the story of attention is incomplete without acknowl-

edging the associated challenges and limitations, predominantly
interpretability concerns, as other challenges can be mitigated with-
out too much effort. Despite this hurdle, attention mechanisms
consistently emerge as valuable tools for NLP models. Performance
improvements in tasks like Machine Translation and Sentiment
Analysis highlight the positive impact of attention mechanisms. It
is crucial to recognize that this paper focussed on specific NLP tasks
and datasets, and future research may explore a broader spectrum of
applications to improve our overall understanding of how attention
mechanisms have helped NLP models.
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A ATTENTION HEATMAP

Fig. 5. A heatmap visualization of the attention weights, showing what
input tokens were relevant for the given output token [5]. Here, the English
sentence is translated into a French sentence.
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Fig. 6. The Attention Head view offered by BertViz [59]. It shows the atten-
tion patterns produced by one or more attention heads. The colors identify
the corresponding attention heads, and the lines show the weight of the
attention

Fig. 7. The Model view offered by BertViz [59]. It shows all the heads and
layers simultaneously, providing an overview of the learned patterns.

B BERTVIZ
The three visualizations offered by BertViz are the MultiHead View
(Figure 6), the Model View (Figure 7), and the Neuron View (Figure
8).

11



TScIT 40, February 2, 2024, Enschede, The Netherlands Author

Fig. 8. The Neuron view offered by BertViz [59]. It provides a comprehensive visualization of attention computation in the Transformer model. Focussing on
individual neurons in the query and key vectors, this view illustrates their interaction to calculate the attention weights. For a selected token, the computation
goes from left to right across several columns, showcasing essential components such as the 64-element query vector (q), the 64-element key vector (k) for
each token receiving attention, the element-wise product (q × k), the dot product (q · k) and the softmax of the scaled dot product. Attention weights are
visualized through color coding, with blue representing positive values and orange representing negative values. The saturation reflects the magnitude.
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