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Abstract

This master thesis introduces a novel approach to price financial options, namely a GAN-QMC.
It combines a Generative Adversarial Network (GAN) with a Quasi-Monte Carlo (QMC) simula-
tion. The main objective is to improve the accuracy and efficiency of option pricing, specifically
focusing on overcoming limitations associated with traditional QMC for option pricing. In this
research, GANs are used to model the process of the underlying asset, aiming for a realistic
representation of financial data as input to the QMC.

This thesis begins by building a theoretical framework, using relevant literature to place the
topic within the broader landscape of option pricing, Monte Carlo (MC) simulation, and GANs.
The methodology involves the development of the GAN-QMC framework including option pric-
ing using MC/QMC, neural networks, GANs, and risk-neutral price path construction. Here
we discovered that the GAN-QMC can only effectively be implemented as a semi-parametric
method, relaxing certain distributional assumptions associated with traditional MC/QMC op-
tion pricing using the geometric Brownian motion.

The concepts of the GAN-QMCmethodology were implemented. The GAN hyper-parameters
were determined by using an automated tuning strategy based on perturbation theory. Three
separate GANs were tuned using the historical stock prices of BHP Group Limited, Common-
wealth Bank of Australia (CBA), and CSL Limited. The GAN’s ability to generate financial
stock returns was determined by comparing it to real-world data from exchange-listed com-
panies. The Wasserstein GAN with Gradient Penalty was best in capturing the statistical
properties exhibited by the real-world data but was still not perfect.

Afterward, we compared the performance of MC, QMC, GAN-MC, and GAN-QMC by
pricing a dataset of options. In total, this dataset consisted of almost 500 European and
American options on the stocks of BHP, CBA, and CSL, both in-the-money and out-of-the-
money. Here we discovered that the GAN-QMC demonstrates comparable accuracy to QMC
with an error of roughly 3.5%. In many conventional pricing methods including QMC, the
returns of the underlying asset of an option are modeled using a standard normal distribution.
Therefore, these results are interesting because they show that a GAN, which is non-parametric,
can replace the theoretical way the underlying asset of an option is often modeled in a geometric
Brownian motion. Moreover, GAN-QMC seems to show potential advantages in computational
efficiency, being approximately 20% faster.

In summary, this thesis contributes to the field of option pricing by introducing GAN-
QMC as a semi-parametric framework with potential advantages in accuracy and efficiency. In
addition, a new strategy to tune GANs was successfully applied. While there are challenges
and limitations, particularly in training a financial GAN, this study does suggest possibilities
for future research to improve GANs and the GAN-QMC method further.
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Chapter 1
Introduction

To kick off this thesis, we begin by introducing the topic and providing some background context
for this research. From there, we identify the specific research problem and establish the relevant
research questions. The subject of this thesis is the pricing of financial options. Options, a type
of financial instrument, are contracts that give the holder the right to buy or sell an underlying
asset at a specified price within a predetermined period. By developing and analysing a new
pricing method using Artificial Intelligence this thesis aims to improve on existing option pricing
frameworks. How the new pricing method works and which improvements it tries to make will all
be explained in this chapter. More technical details regarding option pricing and the developed
pricing methods are all explained in chapter 2 and 3.

1.1 The use of financial instruments

Many companies, organizations, and governments invest in a wide variety of assets. These
investments come with risks, because unexpected events can happen, leading to massive losses.
To protect the investor against such risks, financial instruments can be bought (Hull, 2000).
These are special contracts allowing for potential gains of the investment while some of the
associated risks can be covered through these products. Figuring out how much these financial
instruments are worth is essential for effective risk management (McNeil et al., 2005).

To give a well-known comparison, this is similar to buying insurance for your car. You seek
to protect yourself from unforeseen accidents, theft, or damage while being able to enjoy all the
benefits of a car. You want to know how much it should cost, which risks it covers, and how much
risk is left over for you. Similarly in the realm of finance, investors use financial instruments
to protect themselves from negative events while at the same time being able to profit from
positive market movements or business results. For example, a company doing business all over
the world might want to protect itself from changes in currency exchange rates. Preferably, a
change in currency rate should not completely offset the profit made in a foreign country. This
can be achieved by certain types of financial instruments. Therefore, knowing how much you
should pay for this risk reduction is crucial.

Risk management plays an important role in the financial sector. Financial instruments are
not only used for potential gains but also to mitigate risks associated with investments and doing
business (Bartram, 2019). Here you could for example think about a manufacturing company
hedging against the risks associated with fluctuations in steel prices using future contracts to
ensure that its operations are also profitable when the steel price is extremely high. Options
can be used by for example an asset manager investing in some stocks to protect against a
large sudden price drop. Determining the true value of these financial instruments is a complex
challenge and is important because it should accommodate both protective and profit-seeking
motives. Thus reliable valuation techniques are necessary for effective risk management.
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In addition, the financial landscape is constantly evolving, influenced by developments in
technology, regulatory changes, and shifting market dynamics. These changes, driven by tech-
nological innovation and regulatory responses (Williams, 2013), reshape the financial sector.
Regulatory changes are installed to protect companies and citizens from risky investments that
can go wrong at their expense. Here a reliable valuation, while also modeling the impact of
these changes, of financial instruments is crucial to assess and be protected from the true risks
of investments and other related events. Another quickly developing event that governments
and citizens might want to protect themselves from is climate change resulting in larger and
more frequently occurring natural disasters (Venturini, 2022). This can also be achieved using
financial instruments, however, modeling the rare events of natural disasters is hard.

Regardless of the purpose of using a financial instrument, they all share one important
aspect namely the need to have a reliable evaluation method to determine its true value. This
ensures effective handling of risks and profit-seeking motives.

1.2 Derivatives and options

One type of financial instrument is a derivative. This is a contract that, as the name suggests,
derives its value from some underlying asset, index, or reference rate (Quail et al., 2003).
Derivatives can be used to create exposure to certain assets or to protect against risks. They
are either a lock or an option. The most common lock products are futures, forwards, and
swaps. These are contracts where both parties agree on some terms that they are obliged to
fulfill on some specified date in the future. For example, a future is a contract where both
parties agree to trade an asset for some pre-specified price in the future. This thesis is not
focused on lock products but on the pricing of options.

The first option contract dates back to the period of ancient Greece. After predictions
that the olive harvest in the next season would be exceptionally high, a mathematician bought
the right to use some olive presses. When the olive harvest indeed turned out to be high,
he rented the olive presses out for a value significantly above what he paid for it through
his contract. The book Confusion de Confusiones was the first book talking about ’opsies’, a
tradeable instrument limiting risks on the Amsterdam stock exchange (Vega, 1688). Options
have been traded officially since 1973. Nowadays the most traded financial instruments are
options. In 2022, a total of 54 billion option contracts have been sold (Statista, 2023).

There are many different option types, all with their own specific functions and payoffs.
In general, an option gives the buyer the right, but not the obligation, to buy or sell the
underlying asset for a certain price at a specific date in time (Hull, 2000). The seller always has
the obligation to fulfill the contract if the holder of the option wants to buy or sell the asset.
The most common type of option is a European option. This option can only be exercised at the
final date written on the option’s contract. In contrast, the American option allows the buyer
to exercise the option at any point during the lifetime of the option. This will be explained in
more detail in chapter 3. Every option is either a put or a call option. A put option gives the
buyer the right to sell the underlying asset and a call option the right to buy the underlying
asset (Bolia et al., 2005).

There are also many types of exotic options all with their own rules and payoffs like a barrier
and lookback option. These exotic options have special rights which result in complex payoff
structures and are often tailor-made to meet specific market conditions or investor needs. For
example, a lookback option allows the buyer, when the option contract ends, to exercise it
during any part of its lifetime. Therefore, the buyer knows the history and can thus exercise it
for the optimal payoff which improves the timing of market entry.

8



1.3 Pricing an option

Understanding the option pricing models is essential for pricing options and making well-
informed investment or risk management decisions. There are various models, such as the
Black-Scholes model (Hull, 2000), that help to determine the theoretical value of options based
on many factors such as the underlying asset’s price, the option’s strike price, time to matu-
rity, volatility, and risk-free rate. These models are important tools for traders and investors,
helping to assess potential profits, risks, and strategies related to options trading. It is very
hard to model all factors influencing an option and it therefore tends to be difficult to price
an option. In the upcoming chapters of this thesis, we will go deeper into the current state of
option pricing, its most well-known methods, and its challenges.

The method of pricing financial instruments where assumptions about the underlying asset
or market conditions are made is called a parametric pricing method. If no assumptions need
to be made, it is called a non-parametric pricing method. Relaxing some assumptions of an
established parametric pricing method can be called a semi-parametric pricing method. The
majority of pricing methods are parametric, however, the rapidly evolving field of Artificial
Intelligence (AI) opens up enhanced possibilities for pricing options using non-parametric and
semi-parametric approaches.

We will now briefly explain which elements influence the price of an option and which
potential assumptions can be made because this impacts the difficulty of determining the true
prices of options. Commonly it is assumed that the financial markets work in a very specific
way. Many pricing methods lean heavily on the assumptions that assets adhere to specific
models and that there are specific market conditions. Based on these assumptions the prices of
financial instruments are calculated. However, the real world is often not that simple, and using
a one-size-fits-all approach is not fair for every situation. Asset prices can move in all sorts of
non-understood ways and sometimes do not follow predetermined rules at all. The behavior
of asset prices is almost always unpredictable. These prices can fluctuate in ways that defy
conventional models and expectations. This unpredictability makes the pricing of options more
complex, as traditional methods, where some are discussed in chapter 2, may not adequately
capture or adapt to these market dynamics. It is not the case that every parametric method
makes all these assumptions that we now discuss, some can be relaxed, but this is to show
which assumptions are often made in option pricing such that it becomes clear that they are
not always valid. We will now discuss the main problems related to making different parametric
assumptions for option pricing.

1.3.1 Asset dynamics

One primary assumption involves the dynamics or behavior of the underlying asset. Traditional
models often assume that the asset follows a specific stochastic process, such as a geometric
Brownian motion, which will be discussed in more detail in section 2.1. This assumption implies
a continuous and normally distributed price process. However, in reality, asset prices can behave
in more complex patterns and may not adhere strictly to these prescribed processes. Factors
like market news, events, or sudden shifts in investor sentiment can significantly impact an
asset’s behavior, which can be hard to model accurately. Additionally, it has been shown that
real-world asset returns do not always follow a normal distribution (Theodossiou, 2000), as
often assumed.

1.3.2 Volatility

Volatility is a crucial parameter in option pricing models, representing the degree of price
fluctuations of the underlying asset. Models typically assume that volatility is constant over the
option’s life, known as constant volatility or implied volatility. However, in reality, volatility
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tends to vary over time due to changing market conditions, news events, or other external
factors. Incorrect assumptions about volatility can lead to inaccurate option prices and thus
mismanagement of risk.

Options with different strike prices and expiration dates will have different implied volatili-
ties, which is known as the volatility smile (Gatheral, 2006). In contrast to historical volatility,
which is based on past price movements, implied volatility represents the market’s anticipation
of future price volatility as deduced from current option prices. The volatility smile indicates
that the implied volatility increases as the option moves further out-of-the-money or in-the-
money. This characteristic can be effectively modeled using for example Stochastic Volatility
(SV) models, which assume that the volatility is a random variable. These models capture
the characteristics of the so-called volatility surface, modeling the relationship between implied
volatility, strike prices, and expiration dates.

1.3.3 Risk-free rate

The risk-free rate is another essential parameter in option pricing, representing the return an
investor can expect from a risk-free investment. We will discuss the concept of risk-neutrality
and why this holds in section 2.1. Pricing models often assume a constant risk-free rate, derived
from government bond yields. However, in practice, market interest rates can fluctuate due to
economic conditions, central bank policies, and geopolitical events. Failing to accurately model
the risk-free rate can distort option prices and risk management strategies.

1.3.4 Market liquidity and transaction costs

Pricing models often assume perfect market liquidity and neglect transaction costs. In reality,
market liquidity can vary, impacting the bid-ask spread (Amihud et al., 1986) and ultimately
affecting option prices. Transaction costs, including brokerage fees and taxes, are important
considerations that can significantly influence the true price of an option, which might be
especially relevant for high-frequency trading strategies.

1.3.5 Dividend yield

Options on stocks can often involve assumptions about the stock’s dividends, although there
have been many methods to relax this. Pricing models may assume constant or deterministic
dividend yields, but in practice, dividend policies can change, leading to variations in expected
future cash flows. Incorrect assumptions about dividend yields can result in inaccurate option
prices.

1.3.6 Market efficiency

Traditional pricing models often assume market efficiency, implying that all relevant information
is reflected in asset prices. However, markets can be inefficient, especially during volatile periods
or with new, unexpected information. This is a more tricky assumption because it is really
hard to quantify if a market is even inefficient in the first place. However, in the case of market
inefficiency, it can lead to mispriced options and suboptimal investment decisions.

1.3.7 Core problem

Which main parametric methods exist and which assumptions they use is discussed in section
2.1. The core problem is the inaccurate valuation of financial options by making unrealistic
assumptions about the underlying assets and market conditions which can lead to inaccurate
pricing resulting in a multitude of problems including sub-optimal risk management and inef-
ficient trading strategies. What we want to tackle in this thesis is to price financial options
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without relying much on strict assumptions, possibly relaxing some of the aforementioned as-
sumptions, especially for the asset dynamics. This hopefully improves the pricing accuracy for
some types of options by using a newly developed pricing method involving fewer assumptions.
We want a method that is flexible and adaptable to the market and can thus handle different
situations better to price options more reliably.

1.4 Researching a new pricing method

As mentioned previously, efficient pricing and hedging of financial instruments play a vital role in
modern finance, serving as essential tools for risk management and investment strategies. While
conventional approaches like the Black-Scholes formula (Black et al., 1973) have shown success
in certain scenarios, they heavily rely on strict assumptions especially regarding the underlying
asset’s price dynamics. As a consequence, these methods may fall short in accurately capturing
the complexities of real-world financial markets. In addition, many of these methods are not
well suited for options whose value depends on the price path of the underlying asset. Therefore
research in more flexible and robust pricing techniques is a necessity to improve the accuracy
and computational efficiency of pricing financial instruments. It is deemed important to research
pricing techniques that can adapt to a wider range of underlying asset price processes.

We present an innovative research approach that combines two advanced techniques in
computational finance: Generative Adversarial Networks (Goodfellow et al., 2014) (GANs) and
Quasi-Monte Carlo (QMC) simulation (Sobol, 1990). The GAN will be used to create synthetic
financial data. This data can be used to construct potential future price paths of the underlying
asset. These generated price paths can be used to price the option using its payoff function
in a simulation. A GAN is a machine learning model that consists of two neural networks, a
Generator and a Discriminator, trained together in a process to create and evaluate realistic
synthetic data. A QMC simulation will be used to sample many random price paths from a
GAN from which the option price and relevant statistical measures can be calculated. QMC
improves on regular Monte Carlo (MC) by using low-discrepancy sequences to generate more
evenly spaced sample points such that its convergence improves. As the name suggests, it is
therefore not truly random. Even though this is very technical and still sounds vague, both
these concepts will be explained more elaborately in chapter 2 and 3. GAN has shown major
success in many papers in the accurate data generation of images (Weng et al., 2022), natural
language text (Rosa et al., 2022), and audio (Latifi et al., 2019). In addition, there have been
some applications in other fields as well like physics (Kansal et al., 2020) and finance (Takahasi
et al., 2019), although the amount of research is a bit scarcer here.

GANs allow us to model complex and high-dimensional distributions, capturing the underly-
ing asset’s price dynamics with solid accuracy and flexibility (Takahasi et al., 2019). This could
limit the number of parametric assumptions necessary to capture the asset’s process. Thus a
GAN might help to provide a more realistic representation of the asset’s behavior, hopefully
improving the accuracy of the option’s price by generating more realistic price paths. In ad-
dition, our hypothesis is that by using the GAN’s synthetic data, generated during the QMC
simulation, it might require fewer trials to achieve accurate estimates compared to using the
quasi-random price paths of regular QMC, thus also improving the efficiency of pricing options.

Existing non-parametric pricing methods, such as Hutchinson’s approach (Hutchinson et
al., 1994), struggle with robustness and stability. This is because many of the non-parametric
methods rely heavily on the specific characteristics of derivatives’ regime data. Regime data
refers to the data or observations collected during specific market regimes or market conditions
like the very volatile period during the financial crisis in 2008 (Schwert, 2011). In contrast,
GANs might be more adaptable and less dependent on any particular regime, making them
more robust across different market scenarios. In addition, the combination of GANs and QMC
could result in a good synergy, considering that the GAN’s ability to mimic market data (Eckerli

11



et al., 2021) can supplement the robustness of the QMC simulation (Caflisch, 1998), allowing
us to hopefully achieve more efficient and precise option valuations. By utilizing the strengths
of both techniques, we hope to better approximate the underlying asset price distributions to
improve efficiency and reduce pricing errors.

In summary, the primary goal of this research is to improve option pricing by introducing a
new pricing framework using GANs and QMC simulation. We try to overcome the limitations
of traditional parametric pricing models and improve the accuracy and efficiency of option
valuations.

1.5 Research problem

We will now discuss the research questions that must be answered in order to find a suitable
approach to pricing options through GAN and QMC.

1.5.1 Research Questions

The primary research question that guides this thesis is as follows:

Can a Generative Adversarial Network and Quasi-Monte Carlo simulation be combined
to create a non-parametric pricing framework for pricing different types of options, to
achieve more accurate and efficient valuations?

To address the main research question comprehensively, the following sub-research questions
need to be answered:

1. How can a GAN be applied to model the underlying asset’s price dynamics?

To answer the main research question, it is important to understand how a GAN works,
how to build it effectively, which applications have already been established within finance,
and some extensions that could lead to improvements. This will be achieved by studying
the literature and doing an analysis using real-world data to determine how to effectively
use the data and tune the GAN to model an asset’s dynamics.

2. How can the quasi-random sequence of QMC be combined with a GAN? And does a quasi-
random sequence enhance the pricing accuracy of a GAN-based method?

The whole goal of QMC over MC is to use a quasi-random sequence instead of a pseudo-
random sequence. One of our hypotheses is that a simulation incorporating a GAN can
be made more computationally efficient using a quasi-random sequence. Whether this will
actually be the case has to be researched considering that sampling from a GAN is not
the same as sampling from a continuous probability distribution as done in regular QMC
for option pricing. A quantitative analysis will be done using our developed method for
European and American options to determine how to effectively combine a quasi-random
sequence into a GAN. In addition, it is interesting to measure whether using a quasi-
random sequence in the GAN-QMC leads to more accurate results compared to using a
pseudo-random sequence (which would be the case comparing MC and QMC).

3. How does the proposed GAN-QMC method compare to the standard QMC simulation for
option pricing in terms of accuracy and computational efficiency?

The newly developed method will be compared to the already well-established MC and
QMC simulation on a selection of accuracy and efficiency criteria to determine the effec-
tiveness of this research.
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As mentioned before, the reason for choosing this research topic is because traditional para-
metric pricing methods can lead to inaccurate option valuations and hedging errors in dynamic
and complex financial markets, because these methods often lack stability which is a major
issue for out-of-sample performance (Gradojevic et al., 2011). The proposed framework allows
for a more realistic representation of the underlying asset dynamics, meaning that we will use
a broader range of price processes, hopefully limiting the number of parametric assumptions.
This might lead to a new and different suitable alternative to price options. Moreover, the
integration of QMC simulation aims to reduce variance and improve the efficiency of option
valuations (Joy et al., 1996). MC is very robust but also slow (Caflisch, 1998), thus the use
of GAN with QMC might significantly increase convergence while keeping its robustness. The
combination of GANs and QMC simulation for derivatives pricing and hedging is relatively
unexplored. Some analysis has been done on regular MC and GANs for option pricing (W.
Wang, 2022) (efficiency not measured). Therefore, our primary interest is whether using QMC
in combination with GAN improves the accuracy and computational efficiency of option pricing
compared to regular QMC (Snyder, 2000). The combination of specifically QMC simulation
and GAN is still unexplored.

This research aims to fill the gaps in the existing literature by proposing a novel approach
that integrates GANs and QMC simulation. With this research, we try to improve on or add
to the field of study in the following manner:

• Development of a pricing framework: The integration of a GAN allows for the
flexible modeling of complex price distributions, potentially eliminating the dependence
on specific parametric assumptions. Here the choice of neural network could lead to new
insights into the GAN’s accuracy for generating financial time series data.

• Improving accuracy, statistical stability, and computational efficiency: By in-
corporating a GAN with QMC a new pricing method is developed for this thesis which
might improve the stability of option pricing and reduce variance, leading to more efficient
and accurate option valuations.

• Enhancing risk management and portfolio optimization: The proposed framework
could lead to more reliable hedging strategies, improving risk management for financial
practitioners.

• Advancing computational finance: By combining GANs and QMC, this research
contributes to the advancement of computational techniques in finance, by analysing the
effectiveness of this method, where the goal is to improve the accuracy and efficiency of
option pricing.

1.6 Research structure

To answer sub-research question 1, it is important to know how to effectively use GANs to
model the underlying asset’s price dynamics. To build a suitable GAN model, we must first
conduct a short literature review about how GANs work and their applications, see chapter
2. Once completed, we will decide on the architecture of the GAN model in chapter 3. In
chapter 4 we will tune the chosen GANs. The GAN models will be tested on multiple aspects
to determine whether they can somewhat capture the asset’s dynamics and can thus effectively
create asset price paths.

For sub-research question 2, we need to figure out how to combine the generated data of
the GAN with QMC. To do this, a QMC base is necessary first. Therefore, a literature review
is used to understand methods of pricing options through QMC, see chapter 2. The next step
is to develop a simple but effective way to set up the QMC simulation for pricing options.
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Beforehand, we must set up the option price formulas based on the payoff structure of each
option type, which is done in chapter 3. Once this is completed and the GAN has been tuned,
we can start to incorporate the data from the GAN into the QMC. Here, some trial and error
will be necessary to determine different ways to incorporate the data into the simulation. In
chapter 5 it will be concluded whether using a quasi-random sequence over a pseudo-random
sequence improves the efficiency of the GAN-QMC simulation.

Sub-research question 3 is answered using the developed GAN-QMC. Before doing this, we
discuss which data is chosen and the exact setup of the analysis, like the selection of performance
measures in chapter 4. For European and American options on a selected market, we will
calculate prices using the new method in chapter 5. Now we can compare the accuracy and
efficiency of the developed method and QMC by itself to the real market value of the chosen
option. The computational times of QMC will be compared to the GAN-QMC method because
we hypothesize that QMC’s efficiency for option pricing can be improved by implementing a
GAN.

In addition, a sensitivity analysis is employed in chapter 5. During this, some of the input
parameters of the pricing formula are varied one by one within a certain range to observe
how the output of the simulation changes. This could for example be the strike price or time
to maturity of the option. This allows us to determine under which parameter changes the
difference between the pricing methods in terms of accuracy is most notable.

1.6.1 Market

To determine the effectiveness of the approach, we must conduct tests on out-of-sample real-life
data. There are many different markets that the model can be trained and tested for, each
with their own dynamics and asset characteristics that the GAN must capture. However, due
to time constraints, we had to focus on a specific market type. The following markets are the
most common option market types (Darskuviene, 2010):

1. Equity options: These options derive their value from single stocks. In this case, our
research outcome will be determining the effectiveness of valuing and hedging options
on publicly traded companies. This could be useful for improved risk management for
investors and fund managers.

2. Index options: Somewhat similar to equity options, index options are based on market
indices, like the S&P500. These are thus valued for a group of stocks, or bonds (such as a
hypothetical portfolio). The results of the research could thus be applicable to investors
with more diversified portfolios.

3. Currency options: These are based on the exchange rates between different currencies.
Here, the effectiveness shows the GAN’s ability to model the complexity of interrelated
market dynamics. This could improve risk management for international businesses and
financial institutions trying to hedge their exchange rate risks. However, due to the
complexity of learning these market interactions and the existing focus of GAN research
on other market types, currency options are deemed too difficult and time-consuming for
this thesis.

4. Commodity options: These options are based on commodities like gold, oil, or wheat.
Here the valuation is tied to physical assets. Even though this is a very relevant and
important option type for many businesses, it is important to note that the most common
financial instruments on commodity markets are not options, but futures. Thus I do not
deem the potential improvements in commodity option pricing as relevant as in other
markets.
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5. Interest rate options: The value of these options is based on changes in interest rates.
This means that the GAN should model the dynamics in fixed-income markets. Financial
instruments in these markets are very important for risk management in financial institu-
tions. However, the most commonly traded instruments are interest rate swaps, interest
rate futures, and credit default swaps. Even though options on bonds or interest rates are
somewhat common, we still decided to not focus the research on this particular market.

6. Cryptocurrency options: Here the value of the option is based on the price of a
cryptocurrency. These markets are extremely volatile, and it thus might be difficult to
accurately create synthetic data with the GAN. In addition, cryptocurrency options are
traded in relatively low volume compared to other markets.

Considering all this, we decided to focus the research on equity options. The effectiveness
will be applicable to a broader market context and will help both investors and business owners.
In addition, we expect the results to also be applicable to index options considering that the
underlying dynamics of a single stock and an index are somewhat similar (although volatility
levels may differ).

1.7 Scope & Organisation

To recap, the scope of this research is to develop a new option pricing framework. This frame-
work combines GANs and QMC simulation and tries to limit the number of parametric assump-
tions. The study aims to fill gaps in the existing literature and offers potential contributions
to the field of study by trying to provide a more flexible, stable, and efficient framework for
option pricing in dynamic and complex financial markets. The exploration of the sub-research
questions makes sure that this thesis results in a comprehensive investigation of the proposed
method and its implications on option pricing. A comparative analysis of the GAN-QMC to
QMC/MC will be done to assess its effectiveness in both accuracy and efficiency.

This thesis is written at Simula Research Laboratory, an institution specializing in com-
putational science and engineering working on cutting-edge research and collaborating with
industry and academia. Simula provides a good environment for exploring novel solutions to
complex computational problems. Specifically, this research is conducted at the Department
of High-Performance Computing, solving problems in physics, engineering, and beyond. The
department’s expertise in computational science makes it well-suited for exploring innovative
solutions to challenging computational problems in finance.

1.8 Thesis outline

Now follows a brief overview of the content of all chapters in this thesis.

Chapter 1: Introduction

In the introduction, we briefly provided some information about option pricing, the need for
new pricing techniques, and the context of the thesis within the organization. We explained
why a new option pricing framework is useful. Based on this our research problem with research
questions and a brief explanation of how each question will be answered, followed.

Chapter 2: Theoretical framework

In the second chapter, we discover all the information necessary about option pricing (and its
challenges), (Q)MC, and GAN through a literature review. This is used both to explain the
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definitions and to find out which existing developments already exist. This theory will be used
to create our own GAN-QMC pricing method.

Chapter 3: Methodology

In chapter 3, we explain how to price options through MC/QMC. We try to comprehensively
explain the elements necessary to understand a GAN. Finally, the pricing through GAN-QMC
will be shown. All the necessary notations will be explained, and a pseudo-code of the entire
pricing framework will be made. The option pricing formulas, used to price the options in the
simulation, are derived for our specific method and chosen notations.

Chapter 4: Quantitative analysis

This is the chapter where we will train and tune the GAN. The GAN will then be combined
into a simulation. Here we explain the data choices; which stocks and option parameters are
chosen, and how this data is implemented effectively. The GAN will be analysed based on some
statistical properties. In addition, the statistical measures to quantify the performance of the
different approaches are chosen.

Chapter 5: Empirical results

Based on the results of chapter 4, the accuracy and efficiency of the proposed method will be
compared to regular QMC/MC.We will determine whether there was any statistically significant
improvement in using a GAN to generate price paths. Here we also execute a sensitivity
analysis of the option’s parameters to determine how sensitive the model is to the changes in
the parameters.

Chapter 6.2: Conclusion & Discussion

We conclude the thesis by providing a brief summary of the main findings and all the research
questions will be answered concisely. We will discuss the outcome and the impact it can have
on option pricing. In addition, we discuss the limitations and assumptions of our research and
give recommendations for future research.
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Chapter 2
Theoretical framework

In developing the GAN-QMC approach, it is crucial to define key concepts and establish existing
knowledge within this field. This is necessary for chapter 3, where we delve into the technical
details of the approach, including option pricing, GAN, and QMC simulation. This chapter
offers a comprehensive overview to provide clarity on how to use this approach. Section 2.1
explains the fundamental concepts of option pricing, while section 2.2 discusses challenges asso-
ciated with American and exotic option pricing. We then explain the usage of QMC for option
pricing in section 2.3. Section 2.4 briefly explains the main statistical properties often exhibited
by real-world financial time series data. Finally, in section 2.5, we explore the applications and
extensions of GAN. Any additional technical details required will be thoroughly explained in
later chapters. This chapter primarily offers a broad overview of these topics, drawing upon
existing literature.

2.1 Option pricing

As previously mentioned, an option is a contract granting the holder the right to buy or sell the
underlying asset at a predetermined price. The issuer (seller) of the option is obligated to fulfill
the terms of the contract if the buyer decides to exercise the option. A long position involves
buying the option, while a short position entails selling the option. The price at which the asset
can be bought or sold is referred to as the strike price. The duration of the option is called the
time to maturity. The act of deciding to buy/sell the underlying asset, utilizing the option’s
right, is known as exercising the option. The payoff of the option is the difference between the
strike price and the underlying asset’s price.

An important concept is risk-neutral pricing (Bingham et al., 2001). When valuing options,
we assume an environment where investors are risk-neutral (Hull, 2000). The risk preferences
of the investors do not influence the price. The price is not dependent on the expected return
of the underlying asset but on the risk-free rate, often derived from the yields on government
bonds with low default risk. Why this works will become clearer after understanding the main
parametric approach in option pricing, thus we will return to this topic later on in the chapter.
Even though the goal is not to make any parametric assumptions, the risk-neutral valuation
concept still holds whenever a hedge position can be made (Cox and Ross, 1976). In addition,
even relaxing some of the assumptions made in many parametric pricing methods can already
lead to improved results.

As mentioned earlier, there are two main methods to price options: a parametric and a
non-parametric approach (Altman et al., 2009). The choice of method depends on the option’s
characteristics and the underlying asset. We will now explain the idea behind both approaches
and some of the most common developments in these fields. While there are various pricing
methods, we will focus on the main methods, which are widely used and can provide a benchmark
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for option pricing. These methods are also foundational, serving as the basis for more specialized
models that address specific challenges or other types of financial instruments.

2.1.1 Parametric approach

In a parametric approach, the pricing of the option is based on a pre-determined mathematical
formula, describing the relationship between various variables influencing the price. In 1973, F.
Black and M. Scholes derived a closed-form solution for determining the price of a European
option (Black et al., 1973), for which they received the Nobel Prize for Economics. This Black-
Scholes model allowed for the calculation of the theoretical value of European-style options,
taking into account factors such as the underlying stock price, the option’s strike price, time
to expiration, volatility, and risk-free interest rates. It is a simple and efficient method, which
is widely used and provides a decent benchmark for option pricing. However, it made several,
sometimes invalid, assumptions. For example, it assumes that the underlying asset’s returns
follow a normal distribution due to modeling the asset with a geometric Brownian motion, which
is discussed later in this section. In addition, it assumes constant volatility, requires specific
market conditions, and does not allow for the early exercise of American options. Although
it made these assumptions, it did lay the foundation for modern financial derivatives markets,
enabling a better understanding, pricing, and management of options.

In 1974, R.C. Merton developed an extension of the Black-Scholes model that incorporates
additional factors to provide a more realistic valuation framework for options, especially for
companies that face financial distress (Merton, 1974). This model is called the Merton model.
It allows for the modeling of dividend payments, which results in more accurate pricing of options
on dividend-paying stocks. It also overcomes the Black-Scholes’ drawback of an asset’s value
never dropping below zero, which is a consequence of assuming a geometric Brownian motion.
The Merton model incorporates the possibility of a firm’s financial distress or bankruptcy by
including a firm’s total asset value, which covers both the value of its assets and the value of
its outstanding debt. Since the firm’s asset value fluctuates, there is a risk that it may fall
below the value of its debt, which can lead to a default or bankruptcy. The Merton Model takes
this into account when pricing options on the firm’s equity. While the Black-Scholes model is
mainly used for pricing options on individual stocks, the Merton model can also price options
on the equity of companies. It does this by saying that the equity of a company is essentially
a call option on the company’s assets, with the strike price equal to the firm’s debt. In reality,
the Merton model is primarily used for the valuation of corporate debt and assessing credit
risk rather than option pricing. However, the Merton model did demonstrate the importance
of the Black-Scholes model in understanding options and their valuation in financial markets.
In addition, it was able to successfully relax some of the Black-Scholes model’s assumptions.

In 1976, R.C. Merton developed another extension of the Black-Scholes model. The assump-
tion that the asset moves continuously through time was relaxed by Merton’s mixed diffusion-
jump model (Merton, 1976), allowing the asset to move both continuously through time and
have jump processes. The mixed jump-diffusion model is not a direct replacement for the
Black-Scholes Model in option pricing. Instead, it is more useful in situations where asset price
movements are better described by a combination of continuous-time and occasional jumps,
such as during periods of high market volatility. The mixed jump-diffusion model can be used
to enhance the accuracy of option pricing models by capturing discontinuous price movements
that the Black-Scholes model does not account for. However, it can be computationally more
complex and may require additional data and parameters to estimate the jump component
accurately.

Boyle (1977) developed an elaborate framework for pricing options using MC simulation. It
outlined a method to approximate option values by simulating numerous random price paths
for the underlying asset. This improved flexibility over previous pricing methods by allowing
options with complex non-standard features and variable parameters. However, MC simulation
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is computationally intensive, requiring a large number of simulations for accurate results. We
come back to simulations for option pricing in section 2.3.

Cox, Ross, and Rubinstein (1979) developed a discrete-time pricing model. This model is
often referred to as the Cox-Ross-Rubinstein (CRR) model used for pricing various options,
including those with complex features. It does this by discretizing the time to expiration
and modeling the price of the underlying asset through a binomial tree structure. The CCR
model was the first Binomial tree model and was therefore also a significant advancement in
quantitative finance. A Binomial option pricing model is flexible and can handle a wide range of
options, including those with early exercise features, dividends, and variable volatility, making
it suitable for complex financial instruments. However, it can be computationally intensive and
may require a large number of time steps to achieve accurate results, which can make it less
efficient for options with long time horizons or very fine time intervals.

In 1993, the Bi-Heston model was made as an improvement to the Black-Scholes model,
allowing the volatility to be modeled with a 2-factor structure (Heston et al., 2009). This
resulted in a better fit for implied volatility and improved the option’s price accuracy (Rouah,
2013). Solutions for its stochastic differential equations were derived (Fallah et al., 2019). It
can capture volatility clustering and mean reversion which makes it a good fit for market data
with changing volatilities. However, due to the complex mathematics and computations, it is
computationally intensive. This model is mainly useful for dealing with interest rate options and
other financial instruments where interest rates play a significant role in determining its price,
but it shows again the foundation that the Black-Scholes model laid for quantitative finance.

We now discuss the Black-Scholes-Merton (BSM) model because this will explain the most
important concepts in option pricing including risk neutrality and asset dynamics. The notations
used for this thesis is as follows:

• Strike price: K

• Time to maturity: T

• Time step (for discrete-time pricing): ∆t

• Initial asset price: S0

• Asset price at Maturity: ST

• Risk-free rate: rf or r

• (Implied) Volatility: σ Or V (In programming)

• Price of Call option: C

• Price of Put option: P

• Payoff function of any option: f(...)

The stock price for BSM assumes that the percentage change of its value is normally dis-
tributed if calculated over a very short time period. If we define µ as the average real-world
return of the asset, it can be denoted as:

∆St

St
∼ ϕ(µ∆t, σ2∆t) (2.1)

In this equation, σ is the volatility of the underlying asset and ∆t the small time step from
period t to t + 1. The symbol ϕ(M,V ) is the normal probability density function where the
mean is denoted by the symbol M and the variance by V. From here it can be derived that the
stock price at a future time T is lognormally distributed:
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ln(ST ) ∼ ϕ

[
ln(S0) +

(
µ− σ2

2

)
T, σ2T

]
(2.2)

Here S0 is the stock price at the initial starting date of the option. Therefore, the expectation
of the future stock price is:

E(ST ) = S0e
µT (2.3)

This shows that the future stock price is a function of the initial stock price, the expected return
of the underlying asset, and the time period of the option. However, as mentioned before when
we calculate the value of the option, it will not depend on µ, the real return of the asset, but on
a risk-neutral return. A way to show that the return x, a risk-neutral return, earned in option
pricing tends to be lower than the average real-world return µ of the underlying asset is by
rewriting equation 2.3 as:

ln[E(ST )] = ln(S0) + µT (2.4)

For a concave function, Jensen’s inequality (Needham, 1993) shows that ln[E(ST )] > E[ln(ST )].
This results in E[ln(ST

S0
)] < µT and thus E(x) < µ, where x is the stochastic return earned from

investing in an option. This shows that the average return of the option at maturity is smaller
than the average real-world return of the underlying asset. This makes sense with the concept
of risk-neutral valuation, considering that the risk-free rate tends to be lower than the average
return of actual assets. Cox and Ross (1976) showed that the risk-neutrality assumption holds
for any parametric or non-parametric option pricing method in general and not only for the
Black-Scholes model.

We will explain the concept of the BSM differential equation in a simple manner. The idea
is to set up a portfolio consisting of a position in the underlying asset and the option itself.
Considering that there cannot be arbitrage (Dybvig et al., 1989) in the market (which is an
assumption of BSM), the return of this portfolio will be the risk-free rate (Hull, 2000). This
holds because the option’s price is dependent on the asset’s price, and is thus, for a very short
period of time, perfectly correlated with the asset. If the right quantity (will not go into detail
here) of both the option and the asset is bought, the gain/loss of one offsets the gain/loss of the
other, such that at the end of the short period the value of the portfolio is known. However,
considering that the price of the underlying asset will constantly change, the portfolio is only
riskless for a very short period of time. In order to make it riskless again, a certain quantity of
the underlying asset must be bought or sold. Having these offsetting positions in options and
assets is called hedging. The constantly changing risk in the portfolio, and thus the need to
hedge again, is not an issue for BSM. It is assumed that the short selling of securities is allowed
and that there are no transaction costs or taxes, although these do not always hold in practice.

In total, there are 7 assumptions of the BSM model about market requirements and the
stochastic process of the underlying asset. One of them is which process the underlying asset
follows. From the Itô process (Leiva et al., 2016), a generalized Wiener process (Hinich et al.,
2010), the stock price process can be derived into the following continuous model (a discrete-time
model is also available):

dSt = µStdt+ σStdz (2.5)

This equation shows that the change in asset price over a very small period has a deterministic
and stochastic part. The deterministic part is the drift of the asset µ and the stochastic part is
the volatility of the asset σ driven by the geometric Brownian motion (Marathe et al., 2005). All
these are assumptions about the stock price process. However, the geometric Brownian motion
models the returns using a normal distribution which cannot capture fat-tailed distributions
of financial returns properly (Taleb, 2007). The generalized Wiener process cannot properly
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capture the dynamics of linearity and time reversibility which are often how financial assets
behave (Hinich et al., 2010).

From Itô’s lemma (Ito, 1951), it follows that the change in the price of an option f dependent
on asset S can be written as:

dft =

(
δft
δSt

µSt +
δft
δt

+
1

2

δ2ft
δS2

t

σ2S2
t

)
dt+

δft
δSt

σStdz (2.6)

Here dz is the same Wiener process as in the Itô’s process of equation 2.5. By constructing
the aforementioned portfolio of -1 times the option (by selling/shorting the option) and buying
+ δft

δSt
(Delta ∆) number of shares it can be shown that the Wiener process can be eliminated,

leaving us with the change of the value of the portfolio in discrete time:

∆Πt =

(
−δft

δt
− 1

2

δ2ft
δS2

t

σ2S2
t

)
∆t (2.7)

Considering that the stochastic factor ∆z has been eliminated and the portfolio has been per-
fectly hedged, it must be riskless for a very short period of time ∆t. Following from the
underlying assumptions of BSM, this portfolio must earn the risk-free rate, thus:

∆Πt = rΠt∆t (2.8)

Which after substitution and some rewriting leads to the following equation (in continuous
time):

δft
δt

+ rSt
δft
δSt

+
1

2
σ2S2

t

δ2ft
δS2

t

= rf (2.9)

This equation is the BSM stochastic differential equation, which has a closed-form solution for
the European call and put option, based on their boundary conditions (their future payoffs):

fcall = max(St −K, 0)

fput = max(K − St, 0)

when t = T (the option is at maturity / expiring date).
We will not go into more detail about the mathematics behind the parametric methods.

The concepts of options, risk-neutral pricing, underlying asset dynamics, and mathematical
models have briefly been explained by example. However, there can be some major downsides
to these approaches where assumptions must be made about the market and the mathematical
process of the underlying assets (Hinich et al., 2010) (Taleb, 2007) (Chaudhary et al., 2020).
It might also be hard to accurately estimate the parameters used in these models, like the
risk-free rate and volatility. As mentioned above, empirical evidence has shown, that some of
the assumptions necessary for parametric option pricing don’t always hold, and this gives rise
to the use of non-parametric approaches.

2.1.2 Non-parametric approach

In non-parametric option pricing methods no statistical or economical assumptions about the
underlying assets and market are necessary. The asset dynamics are captured using empirical
data or computational techniques, thus potentially overcoming the limitations of BSM. These
models tend to be more complex and behave like a black-box.

Numerous advancements have taken place in using machine learning to price options. We
will briefly discuss the most common ones. During a study by Hutchinson et al. (1994), they de-
veloped a neural network model for option pricing that notably outperformed the Black-Scholes
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model in terms of accuracy and efficiency. This was evident through statistical measures such as
RMSE, MSE, and MAE. However, when it came to very short-term options, the Black-Scholes
model performed better. The study highlighted that using data allows for a more adaptive
approach, reducing dependency on specific characteristics of regime data, unlike parametric
models. This non-parametric model also showed more robustness to specification errors due to
its lack of restrictive parameter assumptions.

Artificial neural networks have demonstrated strong performance in valuing options (Anders
et al., 1998), with superior out-of-sample performance compared to Black-Scholes resulting in an
average 6% higher R2. During another study, Support Vector Regression, Gaussian Processes,
and neural networks were compared to the Black-Scholes, Merton, and Heston models (Park
et al., 2014). The AI models all outperformed these well-acknowledged parametric models,
particularly when the options weren’t significantly out of the money.

Various machine learning techniques have been applied to forecast financial time series,
which can be used for option pricing. Deepak et al. (2014) proposed 4 models to predict one-
day-ahead stock indices prices. The models used were Linear Correlation, Rank Correlation,
Regression Relief, and Random Forest models. All of these outperformed the already proficient
Proximal Support Vector Machine (SVM). A relatively new and promising model is the XGBoost
algorithm, showing very positive results in the performance for option pricing (Ivascu, 2021).

Kernel Density Estimation (KDE) (Yen, 2017) is another viable method for option pricing.
KDE is a flexible and data-driven approach, estimating the probability density function of a
random variable based on available data. Thus, no assumptions regarding the asset’s dynamics
are necessary. The estimated density function can be used for option pricing. However, it is
important to note that this method heavily relies on the quality and amount of available data.
Furthermore, the estimated density function is sensitive to the selected input parameters and is
impacted disproportionately by outliers. KDE can be a useful tool if enough high-quality data
is available.

Another approach that has been successfully employed multiple times is estimating the
option’s price using a parametric method and making a price adjustment using a non-parametric
method. Mancini et al. (2009) developed an Automatic Correction of Errors (ACE) method,
where the risk-neutral distribution of the underlying asset is estimated non-parametrically. The
estimated price from a parametric model can be adjusted empirically with ACE, showcasing
superior accuracy compared to a selection of other pricing models.

While parametric option pricing methods often demonstrate advantages by outperforming
non-parametric methods, there are notable drawbacks. Firstly, substantial historical data is
necessary to effectively train these models. The amount of required data depends on the model
type and the desired level of accuracy. The results presented in the aforementioned papers as-
sume the availability of sufficient high-quality data for model training. Without adequate data,
these models might not outperform parametric models. Additionally, when the asset dynam-
ics can be well-modeled, parametric models tend to yield greater accuracy for option pricing
(Ivascu, 2021). Non-parametric models also tend to lack interpretability because they often
represent black-boxes. Although Gradojevic et al. (2011) successfully introduced an approach
using explainable AI techniques to enhance the interpretability of random forest and XGBoost,
the inherent interpretability challenges remain for many other models. The recent focus and
progress in explainable AI may potentially minimize this issue in the future.

2.2 American and exotic option pricing challenges

A challenge to pricing American and many exotic options is their path dependency. Closed-form
solutions exist for calculating the exact price of certain barrier options (Rubinstein, 1991) and
lookback options (Goldman et al., 1979). However, these formulas assume that the price follows
a geometric Brownian motion, implying a normal distribution and constant volatility for the
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underlying asset (Cao et al., 2022). It has been shown that asset returns are often not normally
distributed (Theodossiou, 2000). In addition, empirical evidence shows that volatility is not
constant (Chaudhary et al., 2020). Hence, volatility must be modeled as a stochastic factor and
thus the exotic option prices cannot accurately be calculated using these closed-form solutions.

In essence, no analytically justifiable formulas are available for pricing exotic options with
non-standard or complex features, particularly when their prices are presented discretely, even
when the risk-neutral underlying can be modeled through an appropriate stochastic process
(Kirkby, 2019). It means that if the options have a payoff structure that is for example path
dependent, or you want to model the real-world asset’s price process, closed-form solutions
are not valid. Therefore there is a need for numerical methods to price these options. MC
simulation offers a viable approach to valuing price path-dependent options while allowing
for the incorporation of multiple assets, time-varying parameters, uncertainty, and stochastic
processes (Grant et al., 1997).

MC simulations are extremely flexible for option pricing. A slight modification, allows you
to price a completely new path-dependent option. Notably, it has been shown that MC is more
robust compared to many other numerical methods, although with slower convergence (Caflisch,
1998). There exist many other numerical methods suited for pricing American and exotic options
including the binomial tree model, finite difference, or the lattice method (Broadie et al., 1997).
MC is often used, if the problem’s complexity is too hard to implement with the binomial tree or
lattice method (Joy et al., 1996), making it appropriate for highly complex financial instruments.
When controlling for computational time, the accuracy of MC tends to be lower compared to the
binomial tree and the finite difference method (Ding et al., 2017). To compensate the number
of trials must be increased significantly, resulting in higher computational times, but making it
equally accurate and more robust.

The idea is that if GANs can develop price paths that can more closely resemble the un-
derlying asset compared to the geometric Brownian motion’s price paths, the accuracy of a
MC simulation can be improved by incorporating a GAN. This improvement aims to leverage
QMC’s and MC’s positive properties while improving its convergence speed, which is important
for accurate and efficient option pricing.

2.3 (Quasi-)Monte Carlo simulation

We have already discussed some of the advantages and disadvantages of MC simulation, but it
is important to understand how it works in order to use it effectively for option pricing.

Stevens (2022) describes MC simulation as an ’experimental’ calculation that uses, often-
times billions, of random numbers to do experiments. The approach involves executing nu-
merous trials using the mathematical model underlying the process of interest. The input
parameters for each trial need to be carefully selected to adhere to the desired statistical dis-
tributions. Output values from each trial are saved, allowing relevant statistical measures like
averages and confidence intervals to be calculated. For option pricing the assumption of risk
neutrality is used to calculate the rate of return of the option’s asset in equilibrium, from which
the option’s price can be calculated (Boyle, 1977). Fu et al. (2009) developed an approach for
a sensitivity analysis of MC simulations.

Recent high-end applications of MC simulation showcase its practical utilities. For instance,
MC simulation is used in distributed filtering, utilizing the lattice rule for the underlying math-
ematical model (S. Li et al., 2023). Kreuze et al. (2023) modeled data dynamics, with missing
values, using multivariate random models based on copulas.

Standard MC simulations typically use pseudo-random numbers (Niederreiter, 1978) for each
trial, often in combination with some underlying assumption of the mathematical model, such
as assuming that the underlying asset price follows a geometric Brownian motion. To improve
the asymptotic error rate, Birge (1995) developed the QMC method. In QMC simulation,
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a sequence of deterministic numbers is used, called quasi-random numbers. This improves
convergences and results in deterministic error bounds instead of probabilistic bounds (Joy et
al., 1996), which has been shown through the pricing of basket and Asian options.

For QMC, using quasi-random numbers, a so-called low discrepancy sequence must be gen-
erated. In simple terms, this property allows the creation of evenly spaced numbers that can
fill gaps created by previous numbers in the sequence (Joy et al., 1996). This is useful to simu-
late many diverse price paths that the underlying asset could follow without simulating many
similar price paths. It improves convergence by requiring fewer trials to fill in ’missed’ price
paths compared to the number needed by using a pseudo-random sequence. Additionally, this
approach allows for continuing the simulation until the desired level of accuracy is achieved.
Achieving a reasonable level of accuracy involves balancing the number of trials and the width
of the confidence interval of the accuracy. If a large percentage increase in trials is necessary to
improve accuracy by a small percentage, the simulation has likely found a reasonable balance
between accuracy and computational efficiency. It should be noted that for path-dependent
options higher dimensional sequences are required.

To demonstrate the difference between the pseudo-random numbers of MC and the quasi-
random numbers of QMC, figure 2.1 shows a comparison between sampled numbers from both
methods. The MC numbers look completely random but will be biased through clumpiness
with too few samples. On the other hand, the QMC numbers still appear random but not
independent and most importantly, not clumpy.

Figure 2.1: MC vs QMC

An important question here is, which quasi-random sequence is most effective for generating
deterministic numbers for the trials in a simulation for option pricing? For the pricing of finan-
cial instruments, Faure sequences (Vandewoestyne et al., 2010) tend to offer some advantages
compared to other methods for generating quasi-random sequences (Fox, 1986) (Niederreiter,
1992). However, for higher dimensions Sobol sequences outperformed sequences like Halton
and Faure (Morokoff et al., 1995). The random sequence in MC can simply be replaced by
the Sobol, Halton or Faure sequence, making their implementation relatively straightforward.
Faure sequences can also be used to generate correlated random variables (Joy et al., 1996).
This is useful for pricing options whose value is derived from multiple, often correlated assets,
like basket options. However, this is not researched in this thesis. The most important as-
pect here is to remain consistent in the choice of quasi-random sequence for a fair comparative
analysis. We come back to this in chapter 3.

Pricing American options with QMC is not that straightforward, due to the possibility
of early exercise. Two viable methods are least-squares MC and an averaging method using
lower and upper bounds. Dion et al. (2010) proposed a framework combining least-squares
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MC (Longstaff et al., 2001) with randomized QMC. We will apply a similar method combining
least-squares with QMC. Least squares MC is a two-step procedure, using backward iteration
starting at maturity. It compares the future expected cash flow, calculated from least-squares,
with the current payoff if the option is exercised, at each time step. By discounting this value
back to the option’s starting date for every time step, we can determine the exercise date that
yields the highest expected future payoff. Using these payoffs, we can calculate the option’s
price. It is important to note that the price from this simulation represents a lower bound. A
detailed explanation of least-squares MC will be given in section 3.1.

Alternatively, the price can be determined by setting up a lower and upper bound using
the risk-neutral property. Taking the average of these bounds can result in a reasonable price
estimate of an American option. The lower bound is simply the payoff of the option at maturity,
thus not exercising it early and it therefore has the value of a European option. The upper
bound is the future expected payoff at maturity, which should be calculated as a risk-neutral
expectation, assuming that the payoff is higher than the value of the underlying asset (i.e. don’t
exercise options with a negative payoff) (Chen et al., 2002). This implies that any function that
consistently remains higher than the maximum of continuation and early exercise must be an
upper bound to the option’s value, assuming continuous time. Although valid, it is difficult to
determine which function would be effective, considering that you need to accurately estimate
the future expected payoffs using a prediction model. Setting up a function that satisfies the
requirement of being higher than the maximum at all time steps, without overshooting the
targets significantly, is not trivial. Alternatively, it can be seen that under the risk-neutral
assumption (and no-arbitrage), the maximum payoff of an American option is its price invested
at the continuously compounded risk-free rate until maturity (which must hold for any option).
The formulas of the lower and upper bound will be derived in section 3.1.

All the extra necessary technical details regarding QMC are discussed in chapter 3 and 4.

2.4 Statistical properties of financial time series

The GAN is used to generate financial data. This data should have similar statistical properties
to the real-world financial time series data. Therefore it is important to test GANs on their
ability to capture the most common statistical properties of financial return time series as
defined by Cont (2001) and Takahasi et al. (2019).

Linear unpredictability

Linear unpredictability in a time series implies that there is no auto-correlation in the returns
time series. The auto-correlation function is denoted as follows:

E[(rt − µ)(rt+k − µ)]

σ2
= Corr(rt, rt+k) ≈ 0, for k ≥ 1 (2.10)

Whenever returns show a low degree of auto-correlation it indicates that the market is efficient
(Chakraborti, 2011). Testing for significant auto-correlation can be done using the Ljung-Box
test, proven to have good small sample properties (Brooks, 2014). The Ljung-Box test statistic
is denoted as follows:

Q∗ = T (T + 2)

m∑
k=1

τ̂2k
T − k

∼ χ2
m (2.11)

Here τ̂k represents the sample autocorrelation for lag k. Under the Null hypothesis, the time
series does not show any significant sign of auto-correlation up to lag m and Q∗ is chi-square
distributed with m degrees of freedom.

25



Fat-tailed distribution

A fat-tailed distribution implies that there is more density in the tails of the distribution, and
thus a larger probability of extreme events (returns), than a normal distribution. It has been
shown that a probability distribution denoted as P(r) has tails with a power-law decay denoted
as:

P (r) ∝ r−α (2.12)

The distribution of financial returns tends to have an exponent α ≥ 3 (Chakraborti, 2011).
Preferably the α of the Generator’s distribution should be somewhat similar to the real-world
data, indicating a similar density in the tails.

To test for fat-tails, test the Null hypothesis that α ≤ 3 versus the alternative hypothesis
that α > 3. Fit the power-law distribution with α = 3 and a floating alpha equal to the
estimate of the data. Calculate the log-likelihood log(L(A)) for each fitted model and calculate
the log-likelihood test statistic:

TS = 2 [log(L(modelα>3))− log(L(modelα=3))] ∼ χ2
1 (2.13)

Considering this is a one-sided test, we can test as follows:

1. H0 : β ≤ 0 where β = α− 3

2. H1 : β > 0

3. Define p− val1 as the p-value of the one-sided test.

4. Define p− val2 as the p-value of the log-likelihood test statistic TS.

5. If β > 0 then p− val1 =
p−val2

2

6. If β <= 0 then p− val1 = 1− p−val2
2

The Null hypothesis is rejected if β is larger than 0 and the p-value is small. If β > 0 and
p − val1 < 0.05, then we reject the Null hypothesis and conclude that with a 95% level of
confidence, the power law exponent α is larger than 3, and the data has a fat-tailed distribution.
Considering that this test is an adjusted 2-sided test, we actually test H0 : β = 0 vs H1 : β ̸= 0.
Thus if β < 0 and p−val1 < 0.05 the data has less density in the tails than a normal distribution.

Volatility clustering

Volatility clustering is another commonly occurring property of financial time series. Volatility
clustering means that small/large price fluctuations temporarily cluster together with other
small/large fluctuations (Brooks, 2014). This implies that the absolute returns show some form
of auto-correlation. This can also be measured using the power-law decay as follows:

Corr(|rt|, |rt+k|) ∝ k−β (2.14)

The exponent tends to be slightly positive such that 0 < β < 1.
A simple test for volatility clustering is to apply the Ljung-Box test on the absolute returns

|r|. The test statistic remains the same, but the sample auto-correlation τ̂k is calculated on the
absolute returns. Under the Null hypothesis, the absolute returns do not show any significant
auto-correlation, implying that there is no volatility clustering present in the data.
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Leverage effect

The leverage effect observed in the market means that returns are negatively correlated with
future volatility (Bouchaud et al., 2001). This occurs because a firm’s profitability or value is
amplified by the use of financial leverage (debt), leading to greater fluctuations in returns, both
positive and negative. This can be quantified with a lead-lag correlation function:

L(k) =
E[r(t)|r(t+ k)|2 − r(t)|r(t)|2]

E[|r(t)|2]2
(2.15)

Almost all stocks exhibit some form of leverage effects, but whether the correlation is negative
or positive depends on the market conditions (Qiu et al., 2006). This measure tends to follow
an exponential decay as well (Bouchaud et al., 2001). Testing for the statistical significance of
leverage effects is hard. A simple alternative is to analyse a graph to determine whether the
data shows signs of leverage effects.

Coarse-fine volatility correlation

This property involves the correlation between 2 types of volatility, namely between coarse and
fine volatility. These are defined respectively as:

vτc (t) =

∣∣∣∣∣
τ∑

i=1

rt−i

∣∣∣∣∣ (2.16)

vτf (t) =
τ∑

i=1

|rt−i| (2.17)

It can be shown that fine volatility can, to some extent, predict coarse volatility in financial
markets (Muller et al., 1997). This can be measured through the difference in the lead-lag
correlation function, which often exhibits negative asymmetry. The lead-lag correlation function
is defined as:

ρτcf (k) = Corr(vτc (t+ k), vτf (t)) (2.18)

Then we have the following negative asymmetry:

∆ρτcf (k) = ρτcf (k)− ρτcf (−k) (2.19)

If ∆ρτcf (k) is negative then fine volatility has the ability to predict coarse volatility. In financial
markets, it is expected that the coarse-fine volatility correlation ∆ρτcf (k) is slightly negative
(Muller et al., 1997). This property is very noisy, making it oftentimes necessary to measure by
averaging multiple time series. Again, testing for statistical significance of coarse-fine volatility
correlation is difficult, instead, graphs could be analysed to determine its presence in the data.

Gain/loss asymmetry

The gain/loss asymmetry refers to the phenomenon where the decline in stock price occurs
at a faster rate than the increase in price. This can be measured by counting the number of
time-steps t′ until a predefined stock price return θ is reached starting at time t (Jensen et al.,
2003):

T t
wait(θ) =

{
inf{t′|log(pt+t′)− log(pt) ≥ θ, t′ > 0} (θ > 0)
inf{t′|log(pt+t′)− log(pt) ≤ θ, t′ > 0} (θ < 0)

}
(2.20)

The probability distributions of T t
wait(θ) for θ > 0 and θ < 0 should show that the peak of

negative returns occurs slightly before the peak of positive returns. This property is also very
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noisy and needs to be analysed by averaging multiple-time series. In financial markets, negative
returns decline at a faster rate than positive returns increase (Jensen et al., 2003). Determining
the statistically significant presence of gain/loss asymmetry might be best tested using graphs
as well.

Preferably, the GAN will generate data with statistical properties similar to the real-world
data at least with regards to a fat-tailed distribution, linear unpredictability, leverage effect,
and volatility clustering. Coarse-fine volatility correlation and the gain/loss asymmetry are less
of a priority due to their measuring difficulties.

2.5 Generative Adversarial Networks

In this section, we discuss extensions of GANs and explore their applications in the realm of
finance. Goodfellow et al. (2014) developed the first GAN. It is an unsupervised learning model
consisting of a Generator to create synthetic data and a Discriminator determining whether
some proposed data is real or fake. Both the Generator and Discriminator use neural networks
to carry out their tasks. Trained simultaneously, the goal is for the Generator to create samples
so realistic that the Discriminator cannot distinguish them from real data. Important technical
details of GANs are discussed in section 3.2.

Starting with its applications, a GAN-based stock price prediction framework was developed
by Zhou et al. (2018). This framework aimed to predict price movements in high-frequency stock
market data by minimizing the Discriminator’s loss, combining a Long Short-Term Memory
(LSTM) and a convolutional neural network. Some GANs outperformed models like an ARIMA-
GARCH, artificial neural network, and a SVM on Root Mean Square Relative Error (RMSRE)
but not on Direction Prediction Accuracy (DPA). Only the GAN-Fusion Discriminator (GAN-
FD) framework was able to beat the other methods in most scenarios. Hence, building a GAN
that universally outperforms other models, consistently captures important statistical properties
well, and generates the most accurate data proves to be challenging.

GANs have also proven to be effective in financial fraud detection outperforming other classi-
fication methods (Zheng et al., 2018). Due to its success, this GAN has been implemented in the
fraud detection systems of multiple banks. For deploying efficient trading strategies, Koshiyama
et al. (2020) developed a framework that can be fine-tuned using a conditional GAN. This ap-
proach outperformed alternatives like an ensemble scheme and other model validation methods,
particularly when those methods could not generate a positive alpha, referring to the return
on investment greater than the expected return given the level of risk involved. To quantify
the effectiveness of trading strategies, Coletta et al. (2021) built a simulation using a GAN to
create orders, trying to mimic market realism and responsiveness, to test the effectiveness of a
trading strategy.

While GANs have successfully reproduced financial market data, their effectiveness de-
pended on the selected underlying neural network (Eckerli et al., 2021). It was shown that a
GAN struggles to capture all statistical properties of financial time series data, such as heavy-
tails in the probability density function, volatility clustering, and average returns around zero.
Some GANs perform better at capturing specific statistics but struggle with others. None of the
tested GANs was able to capture all these properties simultaneously. Furthermore, generating
data with similar statistical properties did not necessarily imply that the generated returns could
be used to construct realistic price paths. Therefore, when assessing its performance, it was
not sufficient to only analyse some performance metrics but to also qualitatively analyse graphs
showing the generated returns, price paths, probability density functions, and auto-correlation
functions.

X. Li et al. (2021) combined a Gaussian Graph Model with a GAN to predict future stock
prices for some Chinese markets, outperforming other modeling options like ARIMA-GARCHA,
SVM, LSTM, GAN, and GGM-LSTM. The Generator used a LSTM neural network and the
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Discriminator a Convolutional Neural Network (CNN). Although it outperformed the other
models significantly, their developed GAN still struggled to generate realistic time series data
far into the future, especially when the training set size was smaller than the desired length of
the generated series. It appears that this GAN was mainly effective for generating relatively
short time series paths, where generating a couple of months’ worth of trading data seems
doable, provided the test set was sufficiently large. Kumar et al. (2021) build a similar GAN
combining LSTM and CNN, resulting in improved prediction accuracy. It outperformed LSTM
by 4.35% and reduced computational times by 78 seconds (roughly a 200-second time for LSTM).
Soleymani et al. (2022) developed a temporal-GAN using both LSTM and temporal CNN,
resulting in a solid performance for stock price predictions, forecasting 20 or 30 days ahead. K.
Zhang et al. (2019) built a GAN using LSTM for the Generator and Multi-Layer perceptron for
the Discriminator to predict future S&P500 values, showing promising results compared to some
other machine learning models. Different researchers also used the same neural networks for
their GANs and it outperformed other models on 11 out of 36 different stock datasets (Y. Zhang
et al., 2021). This suggests that GANs can accurately capture asset dynamics, but that their
effectiveness depends on the specific stock they are trained on. Vuletic et al. (2023) designed
a new type of economics-driven loss function for the Generator, more suitable for classification
tasks. It was shown to be effective for generating equity data but the degree of effectiveness was
also dependent on the specific dataset used. LSTM, a type of recurrent neural network, seems
promising for generating financial time series data. However, using a recurrent neural network
for the Discriminator tends to destabilize the training process more (Metz et al., 2017). This is
a significant reason why some researchers use a LSTM for the Generator and a convolutional
neural network for the Discriminator.

W. Wang (2022) combined MC simulation and a GAN for pricing European puts/calls,
American puts/calls, futures, and forwards. The model was trained on historical stock price
data, with an adjustable training set size to manually find a balance between training loss and
mode collapse. Once the GAN was trained and optimized, synthetic financial data was cre-
ated. Considering that recent stock data should have a larger impact on the option price, the
time series were ordered based on their similarities. The series closely resembling recent mar-
ket behavior were used in the MC simulation to price the options using risk-neutral valuation.
This technique appears promising and interesting for further exploration due to its impressive
accuracy. It did not take into account the pricing efficiency through computational time and
it did not use QMC. Thus leveraging the capabilities of GANs in combination with the afore-
mentioned strengths of QMC, may result in improved accuracy and computational efficiency of
option pricing. How the GAN is combined with the QMC is explained in section 3.3.

A critical aspect in all these GAN applications is the need for proper training to mitigate
mode collapse, a significant challenge for GAN and probably its most significant drawback (Lala
et al., 2018). Many extensions have been proposed, trying to improve the learning stability or
the output quality in general. One of these relevant extensions is conditional GAN (Mirza
et al., 2014). Here, the data generation process is improved by the ability to supplement
it with extra information that can be conditioned on both the Generator and Discriminator.
Another extension is the Wasserstein GAN (W-GAN) (Chintala et al., 2017), where researchers
proposed a technique to improve the learning stability by changing the loss function, which
can help in battling mode collapse. The W-GAN was improved by adding a gradient penalty
(W-GAN-GP), which further improved training stability resulting in faster convergence and a
better ability to generate high-quality samples (Gulrajani et al., 2017). Especially useful for
image generation, Radford et al. (2015) combined Deep Convolutional neural networks and
GAN (DCGAN), achieving the generation of higher quality images. Marti (2019) developed a
GAN capable of generating financial correlation matrices based on the returns of financial assets,
valuable for risk management and trading strategies. Zoufal et al. (2019) developed a Quantum
GAN, where the training data must be loaded into quantum states. This approach appeared
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promising for financial applications, yielding similar results to competing methods while using
only a quarter of the data, assuming that the data can be loaded into quantum states. Self-
attention GAN (SAGAN) uses convolutional neural networks and adds a self-attention layer,
allowing the Generator to use data from all feature locations, which improves the generation of
high-quality images (H. Zhang et al., 2018). For a complete overview, Z. Wang et al. (2020) made
a convenient figure showing all existing GAN types sorted by architectures and loss functions,
see figure B.1 in appendix B.
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Chapter 3
Methodology

The goal of the methodology chapter is to give a clear and structured overview of all steps
and decisions taken to answer the main research question. We start by explaining the concept
of pricing European and American options through a MC simulation. Then we explain some
technical concepts of the GAN and make several architectural decisions. Lastly, we discuss how
a GAN can be combined with a MC simulation to construct risk-neutral price paths using stock
data. The decisions made in this chapter are important because they can influence the quality
of the results for option pricing.

Figure 3.1 shows a concise overview of all the important concepts related to pricing options
through MC, QMC, and GAN-QMC. Throughout this chapter, all these concepts are explained
to give more clarity on our thesis topic.

3.1 Pricing options with MC/QMC simulation

We start by explaining how to price options using a MC/QMC simulation. This gives us a deeper
understanding necessary for combining MC/QMC with a GAN. The basic process of pricing an
option through MC/QMC (Boyle, 1977) is presented in figure 3.2. It starts by setting up the
payoff of each option type and collecting relevant data for the stock of a company. Subsequently,
we need to make an assumption about the process of the underlying asset. Using this stochastic
process, random price paths are then generated through the simulation, allowing the calculation
of the payoff at each price path, from which the average payoff is obtained. Discounting this
back to the initial time step T0 yields the estimated price of an option. Pricing options through
MC/QMC results in an expected present value of the payoffs of an option, the estimated option
price. The more price paths are generated, the closer this estimate will be to the theoretical
option price under the risk-neutral framework. The rate of convergence, the speed at which the
theoretical value of the option price is reached, is the square root of the number of simulated
paths, often denoted as O(

√
N) (Jabbour et al., 2011).

Due to the lack of available data for exotic options, the choice was made to focus this
thesis on European and American options. In the following 2 sections, the formulas to price
these options through MC/QMC simulation are discussed. In section 3.1.3, we discuss how the
simulated asset prices are calculated.

3.1.1 European options

The payoff of an option is the difference between the strike price and the underlying asset’s
price (Hull, 2000). The price of an option, under the risk-neutrality framework, is the option’s
payoff discounted using the risk-free rate. The obtained price is only risk-neutral if the asset
is simulated using a stochastic process with a risk-neutral drift. The call and put options have
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Figure 3.1: Overview of Methodology
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Figure 3.2: Outline QMC valuation

payoffs of max(ST −K, 0) and max(K − ST , 0) respectively. So the prices of a European call
and put option are:

Calleur = e−rT Ê[max(ST −K, 0)] (3.1)

Puteur = e−rT Ê[max(K − ST , 0)] (3.2)

It can be seen that e−rT is the discount factor with the risk-neutral rate r and Ê[max(K−ST , 0)]
is the expected risk-neutral payoff at time T . By assuming a geometric Brownian motion with
standard normally distributed returns, it can be derived that the stock price itself follows a
lognormal distribution:

ST = S0 e
(r−σ2

2
)T+σWT (3.3)

Here (r − σ2

2 )T + σWT is N(0, σ2T ) distributed. This can lead to the Black-Scholes integral
to price European options, see appendix A. However, most path-dependent options lack an
exact solution to the integral. To price these options we simulate many price paths to calculate
the risk-neutral expectations in equations 3.1 and 3.2. How these price paths are simulated, to
calculate the estimated option prices, will be discussed in section 3.1.3.

3.1.2 American options

The second type of option we price in this thesis is the American option. This option gives you
the right to buy or sell the underlying asset at any time during the option’s lifetime (Brennan
et al., 1977). On the publicly traded market, American option prices are almost always higher
than their European counterpart. We now show why this seems counter-intuitive at first.

If we construct a portfolio with value V consisting of an American call option and cash
needed to buy the underlying asset at maturity:

• Call option payoff when exercised: ST −K

• Cash grows at the risk-free rate to K at maturity: Ke−rT

• Portfolio value if exercised at time t < T : V = (ST −K) +Ke−r(T−t) < ST

• Portfolio value if exercised (or not) at T: V = max(ST −K, 0) +K = max(ST ,K) ≥ ST
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This shows that the theoretical value of this portfolio is always greater (or equal) than the
value of ST when the option is held until maturity. Consequently, the option holder should
not exercise the American option early. In a risk-neutral and no-arbitrage scenario, an option
should, at most, yield the risk-free rate. This maximum payoff is only achieved by holding the
option until maturity. There are several reasons why this discrepancy in price might occur like
the added flexibility, interest rates (change in cost of carrying/rollover rate), or dividends on
the underlying asset.

As outlined in chapter 2, there are 2 main methods to price American options. We will
apply and compare both least-squares MC and the averaging method.

Least-squares
American options can be priced using a least-squares regression in a MC simulation (Longstaff

et al., 2001). Considering that the future asset price is unknown, we predict its future expected
value using least-squares. The idea is to compare the continuation value, which is the expected
future value when holding the option (not exercising) until the next time step t + 1, with the
immediate exercise value at t, the payoff when exercising it now. Let te denote the period in
time at which we choose to exercise the option, i.e., the time we anticipate the payoff to be
maximal. Then the price of the American call and put options can be determined as:

Cam = e−rteÊ[max(Ste −K, 0)] (3.4)

Pam = e−rteÊ[max(K − Ste , 0)] (3.5)

However, how to determine the continuation value, considering that the future stock price
is unknown? For this, we predict the future expected cash flow using a least-squares model
(Watson, 1967). By regressing the future cash flow on the current stock price, a least-squares
model is obtained. Using this model, the conditional expectation of the cash flow in time step
t+ 1 given the stock price in time step t can be calculated as follows:

E(CFt+1|St) = w0 + w1St + w2S
2
t (3.6)

This equation is the expected cash flow in the next time step, based on the current stock price.
The parameters w0, w1, and w2 are estimated using OLS by using the actual obtained cash flow
CFt+1 from the next period and the current stock price St. Once the random price paths are
generated, we must calculate the cash flows recursively working our way backward. The cash
flow in the last time period is known, namely max(ST −K, 0) for a call. Using the discounted
cash flow of t+1, and the known stock price in period t, estimate the linear regression of equation
3.6. Use this regression to calculate the expected continuation value. Compare this continuation
value with the immediate exercise payoff. Use the higher of the immediate exercise payoff and
the expected continuation value for the new cash flow. Repeat this process iteratively all the
way back to T = 1. This recursion allows us to determine, for every price path, the optimal
exercise period denoted as te to maximize the payoff. Hence, during the backward progression,
we can adjust the option exercise time period, should a more profitable opportunity arise. Now
we just discount the cash flow from the exercise date, back to the purchase date of the option.
This computation results in the estimated price of an American option, similar to equation 3.4
and 3.5.

Averaging method
As an alternative to the least-squares MC, we will also price the American options with a

simpler method, namely the averaging method. In chapter 5, both methods will be compared
based on their pricing accuracy. In this averaging method, the price is calculated by averaging
the upper and lower bounds of the American option price. Using the principle of risk neutrality,
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an obvious statement is that the lower bound of the call must be less than or equal to the
average payoff at maturity (derived from e.g. a simulation). This lower bound must be lower
or equal to investing cash equal to the price of the call at the risk-free rate (risk-neutrality
assumption). This can be denoted as:

C ≤ 1

N

N∑
i=1

max(Si,T −K, 0) ≤ (1 + r∆t)TC (3.7)

Based on this the lower and upper bound of an American call can be calculated:

1 ≤
1
N

∑N
i=1max(Si,T −K, 0)

C
≤ erT (3.8)

(
1

N

N∑
i=1

max(Si,T −K, 0)

)−1

≤ C−1 ≤ erT

1
N

∑N
i=1max(Si,T −K, 0)

(3.9)

e−rT 1

N

N∑
i=1

max(Si,T −K, 0) ≤ Cam ≤ 1

N

N∑
i=1

max(Si,T −K, 0) (3.10)

In the limit of N, this becomes:

e−rT Ê[max(ST −K, 0)] ≤ Cam ≤ Ê[max(ST −K, 0)] (3.11)

This shows that the lower bound of an American call option is the price of the European call
option. The upper bound is the expected payoff at maturity as if the option was executed at
the initial time t = 0 and thus the payoff would have been received at the purchasing date of
the option. The least-squares American option prices are compared to the following average
prices:

Cam =
1 + e−rT

2N

N∑
i=1

max(Si,T −K, 0) (3.12)

Pam =
1 + e−rT

2N

N∑
i=1

max(K − Si,T , 0) (3.13)

These equations will be solved by simulating many price paths in the MC/QMC simulation
(identical to solving the European option equations), see section 3.1.3. The American put and
call prices from this averaging method will be compared to the least-squares pricing method to
determine which is more accurate and computationally efficient.

3.1.3 Simulate the option price

To price options using MC or QMC simulations, a step-by-step process can be followed by
combining the results of the previous sections:

1. Model the Stock Price: Begin by modeling the stock price using a geometric Brownian
motion. The underlying assumption is that the returns of the asset follow a standard
normal distribution. For a small time step (∆t), this can be expressed using the BSM
model (Hull, 2000):

ln(St+∆t) = ln(St) +

(
r − σ2

2

)
∆t+ σϵt

√
∆t (3.14)

Here, ϵt represents a standard normal random variable. This equation is essential for
modeling the dynamics of the stock price over time.
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2. Discretize the Process: In order to generate price paths, we discretize the model by
restructuring it as follows:

St+1 = Ste

(
r−σ2

2

)
∆t+σϵt

√
∆t

(3.15)

This equation provides a framework for sampling future price paths at discrete intervals.

3. Generate Price Paths: For MC, the creation of price paths involves the sampling
of many random numbers from a standard normal distribution, and these values are
then inserted into the equation described in the previous step. This process is repeated
numerous times, denoted as the number of trials, to generate a distribution of potential
future stock prices.

4. Utilize Quasi-Monte Carlo: Alternatively, for QMC, sampling from the standard nor-
mal distribution is done using quasi-random numbers. Here we use the Halton sequence
because it’s easy to implement and shows equal performance to other sequences for low
dimensionality problems (Fox, 1986). These quasi-random sequences aim to reduce the
discrepancy between points within an interval, resulting in more efficient sampling as
discussed in section 2.3, effectively minimizing the maximum distance between 2 points
within the interval. Rather than sampling a purely random number (MC), a smarter
choice is made based on the previous number to minimize the distance between all points
within a certain interval (QMC).

5. Price the Options: Once numerous price paths have been generated using either MC
or QMC, option pricing formulas 3.1, 3.2, 3.12, and 3.13 are calculated. Here the risk-free
rate and implied volatility need to be estimated (Bianconi et al., 2015).

6. Estimate Option Prices: The outcome of these calculations yields estimated option
prices based on the MC or QMC simulations. These estimates will then be compared to
the real-world prices and estimated prices obtained using other pricing methods, such as
GAN-QMC or alternative pricing models. This comparison helps assess the accuracy and
computational efficiency of the regular MC/QMC simulation approach, which are used as
a benchmark pricing method for the GAN-QMC.

In summary, the pricing of options through MC or QMC simulations involves modeling stock
price dynamics, discretizing the process, generating price paths, applying the option pricing
formulas, and ultimately estimating option prices based on the simulations. These estimated
prices can be used for comparative analysis against our GAN-QMC method.

3.2 GANs

In chapter 2, some relevant literature about option pricing, MC simulation, and GANs has
been discussed. In this section, we explain how a GAN works, which is necessary to effectively
develop a GAN in chapter 4. This section explains how a GAN operates by explaining its
different components and their functions. We use all these concepts to build several GANs to
determine if we can effectively implement a GAN into a MC simulation to price options.

3.2.1 Neural networks

As explained in chapter 2, a GAN consists of 2 neural networks. To understand the GAN-QMC
method, it is important to also understand the fundamentals of a neural network. Therefore,
we will explain a simple neural network without using overly complicated notations. A simple
neural network has been visualized in figure 3.3.
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Figure 3.3: Simple neural network

A neural network consists of many neurons (Dongare et al., 2012). A neuron can be thought
as of something that holds a number between 0 and 1 (although it can vary as explained below).
The value in a neuron is called the activation. The neural network starts with a vector of neurons
all corresponding to one of the input values of a series. For instance, one neuron could represent
the stock price for a single trading day, and the entire vector, perhaps with a length of 252,
could correspond to a trading year considering that there are 252 trading days in 1 year. This
input vector is the first layer of a neural network. How the input vector is mapped to have
values between 0 and 1 is explained at the end of this section. The output vector also consists
of neurons, equal to the desired length of the output vector. So for generating a 1 trading
month ahead forecast, the output layer is a vector of size 21, consisting of 21 neurons. This is
commonly called the output layer. The value between 0 and 1 of a neuron in the output layer
can be interpreted as the probability of an event or class occurring.

Between the input and output layers, there are so-called hidden layers (Dongare et al., 2012).
The number of hidden layers is typically determined through experimentation, depending on
the specific problem at-hand. The activations in one layer determine the activations in the next
layer, transmitting information from the input layer through all hidden layers to the output
layer. Therefore, the pattern of activations in the input vector causes some pattern in the first
hidden layer, which then causes some pattern in the next, all the way until the output layer.
The function of the hidden layers also depends on the specific problem. The hidden layers have
specific architectures to capture temporal dependencies and patterns in the data. For stock
price prediction using an input vector of 252 days, the hidden layer could for example group the
252 days into 21 batches calculating its average, from which the output layer can be calculated.
This is just an example for illustration purposes. How a stock price prediction network actually
behaves is totally dependent on factors like the number of hidden layers, the input and output
vector size, and the statistical properties of the training data. A neural network is basically a
black-box and it is usually the case that the exact functions of the hidden layers are not fully
understood.

The hidden layer consists of several neurons such that it can supply meaningful information
to the next layer. For simpler networks with e.g. fully connected layers, each individual neuron
is connected to all neurons in the next layer (Sainath et al., 2015). Although this is not the case
for e.g. recurrent and convolutional neural networks, the idea remains similar. Each connection
is assigned a weight parameter such that every neuron in the first layer has a weight for every
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connection to each neuron in the second layer. You can imagine that the number of weights
in a neural network with an input size of 252 and an output size of 21 with 2 hidden layers is
extremely large. The activation value of the node in the second layer is calculated by multiplying
the weight parameters of every connected node with its corresponding activation value. This is
illustrated in figure 3.4.

Figure 3.4: Calculating hidden layer’s activation value

By calculating the weighted sum we get the value of the middle node of hidden layer 1 for
our example:

w1a1 + w2a2 + w3a3 + w4a4 = 2.1 ∗ 0.9− 1.5 ∗ 0.2 + 1.1 ∗ 0.4 + 0.3 ∗ 0.7 = 2.24 (3.16)

The weight parameters, given to each connection, are based on relevant dependencies and
patterns in the data. How these are calculated for the GAN will be discussed in section 3.2.7.
What is most important here, is that each weight parameter needs to be calculated first in
order to determine the activation value in the next layer. The activation values should always
be within the range from 0 to 1. Therefore, a function is needed that takes as input the value
of the weighted sum and outputs it as a value between 0 and 1. A commonly used function is
the Sigmoid function (Narayan, 1997), a type of logistic curve. The sigmoid function is:

σ(x) =
1

1 + e−x
(3.17)

This transforms very negative inputs close to 0 and very positive inputs close to 1, and it steadily
increases from inputs around 0. Another possibility that is more used today in modern neural
networks is the ReLU function (Bai, 2022). This function is more computationally efficient and
can help to overcome the vanishing gradient problem. The ReLU function is denoted as:

ReLU(a) = max(0, a) (3.18)

However, using the ReLU function implies that the values of the activation in all neurons are
within [0,∞] instead of [0, 1], thus changing the interpretability of the network as explained
here. Possibly, both ReLU and Sigmoid can be combined such that all activation values in the
hidden layers are calculated using the ReLU function and the Sigmoid function is used (in the
output layer) to output values between 0 and 1. For this example, to maintain consistency we
continue by using the Sigmoid function. Using the weighted sum and the Sigmoid function we
get:
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σ(w1a1 + w2a2 + w3a3 + w4a4) (3.19)

Therefore, the activation of the neuron in the next layer is just a measure of how positive
the weighted sum going into this neuron is. If this neuron should only get values significantly
above 0 if its weighted sum is above a certain threshold, a bias can be added to this function.
Calculating this activation value must be done for every neuron in every layer. To make it more
clear, we denote the entire architecture with matrix notations:

σ



w0,0 w0,1 ... w0,n

w1,0 w1,1 ... w1,n

... ... ... ...
wk,0 wk,1 ... wk,n



a00
a01
...
a0n

+


b0
b1
...
bn


 =


a10
a11
...
a1n

 (3.20)

This can compactly be written as:

a(1) = σ(wa(0) + b) (3.21)

The entire network can be seen as a big function, taking in some data and returning an output
vector, by using each individual neuron as a small intermediate function. The term learning
quite simply refers to finding the right weights and biases to solve the problem at-hand that a
researcher wants to solve using a chosen neural network. In the next sections, we explain how
GANs work and how they incorporate neural networks.

3.2.2 How GANs work

Neural networks can be trained using a supervised learning approach (Winston, 1992). This
approach can be generalized as follows. It starts with some input data, often called training
data. This data is used to train a neural network, which generates an output, resulting in a
prediction. The predicted output is then compared with the expected output from the training
set (or a test set) during the analysis. Based on these results, the model can be updated, as
shown in figure 3.5.

Figure 3.5: Supervised learning training process

In contrast to the example above, the GAN framework, developed by Goodfellow et al.
(2014), is an unsupervised learning model. It consists of 2 sub-models: a generative model
(Generator), used to capture the data’s distribution and generate synthetic data, and a dis-
criminative model (Discriminator), used to calculate the probability that some proposed data
comes from training data rather than the Generator. The Generator’s goal is to maximize the
probability of the Discriminator making a mistake by creating data that closely resembles real
data. This suggests that the GAN can accurately mimic the statistical properties of the test
data.

The Discriminator can be pre-trained on real financial data trying to capture all of its im-
portant statistical properties, patterns, features, and structures, present in this dataset. The
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Discriminator is given a batch of both real and fake data, to test whether it can discriminate the
fake data from real. The fake data is generated by the Generator. The Generator is provided
with random data, a form of noise, from which it constructs fake financial data for the Dis-
criminator to determine whether it appears real or fake. Both the Generator and Discriminator
are then ”informed” whether the Discriminator’s determination was true or not. Based on this,
the loser will have to change its behavior by updating its weight parameters (and potentially
biases). This learning process is often called a zero-sum game. This process must continue
until the Generator can create such good synthetic financial data, that the Discriminator fails
to recognize what is real and what is fake. See figure 3.6 for an overview of this process.

Figure 3.6: GAN training process

3.2.3 Minimax loss function

To measure the distance between the distributions of real and synthetic data, a loss function
is used (Christoffersen et al., 2004). The original GAN from Goodfellow et al. (2014) used a
minimax loss function. The Generator aims to minimize the loss given by the following equation:

min log(1−D(G(z))) (3.22)

Here, G(z) represents the output of the Generator when given noise z. The Generator can only
influence its own output G(z) and not the Discriminator’s probability estimate D(x) that the
Generator’s data is classified as real data x. D(G(Z)) denotes the estimated probability of the
Discriminator that fake data is real. The minimax loss function of the GAN becomes:

min
G

max
D

V (D,G) (3.23)

where V (D,G) = Ex[log(D(x))] + Ez[log(1−D(G(z))]

Here, Ez represents the expected value based on all random inputs given to the Generator. If
we denote D and G as some probability measure taking random noise, then V (D,G) is a metric
between the two measurable functions. In simple terms, this just implies that the Discrimina-
tor wants to maximize the function and the Generator wants to minimize this function. The
minimax loss function quantifies the discrepancy between the Discriminator’s predictions and
the true values by utilizing binary cross-entropy. This loss, commonly used in binary classifica-
tion problems, tries to improve the Discriminator’s ability to distinguish between two classes,
namely real and fake data. In training, the Discriminator is iteratively improved to maximize
the minimax loss, effectively maximizing the binary cross-entropy between itself and the Gen-
erator. The Generator will be improved to minimize the same function. If this can be achieved
at a similar rate, it will lead to a Generator that can create synthetic data indistinguishable
from real data.
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3.2.4 Training difficulties

Training a GAN properly is often quite difficult (Kodali et al., 2017). During GAN training,
two models are trained simultaneously, and an adjustment of one model’s parameters affects
the loss function. The GAN might never converge and consistently ’jump around’ because an
equilibrium between the Generator’s and Discriminator’s parameters can not be found. This
indicates that there are issues with the learning stability of the GAN. This can be understood
by an example. If the Generator’s ability to create synthetic data improves much faster than the
Discriminator’s ability to distinguish it from fake data, the Generator can only be trained on
poor feedback meaning that the Generator’s parameters might never converge to the optimal
values. This happens because the Discriminator always loses the zero-sum game, thus not
getting and giving helpful feedback, resulting in parameters ’jumping around’ within a small
interval. Additionally, if the Generator always wins the zero-sum game, it is never forced to
change its parameters further. This results in undiversified low output quality from the GAN.

A well-known problem when training GANs is mode collapse (Kodali et al., 2017). This
happens when the Generator is stuck in a local minimum, while the global minimum must be
found. This leads to the issue that the Generator can only create a limited range of similar
samples, capturing only a portion of the data’s distribution. The Discriminator can easily
distinguish between real and fake data, causing the GAN to stop developing, resulting in an
undiversified output. In reality, the Generator should provide both realistic and a wide variety
of diversified data.

Another issue is the vanishing gradient problem (Hochreiter, 1998). During GAN training,
this can happen when the Discriminator improves so much faster than the Generator, such that
the Generator cannot properly be trained further. In that case, the Generator is not given
enough useful data by the Discriminator to improve itself. The gradient becomes too small,
such that the parameters of the Generator do not or barely change.

3.2.5 Wasserstein loss function and gradient penalty

To reduce the aforementioned training difficulties, the Wasserstein loss function can be used
(Chintala et al., 2017) as an alternative to the minimax loss function. This measurement uses
the Wasserstein distance, also often called the Earth mover’s distance, to measure how much
work is required to transform a given distribution into the true distribution. The Generator
tries to minimize and the Discriminator to maximize the following Wasserstein loss function:

min
µG

max
D

LWGAN (µG, D) (3.24)

where V (D,G) = EµG [D(x)]− Eµref
[D(x)]

Here EµG [D(x)] is the expected value of the Discriminator’s output when it evaluates data
samples generated by the Generator. Eµref

[D(x)] is the expected value of the Discriminator’s
output when it evaluates real data samples from the real-world (reference) distribution. The
Wasserstein loss function has been demonstrated to improve the learning stability and reduce
the issues regarding mode collapse and vanishing gradient (Chintala et al., 2017).

In a regular GAN, the Discriminator often improves faster than the Generator, outputting
more extreme values and thus providing less informative feedback to the Generator, hindering
the learning process. The W-GAN, incorporating the Wasserstein distance, addresses this
issue by substituting the Discriminator with a Critic. The Critic ensures that the sigmoid
function is replaced by a linear activation function, eliminating the output constraint between
0 and 1. This means that the cost function continues to grow, irrespective of the divergence
between distributions. This approach prevents the gradient from approaching zero, mitigating
the vanishing gradient problem and minimizing mode collapse.
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However, a prerequisite for using the Wasserstein loss is that the Critic must be 1-Lipschitz
continuous. This means that the norm of the gradient should not exceed the value 1 at any
point. This ensures the continuity (and differentiability) of the Wasserstein loss function. If
this is handled correctly, then during training its growth will be stable, thereby validating the
use of the underlying Wasserstein or Earth mover’s distance. For W-GAN this is achieved using
weight clipping, which forces the weights of the Critic to be within some interval. If any of the
calculated weights of the neural network are outside this interval, the weights are simply clipped,
setting values too high or too low to a predefined maximum/minimum. However, the downside is
that weight clipping may limit the Critic’s learning ability and, consequently, impact the overall
performance of the GAN. As a result, extensive hyperparameter tuning becomes necessary to
adapt the model for effective training, which is already a very complex task for GANs in the
first place.

A solution to this problem was provided with the development of a W-GAN-GP (Gulrajani
et al., 2017), where GP stands for gradient penalty. The gradient penalty is an alternative
method, to weight clipping, to ensure 1-Lipschitz continuity. The W-GAN-GP provides a
smoother way of enforcing continuity by incorporating a gradient penalty into the Wasserstein
loss function. The gradient penalty involves penalizing the model based on the gradient norm
of the Discriminator’s output with respect to interpolated samples.

3.2.6 Optimizer

The primary goal of a GAN is to optimize a specific loss function, like the minimax or Wasser-
stein loss function. To find the local minimum of these functions, an optimizer is used. The
gradient descent-based optimizer (Dogo et al., 2018) is a commonly used optimizer. It is a
numerical method trying to find the function’s minimum using small iterations. An exam-
ple of a popular gradient descent-based optimizer is the Adaptive moment estimation (Adam)
(Singarimbun et al., 2019).

During every training epoch, the parameters in the neural networks must be changed in
such a way that the loss function is minimized. The parameters of the neural network that lost
the game are updated, based on the impact they have on the loss function which is explained
in section 3.2.7. The gradient descent-based optimizer is used to find the local minimum of the
loss function with these updated parameters.

The parameters of the neural networks are adjusted by calculating the impact they have on
the loss function. The Generator cannot directly influence the loss function, it’s the output of
the Discriminator that influences the Generator’s loss impact (Eckerli et al., 2021). Since the
Generator cannot directly influence the loss function, the impact of the Generator’s parame-
ters must be measured based on the impact they have through the Discriminator’s parameters.
Thus, backpropagation is necessary, starting from the output and going back through the Dis-
criminator (taking into account its parameters) to the Generator. If both the Discriminator
and Generator can be improved at the same rate, the Generator would eventually be able to
create synthetic data that is indistinguishable from real data.

3.2.7 Update parameters

We now explain how the parameters of the Generator and Discriminator are adjusted. As
mentioned in section 3.2.2, the Generator tries to minimize and the Discriminator tries to
maximize the following minimax loss function:

min
G

max
D

Ex[log(D(x))] + Ez[log(1−D(G(z))] (3.25)

The parameters of the Generator and Discriminator are adjusted using many training epochs
(Arjovsky et al., 2017). A single training epoch goes as follows:
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1. Randomly sample a batch of m true values: x1, x2, ..., xm and calculate D(xi)

2. Randomly sample a batch of m random noise samples: z1, z2, ..., zm and calculate G(zi)

3. Use the output of the Generator G(zi) as input for the Discriminator to calculate D(G(zi))

4. Calculate the Discriminator’s loss: LD = 1
m

∑m
i=1[log(D(xi)) + log(1−D(G(zi)))]

5. Update the Discriminator parameters using the function LD and: θnewd = θoldd +λ∇θoldd
LD

6. Calculate the Generator’s loss: LG = 1
m

∑m
i=1[log(D(G(zi)))]

7. Update the Generator’s parameters using the function LG and: θnewg = θoldg + λ∇θoldg
LG

Here θd and θg are the parameters to optimize in the Discriminator and the Generator respec-
tively. ∇θoldd

is the gradient of the function with respect to the Discriminator’s parameters.

The gradients are computed using backpropagation, going from the error of the loss function
through the network’s layers using the chain rule. By ascending the gradient, we can determine
how to adjust each parameter efficiently to maximize the loss function, which is the objective of
the Discriminator. The Generator’s parameters are updated by descending the gradient ∇θoldg

to minimize the loss function.
Goodfellow et al. (2014) proved an important property of this approach. The minimum of

the loss function can only be achieved if the probability function of the Generator matches the
probability function of the real data, represented by the Discriminator. This proof, provided
in appendix A, is fundamental to GAN. This property is important for our option pricing
framework, as it allows us to capture essential statistical properties of financial time series. If
this can be achieved during the training of the GAN, it implies that synthetic financial data
cannot be distinguished from its real data counterpart any better than a random guess.

3.2.8 GAN Architectures

In Chapter 2, various GANs and their applications have been discussed. In this subsection, we
discuss which architectures and loss functions will be implemented. In chapter 4 these different
GANs are compared based on some statistical measures often exhibited in financial time series
data, as discussed in section 2.4. The best performing GAN will be used in the GAN-QMC to
price options.

The first GAN we build is a LSTM-GAN using a LSTM neural network for both the Genera-
tor and Discriminator. This choice is made because LSTM by itself has shown to be effective in
predicting financial time series data, outperforming other models like random forests and deep
neural networks in terms of predictive accuracy (Fischer et al., 2018). Furthermore, as shown
before, integrating LSTM within a GAN has given promising results for generating financial
data (Z. Zhang et al., 2020). The strength of LSTM lies in its ability to maintain information
in memory over extended sequences. This is especially valuable for an analysis using financial
data, where capturing long-term dependencies and understanding characteristics like volatil-
ity clustering and heavy tails is crucial. Traditional GANs typically use Convolutional Neural
Networks (CNNs). These are better suited for grid-like data such as images and spatial data.
Given that financial time series data is sequential, the use of a recurrent network like LSTM is a
rational choice. The LSTM-GAN will use the standard minimax loss function using binary-cross
entropy.

While LSTM offers several advantages over other neural networks for financial data mod-
eling, it comes with potential challenges. Research has shown that recurrent Discriminators,
including those utilizing LSTM, are particularly difficult to train (Metz et al., 2017). To address
this issue, we will also develop a LSTM-TCN-GAN. This uses a Temporal Convolutional neural
network (TCN) for the Discriminator and a LSTM for the Generator. A LSTM network seems
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more suited to model financial time series. However, if the GAN cannot be trained properly
using the LSTM-GAN’s architecture, using a network suffering less from training instability is
a reasonable choice. The LSTM-TCN-GAN uses the standard minimax loss function.

To improve the issues regarding mode collapse and the vanishing gradient problem we will
also develop a Wasserstein GAN using the gradient penalty. Our W-GAN-GP will use the same
architecture as the LSTM-TCN-GAN, but uses the Wasserstein loss function instead of the
minimax loss function. In chapter 4 all these GANs are compared on their ability to create
realistic financial time series data.

3.3 Combining GAN with MC/QMC

In this section, we discuss how the GAN can be combined in the MC simulation to price options.
It is necessary to make some training data choices first. Then we show how the GAN can be
used in the geometric Brownian motion to construct risk-neutral price paths. Finally, we give a
brief overview of the GAN-QMC method using pseudo code and recap the methodology section.

3.3.1 Prices vs Returns

An important decision is to train the GAN on returns instead of prices because stock prices are
non-stationary. Strict non-stationarity implies that the entire probability distribution of the
time series is not constant over time (Brooks, 2014).

If y is the price of a financial asset, the time series would be strict stationary if its probability
distribution is the same over time:

Fyt1 , yt2 , ..., ytT (y1, ..., yT ) = Fyt1+k
, yt2+k

, ..., ytT+k
(y1, ..., yT ) ∀k ∈ Z (3.26)

This implies that the expectation and variance are constant over time, and the covariance only
depends on the number of lags. Financial price series tend not to be stationary (Kendall et al.,
1953). The non-stationarity can lead to difficulties when modeling and making predictions.
Therefore, most studies about financial GANs use the (log) returns of the financial assets. Log

returns are Xt = ln
(

St
St−1

)
. The returns time series of financial assets is stationary and this

can significantly help statistical modeling. Therefore we use the GAN to generate log returns.

3.3.2 Training data

We now show how the training data set is constructed. A stock price vector is denoted as:

St,T = (St, St+1, ..., St+T ) (3.27)

where St,T is a multivariate random variable with length T . A realization of a stock price vector
is denoted as:

st,T = (st, st+1, ..., st+T ) (3.28)

Here, the capital letter St,T represents the stochastic (multivariate random variable) price path
vector and the small letter st,T represents the deterministic realized price path vector (also for
the real historical price paths).

We gather some historical data of a stock to train the GAN, denoted as a realization s1,n
where n is the number of time steps in that set. n must be large enough to make sure that
the distribution of the time series st,n does not depend on the initial value t. Preferably, the
distributions of st and st,n are identical. This indicates that the generated data will have
enough variation to include a large degree of volatility present in the market. To achieve stable
training, it is important to split the training data into the right number of partitions. Denoting
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the training set TS as a matrix of many partitions st,T and the price of the asset s at time t
as st, we get:

TSh,T =



s1 s1+h ... s1+⌊n−T
h

⌋h
s2 s2+h ... ...
... ... ... ...
... ... ... ...

s1+T s1+T+h ... ...


=
{
s1,T , s1+h,T , ..., s1+⌊n−T

h
⌋h,T

}

The symbol ⌊a⌋ is a floor function and calculates the largest integer smaller or equal to a.
The variable h is the step size. The step size indicates how many time steps t each batch is
shifted. Considering that T is fixed, the step size also determines how many batches the training
data will have. A value of h near zero results in many almost identical partitions, increasing
the chance of mode collapse. For very large h there will be no more overlap between partitions.
This improves the training of the Discriminator due to only having a few diversified batches,
meaning that it will be hard for the Generator to deceive it. This could result in the Generator
never getting valuable feedback and this could lead to the vanishing gradient problem. The step
size is determined when tuning the GAN, which will be explained in section 4.3.2. It should be

noted that the stock prices s in TSh,T will be transformed into log returns using Xt = ln
(

St
St−1

)
before training the GAN.

3.3.3 Real-world to Risk-neutral price paths

We now explain how the GAN is used to generate risk-neutral price paths, necessary to price
the options in a simulation. The GAN is trained on real-world log returns of an asset. Using
the output of the GAN directly to construct price paths will not result in risk-neutral price
paths. However, to price options under risk neutrality, we need to use the GAN to construct
risk-neutral price paths. This is achieved by using the geometric Brownian motion and replacing
the standard normal distribution with standardized output sampled from the GAN.

The standard geometric Brownian motion used in option pricing is defined by the following
stochastic differential equation (Hull, 2000):

dSt = µStdt+ σStdWt (3.29)

In this equation, Wt is a Wiener process. The most important properties of a Wiener process
are as follows (Shreve, 2004):

1. Wt has independent increments such that Wt+u−Wt, with u ≥ 0, are independent of past
values of Ws with s < t.

2. The increments Wt+u −Wt are Gaussian, so normally distributed with a mean of 0 and a
variance of u.

3. Wt must be continuous, therefore t must be continuous.

This implies that Wt1 −Ws1 and Wt2 −Ws2 are independent Gaussian random variables where
0 ≤ s1 < t1 ≤ s2 < t2.

It can be seen that the geometric Brownian motion is defined as the exponential of a Wiener
process with a drift and volatility component. In other words, a geometric Brownian motion
is essentially a Wiener process modified by the exponential function. It is used to model the
randomness or uncertainty in the financial market. For option pricing, it is used to model the
movement of asset prices. However, returns of an asset tend not to follow a Gaussian distribution
(Theodossiou, 2000), thus our interest in changing this property.
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To solve the geometric Brownian motion, Ito’s lemma is used (Shreve, 2004). Ito’s lemma
states that for a process X described by the stochastic differential equation (SDE) dXt =
µdt+ σdWt, the change in the process Y (t) = f(t,X(t)) can be denoted as:

dYt =

(
∂f

∂t
+ µ

∂f

∂xt
+

1

2
σ2∂

2f

∂x2t

)
dt+ σ

∂f

∂xt
dWt (3.30)

To solve the geometric Brownian motion for the stock price as shown in equation 3.29, set
Y (t) = ln(S(t)), X(t) = S(t), and f(t, x) = ln(x). This implies that ∂f

∂t = 0 and ∂f
∂x = 1

x .
Ito’s lemma states that the solution to the geometric Brownian motion is equation 3.30. The
symbol Wt is the standard Wiener process where WT − Wt ∼

√
T − tZ where Z ∼ N(0, 1).

The random variable Z has an independent and identical normal distribution. Using equation
3.30, the solution to the geometric Brownian motion of our stock price process becomes (Shreve,
2004):

dYt
dt

=
1

St

dSt

dt
− 1

2S2
t

(dSt)
2 (3.31)

dYt
dt

=
1

St
(rStdt+ σStdWt)−

1

2S2
t

(σStdWt)
2 (3.32)

dYt =

(
r − σ2

2

)
dt+ σdWt (3.33)

Integrating both sides from 0 up to t:∫ t

0
dYt =

∫ t

0

(
r − σ2

2

)
dt+

∫ t

0
σdWt (3.34)

ln

(
St

St−1

)
=

(
r − σ2

2

)
t+ σWt (3.35)

ln

(
St

St−1

)
=

(
r − σ2

2

)
t+ σWt (3.36)

St

St−1
= e

(
r−σ2

2

)
t+σWt (3.37)

St = St−1e

(
r−σ2

2

)
t+σWt (3.38)

This equation can be used to model the continuous-time evolution of stock prices assum-
ing the stock price follows a geometric Brownian motion. When pricing options using a MC
simulation, the stock price must be simulated, implying that the stock price must be modeled
in discrete time. We discretize time into intervals of size ∆t and approximate the increment
Wt+∆t −Wt. The Wiener process has independent and stationary normally distributed incre-
ments. This allows for the approximation of the increment Wt+∆t−Wt using a standard normal
variable Z ∼ N(0, 1) resulting in Wt ≈

√
∆tZt. The symbol

√
∆t can be seen as a scaling factor

to scale the variance of Zt to match the variance of the Wiener process increments ensuring that
the variance of

√
∆tZt is ∆t because V ar(

√
∆tZt) = (

√
∆t)2V ar(Zt) = ∆t ∗ 1 = ∆t. These

convenient properties allow us to write equation 3.38 as the following discrete variant:

St = St−1e

(
r−σ2

2

)
∆t+σ

√
∆tZt (3.39)

However, research has shown that real-world returns are not always normally distributed (Theo-
dossiou, 2000). The idea to generate risk-neutral returns by using a GAN is to change the
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normality (Gaussian) assumption. For the GAN-QMC method, we swap the standard normal
random variable Zt out by treating the output of the Generator of a GAN as an empirical dis-
tribution of the stock returns. This distribution must be independent and have a mean of zero
with constant variance equal to the time step. We standardize the output of the GAN, before
using it in the geometric Brownian motion to construct risk-neutral price paths. Our idea is
that if the GAN can be trained perfectly, and exactly mimics all statistical properties of real-
world stock returns, it is a better approximation of the returns than the normality assumption.
This should lead to more realistic risk-neutral price paths and thus potentially result in more
accurate option prices. However, since the normality assumption is not far off, the GAN might
need to be near perfect in order to measure any statistically significant accuracy improvement.
Equation 3.39 can be rewritten, replacing the standard normal distribution Zt by treating the
standardized output of the Generator Gt as the empirical distribution of the stock returns, as
follows:

St = St−1e

(
r−σ2

2

)
∆t+σ

√
∆tGt (3.40)

By using the risk-free rate for r and the implied volatility of the option of interest for σ, we
can generate risk-neutral price paths for the GAN-QMC by sampling from the Generator of the
GAN instead of sampling from the standard normal distribution as done in a regular MC/QMC
simulation for option pricing.

The output of the Generator is being treated as an empirical distribution. This distribution
is not absolutely continuous because it doesn’t have a probability density function that is inte-
grable. Since the Generator is not absolutely continuous it cannot be a stable random variable
(Lukacs et al., 1970). This means that the following equation does not necessarily hold:

G1 +G2 + ...+Gn

d
̸= cnG+ dn (3.41)

The consequence of this is that the length of the discretization interval ∆t, the time step
between 2 consecutive samples from G, might impact the validity of the risk-neutral paths
generated by equation 3.40. In section 4.4 we analyse, for different time steps ∆t, the difference
in mean between price paths generated using equation 3.40 compared to the regular method
using equation 3.39. This sanity check allows us to analyse whether the choice of ∆t impacts the
ability of the GAN in combination with the geometric Brownian motion to create risk-neutral
price paths.

To recap, to use a GAN to construct risk-neutral price paths, the standard normal distribu-
tion in the geometric Brownian motion will be replaced by outputs sampled from the Generator
of the GAN. The process of generating risk-neutral price paths goes as follows:

1. Gather a dataset of some listed stock: st,T = st, st+1, ..., st+T

2. Calculate log returns: xt = ln
(
st+1

st

)
3. Train GAN on x

4. Generate (a vector of) returns using the Generator called g

5. Standardize the returns: gsd = gsd−µ
σ , where µ = E(g) and σGAN =

√
V ar(g)

6. Construct price paths using formula 3.40 where we sample returns g from Gt

For the QMC simulation, the synthetic returns g are not randomly sampled from the Gen-
erator. Instead, millions of random numbers are sampled from the Generator first. Then the
Halton sequence is used to sample from this large dataset. This is done because it is impos-
sible to sample from the inverse cumulative distribution of a GAN without using a technique
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like kernel density estimation to estimate its probability density function. The quasi-random
numbers are used in equation 3.40 to generate price paths, similar to the procedure above.

3.3.4 Pseudo code GAN-QMC

Algorithm 1 shows a brief pseudo-code of the GAN-QMC method to price a European or
American option. In appendix A a pseudo-code of option pricing using MC, QMC, and GAN-
QMC is shown.

Algorithm 1 Pseudo code GAN-QMC

1: Input: N, s1,n, T0, T,K, r, C, P,M, h
2: Split historical data s1,n into TSh,T

3: for i = 1, 2, . . . ,M do
4: Train Generator on random noise Z
5: Train Discriminator on TSh,T and G(Z)
6: Calculate losses LG & LD and update parameters θnewg & θnewd

7: for i = 1, 2, . . . , N do
8: Sample from the Generator: ϵ = {G(Z) or G(HQ)}
9: Use the GBM to construct a price path: ŝii,T = (ŝn+1, ŝn+2, . . . , ŝn+T )

10: Calculate average payoff of European/American option based on ŝT
11: Calculate the option estimate Ĉ or P̂ by discounting the payoff with r
12: Output: Ĉ or P̂

3.3.5 Recap of Methodology

The goal of this thesis is to price options using GAN-QMC and analyse whether it is more
accurate and computationally efficient than pricing through MC/QMC. The MC simulation
generates many price paths by randomly sampling from the standard normal distribution and
using these samples in the geometric Brownian motion. QMC differentiates by quasi-random
sampling from the standard normal distribution using the Halton sequence. The generated price
paths are used to estimate the European and American option prices based on their respective
payoffs.

The GAN is an AI consisting of 2 neural networks, trained together in a zero-sum game.
Important choices that influence the GAN’s ability to generate financial data are the neural
network’s architecture, the loss function, and the type of training data. The GAN is optimized
by minimizing the loss function. In section 4.4, the GAN’s ability to generate financial data is
determined by analysing whether its output has statistical properties similar to the real-world
data.

To price options using the GAN-QMC, we sample either randomly or quasi-randomly (using
the Halton sequence) from the Generator. These samples are used in the geometric Brownian
motion to construct risk-neutral price paths and estimate the option prices, similar to the
regular MC/QMC. The expected improvement in accuracy is due to the GAN’s ability to better
mimic the true statistical properties of the option’s underlying asset compared to the standard
normal distribution used in the geometric Brownian motion. We used the functional form of the
geometric Brownian motion and modeled the price returns using the GAN in order to generate
risk-neutral price paths. In the discussion, we delve into the assumptions of GAN-QMC and
explore suggestions to relax some of these assumptions.
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Chapter 4
Model training and validation

In the previous chapter, we explained the methods and concepts necessary to price options
through MC, QMC, and GAN-QMC. This chapter is dedicated to the training and validation
of these models. Section 4.1 discusses data decisions and lays the theoretical foundation of the
performance metrics necessary to quantify the GAN-QMC’s ability to estimate option prices.
Section 4.2 briefly elaborates on the implementation and validation of the MC/QMC simula-
tions. Section 4.3 discusses the initial GAN hyper-parameter selection and theory behind the
GAN tuning process, all based on existing literature. Finally, theory is put into practice in
section 4, fully dedicated to the execution of the tuning process and analysis of all tuned GANs.
In chapter 5 the best-performing GAN is used in the GAN-QMC and analysed using the chosen
performance measures.

4.1 Performance metrics

To determine the performance of the different pricing methods, data of a stock exchange-listed
company with options must be available to train the GAN and price options. Subsequently, sta-
tistical measures and graphs will be used to compare the accuracy and computational efficiency
of these pricing methods.

4.1.1 Data

As explained in chapter 1, our focus is on options with a stock as the underlying asset. In this
chapter, the specific focus is on the company BHP Group Limited (BHP, 2022), an Australian
mining and metals company. This was chosen due to its large market cap and liquid European
and American options with a decent amount of data easily available.

2 datasets are utilized, namely a dataset containing stock prices for GAN training and
a dataset containing option prices (and their parameters) used for pricing purposes, here-
after referred to as stock-dataset and option-dataset, respectively. These datasets are used
to demonstrate the development of the different methods, while Chapter 5 expands the analysis
to incorporate data from multiple companies, using the same GAN-QMC setup and tuning
process. The option-datasets of all companies can be found on the following GitHub page:
https://github.com/sP22222/GANs-Q-MC. All datasets and their descriptive statistics will be
explained in more detail in chapter 5.

To tune the GAN, the stock-dataset is split up into a training and test set. The training
data consists of the daily closing prices of the BHP stock from 1980 up to 2010 and the test
set of the closing prices from 2010 up to mid-2023. To price options in the simulation, the
option-dataset of BHP is used, extracted from the Australian stock exchange (Exchange, 2023).
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It consists of 250 options, both American and European with a variety of different parameter
ranges (e.g. strike price, time to maturity, etc.).

4.1.2 Statistical measures

The statistical measure used to determine the accuracy of the different pricing methods is the
mean absolute percentage error (MAPE) (Myttenaere et al., 2016):

MAPE =
1

N

N∑
i=1

∣∣∣∣Predictioni −Observedi
Observedi

∣∣∣∣ (4.1)

Here, N denotes the number of entries in the option-dataset. The MAPE indicates, on average,
how much the simulated value deviates from the true value. Due to the inherent randomness in
MC/QMC simulation, the error for each estimated option price carries some level of uncertainty
because Predictioni is not deterministic.

To assess the statistical significance between different pricing methods, the MAPE is ex-
pressed as an asymptotic 95% confidence interval (CI):

95%− CI =

[
MAPEavg − 1.96

SD(MAPE)√
N

,MAPEavg + 1.96
SD(MAPE)√

N

]
(4.2)

Here, MAPEavg is the average MAPE over all options, and SD(MAPE) is the standard
deviation of the MAPEs. The CI is an approximation, becoming more accurate with larger
sample sizes.

It is important to note that the MAPE itself is uncertain due to the randomness in the
MC simulation making the CI provide an approximate range. If the GAN-QMC’s CI is higher
than QMC’s CI with no overlap, there is approximately a 95% confidence that the accuracy of
GAN-QMC is higher than QMC. CIs will be calculated separately for puts, calls, European,
and American options.

To compare computational times, we simply take the average time it takes to generate the
price paths and price the option itself. The final measure is the average time it took to price 1
option.

4.1.3 Graphs

We will extend beyond the conventional accuracy metrics considering that the overall average
MAPE across all option prices may not always reveal all statistically significant differences.
Instead, we must accept that a pricing method could show superior performance within specific
intervals of option parameters and show poor results for others. Our objective is to investigate
the performance of each method concerning different sets of option-parameter values based on
the book of Hull (2000), analysing where each method excels or falls short.

Moneyness

The moneyness of an option is the profit gained when exercising the option. For a European
call option, this is ST − K, and for a European put K − ST . A negative value implies that
the option is out-of-the-money (OTM), a value around 0 is called at-the-money (ATM), and
a positive value is called in-the-money (ITM). By plotting moneyness against pricing errors,
insights into a method’s proficiency in pricing OTM, ATM, and ITM options are gained.
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Maturity

The maturity, the time it takes until the option expires, has an impact on the price of an
option. The option price decreases as it reaches maturity, which is called the time decay of an
option often called theta and mathematically denoted as Θ = −∂V

∂t . By plotting the maturity
against the pricing error, an estimate of the method’s ability to capture theta can be made.
The method that is most accurate for options with long maturities can be considered to be the
best in capturing and predicting the impact of time decay.

Implied Volatility

Another graph that we will analyse is the implied volatility of the option against the error of the
pricing method. This is often called vega and denotes the sensitivity of the option with regard
to the implied volatility, written as ν = ∂V

∂σ . It is interesting for us to see whether a specific
pricing method is better at pricing options with the implied volatility in a specific range.

Convergence

To have a secondary metric for computational efficiency, we will also analyse the convergence of
the simulation. This is done by plotting the MAPE versus the number of trials in the simulation.
Based on this graph it can be determined how many trials are necessary before an option price
converges. It is expected that QMC converges faster than MC, but there is most likely not
much difference between QMC and GAN-QMC.

4.2 MC & QMC simulation

Building on chapter 3, the MC and QMC simulations are developed. These simulations can later
be extended by sampling from the GAN’s Generator instead of the standard normal distribution
as explained in chapter 3.

It is important to ensure that the simulations behave as expected. This was achieved with
a simple sensitivity analysis of the simulations to price ATM European put and call options.
Tables C.1 and C.2 in appendix C show the parameters that were varied with regards to their
respective expected impact and observed impact on the option price. The option prices re-
sponded as expected to the changes in parameters indicating that our simulations can price
options reliably. The results of the sensitivity analysis also extend to the GAN-QMC approach
considering it uses the exact same simulation, only the distribution of the stock returns is dif-
ferent. A more elaborate sensitivity analysis for the GAN-QMC can be found in chapter 5.
In addition, it is worth mentioning that based on some initial testing the QMC is significantly
more accurate than MC when the number of trials is low (< 10.000). This discrepancy becomes
less apparent once the number of trials increases significantly. These results correspond with
the expected differences between MC and QMC.

4.3 Training of GAN

We build the LSTM-GAN, LSTM-TCN-GAN, and W-GAN-GP as explained in subsection 3.2.8.
However, based on some initial training, we noticed that it is difficult to select hyper-parameters
that can effectively train the GANs. Therefore, a tuning method is necessary to determine a
good set of hyper-parameters to train the GANs. To determine whether the GANs can create
realistic synthetic financial data, their output will be compared with the real-world data, based
on a selection of statistical properties often exhibited by financial time series as discussed in
section 2.4.
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4.3.1 Hyper-parameters

We now discuss which initial hyper-parameters are chosen as a starting point for tuning the
GAN. Starting with the batch length, the length of a single individual training set, certain
researchers used extremely large batch lengths of around 8000 (Takahasi et al., 2019). Some
initial GAN training showed that very large batches, consisting of thousands of individual
observations required a lot of memory. Thus training using many batches consisting of 10 years
worth of data did not work well. So either the number of batches per training cycle or the
length of each batch must be small. Vuletic et al. (2023) used batch lengths of 100, which is
just under 5 trading months, whereas some researchers used even smaller batches (Soleymani
et al., 2022). A batch length of 250 seems like a reasonable starting value, striking a balance
between computational time and the degree of variation within each batch. The batch size,
denoting the number of batches used per training epoch, showed considerable variation among
researchers. However, a reoccurring pattern suggests that as the batch length increases, the
batch size tends to decrease (Takahasi et al., 2019). Considering that we start with a moderate
batch length, we decide to also start with a moderate number of batches, namely 24.

A high learning rate of 0.001 has been shown to result in quicker convergence (Ghosh et
al., 2020). However, higher learning rates can also lead to training difficulties. Other papers
showed success when lowering the learning rate to 0.0001 (Lala et al., 2018) (Vuletic et al., 2023).
Therefore, we start with a learning rate of 0.0001 for both the Generator and Discriminator,
but these can independently vary in the tuning process.

In the literature, the number of layers for the Generator and Discriminator for generating
financial data seems to always be somewhat low, often somewhere between 1 and 5 (Soleymani
et al., 2022) (Zhou et al., 2018). Therefore, we start with 1 layer each and allow it to increase
in the tuning process. The number of hidden dimensions in the Generator and Discriminator
refers to the number of neurons in a hidden layer. This is hard to determine because the choice
is very much dependent on the training data. Some initial training showed that an arbitrary but
decent starting point seems to be 100. The length of the Generator’s input is the dimensionality
of the random noise vector used for training, which is the number of nodes of the input layer
of the Generator’s LSTM. In practice, most GANs seem to use a value between 10 and 100
(Vuletic et al., 2023) (Mirza et al., 2014). A larger value can allow the GAN to capture more
complex dependencies in the data but will also increase the computational time, so somewhat
smaller values are favored (Dumont et al., 2022). Therefore we will start with a value of 100.

For the LSTM-TCN-GAN and W-GAN-GP, the dropout rate can also be varied, which is the
probability of an iteration being dropped out. Large values result in slower convergence. This
value might be seen as less important considering that few researchers mention their dropout
rate, probably because this value is dependent on which activation function is used. The dropout
rate reduces overfitting at the cost of computational times (Srivastava et al., 2014), therefore
we deem a starting value of 0.2 as a good balance. Lastly, we could pre-train the Discriminator,
to potentially improve the training stability. We start by pre-training the Discriminator with 5
epochs.

The choice for the number of epochs in the GAN tuning process is dependent on the com-
putational power available. Based on some initial testing, we decided that a value of 50 seems
reasonable for tuning the GAN. The GANs can later be trained on more epochs using only the
optimal set of hyper-parameters (the output of the tuning process).

The LSTM-GAN uses the Sigmoid activation function (Narayan, 1997). As discussed in
chapter 3, the ReLU activation function can overcome the vanishing gradient problem (Bai,
2022). Therefore, we decided to implement the ReLU function in the LSTM-TCN-GAN and
W-GAN-GP to improve on the simpler LSTM-GAN.

In addition, we have given reasonable lower and upper bounds to all hyper-parameters and
an adjustment factor ∆. All results are shown in table 4.1 and are necessary to tune the GANs,
which will be explained in section 4.3.2.
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Hyper-parameter Lower Limit Upper Limit ∆ Initial Value

Batch length 50 1000 0.1 250
Batch size 8 64 0.1 24
Step size 10 batch length 0.1 50
Learning rate G 0.00001 0.0002 0.1 0.0001
Learning rate D 0.00001 0.0002 0.1 0.0001
Number of layers G 1 5 1.5 1
Number of layers D 1 5 1.5 1
Number of hidden dimensions G 50 300 0.1 100
Number of hidden dimensions D (LSTM) 50 300 0.1 100
Dropout rate D (TCN) 0 0.4 0.1 0.2
Length of input G 50 200 0.1 100
Number of pre-training epochs D 0 10 0.1 5

Table 4.1: Hyper-parameters

4.3.2 Tuning the hyper-parameters

Tuning the hyper-parameters of a GAN is a complex task, given that adjusting one parameter
can impact the quality of another. Therefore, a sequential optimization approach, starting with
the optimization of a single parameter, might lead to sub-optimal results.

Tuning the hyper-parameters of a GAN can be denoted as a bilevel optimization problem
(Dumont et al., 2022):

min
p,w

U(p,w∗;Dval) (4.3)

s.t. p ∈ Ω

w∗ ∈ min
w∈W

l(w;p,Dtrain)

Here, the hyper-parameters are represented by the vector p. The symbol Ω can be interpreted
as the entire domain of possible values as defined in table 4.1. The symbol U represents some
inverse performance measure, which must be minimized with respect to the hyper-parameters p.
Minimizing U should result in optimized weight parameters and biases w (explained in section
3.2.1) for the real-world data Dval. It should be noted that the optimal weight parameters w∗

of the neural network of the Generator are found only by changing the values of the hyper-
parameters p, and thus not by changing w directly.

No matter the selected hyper-parameter values, we must always obtain the optimal w∗

conditional on any set p ∈ Ω, which is achieved by minimizing l(w;p,Dtrain). For LSTM-
GAN and LSTM-TCN-GAN the minimax function is used for l where the goal is to minimize
the cross-entropy, to obtain w∗. For W-GAN-GP, the Wasserstein loss function is used for l
instead. Thus w∗ must be interpreted as the optimal weights and biases given some hyper-
parameters p achieved by minimizing l, and might thus not be the global optimal values given
the optimal hyper-parameters p∗.

To tune the GAN, an additional measurement U is necessary to determine the quality of the
GAN given a set of hyper-parameters p. This is the reason why tuning a GAN is considered a
bilevel optimization problem, l is minimized to obtain w∗ while trying to minimize U to obtain
p∗. It needs a second objective function that quantifies the GAN’s ability to generate realistic
data. Here, we also choose the Wasserstein distance for U . Although confusing, this means that
the GAN is tuned, i.e. the optimal hyper-parameters p∗ are found, by using the Wasserstein
distance as an objective function. A second loss function, either minimax or Wasserstein, is
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used to determine the optimal weights w∗ given a set of hyper-parameters p as explained in
section 3.2.3. To clearly differentiate, to tune the GAN we minimize the objective function U
and then we find the optimal weights w∗ given a set of hyper-parameters p by minimizing a
loss function l. The loss function l is either the minimax or Wasserstein loss function.

The Wasserstein distance U can discretely be defined for this optimization problem as:

W (DGAN ,Dval) =
∑
i

|FGAN (xi)− Fval(xi)| (4.4)

This is a metric to compare the probability distribution of the real-world data Dval and the
GAN generated data DGAN by calculating their distance. It is an alternative to JS divergence,
normally used in GANs, see appendix A and section 3.2.7. The Wasserstein measure offers a
smoother representation of the distance between 2 probability distributions, especially for lower
dimensions and with little overlap between them.

It is important to note that any inverse performance metric that measures the GAN’s ability
to generate realistic data can be used for U . We could for example have made a combination
of the statistical properties mentioned in section 2.4. However, creating a performance measure
combining these properties would make the tuning process significantly more difficult and time-
consuming, which is the reason for choosing the Wasserstein distance for U .

Preferably, the GAN is trained on the optimal hyper-parameters p∗, a vector of parameters
where U(p∗,w∗;Dval) ≤ U(p(j),w∗;Dval) ∀p(j) ∈ Ω. Considering that it might be too time-
consuming or even impossible to find p∗, we want to deploy a simple and fast GAN hyper-
parameter tuning strategy, which is currently lacking in the literature. We decided to employ an
automated parameter tuning strategy (Sæternes et al., 2023) because it is simple to implement
and can easily be scaled to the computational power available. The goal here is to find a set of
hyper-parameters that improves on the initial choice p(0) shown in table 4.1. This is achieved
using perturbation theory, where an approximate solution is found by combining solutions of
simpler intermediate problems. GAN hyper-parameter tuning is a novel topic and perturbation
theory has never been applied to tune the hyper-parameters of a GAN. For each iteration j
we randomly change the hyper-parameters within their boundaries using ∆ to end up with a
new improved set p(j) satisfying U(p(j),w∗;Dval) ≤ U(p(j−1),w∗;Dval), where j represents one
iteration.

During each iteration j, the m new vectors of the hyper-parameters are created using:

p(j)k = p(j−1) + bk · ui · p(j−1) (4.5)

for k = 1, ...,m

For ui we choose a normal probability distribution with a mean of 0 and standard deviation equal
to ∆i, the pre-defined change of each hyper-parameter i = 1, ..., n, as shown in table 4.1. The
symbol bk represents a probability distribution where P(bki = 1) = 0.5 and P(bki = 0) = 0.5.
This (almost) ensures that not every variable is perturbed during each training cycle k. It
is important to ensure that every parameter p(j)k remains within the pre-specified lower and
upper bounds. Therefore, if the boundary is exceeded, we simply set the value to the pre-
defined minimum/maximum. In addition, for integer-valued hyper-parameters, like the number
of LSTM layers, we simply round off to the nearest integer.

Now we train the GAN for every new parameter set p(j)k to obtain m inverse performance
measures U(p(j)k ,w∗;Dval). Using these results, we can construct an additional parameter
p(j)m+1 using the information from all parameter sets p(j)k . This is achieved by calculating the
following vector:

s =

∑m
k=1[U

j
k < ∞](U j−1 − U j

k)(p
(j)k − p(j−1))∑m

k=1[U
j
k < ∞]

(4.6)
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Here [.] is 1 if its condition is true and 0 if false. The vector s has an individual entry for
each parameter i denoted as s = (s1, ..., sn). Then we can calculate the additional set of
hyper-parameters:

p
(j)m+1

i = p
(j−1)
i +

si

p
(j−1)
i U j−1

(4.7)

Here p
(j)m+1

i for i = 1, ..., n are all individual hyper-parameters in the set p(j)m+1 . If a hyper-

parameter of the previous set is 0, e.g. p
(j−1)
i = 0, we use:

p
(j)m+1

i =
si

U j−1
(4.8)

Now we run the code again to obtain U(p(j)m+1 ,w∗;Dval). For the next iteration j+1, we choose
the set p(j) from iteration j such that it satisfies U(p(j),w∗;Dval) = min(U j−1, U j

1 , ..., U
j
m, U j

m+1).
This implies that we continue the tuning process with the set that resulted in the GAN with
the lowest Wasserstein distance. Due to choosing only a limited number of iterations j, there
is no guarantee to find the optimal set of hyper-parameters p∗. However, using this approach,
we will find hyper-parameters that are at least as good as our initial values that were chosen
based on the GAN literature in subsection 4.3.1.

While employing this method, we noticed that we had multiple sets of hyper-parameters all
with very similar Wasserstein distances, especially at the end of the tuning process. Therefore
we compared all GANs where its Wasserstein distance was under a pre-specified threshold.
Particularly helpful considering that not all GANs with a similar Wasserstein distance could
capture the statistical properties of the real-world data equally well. Based on the output of
this tuning process, the best LSTM-GAN, LSTM-TCN-GAN, and W-GAN-GP are shown in
section 4.4. The best sets of hyper-parameters can be found in table C.3 in appendix C in case
a reader is interested, although the results are dependent on the dataset used to train the GAN.
In the next section, these best-performing GANs will be analysed.

4.4 Quantitative analysis of GAN output

To validate the GAN, its ability to create realistic financial returns is determined based on
graphs and tests of the most common statistical properties often exhibited by financial time
series as discussed in section 2.4. These properties are compared to the real-world data to
determine whether we were able to train a decent GAN. To somewhat reduce the effects of the
noisiness, especially an issue when measuring the coarse-fine volatility correlation and gain/loss
asymmetry, we decided to sample 5 batches of length 1000 and averaged the statistics out.
This makes the time-series graphs in the following subsections look random but it improves the
quality of the statistical measures.

4.4.1 Statistical properties real-world data

Figure 4.1 shows the statistical properties of the log returns of the BHP stock. By analysing the
time series graph we can see that its mean is around 0 and volatility clustering is present. Based
on the plot, there appears to be little auto-correlation in the returns. The Ljung-Box test, up
to lag 10, resulted in p−value ≈ 0.4%, rejecting the Null hypothesis and indicating statistically
significant auto-correlation. The power law exponent α is larger than 3 (tested α− 3 = β > 0)
and p−val1 ≈ 0 (as explained in section 2.4) indicating statistically significant heavy-tails. The
absolute returns are correlated and also follow a power law distribution, indicating volatility
clustering. The Ljung-Box test of the absolute returns up to lag 10 resulted in p− value ≈ 0%,
indicating statistically significant volatility clustering. The leverage effect is also present in
the data, showcased by both positive and negative correlations between returns and future
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volatility. The coarse-fine volatility is a noisy measure, but the orange line showcases that fine
volatility can somewhat predict coarse volatility due to the correlation difference being slightly
negative. The gain/loss asymmetry is actually a bit too noisy to compare. However, the peak
value indicates that a price decline (Red) is reached slightly faster than a price increase (Blue),
although the results here are not convincing.

Figure 4.1: Statistical properties of BHP returns

4.4.2 Statistical properties of LSTM-GAN

Figure 4.2 shows the output of the LSTM-GAN. It is immediately clear that this GAN did
not perform well considering that the time series graph shows negative bias in the returns,
which also influences the other statistics. The returns appear to be positively auto-correlated,
although converging to 0 for higher lags. The Ljung-Box test for auto-correlation up to lag 10
resulted in p − value ≈ 0%, indeed indicating statistically significant auto-correlation. Both
the real-world and GAN’s data show significant auto-correlation, however, the graph indicates
stronger auto-correlation in the GAN’s data.

The distribution in the tails is very similar to the real-world data shown by the power law
exponent α having a value near the real-world stock-dataset’s α. Based on the likelihood ratio
test, the power law exponent α is larger than 3 and p−val1 ≈ 0 indicating statistically significant
heavy-tails, similar to those observed in the real-world data. It is important to note that the
likelihood ratio test assumes that the Null hypothesis (H0) specifies a fixed parameter value
for the unrestricted data. However, in the case of comparing the exponent α between GAN
data and real-world data, both α parameters are random variables influenced by the specific
sample chosen. This randomness and dependence on the sample make it challenging to satisfy
the assumption of fixed parameters required by the likelihood ratio test. This is the reason not
to use the likelihood ratio test directly to test whether the GAN data’s power law exponent α
is equal to the real-world data’s α. Instead, we only tested whether both have significant signs
of heavy-tails and not whether they have an equal distribution in the tails.

Volatility clustering is present in the GAN, although slightly higher for lower lags, and it
converges towards zero for higher lags similar to the real-world stock-dataset. The Ljung-box
test of the absolute returns up to lag 10 has p−value ≈ 0%, implying significant volatility clus-
tering. The GAN seems to over-capture the leverage effect, shown by lead-lag auto-correlations
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surpassing the real-world values. It is not too relevant whether the lead-lag correlation is neg-
ative or positive considering that it is dependent on the current market conditions (Qiu et al.,
2006). The real-world data also shows both positive and negative leverage effects. As mentioned
before, the coarse-fine volatility and gain/loss asymmetry are noisy measures thus the results
should be taken with a grain of salt. The fine volatility cannot really predict coarse volatility
in the GAN data, ∆ρτcf (k) (the orange dotted line) remains around 0. Lastly, the gain/loss
asymmetry seems present considering that the peak of negative returns occurs before the peak
of positive returns. However, it should be noted that the GAN created so few positive returns,
as can be seen from the time-series graph, that only a couple of positive measurements are
included in the calculation making this property incomparable. In conclusion, the LSTM-GAN
does not produce data that is very similar to the real-world data. It should be noted that the
GAN output will be standardized before using it in the geometric Brownian motion of the GAN-
QMC simulation, removing the negative bias. Standardizing a distribution will only affect the
gain/loss asymmetry due to the way this statistic is defined and not the other statistics chosen
here.

Figure 4.2: Statistical properties of LSTM-GAN

4.4.3 Statistical properties of LSTM-TCN-GAN

Figure 4.3 depicts the statistical properties of the LSTM-TCN-GAN. The time series shows a
small bit of negative bias in the returns. The auto-correlation is large for a low number of lags
but fades away afterward. The Ljung-Box test up to lag 10 shows that the auto-correlation is
significant with p − value ≈ 0%. The likelihood ratio test shows that the power law exponent
α is larger than 3 and p − val1 ≈ 0% indicating statistically significant heavy-tails. Volatility
clustering is being captured because the Ljung-box test for absolute returns up to lag 10 has
p− value ≈ 0%. However, there appears to be too much auto-correlation for lower lags similar
to the LSTM-GAN. The leverage effect seems to be captured well considering that the absolute
maximum lead-lag correlation is similar to that of the real-world stock-dataset. The coarse-
fine volatility correlation and gain/loss asymmetry show promising results but granted, these
are noisy measures either way. The negative asymmetry between coarse and fine volatility
seems to be present but is very small. The peak of negative returns occurs slightly before
positive returns similar to the real-world stock-dataset. Overall the LSTM-TCN-GAN performs
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noticeably better than the LSTM-GAN.

Figure 4.3: Statistical properties of LSTM-TCN-GAN

4.4.4 Statistical properties of W-GAN-GP

In figure 4.4 the results of the W-GAN-GP are shown. The average returns are roughly zero.
The W-GAN-GP shows signs of auto-correlation up to lag 10, statistically significant as the
Ljung-Box p − value ≈ 0%, although it quickly converges to zero. The power law exponent α
is larger than 3 and p − val1 ≈ 0%, indicating statistically significant heavy-tails. Volatility
clustering is statistically significantly present in the data (Ljung-Box p− value ≈ 0% up to lag
10) but like the other GANs, the auto-correlation in the absolute returns is too high for low
lags. The leverage effects are definitely captured showing both positive and negative lead-lag
correlations, although it is a bit stronger than the real-world data. Fine volatility has almost
no predictive ability for coarse volatility shown by the orange dotted line hovering around 0.
The negative returns decline at a faster rate than the positive returns increase considering that
the peak of the negative cumulative returns distribution occurs before the positive one, similar
to the real-world data.

4.4.5 Conclusion of GAN’s abilities

The figures showed that none of the GANs were able to capture all the statistical properties
identically to the real-world dataset. Figure 4.5 shows the W-GAN-GP’s output compared to
a large random sample of standard normally distributed data. Interestingly enough, the W-
GAN-GP creates data with a similar distribution to the standard normal distribution. The
other GANs deviated slightly more from the standard normal distribution.

Figures 4.2, 4.3, and 4.4 show some interesting observations and differences between the
GANs. LSTM-GAN was good at capturing heavy-tails and solid at capturing volatility clus-
tering, and leverage effects. The LSTM-TCN-GAN was good at capturing the auto-correlation
and leverage effects and was solid at capturing volatility clustering and the gain/loss asym-
metry. The W-GAN-GP has a mean around zero and captured the heavy-tails quite well. In
addition, it was solid at capturing auto-correlation, volatility clustering, leverage effects, and
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Figure 4.4: Statistical properties of W-GAN-GP

Figure 4.5: Histogram of GAN data vs standard normally distributed data
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Figure 4.6: W-GAN-GP Sample

gain/loss asymmetry. None of the GANs were able to capture any significant coarse-fine volatil-
ity correlation, although LSTM-TCN-GAN might be slightly less poor than the other GANs.
To conclude, the W-GAN-GP seems to perform best of all GANs tested in this thesis. However,
the GAN’s ability to capture all the statistical properties of a financial time series is not great
which seems to be in line with previous research (Eckerli et al., 2021). This will most likely
harm the effectiveness of the approach when pricing options using a GAN in the MC/QMC
simulation.

It should be noted that the time-series graph is also averaged over multiple GAN samples,
making it appear random. This graph was thus mainly useful to check the average return.
Figure 4.6 shows a single sample from the W-GAN-GP clearly showing some degree of auto-
correlation and volatility clustering, looking less random and somewhat more comparative to
the real-world log returns of the BHP stock.

Instead of deploying GANs, alternative models could have been used to capture the statisti-
cal properties of the underlying asset. A solid possibility is to use a volatility model. However,
research shows that many of the volatility models are not able to capture all statistical proper-
ties of real-world financial time series data either (He, 2020) (Malmsten et al., 2010). Similar
to GANs, when selecting a volatility model, there is always a trade-off involved between which
statistical property is modeled most realistically depending on the choice of model.

4.4.6 Sanity check W-GAN-GP

We use the W-GAN-GP to perform the sanity check mentioned in subsection 3.3.3 because the
W-GAN-GP outperforms the other GANs. The goal of the sanity check is to ensure that the
GAN generates risk-neutral price paths for different values of ∆t. The GAN is trained on daily
historical stock prices, thus ∆t = 1 is a daily price change. Table 4.2 shows that the geometric
Brownian motion has an error, the percentage difference between the risk-free rate and the
GAN’s returns, independent of the time step ∆t and returns distribution (not controlling for
the little amount of uncertainty of the random samples). These results are surprising considering
that we expected that a large value of ∆t would make the results of the GAN invalid because
it is not an actual continuous probability distribution. This is good news for the GAN-QMC
because this indicates that the choice ∆t does not impact the validity of the results. This allows
us to select ∆t based on the amount of computational power available (a smaller ∆t results in
higher computational times but probably higher accuracy).
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Distribution ∆t = 100 ∆t = 1 ∆t = 0.01
in GBM µ̂ error µ̂ error µ̂ error

GAN 1.93e−2 3.64% 2.05e−4 2.30% 2.07e−6 3.39%
Normal 1.95e−2 2.67% 2.07e−4 3.48% 1.92e−6 3.97%

Table 4.2: Sanity check
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Chapter 5
Empirical Results

In this chapter, the performance of all pricing methods is analysed. In addition, we conduct
a sensitivity analysis to determine the distribution of the option price estimates for different
input parameters.

5.1 Analysis

In this section, the MC, QMC, and GAN-QMC are compared for 3 different companies. The
GAN-QMC is tested both with a quasi-random and pseudo-random sequence, the latter thus
actually being a GAN-MC method. In addition to the company BHP, the GAN was tuned
separately for 2 additional companies, namely the Commonwealth Bank of Australia (CBA)
and CSL Limited. The statistical properties of the GANs trained on these 2 companies are
shown in appendix B. The GAN-QMC method is implemented using a W-GAN-GP because
it was deemed most capable of capturing the statistical properties of financial time series as
shown in section 4.4.

5.1.1 Data

As explained in subsection 4.1.1, we used stock-datasets to tune the GANs and an option-
dataset for subsequent analysis. Each stock-dataset consisted of the daily closing prices of one
of the selected companies and was split into a training and test set. The training data of CBA
ran from 1992 up to 2015 and the test set from 2015 up to mid-2023. The training data of CSL
ran from 1994 up to 2015 and the test set from 2015 up to mid-2023.

The option-dataset contains historically traded European and American options, including
their corresponding parameters, combined for all companies. For each option priced using GAN-
QMC, the GAN trained on the option’s underlying asset was used. For example, when pricing
a European call option on the company BHP using GAN-QMC, the W-GAN-GP trained on
the BHP stock-dataset is used.

In total, the option-dataset consists of 454 options, where 185 are European and 269 are
American. The moneyness ranges from -18.39 to 44.55 with most options being around 0 as
displayed in figure B.8 in appendix B. The time to maturity ranges from 3 to 93 days. The entire
option-dataset can be found on the following GitHub page: https://github.com/sP22222/GANs-
Q-MC.

5.1.2 Least-squares MC vs Averaging method

The results of the least-squares MC against the averaging method are discussed first because
the best-performing method will be used for the remainder of all analyses in this chapter when
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pricing American options. Table 5.1 shows that there is no statistically significant difference
between both pricing methods although the mean MAPE indicates that the averaging method
slightly outperforms the least-squares MC. The computational time of the averaging method
with a value of 0.021 is much faster than least-squares MC with a value of 1.66. This is
mainly due to the necessity to fit a least-squares regression for every time step, slowing down
the computations for the least-squares MC. Considering that doing all these analyses is very
computationally intensive, a low computational time is important, thus we continue this chapter
by using the averaging pricing method for American options.

Pricing Method Mean MAPE 95% CI MAPE

Least-squares 3.71% [3.45%, 3.97%]
Averaging 3.41% [3.17%, 3.66%]

Table 5.1: MAPE Least-squares vs Averaging method

5.1.3 Statistical Measures

The statistical measures are calculated for BHP, CBA, and CSL for MC, QMC, GAN-MC, and
GAN-QMC all using the W-GAN-GP. The measures are averaged over the 3 companies. The
main goal is to assess whether using a GAN within QMC simulation can improve the accuracy
and computational efficiency of option pricing. This analysis is done for 500, 5000, and 50.000
simulation trials for time step ∆t = 1.

Accuracy

The combined results for BHP/CSL/CBA simulations are presented in tables 5.2, 5.3, and 5.4.
The tabulated values represent the 95% CI of the MAPE: [Lower bound, mean MAPE, Upper
bound].

Number of European Call European Put
Trials (N) 500 5000 50000 500 5000 50000

MC [4.89%, 6.01%, 7.13%] [3.46%, 4.30%, 5.15%] [2.81%, 3.55%, 4.29%] [6.12%, 7.52%, 8.92%] [3.15%, 4.12%, 5.10%] [2.71%, 3.65%, 6.00%]
QMC [3.45%, 4.41%, 5.38%] [3.06%, 3.84%, 4.62%] [2.89%, 3.64%, 4.40%] [3.74%, 5.01%, 6.27%] [2.65%, 3.56%, 4.46%] [2.64%, 3.54%, 4.44%]
GAN-MC [5.91%, 7.16%, 8.42%] [3.00%, 3.87%, 4.74%] [2.92%, 3.70%, 4.45%] [6.71%, 8.28%, 9.85%] [2.89%, 3.83%, 4.77%] [2.41%, 3.36%, 4.31%]
GAN-QMC [3.75%, 4.73%, 5.71%] [2.93%, 3.70%, 4.47%] [2.91%, 36.9%, 4.45%] [3.98%, 5.10%, 6.21%] [2.78%, 3.70%, 4.55%] [2.52%, 3.42%, 4.32%]

Table 5.2: MAPE European Options

Number of American Call American Put
Trials (N) 500 5000 50000 500 5000 50000

MC [6.22%, 7.39%, 8.55%] [3.10%, 3.71%, 4.34%] [2.91%, 3.52%, 4.14%] [6.79%, 8.38%, 9.97%] [3.47%, 4.23%, 4.99%] [2.80%, 3.56%, 4.33%]
QMC [4.24%, 5.02%, 5.79%] [2.87%, 3.49%, 4.10%] [2.87%, 3.48%, 4.09%] [5.53%, 6.61%, 7.68%] [2.93%, 3.65%, 4.37%] [2.77%, 3.53%, 4.28%]
GAN-MC [5.71%, 6.74%, 7.77%] [3.28%, 3.97%, 4.66%] [2.82%, 3.43%, 4.03%] [6.63%, 7.93%, 9.22%] [3.79%, 4.64%, 5.50%] [2.78%, 3.53%, 4.28%]
GAN-QMC [3.92%, 4.70%, 5.48%] [2.93%, 3.56%, 4.20%] [2.87%, 3.48%, 4.09%] [4.90%, 5.94%, 6.98%] [3.07%, 3.83%, 4.59%] [2.77%, 3.52%, 4.26%]

Table 5.3: MAPE American Options

For 500 trials the QMC and GAN-QMC significantly outperform the MC and GAN-MC,
aligning with our expectations. All pricing methods converge once the number of trials is
increased. While GAN-QMC did not statistically outperform the QMC method, it is interesting
to note that the GAN-MC and GAN-QMC outperform the MC and QMC respectively for 500
simulation trials for American options and vice versa for European options. These differences,
however, were not statistically significant.

Combining all option types revealed no statistically significant difference between GAN-
QMC and QMC. Again, it can be said that maybe for a low number of simulation trials, the
GAN-QMC is slightly superior to all other methods, but these results are not statistically
significant. For a low number of trials, GAN-QMC does statistically outperform the GAN-MC
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Number of Calls & Puts
Trials (N) 500 5000 50000

MC [6.85%, 7.48%, 8.11%] [3.65%, 4.04%, 4.43%] [3.13%, 3.51%, 3.88%]
QMC [4.95%, 5.48%, 6.01%] [3.24%, 3.61%, 3.98%] [3.12%, 3.49%, 3.86%]
GAN-MC [6.78%, 7.42%, 8.07%] [3.63%, 4.02%, 4.41%] [3.16%, 3.53%, 3.90%]
GAN-QMC [4.62%, 5.10%, 5.58%] [3.23%, 3.60%, 3.97%] [3.12%, 3.49%, 3.86%]

Table 5.4: Combined MAPE Options

method. This indicates, as expected, that using a quasi-random sequence in the GAN-based
simulation pricing method improves its convergence. The GAN-QMC seems to behave similarly
to the QMC indicating that we can indeed model the returns of the underlying asset using
a GAN instead of assuming normality. By replacing the standard normal distribution in the
geometric Brownian motion with the GAN (sampling from the Generator instead of the standard
normal distribution) we can achieve similar results for modeling the stock price process without
making distributional assumptions.

Efficiency

Measuring computational efficiency is tricky because it is partially dependent on which coding
libraries are used. The quasi-random sequences were generated with different libraries than
the pseudo-random sequences. The pseudo-random sequences are more common and those
libraries have therefore been developed in C to have speed advantages like more efficient memory
allocation. So for a fair computational efficiency comparison, all methods should be programmed
in a fast language like C with the same libraries. In that case, we expect quasi-random sampling
only to be slightly slower than pseudo-random sampling. To combat these implementation
mismatches, we only compare QMC with GAN-QMC (same implementation) because these
have shown to be the most accurate for the least number of trials.

Table 5.5 shows the 95% CI’s of the computational times of QMC and GAN-QMC for 50.000
trials, implemented with the exact same programming libraries. The GAN-QMC is statistically
significantly the fastest pricing method, showing that combining QMC with a GAN is relatively
efficient. This suggests that quasi-random sampling from an empirical distribution is faster
than from a continuous distribution, probably due to no need for extra computations once the
empirical distribution has been sampled.

If we adjust the errors in table 5.4 with their computational times, the error would have
been 4.51% for QMC compared to 3.60% for GAN-QMC. Although this comparison assumes a
linear increase in performance, which figure 5.1 showed not to be the case. In addition, we did
not take into account GAN training time and the construction of an empirical distribution. It is
nevertheless interesting to see that a 20% difference in computational time has a big impact on
accuracy and makes the GAN-QMC significantly more accurate than regular QMC. To conclude,
the exact pricing model used in a QMC simulation does impact the computational times and
the GAN-QMC seems to be most computationally efficient.

Method Computational time (s)

QMC [4.92e−2, 5.34e−2, 5.77e−2]
GAN-QMC [3.93e−2, 4.26e−2, 4.60e−2]

Table 5.5: Computational times QMC vs GAN-QMC

We also conducted a short analysis for various time steps ∆t. However, some initial testing
showed similar differences between QMC and GAN-QMC, so we decided not to conduct a more
in-depth analysis. Lowering ∆t lowers the MAPE of all methods and reduces the width of the

64



Figure 5.1: Simulation convergence

confidence intervals significantly. However, the MAPEs converge to the same small confidence
intervals instead, still not measuring any significant difference between the methods. It should
also be noted that lowering ∆t leads to issues when generating a quasi-random sequence because
the dimensionality can become too large. If computational time is not an issue, all methods
converge to the same low MAPE of 2% with roughly 10.000 trials for ∆t as small as possible.
If computational times are important, the best results seem to occur using GAN-QMC with a
couple of thousand trials by decreasing ∆t only slightly (e.g. ∆t = 0.5).

5.1.4 Analysing graphs

We now analyse the graphs for different parameters as discussed in section 4.1.3. The statistics
of all graphs are calculated on price estimates of roughly 500 options.

Convergence

The convergence graph, depicted in figure 5.1, shows patterns that are as expected for a low
number of simulation trials. First of all, the quasi-random sequence performs better than its
pseudo-random counterpart. The MC simulation seems to slightly outperform the MC-GAN,
but the difference is minor. The GAN-QMC slightly outperforms the QMC, but here the
differences are small too. Overall using a GAN does not result in faster convergence, but as
expected a quasi-random sequence does. Considering the MAPEs converged quickly, we will
do the rest of the analysis with 500 trials, significantly reducing the computational times. This
choice might show differences in performance somewhat more noticeably, but the results will
have a bit more uncertainty. To battle this, we average each performance metric and only analyse
its trends. Plotting every single individual data point gives hard-to-read results either way. The
plots were constructed by fitting a polynomial function to the data points by minimizing the
least-squares error.

Moneyness

Figure 5.2 shows the moneyness of the option against the MAPE for each pricing method.
Considering that most options were ATM, the difference in trend between QMC and GAN-
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Figure 5.2: Moneyness

QMC is too small to draw any conclusions. It seems that the chosen method (assuming using
the same random sequence) does not influence the ability to price options ITM, ATM, or OTM
at least within the moneyness range [−10, 10].

Maturity

Figure 5.3 shows really interesting results. The longer the time to maturity of the option
becomes, the better both GAN methods perform relative to the regular MC/QMC whose per-
formance decreases the more maturity increases. For options where the time to maturity is more
than 3 months, the differences can easily be more than 1.5 percentage points. Potentially, the
performance difference becomes more noticeable because the GAN models the returns slightly
more realistic than a standard normal distribution, which becomes more noticeable the larger
the maturity of the option. Preferably we would do a more in-depth analysis using thousands
of options with a maturity above 3 months. However, this was not possible since not much data
is available here because the liquidity of free-of-charge data for long-maturity options was an
issue.

Implied Volatility

The option-dataset mainly contains options with yearly implied volatilities in the range [10%, 35%].
There are 12 options in the dataset where the implied volatility is far above 35%. We took these
outliers out of the data because they do influence the trend but there aren’t enough observa-
tions to draw any conclusions on the ability to price options with such large implied volatilities.
Figure 5.4 shows the trends of the MAPE with regard to the implied volatility for all methods.
The performance differences between MC/QMC and GAN-MC/GAN-QMC never become very
significant.

Combining all results, the performance between MC/QMC and GAN-MC/GAN-QMC seems
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Figure 5.3: Time to Maturity

Figure 5.4: Implied volatility
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pretty similar overall. However, for options with a long maturity both GAN-MC and GAN-QMC
seem to perform better than their counterparts.

5.2 Sensitivity analysis

To analyse some details and differences between the pricing methods more in-depth, we will
deploy a simple sensitivity analysis. We follow a simplified approach based on the paper of Fu
et al. (2009) to determine the sensitivity of the different methods with regard to some of the
input parameters.

5.2.1 Sensitivity analysis explained

The sensitivity analysis consists of 4 steps. The goal is to determine how sensitive the option
price is to changes in the input parameters.

1. Parameter selection: The key parameters to change must be selected first. For option
pricing using a MC simulation, we deemed the stock price, strike price, time to maturity,
implied volatility, and risk-free rate as relevant parameters.

2. Vary the parameters: The chosen parameters must be varied within a pre-specified
range, wide enough to capture a significant amount of parameter impact on the option
price. The stock and strike price will both be varied within the interval [80, 120]. The
time to maturity will be varied within the interval [10, 250], the implied volatility within
[5%, 65%], and the risk free rate within [0.1%, 6%].

3. Run the simulation: We will create datasets where 1 parameter at a time is adjusted
within the pre-determined interval. The simulations must be run on all these different
datasets.

4. Analyse the results: This step can be achieved in 2 ways. The first possibility is to
calculate the gradient of the estimated option prices with respect to each parameter (Fu et
al., 2009). The second possibility, and our choice for this thesis, is to plot the distributions
of the estimated option prices for each parameter. This allows us to quickly see the
similarities and differences between all pricing methods with regard to their parameter
sensitivity. This could partially help to understand why and when a pricing method works
well or not.

5.2.2 Sensitivity analysis results

We now analyse the results of the sensitivity analysis comparing MC, QMC, GAN-MC, and
GAN-QMC. The distributions for the various selected parameters are shown in appendix B.
The distributions were estimated using a Gaussian kernel-density estimation (Yen, 2017), with
the bandwidth determined by Scott’s method (Scott, 1994). Overall the results show almost
complete overlap in distributions between all methods. The sensitivity of the stock price, strike
price, implied volatility, and risk-free rate do not differ that much. The sensitivity towards
maturity seems to be the largest, however is influenced by OTM options. Therefore we decided
to do a more in-depth sensitivity analysis for the time to maturity of ATM and ITM options,
see figure 5.5. This shows that the higher the estimated price the more the methods differ,
especially within the interval [10, 20]. Since a longer maturity increases the option price, and no
other parameter was varied in figure 5.5, it can be concluded that the difference in sensitivities
of the methods is influenced by maturity. This explains why the methods differ most in their
pricing accuracy for different maturities as shown in section 5.1.4
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Figure 5.5: Sensitivity analysis of Time to Maturity ATM & ITM

5.3 GAN Tuning results

We also want to reflect on the effectiveness of the automated hyper-parameter tuning process
(Sæternes et al., 2023) considering that it has never been employed to tune a GAN. The tuning
process has been deployed to 9 GANs. Usually the objective function U(p, w∗;Dval) of a tuned
GAN decreased by at least a factor of 10 compared to the initial starting hyper-parameters
(based on the literature), thus showing promising results. The GAN trained on the initial
hyper-parameters lacked any ability to create financial data. Towards the end of the tuning
process, its ability significantly improved into a moderately performing GAN as has been shown
in section 4.4.

The tuning process was a technique to end up with a set of hyper-parameters at least as
good as the initial values. It was surprising that this tuning process was able to decrease the
objective function so much, with a relatively low number of iterations. A sequential approach
did not work because changing 1 variable influences the impact of another. Alternatively, trying
every combination, within a certain interval, would require way too much computational power
resulting in a huge training time.

Figure 5.6 shows a plot of the Wasserstein distance U throughout the tuning process. Again,
note that this is not the same objective function that the Generator and Discriminator use to
play the zero-sum game, necessary to train a single GAN. This method worked well because
even if a GAN was trained that resulted in a large U , due to the calculation of equation 4.6 of
subsection 4.3.2, the result would be flipped by assuming that changing the parameters in the
opposite direction must be better. The graph shows that when a good GAN was found that
resulted in a low Wasserstein distance, then the GANs trained in the next iterations would have
relatively low Wasserstein distances as well. This suggests that employing an iterative approach,
where the previous best GAN serves as a new starting point, from which new GANs are trained
using random sets of hyper-parameters around the best GAN, proves to be an effective strategy.

During the tuning process equation 4.5 of subsection 4.3.2 was first used 5 times and its
results would then be combined into the special equation 4.6. This process was repeated for
12 iterations. Based on all 9 tuned GANs, equation 4.6 resulted in the best set of hyper-
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Figure 5.6: Wasserstein distances of Tuning process

parameters 2 times, suggesting that this special formula performed no better than a completely
random search. However, if the same tuning process had been employed using only 6 instead
of 12 iterations, equation 4.6 would have resulted in the lowest Wasserstein distance 4 times.
This implies that the special equation works especially well when a researcher really wants to
minimize the computational time of the tuning process by minimizing the number of tuning
iterations.

The automated hyper-parameter tuning process might work well because it creates a good
set of hyper-parameters combining the results of random searches into the special equation 4.6
of subsection 4.3.2. Once a set of hyper-parameters that resulted in a low objective function
had been found (usually within a couple of iterations), the random searches of equation 4.5
ensured that an even slightly better set could be found. So the special equation is helpful
to quickly find a good set of hyper-parameters and once this is achieved, randomly searching
around this set works well. Even though this tuning process seems promising, it is important to
note that a sample of 9 tuned GANs is rather small to draw very convincing conclusions about
the effectiveness of this tuning process.

Using formula 4.6, while only continuing with the best GAN after every tuning iteration,
resulted in a constantly better set of hyper-parameters where the final set was the GAN that
minimized U such that U(p(f), w∗;Dval) = min(Uf−1, Uf

1 , ..., U
f
m, Uf

m+1) where f is the final
iteration. To conclude, this method worked well to determine which hyper-parameters to choose
for the GAN training and always improved noticeably on the initial chosen set. The biggest
improvements were made in the first couple of tuning iterations. The objective function would
always converge to some small value. This tuning process did not necessarily result in the
optimal set p∗, considering that the GAN’s output is not the same as the real-world data, but
it did result in a solid set resulting in a low objective function, capturing some of the statistical
properties, while not needing much computational power.
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Chapter 6
Conclusion

In this thesis, we developed a new pricing method combining a GAN with a QMC simu-
lation. All relevant code used in this thesis can be found on the following GitHub page:
https://github.com/sP22222/GANs-Q-MC. We tested whether the pricing of options using a
QMC simulation can be improved by modeling the returns of the underlying asset with a GAN,
hopefully, more closely capturing the statistical properties of the underlying asset. We will now
provide the key findings of our research, interpret the results, discuss the practical implications,
and cover the limitations. Finally, recommendations for further research based on the gaps in
this thesis will be given.

6.1 Key Findings

In chapter 5, we carefully examined and compared MC, QMC, GAN-MC, and GAN-QMC
to analyse how accurate and efficient they are in their ability to price options. The goal of
this research was to improve MC/QMC option pricing by building a new pricing framework
implementing a GAN into a QMC simulation, trying to overcome some of the limitations of
traditional parametric models. The primary research question was formulated as follows:

Can a Generative Adversarial Network and Quasi-Monte Carlo simulation be combined
to create a non-parametric pricing framework for pricing different types of options, to
achieve more accurate and efficient valuations?

The foundational groundwork was laid by constructing a theoretical framework, using relevant
literature to place the topic within a broader context and to explain the main aspects of option
pricing, MC simulation, and GANs. Building on this, the methodology for the GAN-QMC
was developed including among other things option pricing using MC/QMC, neural networks,
GANs, and the mathematics behind constructing risk-neutral price paths. This step revealed
the importance of making certain assumptions to transform the GAN’s output into risk-neutral
price paths, leading to the realization that a fully non-parametric pricing framework was difficult
to attain. Thus the GAN-QMC method is characterized as a semi-parametric pricing method,
having fewer assumptions than conventional MC/QMC pricing methods. The assumption was
made that the stock follows a process with the same functional form as the geometric Brownian
motion, but without assuming that the returns follow a standard normal distribution, as is
typically assumed in MC/QMC option pricing. Instead, the distribution of stock returns was
captured with a GAN, thereby avoiding distributional assumptions. In section 6.3, we discuss
an alternative GAN to create risk-neutral price paths without making any assumptions.

The methodology was implemented by developing the MC/QMC simulation and the GANs.
The hyper-parameters of the GANs were tuned using an automated parameter tuning strategy
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which improved on the initial GAN, where the hyper-parameters were chosen based on the
literature. There have been attempts in the literature to stably tune the parameters of a GAN,
but the results appeared mixed. Therefore our novel exploration of applying an existing tuning
strategy, which leveraged perturbation theory, to GAN training. Based on the analysis of the
tuned GANs we concluded that the W-GAN-GP was better at generating data that captures
the most important statistical properties of the real-world financial data than LSTM-GAN and
LSTM-TCN-GAN. This indicates that it is important and useful to implement techniques that
can improve training stability like Wasserstein distance, Gradient Penalty, and a convolutional
Discriminator. Therefore the tuned W-GAN-GP was implemented into the GAN-QMC.

The comparative analysis involved pricing options using MC, QMC, GAN-MC, and GAN-
QMC using data from 3 different companies listed on the Australian Stock Exchange. The
empirical results, found in chapter 5, showed equal results in terms of accuracy between QMC
and GAN-QMC. Despite the GAN not capturing the statistical properties of financial data
perfectly, the GAN-QMC did show comparable performance to QMC, suggesting equal perfor-
mance when modeling the distribution of stock returns through a GAN compared to a standard
normal distribution. This implies that we can use a GAN as a non-parametric method to model
the returns of a stock. Alternatively, this could also be interpreted that the GAN almost ended
up being an empirical variant of the normal distribution, although it’s difficult to prove which
continuous distribution a GAN would be closest to. Achieving equal performance with GAN-
QMC, while modeling the returns of the asset with a GAN instead of assuming normality, is an
interesting theoretical result.

Notably, the GAN-QMC potentially outperforms the QMC for a low number of simula-
tion trials, at approximately 500 trials. However, achieving small CIs, to actually draw this
conclusion, requires a substantial volume of option data, often requiring money. Our analysis
also suggested that the GAN-QMC outperforms QMC for long-maturity options, although data
limitations make this claim questionable. For pricing American options, the least-squares and
averaging methods showed no significant difference in accuracy, but the averaging method was
much faster.

From an efficiency standpoint, sampling from an empirical distribution requires no cal-
culations compared to sampling from a standard normal distribution, which resulted in the
GAN-QMC method being about 20% faster. It is important to note that this did not include
the GAN training and construction of an empirical distribution (dataset). So if the main goal is
low computational times while having a solid accuracy, then the GAN-QMC offers an advantage
over regular QMC when the number of trials is low and ∆t is not very small.

A not-so-trivial detail has been deployed when quasi-randomly sampling from the Generator.
In essence, feeding quasi-random noise to a neural network, the Generator, does not guarantee
a quasi-random output. We deployed a pragmatic approach by sampling billions of random
numbers from the Generator of the tuned GAN. By ordering this dataset, it was treated as an
empirical distribution from which we were able to quasi-randomly sample. This also seems to
be the main reason why the GAN-QMC’s computational times are faster than QMC because
there is no need for any extra calculations once the empirical distribution has been made. In
contrast, sampling from a normal distribution requires costly calculations. Deploying the same
technique for regular QMC by approximating the normal distribution might result in similar
accuracy and computational efficiency as GAN-QMC.

6.2 Discussion

During this research, we developed a semi-parametric pricing framework, not making distri-
butional assumptions, using GANs and QMC. However, several assumptions were made to
construct risk-neutral price paths. In this section, we suggest methods to relax several assump-
tions of QMC/GAN-QMC. We also discuss the limitations, interpretations, and implications of
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this research.

6.2.1 Assumptions of GAN-QMC

Option pricing is done in a risk-neutral framework but the GAN was trained on historical stock
return data and thus outputs synthetic real-world returns. We needed a way to transform the
GAN’s output into risk-neutral price paths. To achieve this the geometric Brownian motion
was used which implies that the GAN-QMC method had to make the following assumptions:

1. The stock has the functional form of a geometric Brownian motion thus having constant
drift and volatility

2. The stock pays no dividends

3. Continuous time

4. No transaction costs or taxes

5. Market is efficient

6. No stock price jumps

7. Constant interest rates

8. Liquid market

Starting with the positives, the GAN-QMC method does not make any distributional as-
sumptions about the returns of the asset, instead, the GAN is used to model the returns of the
asset. Assumption 1 can be relaxed by using a FIN-GAN allowing the immediate generation
of risk-neutral price paths, which we discuss in more detail in section 6.3. The downsides of
FIN-GANs are very unstable training and difficult implementation using encoders and decoders
(Tan et al., 2022). The reason not to do this in our research was simply because some initial
testing showed the extreme difficulty in building and training a solid performing FIN-GAN. It
should be noted that the FIN-GAN is the only method recommended in this section that could
lead to potential improvements of GAN-QMC over QMC. All other recommended methods to
relax assumptions can be applied to both QMC and GAN-QMC which might thus increase the
performance of both equally.

An alternative way to relax assumption 1 is by explicitly modeling the drift and volatility.
This could be done with for example a mean reverting stochastic process for the drift and a
GARCH model for the volatility (He, 2020).

One straightforward improvement to fix assumption 2 is to incorporate the dividend yield
of the underlying stock into the model. The dividend yield represents the annual dividend
payment as a percentage of the stock’s current price. By adjusting the stock price downward
to account for expected dividends, the simulation can better reflect the impact of dividends on
the option price. The impact of assumption 3 can be minimized by using small time steps ∆t
in the simulation improving the discrete-time approximation, although significantly increasing
computational times. For assumption 4, both transaction costs and taxes can be incorporated
into a MC simulation, but this is heavily dependent on which option is priced in which market.
Assumption 5 is not really an issue because stock markets, more often than not, tend to be pretty
efficient (Davidson et al., 1982) particularly over an extended time horizon beyond a single day
(Worthington et al., 2006). If the GAN is trained perfectly it should include stock price jumps
and thus solve assumption 6. Otherwise, the MC can be extended by incorporating a jump-
diffusion model (Kirkby, 2019). Assumption 7 can be relaxed by modeling the interest rate
using a stochastic interest rate model such as the Cox-Ingersoll-Ross model (Ross et al., 1985).
Assumption 8 is not an issue when trading low volumes. Otherwise, a market impact model,
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simulating how large traded quantities affect the stock price, can be incorporated (Almgren
et al., 2005).

It should be noted that these improvements can be made to both QMC and GAN-QMC
(apart from FIN-GAN), such that both methods probably become more accurate to a similar
degree by relaxing these assumptions. In addition, these improvements would make the sim-
ulation more complex and would increase computational times. Therefore it is important to
test which assumptions have a significant negative impact on the pricing accuracy and are thus
worth relaxing using complex models.

6.2.2 Limitations

The main limitation of the GAN-QMC is simply the GAN’s ability to generate financial time
series data. This was partially due to training stability issues. Even when using the automated
tuning process the GAN did not perform great. Considering the importance of accurately
modeling the option’s underlying asset when using GAN-QMC, the GAN’s lacking abilities
most likely hindered the performance of our new pricing method. Particularly noteworthy was
the difficulty in capturing the same volatility clustering as present in the real-world data without
capturing too much auto-correlation.

Another limitation is that GANs are a black-box method, meaning that the interpretability
of the method is hard. Therefore, explaining the model, and its intricacies, of the returns of the
underlying asset to stakeholders or regulators might be challenging or near impossible.

Then there is the limitation of generating risk-neutral price paths with a GAN. We decided
to use a geometric Brownian motion leading to several assumptions. This is most likely the
reason that GAN-QMC performed so similarly to regular QMC because the stochastic process
of the GAN-QMC uses the same functional form, only changing the distribution of the returns.

Apart from limitations arising from parametric assumptions, there are also some method-
ological limitations, data being the major one. The data availability impacts both the GAN
training and analysis. Longer time series seemed to be better for GAN training, noticed because
training the GAN on BHP data worked better than on CSL/CBA data, where BHP has been
exchange listed the longest. The GAN can only be trained if a company has been exchange-listed
for many years, limiting the effectiveness and applicability of the GAN-QMC.

The initial goal of this research was to price exotic options because we expected our method
to be particularly useful for price path-dependent options. Due to a lack of freely available
historical option pricing data, we decided to focus on European and American options. The
code provided on GitHub still contains functions to price exotic options allowing the pricing of
Asian, barrier, and lookback options. The amount of freely available historical European and
American option pricing data is also limited, meaning that the analysis was done on a relatively
small option-dataset.

Due to the time constraint, the choice was made to limit the comparative analysis of the
pricing methods to stocks. Therefore, the effectiveness in other markets, like the currency or
commodity market, is still unexplored. In addition, this research only compares the GAN-QMC
to regular QMC. A comparative analysis with many other common option pricing methods is
missing, mainly due to limited time. However, considering the comparable performance of both
methods, previous research comparing QMC to other pricing methods can be used to assess the
performance of GAN-QMC compared to other existing pricing methods.

6.2.3 Interpretation and implications of the results

The key findings, as outlined in chapter 5, indicate that the GAN-QMC method performs
equally well as the regular QMC method in terms of pricing accuracy. Despite the GAN not
exactly capturing the statistical properties of financial data, the GAN-QMC did demonstrate
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comparable performance to QMC. However, certain nuances and potential applications arise
when analysing the method more in-depth.

The GAN-QMC method is a semi-parametric pricing method and showcased comparable
performance to traditional QMC for option pricing. Notably, the GAN-QMC exhibited po-
tential advantages over QMC in terms of computational efficiency, being approximately 20%
faster. Another intriguing observation was the potential outperformance of GAN-QMC for long-
maturity options, although the claim’s reliability was questionable due to data limitations. The
computational advantage of GAN-QMC in combination with solid accuracy indicates hopeful
results for practical applications where computational time is a critical factor. The method’s
comparative speed advantage, although small, could be leveraged by financial institutions in sce-
narios where computational time is a crucial factor when pricing long-maturity path-dependent
options. However, it should be noted that if the goal of a financial institution is speed over
accuracy, it might not consider using simulations to price options at all.

It is interesting to note that an LSTM-GAN often performs similarly to just training a
LSTM neural network for creating financial data (K. Zhang et al., 2019). This could imply that
it would inherently not matter whether we used the Generator of the GAN or trained an LSTM
by itself.

The idea of the GAN-QMC was to improve the pricing accuracy of path-dependent op-
tions by more closely modeling the underlying asset which ended up being more challenging
than expected. Developing a GAN requires high set-up costs, making this a costly method
to develop compared to simpler pricing methods including regular QMC. However, if distri-
butional assumptions are not desired, our developed method can serve as an interesting and
effective alternative. In that case, other non-parametric methods to model the asset within the
simulation should be considered as well. Such a simulation can be extended by some of the
recommendations mentioned in section 6.2.2.

Financial practitioners need to recognize these limitations of the GAN-QMC, particularly
the need for certain assumptions and the challenges associated with interpreting GANs as black-
box models. A clear understanding of these limitations is crucial when applying the GAN-QMC
method in real-world scenarios, although this holds for any option pricing method. If done
correctly, the GAN-QMC can be a solid and theoretically interesting alternative to price a wide
variety of options without making any distributional assumptions.

6.3 Further Research

In this section, we discuss interesting future research to improve on or add to our research. Most
importantly, we suggest using a risk-neutral GAN to directly create risk-neutral financial data.
This suggestion might be the most notable way to make the GAN-QMC significantly better
than regular QMC for option pricing. We have the following suggestions for further research:

1. Risk-neutral GANs: The most interesting and potentially impactful future research
is discussed first. We used the GAN in the geometric Brownian motion to generate
risk-neutral price paths. Instead, using the GAN to generate risk-neutral data directly
makes the GAN-QMC a completely different pricing method than regular QMC. Instead
of modeling the stock price process by combining the GAN with the functional form
of the geometric Brownian motion, just a risk-neutral GAN can be used. This will set
GAN-QMC apart from QMC and could potentially make GAN-QMC more accurate than
QMC. Tan et al. (2022) developed a FIN-GAN allowing for the creation of risk-neutral
price paths, but implementation and training stability were significant issues here. Future
research in the creation of risk-neutral price paths using neural networks could improve
the GAN-QMC’s accuracy. In addition, it would get rid of some of the assumptions
mentioned in section 6.2. The downside is that creating risk-neutral price paths using
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a more complex neural network by additionally feeding it the option’s implied volatility
might lead to increased computational times.

2. GANs for finance: At least partially the performance of the GAN-QMC was limited
due to the GAN’s abilities. The GAN did not mimic the real-world financial stock returns
perfectly, which most likely impacted the GAN-QMC’s accuracy negatively. GANs are ini-
tially designed for image and text generation, where performance seems to be outstanding.
However, the application for generating financial time series is less explored. A noticeable
issue is training stability which is particularly sensitive to the choice of hyper-parameters.
To find a good set of hyper-parameters, without using too much computational power,
we employed an automated parameter tuning strategy. This tuning strategy requires an
inverse performance measure that quantifies the performance of a GAN given a set of
hyper-parameters. We used the Wasserstein distance which is the same measure used to
calculate the weights and biases of the neural network itself. The Wasserstein distance
measures the distance between the distribution of the GAN-generated data and some real-
world validation dataset. We are not only interested in the distance but also in finding
a set of hyper-parameters that can train a GAN outputting data with similar statistical
properties to the real-world financial time series (validation set). To achieve this, research
should be done to develop an inverse financial objective function that specifically quanti-
fies statistical properties useful to measure the quality of financial data. Tuning a GAN
would still be a bilevel optimization problem but using a financial objective function to
tune the GAN hyper-parameters and the Wasserstein distance to calculate the weights
and biases of the neural networks. This strategy might enable more stable GAN training
resulting in more realistic synthetic data.

3. Quasi-random GANs: Neural networks have been used to create quasi-random output
directly (Hofert et al., 2021), omitting the necessity to generate a quasi-random sequence
using for example Halton or Sobol. Future research into a financial GAN that directly
develops quasi-random outputs could solve some of the GAN-QMC’s issues. In particular,
there will be no need to construct a dataset resembling the empirical distribution of the
GAN, prior to running the simulation, from which to quasi-randomly sample. This might
lead to a slight accuracy improvement because in that case there is no need to approximate
the GAN’s output by sampling billions of random numbers. More noticeably, it might
lead to significant efficiency improvements considering the possibility of quasi-randomly
sampling without calculating a quasi-random Sobol or Halton sequence. The downside
will be a more complex architecture potentially leading to even more unstable training.

4. GANs for American options: Least-squares can be deployed to price American op-
tions, but requires a new fitted least-squares regression for every time-step of an option,
making it computationally inefficient whenever the time-step ∆t becomes small. Con-
sidering that neural networks have been used in the past to predict future stock prices
(Fischer et al., 2018), it would be interesting to analyse whether the Generator of the GAN
can be used to price American options directly. In this case, the least-squares regression
will be replaced by the Generator of the GAN, to make future cash flow predictions for
each time-step. This might increase the computational efficiency of the least-squares MC
while maintaining similar levels of accuracy. It should be noted that this does assume
that the GAN can indeed be improved to generate realistic financial data and thus also
make realistic predictions.

5. AI & geometric Brownian motion: Instead of using a GAN in the geometric Brownian
motion, other types of AI that can generate financial time series data can be explored.
Especially AI that has more stable training and has been successful many times in the
past is of interest. Analysing the performance of the same method by substituting the
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normal distribution in the geometric Brownian motion with a different AI might prove
the effectiveness of other AI in modeling financial assets.

6. GAN-QMC analysis: The GAN-QMC method has only been tested on stocks. Future
research, analysing the method for different markets might lead to interesting results.
The difference in stability between markets might impact the GAN’s ability to generate
realistic data, influencing the accuracy of the GAN-QMC. In addition, the exploration of
the GAN-QMC method for exotic options could also reveal interesting insights.

The GAN-QMC has only been compared to regular MC/QMC. This has not been a
problem in this study due to the close performance of GAN-QMC to regular QMC. Since
the accuracy of GAN-QMC and QMC are so similar, we could use a comparative analysis
of QMC to other pricing methods to determine the performance of GAN-QMC within
the literature. However, would the GAN-QMC have been significantly different, future
research comparing our method to other existing methods might lead to useful insights
into the GAN-QMC’s abilities.

Extending the comparative analysis to other financial instruments might show differences
between GAN-QMC and regular QMC for certain instruments. Once the GAN-QMC
method has been refined, by developing a better GAN, it would be useful to do a more
in-depth comparative analysis between various pricing methods for different financial in-
struments from several markets.

7. Interpratibility of GAN: Neural networks are a black-box, making it difficult to under-
stand how it comes to its output. There have already been many studies on explainable
AI, including those for neural networks. Using some of these techniques to explain the be-
havior of the Generator of the GAN helps to understand how the synthetic financial time
series are created. This could also help when making the financial objective function,
because it might become clearer why the GAN struggles to recreate certain statistical
properties, allowing us to steer the training process better with a tailor-made objective
function.

6.4 Conclusion Recap

To conclude, in this thesis, we developed a semi-parametric pricing framework by combining
a GAN into QMC. We were able to use a GAN to model the underlying asset of an option.
The GAN was used instead of the normal distribution in the geometric Brownian motion to
create risk-neutral price paths. The developed GAN-QMC showed similar performance to reg-
ular QMC indicating the success of using the GAN, a non-parametric method, to model the
returns of stocks. Due to sampling from an empirical distribution (dataset) being quicker than
from a continuous probability distribution, the GAN-QMC was more computationally efficient
than regular QMC. Considering that the GAN-QMC is already as accurate as QMC while the
GAN’s ability to create synthetic financial data is not perfect, accuracy improvements might be
made if the GAN itself can be improved further. The similar performance of GAN-QMC and
QMC, while the GAN did not generate perfect synthetic financial data, indicates that we could
improve the accuracy by further developing the GAN tuning strategy by for example adding
a financial objective function. The most notable impact might be made by further develop-
ing a GAN that generates risk-neutral financial data, especially focusing on training stability.
This shows that there is still a lot to learn and improve in this research area, as discussed
in section 6.3. Overall, the GAN-QMC is an interesting and accurate option pricing method
when distributional assumptions are undesirable. In addition, this research unveiled valuable
theoretical insights, potential applications, and directions for future research. Financial prac-
titioners should consider its advantages in specific scenarios while acknowledging the method’s
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limitations and the need for ongoing advancements of financial GANs.
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processes”. In: Journal of Computational Finance 22.3, pp. 89–148. doi: 10.21314/JCF.
2018.355.

Kodali, N., J. Abernethy, and J. Hays (2017). “On convergence and stability of GANs”. In:
Computer vision and pattern recognition. doi: https://doi.org/10.48550/arXiv.1705.
07215.

Koshiyama, A., N. Firoozye, and P. Treleaven (2020). “Generative adversarial networks for
financial trading strategies fine-tuning and combination”. In: Quantitative Finance 21.2,
pp. 1–17. doi: https://doi.org/10.1080/14697688.2020.1790635.

Kreuze, A., L. Dalla Valle, and C. Czado (2023). “Bayesian multivariate nonlinear state space
copula models”. In: Journal of Computational Statistics and Data Analysis 188.107820. doi:
https://doi.org/10.1016/j.csda.2023.107820.

Kumar, A., A. Alsadoon, and P.W.C. Prasad (2021). “Generative Adversarial Network (GAN)
and Enhanced Root Mean Square Error (ERMSE): Deep Learning for Stock Price Movement
Prediction”. In: Multimedia Tools and Applications. doi: https://doi.org/10.48550/
arXiv.2112.03946.

Lala, S., M. Shady, and A. Belyaeva (2018). “Evaluation of mode collapse in Generative
Adversarial Networks”. In: Massachusetts Institute of Technology. doi: https : / / api .

semanticscholar.org/CorpusID:214622026.

82



Latifi, S. and N. Torres-Reyes (2019). “Audio enhancement and synthesis using generative ad-
versarial networks: A survey”. In: International Journal of Computer Applications 182.35,
pp. 27–31. doi: https://doi.org/10.5120/ijca2019918334.

Leiva, R. and D. Ivan (2016). “The impact of Kiyoshi Itô’s stochastic calculus of financial
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Appendix A
Formula’s and proofs

Black-Scholes

The call price is:
Call = e−rTE[max(ST −K, 0)] (A.1)

Using the previously derived results we get:

ST = S0 e
(r−σ2

2
)T+σWT (A.2)

And (r− σ2

2 )T + σWT is N(0, σ2T ) distributed. We can calculate the expectation of the payoff
with these results:

C0 = e−rT

∫ ∞

−∞
max(S0e

x −K, 0)e−
(x−(r−σ2

2 )T )2

2σ2T
1√

2πσ2T
dx (A.3)

Rewriting to:

C0 = e−rT

∫ ∞

log( K
S0

)
(S0e

x −K)e−
(x−(r−σ2

2 )T )2

2σ2T
1√

2πσ2T
dx (A.4)

This integral does have a solution, which is the Black-Scholes pricing Formula. The price of a
European call is:

C = S0e
−qtN(d1)−Ke−rtN(d2) (A.5)

Where:

C = Call option price

S0 = Current stock price

K = Strike price of the option

t = Time to expiration (in years)

r = Risk-free interest rate (annual)

q = Dividend yield (annual)

N = Cumulative standard normal distribution Function

d1 =
ln(S0/K) + (r − q + σ2

2 )t

σ
√
t

d2 = d1 − σ
√
t
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GAN proof

The cost function is:

V (D,G) = Ex[log(D(x))] + Ez[log(1−D(G(z))] (A.6)

=

∫
x
pdata(x)log(D(x))dx+

∫
z
pz(z)log(1−D(g(z)))dz

=

∫
x
pdata(x)log(D(x)) + pg(x)log(1−D(x))dx

If we solve this function to get the optimal Discriminator, we can see that if the probability
distribution of the Generator and Discriminator are identical it always returns a value of 0.5:

D(x) =
pdata(x)

pdata(x) + pg(x)
=

1

2
(A.7)

This makes sense considering that if the real and fake data seem identical, the Discriminator
can only make a random guess, resulting in a probability of being correct of 0.5. Using this:

V (D,G) = Ex[log(0.5)] + Ez[log(0.5)] = −log(4) (A.8)

So when the distributions of the Generator and Discriminator are equal the maximum of the
loss function is −log(4). Using equation A.7 we get:

V (D,G) = Ex[log(
pdata(x)

pdata(x) + pg(x)
)] + Ez[log(

pg(x)

pdata(x) + pg(x)
)] (A.9)

KL Divergence states:

DKL(P ||Q) = Ex∼p

[
log

(
P (x)

Q(x)

)]
(A.10)

Using this property and after some rewriting of the loss function:

V (D,G) = −log(4) +KL

(
pdata||

pdata + pg
2

)
+KL

(
pg||

pdata + pg
2

)
] (A.11)

The Jensen-Shannon Divergence (JSD) states:

JSD(P ||Q) =
1

2
DKL

(
P ||P +Q

2

)
+

1

2
DKL

(
Q||P +Q

2

)
(A.12)

Which can be interpreted as a distance measure between 2 probability distributions. Using
these results we get:

V (D,G) = −log(4) + 2JSD(pdata||pg) (A.13)

To get the optimal Generator we need the:

min
G

V (D,G) = −log(4) + 2JSD(pdata||pg) (A.14)

The minimum of JSD is 0 but only achieved when the probability functions are equal, e.g.
pdata(x) = pg(x). Thus the cost function has one minimum which is only achieved if the
Generator’s distribution exactly matches the distribution of the Discriminator. Such that we
get:

min
G

V (D,G) = −log(4) (A.15)
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Which we showed before to be the value if the probability distribution of the Generator and
Discriminator are identical, thus proving that the minimum of the loss function can only be
achieved if the probability function of the Generator matches the probability function of the
real data.

Pseudo-Code GAN-QMC

Algorithm 2 Pseudo code all simulations

1: Input: N, θ, s1,n, T0, T,K, r, C, P,Option type, B
2: function Least-squares AMC(S, T0, T,K, r, option type)
3: for i = T − 1, T − 1, ..., T0 do
4: Calculate CFi+1

5: Regress CF on si
6: Predict ˆCFi+1

7: CFi = Max( ˆCFi+1, payoffi)

8: te = Time step with highest expected value
9: return AM Price (discount payoff at te)

10: function Avg AMC(S, T0, T,K, r, option type)
11: low = discounted payoff
12: high = payoff at maturity
13: Return low+high

2

14: function European(S, T0, T,K, r, option type)
15: P = discounted payoff at T
16: return European Price

17: Generate random sequence Z
18: for Number of samples do
19: S = Generate Price path with Z
20: val = Run Function of interest using S

21: MC Ĉ or P̂ = Avg(val)
22: Generate Sobol sequence SQ
23: for Number of samples do
24: S = Generate Price path with SQ
25: val = Run Function of interest using S

26: QMC Ĉ or P̂ = Avg(val)
27: Calculate accuracy and efficiency metrics
28: Output: metrics
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Appendix B
Figures

Figure B.1: GAN architectures and loss functions
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Figure B.2: Statistical properties of LSTM-GAN for CBA

Figure B.3: Statistical properties of LSTM-TCN-GAN for CBA

Figure B.4: Statistical properties of W-GAN for CBA
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Figure B.5: Statistical properties of LSTM-GAN for CSL

Figure B.6: Statistical properties of LSTM-TCN-GAN for CSL

Figure B.7: Statistical properties of W-GAN for CSL
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Figure B.8: Histogram of Moneyness of option-dataset

Figure B.9: Sensitivity of Stock price
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Figure B.10: Sensitivity of Strike price

Figure B.11: Sensitivity of Time to Maturity
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Figure B.12: Sensitivity analysis of Implied Volatility

Figure B.13: Sensitivity analysis of Risk-free rate
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Appendix C
Tables

Parameter Direction Expectation Observed MC Observed QMC

Strike Decrease Increase Increase Increase
Strike Increase Decrease Decrease Decrease
Time to Maturity Decrease Decrease Decrease Decrease
Time to Maturity Increase Decrease Decrease Decrease
Volatility Decrease Decrease Decrease Decrease
Volatility Increase Increase Increase Increase
Risk-free rate Decrease Decreases Decreases Decreases
Risk-free rate Increase Increases Increases Increases
Stock price Decrease Decrease Decrease Decrease
Stock price Increase Increase Increase Increase

Table C.1: Sensitivity analysis call option MC & QMC

Parameter Direction Expectation Observed MC Observed QMC

Strike Decrease Decrease Decrease Decrease
Strike Increase Increase Increase Increase
Time to Maturity Decrease Decrease Decrease Decrease
Time to Maturity Increase Increase Increase Increase
Volatility Decrease Decrease Decrease Decrease
Volatility Increase Increase Increase Increase
Risk-free rate Decrease Increase Increase Increase
Risk-free rate Increase Decrease Decrease Decrease
Stock price Decrease Increase Increase Increase
Stock price Increase Decrease Decrease Decrease

Table C.2: Sensitivity analysis put option MC & QMC
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Hyper-parameter LSTM-GAN LSTM-TCN-GAN W-GAN

Batch length 392 259 200
Batch size 25 22 10
Step size 26 47 51
Learning rate G 0.00001 0.00001 0.0000221
Learning rate D 0.0002 0.0002 0.0000696
Number of layers G 1 1 2
Number of layers D 5 1 5
Number of hidden dimensions G 62 79 50
Number of hidden dimensions D (LSTM) 151 - -
Dropout rate D (TCN) - 0 0
Length of input G 50 99 200
Number of pre-training epochs D 0 5 0

Table C.3: Optimal hyper-parameters BHP

Hyper-parameter LSTM-GAN LSTM-TCN-GAN W-GAN

Batch length 79 321 256
Batch size 64 24 10
Step size 77 45 100
Learning rate G 0.00001018 0.00001008 0.00001
Learning rate D 0.00001 0.00001147 0.0002
Number of layers G 2 3 1
Number of layers D 1 1 5
Number of hidden dimensions G 76 81 192
Number of hidden dimensions D (LSTM) 68 - -
Dropout rate D (TCN) - 0 0
Length of input G 66 91 150
Number of pre-training epochs D 6 3 7

Table C.4: Optimal hyper-parameters CSL

Hyper-parameter LSTM-GAN LSTM-TCN-GAN W-GAN

Batch length 303 140 70
Batch size 37 64 64
Step size 100 64 55
Learning rate G 0.00001 0.00001 0.0000996
Learning rate D 0.00001 0.00001 0.0002
Number of layers G 1 1 1
Number of layers D 3 5 5
Number of hidden dimensions G 67 97 70
Number of hidden dimensions D (LSTM) 81 - -
Dropout rate D (TCN) - 0 0
Length of input G 78 89 98
Number of pre-training epochs D 0 6 3

Table C.5: Optimal hyper-parameters CBA
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