
Measuring Code Modernity in Rust
CHRIS BLEEKER, University of Twente, The Netherlands

The measurement of modernity has been a common topic of discussion in
many different fields of study. This also applies to measuring the modernity
of source code within computer science. Previous studies have shown that
the measurement of code modernity is possible using static analysis and
can produce useful results, however these studies have only focused on a
single strategy of arriving at this measurement. This research tries to find
and explore the suitability of several different code metrics for measuring
code modernity in the Rust language.

Additional Key Words and Phrases: Code Modernity, Modernity Signature,
Rust, Static Analyisis, Source Code Analysis

1 INTRODUCTION
The subject of measuring code modernity has been an often studied
topic in the last years, with multiple papers coming out discussing
the measurement of this metric, such as the research conducted by
van den Brink et al. [36] regarding measurement of code modernity
in PHP using static analysis. There has also been discussion about
the interpretation of the values presented, for example by Zubcu [39],
who reasoned about the normalization of the modernity measure.

Determining a modernity signature of a code base can be useful
for many applications, such as measuring how well maintained a
project or how far a fork has strayed from its origin. It can also be
considered as a part of a code quality measure, and play a crucial role
in reviewing contributions and keeping track of large code bases to
make sure they meet the latest quality standards and adhere to the
best practices set by the language.

In most papers discussing this topic, the measure of code moder-
nity is considered a measure of either the age of a project [6], or a
measure of the amount of contemporary ‘modern‘ features in the
code used from the respective programming language [39], leaving
a lot of room for interpretation.

Similar research has been done on a variety of different languages
besides Python and PHP, such as Güdücü’s research on automati-
cally constructing weighted abstract syntax trees in Java [17]. How-
ever, the concept of modernity could be very different between
established, slow-evolving languages such as Java and Python, and
newer, more cutting-edge languages such as Rust. Besides this, no
requirement for a user-installed run-time executor in Rust could
entice developers to adopt newer features more quickly.

Rust has grown in popularity significantly over the last few years,
and is slowly starting to be used in production more often at a
variety of companies. While static analysis tools for Rust exist, the
ecosystem is still growing and there are a lot of gaps left open, such
as the one we address in this paper.

TScIT 40, February 2nd, 2024, Enschede, The Netherlands
© 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

2 PROBLEM STATEMENT
Looking at previous implementations of code modernity measures,
all of them use some sort of static analysis technique to version parts
of the code. For example, van den Brink et al. [36] used weighted
abstract syntax trees, which are then collected and assigned ver-
sions. From these version numbers, an n-tuple is made counting the
amount of features used from each version, which is then plotted to
visualize the results.

In a similar fashion, Admiraal [6] used a program called Vermin
[19] to version language items, resulting in comparable results based
on n-tuples of versions. This begs the question if analyzing code
version distribution is the only way to achieve such a measure.

It seems to be implied that a measure of code modernity is equal
to the amount of features used from each version. However, the
fundamentals are never looked at closely, and other metrics for
measuring this are never considered.
This problem statement can be summarized in the following

research question:
What metrics are suitable to be used for measuring code modernity

in the Rust language?
To aid in answering the research question, the following sub-

questions will also be considered:

(1) What is a good definition of code modernity?
(2) What are some of the consensuses in the community of what

constitutes idiomatic Rust code?
(3) Can existing static analysis tools be used to aid in measuring

code modernity?

3 RELATED WORK
Several previous implementations of a code modernity measure
have been made in the past. Van den Brink et al. in their research
has done this using weighted abstract syntax trees to version parts
of PHP source code [36]. Admiraal later did something similar in
Python, using language items to version source code. These results
have later been analyzed by Zubcu [39] to study the effect of various
normalization techniques to visualize the data obtained by these
studies. The results of this study can be used to construct a better
metric, and find ways in which different metrics can be used to
measure code modernity.
On the topic of idiomatic Rust code, various studies have been

done analyzing common Rust patterns and their effectiveness, such
as the one conducted by Qin et al. studying the use and effect of
safety guarantees set by Rust and the unsafe block [27]. Addition-
ally, Li et al. developed the program MirChecker [22], which uses
static analysis to detect bugs in Rust projects using Rust’s Mid-
level Intermediate Representation (MIR). Tools such as Clippy [25]
contain a growing number of community accepted lints, which is
widely used across Rust projects to analyze both behaviour and
style. Rust also has well-established patterns that are widely re-
ferred to and used, which are documented in various places such as
the Rust-by-Example book [32].

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


TScIT 40, February 2nd, 2024, Enschede, The Netherlands Chris Bleeker

Similarly, outside of the Rust realm, Farooq and Zaytsev stud-
ied what makes Python code idiomatic [16]. Allamanis and Sutton
also presented a method to mine idioms from existing code in an
automatable fashion [8]. There has also been a significant amount
of research done in the area of using machine learning to perform
static analysis, such as Dewangan et al. training a model to be highly
effective at detecting code smells [14]. Sandouka and Aljamaan, in
a similar fashion, created a large dataset of 2000 samples, to use in
training a model to detect code smells in Python [29]. While these
all perform static analysis in some form to find certain pattern in
code, it seems to be primarily for the purpose of finding problems
that need to be solved, instead of classifying code bases as this paper
aims to do.

4 METHODOLOGY
The general process of this research can be divided into three parts,
roughly corresponding to one part per sub-question:

(1) Finding a good definition of code modernity with few com-
promises

(2) Reviewing literature to find potentially viable metrics for
measuring code modernity

(3) Implementing these metrics and verifying their suitability

The first metric to be implemented will be comparable to the
methods used in Admiraal’s [6] and van den Brink et al.’s [36]
research, to act as a baseline. This method has been proven to be
successful for other languages, and if successful, can act as a good
basis of comparison for other metrics to determine their suitability
for measuring code modernity.

4.1 Definition of code modernity
For our definition of code modernity, existing definitions should be
taken into consideration. Besides looking in the field of computer
science, other fields of study should also be considered to see if there
is a universally applicable definition of modernity and if this can
be adapted to fit our needs. It should take into account the more
general definitions of modernity and modern, and build on that in
the context of programming languages and code.

This definition should be able to encompass and not invalidate pre-
vious research on this topic, and provide room for further evolution
of the concept of code modernity in the future. The definition will
therefore be compared to the various papers discussed previously
to make sure of this.
The concluding definition that is achieved in this step will be

used for the rest of the research.

4.2 Literature review
In this part, a list of potentially viable metrics should be constructed.
Depending on the final definition from the previous part, this most
likely involves a search for various properties of source code that
have changed over time, thus contributing to code modernity. This
can include ‘hard‘ properties such as minimum versions, which has
a single set value per code base with no room for variation, and ‘soft‘
properties such as idioms, which can differ based on the selection
of a subset of idioms, and the chosen implementation.

To find these metrics, we can use previous research such as the
ones mentioned in Chapter 3. We can also look for community
consensus by using popular rust idioms and style guides such as
the Rust Unofficial Design Patterns guide [31].
To find any consensus within the Rust community around Rust

idioms, it should be properly defined what the community is in the
context of this research paper. For a place to be called a part of the
community, it should either be linked to often by official resources
such as the official Rust website, or have an audience that is sizable
and not focused on a particular niche, rather on the language as a
whole.

4.3 Implementation and analysis
To verify the suitability of the properties obtained, a prototype
measuring these properties should be implemented and tested. The
resulting program can then be used to analyse, measure and verify
these metrics over a collection of known Rust projects. This collec-
tion consists of multiple crates from the crates.io repository, namely
actix-web, regex, async_std, tokio, syn, bevy_ecs, serde_json,
clap, egui, axum and ratatui. This collection of crates includes
crates from various different ecosystems, such as asynchronous run-
times, web services and game development. It also includes projects
created at various points in time, which could influence the moder-
nity that the code base started at. All of the selected crates are well
maintained and have been for most of their history, which should
indicate result in the modernity gradually increasing over time as
new code gets added, and older code gets rewritten to be more
modern.
While these crates have been selected to cover a wide range of

Rust projects, and to cover most features and idioms commonly
seen in their ecosystem, the small-scale nature of this dataset means
that they cannot represent all Rust code, even in their own niche.
The dataset is deliberately kept small as to limit the scope of the
research, but should still be general enough to show if metrics are
suitable to be used to measure code modernity beyond chance.
After these results have been acquired, different metrics can be

put against each other and evaluated to see if they show the same
data as each other. The language item version metric can also be
compared to the similar metrics in previous research papers that
measure code modernity [6, 36].

To determine if a metric is suitable to be used for measuring code
modernity, we will be considering two use cases. Firstly, we will
look if a metric can differentiate between different crates. For this,
if there is a significant difference between two crates, then there
should be a reason for this difference. For example, we expect axum
to be of higher modernity than async_std, as the former has been
developed more recently and, as determined by manual review, uses
more modern code than the latter.
Secondly, we will look if a metric can differentiate between ver-

sions of the same crate. This can generally be done by looking at
trends over time. As all selected crates are well maintained, it is
expected that the modernity goes up over time, and thus a trend
either up or down can indicate a suitable metric. While this is not
conclusive evidence, as there are different reasons a trend can exist

2

https://crates.io


Measuring Code Modernity in Rust TScIT 40, February 2nd, 2024, Enschede, The Netherlands

over time, combined with reasoning on why this trend exists, it can
provide a good indication.

5 METRIC ANALYSIS

5.1 Definition of code modernity
Between the discussed published papers about codemodernity, there
seems to be no one universal definition of code modernity. Van
den Brink et al., in their paper about modernity measures in PHP,
does not mention any definition of code modernity itself, rather
only looking at it as a measure, which is parallel to the amount of
versioned items used in source code [36]. He does use this statistic
to (partially) determine the age of a code base. Expanding on this,
Admiraal later defines code modernity as "a scale of measuring the
age of a project" [6]. Earlier in his paper, he also mentions how
pythonic idioms can affect code modernity, however this is not part
of his definition. Zubcu, in his research about normalization of code
modernity measures, notes that "modernity represents the extent to
which a software system’s source code leverages the contemporary
features and capabilities inherent in the respective programming
language," [39].

Another field of study where modernity is an important subject is
sociology, where Shilliam defines it as "a condition of social existence
that is significantly different to all past forms of human experience,"
[30]. In the context of software, this puts a large emphasis on age
and significant differences between two code bases with different
modernity signatures.

The Cambridge Dictionary defines modernity as "the condition of
being modern" [13], where modern is defined as "designed and made
using the most recent ideas and methods," [12]. The Oxford English
Dictionary agrees on this definition for modernity [24], however
defines modern as "being in existence at this time; current, present",
again bringing back a strong emphasis on age [23].

To conclude, almost all definitions presented refer to code moder-
nity as a measure of age in some way. However, defining modernity
solely as a measure of age is ambiguous and conflicts with some
of the other editions presented. Particularly, this definition seems
to leave no room for any external influences to the measure, and
disregards code quality entirely. A lot of weight is put on recent
ideas and current idioms, which should also be reflected in the final
measure. A new definition should take both of these approaches to
modernity into account.

In this paper, we define code modernity as a measure that rep-
resents the point in time that the code would’ve been written
when using the contemporary features and idioms of that
time.

This definition still works well retroactively and can encapsulate
the results of the previously discussed papers on this topic. It still
represents a measure of age, but alongside a clause that takes code
quality into account and allows code bases to change and evolve
over time. Both Admiraal and van den Brink et al. [6, 36] used an
n-tuple of versions to represent the measure, which can be seen as
an almost exact translation of the definition we created.

5.2 Measure Metrics
Past research has shown that analysis of versions of language items
can effectively predict differences in relative age of code bases [6, 17,
36]. This method is also replicated for this research. The resulting
metric can be used to verify if this method holds up for code written
in the Rust language, and can be referred to in the same context
alongside the results found for Python and PHP.
To get an idea of the general consensus of the Rust community

around what is considered idiomatic code, we first need to define
what we consider to be the Rust community. We aim to find the
opinion of the majority of the community, and thus our main tar-
get is the larger hubs of discussion surrounding the programming
language. These should be easy to find and easily accessible, for
example by being linked from the official Rust site. They should
also be reputable, for example by being endorsed by the core team
behind Rust. As we aim to explore the general shared of the devel-
opers using the language, and not necessarily the theoretical best
practices, this paper places a greater emphasis on online discussion
platforms, surveys conducted on developers and widely-used code
bases, rather than literature curated by a limited number of authors.
In this paper, the community includes the Rust subreddit, as it

acts as a major hub for Rust discussion, and is relatively easy to
discover, as indicated by the amount of beginner questions posted
[5]. The official Rust users forum [4] is also relevant, as a central
place that is linked from the official site and endorsed by the team
behind the language itself [1]. Similarly, the official Rust blog invites
everyone yearly to fill out a survey on the Rust language [3], which
is also referenced in this paper. Lastly, we also consider various
well-known projects on GitHub and the official package repository
crates.io to be reflective of the community.
While a vocal part of the Rust community recommends against

immediately using new Rust features, instead recommend to wait
a few months to ensure everyone updates their compiler, there is
generally no reason to stay far behind [18, 20]. A survey conducted
in 2018 by the Rust Survey Team has shown that almost 88% of
respondents were using either the current stable release or the
latest nightly [34]. Additionally, according to the stats tracked by
lib.rs, we can see that in the 4000 most recently updated crates as
of November 2023, over 50% is currently incompatible with release
1.63, which was released in August 2022, compared to 13% of all
crates published to the official repository [21, 33]. This gives us good
reason to believe that new releases target more recent versions of
the language, and thus that versions released in the past year are
more likely to be used.
A similar metric to versioned language items is the Minimum

Supported Rust Version (MSRV) of a code base. This refers to the
minimum version of the Rust compiler that can still compile the
project in full. This has the flaw that dependency MSRV values can
bubble up without requiring any changes to the parent code base
itself. However, it can still give us a good idea when looking at larger
time spans. Besides the actual MSRV, Rust reserves a field in the
project manifest file to provide a reported MSRV value, to be kept up
to date by the maintainer [7]. While project maintenance does not
necessarily always need to lead to an increase in code modernity, a
change in reported MSRV could imply this. The used Rust edition

3

https://crates.io
https://lib.rs/


TScIT 40, February 2nd, 2024, Enschede, The Netherlands Chris Bleeker

of a code base can signify the same thing in more projects, as it is
mandatory to include this field [7]. However, as there are only 3
possible values for the edition, it can most likely not be used on its
own.
Aside from changes in versions, the way the Rust language is

used also changes over time. As new features get introduced, and
flaws in old patterns get discovered, the recommended way of using
the language changes. This can be seen in the changes in idioms
over time. As we have defined idioms to be a part of the definition
of code modernity, accurately measuring the usage of idioms can
make a great candidate metric for measuring code modernity.

One idiom that is often discussed is the usage of unsafe Rust code.
While the usage of unsafe code has always been discouraged in
favour of safe abstractions, many high-profile projects still used
a lot of unsafe code. A GitHub issue pointing this out in the web-
framework actix-web [10] caused a domino effect in the commu-
nity [15] to scrutinize every single use of unsafe code in code bases.
Astrauskas et al. have remarked that in a 16 month period until No-
vember 2020, the amount of crates in the main repository crates.io
using unsafe code had dropped from 29% to 23% [9]. According to
lib.rs, around 10,000 new crates were published on crates.io in this
16 month period [21], which can indicate that newer code bases on
average has less unsafe code than older code bases. This gives us
good reason to believe that the relative amount of unsafe code in a
code base could be a suitable metric to measure code modernity.

A second feature that is gaining a lot of popularity is the built-in
async functionalty of Rust. In 2018, new syntax was introduced for
asynchronous functions [38], which is nowadays commonly used
by web frameworks and other backend applications. This is one of
the most popular fields that Rust is used in, according to a survey
conducted by the Rust Survey Team in 2021 [34]. This could be cov-
ered by the version signature metric, which includes asynchronous
methods, but most of the commonly-used asynchronous APIs are
not implemented in the standard library. For this reason it is a better
idea to consider other metrics, such measuring the proportion of
asynchronous functions to non-asynchronous functions in a code
base.
Lastly, we can gauge how much external tools can help with

measuring codemodernity. A good candidate for this is Cargo Clippy
[25], which is a tool that provides additional lints for Rust source
code. Most of these lints are aimed at catching bugs and making
code more idiomatic. It is generally considered good practice to use
Clippy within the community [37], and while the documentation
does mention that it is opinionated, and thus disabling lints is fine,
in practice most lints are left enabled [26]. The project is maintained
by the Rust team themselves, and the lints are discussed by the
community before being implemented and stabilized. Lints that are
particularly good often get promoted to the compiler itself. This
all makes Clippy a reputable linter detecting common code smells
agreed upon by the core Rust community. Integration with popular
IDEs give good incentive for developers to bring the amount of
warnings down to zero, and as lints are added with time, the amount
of warnings produced by Clippy could give us a good indication
of the age and the idiomatic nature of a code base, and thus code
modernity.

6 IMPLEMENTATION
To aid in automatically measuring and analysing the metrics dis-
cussed, the Ruvolution tool [11] has been created as part of this
research. This tool supports analysing any Rust code base that can
compile with the locally installed Rust compiler. It also contains
utilities to select and download different crate versions from the
crates.io repository and analysing each version, outputting a CSV
file to be used for analysis. This tool implements measuring a ver-
sion signature, edition, reported MSRV, amount of Clippy warnings
emitted, amount of expressions marked unsafe and amount of func-
tions marked async, along with the total amount of expressions and
functions.

Ruvolution is written in Rust to take advantage of the libraries
already available to work with Rust source code, most importantly
the syn crate, which is a Rust parser library. Before parsing any
source code, we use the cargo-expand tool [35] to apply any com-
piler pre-processing and consolidate the source code into a single file.
This comes with the downside that any macros are also expanded,
leading to inaccurate results in some cases, however it saves a lot of
work of re-implementing parts of the compiler in order to make the
source code digestible.

For each crate analysed, all versions are fetched using the crates.io
public API. From these versions, only stable releases in increasing
semver order are retained, and any other versions are not considered.
This is so that the resulting versions represent the versions used by
most developers using this crate. After this, 20 versions are selected
in even intervals and analysed.

To fit the scope of the research, some concessions had to be made
in the exact methods used to measure the metrics. To calculate the
version signature of a code base, first a version symbol map has
to be made. The initial plan was to only analyse the std crate for
this, however a lot of functionality is imported from the core and
alloc crates. For this reason, these two crates are also analysed,
and linked back to the std crate using import aliases, which is a
rudimentary re-implementation of the module system found in the
Rust compiler. This analysis could be made more reliable by finding
a way to hook into the compiler, such as using the JSON output
of the rustdoc documentation generator [28], but as of December
2023 there is no trivial way of doing this.
Then, for the target code base, the symbol map is used to count

the versions used in imports and expressions. For simplicity, import
aliases are not considered for the target code base. The resulting
information is gathered into an n-tuple counting the amount of
language items per version, similar to the research conducted by
van den Brink et al. [36]. Then, to consolidate this information, the
counts 𝑥𝑖 are normalized using a log-normalization as to empha-
size newer versions [39], and a weighted average 𝑠 is taken of the
versions 𝑣𝑖 , as shown in eq. (1).

𝑥 ′𝑖 =
ln𝑥𝑖

ln
∏𝑚

𝑖=1 𝑥𝑖
, 𝑠 =

∑𝑚
𝑖=1 𝑥

′
𝑖
𝑣𝑖∑𝑚

𝑖=1 𝑥
′
𝑖

(1)

During this analysis, the program keeps track of additional stats
in order to construct the other metrics, namely counting expressions
and functions. This data is then used to calculate proportionally

4

https://crates.io
https://lib.rs/
https://crates.io
https://crates.io
https://crates.io


Measuring Code Modernity in Rust TScIT 40, February 2nd, 2024, Enschede, The Netherlands

Fig. 1. Edition from Cargo.toml over time

howmany unsafe expressions and async functions are in the target
code base.

Finally, using the CLI interface of Cargo, it executes Clippy, which
checks the code base and outputs the number of warnings emitted.
This statistic is also recorded in the resulting CSV file. This is the
most resource intensive part of the analysis, as it requires a full
compilation of the code base, and there is unfortunately not much
we can do to make this faster.

For manual analysis, the CSV files are processed using a Python
notebook and plotted using matplotlib. While plotting, the pro-
gram uses linear regression to calculate a trend across all gathered
data, and additionally draws this in the plot. While this trend line
can give us an insight, it should be used carefully, as it tells us
nothing about reliability of the data.

7 RESULTS
The individual metrics are plotted against time to show the relation
between the metric and modernity. Each line represents a single
crate, with the points representing different versions. The gray
striped line in each plot represents the general trend of the data.

The measurements were done using a local install of Rust 1.74.0
on Debian 13 running onWSL2. The versions considered for analysis
are all released before January 19th, 2024.

For every analyzed crate, the edition noticeably goes up over time
in fig. 1, with every version published after 2022 being on the second
edition, and the majority transitioning to the third edition in 2023.
A similar result to the edition metric is found for the reported

MSRV values in fig. 2. However, not all crates reported their MSRV
in the manifest file, with only 8 out of 11 crates being shown in this
plot.
The version signature plot in fig. 3 shows no clear trend across

all crates. While some crates do show an upward or downward
trend as time increases, others seem to have no clear direction.
Between different crates there also seems to be a large variance in
the version signature, but between versions there are generally only
small variations, with a few exceptions.

Fig. 2. Reported MSRV from Cargo.toml over time

Fig. 3. Normalised version signature over time

The amount of unsafe expressions is proportionally shown in
fig. 4 to the total amount of expressions. While most values hover
around zero, it varies per crate, and there are some crates with peaks
up to 40% unsafe expressions.
The proportion of async functions as shown in fig. 5 stays the

same for most crates. More than half of the crates analysed do not
contain any async functions, and thus are not included in this metric.
There seems to be a sharp drop-off at the start for async-std, after
which it stabilizes. Between different crates there seems to be no
pattern in proportion to their expected modernity.

The amount of clippy warnings per expression as shown in fig. 6
shows a very clear trend towards zero as time goes on for all crates.
While the metrics is very unstable at the start of the lifetime of most
crates, it seems to stabilize as time goes on. Between crates there
seems to be no relation.

5



TScIT 40, February 2nd, 2024, Enschede, The Netherlands Chris Bleeker

Fig. 4. Fraction of expressions marked unsafe over time

Fig. 5. Fraction of functions marked async over time

8 DISCUSSION
It is important to separate two use cases for a modernity measure,
namely the evolution of code modernity within a code base, and
comparison of modernity between different code bases. To deter-
mine suitability for measuring evolution of modernity, we should
be looking for a trend as time goes on. For comparing different code
bases, the relation between different lines should be considered.
Both the edition metric in Fig. 1 and the MSRV metric in Fig. 2

look to be very suitable for both use cases. As all selected crates are
well-maintained, we expect the modernity to go up over time. Both
of these plots show a very clear trend upwards as time goes on, as
indicated by the trend line. The MSRV metric shows a couple out-
liers, namely serde_json and syn, which stay behind in minimum
required version for a long time. Both of these crates are in the top
20 most downloaded crates according to crates.io as of January 2024,

Fig. 6. Amount of reported Clippy warnings per expression over time

and thus have good reason to stay behind on minimum version to
not break any legacy code bases. For this reason, pull requests using
modern features can sometimes not be accepted, holding back the
code modernity, and thus staying behind in this graph is consistent
with our code modernity measure.

Edition is a required field in all Rust projects, and thus provides a
very consistent, always present measure. However, the Rust edition
has only been increased two times thus far, giving only three possible
values for edition.While the upwards trend and the relation between
lines makes this a very good measure, on its own its not enough to
measure modernity accurately due to the limited amount of values.

The opposite is true for the MSRV field. As it has been introduced
only recently [7], the metric only dates back to late 2021, and not all
crates analysed use this field. However, for the crates that do, this
metric shows a very clear trend upwards, with all lines ending in a
higher version than they started at.

Looking at the version signature metric over time in Fig. 3, there is
a slight upwards trend, however 4 out of the 11 crates do not follow
this trend, ending at roughly the same version or lower than it
started. This is despite all crates selected being well maintained, and
thus the code modernity is expected to increase. For this reason, this
metric is likely not suitable to draw any conclusions from, however
the increasing trend does provide a compelling reason to do further
research with this metric. An interesting outlier is the syn crate,
which drops to almost zero late 2021, which was caused by a change
in a widely used macro. Since analysis is done on expanded code
after macros, this means that this single change was counted very
heavily in the version signature, which is an unfortunate side effect
of the implementation.

Comparing modernity between crates using the version signature
seems possible, however not consistent. There seems to be a rough
relationship between the time period most of the code base was
written and the vertical position of the line. For example, axum, the
top line, is a relatively new web framework, which was created
in 2021. A lot lower is serde_json, which is a JSON serialization
framework that has existed since 2015. While there might be a high

6

https://crates.io


Measuring Code Modernity in Rust TScIT 40, February 2nd, 2024, Enschede, The Netherlands

level similarity between these two statistics, it can not be used when
comparing two crates individually, as there is too much variation in
version signature between crates of similar modernity.

Looking at the percentage of unsafe expressions over time in
Fig. 4, we can see that most crates are staying very close to zero. A
few crates stay high above zero, including actix_web, async-std,
tokio and bevy_ecs. The common property between these crates
are that they are all highly optimized code bases. This means that
a lot of assumptions are made that are beyond the capabilities of
the Rust compiler, thus unsafe is used. This does mean that these
assumptions need to be kept track of by the developers, which un-
dermines one of the core principles of the Rust language, namely
reliability [2]. This means that the resulting code is less idiomatic,
and thus less modern, which holds true for comparisons both be-
tween versions and crates. This, however, only works in a single
direction, as a low amount of unsafe code does not necessarily lead
to modern code. This means that, while a high value in this metric
likely means lower modernity, it cannot be used on its own.
While the plot of the percentage of async-marked functions in

Fig. 5 looks similar to the unsafe plot, for the purposes of measuring
codemodernity it is far less useful.While this plot perfectly picks out
crates in the particular niche of server code, with both asynchronous
runtimes and web frameworks ranking highly, this ends up not
being relevant to our target measure of code modernity. This is also
reflected by the trend line having a small coefficient, and staying
flat.
The most promising metric is the amount of Clippy warnings

per expression, as seen in Fig. 6. This figure shows a very strong
trend down to zero warnings as time goes on. For both comparisons
between versions of the same crate and comparisons between dif-
ferent crates, this proves to be a highly effective metric to measure
code modernity, as after stabilizing, the metric almost universally
goes down over time. This makes sense, as it is common practice to
minimize the number of Clippy warnings in a code base. Since the
analysis uses the latest version of Clippy at the time for all versions,
as you go back in time, the amount of new warnings, that previously
didn’t exist, increases.
In conclusion, not a single metric analysed is a reliable measure

for code modernity on its own, however a combination of all of
them, except async-marked function percentage, can give us a good
idea of the code modernity of a code base. The measure is most
effective for comparison between versions of the same code base,
and while it can give an idea of modernity in comparison to other
code bases, this should be researched further.

9 CONCLUSION AND FUTURE WORK
This paper has explored the viability of different metrics for the
purpose of measuring code modernity in the Rust language. We
defined code modernity as a measure that represents the point in
time that the code would’ve been written when using the contempo-
rary features and idioms of that time. We explored the community’s
opinion and identified 5 additional metrics that indicate idiomatic
Rust code, namely edition, MSRV, unsafe usage, async usage and
amount of Clippy warnings. Using this last metric, we determined
that existing static analysis tools can be a very useful tool to aid in

measuring code modernity. Finally, using the Ruvolution tool we
have built [11], we have come to the conclusion that the version
signature, edition, reported MSRV, the percentage of unsafe expres-
sions and the amount of Clippy warnings per expression can all be
used together to form a code modernity measure.
This paper forms a basis that proves that other metrics besides

measuring versions can be viable to measure code modernity in
Rust. More research can be done in this area to discover which com-
bination of metrics produce the best results, and how to combine the
metrics to create a single measure. The version signature metric in
particular could be improved, as there is still a lot potential left un-
touched, such as version-specific AST nodes, similar to the methods
used by van den Brink et al. [36], or larger analysis involving more
code bases. Additionally, the methods presented in this research
did not provide a strong basis for comparing modernity between
different code bases.
The scope of this research is kept small on purpose, but as men-

tioned in section 4.3, this results in the dataset possibly not being
reflective of all Rust code as a whole. There is room here to conduct
more research on code modernity analysis using bigger datasets to
find more universal metrics that work across all code bases.
The inclusion of static analysis tools proved very useful, which

potentially opens the door for a universal code modernity tool
across languages, as such tools exist for the majority of widely used
languages. As the topic of code modernity continues to garner more
interest, and better tools are developed utilizing more metrics and
producing better measures, they could eventually be integrated
into existing code quality analysis pipelines and contribute to more
modern code being written across many projects and languages.

REFERENCES
[1] 2024. Rust Community. https://www.rust-lang.org/community Accessed on

2024-01-14.
[2] 2024. Rust Programming Langauge. https://www.rust-lang.org/ Accessed on

2024-01-14.
[3] 2024. The Rust Programming Language Blog. https://blog.rust-lang.org/ Accessed

on 2024-01-14.
[4] 2024. The Rust Programming Language Forum. https://users.rust-lang.org/

Accessed on 2024-01-14.
[5] 2024. Rust Subreddit. https://www.reddit.com/r/rust/ Accessed on 2024-01-14.
[6] Chris Admiraal. 2023. Calculating the modernity of popular python projects.

https://essay.utwente.nl/94375/ Publisher: University of Twente.
[7] Weihang Lo Alex Crichton, Eric Huss and contributors. 2024. TheManifest Format.

In Cargo Documentation. https://doc.rust-lang.org/cargo/reference/manifest.html
Accessed on 2024-01-14.

[8] Miltiadis Allamanis and Charles Sutton. 2014. Mining idioms from source code.
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (Nov. 2014), 472–483. https://doi.org/10.1145/2635868.
2635901 Conference Name: SIGSOFT/FSE’14: 22nd ACM SIGSOFT Symposium
on the Foundations of Software Engineering ISBN: 9781450330565 Place: Hong
Kong China Publisher: ACM.

[9] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexan-
der J. Summers. 2020. How do programmers use unsafe rust? Proceedings
of the ACM on Programming Languages 4, OOPSLA (Nov. 2020), 1–27. https:
//doi.org/10.1145/3428204

[10] axon q. 2018. Unsound uses of Unsafe in API · Issue #289 · actix/actix-web.
https://github.com/actix/actix-web/issues/289 Accessed on 2023-11-21.

[11] Chris Bleeker. 2024. Ruvolution. https://github.com/cb-p/ruvolution 2024-01-19.
[12] Cambridge Dictionary. 2023. modern (adj.). Cambridge University Press & As-

sessment. https://dictionary.cambridge.org/dictionary/english/modern Accessed
on 2023-12-11.

[13] Cambridge Dictionary. 2023. modernity (noun). Cambridge University Press
& Assessment. https://dictionary.cambridge.org/dictionary/english/modernity
Accessed on 2023-12-11.

7

https://www.rust-lang.org/community
https://www.rust-lang.org/
https://blog.rust-lang.org/
https://users.rust-lang.org/
https://www.reddit.com/r/rust/
https://essay.utwente.nl/94375/
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doi.org/10.1145/2635868.2635901
https://doi.org/10.1145/2635868.2635901
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3428204
https://github.com/actix/actix-web/issues/289
https://github.com/cb-p/ruvolution
https://dictionary.cambridge.org/dictionary/english/modern
https://dictionary.cambridge.org/dictionary/english/modernity


TScIT 40, February 2nd, 2024, Enschede, The Netherlands Chris Bleeker

[14] Seema Dewangan, Rajwant Singh Rao, Sripriya Roy Chowdhuri, and Manjari
Gupta. 2023. Severity Classification of Code Smells Using Machine-Learning
Methods. SN Computer Science 4 (2023), 1–20. https://api.semanticscholar.org/
CorpusID:260291616

[15] Aria Fallah. 2018. actix-web has removed all unsound use of unsafe in its codebase.
It’s down to less than 15 occurences of unsafe from 100+. www.reddit.com/r/rust/
comments/8wlkbe/actixweb_has_removed_all_unsound_use_of_unsafe_in/ Ac-
cessed on 2023-11-21.

[16] Aamir Farooq and Vadim Zaytsev. 2021. There is more than one way to zen
your Python. In Proceedings of the 14th ACM SIGPLAN International Conference on
Software Language Engineering (SLE 2021). Association for Computing Machinery,
New York, NY, USA, 68–82. https://doi.org/10.1145/3486608.3486909

[17] Izzet Berke Guducu. 2022. Weighted Abstract Syntax Trees for Program Com-
prehension in Java. https://essay.utwente.nl/91735/ Publisher: University of
Twente.

[18] Matthias Kaak. 2022. Why shouldn’t I use the current rustc version? https://users.
rust-lang.org/t/why-shouldnt-i-use-the-current-rustc-version/79345 Accessed
on 2024-01-14.

[19] Morten Kristensen. 2023. Vermin. https://github.com/netromdk/vermin Accessed
on 2023-11-24.

[20] Jorge Leitao. 2021. Should I bump to 2021 edition? www.reddit.com/r/rust/
comments/qmph74/should_i_bump_to_2021_edition/ Accessed on 2024-01-14.

[21] Kornel Lesiński. 2024. State of the Rust/Cargo crates ecosystem. https://lib.rs/stats
Accessed on 2024-01-14.

[22] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2021. MirChecker:
Detecting Bugs in Rust Programs via Static Analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (Virtual Event,
Republic of Korea) (CCS ’21). Association for Computing Machinery, New York,
NY, USA, 2183–2196. https://doi.org/10.1145/3460120.3484541

[23] Oxford English Dictionary. 2023. modern (adj.). Oxford University Press. https:
//doi.org/10.1093/OED/6310816251

[24] Oxford English Dictionary. 2023. modernity (noun). Oxford University Press.
https://doi.org/10.1093/OED/4837544359

[25] Manish Goregaokar Philip Krones, Oli Scherer and contributors. 2016. Clippy.
https://github.com/rust-lang/rust-clippy Accessed on 2023-11-24.

[26] Manish Goregaokar Philip Krones, Oli Scherer and contributors. 2024. Usage.
In Clippy Documentation. https://doc.rust-lang.org/stable/clippy/usage.html

Accessed on 2024-01-14.
[27] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Un-

derstanding memory and thread safety practices and issues in real-world Rust
programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2020). Association for Computing Ma-
chinery, New York, NY, USA, 763–779. https://doi.org/10.1145/3385412.3386036

[28] Joseph Ryan. 2020. 2363-rustdoc_json. In The Rust RFC Book. https://rust-
lang.github.io/rfcs/2963-rustdoc-json.html Accessed on 2024-01-24.

[29] Rana Sandouka and Hamoud Aljamaan. 2023. Python code smells detection
using conventional machine learning models. PeerJ Computer Science 9 (2023).
https://api.semanticscholar.org/CorpusID:258985567

[30] Robbie Shilliam. 2010. Modernity and Modernization. In Oxford Research Encyclo-
pedia of International Studies. https://doi.org/10.1093/acrefore/9780190846626.
013.56

[31] Marco Leni simonsan and contributors. 2023. Rust Design Patterns. https://rust-
unofficial.github.io/patterns/ Accessed on 2023-11-14.

[32] Jonathan L. Steve Klabnik, mdinger and contributors. 2023. Rust By Example.
https://doc.rust-lang.org/rust-by-example/index.html Accessed on 2023-11-24.

[33] The Rust Release Team. 2022. Announcing Rust 1.63.0. https://blog.rust-lang.
org/2022/08/11/Rust-1.63.0.html Accessed on 2024-01-14.

[34] The Rust Survey Team. 2022. Rust Survey 2021 Summary. https://github.com/rust-
lang/surveys/blob/main/surveys/2021-annual-survey/questions.md Accessed on
2024-01-14.

[35] David Tolnay. 2016. Cargo Expand. https://github.com/dtolnay/cargo-expand
Accessed on 2024-01-24.

[36] Wouter Van den Brink, Marcus Gerhold, and Vadim Zaytsev. 2022. Deriving
Modernity Signatures for PHP Systems with Static Analysis. In 2022 IEEE 22nd In-
ternational Working Conference on Source Code Analysis and Manipulation (SCAM).
181–185. https://doi.org/10.1109/SCAM55253.2022.00027

[37] Oliver Weiler. 2021. Should I use Clippy in all of my projects? www.reddit.com/
r/rust/comments/qvu1iy/should_i_use_clippy_in_all_of_my_projects/ Accessed
on 2024-01-14.

[38] withoutboats. 2018. 2394-async_await. In The Rust RFC Book. https://rust-
lang.github.io/rfcs/2394-async_await.html Accessed on 2024-01-14.

[39] Cristian Zubcu. 2023. Effect of Normalization Techniques onModernity Signatures
in Source Code Analysis. https://essay.utwente.nl/96034/ Publisher: University
of Twente.

8

https://api.semanticscholar.org/CorpusID:260291616
https://api.semanticscholar.org/CorpusID:260291616
www.reddit.com/r/rust/comments/8wlkbe/actixweb_has_removed_all_unsound_use_of_unsafe_in/
www.reddit.com/r/rust/comments/8wlkbe/actixweb_has_removed_all_unsound_use_of_unsafe_in/
https://doi.org/10.1145/3486608.3486909
https://essay.utwente.nl/91735/
https://users.rust-lang.org/t/why-shouldnt-i-use-the-current-rustc-version/79345
https://users.rust-lang.org/t/why-shouldnt-i-use-the-current-rustc-version/79345
https://github.com/netromdk/vermin
www.reddit.com/r/rust/comments/qmph74/should_i_bump_to_2021_edition/
www.reddit.com/r/rust/comments/qmph74/should_i_bump_to_2021_edition/
https://lib.rs/stats
https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1093/OED/6310816251
https://doi.org/10.1093/OED/6310816251
https://doi.org/10.1093/OED/4837544359
https://github.com/rust-lang/rust-clippy
https://doc.rust-lang.org/stable/clippy/usage.html
https://doi.org/10.1145/3385412.3386036
https://rust-lang.github.io/rfcs/2963-rustdoc-json.html
https://rust-lang.github.io/rfcs/2963-rustdoc-json.html
https://api.semanticscholar.org/CorpusID:258985567
https://doi.org/10.1093/acrefore/9780190846626.013.56
https://doi.org/10.1093/acrefore/9780190846626.013.56
https://rust-unofficial.github.io/patterns/
https://rust-unofficial.github.io/patterns/
https://doc.rust-lang.org/rust-by-example/index.html
https://blog.rust-lang.org/2022/08/11/Rust-1.63.0.html
https://blog.rust-lang.org/2022/08/11/Rust-1.63.0.html
https://github.com/rust-lang/surveys/blob/main/surveys/2021-annual-survey/questions.md
https://github.com/rust-lang/surveys/blob/main/surveys/2021-annual-survey/questions.md
https://github.com/dtolnay/cargo-expand
https://doi.org/10.1109/SCAM55253.2022.00027
www.reddit.com/r/rust/comments/qvu1iy/should_i_use_clippy_in_all_of_my_projects/
www.reddit.com/r/rust/comments/qvu1iy/should_i_use_clippy_in_all_of_my_projects/
https://rust-lang.github.io/rfcs/2394-async_await.html
https://rust-lang.github.io/rfcs/2394-async_await.html
https://essay.utwente.nl/96034/

	Abstract
	1 Introduction
	2 Problem statement
	3 Related work
	4 Methodology
	4.1 Definition of code modernity
	4.2 Literature review
	4.3 Implementation and analysis

	5 Metric Analysis
	5.1 Definition of code modernity
	5.2 Measure Metrics

	6 Implementation
	7 Results
	8 Discussion
	9 Conclusion and future work
	References

