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Abstract

Despite insurance companies detecting a large worth of fraudulent insurance claims, detec-
ted insurance fraud is assumed to constitute only a small fraction of all insurance fraud.
Meanwhile, a large number of claims flagged as ‘potentially fraudulent’ by fraud detection
systems are considered benign after manual review, indicating a high error rate. These
combined observations reveal that, at least in theory, there is room for improving current
fraud detection systems. In the current research, we extend upon a recently proposed social
network analytics-based approach to automobile insurance claims fraud detection. This
approach leverages the BiRank algorithm to calculate fraud scores in a graph of claims and
stakeholders, which are then combined with other features to train a supervised machine
learning classifier. We first establish that our real insurance data also suggests empir-
ical evidence for the homophily assumption proposed by the original work’s authors. We
then reconstruct their proposed model and corroborate their finding that the inclusion of
network-related features enhances fraud classification performance. As an extension, we
assess the impact of incorporating time-weighted fraud influence and extending the graph
with relations based on shared resources and reveal that our current approach yields limited
additional value over the baseline model. Meanwhile, we identify limitations in the original
work’s methodology and experimental setup. The results of this study provide a deeper
understanding of the value of using graph-based insurance fraud detection techniques in
practice. These insights shall ultimately aid in saving insurers and their customers from
the financial consequences of fraudulent claims.

Keywords: automobile insurance, insurance fraud, fraud detection, BiRank, social net-
works, supervised learning, machine learning, data mining
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Chapter 1

Introduction

Insurance plays a crucial role in today’s society. Against payment of a premium, an
insurer agrees to make a monetary provision on behalf of an insured party to cover the loss
of an insurable interest due to one or more future, well-defined, but uncertain events [1],
relieving the insured party of risks related to insurmountable financial damage. However,
the insurance sector is plagued by fraudulent behaviour, and the automated detection of
insurance fraud is hampered by various complex challenges. In light of these issues, this
report presents a study on the automated detection of insurance fraud by employing social
network analytics-based fraud detection models.

In this chapter, Section 1.1 first presents statistics that substantiate the aforementioned
claims, along with a summary of issues that complicate the detection of insurance fraud.
Together, these form the motivation for conducting this research. Then, Section 1.2 in-
troduces the goal, scope and methodology of this research, followed by a description of
our hypotheses in Section 1.3. This research’s significance is elucidated in Section 1.4.
Following that, Section 1.5 concludes this chapter with an overview of the structure of
this report, providing readers with an outline of forthcoming chapters and their respective
contributions.

1.1 Context and Motivation

In recent years, insurance fraud has remained a noteworthy issue. In 2021, Dutch in-
surers reported almost 13,000 cases of verifiable insurance fraud to the Centrum Bestrijd-
ing Verzekeringscriminaliteit1 [2], a constituent body of the Verbond van Verzekeraars2

representing over 95% of all non-life and life insurers in The Netherlands [3]. The reported
number of fraudulent cases for 20213 is consistent with previous years [5, 6, 7], with the
exception of a surge in 2019, when 23,376 cases were reported [8]. The cases account for an
estimated yearly total of e80 million in insurance fraud in The Netherlands [2, 5, 6, 7, 8],
contributing to a reported e2.5 billion worth of detected fraudulent claims across Europe
in 2017 alone [9].

The numbers seem to suggest that current approaches to fraud detection are effective,
but the European insurance and reinsurance federation Insurance Europe [10] has estimated
that only 20% of fraudulent claims are detected as such [9]. Their most recent estimate of
e13 billion worth of detected and undetected fraudulent claims in 2017, compared to e2.5
billion worth of detected fraudulent claims alone, suggests many instances of insurance

1The Dutch Centre for Combating Insurance Crime
2The Dutch Association of Insurers
3As of this writing, more recent numbers are yet to be published [4].
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fraud go undetected.4 This indicates low performance on the ‘recall’ metric. In other
words: a low proportion of real positive (i.e. real fraudulent) cases are correctly predicted
positive (i.e. predicted fraudulent) [12].

Meanwhile, numbers only reported for the years 2013 until 2018 highlight that the an-
nual number of fraud investigations performed by members of the Verbond van Verzeker-
aars in response to suspected fraud indicators was 2.5–3.5 times greater than the number
of verified fraudulent cases [13]. Assuming that this trend has continued and disregarding
true but unverifiable fraud, this suggests low performance on the ‘precision’ metric. In
other words: a low proportion of predicted positive (i.e. predicted fraudulent) cases are
correctly real positives (i.e. real fraudulent) [12].

Thus, while the detection of insurance fraud is crucial to retaining fair insurance premi-
ums and sometimes critical to abide by laws and regulations [14, 15], the aforementioned
statistics highlight that, at least in theory, there is room for improving upon current fraud
detection practices. Relatedly, the automated detection of insurance fraud has been an
active area of research (Section 3). Complexities in automatically detecting (insurance)
fraud are highlighted by various authors [1, 16]. Van Vlasselaer et al. [16] highlight the
uncommon, time-evolving and imperceptibly concealed nature of fraud, among others. Its
uncommon nature is found in the relatively limited availability of confirmed fraudulent
cases when compared to unknown or legitimate cases, providing data mining techniques
with highly skewed class distributions. This challenge is also explicitly denoted in various
studies [17, 18, 19]. Its property of evolving with time highlights the need to consider
adaptive fraud detection systems; while its imperceptible concealment is found in the fact
that fraudulent parties tend to share many of the same characteristics as legitimate parties.
Viaene and Dedene [1] identified further challenges in detecting insurance fraud through
automated means. Among others, they mentioned that fraud is not self-revealing: it goes
unnoticed when it is not actively looked for.

A range of automated fraud detection models underlying current fraud detection prac-
tices exist. These can range from simple pre-defined business rules to more advanced data
mining models [17, 20, 21]. An illustrative example of a simple pre-defined business rule for
fraudulent claims detection is: “flag any claim made within one week from the beginning of
the insurance contract.” Examples of more advanced data mining models include artificial
neural networks (ANNs) [22] and support vector machines (SVMs) [23].

A specific type of model whose relevance for fraud detection has been explored in vari-
ous publications [16, 18, 19, 24] are graph-based models. Graphs are a natural way to
visualise networks with many nodes and complex relations between them, while related
graph theory, “the natural framework for the exact mathematical treatment of complex
networks” [25], provides the foundation for complex detection algorithms. The choice for
graph-based models is justified by the assumption that individuals collaborate to commit
fraud [16, 18, 19, 24], thereby forming a network of fraudsters. Indeed, the Association
of Certified Fraud Examiners distinguishes various types of collaborative automobile in-
surance fraud, including staged accidents, inflated damages and misrepresented vehicle
repairs [26]. Óskarsdóttir et al. [19] and Van Vlasselaer et al. [16] further substantiate
their choice for a graph-based approach by referring to the concept of homophily : the idea
that closely related instances are likely to behave in the same way [27]. They report that
in their data, fraudulent entities are indeed more connected to other fraudulent entities
than non-fraudulent entities are, and vice versa.

4The same estimate of e13 billion worth of detected and undetected fraudulent claims is also mentioned
in a later report [11], but with no mention of the worth of detected fraudulent claims.
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Figure 1.1: Simplified illustration of the fraud detection model proposed in [19]

1.2 Goal, Scope, and Methodology

In the proposed study, we extend upon the work conducted by Óskarsdóttir et al. [19].
They establish fraud as a social phenomenon and devise a social network-based approach
for fraud detection. A simplified visual representation of the approach is displayed in
Figure 1.1.

The presented approach involves first constructing a bipartite network [28] of claims
and associated actors. Then, the BiRank algorithm [29] is utilised to propagate fraud
through the network and calculate a fraud score for each claim, representing a claim’s
exposure to known fraudulent claims. Next, features related to fraud scores and the neigh-
bourhood structure of claims are extracted from the network. Finally, the fraud score-
and neighbourhood-related features are combined with intrinsic claim features and used to
construct a logistic regression model with fraud as the target variable.

The authors show that, when applied to a vast data set of millions of claims, the mod-
els incorporating network-derived features demonstrate superior performance compared to
models relying solely on intrinsic claim features, measured in terms of area under the re-
ceiver operating characteristic curve (Section 4.6.1), area under the precision–recall curve
(Section 4.6.2), and top decile lift (Section 4.6.3). Combining network and claim-specific
features further enhances this performance.

In the proposed study, we take inspiration from this original work and their suggestions
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for future research and answer the following research questions:

RQ1 To what extent can empirical evidence for the homophily assumption presented in
Óskarsdóttir et al. [19] be found in a different real insurance data set?

RQ2 How do the results presented in Óskarsdóttir et al. [19] generalise to a different real
insurance data set?

RQ3 How can the social network analytics-based insurance fraud detection approach presen-
ted in Óskarsdóttir et al. [19] be adapted to enhance its classification performance?

a What is the impact of extending the approach with time-weighted fraud influ-
ence and edges?

b What is the impact of extending the bipartite network with party–party rela-
tions based on shared resources?

RQ4 How do the baseline and adapted models along with different combinations of feature
sets compare in terms of highlighting interesting and/or suspicious claims that had
not been investigated previously?

Answers to these research questions provide a deeper understanding of graph-based insur-
ance fraud detection techniques and provide practical insights that could ultimately save
insurers and their customers from the consequences of fraud.

To conduct this research, we first collect unprocessed insurance data and transform it
into the types of data specified in the original study. Subsequently, we analyse this data for
evidence related to the homophily assumption. Then, we reconstruct the model proposed
by the original authors based on their reported methodology and experimental setup and
evaluate its performance on our own data, enabling a comparison of results between the
two studies and therewith facilitating an evaluation of the generalisability of their results.
Finally, two adapted models are constructed based on the existing baseline model and
evaluated on the same data. Their performance is then compared to our baseline model
results, yielding insight into the value of our proposed adaptations. Subsequently, each
models’ claims with the highest predicted probability of fraud are analysed by fraud ex-
perts for suspicious characteristics, yielding the required information for assessing models’
capabilities in recalling previously uninvestigated claims.

1.3 Hypotheses

Our current hypothesis regarding RQ1 is that empirical evidence supporting the homophily
assumption is also present in our data set. In part, this is because the homophily assump-
tion might already be either implicitly or explicitly embedded in existing business rules
and/or fraud detection models. Further motivation results from the existence of various
types of collaborative automobile insurance fraud [26], as well as the explicit distinction
between opportunistic and organised or gang fraud reported in various studies, as presented
in Section 2.1.

For RQ2, we hypothesise that the main findings in Óskarsdóttir et al. [19] generalise
to the data set used in this study. More specifically, we expect that the inclusion of
neighbourhood and score features enhances the performance of the supervised machine
learning classifier, but assume that the importance ranking of individual features will differ
at least slightly. Our expectation regarding the inclusion of score and neighbourhood is
directly related to our hypothesis concerning the homophily assumption. Meanwhile, we
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expect difference in more granular results due to potential differences in implementation
and due to the idea that insurers’ data will not match one-on-one, in part due to differences
in existing fraud detection practices that affect the results.

For RQ3, we hypothesise that both adaptations yield a positive impact on the classific-
ation performance of the model. Considering the inclusion of time-weighting (i.e., RQ3a),
this hypothesis is consistent with the time-evolving nature of fraud suggested in existing
studies [16, 30]. Additionally, it aligns with the positive reported impact of the inclusion
of time weighting in a study on fraud detection in the social security domain [16]. Re-
garding the hypothesis for RQ3b instead, we propose that shared resources, such as shared
bank account numbers and shared email addresses, suggest a close relation between the
two parties sharing the resource. Following the notion of homophily, these parties are thus
more likely to share behavioural characteristics, including the potential perpetration of
fraud.

For RQ4, we adopt a similar hypothesis to the one for RQ3 and expect that either one
of the two adaptations yields enhanced results in comparison to the baseline model. This
hypothesis is based on the same arguments as for RQ4, whose duplication we omit.

1.4 Significance

Section 1.1 provided numbers regarding insurance fraud in The Netherlands and across
Europe. It showed that insurance fraud remains a huge problem and suggested that there is
room for improving fraud detection in terms of both precision and recall. Doing so through
optimisation of fraud detection models underlying current fraud detection mechanisms
could prove beneficial, both for insurance companies and their customers, as well as citizens
in general. This claim is substantiated as follows.

First, note that fraud detection models are employed in the fraud detection phase
of the fraud detection and investigation process (see Section 2.2). They decide whether
a claim is forwarded to the fraud investigation and fraud confirmation phases for human
investigation. Improvements to the precision of fraud detection models means fewer benign
claims unnecessarily enter these subsequent labour-intensive phases, which could lead to
a decrease in labour costs and required manpower. The result is a positive impact on
the financial position of the insurance company, which could ultimately decrease insurance
premiums for their customers.

Second, consider that any undetected fraudulent claims result in unjustified payouts
from insurer to fraudster. Improving recall of fraud detection models and therewith the
proportion of fraudulent claims that are detected reduces these payouts, providing two
main benefits. For one, it would decrease insurance expenditure, again positively impact-
ing the financial position of the insurance company. Simultaneously, it prevents money
from flowing to criminals, which emphasises the notion that “crime doesn’t pay” and is
beneficial to society at large. Especially the explicit consideration of networks of claims
and stakeholders, as is done in this study, shall enhance the capabilities in detecting the
organised or gang type of fraud (Section 2.1). This might yield more substantial savings
than detection of opportunistic types of fraud would.

The proposed study contributes to the optimisation of fraud detection models by ex-
ploring the efficacy of various adaptations to the social network analytics-based fraud
detection approach presented in [19] and the generalisability of their reported results. It
shall highlight opportunities for future research, and provides practitioners with inspiration
in terms of graph-based fraud detection models to deploy in practice.
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1.5 Report Structure

The remainder of this report is structured as follows. In Chapter 2, background information
is provided to enhance comprehension of the research topic. Chapter 3 offers a review of
recent literature on automobile insurance fraud detection, derived from a systematic liter-
ature review conducted prior to this study. Chapter 4 outlines the methodology established
to address the research questions. Chapter 5 presents details regarding the implementation
of this methodology and the utilised experimental setup. Chapter 6 provides an objective
presentation of the results obtained from our analysis. Chapter 7 presents an interpretation
of these results in relation to the research questions, along with this study’s limitations
and suggestions for future research. Finally, Chapter 8 summarises the main elements and
key findings, concluding this report.
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Chapter 2

Background

To enhance the comprehension of the concept of ‘insurance fraud’ and provide an under-
standing of both a typical multi-step approach that is employed for its detection, as well
as methods used in this work, this chapter presents background information covering these
topics. The concept of ‘insurance fraud’ is further explained in Section 2.1, whereas Sec-
tion 2.2 provides information about a typical fraud detection process. Section 2.3 then
provides background information about the Random Forests algorithm, one of the main
machine learning algorithms employed in this study, while Section 2.4 sheds light on the
concept of ‘resampling’.

2.1 Insurance Fraud

According to Benedek, Ciumas and Nagy [31], there is no generally accepted definition to
automobile insurance fraud. This statement is in line with the statement that “there is
disagreement within the industry as to the best working definition of insurance fraud” [32,
p. 5]. Morley, Ball and Ormerod [32] do report one possible definition of insurance fraud,
originally reported in a different publication [33]: “knowingly making a fictitious claim,
inflating a claim or adding extra items to a claim, or being in any way dishonest with the
intention of gaining more than legitimate entitlement”, but this definition covers insurance
claims fraud only. It does not cover the second category of fraud distinguished by Viaene
and Dedene [1]: insurance underwriting fraud.

In this study, insurance claims fraud is defined according to the definition of insurance
fraud reported in the previous paragraph. This comprises the main topic of this study and
is therefore simply denoted as ‘insurance fraud’ in subsequent sections. Meanwhile, insur-
ance underwriting fraud is defined as “the dissimulation of information during application
(application fraud) to obtain coverage or a lower premium (premium fraud), the deliber-
ate concealment of existing insurance contracts covering the same property and casualty
(P&C) risk, and underwriting coverage for fictitious risks.” [1, p. 315].

In several studies, insurance fraud is further categorised based on two extremes: op-
portunistic fraud, and organised or gang fraud [26, 32, 34, 35]. The former involves parties
simply seizing an opportunity to gain unlawful benefits by, for example, inflating the
damages of otherwise genuine claim, whereas the latter concerns carefully planned scams
involving multiple parties to recurrently deceive insurers for the parties’ own benefit. A
similar type of distinction between these two types of fraud is made by Viaene and Dedene
[1], albeit using the term soft fraud for opportunistic fraud, and hard fraud for organised
fraud.
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2.2 Insurance Fraud Detection and Investigation Process

The process of fraud detection typically involves a multi-step approach. For instance,
Van Vlasselaer et al. [16] distinguish the stages of fraud detection, fraud investigation and
fraud confirmation in their study on social security fraud detection. Meanwhile, Viaene
and Dedene [1] combine the first two stages and merely distinguish the screening and
investigation phase. On the other hand, Bolton and Hand [36] do not explicitly label
separate stages, but they do emphasise that alerts generated by statistical fraud detection
methods should be followed by manual investigation.

In this study, we consider a process similar to the one presented by Van Vlasselaer et al.
[16]. The initial phase, fraud detection, focuses on identifying and flagging high-risk claims.
This task may be performed manually by claim handlers, but there is an increasing reliance
on automated fraud detection models to support this process—one of the main topics of
this research. Claims flagged in the fraud detection phase are forwarded to the fraud
investigation stage. In this phase, experts with domain knowledge and insights conduct
an initial, manual claim assessment. Claims that are indeed deemed suspicious based on
this assessment are forwarded to the fraud confirmation phase for further assessment, while
others are returned to the regular claim handling process. In the fraud confirmation phase,
fraud investigators investigate the claim more thoroughly to confirm whether the suspicions
of fraud are substantiated. If there is sufficient evidence to support the fraud allegations,
the claim is denied and the fraud is registered. The claim can then be made available
to internal fraud detection models as an example of a fraudulent case. Conversely, if the
investigation does not yield enough evidence of fraud, the claim is returned to the regular
claim handling process.

Figure 2.1 presents a visual illustration of this fraud detection process, constructed
using the Business Process Model and Notation (BPMN) visual language [37].
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2.3 Random Forests

Random forests is an ensemble learning method that was originally proposed by Breiman
[38]. It operates by constructing a multitude of decision trees and its output is an aggregate
derived from the results of the individual trees in the forest. Random forest models can be
constructed for both regression and classification tasks. In this study, only the classification
aspect is emphasised.

2.3.1 Approach

A key technique employed in random forest models is the bootstrap aggregating tech-
nique, commonly referred to as ‘bagging’. During training, random forests implement this
technique by constructing each individual decision tree using only a subset of the complete
training data set. This subset, termed the bootstrap set, is generated by selecting a random
sample with replacement from the full training set T , composed of Xtrain = {x1, . . . ,xn}
with corresponding labels Ytrain = {y1, . . . , yn}. For a given tree k ∈ {1, . . . , n} in a random
forest with n trees, the corresponding bootstrap set is denoted as Tk.

What distinguishes random forests from a regular bag of trees is that random forests
also employ the random subspace method [39], sometimes referred to as attribute bag-
ging [40]. This method involves randomly selecting only a small group of input variables
to split on for each split in each individual tree. The size of this group, denoted as F ,
is fixed. The primary objective of employing the random subspace method is to reduce
the correlation between generated trees, thereby enhancing the generalisation error of the
forest.

Breiman [38] presents the classification in random forest models as a majority vot-
ing task: input is run through each tree in the forest and the class that is selected by
most trees is provided as output. However, alternative approaches are also observed. An
implementation of the algorithm in the commonly used Python library scikit-learn, for
example, “combines classifiers by averaging their probabilistic prediction, instead of letting
each classifier vote for a single class” [41].

2.3.2 Feature Importance Ranking

To use random forest models for evaluating the importance of individual features, multiple
approaches can be taken. Here, we distinguish the permutation importance approach [38]
and the mean decrease in impurity feature importance approach [42].

The mean decrease in impurity (MDI) feature importance approach focuses on the
impurity during splits, which indicate the homogeneity of the labels in the split’s leaf
nodes. It is based on the idea that variables which decrease the impurity during splits are
important, such that

Importance(xm) =
1

nT

nT∑
i=1

∑
t∈Ti|v(t)=xm

pTi(t)∆iTi(t), (2.1)

where xm indicates the variable under consideration, nT denotes the number of trees in
the forest, t ∈ Ti represents node t in optimal subtree Ti, v(t) is the variable used for the
split in node t, pTi(t) =

nt
N is the fraction of samples reaching node t, and ∆iTi(t) is the

change in impurity at node j in tree Ti. This equation was adapted from Louppe et al.
[43].

To rank the importance of features using the permutation importance approach, we
first need to calculate the out-of-bag (OOB) error for each data point. This is calculated
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as follows. Each independent tree k in the random forest is trained using only a subset of
all training data, denoted as the bootstrap set Tk. Now, let all data that is in T but is
not in Tk, i.e., T \Tk, represent the out-of-bag data for tree k. Then, for each combination
(x, y) in the training data, we collect votes from a classifier k only if (x, y) /∈ Tk. The
out-of-bag estimate for the generalisation error is then the error rate of the out-of-bag
classifier on the training set.

Then, suppose we have M input variables. After constructing a tree in the forest,
we randomly permute the values for variable m in the out-of-bag training data, run the
permuted data down the newly constructed tree, and save the classification result. This
is repeated for all variables m ∈ {1, . . . ,M} and for all trees. Then, once all trees have
been constructed, for all variables m, the predictions of the classifier are compared with
the true class labels and the average in out-of-bag errors before and after the permutation
is computed. This misclassification rate can then be compared to the performance of the
classifier with all variables intact. The larger the decrease in performance resulting from
the permutation of variable m, the larger the importance of the variable.

2.4 Resampling

As presented in Section 1.1, one of the complexities in automatically detecting automobile
insurance fraud is the highly skewed class distributions that the corresponding machine
learning algorithms need to deal with. One approach to addressing this problem is by em-
ploying resampling methods [44], which can be further categorised as either undersampling
or oversampling methods. Undersampling involves reducing the number of samples of the
majority class, whereas oversampling involves increasing the number of samples of the
minority class.

Straightforward approaches to undersampling and oversampling are the random un-
dersampling and random oversampling methods [45]. Random undersampling involves
randomly removing samples from the majority class. In the context of insurance claims
fraud detection, this would entail removing legitimate insurance claims or insurance claims
that are not verified legitimate or fraudulent, until the desired class distribution is achieved.
In contrast, random oversampling involves randomly duplicating samples of the minority
class. In insurance claims fraud detection, this would constitute duplicating confirmed
fraudulent claims, resulting in a more balanced data set that contains multiple replicas of
the same fraudulent sample.

In addition to these basic approaches, more advanced approaches have been proposed
for both undersampling and oversampling. An example of the former is the utilisation of
Tomek links [46], which aims to remove noisy or borderline instances from the majority
class. On the other hand, an example of an advanced oversampling method is the Synthetic
Minority Oversampling Technique (SMOTE) [47]. SMOTE generates synthetic samples
for the minority class by interpolating between existing instances, thereby expanding the
representation of the minority class.

Resampling should generally be applied after splitting the data into train and test
sets, and only on the train set, particularly when oversampling is employed. Applying res-
ampling before the division can distort the real class distribution in the test data, limiting
the generalisability of the results obtained on the test set [48]. Moreover, when employing
oversampling, applying it before the data split can introduce data leakage compromising
the validity of the results [48, 49].
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2.5 Conclusion

Having established foundational information that might prove valuable in understanding
the remainder of this report, the next chapter presents a review of recent literature that
has also explored the subject of automobile insurance fraud detection. This review sheds
light on recent advancements, providing insights into the current study’s position within a
broader context.
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Chapter 3

Literature Review

In previous work, we conducted a systematic literature review (SLR) focusing on recent
studies employing data mining-based approaches for detecting automobile insurance fraud.
This investigation centred on examining data sets, detection methods, and resampling
techniques considered in these studies, addressing specific research questions, namely:

• What automobile insurance data sets have been used in recent research on the topic
of automobile insurance fraud detection?

• What is the current state-of-the-art in data mining methods for the automated de-
tection of automobile insurance fraud?

• What is the current state-of-the-art in resampling methods for training automobile
insurance fraud detection algorithms?

To address these questions, we systematically explored studies published between Janu-
ary 1st, 2019, and April 2nd, 2023, across four reputable scientific databases. The search
yielded 50 relevant primary studies, which were subsequently analysed, categorised, and
described. In this chapter, Sections 3.1 to 3.3 first present the key findings in relation
to the research questions that formed the basis of the SLR, followed by a discussion on
merely comparative studies in Section 3.4. Then, Section 3.5 delineates the primary contri-
butions of the present study within the context of existing research in the same automobile
insurance fraud detection field.

3.1 Data Sets

The exploration of automobile insurance fraud data sets used in recent research was based
on the seemingly limited availability of publicly available automobile insurance fraud data
to conduct research on. This idea was previously highlighted in an existing SLR on the
same topic [31] and has since been corroborated in our more recent SLR. Our review
uncovered six distinct (reportedly) publicly available data sets, of which only three have
remained available online [50, 51, 52, 53]. Among these, the most commonly used was
‘carclaims.txt’, originally distributed as part of the Angoss KnowledgeSeeker software and
nowadays available in various online repositories [52, 53].

Equivalent to the other two publicly available data sets that were uncovered, the
‘carclaims.txt’ data set provides no properties that facilitate an evaluation of fraud de-
tection approaches that employ unstructured textual data or relational information, as in
this study. This suggests further challenges that might hamper the development of novel
techniques in the automobile insurance fraud detection research domain.
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3.2 Detection Methods

In terms of reportedly novel detection methods, supervised detection methods were distin-
guished from their unsupervised counterparts. Supervised methods rely on labelled data
to ‘learn’ how to perform a classification or prediction task. In the context of automobile
insurance fraud detection, these labels are derived from historical knowledge of fraud. Un-
supervised methods require no such labels. Correspondingly, their use was often motivated
by the limited availability of this type of labelled data [35, 54, 55, 56].

The SLR uncovered that the supervised random forest, logistic regression, and k-nearest
neighbours algorithms were among the most commonly considered classification algorithms
in recent automobile insurance fraud detection research. Belonging to the group of ‘con-
ventional machine learning methods’ [57], part of their prevalence was attributed to their
frequent use in studies focused on a mere evaluation of existing methods, along with their
use as part of larger detection models. More generally, it was observed that the use of
supervised techniques was more prevalent than the use of unsupervised ones.

3.2.1 Novel Supervised Detection Methods

In terms of studies proposing reportedly novel supervised detection methods, our analysis
revealed a predominant focus on enhancing supervised classifiers that rely on intrinsic
features of claims and whose optimisation is based on metrics that do not explicitly incor-
porate the savings or costs that one would incur by (in)correctly classifying the respective
claim. An analysis of these studies is provided in the main report covering the SLR, but
we omit their description in this chapter. Instead, this section elucidate studies exploring
alternative directions only.

For example, Dimri et al. [58, 59] studied the value of incorporating unstructured, tex-
tual data for three classification tasks, including insurance fraud detection. Their approach
involved further pre-training existing large language models BERT [60] and ULMFiT [61]
to construct an insurance-based large language model and yielded improved insurance fraud
classification performance compared to the use of conventional text-based approaches. Ad-
ditional findings included an observed trade-off between the timeliness and correctness of
the classification task. The reported value of utilising textual data for fraud detection
purposes was also established by Yankol-Schalck [62]. These authors established value in
incorporating not only structured data available at the opening of a claim, but also un-
structured textual data from the same moment and structured information later generated
by the first adjusters’ report, thereby yielding a fraud score that evolves over the life of a
claim.

A different approach was taken by Óskarsdóttir et al. [19] and Zhang et al. [63], who
studied graph-based methods for insurance fraud detection and motivated their choice
by referring to their potential for detecting, for example, fraud networks. Óskarsdóttir
et al. [19] proposed using the BiRank [29] algorithm to compute fraud scores for claims
in a bipartite network of claims and involved parties. Their findings revealed that the
addition of fraud scores and related network features indeed yielded enhanced performance
in subsequent supervised classification compared to using intrinsic claim- and policyholder-
related features alone, presenting opportunities for future research. Meanwhile, Zhang et al.
[64] proposed the use of knowledge graph [65] techniques for automobile insurance fraud
detection. They demonstrated the value of knowledge graph embedding techniques for
predicting missing accomplice relations and identifying fraud networks, while also reporting
enhanced performance in classifying individual claims by incorporating features derived
from these predicted accomplice relations.
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In a different study, Zelenkov [66] proposed a technique that incorporated the example-
dependent cost of misclassification into the optimisation process of the AdaBoost [67]
machine learning algorithm. This facilitates optimisation based on cost savings rather
than based on common metrics related to the number of correct predictions, which might
sometimes be more representative of some insurers’ goal in automobile insurance fraud
detection.

Meanwhile, different papers presented approaches to insurance fraud detection that
are at least partially founded in rules derived from expert systems that were traditionally
used. Baumann [68] proposed the use of association rule mining to discover meaningful new
rules that reflect dependencies between existing rules, yielding benefits especially in terms
of ease of implementation. However, their study revealed existing limitations in terms of
performance and methodology. Conversely, Liu et al. [69] proposed an approach based on
evidential reasoning, which combines evidence from expert knowledge (i.e., fraud indic-
ators) and probabilities of fraud obtained from historical data. They reported enhanced
performance compared to other conventional machine learning algorithms and highlighted
their method’s retained usability and interpretability.

A different approach altogether was presented by Qazi et al. [70], where the use of a
scaleable T-pattern algorithm [71] was proposed to detect patterns in temporal customer
data derived from customer interactions and events. Their combined use of hand-crafted
features and binary indicators derived from these patterns yielded slightly elevated per-
formance compared to using one of the feature types alone, though statistical significance
may be lacking.

A number of authors also established approaches that integrate detection and under-
sampling by utilising fuzzy C-means clusters (FCM) [72] for both classification and outlier
elimination [73, 74, 75, 76]. These approaches first train supervised machine learning clas-
sifiers using a training set that is undersampled by removing outliers in the majority class
based on FCM clusters. Then, new samples are classified using a two-stage approach. In
the first stage, claims are classified as genuine, suspicious or fraudulent based on their
Euclidean distance to the cluster centres previously defined during the training phase. In
the second stage, claims formerly labelled as suspicious are fed into a trained supervised
classifier, which performs a binary ‘fraudulent/non-fraudulent’ classification. A key differ-
ence between the methodologies adopted in the separate studies was the algorithm used
to optimise the FCM cluster centres, which ranged from the salp swarm algorithm [73]
and the modified whale optimisation algorithm [74] to a regular genetic algorithm [75, 76].
However, our evaluation of the methodologies and experimental configurations adopted in
each of these studies reveals potential shortcomings in their robustness, suggesting caution
in drawing conclusions from their findings.

3.2.2 Novel Unsupervised Detection Methods

In addition to supervised methods, a number of unsupervised detection methods was pro-
posed. For instance, one approach suggests employing autoencoders (AEs) or variational
autoencoders (VAEs) [77] to detect anomalies in claims and reveal properties that are
most likely drivers of fraud [54]. The approach was based on the idea that (V)AEs learn a
representation of the majority class (i.e., legitimate claims) such that anomalous samples
with an aggregate reconstruction error exceeding a defined threshold are likely part of the
minority class (i.e., fraudulent claims). In the absence of labels, the method exhibited
commendable detection performance in the absence of labels. However, its performance in
comparison to supervised counterparts remained comparatively limited.

In a different study, Golden et al. [78] pursued a similar goal using a technique called
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‘assymetric PRIDIT’, based on the PRIDIT-framework [79]. Their focus was on identifying
individuals engaged in problematic hidden social behaviour through ‘suspicion of target
group membership’ derived from ordinal categorical features, attaining additional value
through insights into the importance of each variable response in classifying a claim as
fraudulent or non-fraudulent. The authors reported promising performance in the presence
of a set of predictor variables. These findings were supported by classification performance
results similar to those achieved by a supervised classifier.

Alternative approaches were also proposed. Krishna and Ravi [80] proposed an anomaly
detection approach based on a combination of modified differential evolution [81] and
sparse subspace detection [82]. Disregarding potential limitations in the robustness of
their reported experimental setup, their approach yielded mixed results when compared
to other methods. Meanwhile, Shaeiri and Kazemitabar [55] introduced a computationally
efficient approach to the spectral ranking of anomalies (SRA) technique [83] that shall
enhance the scalability and therewith practical feasibility of its application, relying on a
combined use with supervised machine learning classifiers. Their approach yielded similar
performance to the original SRA algorithm with considerably reduced execution times, but
the authors proposed that nowadays’ access to computing clusters yields opportunities for
the use of the regular SRA algorithm instead.

Similar to how supervised graph-based approaches were presented, unsupervised graph-
based methods were also considered. Tumminello et al. [35] introduced a statistically
validated network approach to automobile insurance fraud detection that employs bipartite
networks of subjects and accidents or vehicles. They presented methods for excluding weak
ties in the network, evaluated various methods to identify communities, and proposed alert
metrics to detect suspicious structures. Empirical case studies using an Italian industry-
wide data warehouse of insurance claims showed that the proposed approach effectively
assigned high or medium levels of statistical anomaly to the majority of externally validated
fraudulent cases. Moreover, the authors revealed that network-derived features could be
used to discriminate fraudulent from random events. Wang et al. [84] adopted a different
kind of graph-based approach and presented how pre-defined suspicious entity groups can
be automatically extracted from knowledge graphs. Their article presented no empirical
validation of the proposed approach, so the effectiveness of the approach in the insurance
fraud detection process could not be established.

In contrast to the aforementioned unsupervised approaches for insurance claims fraud
detection, Vandervorst, Verbeke and Verdonck [56] proposed a method for automatically
detecting insurance underwriting fraud. Their method involved using a combination of
validated data and conditional density estimates derived from historical data to evaluate
data misrepresentation risk. In the presence of informative relations between validated
and uncertain data, their approach yielded promising results, with proposed contributions
pertaining to its adaptability to pricing policy changes and its support for multivariate
self-reported data.

3.3 Resampling Methods

Regarding resampling techniques, an examination of studies included in the SLR revealed
that oversampling was employed in seventeen studies, while undersampling methods were
utilised in ten studies. Delving into specific methods, random undersampling emerged as
the most frequently employed undersampling technique, while the most prevalent over-
sampling technique was SMOTE, followed by the random oversampling method. In ad-
dition to these techniques, it was noted that some studies also proposed reportedly novel
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resampling methods—at least in the automobile insurance fraud detection domain. These
are reported hereafter.

In terms of reportedly novel resampling methods in the context of automobile insurance
fraud detection, Itri et al. [85] acknowledged that higher volumes of SMOTE oversampling
might introduce over-generalisation and subsequently worsen classification performance.
To address this issue, they proposed to optimise the classification threshold by choosing
the threshold that yields the highest G-mean (

√
recall× specificity). The downside of

their approach is the computational complexity associated with a repeated evaluation
of resource-intensive classifiers for different oversampling thresholds. This is especially
relevant when large data sets are considered.

In a different study [86], authors suggested undersampling with the adaptive synthetic
sampling method (ADASYN) [87], which differs from SMOTE by generating more synthetic
data for minority class samples that are harder to learn in comparison to minority class
samples that are easier to learn. The authors report enhanced performance using ADASYN
when compared to using SMOTE. However, they present insufficient details to verify the
correctness of their adopted experimental setup.

Adopting a distinctly different strategy, Kate, Ravi and Gangwar [88] introduced
a generative adversarial network-based (GAN) [89] oversampling method called chaot-
icGAN, alongside a recommendation for undersampling using a one-class support vector
machine [90]. Unlike conventional approaches, GANs can utilise learned distributional
properties to generate synthetic samples. The authors demonstrate the superior perform-
ance of their setup compared to previous studies and all other evaluated combinations,
except for performance statistically similar to that of a more computationally intensive
GAN-baed approach. However, a limitation of GAN-based approaches in general lies in
its deployability in production, constrained by the necessity for hyperparameter tweaking
and distributed training.

3.4 Comparative Studies

In contrast to studies proposing reportedly novel methods for automobile insurance fraud
detection, a large number of studies merely evaluated or compared the performance of
existing detection and/or resampling methods. However, a substantial part of these studies
show major limitations. In Sections 3.4.1 to 3.4.3, we distinguish the comparative studies
based on their evaluation of either detection methods, resampling methods and report on
their limitations and main findings.

3.4.1 Comparisons of Detection Methods

Considering studies that merely evaluated existing fraud detection methods, our analysis
has suggested many are significantly constrained in their robustness. For example, while
Reddy et al. [91] evaluated the classification performance of various supervised machine
learning algorithms, their assessment was based on a mere 200 claims, and their reporting
presented major constraints for conducting a thorough review of the validity of their results.
Similar issues of unclear and even inconsistent reporting were also found in a study that
merely evaluated the performance of a random forest classifier [92]. The clarity of reporting
was also limited in an alternative comparison of classifiers [93], but their work presented
an additional limitation in that it suggested overfitting on the test set, raising concerns
about the reliability and generalisability of the reported findings. These types of indicators
for overfitting were also found in the methodology of a study that compared a multi-layer
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perceptron, decision tree, and random forest classifier [94]. In a separate comparison of
various supervised machine learning algorithms, a clear specification of the experimental
setup was omitted altogether [95]. Meanwhile, reporting in the only study that considered
insurance sales fraud suggested evaluation was conducted on the same data that was used
for training [96], yielding results that are of little use.

Our literature review also uncovered comparative studies with seemingly fewer limita-
tions in the robustness of their methodology. In their study on the use of robotic process
automation for insurance fraud detection, S.Patil et al. [97] compared the performance of
five supervised machine learning classifiers and reported the best performance metrics for
random forest classifiers, followed by classification based on linear discriminant analysis.
Meanwhile, in a separate study on an insurance-related blockchain platform [98], authors
compared the performance of k-nearest neighbours [99], random cut forest [100], logistic
regression and XGBoost [101] classifiers and reported the best performance for XGBoost
across all considered performance metrics. Examining the logistic regression, support vec-
tor machine, and naive Bayes algorithms instead, Aslam et al. [102] reported that no single
classifier outperformed the others across all metrics. Additionally, Itri et al. [103] compared
ten supervised classifiers and suggest that random forests yielded the most desirable per-
formance characteristics. Lastly, Piesio, Ganzha and Paprzycki [104] compared clustering
algorithms and the supervised XGBoost classifier, highlighting XGBoost’s superior per-
formance based on the area under the precision–recall curve and a visual inspection of the
results generated using dimensionality reduction. However, they provide limited details
regarding the exact validation method used.

3.4.2 Comparisons of Resampling Methods

A single study focused on an evaluation of resampling methods only, assessing the impact
of adopting SMOTE on insurance fraud classification performance and revealing enhanced
importance on the balanced data set [86]. However, an extensive description of their applied
experimental setup is missing. This diminishes the impact of their work, especially since
the reportedly perfect performance across all their considered performance metrics seem
implausible if a valid experimental setup was applied.

3.4.3 Comparisons of Detection and Resampling Methods

More studies were found that compared both resampling and detection methods instead.
For example, Hanafy and Ming [105] evaluated a wide range of classifiers and four distinct
resampling methods, namely random undersampling, random oversampling, SMOTE, and
SMOTE+EditedNearestNeighbours [106]. They concluded that, while no one resampling
method consistently produced the best classification results, the use of resampling methods
did enhance the performance of the considered classifiers which, based on the reported
performance metrics, requires some nuance.

A similar type of research was conducted by Salmi and Atif [107], who considered the
logistic regression and random forest classifiers, the SMOTE and ROSE [108] oversampling
techniques, and two feature sets of different sizes. In terms of classifiers and resampling
methods, they reported that RF classifiers consistently outperformed LR classifiers, while
no discernible difference was found between the use of SMOTE and ROSE.

A more comprehensive evaluation of a wide number of resampling and classification
methods was conducted by Soufiane et al. [109]. However, their pipeline visualisation
suggests feature selection and oversampling was applied before splitting the data into
train and test sets, which has been previously described to induce data leakage from the
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train to the test set and to present overoptimistic results (Section 2.4). These represent
critical limitations that pose a major threat to the validity of their findings and thus the
contribution of their results.

3.5 Contributions

Having explored recent developments in the field of data mining-based automobile in-
surance fraud detection, this study presents the following contributions to the current
state-of-the-art:

• We further explore the use of graph-based automobile insurance fraud detection, a
type of approach that has been considered promising in recent studies.

• We consider a recent work on graph-based automobile insurance fraud detection and:

– evaluate the generalisability of their findings, facilitating an improved evaluation
of their reported results;

– reveal limitations in their methodology and experimental setup and present
alternative approaches to address these limitations;

– strengthen their suggestion that homophily is present in networks of claims and
involved parties by conducting a more robust analysis of homophily in our data
set;

– evaluate the impact of time-weighted fraud influence, which was suggested for
future research;

– evaluate the impact of extending their model by considering shared resources.

In the following chapter, we present the methodology that is paramount to providing this
contribution.
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Chapter 4

Methodology

Following the exploration of recent studies on the topic of automobile insurance fraud
detection in Chapter 3, this chapter presents the methodology for the current study. A
visual outline of this methodology is presented in Figure 4.1.

In line with our goal of extending the work in Óskarsdóttir et al. [19], we first construct
a data set that closely mirrors the one used in their study in terms of features and scope,
as delineated in Section 4.1. Next, we evaluate whether this data set suggests any evidence
for the homophily assumption following the methodology in Section 4.2. Then, we adopt
the methodology in Section 4.3 to re-implement the social network analysis-based fraud
detection model, and compare the performance of our implementation of the model on our
data set with the results obtained in the existing study. This comparison enables us to
assert whether the findings of the original authors generalise to our implementation and
data set.

The results obtained by our implementation on our data serve as the baseline for future
comparisons. This approach ensures that any observed differences in performance between
the baseline model and adapted models are a direct result of the adaptations themselves,
rather than stemming from differences in implementation or data characteristics. The
first adaptation involves incorporating time-weighted fraud influence in accordance with
the methodology outlined in Section 4.4. The second adaptation involves introducing the
concept of shared resources based on the methodology presented in 4.5. The metrics and
approaches used for model evaluation are presented in Section 4.6.

4.1 Data Set

This research is conducted using a confidential data set sourced from an insurer that is spe-
cialised in property and casualty (P&C) insurance types, including automobile insurance,
homeowners insurance and liability insurance. More specifically, we consider intrinsic fea-
tures of claims and policyholders, as well as relations between claims and involved parties.
The data set was constructed to closely align with the data set used in the original study by
Óskarsdóttir et al. [19], but minor deviations were inevitable. These deviations stemmed
from technical challenges, as well as disparities in the data model that is utilised.

The largest difference pertains to the number of years covered by our data set. In
contrast to the data set used in the original work, which encompasses automobile insurance
claims filed by policyholders over a period of six years, we adopt data on claims filed over a
four-year time frame, since incorporating data from a fifth and sixth year proved infeasible
due to past system migrations. An additional difference is found in our consideration of
closed claims only, whereas the data set in the original work comprised both closed and
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Figure 4.1: Simplified visualisation of the methodology, with numbers denoting
relations to sections

open claims. Smaller differences are found in the intrinsic features that are used and the
types of relationships that are considered.

Section 4.1.1 describes the intrinsic features available in our data set and presents a
comparison to the intrinsic features in [19]. Section 4.1.2 presents a comparison between the
types of relationships considered in our data set and the ones considered in [19]. Section 5.2
offers insight into various characteristics of the data set.

4.1.1 Intrinsic Features

Claims in the data set are characterised by 20 distinct intrinsic properties, presented in
Table 4.1. These are subdivided into the categories ‘target’, ‘policyholder characteristics’,
and ‘claim characteristics’. The ‘target’ category includes the fraud property, i.e., the main
property of interest which indicates whether the claim has been confirmed fraudulent,
confirmed legitimate, or not investigated. The ‘claim characteristics’ include properties
that are specific to an individual claim. The ‘policyholder characteristics’ include properties
pertaining to age, responsibility, and historical claims behaviour of the policyholder whose
insurance policy is (or would be) claimed on. Note that, although we do include the
age property to achieve high resemblance to the model presented in Óskarsdóttir et al.
[19], we posit that the age of the policyholder should be excluded from any operational
version of the model. Instead, our recommendation is to concentrate solely on properties
that can be influenced by the respective parties, aligning with the stance of the insurance
company granting data access. This approach, focusing solely on influenceable properties,
minimises the potential for the model to exhibit unfair discrimination based on immutable
characteristics and mitigates the risk of reinforcing undesired biases that might be present
in the existing data.
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Table 4.1: Intrinsic features in the constructed data set

Type Feature Description

Target fraud Is the claim fraudulent: yes, no, or unknown.
Policyholder
characteristics

age Age of policyholder when incident occurred.
responsibilityCode Policyholder’s responsibility in the incident: at fault, shared

responsibility, full right, or unknown.
numContracts Number of contracts the policyholder has or has had with the

insurer.
claimAge Number of months from beginning of contract to the date the

incident occurred.
nClaims1 Number of claims across all lines of business in last year before

the incident occurred.
nClaims5 Number of claims across all lines of business in last five years

before the incident occurred.
lastClaim Number of months since last claim occurrence.
amount1 Claimed amount across all lines of business in last year before

current claim occurrence.
amount5 Claimed amount across all lines of business in last five years

before current claim occurrence.
refused1 Number of times compensation was refused in the last year be-

fore current claim occurrence.
refused5 Number of times compensation was refused in last five years

before current claim occurrence.
atFault1 Number of times the policyholder had responsibility code ‘at

fault’ in last year before current claim occurrence.
atFault5 Number of times the policyholder had responsibility code ‘at

fault’ in last five years before current claim occurrence.
sameSits1 Number of times the policyholder has had the same responsib-

ility code as the current claim in last year before current claim
occurrence.

sameSits5 Number of times the policyholder has had the same responsib-
ility code as the current claim in last five years before current
claim occurrence.

Claim
characteristics

people Number of people involved in the claim

organisation Number of organisations involved in the claim.
daysReport Number of days from the occurrence of the incident to the filing

of the claim.
amount The claimed amount for closed claims or the expected claimed

amount if the claim is still open.
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When compared to the intrinsic features presented by Óskarsdóttir et al. [19], the
features shown in Table 4.1 show three differences, excluding the removal of one instance
of the duplicate claimAge feature in the original work. These follow from differences in
properties and corresponding categorisations available in the source data. Firstly, the
responsibilityCode feature is provided a fourth possible value: ‘unknown’. Secondly,
the distinction between ‘people’ and ‘companies’ is replaced with a distinction between
‘people’ and ‘organisations’, with a corresponding adjustment of the claim characteristics
features to people and organisations. Lastly, the police feature is omitted altogether,
since this data was not readily available.

Not all claims have complete intrinsic property information. For instance, when a
submitted claim falls outside the coverage defined in a policyholder’s contracts with the
insurance company, it cannot always be allocated to any of the insurance contracts because
it is not covered by any of them. For such claims, the claimAge property might be un-
available. Similarly, claims might not always proceed to a stage where details surrounding
the claimed amount become relevant, which affects the availability of the amount feature.
We describe our approach to dealing with this in Section 5.4.4.

4.1.2 Claim-to-Party Relations

Along with the intrinsic features, the data set also incorporates references to parties in-
volved in a claim. However, in contrast with the intrinsic features, involvement information
is included for all P&C claims, as opposed to automobile insurance claims only. This en-
ables us to construct a more complete bipartite network, as described in Section 4.3.

Different from Óskarsdóttir et al. [19], we consider relations to policyholders, claimants,
witnesses, injured, garages, legal counsel, agents, representatives, and experts, wherein
agents serve as intermediaries facilitating transactions between policyholders and insur-
ance companies, representatives act on behalf of involved parties, and experts contribute
specialised knowledge related to, for example, vehicle damages. Thus, we step away from
adopting the very broad definition of the term ‘policyholder’ used in the original study and:
make an explicit distinction between policyholders, claimants, witnesses, and injured; add
relations to agents, representatives, and legal counsel; and omit relations to brokers due
to an unavailability of such data. The considered types of people and organisations are
together referred to as ‘parties’.

In addition, while authors of the original study consider distinct types of parties via
node attributes, we consider distinct types of involvements via edge attributes. Accord-
ingly, whereas parties in the original work assume a fixed role across claims, a single party
in our data set can, for example, be involved as a witness in one claim and as a claimant
in another. The party can even assume multiple distinct roles within a single claim, as
frequently seen via the combination of a ‘claimant’ and ‘policyholder’ relation. The change
should have no impact on the performance of the detection models, since neither party
types of this kind nor involvement types are explicitly considered in the classification mod-
els. It does, however, disallow us from reporting on the exact same data characteristics, as
described in Section 5.2.

Note that while the raw data used to construct the data set for this study includes
relations to entities representing various departments within the insurance company, these
relationships are intentionally excluded from the final data set. This decision is consistent
with our emphasis on identifying fraud perpetrated by external parties specifically.
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Figure 4.2: Visual representation of a four-cycle

4.1.3 Data Set Characteristics

After constructing the data set, we gather summary statistics to gain insights into its
characteristics. These statistics are instrumental in facilitating comparisons between our
study’s data set and the one utilised by Óskarsdóttir et al. [19]. Following differences in the
structure of the available data, we cannot always report on the exact same characteristics
described by the original authors, but the reported characteristics may nevertheless shed
light on potential factors contributing to divergent results obtained by the detection models.

To enable for a comparison of general network-related characteristics of our data and
the data employed in the original work, we first focus on comparing statistics that describe
the degree of claims in the two data sets. This concerns involvement information and
therefore includes claims across all P&C lines of insurance at the insurance company, in
line with Section 4.1.2. The effect of including non-automobile insurance claims is that the
reported characteristics will reveal to be lower than for the automobile insurance claims
alone. This follows from our focus on only general relation types (agent, claimant, legal
counsel, policyholder, representative, and witness) and automobile-specific relation types
(garage), thereby excluding relation types specific to e.g. travel insurance.

Next, we report on the existence of cycles in our data set, similar to the original
authors. These structures, which are also referred to as ‘simple cycles’, are composed of
distinct nodes connected by edges, creating a closed loop where the last node is linked to
the first node [110]. More formally, consider a graph G = (V,E) of nodes (vertices) V
and edges E. Let e1, . . . , en be a trail with node sequence v1, . . . , vn, v1. Then, if the only
repeated nodes on the trail are v1 (indicating the start and end), the subgraph G′ induced
by the set of edges {e1, . . . , e2} is referred to as a cycle of G.

In the context of insurance fraud, cycles can signify the existence of collaborations
among parties. For example, consider cycles comprising four nodes, commonly known as
four-cycles. Stemming from our bipartite network structure, these consist of two claims
and two parties and reveal that two parties were involved in two of the same claims. If
both claims are subsequently revealed to be fraudulent, this may serve as an indication of
organised fraud efforts, as described in Section 2.1.

Figure 4.2 provides an illustration of a four-cycle. In this figure, claims are presented
as circles and prefixed with ‘C’, whereas parties are presented as squares and prefixed with
‘P’. Thus, the figure shows that parties ‘P1’ and ‘P2’ are both involved in claims ‘C1’ and
‘C2’.
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4.2 Evaluation of Homophily Assumption

Following the analysis of explicit structures in our data, we examine whether there is em-
pirical support for the homophily assumption. Hereto, we compute the relative frequency
of fraudulent and non-fraudulent claims in the second- and fourth-order neighbourhoods
of claims with a known label, in line with the methodology outlined by Óskarsdóttir et al.
[19]. In contrast to their approach, we then employ T-tests to compare the mean rel-
ative frequencies. This allows us to ascertain the statistical significance of any observed
differences.

Diverging from the original work, our reporting not only encompasses the relative
frequency of fraudulent and non-fraudulent claims among all claims in the second- and
fourth-order neighbourhoods of labelled claims, but also considers their relative frequency
among all investigated claims. By conducting this evaluation, we aim to discern whether the
observed differences can be exclusively attributed to an increased number of investigations
into claims surrounding known fraudulent claims, or if they indeed actually establish some
empirical evidence for homophily.

4.3 Implementing the Baseline Model

Following the collection, processing, and analysis of data in Section 4.1, we re-implement
the model proposed in Óskarsdóttir et al. [19]. This model lays the groundwork for later
adaptations and serves as the baseline to which adapted versions of the model will be com-
pared. The implementation involves the construction and analysis of a bipartite network,
the computation of fraud scores using BiRank, the extraction of network features, and the
implementation of a supervised learning model.

4.3.1 Constructing the Bipartite Graph

First, we construct a bipartite network consisting of two types of nodes: claims and parties.
These types of nodes are connected via edges (i.e., relations), which represent the involve-
ment of a party in a claim. Figure 4.3 presents a visualisation of this idea. Red, green,
and white circles represent claims that are labelled fraudulent (C2 and C3), non-fraudulent
(C1 and C5), and unknown (C4), respectively. Meanwhile, squares denote parties, whereas
edges show a party’s involvement in a claim. Edge labels denotes the role of a party in a
claim, i.e., the type of involvement. Since we allow at most one edge between two distinct
nodes, edge labels may be composed of multiple relationship types.

Contrary to the full fraud detection model, the bipartite network is not restricted to
automobile insurance claims alone, but includes claims from all P&C lines of business of
the insurance company. This is in line with the methodology adopted in the original study
and shall provide a holistic view on the riskiness of clients. To eliminate data inconsistency
issues, we merge distinct parties in the graph whenever both their names and postal codes
match. This approach ensures that parties with duplicate profiles are properly depicted as
a single party in the network, notwithstanding the small likelihood that it introduces false
positive merges in exceptional cases.

We use the bipartite network to analyse whether our data also establishes evidence for
the homophily assumption described in Section 1.1. Accordingly, we compute the relative
frequency of fraudulent and non-fraudulent claims occurring in the neighbourhoods of other
fraudulent and non-fraudulent claims. The availability or lack of evidence supporting the
homophily assumption shall provide some indication as to the validity of this assumption
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Figure 4.4: Example network illustrating kth-order neighbourhoods of claim ‘C1’

across different insurance fraud data sets. In turn, this might prompt suggestions for future
approaches to insurance fraud detection.

Formally, we let G = (C ∪ P,E) denote the bipartite graph G consisting of nodes C
and P and edges E. Each node in G belongs to exactly one of the vertex sets C and P ,
and edges in E connect one node in C to one node in P . The number of nodes in C and P
are represented as |C| and |P |, respectively. We let C correspond to insurance claims and
P represent the various parties involved in the claims. Then, ci and cj denote individual
claim and party nodes, where i ∈ {1, . . . , |C|} and j ∈ {1, . . . , |P |}.

Edges in E carry non-negative weights wij modelling the strength of the relationship
between ci and pj . The lack of a connection between node ci and pj is represented by a
weight of zero. In unweighted networks, wij is a binary indicator, where

wij =

{
1 if ci and pj are connected;
0 otherwise.

(4.1)

The edge weights altogether are represented as a |C| × |P | weight matrix W = (wij) with
i ∈ {1, . . . , |C|} and j ∈ {1, . . . , |P |}. As we are working with undirected edges, it holds
that wij = wji for all i ∈ |C|, j ∈ |P |.

The kth-order neighbourhood of a node ci, denoted asN k
ci , represents the set of all nodes

that are connected to node ci via a path of exactly k edges. Figure 4.4 provides a visual
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illustration of this concept for example claim ‘C1’. In the figure, arrowheads depict the
direction ‘away from’ C1 and edge labels indicate that the target node is k steps away from
C1. P1–3 resemble the first-order neighbourhood; C2–5 the second-order neighbourhood;
P4–5 the third-order neighbourhood; and C7 the fourth-order neighbourhood.

The first-order neighbourhood of a claim ci is the set of all parties involved in a claim,
formally defined as

N 1
ci = {pj | wij ̸= 0} . (4.2)

The second-order neighbourhood consists of all other claims in which the parties in N k
ci

are involved, formally defined as

N 2
ci =

{
ck | wkj ̸= 0, pj ∈ N 1

ci

}
\ {ci}. (4.3)

The third- and fourth-order neighbourhoods are defined in a similar way:

N 3
ci =

{
pl | wkl ̸= 0, ck ∈ N 2

ci

}
\ N 1

ci ; (4.4)

N 4
ci =

{
cm | wml ̸= 0, pl ∈ N 3

ci

}
\
(
{ci} ∪ N 2

ci

)
. (4.5)

The equations reveal a pattern that can be extended to kth-order neighbourhoods for
k > 4. Since this study only considers neighbourhoods up to k = 4, this generalisation is
omitted here.

The degree di of a node ci delineates the sum of weights on the edges between node ci
and the nodes in its first-order neighbourhood. An equivalent characteristic of node pj is
represented by dj . In unweighted networks, di is equivalent to |N 1

ci |, i.e., the number of
nodes in the node’s first-order neighbourhood. However, more general formulae that are
also applicable to weighted networks are given by

di =

|P |∑
j=1

wij ; dj =

|C|∑
i=1

wij . (4.6)

The diagonal |C|× |C| matrix Dc denotes the weighted degrees of all vertices in C such
that (Dc)ii = di. Similarly, the diagonal |P | × |P | matrix Dp denotes the weighted degrees
of all vertices in P such that (Dp)jj = dj represents the weighted degree of node pj .

4.3.2 Implementing the BiRank Algorithm

Following the construction of a bipartite network, we compute fraud scores of claims in
the graph. To do so, we implement the BiRank algorithm [29]. The BiRank algorithm
scores nodes in a bipartite network based on the number of connecting nodes as well as the
scores of these connecting nodes. By initialising the algorithm following the approach in
Óskarsdóttir et al. [19], these scores resemble the exposure of a claim to known fraudulent
claims.

BiRank takes as input a bipartite graph G = (C ∪ P,E) and its corresponding weight
matrix W (Section 4.3.1), along with query vectors c0 and p0. These query vectors encode
the prior belief concerning the vertices in C and P , respectively, enabling us to include
information on known fraud.

The algorithm outputs a function f : P ∪ U → R, which maps each vertex in G to a
real number such that f(ci) represents the ranking score of node ci and f(pj) represents
the ranking scores of node pj . Hereafter, we simplify the notation by using ci to denote
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f(ci) and pj to denote f(pj). The final ranking scores of all nodes are collected in the
ranking vectors c = [ci, . . . , cn] and p = [pi, . . . , pm] where n = |C| and m = |P |.

The score of a node is iteratively computed by taking the sum of the contribution of
its connected nodes. To ensure convergence and stability, edge weights are normalised by
the degree of its two connected nodes, such that

ci =

|P |∑
j=1

wij√
di
√

dj
pj ; (4.7)

pj =

|C|∑
i=1

wij√
di
√

dj
ci. (4.8)

This use of symmetric normalisation, a ‘key characteristic of BiRank’ [29], lessens the
contribution of high-degree nodes and should have a positive effect on the results whenever
high-degree nodes are present, like in our data set (Section 5.2.1).

The prior information available in query vectors c0 and p0 is factored directly into the
ranking process. Accordingly, Equations 4.7 and 4.8 are adapted to

ci = α

|P |∑
j=1

wij√
di
√

dj
pj + (1− α)c0i ; (4.9)

pj = β

|C|∑
i=1

wij√
di
√

dj
ci + (1− β)p0j , (4.10)

where α and β serve as hyper-parameters that enable adjusting the influence of the graph
structure and the prior query vector, to be set between [0, 1]1. In matrix form, Equa-
tions 4.9 and 4.10 are expressed as

c = αSp+ (1− α)c0; (4.11)

p = βS⊤c+ (1− β)p0, (4.12)

where S = D
− 1

2
c WD

− 1
2

p is the symmetrically normalised weight matrix. Together, Equa-
tions 4.11 and 4.12 form the basis for the iterative BiRank algorithm, presented in Al-
gorithm 1. Note that the algorithm makes reference to stopping criteria. He et al. [29]
propose that these can be formulated based on either attaining a sufficiently small change
in ranking vectors c,p or based on a comparison with validation data to prevent overfitting.

4.3.3 Employing BiRank for Computing Fraud Scores

To employ the BiRank algorithm for the purpose of insurance fraud detection, we construct
query vector c0 such that

c0i =

{
1 if li ∈ {fraudulent};
0 if li ∈ {non-fraudulent, unknown},

(4.13)

where li denotes the label of a claim. Claims labelled ‘fraudulent’ have undergone a fraud
investigation and failed to dispel the suspicion of fraud. Claims labelled as ‘non-fraudulent’

1Note that α in the formulas reported in Óskarsdóttir et al. [19] is equivalent to β in He et al. [29], and
vice versa.
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Algorithm 1 The Iterative BiRank Algorithm

Input: Weight matrix W , query vector c0, p0, and hyper-parameters α, β
Output: Ranking vectors c and p

1: Symmetrically normalise W : S = D
1
2
c WD

1
2
p

2: Randomly initialise c and p
3: while Stopping criteria are not met do
4: c← αSp+ (1− α)c0

5: p← βSTu+ (1− β)p0

6: end while
7: return c and p

have also been investigated but were confirmed as non-fraudulent. Claims labelled ‘un-
known’ have never been subject to a fraud investigation.

We define p0 ≡ 0, following the idea that whereas parties can submit or be involved
in fraudulent claims, they are not fraudulent themselves. This enables us to omit query
vector p0 altogether, such that Equation 4.12 can be simplified to

p = S⊺c (4.14)

4.3.4 Extracting Network Features

Execution of the BiRank algorithm is succeeded by the extraction of features from the
resulting network. These features capture the network characteristics pertaining to the
respective claim, which enables the use of these characteristics in supervised learning mod-
els. We extract features equivalent to those in the original work [19] and adopt the same
categorisation, distinguishing between ‘neighbourhood’ features and ‘score’ features. The
key distinction lies in score features relying on fraud scores computed using the BiRank
algorithm introduced in Sections 4.3.2 and 4.3.3, whereas these are not utilised in neigh-
bourhood features. This distinction shall provide insight into the value of using BiRank
over considering relations between claims and parties in general. The neighbourhood fea-
tures are presented in Table 4.2, whereas the score features are shown in Table 4.3.

In terms of score features, the different metrics each correspond to alternative charac-
teristics, as denoted in the original work. For example, high maximum fraud scores (n1.max
and n2.max) reveal that there is at least one node with a high score in the corresponding
neighbourhood, whereas high first quartiles (n1.q1 and n2.q1) suggest there are several
of such nodes. Focusing on neighbourhood features instead, the original authors described
utilising size and ratio features to represent the homophilic nature of fraud, whereas they
included n2.binFraud because of its utilisation in a business rule employed by the company
that provided their data.

4.3.5 Constructing the Analytical Model Data Sets

Next, we construct supervised learning models that utilise the intrinsic features defined in
Section 4.1.1 and the score and neighbourhood features outlined in Section 4.3.4. These
feature matrices are hereforth denoted as X intr, Xscore, and Xnbh, while the feature vectors
of individual nodes ci are represented as xintr

i , xscore
i , and xnbh

i , respectively. In line with
Óskarsdóttir et al. [19], we construct machine learning models for two distinct tasks.
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Table 4.2: Neighbourhood features extracted from the network

Feature Description

n1.size The number of nodes in the node’s first-order neighbourhood.
n2.size The number of nodes in the node’s second-order neighbourhood.
n2.ratioFraud The number of known fraudulent claims in the node’s second-order neighbourhood

divided by n2.size.
n2.ratioNonFraud The number of known non-fraudulent claims in the node’s second-order neigh-

bourhood divided by n2.size.
n2.binFraud A binary value indicating whether there is a known fraudulent claim in the node’s

second-order neighborhood

Table 4.3: Score features

Feature Description

scores0 The node’s fraud score.
n1.q1 The first quartile of the empirical distribution of the fraud scores in the node’s first-order

neighbourhood.
n1.med The median of the empirical distribution of the fraud scores in the first-order neighbourhood.
n1.max The maximum of the empirical distribution of the fraud scores in the first-order neighbour-

hood.
n2.q1 The first quartile of the empirical distribution of the fraud scores in the node’s second-order

neighbourhood.
n2.med The median of the empirical distribution of the fraud scores in the second-order neighbour-

hood.
n2.max The maximum of the empirical distribution of the fraud scores in the second-order neigh-

bourhood.
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The first task involves distinguishing claims with a known label from those with an
unknown label, with the motivation that this analysis provides insight into how claims are
selected for further investigation. Thus, we define

yknown
i =

{
1 if li ∈ {fraudulent, non-fraudulent}
0 if li ∈ {unknown},

(4.15)

where li represents the label assigned to a claim (see Section 4.3.3). The corresponding data
set is denoted as Dknown and formulated as Dknown =

{(
xintr
i ⊕ xscore

i ⊕ xnbh
i

)
,yknown

i

}n

i=1
,

where ⊕ represents concatenation and n signifies the total number of claims.
The second task revolves around distinguishing claims with a known fraud label from

the rest, i.e., known legitimate claims and unknown claims. To achieve this, we define

yfraud
i =

{
1 if li ∈ {fraudulent}
0 if li ∈ {non-fraudulent, unknown},

(4.16)

resulting in the data set Dfraud =
{(

xintr
i ⊕ xscore

i ⊕ xnbh
i

)
,yfraud

i

}n

i=1
.

4.3.6 Employing Random Forests for Feature Importance Ranking

For each of the aforementioned two tasks, we evaluate the importance of all available
features using random forests. This approach is consistent with the approach adopted in
the existing paper [19], which facilitates a comparison between findings. Since the original
authors did not specify the type of feature importance considered in their study, we assume
they adopted one of the two ‘default’ RF feature importance measures proposed by the
original author of the RF algorithm and consider the Gini importance and the permutation
accuracy importance (herafter denoted as ‘permutation importance’). Details on both
approaches are found in Section 2.3. In what follows, we motivate our choice for evaluating
the Gini importance only, but first argue that both approaches might provide—and might
have provided—biased results.

Our reason for casting doubt on the choice for either of the two importance measures is
based on the fact that the data utilised in this study exhibit variations in terms of measure-
ment scale (e.g. continuous versus nominal) and the number of categories corresponding
to the predictor variable. Consider, for example, the nominal responsibilityCode fea-
ture versus the continuous amount feature; and the comparatively large range of categories
available for the responsibilityCode feature when compared to the binary n2.binFraud.
In their work [111], authors assessed the impact of this type of variation on the reliability
of random forest feature importance measures and found that, in situations with large vari-
ation, both permutation importance and Gini importance are unreliable, with the strongest
bias observed in the Gini importance measure.

Consistent with this observation, it seems most reasonable to select the least unre-
liable importance measure: the permutation importance. However, the computation of
permutation importance relies on either an explicit validation set or the use of out-of-bag
(OOB) samples. The construction and use of an explicit validation set is not described
by Óskarsdóttir et al. [19], Meanwhile, the OOB sample-based approach would provide
unreliable results, since its use in conjunction with the employed oversampling approach
introduces data leakage between in- and out-of-bag samples, similar to the data leakage
introduced by oversampling before a train-test split [112]. Apart from these concerns, the
permutation importance approach may also reveal bias resulting from correlated features
in the data set and unrealistic data instances caused by permutations [113, 114].
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Following the aforementioned considerations, in this work, we only consider the Gini
importance. We acknowledge its limitations and recognise the constraints in our reporting
on the importance of individual features.

4.3.7 Evaluating Logistic Regression Classifier

Following random forest feature ranking, we build logistic regression classifiers [115]. Lo-
gistic regression classifiers for binary classification define the probability of the target (i.e.,
dependent variable) y being equal to one as the value of the logistic function σ = 1

1+e−t of
the linear regression expression t = β0 + β1x1 + · · ·+ βnxn. Correspondingly,

p(y = 1 | x1, . . . , xn) =
1

1 + e−(β0+
∑n

i=1 βixi)
, (4.17)

where x1, . . . , xn denote the explanatory (i.e., independent) variables, β1, . . . , βn denote
the corresponding coefficients, and β0 specifies the intercept—the value of the linear re-
gression expression t when all explanatory variables equal zero. The parameters β are
optimised numerically using one of many available optimisation algorithms [116], which
‘fit’ the classifier to a sample of training data X and corresponding target labels y.

In the construction of our logistic regression classifiers, we first add one feature at a
time, starting with the most important feature. We evaluate the performance of the model
at each iteration, thereby yielding insight into the performance of the model at various
levels of complexity. Then, we build a logistic regression classifier using all features. This
classifier is used for the actual classification of claims and, contrary to the random forest
models, would be one of the models deployed in practice. The results of the final logistic
models provide some insight into the generalisability of findings reported by authors of the
original model. In addition, they offer a baseline to compare the results of adapted models
against.

Note that, while Óskarsdóttir et al. [19] employ stepwise regression using a combination
of both forward and backward feature selection to construct this final classifier, we con-
struct the logistic regression model using all features instead to ensure consistency in our
reporting. Without this approach, the results of fraud experts’ evaluation (Section 4.6.4)
would rely on different models compared to those employed for generating other results.
This discrepancy arises from time and resource constraints preventing the implementation
of stepwise forward and backward regression before the evaluation takes place.

4.4 Incorporating Time-Weighting

The first adaptation involves extending the baseline model to include time-weighted fraud
influence, which shall emphasise recent fraud over historical fraud. In that regard, Ós-
karsdóttir et al. [19] make reference to the methodology introduced by Van Vlasselaer
et al. [16]. However, this approach was construed using the Personalised PageRank al-
gorithm [117], instead of BiRank. Additionally, while the temporal nature of the rela-
tions between companies and resources in their graphs allow for a sensible distinction
between ‘time-weighted fraud influence’ (related to the time since fraud detection) and
‘time-weighted edges’ (related to the time since the relation appeared), the permanent
nature of relations between claims and parties allow no such distinction to be sensibly
made. Following these observation, our strategy for incorporating time-weighting will in-
volve first adapting the proposed approach for compatibility with bipartite graphs, and
then incorporating this approach in the new fraud detection model.
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We implement time-weighted fraud influence by changing query vector c0 in Equa-
tion 4.13 to

c0i =

{
e−λh if li ∈ {fraudulent};
0 if li ∈ {non-fraudulent, unknown},

(4.18)

where h denotes the time passed since the fraudulent claim was submitted and λ is a
hyper-parameter representing the decay constant.

We aim to integrate the full impact of the adaptations into the final model solely
through changes in fraud scores. Consequently, the time-weighted model adapts the exact
same features employed in the baseline model. This approach minimises the alterations to
independent variables and enhances our confidence in attributing shifts in model perform-
ance to the influence of time-weighted fraud influence.

4.5 Incorporating Shared Resources

The second modification to the baseline model entails incorporating relations between
parties based on resources they share, such as email addresses, bank account numbers, and
telephone numbers. These indicators suggest close relationships among the parties involved
and, in line with the homophily assumption, are noteworthy for fraud detection models.
Our focus is exclusively on resources that are deliberately shared among individuals, min-
imising the likelihood of coincidental sharing. Consequently, we acknowledge a shared full
home address as a shared resource but refrain from establishing relations based on less
granular information, such as the street name alone. Additionally, we assign no intrinsic
value to the resource itself; it only acts as a linking pin. As a result, the final model shall
not discriminate based on factors like geographical location, reducing the chance of unfair
bias.

To include shared resources into the model, we introduce a third type of entity, the
‘shared resource’, and transform the bipartite graph into a tripartite graph of claims,
parties, and shared resources. By choosing this approach over an approach that represents
these relations as edges between party nodes directly (i.e., edges between two nodes of the
same type), we continue adhering to the characteristics of n-partite graphs. This enables
us to adopt the tripartite variant of BiRank.

First, we establish the tripartite graph by defining that G = (C∪P ∪R,Ecp∪Epr∪Ecr)
with nodes C, P , and R and edges Ecp, Epr, Ecr. We let C correspond to insurance claims,
P represent the various parties involved in the claims, and R denote shared resources
and designate the different node types using the symbols c, p, and r. Each node in G
exclusively belongs to one of the vertex sets C, P and R. The number of nodes in each of
the vertex sets C, P , and R are represented as |C|, |P |, and |R|, respectively. We use ci,
pj , and rk to denote individual claim, party, and resource nodes, where i ∈ {1, . . . , |C|},
j ∈ {1, . . . , |P |}, and k ∈ {1, . . . , |R|}. For any pair of different node types x, y ∈ {c, p, r}
where x ̸= y, edges in Exy establish a connection between one node of type x and one node
of type y. Since G is undirected, it holds that Exy ≡ Eyx.

Having established the tripartite graph, we define the corresponding tripartite graph
ranking algorithm. For that purpose, we replace Equations 4.11 and 4.12 with Equa-
tions 4.19 and 4.20, and introduce Equation 4.21 for the shared resource ranking vector r,
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Algorithm 2 The Iterative Tripartite Ranking Algorithm

Input: Weight matrix W ⊺
cp(= W ⊺

pc), Wpr(= W ⊺
rp), Wrc(= W ⊺

cr); query vectors c0, p0, r0;
and hyper-parameters αXY for all node types x, y ∈ {c, p, r} where x ̸= y.

Output: Ranking vectors c, p, and r

1: For all x, y ∈ {c, p, r} where x ̸= y, symmetrically normalise W : S = D
1
2
xWxyD

1
2
y

2: Randomly initialise c, p, and r
3: while Stopping criteria are not met do
4: c← αcpScpp+ αcrScrr + (1− αcp − αcr)c

0

5: p← αpcSpcc+ αprSprr + (1− αpc − αpr)p
0

6: r ← αrcSrcc+ αrpSrpp+ (1− αrc − αrp)r
0

7: end while
8: return c, p, and r

such that

c = αcpScpp+ αcrScrr + (1− αcp − αcr)c
0; (4.19)

p = αpcSpcc+ αprSprr + (1− αpc − αpr)p
0; (4.20)

r = αrcSrcc+ αrpSrpp+ (1− αrc − αrp)r
0, (4.21)

For x, y ∈ {c, p, r} with x ̸= y, Sxy = S⊺
yx = D

− 1
2

x WxyD
− 1

2
y is the symmetrically normalised

weight matrix and αxy represents a numerical hyperparameter for adjusting the influence
of the graph structure and the prior query vector while considering the propagation from
nodes of type x to nodes of type y. Equations 4.19 to 4.21 are employed in the iterative
tripartite ranking algorithm, which is displayed in Algorithm 2.

In line with the statement in Section 4.3.3 that we consider only claims to be fraudulent,
we can once again omit the query vectors in Equations 4.20 and 4.21 and change the
equations to

p = αpcSpcc+ αprSprr; (4.22)
r = αrcSrcc+ αrpSrpp, (4.23)

simplifying future calculations. In addition, we note that shared resources are exclusively
connected to parties and not to claims, implying that Ecr = ∅. Consequently, Wcr = W ⊺

rc

and Scr = S⊺
rc are zero matrices, enabling a further simplification of the calculations to

c = αcpScpp+ (1− αcp)c
0; (4.24)

p = αpcSpcc+ αprSprr; (4.25)
r = Srpp, (4.26)

This results in the simplified ranking algorithm presented in Algorithm 3.
Consistent with the approach discussed in Section 4.4, this adapted model uses the

exact same features used in the baseline model. Accordingly, after the ranking algorithm
has been executed, we eliminate shared resources from the network entirely, enabling the
reuse of feature extraction processes previously generated for the baseline model.

4.6 Evaluation

We compare and evaluate our models using the same metrics reported by Óskarsdóttir
et al. [19], facilitating a comparison to their existing work. Accordingly, we report on the
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Algorithm 3 Simplified Iterative Tripartite Ranking Algorithm

Input: Weight matrices Wcp(= W ⊺
pc), Wpr(= W ⊺

rp); query vector c0; and hyper-parameters
αcp, αpc, αpr.

Output: Ranking vector c
1: For all (x, y) ∈ {(cp), (pc), (pr), (rp)}, symmetrically normalise Wxy : Sxy =

D
1
2
xWxyD

1
2
y

2: Randomly initialise c, p, and r
3: while Stopping criteria are not met do
4: c← αcpScpp+ (1− αcp)c

0

5: p← αpcSpcc+ αprSprr
6: r ← Srpp
7: end while
8: return c, p, and r

area under the receiver operating characteristic curve, the area under the precision recall
curve, and the top-decile lift, elucidated in Sections 4.6.1 to 4.6.3.

The three aforementioned metrics are computed based on known claim labels only and
thus provide no insight into the performance of the model in detecting previously unknown
fraudulent claims. We address this limitation, and thereby extend the original work, by
collecting a sample of the top-k predicted fraudulent claims from each model and having
these investigated by fraud experts. This is elaborated upon in Section 4.6.4.

4.6.1 Area Under the Receiver Operating Characteristic Curve

The area under the receiver operating characteristic curve (AUC-ROC) is a performance
metric used to quantify the effectiveness of a binary classification model by summarising
the receiver operating characteristic curve (ROC) into a single number. The ROC curve
is depicted in a two-dimensional graph and visually illustrates the trade-off between the
number of correctly classified positive samples and the number of incorrectly classified
negative samples at various classification thresholds [118].

In the ROC curve, the true positive rate (TPR)—also known as ‘sensitivity’ or ‘recall’—
and false positive rate (FPR) are depicted on the horizontal and vertical axes, respectively,
for various classification thresholds γ. This threshold determines the predicted class ŷ of
a record x according to the conditional assignment

ŷx =

{
0 if P (x) < γ

1 if P (x) ≥ γ
, (4.27)

where P (x) denotes the probability that a record x belongs to the positive class, as com-
puted by the model. Equations 4.28 and 4.29 reveal the formulas used to calculate the
TPR and FPR, respectively. These equations incorporate the counts of true negatives
(TN), true positives (TP), false negatives (FN), and false positives (FP), whose meanings
are visualised in the confusion matrix in Table 4.4.

true positive rate = recall =
TP

TP + FN
(4.28)

false positive rate =
FP

FP + TN
(4.29)
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Table 4.4: Confusion matrix

Actual

Positive Negative

Predicted Positive TP FP
Negative FN TN

The AUC-ROC ranges from 0.0 to 1.0, with higher values reflecting superior model
performance. Values below 0.5 represent worse performance than random choice, a value
of 0.5 indicates that the model performs no better than a random model, while a value of
1.0 signifies a (theoretically) perfect model.

4.6.2 Area Under the Precision–Recall Curve

An alternative to utilising an ROC curve is to consider the precision–recall curve (PR).
Davis and Goadrich [119] refer to six distinct papers in citing that PR curves are used
as an alternative to ROC curves for tasks with heavily imbalanced data sets. PR curves
are similar to ROC curves in that they denote the recall (TPR) on one axis. However,
whereas ROC curves combine the recall with the FPR, PR curves replace the FPR with
the precision, defined as

precision =
TP

TP + FP
. (4.30)

In addition, the axes are swapped. The PR curve depicts the recall on the horizontal axis
and the precision on the vertical axis.

In the context of data sets with heavily skewed distributions towards the negative class,
the impact of replacing the FPR in ROC curves with the precision in PR curves is that
a large change in the number of false positives yields a much larger influence on the PR
curve than on the ROC curve. As a result, the PR curve better depicts the impact of the
large number of negative samples on the performance [119] such that, for imbalanced data
sets, the PR curve is recommended over the ROC curve [120]. This idea extends to the
AUC-PR and AUC-ROC.

Similar to AUC-ROC, AUC-PR values range from 0.0 to 1.0 where higher values signify
superior model performance. However, unlike AUC-ROC, the baseline in AUC-PR is non-
universal; it varies based on the class distribution [121]. The baseline PR curve takes takes
the form of a horizontal line with a height (i.e., precision) equivalent to the proportion of
positive samples in the data set. Consequently, given a width of 1, the baseline AUC-PR
is also equivalent to the proportion of positive samples in the data set.

4.6.3 Top-Decile Lift

Lift indicates how much better a model is at identifying positive cases compared to random
selection. It is calculated over a segment of the data, which—in the case of top-decile lift
(TDL)—comprises the top-10% of samples that are attributed the highest probability by
the model. Lemmens and Croux [122] provide the following equation:

top decile lift =
π̂10%
π̂

. (4.31)

Here, π̂10% denotes the fraction of positive cases in the top-10% of samples that were given
the highest probability by the model, whereas π̂ denotes the proportion of positive samples
in the whole data set.
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Elevated lift values signify improved model performance. As can be derived from
Equation 4.31, lift values below one signify that the model performs worse than random
selection; a lift value equal to one suggests equivalent performance to random selection; lift
values exceeding one indicate superior model performance compared to random selection.

4.6.4 Fraud Expert Evaluation of Unlabelled Claims

The aforementioned metrics rely solely on known labels and offer no insights into the
model’s ability to correctly classify previously unlabelled claims as potentially fraudulent.
To address this limitation, we engage fraud experts within the insurance company to
evaluate a small sample of the top-k unlabelled claims from each model. The goal of
this evaluation is to assess whether the models can correctly classify previously unlabelled
claims as warranting further investigation, which presents an enhancement over the work
in Óskarsdóttir et al. [19].

In this specific assessment, we consider the full baseline and adapted models and collect
the top-k unlabelled claims based on their predicted probability of fraud, as computed by
the respective model. The subsequent evaluation is summarised using the precision-at-k
metric [123], which measures the precision (Equation 4.30) achieved on the top-k retrieved
records. The advantage of utilising this metric lies in its independence from an estimation
of the total number of investigation-worthy claims in the data set.

4.7 Conclusion

In conclusion, this chapter has established the methodological framework that is adopted
to address this study’s research questions. Next, Chapter 5 details the practical implement-
ation of the methodology and a description of the experimental design, granting insights
into the validity of the results and findings discussed in later chapters.
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Chapter 5

Experimental Setup

Having established the theoretical foundations of our work in Chapter 4, the current chapter
proceeds with a description of the practical implementation and execution the research.
In Section 5.1 and 5.2, we present details concerning the construction and characteristics
of the data set employed in this study. Following this, Section 5.3 elucidates the approach
taken toward establishing empirical evidence for the homophily assumption. Then, Sec-
tion 5.4 describes details concerning the implementation of the baseline model, followed
by additional information about the integration of time-weighting and shared resources in
Sections 5.5 and 5.6, respectively. Section 5.7 outlines how models’ retrieval of previously
unknown (i.e., unlabelled) claims are evaluated.

5.1 Data Set Construction

The process of constructing a data set that aligns closely with the data set employed by
Óskarsdóttir et al. [19] involves the merging and processing of data from a wide variety
of databases and tables present at the insurance company. This data is available via dis-
tributed Apache Hive [124] tables, enabling their processing using the Apache Spark [125]
data analytics engine for large-scale data processing. The interaction with Apache Spark is
established using PySpark [126], the Python application programming interface (API) for
Apache Spark. More specifically, its Spark SQL API is employed, which offers an interface
that shows major similarities to the standard SQL database language.

In this work, we omit many details regarding the exact steps taken to process the
raw data into the features and data described in Section 4.1 because of confidentiality.
Nevertheless, we present further information regarding our interpretation of the amount
and claimAge features to address issues of multi-interpretability. We note that amount is
calculated as the sum of all successful payments made towards a claim, combined with all
remaining reservations. Consequently, amount signifies the total damage burden for the
insurer. Additionally, we specify that claimAge denotes the number of months from the
beginning of the most recently entered contract to the date the incident occurred. Since
Óskarsdóttir et al. [19] did not describe their approach to calculating claimAge for claims
covering multiple contracts, this approach might be different from the approach adopted in
their study. However, our approach shall aid in detecting ‘past posting’, an insurance fraud
scheme in which a person claims damages on insurance they obtained after the damage
was incurred [26].

As mentioned in Section 4.1.1, not all claims have complete intrinsic property informa-
tion. Table 5.1 shows the ratio of all claims for which each intrinsic feature is available. In
Section 5.4.4, we compare these ratios for different classification target values and elucidate
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Table 5.1: Percentage of claims with missing feature in data set

Feature Missing

responsibillityCode 50.11%
claimAge 3.77%
lastClaim 29.42%
amount 3.80%

Table 5.2: Summary statistics of claims, parties, and associated relations

Number of . . . Study Mean Min Max Median

Distinct parties per claim This study 1.81 1 33 2
[19] 3.79 1 42 3

Distinct relations per claim This study 2.59 1 33 2
Distinct relation types per claim This study 2.34 1 7 2
Distinct claims per party This study 2.38 1 95,380 1

[19] 3.84 1 125,951 N/A

our approach to dealing with missing information.
The processed data is divided into three individual data sets, each serving a distinct

purpose: an intrinsic features data set, a network claims data set, and an edge list. These
are individually stored using the Parquet column-oriented file format [127]. The intrinsic
features data set encompasses all intrinsic features of the hundreds of thousands of auto-
mobile insurance claims explicitly considered in this work. The network claims data set
contains the necessary claims data for constructing the bipartite network, thereby incor-
porating claims from other P&C lines of business as well. The edge list includes a record
for each relation between a party and a claim in the network, including information on the
involvement type and the partner type (e.g. ‘person’ or ‘organisation’).

5.2 Data Set Characteristics

After constructing the data sets, we extract the data characteristics described in Sec-
tion 4.1.3. The extraction of simple degree-related characteristics involves aggregations on
the edge list data set. This is a straightforward process conducted in PySpark and therefore
not further elaborated upon, but the aggregated data is reported upon in Section 5.2.1.
Extracting four-cycles is more intricate. Our approach and the corresponding results are
displayed in Section 5.2.2.

5.2.1 Basic Network Characteristics

Table 5.2 presents statistics summarising the characteristics of claims, parties, and relations
in our data set. The table reveals that the mean and maximum degree of claims in our
data set are 1.81 and 33, respectively, which contrasts with the mean degree of 3.79 and
maximum degree of 42 reported by Óskarsdóttir et al. [19]. Meanwhile, the reported
minimum degrees of claims in the two data sets are equivalent at values of 1, while the
median degrees of 2 in our data set differs from the median degree of 3 reported by the
original work’s authors. The observed differences may be partially attributed to differences
in the types of involvement considered in the two data sets. However, this attribution
cannot be definitively verified.

Other characteristics presented in Table 5.2 show that, on average, 2.34 distinct types
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Table 5.3: Relative relation type frequency in data set

Relation type Relative frequency

claimant 0.3944
policyholder 0.3870
garage 0.2121
representative 0.0030
witness 0.0023
legal counsel 0.0012
expert 0.0005
agent 0.0001

of relations are associated with a claim. Meanwhile, the median number of relation types is
2 and the maximum is 7. Table 5.3 provides insight into the relative occurrence frequency
of each considered type of relation. It reveals that the relative frequencies of the claimant,
policyholder, and garage relation types far exceed the relative frequency of all others, which
indicates that representatives, experts, witnesses, legal counsel, and agents are involved in
a comparatively small number of claims.

Moving on, we focus on statistics that describe the degree of parties, i.e., the number
of claims that each party is connected to. Óskarsdóttir et al. [19] delineate these statistics
for each involvement type individually, enabled by their inclusion of the involvement type
as a node attribute. In contrast, our approach treats involvement types as relationship
attribute, allowing a party to assume different roles within a claim and across claims.
Following this deviation, we cannot conclusively assign a type to a party and are limited
to describing degree statistics for the entire set of parties only.

To nevertheless facilitate a comparison between the party degree statistics reported in
the original work and those collected for our study, we translate their per-type statistics
into general party statistics. To achieve this, we compute the weighted mean—weighted
by the relative frequency of a specific party within their full set of parties—and collect
the minimum and maximum degrees. The collected results are presented aside the same
statistics for our data set in Table 5.2.

The median degree of parties reported by Óskarsdóttir et al. [19] cannot be conclusively
derived from the reported data. Meanwhile, the observed mean degree of parties in our
data set deviates from theirs by a factor of −2/5, while the maximum degree observed in
our data is similarly large at approximately 3/4 of their reported maximum degree.

5.2.2 Four-Cycles

To extract four-cycles, in line with the methodology presented in Section 4.1.3, we first
load the edge list into a Pandas [128, 129] DataFrame. Then, we employ the NetworkX
Python library [130] to generate a network from this edge list. We then generate a subgraph
of the aforementioned network, filtered on investigated claims and their involved parties,
to enable extracting only four-cycles in which both claims are labelled (i.e., both claims
are investigated)—matching the work in Óskarsdóttir et al. [19]. We employ NetworkX’s
implementation of the bounded-length simple cycle algorithm [131] to extract the actual
four-cycles, after which we assess the type of each included party and the fraud status of
each included claim to obtain the aggregate statistics.

Table 5.4 presents statistics concerning 96 four-cycles with known claim labels in our
bipartite network, facilitating a direct comparison to the findings in Óskarsdóttir et al. [19].
Comparing these statistics with those presented by the original authors reveals a notable
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Table 5.4: Relative frequency of four cycles with zero, one, and two fraudulent
claims among four-cycles with known claim labels

Composition of party nodes

Nr. of fraudulent claim nodes Study Two people One person; one organisation Total

Zero This study 11.11 % 14.10 % 13.54 %
[19] 16.33 % 36.56 % 35.66 %

One This study 22.22 % 17.95 % 18.75 %
[19] 12.24 % 30.29 % 29.47 %

Two This study 66.67 % 67.95 % 67.71 %
[19] 71.43 % 33.15 % 34.87 %

difference in the relative frequency of four-cycles wherein both claims are fraudulent. In
our data set, this frequency is significantly higher than in the data analysed in Óskarsdóttir
et al. [19]. They report an approximately uniform distribution of four cycles with zero,
one, and two fraudulent nodes (35.66%, 29.47%, and 34.87%, respectively). In our data
set, these percentages are 13.54%, 18.75%, and 67.71%, respectively. The dissimilarity is
primarily attributed to a difference in the corresponding distribution of four cycles involving
one person and one organisation (‘one person & one company’ in Óskarsdóttir et al. [19]).
These four cycles make up over 81% of all considered four cycles with known claim labels
in our data.

5.3 Evaluation of Homophily Assumption

To assert whether our data establishes any empirical evidence for the homophily assump-
tion, we use a highly resource-intensive approach in PySpark. In Section 5.3.1, we outline
our approach to extracting the first- to fourth-order neighbourhoods of claims. Section 5.3.2
details the computed statistics for each neighbourhood type. Then, in Section 5.3.3, we
elucidate our approach to assessing the significance of observed differences.

5.3.1 Establishing Neighbourhoods

Initially, we process the edge list data set to include at most one relation between each
claim and party, thereby excluding information concerning the type of involvement. This
processed data set is denoted as Esimple = {(c, p)}, where (c, p) signifies that the set consists
of combinations of claims c and parties p. Subsequently, we duplicate Esimple and modify it
by discarding all rows with uninvestigated claims, resulting in a table Enbh1 = {(ccenter, p)}.
Here, p again denotes parties, whereas ccenter denotes the claim at the centre of attention,
i.e., the claim whose first-order neighbourhood is represented by the associated parties.
Effectively, Enbh1 includes the relations from all investigated claims to their first-order
neighbourhoods.

Next, we obtain relations to claims in the second-order neighbourhood. To achieve
this, we initiate a join operation between Esimple and a duplicate of Enbh1 based on the
party column. We then remove the party column to retain a data set in the shape of
{(ccenter, c)}, from which we remove both duplicate records and records whose target (i.e.,
c) already appeared in a lower-order neighbourhood. If n were the neighbourhood’s order,
we have to consider orders [n−2, n−4, . . . , 0]. In this specific case, this means considering
the zeroth-order neighbourhood only, indicative of eliminating rows where ccenter ≡ c. The
resulting data set, Enbh2 = {(ccenter, c)}, includes the relations from all investigated claims
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to their second-order neighbourhoods.
To obtain relations to parties in the third-order neighbourhood, we replicate the pro-

cess used to obtain relations to claims in the second-order neighbourhood. However, this
time, we join Esimple with a duplicate of Enbh2 based on the claim column c. Then, after
eliminating the claim column, removing duplicate rows, and removing rows whose target
already appeared in a lower-order neighbourhood, we obtain Enbh3 = {(ccenter, p)}. The
fourth-order neighbourhood Enbh4 is then obtained using a process similar to that described
for the second-order neighbourhood.

5.3.2 Extracting Neighbourhood Statistics

Following the construction of edge lists representing relations between labelled claims and
their first- to fourth-order neighbourhoods, we extract aggregate statistics from Enbh2 and
Enbh4. First, we accompany each edge list with information on whether each centre claim
ccentre was fraudulent or non-fraudulent, and whether neighbourhood claims c were in-
vestigated and, if known, fraudulent or non-fraudulent. Then, for each claim ccentre, we
extract the counts of claims, investigated claims, known fraudulent claims, and known non-
fraudulent claims in the respective neighbourhood. These counts are utilised to compute
the ratio of fraudulent and non-fraudulent claims among all claims and among all invest-
igated claims in the neighbourhood of the respective claim ccentre. The mean and variance
of these ratios are then computed, offering insights into these metrics for the neighbour-
hoods of all known fraudulent and non-fraudulent claims. This analysis forms the basis
for evaluating whether the data provides empirical evidence supporting the homophily
assumption.

Note that the computation of means and variances ignores undefined ratios related to
division by zero. These are particularly prevalent among ratios concerning only investigated
claims, since many neighbourhoods lack claims with a known label, leading to division by
zero.

5.3.3 Asserting Significance of Observed Differences

The variances are used to conduct F-tests for equality of variances. These enable us
to determine whether to use Student’s T-test [132] or Welch’s T-test [133] to assert the
significance of differences in mean ratios.

Let Sc,n,r represent the variance of the average relative frequency of fraudulent claims
among r claims in the nth order neighbourhood of c claims. Here, r is one of ‘investigated’
or ‘all’, n is chosen from the set {1, 2}, and c is one of ‘fraudulent’ or ‘non-fraudulent’.

For each type of neighbourhood n and ratio r, we first calculate the test-statistic

F (n, r) =
Sc=fraudulent,n,r

Sc=non-fraudulent,n,r
. (5.1)

This test statistic, along with the degrees of freedom corresponding to each variance, is
then input into SciPy’s [134] cumulative distribution function scipy.stats.f.cdf and one
minus its output is adopted as a p-value. If the computed p-value is below 0.05, we reject
the null-hypothesis that the variances are equal and opt for Welch’s T-test. Otherwise, we
proceed with Student’s T-test.

The T-tests are then performed using SciPy’s scipy.stats.ttest_ind function, ad-
justing the equal_var parameter in alignment with the results of the related F-test. Other
parameters are kept at their default values. Consistent with the calculation of the means
and variances in Section 5.3.2, undefined ratios are excluded from the data employed in
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conducting the T-tests. The p-value returned by SciPy’s function is used to conclude
whether the observed difference is significant or not.

5.4 Implementing the Baseline Model

Having evaluated whether our data establishes any empirical evidence for the homophily
assumption, we move on to building the baseline model. Óskarsdóttir et al. [19] rightfully
emphasise the necessity of careful experimental design to capture the model’s utility and
constraints in real-world applications. For example, the classification of a claim in these
experiments should not be influenced by information that would not have been available
were the claim classified in a practical setting. Their approach for the computation of
fraud scores and extraction of network-related features seems appropriate to sufficiently
address these limitations. Consequently, we adopt a similar approach in this work.

Sections 5.4.1 to 5.4.3 present details regarding the aforementioned approach to ini-
tialising the query vector for the BiRank algorithm, implementing the BiRank algorithm,
and extracting network features from the bipartite graph. In Section 5.4.4, we elucidate
our strategy for constructing the data sets to be used in the analytical models. Then,
Section 5.4.5 outlines our use of random forest models for feature importance ranking.
Finally, Section 5.4.6 describes how the final logistic regression classifier is built.

5.4.1 Initialising the Query Vector

In Section 4.1, we highlighted that our data spans a period of four years. We employ this
full data set for the construction of our bipartite graph of claims and parties. For the
construction of the query vector c0, however, we only consider fraud in claims registered
in the first three years of the covered date range. This is explained as follows.

Any claim included as a source of information in the query vector c0 will, by defini-
tion, obtain a high score when BiRank is applied—as can be derived from Equation 4.11.
Accordingly, constructing a query vector based on all known data would allow subsequent
supervised classification models to derive a correct fraud/no-fraud classification from the
claim’s fraud score alone. In effect, the model would have access to important data that
would not have been available during the classification of a claim in a practical setting,
which would yield results that would not generalise to the practical application of the
model. By taking the current approach, we retain sufficient sources of information in the
network from the historical claims, while enabling the last year of claims to be appro-
priately used for model building and evaluation in a setting reflecting that of a deployed
model.

5.4.2 Implementing BiRank

Having established our approach to constructing a query vector, we describe details con-
cerning our implementation and use of BiRank. First, we modify the edge list mentioned
in Section 5.1 to retain only a single edge for each combination of claim and party, dis-
carding involvement types entirely. Then, we assign each edge a weight of 1, followed by
transforming the edge list into an adjacency matrix. This adjacency matrix contains a row
for each claim and a column for each party in the data set. Whenever a relation exists
between a claim and a party, the cell at coordinate (<claim row>, <party column>) is
populated with the weight of the corresponding edge.

The adjacency matrix is substantial in terms of its number of rows and columns. How-
ever, it is also extremely sparse, since a single claim tends to show a relation to only few
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parties, and vice versa. This enables us to use data structures specifically intended for
storing sparse matrices. We adopt the SciPy compressed sparse row (CSR) matrix: a
sparse matrix that enables efficient arithmetic operations and is therefore suitable for use
in the BiRank algorithm.

Our Python implementation of the BiRank algorithm was adapted from an existing
Python implementation [135], modified to more closely align with the algorithm presented
in Algorithm 1 and originally proposed by He et al. [29]. The main change in comparison
to the implementation in Aronson [135] includes randomisation of the initial vertex scores,
while a different change is found in the newfound support for defining a maximum number
of iterations as stopping criterion.

Equivalent to Óskarsdóttir et al. [19], we run BiRank with α = 0.85, representing the
influence of the graph structure relative to prior information on claims. As the stopping
criterion, we opt for selecting a maximum number of iterations in the order of thousands
that exceeds the maximum number of iterations needed for convergence by a long shot,
enabled by the short computation time required for a single iteration. In a practical setting,
this would be further optimised to eliminate unnecessary iterations.

5.4.3 Extracting Network Features

After running the BiRank algorithm using the adjacency matrix only, we again build a bi-
partite network using the NetworkX Python library previously mentioned in Section 5.2.2.
This time, the network is extended by assigning each node properties pertaining to their
fraud score and, for claims, whether the node has been investigated and confirmed (non-
)fraudulent. Subsequently, we iterate over all automobile insurance claims in the network
that were submitted in the most recent year and extensively use NetworkX’s neighbors
function to extract score and neighbourhood features.

The n1.q1, n1.med, n2.q1, and n2.med features are computed by employing NumPy’s [136]
quantile function for probabilities 0.25 and 0.50, with default values for the other para-
meters. Accordingly, the quantiles are estimated using the ‘linear’ method, corresponding
to method definition 7 in Hyndman and Fan [137]. Whenever features cannot be properly
calculated, which can occur when a claim has no second-order neighbourhood, the corres-
ponding feature is set to zero. The extracted features are again stored in Parquet files,
enabling their reuse.

5.4.4 Preparing Analytical Model Data Sets

In line with the methodology in Section 4.3.5, we construct data sets to be used by the
supervised classification models. In this section, we first present an analysis of the missing
features in each data set, along with our approach to addressing this issue. Then, we
describe the train–test split and preprocessing strategy that is employed.

Dealing with missing features

For our analytical models, we construct two independent data sets Dknown and Dfraud with
targets yknown

i and yfraud
i , respectively. However, before doing so, we decide on how to

deal with the incomplete intrinsic information previously revealed in Table 5.1. For that
purpose, we first compute what percentage of claims is missing each feature for yknown

i = 0,
yknown
i = 1, yfraud

i = 0, and yfraud
i = 1, respectively. This enables us to assert whether a

missing value is in some way indicative of the claim being known or the claim being known
fraudulent. The results are presented in Table 5.5.
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Table 5.5: Percentage of claims with missing feature for each target type

Dknown Dfraud

Feature yknown
i = 0 yknown

i = 1 yfraud
i = 0 yfraud

i = 1

age 0.00 % 0.12 % 0.00 % 0.18 %
responsibillityCode 50.11 % 50.41 % 50.11 % 49.04 %
claimAge 3.78 % 1.39 % 3.78 % 1.58 %
lastClaim 29.37 % 42.39 % 29.38 % 44.13 %
amount 3.82 % 0.93 % 3.81 % 1.05 %

The table reveals that the feature responsibilityCode is absent for approximately
half of the claims for both target values in both Dknown and Dfraud. As this pertains to a
categorical variable, we address this issue by introducing an additional category ‘missing’,
allowing the feature to assume one of the values at fault, shared responsibility, full right,
unknown, and missing. Note that we purposefully distinguish missing from unknown. The
designation of missing could indicate that the value was absent due to the claims handler
either forgetting to enter the correct value or the value being irrelevant for the specific
claim type. Meanwhile, unknown explicitly indicates that the policyholder’s responsibility
was not or could not be determined.

The lastClaim feature is missing for a slightly smaller but still noteworthy percentage
of claims. This concerns informative missingness, where the absence of a value signifies
that the policyholder had not previously submitted a claim. To address this issue, we
adopt the missing indicator method [138]. Consequently, we impute the missing values
with the mean of all observed lastClaim values and introduce an indicator feature. This
indicator feature takes on a value of 1 when the lastClaim value was originally missing
and 0 otherwise.

While the missing indicator method can enhance the predictive performance of linear
models and neural networks in the presence of informative missing values, it is likely to
provide marginal additional information for tree-based methods [138], such as random
forest models. As a result, this approach is likely to be advantageous for our final logistic
regression classifier but unlikely to yield substantial benefits for our random forest models
used for feature importance ranking. We accept this trade-off to avoid introducing major
complexity in the preprocessing stage by adopting more involved imputation methods.

The age, claimAge, and amount features are missing for very small percentages of
claims (0.00% to 3.82% per combination of data set and target value). For that reason, we
choose to discard all records with missing age, claimAge, and/or amount features, thereby
adopting a complete case analysis approach, also referred to as list-wise deletion [139].
The complete case analysis approach could introduce bias whenever data are not missing
completely at random (MCAR) [140]. However, we consider the percentages of claims with
missing features to be sufficiently low to accept this risk. This enables us to avoid entering
into another time-intensive and error-prone data transformation trajectory.

Generating the data sets

Having eliminated any missing features, we construct data sets Dknown and Dfraud by ag-
gregating all labelled claims from the most recent year and supplementing them with
a random sample of 20,000 unlabelled claims from the same period. This approach
aligns with that reported in Óskarsdóttir et al. [19]. Then, utilising scikit-learn’s [141]
train_test_split, we split both data sets into training sets (70% of the observations)
and test sets (remaining 30%) in a stratified manner, ensuring that the class distribution
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in both the training and test sets mirrors that of the original data sets Dknown or Dfraud.
Notably, positive samples in Dknown constitute approximately 4.06% of all samples in the
data set, whereas those in Dfraud constitute around 2.69%.

For oversampling the data sets, we adopt a different strategy than the one adopted by
Óskarsdóttir et al. [19] to address potential data leakage and overoptimistic results. More
specifically, consider the description of the oversampling approach employed in their work:

We use the SMOTE sampling technique to over sample the minority class and
under sample the majority class (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).
As such, the ratio of the minority class in each sampled data set is increased
to 15%. We use these sampled data sets to evaluate the features’ importance
using random forests. We first tune the hyperparameters of the random forests
using 10-fold cross-validation on the training sets.

This depiction suggests that oversampling was applied to the training data sets before
employing the ten-fold cross validation approach, which provides biased results [112]. The
practice is prone to introducing data leakage from the training to the validation set. In
addition, it results in the validation set’s class distribution deviating from a faithful rep-
resentation of what one would observe in a practical setting, thereby leading to overly
optimistic outcomes.

Our approach to resampling and additional preprocessing involves utilising the Python-
library ‘imbalanced-learn’ [142] to construct a classification pipeline that includes column
transformations, oversampling, and classification. By conducting ten-fold cross validation
with this full pipeline as the estimator, we ensure that oversampling is applied to only the
training data in each fold individually, preventing the aforementioned issues.

The column transformation step in the pipeline is composed of imputing numerical
features, standardising numerical features, and dummy encoding categorical features. Im-
putation is applied to the lastClaim feature only, employing the approach outlined in
Section 4.3.5. For this task, we utilise scikit-learn’s SimpleImputer with strategy =
‘mean’ and add_indicator = True. Standardisation is applied to all numerical features,
i.e., all but responsibilityCode, by removing the mean and scaling to unit variance.
For this purpose, we leverage scikit-learn’s StandardScaler. Dummy encoding exclusively
targets the responsibilityCode feature, using scikit-learn’s OneHotEncoder. To avoid
introducing multicollinearity and falling into the dummy variable trap where one variable
can be easily predicted with the rest, the OneHotEncoder is configured to ‘drop’ the first
category.

For the oversampling step, we adopt the same SMOTE algorithm [47] as used by
Óskarsdóttir et al. [19]. We employ the implementation provided by imbalanced-learn and
set the sampling_strategy to 15/85, equivalent to the ratio of 15% samples of the minority
class reported by the original authors. The other parameters are left at their default value.
The final estimator in the pipeline is adjusted depending on the task at hand.

5.4.5 Employing Random Forests for Feature Importance Ranking

In alignment with the approach reported in the original work [19], we utilise a ten-fold
cross-validated grid-search to find the random forest classifier configuration that yields the
best results. To achieve this, we employ scikit-learn’s GridSearchCV with a parameter
grid identical to that specified by Óskarsdóttir et al. [19]. We explore configurations for
the total number of features configured for each split and the total number of trees in
the forest. The search space for the total number of features considered for each split is
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Table 5.6: Random forest model parameters

Parameter Value

n_estimators Grid search: [100, 300, 500, 700, 900]]
criterion gini
max_depth None
min_samples_split 2
min_samples_leaf 1
min_weight_fraction_leaf 0.0
max_features Grid search: [1, 3, . . . ,NoF]
max_leaf_nodes None
min_impurity_decrease 0.0
bootstrap True
oob_score False
warm_start False
class_weight None
ccp_alpha 0.0
max_samples None

[1, 3, . . . ,NoF], where ‘NoF’ denotes the total number of available features. The search
space for the number of trees is [100, 300, 500, 700, 900].

Authors in [19] did not specify the metric they consider for choosing the best configur-
ation. In this work, we choose to optimise the AUC-PR due to its suitability in scenarios
involving imbalanced class distributions, as described in Section 4.6.2. To compute this
metric, we employ scikit-learn’s average_precision function.

Our estimator for the grid search is the pipeline described in Section 5.4.4, augmented
with a scikit-learn RandomForestClassifier. Aside from the parameters explored through
the grid search, this classifier is constructed using the default configuration, as illustrated in
Table 5.6. The grid search is conducted for both data sets Dknown and Dfraud independently,
for four distinct feature sets: X intr, Xscore, Xnbh, and Xall(= X intr ⊕Xscore ⊕Xnbh).

Following the grid search, the parameters yielding the best AUC-PR are utilised to
construct new random forest classifiers, each trained on the full training data set. This
process is repeated for each data set and each feature set independently. The resultant
classification models automatically store the Gini importance of each observed feature. For
each combination of data and feature set, we extract these importances and report on the
results.

Then, in line with Óskarsdóttir et al. [19], we construct logistic regression models
to assess the performance impact of sequentially adding a new feature to the model in
descending order of importance. For that purpose, we augment the preprocessing steps
described in Section 5.4.4 with scikit-learn’s SelectFromModel feature selector and a
LogisticRegression classifier. A pipeline is created for each value n in [1, 2, 3, . . . ,NoF],
each time configuring the feature selector to select only the n features with the highest Gini
importance from the pre-trained random forest models. Only these selected features are
then forwarded to the logistic regression models. The logistic regression models are con-
structed with parameters outlined in Table 5.7. These mirror default settings, except for
the removal of the penalty to increase the likelihood of resembling the classifier used in the
original work and an increase in the maximum number of iterations to yield convergence.

The entire process is encapsulated in a ten-fold cross validation procedure, implemented
using scikit-learn’s StratifiedKFold. The AUC-PR, AUC-ROC and TDL of the logistic
regression models, trained on the train fold and evaluated on the validation fold, are
aggregated in terms of mean and standard deviation for each number of n features and
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Table 5.7: Scikit-learn logistic regression classifier parameters

Parameter Value

penalty None
dual False
tol 0.0001
C 1.0
fit_intercept True
intercept_scaling 1
class_weight None
solver lbfgs
max_iter 500
multi_class ovr
warm_start False

each data set and feature set. These aggregated results are then visualised for each data
set and feature set individually.

5.4.6 Constructing the Final Classifier

The final classification model is again built using the aforementioned preprocessing pipeline
and a logistic regression classifier. However, in this instance, the classifier is constructed
using the Logit implementation from statsmodels [143]. This approach facilitates retrieval
of the same types of model features as reported in [19], specifically feature coefficients
and p-values, enabling a comparison of outcomes between the two studies. To maintain
a level of consistency between the two classification model implementations, we optim-
ise statsmodels’ classifier using a similar optimisation algorithm to the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) [144] optimisation algorithm used by default
in scikit-learn’s logistic regression classifier (Section 5.4.5). This time, the original non-
limited-memory version of the algorithm was used, addressing technical difficulties.

For each data set and feature set, the logistic regression classifier is provided the full
range of features and training samples. Subsequently, the performance of the classification
model is evaluated on the test set.

5.5 Incorporating Time-Weighting

The incorporation of time-weighted fraud influence following the methodology presented
in Section 4.4 involves multiplying the baseline query vector by e−λh, where λ represents
the decay constant and h denotes the time elapsed since the claim’s registration date (see
Section 4.4). Given that this study employs historical data, it is inappropriate for h to
signify the time between the claim registration date and the date of the analysis. Instead,
we define h as as the time from the claim registration date to the last claim registration
date considered in this study. For claims registered at the beginning of the last year—
which is the beginning of the period considered by the supervised analytical models—this
results in a one-year discrepancy compared to the calculation in a practical deployment
scenario. We acknowledge this limitation to avoid the technical complexities associated
with recomputing h, the query vector, and all fraud scores for every evaluated claim.

In determining a suitable value for the decay constant, we examine the duration that
an instance of fraud remains recorded in national fraud registers. We observe that an
insurance fraud register deployed in the UK reports on a maximum registration period
of five years [145], whereas a widely adopted fraud register in the Netherlands reports a
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maximum period of eight years [146]. In this study, we consider the eight-year period and
set the fraud influence of an eight-year-old claim to be 50% of the influence of a recent claim.
This reflects our intention to have time-weighting impact the ranking without completely
diminishing the influence of historical fraud, as a value close to 0% would, given the already
limited knowledge of fraudulent claims. Thus, with h representing a period in days, we
define

e−λh = e−λ365.25×8 = 0.5 (5.2)

such that

λ = − ln 0.5

365.25× 8
≈ 0.000237. (5.3)

We use this value to construct a new query vector and then use the BiRank algorithm and
extract network features utilising the same approach described in Section 5.4.3.

5.6 Incorporating Shared Resources

To incorporate shared resources in line with the methodology presented in Section 4.5, we
first collect relevant information for all parties present in the network. Using this inform-
ation, we generate formatted strings resembling identifiers for each specific resource. The
creation of resource identifier strings is contingent upon the availability of sufficient relev-
ant information to mitigate coincidental resource sharing based on insufficiently granular
resources. For example, we refrain from creating address resource strings whenever only
partial address information is available to prevent establishing relations based on matching
street names alone.

Utilising these resource strings, we construct an edge list composed of all edges between
parties and their associated resources. Subsequently, we remove any resources connected
to a single party only, as these do not contribute relevant information to the model. From
this edge list, we construct a party–resource adjacency matrix.

For the construction of a party–resource adjacency matrix, we have to consider that the
number of rows in Wpr should match the number of rows in Dp, which should also match
the number of rows in Wpc. This can be derived from the equations for the values of Scp

and Spc in Equations 4.24 and 4.25. Moreover, it is crucial that the row indices correspond,
meaning that the same parties assume identical index numbers across all index numbers.
Both requirements are not explicitly guaranteed by default, in part because not every party
in the network is necessarily related to any shared resource and therefore included in the
corresponding weight matrix. To address this issue, we augment the party–resource edge
list. For all parties included in the claim–party edge list but missing in the party–resource
edge list, we extend the party–resource edge list by incorporating a zero-weight relation
from the respective party to a resource already present in the party–resource edge list.
Then, rows in the sparse Wpr matrix are sorted equivalently to the columns in Wcp.

The claim–party and party–resource adjacency matrices are provided as input to the
simplified iterative tripartite ranking algorithm presented in Algorithm 3, implemented
by adapting the BiRank implementation described in Section 5.4.2. We set αcp to 0.85,
consistent with the hyper-parameter configuration adopted for the baseline model. This
hyper-parameter adjusts the influence of the query vector and associated parties on claim
nodes. In addition, we configure αpc = 1 and αpr = 1 so that a connection from a shared
resource to a party holds the same value as a connection from a claim to a party. This was
empirically validated to yield intuitive scores in various scenarios, though a more thorough
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analysis and investigation into how optimisation of the hyper-parameters influences the
performance of the model could be an interesting avenue for future research. For this
research, this is out-of-scope.

We consider a tripartite graph only for the computation of fraud scores. Consequently,
after obtaining the fraud scores from the tripartite network, the subsequent graph con-
struction for network feature extraction again assumes only a bipartite graph of claims
and parties. This facilitates reuse of the implementation built for the baseline model (Sec-
tion 5.4.3), enabled by not including features explicitly reliant on the inclusion of shared
resources in the graph.

5.7 Fraud Expert Evaluation of Unlabelled Claims

From each model, we collect the top-k claims from the test set for Dfraud that were assigned
the highest probability of fraud by the model. Subsequently, these claims are submitted
to fraud experts for evaluation. Each claim undergoes assessment by a single fraud expert,
who determines whether they would have recommended the claim to be flagged by the
model. They explicitly refrain from asserting whether the claim is genuinely fraudulent. As
a result, this evaluation yields no definitive information about the model’s performance in
detecting fraud, but instead offers insights into its ability to identify potentially suspicious
claims.

The fraud experts are provided only claim IDs, allowing them to access claim details
within the insurance company’s information systems. They receive no information on
which model the claim was retrieved from, nor are they given access to the specific set
of features utilised in this model or the graphs surrounding the respective claims. This
eliminates potential bias, ensuring an equivalent evaluation of claims from each model,
though it also deprives the experts of contextual information that could have been relevant
to the classification.

5.8 Conclusion

Concluding this chapter, we have presented information about the construction and char-
acteristics of the employed data set, along with insights into our analysis of homophily and
the implementation and evaluation of the baseline and adapted models. Having established
these details, we transition into the next chapter for an exploration of the results of our
work.
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Chapter 6

Results

Having previously presented our methodology and details concerning the experimental
setup that is employed, the current chapter presents insights into the results that were
achieved. Whenever relevant, the results are presented in a way that facilitates a com-
parison to the findings reported by authors of the original work [19]. However, the actual
comparison is presented in Chapter 7 instead.

Section 6.1 presents the results of our investigation into empirical evidence for homo-
phily in our data. Then, Section 6.2 sheds light on the results attained in relation to feature
importance ranking. Lastly, Section 6.3 provides insight into the performance of both the
baseline models and the adapted models on a held-out test set, along with a summary of
the baseline models’ characteristics.

6.1 Homophily Assumption

Following the methodology and implementation outlined in Sections 4.2 and 5.3, we ana-
lysed claims in the second- and fourth-order neighbourhoods of labeled claims to yield the
statistics necessary to examine whether our data establishes any evidence for the homo-
phily assumption. The results of this assessment are detailed in Table 6.1 and elucidated
hereafter.

The table shows that fraudulent claims exhibit a higher average relative frequency of
other fraudulent claims in their second-order neighbourhoods than non-fraudulent claims.
This observation holds true when computing the average relative frequency when compared
to all claims (4.121% versus 1.781%) and when compared to all investigated (i.e., known)
claims in the second-order neighbourhood. A similar observation is made for fourth-
order neighbourhoods, albeit with less pronounced differences of 0.336% versus 0.313%
and 69.217% versus 68.663%.

Table 6.1: Average relative frequency of fraudulent and non-fraudulent claims in
the neighbourhoods of known claims.

Avg. rel. freq. (all) Avg. rel. freq. (investigated)

Neighbourhood Label Non-fraudulent Fraudulent Non-fraudulent Fraudulent

Second-order Non-fraudulent 1.601 % 1.783 % 35.083 % 64.917 %
Fraudulent 0.828 % 4.121 % 27.419 % 72.581 %

Fourth-order Non-fraudulent 0.109 % 0.313 % 31.337 % 68.663 %
Fraudulent 0.146 % 0.336 % 30.783 % 69.217 %
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To assess the significance of these differences, we conducted significance tests, begin-
ning with an F-test on equality of variances to determine whether to use Student’s T-test
or Welch’s T-test. For second-order neighbourhoods, the F-score for the observed average
relative frequencies of fraud compared to all claims was 3.1818, with variances of 0.025677
and 0.008070 for the neighbourhoods of fraudulent claims and non-fraudulent claims, re-
spectively. This yielded a p-value of approximately 1.11× 10−16, resulting in the rejection
of the null hypothesis of equal variances. A similar outcome was obtained when consid-
ering investigated claims only, with an F-score of 1.25994 and a p-value of approximately
1.57×10−6. Consequently, we adopted Welch’s T-test for both significance tests concerning
the second-order neighbourhoods.

Subsequent analysis of the significance of observed differences in average relative fre-
quency of fraudulent claims among all claims in the second-order neighbourhoods using
Welch’s T-test yielded a p-value of ≈ 5.888 × 10−14. Considering the same frequency
among investigated claims instead, the p-value was 4.613 × 10−13. The fact that both p-
values are near zero suggests a significant difference between fraudulent and non-fraudulent
claims in terms of the average relative frequency of fraudulent claims in their second-order
neighbourhoods. This significance is suggested both when considering all claims in the
neighbourhood and when considering investigated claims only.

Exploring fourth-order neighbourhoods, we observed unequal variances in average rel-
ative frequencies of fraudulent claims among all claims but equal variances among invest-
igated claims. The associated F-scores were 4.0267 and 1.0569 with p-values of approxim-
ately 0 and 0.1015, respectively. We therefore adopt Welch’s T-test for the ratio among
all claims, and Student’s T-test for the ratio among investigated claims, revealing p-values
of 0.5885 and 0.1702. This suggests insignificant differences between fraudulent and non-
fraudulent claims when comparing the average relative frequency of fraudulent claims in
their fourth-order neighbourhoods, whether considering all claims or investigated claims.

6.2 Feature Importance

Following the analysis of the network, we performed a ten-fold cross validated grid search
on the training data to discover the best configuration for random forest classification
models, based on the baseline model. The goal was to uncover the set of hyper-parameters
that provides the best AUC-PR, both for each group of features (X intr, Xscore, Xnbh, and
Xall) and each data set (Dknown and Dfraud) to enable a comparison to the results in the
original work [19]. In Appendix A, we present the performance achieved for each explored
combination of hyperparameters. Meanwhile, the optimal parameters are displayed in
Table 6.2. The table reveals some variation between data sets and feature sets in terms
of the parameters that yielded the best result, but a configuration with the maximum
considered number of trees proved best for six out of eight cases.

We chose the models that achieved the best results and collected the normalised Gini
importances corresponding to the features that were provided to the model as input. These
Gini importances are presented in Section 6.2.1. Then, Section 6.2.2 presents ten-fold cross-
validated results achieved by logistic regression classifiers that were constructed using the
top n most important features in the best random forest models for varying numbers of n.

6.2.1 Gini Feature Importance

The Gini importances are presented in Figures 6.1 to 6.4, employing a visualisation format
consistent with the original work [19]. This facilitates a comparison between the results
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Table 6.2: Optimal hyper-parameters for our random forest models

Data set Feature group No. of trees Features per split

Dfraud intrinsic 900 5
score 300 5
neighbourhood 900 5
all 900 3

Dknown intrinsic 900 7
score 900 1
neighbourhood 900 5
all 700 9

achieved by our baseline model and the results presented in their study. It is worth not-
ing that the original work exhibits inconsistency in reported feature names, including a
typographical error in their seventh figure. In this report, we adhere to feature names
consistent with those in Tables 4.1 to 4.2. Accordingly, when comparing feature names in
our figures to theirs, responsibilityCode matches clResp, age matches pAge, and n1.q1
matches n1.1q. Additionally, for reasons unbeknown to us, the feature importance figures
in the original work do not present all features considered in their research. In this report,
we do report on the importance of all features.

Note that, for both lastClaim and responsibilityCode, Figures 6.1 and 6.4 reveal
multiple suffixed features. Feature lastClaim_x represents the ‘missing indicator’ that
was previously detailed in Section 5.4.4. Meanwhile, features responsibilityCode_1,
responsibilityCode_2, responsibilityCode_3, and responsibilityCode_x match the
features generated by dummy-encoding the original responsibilityCode feature, as de-
scribed in Section 5.4.4.
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Figure 6.1: Gini feature importance of intrinsic features
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Examining Figure 6.1, we observe that the overall ranking of features for Dknown and
Dfraud is very similar. We extract that the top five intrinsic features with the highest
importance include claimAge, amount, age, daysReport, and numContracts for both data
sets, and notice that features pertaining to the policyholder’s responsibility in histor-
ical claims exhibit noticeably small feature importance. More specifically, this concerns
atFault1, atFault5, sameSits1, and sameSits5.
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Figure 6.2: Gini feature importance of neighbourhood features

Moving on to the neighbourhood features in Figure 6.2, we again observe that the
importance of features for Dknown and Dfraud are similar. For both data sets, the figure
reveals the highest Gini importance attributed to n1.size, followed by n2.ratioFraud,
n2.ratioNonFraud, and n1.size. The n2.binFraud feature is attributed a Gini import-
ance nearing zero for both types of classification.

Figure 6.3 depicts the Gini importance of score features. It reveals a mostly uniform
distribution of Gini importance over features for Dknown, with slight variation for Dfraud.
For the latter data set, the largest Gini importance is achieved by n1.max, closely followed
by n2.max and n2.med.

Considering all features in Figure 6.4 instead, we observe that the top five features
with the highest Gini importance for Dknown are claimAge, amount, age, daysReport, and
responsibilityCode_x. For Dfraud, this list is composed of the same features, but in a
slightly different order: claimAge, age, daysReport, amount, and responsibilityCode_x.
This is consistent with our earlier observation that the importance of features to Dknown and
Dfraud are relatively similar. Considering the features with the lowest Gini importance in
the figure, we make the same observations as those for the independent groups of features.
This means that both features related to the policyholder’s responsibility in historical
claims (e.g. atFault1 and atFault5) and n2.binFraud exhibit very low importance.
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Figure 6.3: Gini feature importance of score features
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Figure 6.4: Gini feature importance of all features
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6.2.2 Sequential Feature Addition

Following the evaluation of individual features’ Gini importance, we proceed to evaluate
the performance of a logistic regression classifier constructed using the top n features with
the highest Gini importance. We considered all values of n in the range of [1, 2, . . . ,NoF],
where ‘NoF’ indicates the total number of features in the feature set. The results were
obtained through ten-fold cross validation on the training sets and presented in Figure 6.5.
Note that the different categories for the categorical feature responsibilityCode and
the missing indicator for lastClaim are presented as distinct features. Consequently, the
maximum number of features in this figure deviates from the total number of features
presented in Tables 4.1, 4.3 and 4.2.

Upon examining the plots, we first observe that there was similar performance for
Dknown and Dfraud when considering AUC-ROC, whereas the AUC-PR and TDL suggest
superior performance was achieved when classifying Dknown. Furthermore, we observe that
the use of only intrinsic features yielded improved performance when compared to using
only score or neighbourhood features, regardless of the metric considered (AUC-ROC,
AUC-PR, or TDL) and whether considering Dfraud or Dknown. Utilising all features is
shown to have further enhanced performance across all three metrics, albeit sometimes
marginally. For both data sets, our observed maximum differences in AUC-ROC, AUC-
PR, and TDL between using all features and using intrinsic features are in the range of
0.05, 0.05, and 0.5, respectively.

Analysing the absolute values obtained for the three performance metrics, we observe
maximum values of 0.79, 0.25, and 4.69 for AUC-ROC, AUC-PR, and TDL, respectively,
when considering Dknown. For Dfraud, these values are 0.77, 0.15, and 4.26 instead. In-
vestigating when maximum performance is achieved, we observe that the classification
performance of the model remains relatively consistent past n = 14 features for both
Dknown and Dfraud.

Figure B.1 in Appendix B also presents the cross-validation standard deviations corres-
ponding to the mean results presented in Figure 6.5. The figure reveals that the difference
in mean performance between intrinsic features and all features frequently lies within the
range of one standard deviation for all three performance metrics. In making a comparison
between score and neighbourhood features, a similar observation is made. The difference is
more pronounced when comparing the mean performance of intrinsic or all features to the
mean performance of score or neighbourhood features. In these comparisons, differences
larger than one standard deviation are observed, except for Dfraud with AUC-PR.

6.3 Evaluation on Test Set

The previous sections presented Gini importance of features in the baseline model and the
impact of including different numbers of features on the model’s ten-fold cross-validated
classification performance on the training data. In this section, we present the results of
evaluating both the baseline model, the time-weighted model, and the shared resources
model on test data instead. This facilitates a comparison between our final baseline model
and the model construed by Óskarsdóttir et al. [19], as well as an evaluation of the impact
of the adaptations on the classification performance of our model.

In Section 6.3.1, we first present each model’s performance in correctly classifying
claims based on known labels. Then, Section 6.3.2 sheds light on the models’ performance
in retrieving interesting, previously unlabelled claims.
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Figure 6.5: Ten-fold cross-validated performance of LR models for sequential
feature addition
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Table 6.3: Model performance for different feature sets on each test data set

Dknown Dfraud

Model Features AUC-ROC AUC-PR TDL AUC-ROC AUC-PR TDL

Baseline Intrinsic 0.767 0.207 4.445 0.735 0.105 3.985
Score 0.617 0.084 1.810 0.618 0.058 1.903
Neighbourhood 0.684 0.123 3.344 0.668 0.117 2.617
All 0.803 0.255 4.839 0.777 0.153 4.044

Time-weighted Intrinsic 0.767 0.207 4.445 0.735 0.105 3.985
Score 0.622 0.089 2.006 0.603 0.057 1.665
Neighbourhood 0.684 0.123 3.344 0.668 0.117 2.617
All 0.804 0.257 4.839 0.778 0.157 4.104

Shared resources Intrinsic 0.767 0.207 4.445 0.735 0.105 3.985
Score 0.639 0.105 2.321 0.633 0.065 2.312
Neighbourhood 0.684 0.123 3.344 0.668 0.117 2.617
All 0.805 0.260 4.760 0.779 0.156 4.223

6.3.1 Evaluation on Labelled Data

Table 6.3 presents the performance of each model and each feature set in classifying the
test set. In Figure 6.6, the same data is depicted graphically. The model adaptations had
no influence on the values in X intr and Xnbh. Consequently, the results of the baseline,
time-weighted and shared resources models were equivalent for these specific feature sets.

Comparing the performance of each model, we observe that the differences are small,
both for Dknown and Dfraud. For example, when considering Dfraud with the set of all
features, we observe differences in AUC-ROC, AUC-PR, and TDL of at most 0.02, 0.004
and 0.179, respectively. These differences are slightly larger for the score features, with
values of 0.030, 0.08 and 0.647, respectively. Comparing the classification of Dknown versus
the classification of Dfraud instead, we observe that all models perform better at distin-
guishing known claims from unknown claims than they do at distinguishing fraudulent
claims from non-fraudulent or unknown claims, independent of the considered feature set
and performance metric.

Moving on to a comparison based on the feature set that was employed, we observe
that the set of all features yielded improved performance when compared to considering
intrinsic, score, or neighbourhood features only. This observation is consistent across all
three models and all three performance metrics. Considering a single feature set, the table
reveals that the intrinsic features were most valuable in correctly classifying claims as
known/unknown or fraudulent/non-fraudulent.

Having evaluated the AUC-ROC and AUC-PR for the different model, feature set, and
data set configurations, we present the AUC and PR curves that were summarised by these
metrics in Figures 6.7 and 6.8. These curves share the same story as their corresponding
summary metrics while also revealing the best combination of performance metrics that
could be achieved for each configuration. For example, Figure 6.8 reveals that, when
considering Dfraud and the baseline model with all features, achieving a recall of 0.2 on the
test set is accompanied by a precision of 0.2. A higher recall can be attained, but at the
cost of lower precision, and vice versa.

6.3.2 Fraud Expert Evaluation on Unlabelled Data

Whereas the previous results shed light on models’ performance in correctly classifying
claims based on known labels, Table 6.4 presents the results of fraud experts’ evaluation
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Table 6.4: Fraud experts’ claim evaluation results

Feature set Model Evaluated Interesting Precision-at-k

Intrinsic All 20 11 0.550
Score Baseline 20 16 0.800

Time-weighted 20 16 0.800
Shared resources 20 14 0.700

Neighbourhood All 20 15 0.750
All Baseline 20 12 0.600

Time-weighted 20 13 0.650
Shared resources 20 12 0.600

of the top-20 unlabelled claims with the highest predicted probability of fraud, conducted
in line with the experimental setup described in Section 5.7. For each combination of
model and feature set, we report on both the number of newly evaluated claims and the
number of claims subsequently labelled ‘interesting’, together facilitating the computation
of a ‘precision-at-k’.

The table shows that classification based on intrinsic features alone yielded the lowest
percentage of claims deemed interesting (55.0%), followed by classification based on all
features from the baseline or shared resources model (60.0%) and all features from the time-
weighted model (65.0%). The highest percentage was achieved by classification based on
score features from the baseline model and time-weighted models (80.0%), closely followed
by classification based on neighbourhood features alone (75.0%).

6.3.3 Model Summaries

For an understanding of how the logistic regression models determined each claim’s classi-
fication, the models’ summaries were extracted from the statsmodels classifiers described
in Section 5.4.6. Tables 6.5 to 6.12 present these summaries for the baseline logistic re-
gression models corresponding to each feature set and data set, facilitating a comparison
to the results presented in the original work [19]. For summaries of the adapted models,
the reader is referred to Appendix C instead.

In the tables, the variable coefficients in the ‘Coef’ columns signify the average change
in the log odds of the target variable associated with a one-unit increase of the feature.
These can be transformed into the average change in odds using the equation eCoef. Positive
coefficients signify that an increase in the independent variable yields an increase in model
output, i.e., an increase in the predicted probability of the claim being known or fraudulent,
assuming all other independent variables remain constant. The opposite is true for negative
coefficients. For enhanced interpretability, the tables include only variables with a p-value
(column ‘P > |z|’) of less than 0.05, indicative of the fact that there exist a significant
relationship (at a significance level of 5%) between the variable and the target variable
given a null hypothesis that the coefficient would be equivalent to zero.

Considering intrinsic features, Table 6.5 reveals positive coefficients in the Dknown

model for intrinsic features amount, amount1, refused1, responsibilityCode_3, and
responsibilityCode_x. For Dfraud, Table 6.6 shows a similar list of variables with pos-
itive coefficients. However, compared to the model for Dknown, refused1 is replaced
with lastClaim_x, nClaims1, and sameSits5. For both Dknown and Dfraud, the tables
present significant negative coefficients for age, claimAge, lastClaim, numContracts, and
organisations. For Dknown, this list is extended with people and responsibilityCode_2,
whereas the list for Dfraud additionally includes nClaims5 and sameSits1.
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Table 6.5: Summary of baseline LR model for Dknown with intrinsic features

Dknown

Variable Coef Std. Err z P > |z|

Intercept -2.4366 0.065 -37.725 0.000
age -0.3502 0.027 -12.813 0.000
amount 0.3201 0.021 15.305 0.000
amount1 0.0718 0.029 2.504 0.012
claimAge -0.7651 0.034 -22.475 0.000
lastClaim -0.2040 0.040 -5.138 0.000
numContracts -0.1468 0.029 -5.065 0.000
organisations -0.2129 0.025 -8.382 0.000
people -0.1540 0.030 -5.217 0.000
refused1 0.0982 0.028 3.543 0.000
responsibilityCode_2 -1.0704 0.478 -2.239 0.025
responsibilityCode_3 0.8545 0.125 6.842 0.000
responsibilityCode_x 0.2635 0.076 3.459 0.001

Table 6.6: Summary of baseline LR model for Dfraud with intrinsic features

Dfraud

Variable Coef Std. Err z P > |z|

age -0.2922 0.026 -11.082 0.000
amount 0.1606 0.018 9.140 0.000
amount1 0.0907 0.022 4.176 0.000
claimAge -0.6619 0.033 -20.076 0.000
daysReport 0.0704 0.017 4.122 0.000
lastClaim -0.3049 0.042 -7.187 0.000
lastClaim_x 0.0997 0.029 3.454 0.001
nClaims1 0.0952 0.040 2.365 0.018
nClaims5 -0.1059 0.046 -2.306 0.021
numContracts -0.2686 0.032 -8.375 0.000
organisations -0.0874 0.024 -3.671 0.000
responsibilityCode_3 0.9359 0.119 7.875 0.000
responsibilityCode_x 0.2918 0.072 4.040 0.000
sameSits1 -0.1527 0.030 -5.026 0.000
sameSits5 0.1637 0.031 5.360 0.000
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Considering score features in Tables 6.7 and 6.8 for Dknown and Dfraud instead, both
reveal negative coefficients for n1.max and positive coefficients for scores0. For Dknown,
the list of variables with a positive coefficient is extended with n1.q1. For Dfraud, positive
coefficients are added for n2.max and n2.q1, along with a negative coefficient for n2.med.

Table 6.7: Summary of baseline LR model for Dknown with score features

Dknown

Variable Coef Std. Err z P > |z|

Intercept -1.8077 0.023 -77.758 0.000
n1.max -0.4478 0.046 -9.757 0.000
n1.q1 0.4231 0.113 3.742 0.000
scores0 0.1805 0.035 5.177 0.000

Table 6.8: Summary of baseline LR model or Dfraud with score features

Dfraud

Variable Coef Std. Err z P > |z|

Intercept -1.8278 0.023 -77.814 0.000
n1.max -0.5383 0.048 -11.266 0.000
n2.max 0.0787 0.036 2.171 0.030
n2.med -0.5826 0.296 -1.971 0.049
n2.q1 0.8991 0.304 2.956 0.003
scores0 0.2377 0.029 8.232 0.000

Moving on to neighbourhood features in Tables 6.9 and 6.10, we observe only two
significant features for Dfraud: n2.ratioFraud with a positive coefficient and n2.size
with a negative coefficient. The same features with equivalently signed coefficients are
observed for Dknown, along with negatively signed coefficients for n1.size and n2.size
and positively signed coefficients for n2.ratioFraud and n2.ratioNonFraud.

Table 6.9: Summary of baseline LR model for Dknown with neighbourhood features

Dknown

Variable Coef Std. Err z P > |z|

Intercept -1.9095 0.028 -68.770 0.000
n1.size -0.142 0.024 -5.912 0.000
n2.binFraud -0.0854 0.024 -3.525 0.000
n2.ratioFraud 0.3677 0.039 9.382 0.000
n2.ratioNonFraud 0.083 0.029 2.902 0.004
n2.size -0.6197 0.055 -11.194 0.000

Lastly, we use Tables 6.11 and 6.12 to make a comparison between the significant
features in the models constructed using the set of all features and the models con-
structed using only a subset of the features. We start with a comparison of intrinsic
features and observe that, for Dknown, nine out of twelve intrinsic features in Table 6.5
are also present in Table 6.11, with the same signs for the coefficients. Meanwhile, un-
available in the latter table are amount1, organisations, people, whereas refused1 and

69



Table 6.10: Summary of baseline LR model for Dfraud with neighbourhood fea-
tures

Dfraud

Variable Coef Std. Err z P > |z|

Intercept -2.9405 0.191 -15.370 0.000
n2.ratioFraud 0.3368 0.036 9.440 0.000
n2.size -3.6121 0.529 -6.828 0.000

responsibilityCode_2 are observed significant in the all-features model but not in the
intrinsic-features model. Considering Dfraud instead, we observe that thirteen out of fif-
teen features in Table 6.6 are also present in Table 6.12, again with the same signs for
the coefficients. Contrary to the intrinsic features model, organisations and daysReport
are insignificant in the all features model, whereas it adds responsibilityCode_1 and
sameSits5.

Table 6.11: Summary of baseline LR model for Dknown with all features

Dknown

Variable Coef Std. Err z P > |z|

Intercept -2.8265 0.071 -39.667 0.000
age -0.3718 0.028 -13.23 0.000
amount 0.2628 0.020 12.928 0.000
claimAge -0.8041 0.035 -22.713 0.000
lastClaim -0.1873 0.040 -4.642 0.000
n1.max 0.2047 0.079 2.596 0.009
n1.size -0.3149 0.155 -2.026 0.043
n2.binFraud -0.2352 0.057 -4.129 0.000
n2.q1 -0.2862 0.119 -2.414 0.016
n2.ratioFraud 0.3515 0.055 6.405 0.000
n2.size -0.9146 0.079 -11.53 0.000
numContracts -0.1138 0.029 -3.876 0.000
refused1 0.0831 0.030 2.795 0.005
responsibilityCode_2 -1.234 0.545 -2.264 0.024
responsibilityCode_3 1.0233 0.125 8.191 0.000
responsibilityCode_x 0.5949 0.08 7.479 0.000

Moving on to score features, we observe noticeably larger differences. For Dknown, only
n1.max is present in both Table 6.7 and 6.11, but with a negative coefficient in the former
and a positive coefficient in the latter. For Dfraud, Tables 6.8 and 6.11 reveal a similar
result for n1.max, although equivalent signs are observed for n2.max,

Considering neighbourhood features instead, we observe that, for Dknown, Tables 6.9
and 6.11 match in terms of five significant features, with equivalent signs in the two tables.
The only difference is that the former adds n2.ratioNonFraud. For Dfraud, the only
difference in significant neighbourhood features is that n2.size feature is also deemed
significant in the all features model.

6.4 Conclusion

In this chapter, we have presented the results of our study. This includes information
required to assert whether our data establishes empirical evidence for the homophily as-
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Table 6.12: Summary of baseline LR model for Dfraud with all features

Dfraud

Variable Coef Std. Err z P > |z|

Intercept -4,3814 0,729 -6,013 0
age -0,3385 0,028 -12,295 0
amount 0,0809 0,018 4,428 0
amount1 0,0717 0,022 3,194 0,001
claimAge -0,6634 0,034 -19,526 0
lastClaim -0,2628 0,043 -6,17 0
lastClaim_x 0,1142 0,03 3,802 0
n1.max 0,2377 0,072 3,316 0,001
n2.binFraud -0,1466 0,055 -2,679 0,007
n2.max 0,1561 0,07 2,242 0,025
n2.ratioFraud 0,1187 0,027 4,327 0
n2.size -5,0401 0,67 -7,524 0
nClaims1 0,1016 0,042 2,44 0,015
nClaims5 -0,1157 0,048 -2,435 0,015
numContracts -0,1966 0,032 -6,077 0
responsibilityCode_1 0,2766 0,077 3,577 0
responsibilityCode_3 1,0521 0,121 8,7 0
responsibilityCode_x 0,7382 0,076 9,718 0
sameSits1 -0,1709 0,032 -5,365 0
sameSits5 0,1839 0,03 6,036 0

sumption, as well details pertaining to the importance of individual features and the clas-
sification performance of the baseline, time-weighted and shared resource models on the
held-out test set. In the next chapter, we will interpret these findings and compare our
results to ones reported by authors in the original study, which lays the foundation for
answering this study’s research questions.
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Chapter 7

Discussion

In this chapter, we present an interpretation of our results, building upon the objective
presentation provided in Chapter 6. Section 7.1 presents a detailed analysis of our findings
concerning the research questions posited in this study. Section 7.2 compares these findings
to the hypotheses presented earlier. Then, Section 7.3 sheds light on the main limitations
of this study. Concerning these constraints, Section 7.4 offers recommendations for future
research endeavours.

7.1 Answering the Research Questions

The analyses conducted as part of this study are founded on the research questions initially
presented in Section 1.2 and repeated here:

RQ1 To what extent can empirical evidence for the homophily assumption presented in
Óskarsdóttir et al. [19] be found in a different real insurance data set?

RQ2 How do the results presented in Óskarsdóttir et al. [19] generalise to a different real
insurance data set?

RQ3 How can the social network analysis-based insurance fraud detection approach presen-
ted in Óskarsdóttir et al. [19] be adapted to enhance its classification performance?

a What is the impact of extending the approach with time-weighted fraud influ-
ence and edges?

b What is the impact of extending the bipartite network with party–party rela-
tions based on shared resources?

RQ4 How do the baseline and adapted models along with different combinations of feature
sets compare in terms of highlighting interesting and/or suspicious claims that had
not been investigated previously?

Hypotheses for these questions were that: 1) our data set also suggests some empirical
evidence for the homophily assumption; 2) the main findings of the original work generalise
to a different data set; 3) both adaptations yield a positive impact on the classification
performance of the fraud detection model; and 4) both adaptations show enhanced results.

In this section, we consider these research questions to interpret the results presented
in Chapter 6. First, Section 7.1.1 elucidates our findings in relation to RQ1. Then,
Section 7.1.2 presents a comparison between our results and those reported by Óskarsdóttir
et al. [19] to answer RQ2. Last, Section 7.1.3 provides an interpretation of the results
achieved using the adapted models to answer RQ3.
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7.1.1 Homophily Assumption

Óskarsdóttir et al. [19] report on their data establishing some empirical evidence for the
homophily assumption, i.e., the idea that closely related instances are likely to behave in
the same way [27]. This evidence is derived from analysing the average relative frequency
of fraudulent claims in the second-and fourth-order neighbourhoods of both non-fraudulent
and fraudulent claims. However, the authors did not report on conducting any significance
test, raising concerns about their findings’ robustness. Additionally, their reporting focuses
solely on the average relative frequency of fraudulent claims in comparison to all claims in
the respective neighbourhood. This approach may lead to an unjustly elevated frequency
when a larger proportion of claims in the neighbourhood of fraudulent claims is investig-
ated, even if the exact proportion of investigated claims revealing fraud remains consistent.
Such a larger proportion of investigated claims in the neighbourhood of fraudulent claims
is not inconceivable due to, for example, the influence of existing fraud detection models.

In this work, we have addressed both of the issues as mentioned above. For one,
we have conducted T-tests to assert the significance of the observed differences in average
relative frequencies. Furthermore, we have reported on the average frequency of fraudulent
claims not only among all claims but also among all investigated claims in the respective
neighbourhoods.

The results in Section 6.1 have affirmed a significant difference between fraudulent and
non-fraudulent claims when comparing the average relative frequency of fraudulent claims
in their second-order neighbourhoods, whether considering all claims or only investigated
claims. Especially the observed significance when considering only investigated claims
suggests some empirical evidence for homophily in the bipartite network of claims and
parties. However, to further substantiate the existence of homophily in such network,
additional analyses in consultation with domain experts are required. There might be
alternative explanations that explain our observations, which are not accounted for in this
study. For example, knowledge of an existing case of fraud might yield a positive impact
on the chance that a fraud investigation into a related claim unveils perpetrated fraud by
pointing the investigator into a certain direction.

The need for caution in drawing conclusions is further emphasised by the lack of a sig-
nificant difference when considering fourth-order neighbourhoods instead of second-order
neighbourhoods, though this might also be explained by the substantial size of these neigh-
bourhoods. Fourth-order neighbourhoods are likely to be very large, such that the inclusion
of a small sample of known fraudulent claims exhibits insufficient impact on the overall
relative frequency.

In conclusion, referring back to RQ1, we have demonstrated that our data suggests
evidence supporting the homophily assumption when considering the second-order neigh-
bourhoods of claims, although alternative explanations might exist. Meanwhile, our ana-
lysis has highlighted limitations in the robustness of the homophily analysis conducted in
the original work.

7.1.2 Generalisability of Findings

Along with other findings, Óskarsdóttir et al. [19] reported enhanced classification perform-
ance achieved by their social network analysis-based automobile insurance fraud detection
model in comparison to models that rely on intrinsic features alone. To evaluate whether
their findings generalise to alternative real insurance claims data sets, we compare the
results reported in their study to the results achieved by a similar model on a similar
real insurance data set in this study. We consider feature importance, sequential feature
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addition results, test set evaluations, and logistic regression model summaries.

Feature importance

First, note that our use of dummy encoding and the resulting loss of a one-to-one cor-
respondence between individual dummy variables and responsibility code types suggests
we can assign little meaning to the importance of individual responsibilityCode fea-
tures. Correspondingly, the responsibilityCode feature importances are omitted from
subsequent analyses.

Then, comparing the Gini importance of intrinsic features as reported in Figure 6.1
to those presented by authors of the original work, we notice that the features included
in the top five features with the highest importance align, albeit in a different order.
Meanwhile, a discrepancy is observed in the Gini importance of features pertaining to the
policyholder’s responsibility in historical claims. Notably, whereas these features exhibit
noticeably small Gini importance in our model, their importance in the original work is
average. In Section 5.1, we revealed that the responsibilityCode feature, which serves as
the basis for these other properties, is available to only half of all claims in our data set. This
might serve as an explanation for the diminished importance of historical responsibility
properties in our model relative to the model in the original work.

Looking at neighbourhood features instead (Figure 6.2), we observe that the feature
with the highest Gini importance in our study (n1.size) differs from the one in the ori-
ginal paper (n2.size). Conversely, both studies report very small Gini importance for
the n2.binFraud feature. The latter presents some inconsistency with the idea of ho-
mophily, but might be partially explained by Gini importance’s bias towards continuous
variables and variables with many categories [111], since n2.binFraud is a binary feature.
Nevertheless, it cannot be conclusively stated whether this represents the full cause.

Considering score features (Figure 6.3), our results revealed a mostly uniform distribu-
tion of Gini importances over features for Dknown with slight variation for Dfraud, suggesting
that none of the score features are significantly more important than others in making pre-
dictions in our study. This observation contrasts with the findings in the original work [19].
The original work’s authors report a larger variation for Dknown, with the highest import-
ance attributed to n2.max. Meanwhile, for Dfraud, the authors reveal a major spike in the
importance of the scores0, exceeding the importance of the other features by a factor of
1.5–2.

Focusing on all features (Figure 6.4) and considering Dknown specifically, we observe
that both the top five features displayed in our results and the top five features in the
original work include amount, daysReport, n1.size, and age. In contrast, for Dfraud,
a match is observed only in amount and claimAge. The original work reports that score
feature scores0 attains the highest Gini importance for Dfraud, followed by neighbourhood
features n1.size and n2.ratioNonFraud. In our work, we instead see intrinsic features
claimAge, age, and daysReport being attributed the largest feature importance.

The observed difference in top five features across the set of all features aligns with our
more general observation that network features yield comparatively larger Gini import-
ances in the original work than in our study. Our endeavours thus far have not yielded
a comprehensive elucidation for this result. Nevertheless, we propose several hypotheses
that might explain the substantial Gini importance assigned to the top five variables in
our full feature set.

A conceivable rationale for the significant Gini importance of amount concerning Dknown

is that claims with higher values pose a larger financial burden for the insurer yet are more
lucrative for the claimants. This dynamic might fuel increased attention from the insur-
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ance company toward investigating higher-value claims, paralleled by heightened interest
from fraudsters in submitting such claims. Simultaneously, the large Gini importance as-
signed to the claimAge property could be ascribed to existing business rules. For instance,
the existence of a business rule flagging a claim submitted shortly after obtaining a new
insurance contract would sensibly detect past-posting, a fraudulent activity previously re-
ferred to in Section 5.1. A plausible rationale for for the pronounced Gini importance
attributed to numContracts is that policyholders with a large history of contracts with the
insurer might have somehow bolstered their perceived trustworthiness. Meanwhile, large
Gini importance attributed to age might indicate overrepresentation of certain age groups
in investigated and confirmed fraudulent cases. No hypothesis is currently posited for the
elevated importance linked to n1.size and daysReport.

To establish whether there is any truth in the aforementioned hypotheses, a compre-
hensive data analysis would be necessary. However, this activity falls beyond the scope of
this study. Confirmation of the existence of business rules contributing to the observed
results could further validate the hypotheses, but this has been impeded by confidentiality
constraints.

Sequential feature addition

Moving on, we focus on the results achieved by logistic regression classifiers constructed
using different subsets of each feature set’s most important features.

Our finding that the classification of Dknown yielded enhanced or at least equivalent
performance to the classification of Dfraud contrasts with the original work’s results, where
three out of four feature sets yielded equivalent or even improved performance in clas-
sifying Dfraud compared to Dknown. Notably, Óskarsdóttir et al. [19] reported enhanced
classification performance for Dknown only when considering intrinsic features alone.

In addition, whereas our observation that utilising only intrinsic features led to en-
hanced performance compared to using only score or neighbourhood features aligns with
the original paper’s results for Dknown, it diverges for Dfraud. In the case of Dfraud, the
original work suggested improved classification performance using only score or neighbour-
hood features compared to using only intrinsic features.

Meanwhile, our observation that employing all features resulted in enhanced classi-
fication performance over the use of specific feature sets proved consistent with original
work’s findings, although the reported differences in their study are more substantial. Our
observed maximum differences between all features and intrinsic features in AUC-ROC,
AUC-PR, and TDL are in the range of 0.05, 0.05, and 0.5, respectively, contrasting with
differences of approximately 0.1, 0.2, and 2 reported in the original work. For Dknown, the
differences are less pronounced.

Regarding the absolute values attained for the three performance metrics, we note that
the range of AUC-ROC and TDL values reported by the original authors is comparable with
the observations in this study. However, their reported AUC-PR values are substantially
larger compared to our findings. Their maximum AUC-PRs, reaching approximately 0.5,
demonstrate a two-fold improvement over the 0.25 observed in our findings.

Investigating when maximum performance is attained, our comparatively consistent
performance from n = 14 features onwards deviates from the original paper. Figures in
the original paper reveal that consistent performance was achieved at values of around
n = 10, though the AUC-PR of their model for Dknown further increased at n = 15, while
their TDL for Dfraud declined as the number of features grew past n = 9.

To elucidate the slight discrepancies in outcomes between the current investigation and
the original research, it is essential to consider our observations concerning the experimental
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Table 7.1: Performance of baseline model compared to performance in [19]

Dknown Dfraud

Features Study AUC-ROC AUC-PR TDL AUC-ROC AUC-PR TDL

Intrinsic This study 0.767 0.207 4.445 0.735 0.105 3.985
[19] 0.691 0.1214 2.85 0.662 0.0301 2.137

Score This study 0.617 0.084 1.810 0.618 0.058 1.903
[19] 0.634 0.0883 2.25 0.660 0.0402 2.812

Neighbourhood This study 0.684 0.123 3.344 0.668 0.117 2.617
[19] 0.681 0.1051 2.65 0.719 0.0481 3.262

All This study 0.803 0.255 4.839 0.777 0.153 4.044
[19] 0.725 0.1312 3.457 0.792 0.0810 3.824

setup employed by the original authors, as delineated in Section 5.4.4. In that section, we
underscored that their publication suggests the utilisation of an inappropriate oversampling
strategy, potentially leading to biased and excessively optimistic results. The proposition
that their cross-validation outcomes are overly optimistic gains further support from the
fact that, while the AUC-PRs demonstrate a twofold enhancement over the same metric in
our study (as delineated in this section), their performance on the test set is comparable
if not inferior to ours, as detailed in Section 7.1.2.

Evaluation on test set

Moving on to findings related to the evaluation on the test, Table 7.1 presents a comparison
between the classification performance of our baseline logistic regression model and the
results presented in the original work [19]. We observe that our baseline model consistently
outperformed theirs in classifying Dknown across all three metrics (AUC-ROC, AUC-PR,
and TDL) when considering intrinsic, neighbourhood, or all features. However, the original
work reported superior performance on Dknown when considering score features specifically.

Examining the classification of Dfraud instead, we achieved a higher AUC-ROC us-
ing intrinsic features (0.735 versus 0.662), whereas the original work’s authors achieved a
higher AUC-ROC using score features (0.660 versus 0.618), neighbourhood features (0.719
versus 0.668), and all features (0.792 versus 0.777). Shifting our focus to the AUC-PR, our
work delivered elevated performance compared to the model constructed by Óskarsdóttir
et al. [19] across all feature sets. These enhancements were especially prevalent for intrinsic
features (0.105 vs. 0.0301) and neighbourhood features (0.117 versus 0.0481), with smaller
differences for score features (0.058 versus 0.0402) and all features (0.153 vs 0.0810). Re-
garding TDL, we reported enhanced performance compared to the original study for both
Dknown and Dfraud considering intrinsic features and the set of all features. Conversely, the
original work’s authors demonstrated elevated TDL across both data sets when considering
score features or neighbourhood features exclusively.

Taking a different perspective, we note that both studies achieved the highest AUC-
ROC, AUC-PR, and TDL when utilising the combined set of all features. For Dknown,
both studies also share equivalent rankings for the second to fourth place (intrinsic, neigh-
bourhood, and score), whereas these rankings differ for Dfraud. Notably, whereas in our
study, the ranking of feature sets for Dfraud aligns with that for Dknown, the results in the
original work reveal the set of only neighbourhood features as the second-best performing
feature set across all metrics for Dfraud.

In conclusion, considering AUC-PR, we achieved consistently enhanced performance
compared to the work in Óskarsdóttir et al. [19] across all feature sets and for both Dknown

76



and Dfraud, except for the combination Dfraud with score features. No such general state-
ment can be made for the other metrics. Both studies achieved the best performance across
all metrics using the set of all features, but the rankings of subsequent feature sets differed.

One plausible explanation for the significantly enhanced AUC-PR in our study com-
pared to the original work is the higher percentage of fraudulent samples in our data set:
2.69% versus 1.8%. This 50% increase indicates a less imbalanced class distribution, po-
tentially influencing performance. Additionally, we note that the data used in our research
spans a smaller number of years—four years compared to six years. Considering the sug-
gested time-evolving nature of fraud [16, 30], this could imply that our classifier is less
influenced by historical ‘outdated’ information, potentially enhancing performance. How-
ever, we lean towards the smaller time range negatively impacting performance instead,
since our data encompasses significantly fewer claims than the few million claims reported
in the original paper, providing our model with less data to learn from. For confidentiality
reasons, we omit specifying the exact number of claims in our data set.

Model summaries

When comparing the model summaries from the original work to those presented in our
study, we identify certain similarities, such as consistently matching coefficient signs for
variables related to amounts, policyholder age, and claim age. However, an equal number
of inconsistencies emerge, leading us to the conclusion that details regarding the internal
workings of the models do not seamlessly generalise to ours.

For example, Óskarsdóttir et al. [19] reveal that their model for Dfraud, fitted on the
set of all features, is dominated by score features. In contrast, our model is predominantly
influenced by intrinsic features, aligning with earlier observations that underscored the
heightened importance of network features in the original work compared to ours. Addi-
tionally, while the original study reveals disparities in variable coefficient signs between
Dknown and Dfraud, these coefficients consistently match in our study. Moreover, we ob-
serve discrepancies in the number of significant variables reported between their model
and ours, possibly stemming from variations in how significance is interpreted in both
studies. Unlike the authors of the original work, who may have considered significance in
the context of stepwise forward and backward feature selection, we opted not to conduct
such feature selection, as delineated in Section 5.4.6. Consequently, we rely on significance
derived from the summaries of models constructed using all features within each feature
set instead.

Having compared the model summaries in this work to those presented by the original
authors, we assess whether the coefficients of the variables presented in our model sum-
maries align with our intuition and the hypotheses regarding Gini importance discussed
earlier in this section. To accomplish this, we take a holistic view of the model sum-
maries provided in Tables 6.5 to 6.12, leveraging the consistency in coefficients across the
individual summaries.

When examining variables linked to our hypotheses, we find that their coefficients align
with our earlier intuition. Firstly, we observe a negative coefficient for the age feature in
the model summaries related to the set of intrinsic or all features. In our earlier hypothesis,
we suggested that the importance of the policyholder age feature could be attributed to an
overrepresentation of certain age groups among investigated or confirmed fraudulent cases.
The negative coefficient in the model summaries implies that the overrepresented age group
might skew towards younger ages. Next, we observe positive coefficients for amount and
amount1, matching our hypothesis regarding increased interest in claims associated with
larger financial burdens. Then, we observe a negative coefficient for claimAge, which
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matches our previous hypothesis regarding past-posting: a larger disparity between the
contract’s begin date and the claim registration date decreases the predicted probability of
fraud. Lastly, the negative coefficient for numContracts matches our hypothesis regarding
perceived trustworthiness: a higher number of (historical) contracts a yields a smaller
predicted probability of fraud in our model.

Hypotheses regarding score and neighbourhood features were not explicitly presented
in this section, but the idea of homophily that is at the foundation of this research sug-
gests that indicators signifying fraud in the neighbourhood of a claim should increase that
claim’s fraud probability. The positive coefficients for scores0, n2.max and n2.ratioFraud
align with this proposed idea. However, we observe negative coefficients for score features
n1.max, n2.med, n2.q1 and neighbourhood feature n2.binFraud whereas, based on homo-
phily, one would expect these to increase the fraud score.

In addition to revealing coefficients that defy intuition, our model summaries also
indicate conflicting coefficients between similar features. For instance, while the positive
coefficient for n2.ratioFraud aligns with the idea of homophily, a positive coefficient is
also assigned to the opposite n2.ratioNonFraud feature. Similarly, features nClaims1 and
nClaims5, representing the same features over different time spans, exhibit coefficients
that do not align. Intuitively, one might anticipate a frequent claimer being considered
more suspicious and expect a positive coefficient, but this expectation does not hold for
nClaims5. A similar inconsistency is observed for sameSits1 and sameSits5, which also
depict the same characteristic but for different periods. However, we lack intuition for
the expected coefficients for these values, except through their suspected correlation to
nClaims1 and nClaims5.

In light of these findings, we repeat Óskarsdóttir et al. [19] in stating that the coefficient
estimates might be unreliable due to multicollinearity—the phenomenon where two or more
independent variables in a regression model are highly correlated, making it challenging to
isolate the individual effects of each variable on the dependent variable [147]. However, an
evaluation of multicollinearity was out-of-scope for this study.

Conclusion

In conclusion, we revisit RQ2 and summarise the generalisability of findings from the
original work [19]. Initially, we note that the intrinsic features with the highest Gini
importance in their original work align with those in our study. However, their results reveal
abundantly larger Gini importance for network (i.e., score and neighbourhood) features
compared to ours, indicating a potentially larger contribution of network features in their
model.

This observation is consistent with the sequential feature addition results: while both
studies achieved the best results with the inclusion of all features, the original work iden-
tified neighbourhood and score features as the top-performing feature sets, in contrast to
intrinsic features in our study. Furthermore, whereas our study showed enhanced per-
formance in classifying Dknown compared to Dfraud, the opposite held true in the original
work. A crucial limitation surrounding these findings is that the experimental setup in
the original work suggests their sequential feature addition results might be biased and
overly optimistic, which should be considered when interpreting their findings. This might
explain their two-fold increase in achieved AUC-PR compared to our results.

Moving on to model summaries, we again observe discrepancies between the model
summaries presented in the original paper and in this report. This suggests limited gen-
eralisability of these details, notwithstanding difficulties in model interpretation following
potential multicollinearity issues.
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Finally, considering the evaluation on the test set, a consistent observation is made that
the models using all features exhibited the best performance in both studies. However,
when ranking individual feature sets based on performance, discrepancies emerge, with
network features emphasised in the original work compared to our study. Overall, our
study consistently demonstrated enhanced AUC-PR compared to the existing study, while
differences in AUC-ROC and TDL are less uniform.

7.1.3 Impact of Adaptations

In Table 6.3, we presented the results of evaluating the adapted models on the test set.
When using all features, the results revealed slight differences in performance between
the baseline models and our adapted models, in favour of the adapted models. However,
these are insufficiently large to conclusively state that the adaptations present a valuable
contribution over the baseline model that was originally proposed by Óskarsdóttir et al.
[19].

To explain these observations, a first suggestion would be that the limited impact that
the adaptations have had on the performance of the all-features model might be partially
explained by the fact that the model adaptations are only propagated through the score
feature set and thus represented in the score feature set and the set of all features only.
Accordingly, they might be overshadowed by the large number of alternative features. If
this were the case, larger differences in performance should still be noted when consider-
ing models that use the score features only. For the shared resources model, this holds
when considering relative performance differences, although the absolute differences re-
main small. For Dknown, we observed a difference in AUC-PR and TDL of approximately
25% (0.105 vs 0.084) and 28% (2.321 versus 1.810), respectively. For Dfraud, the difference
in AUC-PR was approximately 12% (0.065 versus 0.058) and the difference in TDL was
approximately 22% (2.312 versus 1.903) instead. For the time-weighted model, both the
relative and absolute differences are significantly less convincing.

One hypothesis for the consistently negligible impact of time-weighting is related to
our experimental setup. As described in Section 5.5, we adopt a fraud decay constant that
gradually reduces the influence of a fraud occurrence to 50% over eight years. Our training
data encompasses three years only. As a result, the most historical fraudulent claim in our
data is given an influence of

e−
ln 0.5

365.25×8
×365.25×4 ≈ 0.707, (7.1)

representing approximately 70.7% of its full influence in the baseline model. This difference
in fraud influence might be insufficiently large to yield a substantial impact on the fraud
scores in the network.

An additional hypothesis would be that the proposed value of emphasising recent fraud
over historical fraud does not weigh up to the ‘loss’ of fraud information this introduces.
One of the major complexities in automatically detecting fraud is its uncommon nature,
i.e., there are few known fraudulent cases to learn from. Introducing time-weighting might,
to some extent, lead to a further effective decrease in the available information.

7.1.4 Fraud Expert Evaluations

In Section 6.3.2, we presented the results of different combinations of models and feature
sets in recalling interesting, previously unknown (i.e., unlabelled) claims, based on fraud ex-
perts’ evaluations of the top twenty claims from each model that were assigned the highest
probability of fraud. It was discovered that the score and neighbourhood network features
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produced the highest precision-at-k (0.800), while classification based solely on intrinsic
features produced the lowest precision-at-k (0.550). Comparing the different models, we
observe that the time-weighted model consistently yields the best achieved performance,
albeit together with or with only a slight edge over the baseline model.

The superior performance achieved by applying network features (score or neighbour-
hood) over intrinsic features contradicts our previous findings, which suggested that in-
trinsic features increased performance instead. This could imply that intrinsic character-
istics are particularly good at identifying claims that have previously been discovered by
existing fraud detection systems, whereas score and neighbourhood features are better at
recalling further fraud. It should be emphasised, however, that the classification of claims
by fraud experts was based on whether the claim was sufficiently interesting for them
to want the claim reported for further study, rather than whether the claim had been
discovered fraudulent. Furthermore, as explained in Section 7.3.3, the robustness of the
experimental setting used for the fraud expert evaluations was limited.

7.2 Re-Evaluating Our Hypotheses

Comparing the hypotheses introduced in Section 1.3 to our findings presented in the pre-
vious section (Section 7.1), we make a few observations.

For RQ1, we hypothesised that empirical evidence supporting the homophily assump-
tion is also present in our data set. Section 7.1.1 revealed that our findings are consistent
with this hypothesis when considering second-order neighbourhoods of claims. However,
no such evidence was found when considering fourth-order neighbourhoods instead.

Considering RQ2 instead, we hypothesised that the original work’s [19] main findings
generalise to the data set used in this. Indeed, Section 7.1.2 showed that both studies report
consistent findings in terms of network features enhancing the classification performance
of considered fraud detection models. More granular results showed inconsistencies with
differences pertaining to, for example, the importance of individual feature sets. This
aligns with our prior expectations.

Focusing on RQ3, we hypothesised that both adaptations yield a positive impact on
the classification performance of the model. This hypothesis is not corroborated by our
findings in Section 7.1.3. In terms of time-weighted fraud influence, our approach yielded
no substantial impact on classification performance for any of the feature sets, whether
considering AUC-ROC, AUC-PR, or TDL. Focusing on shared resources instead, posit-
ive differences were only observed in the classification performance achieved using score
features.

For RQ3, our hypothesis was that the adapted models would show enhanced perform-
ance compared to the baseline model. Considering the time-weighted model, this held
true when considering the set of all features only. Focusing on the shared resources model
instead, the presented results showed consistently diminished performance when compared
to the baseline.

7.3 Limitations

Having elucidated the primary findings of our study concerning the research questions, we
outline several limitations that might have influenced the validity of the reported results.
Initially, Section 7.3.1 addresses inconsistencies in our replication of the existing work. Sub-
sequently, Section 7.3.2 illuminates (potential) inconsistencies within our data set. Then,
Section 7.3.3 assesses the robustness of our results. Following that, Section 7.3.4 scrutinises
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potential limitations in our implementation and evaluation of the adapted models. Lastly,
Section 7.3.5 highlights major limitations in the generalisability of the results on the test
set to the practical deployment of the model.

7.3.1 Replication Inconsistencies

Despite our best efforts in replicating the data set and models employed in the original
work, the original paper provided insufficient details to ensure full confidence that our
models and data set match their exact characteristics. For example, we have had to make
assumptions regarding the value of the lastClaim feature when there was no previous
claim (Section 5.4.4) and regarding model parameters for both the random forest classi-
fier (Section 5.4.5) and the logistic regression classifier (Section 5.4.6). This uncertainty
limits the validity of our findings regarding the generalisation of their results, presented in
Section 7.1.2.

A further discrepancy between the two studies might involve how fraud information
was used in the experimental setup. As delineated in Section 5.4.1, we adopted the same
approach as Óskarsdóttir et al. [19] by constructing a query vector that excluded inform-
ation on fraud pertaining to claims registered in the last year that is covered by the data
set. However, the original work did not specify whether this information was also excluded
during the extraction of network and neighbourhood features. In this study, we considered
all information during the extraction of score and neighbourhood, which might have had
some impact on the achieved results due to a minor form of data leakage. For example,
consider a situation where the feature n2.binFraud for a claim in the test set holds true
because a claim in their second-order neighbourhood was fraudulent, whereas this claim
was only investigated because the claim in the test set was proven fraudulent before. In a
practical setting, this type of situation would not occur.

In addition to these unknown differences between the models and data sets employed
in the two studies, we also established some explicit differences between the two works.
These discrepancies will have further limited the validity of the comparison between the two
works, especially when considering detailed results instead of taking a broader perspective.
They include our omission of the police intrinsic feature (Section 4.1.1), our use and
corresponding representation of one-hot encoded features (Section 5.4.4), and the lack of
sequential feature selection employed for the construction of the logistic regression classifier
that was used to classify the test set (Section 5.4.6). The latter might have especially
contributed to diverging results regarding the evaluation on the test set and the model
summaries, as previously discussed in Section 7.1.2. We also reiterate a discrepancy in the
total number of years spanned by the employed data sets. Their potential impact on the
results was previously delineated in Section 7.1.2.

7.3.2 Data Inconsistencies

In addition to inconsistencies in the replication of the original work, there might have also
been inconsistencies in the data set employed in this study that were not uncovered during
our analyses.

One known inconsistency is related to the amalgamation of parties in the bipartite
network based on the matching of postal codes and names, as detailed in Section 4.3.1.
This merging process was not applied during the construction of the intrinsic feature set,
suggesting the computed values for intrinsic features related to the policyholder, such as
their number of claims in the past years or their number of contracts, may not always be
accurate. Other potential errors in the data set might have also gone unnoticed in our
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research. These might involve errors in the raw data used to compile the data set, or
inaccuracies in the sometimes intricate transformations from raw data into the specified
features that were not uncovered during our evaluations on correctness.

7.3.3 Robustness of Results

In Section 6.2, we detailed the hyper-parameters that produced optimal performance across
all parameters considered in a grid search and directed readers to Appendix A for insights
into the results attained by alternative configurations. An examination of the results
presented in Appendix A reveals that, while the configurations in Table 6.2 indeed yielded
the best mean AUC-PR, the mean results for each set of hyper-parameters were associ-
ated with substantial standard deviations. For instance, the mean AUC-PR of the worst-
performing model on the Dfraud data set with all features falls within the range of the
mean AUC-PR plus or minus the corresponding standard deviation. These large standard
deviations suggest potential limitations in the robustness of the individual models. Con-
sequently, repetitions of the same type of grid search might provide different results with
varying Gini importance of individual features. Unfortunately, Óskarsdóttir et al. [19] did
not present their grid search results. As a result, we cannot establish if similar variability
existed in their study.

Our study has also revealed potential limitations regarding the methodology in the
original work [19] in terms of feature importance, which was replicated in this study. We
have assumed that the importance evaluation in the original work was conducted based on
the features’ Gini importance. As delineated in Section 4.3.6, it is argued that the Gini
importance can yield misleading results. This might have introduced bias in the findings
presented in both this and the original work, limiting their value.

A similar limitation relates to the issue of multicollinearity, previously delineated in
Section 7.1.2 and also acknowledged in the original work. This factor may have introduced
complexities in correctly interpreting the coefficients in the logistic regression models, po-
tentially compromising the validity of the associated findings.

Moreover, a significant limitation affecting all studies on fraud detection is that the
evaluations of fraud detection models are often based on data sets where ground truth labels
are known for only a small fraction of claims. There is a common implicit assumption that
any claim not labelled as fraudulent is legitimate, an assumption that is also at the core of
our classification of Dfraud. However, for the majority of the claims in these data sets, it is
unknown whether they involve fraud or not, as they have not undergone prior investigation.
We attempted to address this issue through fraud expert evaluations of previously unknown
(i.e., unlabelled) claims. Nonetheless, due to regulatory constraints and its labour-intensive
nature, this evaluation was restricted in its contribution to resolving this matter.

More specifically, the corresponding findings were derived from an evaluation of a small
sample of only twenty claims per model, limiting the generalisability of the results. Ad-
ditionally, each claim was evaluated by a single expert only, disallowing an assessment of
intra-rater reliability Lastly, we reiterate that fraud experts’ evaluations involved classific-
ation based on suspicious or anomalous characteristics, rather than proven fraud.

7.3.4 Implementation and Evaluation of Adapted Models

Concerning our implementation of the adapted models, Section 7.1.3 already reported that
the influence of time-weighting might have been too small due to the relatively short period
covered by our data set compared to the chosen decay constant. However, there are also
potential limitations in our implementation of the shared resources.
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Unlike the hyper-parameters used in the equations adopted for BiRank (Section 5.4.2),
the hyper-parameters employed in the equation that is used to iteratively update p in
TriRank sum to 2 (Section 5.6). In this study, we have observed that this configuration
yields convergence and produces fraud scores that align with intuition. However, the sum of
hyper-parameters resembles a deviation from the requirement set for hyper-parameters in
BiRank, which should sum to one [29]. Consequently, the theoretical proof of convergence
might not immediately extend to the approach adopted in this work, and situations deviant
from the ones considered might yield undesired results.

7.3.5 Generalisation of Results to Practice

Regarding the applicability of the findings to the practical application of the model, a signi-
ficant limitation stems from a flaw identified in the original experimental design, which has
persisted in our own experimental setup. Notably, as outlined in Section 5.4.4, the experi-
mental setup involves constructing an analytical model data set by combining all labelled
claims with a random sample of 20,000 unlabelled claims. This data set is then employed
to form both training and testing sets. Consequently, the class distribution in the test
set fails to accurately mirror the class distribution observed in practice, which suggests
that the reported performance metrics may not accurately reflect the model’s perform-
ance in real-world applications. Therefore, although relative comparisons of the reported
AUC-ROC, AUC-PR, and TDL can be meaningful, the absolute values do not accurately
represent the true performance metrics that would be achieved following deployment of
the model.

7.4 Future Work

Acknowledging the limitations in the preceding section, we first present directions for future
research that focus on addressing some of these issues. Then, we propose several alternative
suggestions for future research that shall inspire readers to conduct further exploration into
the direction of automobile insurance fraud detection.

7.4.1 Suggestions for Addressing the Limitations

To address some of the limitations of this study, we first propose adopting an altern-
ative approach to establishing feature importance, such as the permutation importance
approach detailed in Section 2.3.2. This shall enhance the validity of the importance eval-
uation, facilitating a deeper understanding of the features that are likely indicators of
fraud. The implementation of this alternative feature importance ranking approach should
be relatively straightforward given existing implementations in, for example, the popular
scikit-learn Python library that has been extensively used in this study. However, its use
requires the construction of a validation data set, as delineated in Section 4.3.6, and thus
a change in the experimental setup.

In conjunction with the previous suggestion, we also propose analysing the multicol-
linearity of the included features using the variable importance factor (VIF) [147], which
can indicate whether a variable is included in a linear dependency. Understanding the
presence of multicollinearity in the data set allows for the implementation of appropriate
measures to address the issue, subsequently enhancing the interpretability of coefficients
in logistic regression models. In turn, this yields a positive impact on the interpretability
of classifications made by the corresponding models.
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Additionally, we propose suggestions that shall enhance the robustness of findings con-
cerning the adapted models. Regarding an evaluation of the impact of introducing time-
weighted fraud influence, we suggest employing a data set spanning a more extensive
timeframe. This shall increase its influence on the fraud scores in the network, yielding
better insight into the value of this adaptation. Considering shared resources instead, we
propose to establish theoretical proof that the chosen parameters for the TriRank model
yield expected results or to conduct more extensive evaluations based on a larger num-
ber of sample network configurations. This shall aid in determining whether the chosen
approach is generally suitable or not. Taking a broader perspective and considering both
adaptations, we propose making adjustments to the considered features to more explicitly
incorporate the adaptations. By doing so, the adaptations shall have a more significant
impact on the model, which shall more clearly present whether they comprise a valuable
contribution over the baseline model that was considered.

Lastly, we suggest practitioners who are interested in the practical deployment of this
model to first evaluate its performance on a test set whose class distribution is represent-
ative of the class distribution observed in the insurers’ full set of claims.

7.4.2 Alternative Suggestions

In addition to suggestions that address some of the mentioned limitations in the current
study, we also propose alternative directions that might prove interesting.

One direction would be to conduct an extensive evaluation of the impact of alternative
hyper-parameter configurations on the performance of the model. As highlighted by Bene-
dek, Ciumas and Nagy [31] and recognised in our systematic literature review, this type
of hyper-parameter optimisation is often omitted from studies on automobile insurance
fraud detection. Meanwhile, in the context of this study, for example, it can be expected
that a change in hyper-parameters employed in the ranking algorithms yields a substantial
impact on the final fraud scores assigned to nodes in the network.

An alternative direction would be to explore the impact of adopting alternative res-
ampling methods on the performance, in line with an earlier recommendation in the original
work [19]. In this study, we used SMOTE to construct synthetic samples that increase the
percentage of minority class samples in the training data set from approximately 2.69%
and 4.06% to 15% (Section 5.4.4), such that the majority of the minority class samples on
which the classifiers were trained were synthetic. This prompts the idea that the approach
taken to construct these synthetic samples might have a large influence on the classifier
and as such, an exploration of alternative resampling methods might be an interesting
direction for future research.

Last, in line with the recommendations in our literature review, we propose considering
graph representation learning approaches for automobile insurance fraud detection. For
that purpose, inspiration can be taken from an existing literature review on graph neural
networks and their applications in other domains [148]. By adopting a graph representation
learning approach, the need to conduct manual network feature engineering is diminished.
However, the limited interpretability of graph neural network approaches when compared
to the approaches taken in this study might yield concerns for its practical deployment.

7.5 Conclusion

In this chapter, we have presented an interpretation of the study’s results concerning the
research questions. Additionally, we presented a discussion regarding the limitations that
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warrant consideration when evaluating these results, along with suggestions for future
research aimed at either addressing some of the limitations identified in this study or
contributing valuable insights in alternative ways.

In the next chapter, we conclude this report by reiterating the main findings of both
this study and the systematic literature review that preceded this.
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Chapter 8

Conclusion

Throughout this work, we have been exploring the domain of automobile insurance fraud
detection by focusing on data mining-based practices that assist fraud experts in choosing
the right claims to attend to. This process was initiated by conducting a systematic liter-
ature review of recent literature to gain insight into the current state-of-the-art, followed
by practical research into one direction specifically.

Our systematic literature review was exclusively focused on the data sets, detection
methods, and resampling methods employed in recent studies on automobile insurance
fraud detection. Its findings were summarised in Chapter 3. Through an analysis of fifty
academic articles published between January 2019 and March 2023, it corroborated earlier
notions that suggested severe limitations in publicly available automobile insurance fraud
data sets to conduct research on, and revealed widespread use of resampling methods to
address the issue of imbalanced class distributions in insurance fraud data sets. In terms of
detection methods, the literature review showed a predominant focus on the detection of
insurance claims fraud using supervised learning methods, although unsupervised methods
were also considered. Reportedly novel types of detection approaches that were proposed
include methods that utilise unstructured textual data and the use of graph-based tech-
niques, though a variety of other types of methods was also evaluated.

In this practical part of our research, we took inspiration from an existing article [19] on
a graph-based method evaluated in our literature review. This article suggested homophily
in their bipartite network of claims and associated parties, proposed leveraging BiRank to
compute fraud scores within this network, and reported enhanced claims classification
performance by using features extracted from this network. The focus of our research
was on first analysing the generalisability of the article’s findings by constructing a mostly
equivalent model and data set, followed by exploring the value of two distinct adaptations
to their proposed model. Our research also sought to address the prevalent issue that
uninvestigated claims cannot be confidently assigned the ‘legitimate’ status. To tackle this,
we enlisted fraud experts to evaluate suspicion in previously unlabelled claims identified
as suspicious by our fraud detection models.

Considering generalisability, our results in Chapter 6 matched our hypothesis in Sec-
tion 1.3 that the original authors’ main findings generalise to a different real insurance data
set. This concerns suggested evidence for homophily in the bipartite network of claims and
parties, presented in Section 7.1.1, and enhanced performance when also considering net-
work features during supervised classification, as discussed in Section 7.1.2. Concerning
more granular findings instead, inconsistencies emerged. These encompass variation in the
importance of both feature sets and individual features, elaborated upon in Section 7.1.2.

Turning attention to proposed adaptations, the findings outlined in Section 7.1.3 re-
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vealed that our initial hypothesis, suggesting that both changes would enhance classific-
ation performance, was not supported by our results. To elaborate further, our imple-
mentation of time-weighted fraud influence yielded negligible impact on the classification
performance of the model. Extending the claims–parties network with shared resources
yielded a marginally more positive impact, yet still insufficient to conclusively establish its
worth.

In the context of fraud experts’ evaluation of unlabelled claims, our results again con-
tradicted our hypothesis that both adaptations would enhance performance. Disregarding
major limitations in the robustness of the evaluation, our findings in Section 7.1.4 sugges-
ted that while marginally better performance was observed for the time-weighted model,
the shared resources model performed worse than the baseline.

In our scrutiny of the existing paper, several limitations in the robustness of their em-
ployed methodology and experimental setup surfaced, influencing the validity of their res-
ults. These limitations encompassed inappropriate ratios and the absence of significance
tests for establishing homophily in their data (Section 7.1.1), the improper use of over-
sampling before ten-fold cross validation (Section 5.4.4), potential bias in the employed
feature importance ranking mechanism (Section 4.3.6) and interpretation (Section 7.1.2),
and limited generalisability of their test results to the practical deployment of the model
(Section 7.3.5). The former two limitations were explicitly addressed in this study through
the adoption of alternative strategies. However, the latter two persisted in this research,
albeit explicitly acknowledged.

Further limitations in our study stem from imperfections in our replication of the
original model due to missing details in the original work or resource constraints, as outlined
in Section 7.3.1. Consequently, inconsistencies in results may not be attributed to the
data set alone, but also to model inconsistencies. Additional limitations involve potential
inconsistencies in our data set, as discussed in Section 7.3.2. Moreover, limitations in
the evaluation of the proposed adaptations prevent us from drawing definitive conclusions
regarding their value, awaiting further research instead, as mentioned in Section 7.3.4.

Based on this practical research, a primary recommendation for future work is to ad-
dress the limitations in this and the preceding research by exploring alternative feature im-
portance evaluations, tackling multicollinearity in the data set, and evaluating the model’s
performance on a test set whose class distribution resembles the one observed in a prac-
tical setting. This would provide a more profound understanding of the proposed model’s
value to insurers, greatly enhancing the practical contribution of both this research and
the study based upon which this research was founded. Subsequent steps could encompass
investigating the impact of time-weighted fraud influence using data spanning a larger
timeframe, exploring the generalisability and theoretical validity of the proposed shared
resources model, and evaluating the effect of different hyperparameters on the models’
classification performance. Alternatively, one could explore a different type of graph-based
approach by considering graph representation learning techniques for automobile insurance
fraud detection. This eliminates the need for manual feature engineering, albeit sacrificing
some interpretability.
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Appendix A

Grid Search Results

Table A.1: Grid search results for Dknown using intrinsic features

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 7 0.2815 0.0573 0.7927 0.0319 4.7800 0.6230
900 5 0.2811 0.0530 0.7969 0.0307 4.8472 0.4749
500 7 0.2807 0.0588 0.7921 0.0298 4.7627 0.6007
700 5 0.2807 0.0545 0.7963 0.0316 4.8302 0.4813
700 7 0.2804 0.0569 0.7926 0.0305 4.7802 0.6553
900 9 0.2801 0.0515 0.7922 0.0341 4.7125 0.5740
700 9 0.2801 0.0519 0.7925 0.0335 4.7122 0.5863
300 5 0.2799 0.0563 0.7938 0.0323 4.7969 0.6276
500 9 0.2797 0.0518 0.7917 0.0327 4.6447 0.6276
500 5 0.2794 0.0568 0.7947 0.0329 4.7966 0.4650
300 7 0.2779 0.0575 0.7906 0.0306 4.6958 0.6060
900 11 0.2773 0.0529 0.7893 0.0329 4.7450 0.6014
300 9 0.2772 0.0531 0.7899 0.0337 4.7461 0.5306
500 15 0.2764 0.0527 0.7879 0.0322 4.7783 0.5874
700 11 0.2763 0.0525 0.7888 0.0324 4.7794 0.5298
700 17 0.2756 0.0539 0.7854 0.0303 4.8622 0.5664
900 17 0.2756 0.0545 0.7859 0.0302 4.7619 0.5500
900 15 0.2754 0.0524 0.7872 0.0313 4.7278 0.5979
500 17 0.2753 0.0549 0.7856 0.0303 4.8289 0.6183
900 19 0.2753 0.0542 0.7839 0.0334 4.7947 0.6024
500 11 0.2752 0.0536 0.7873 0.0315 4.7789 0.5608
500 19 0.2751 0.0549 0.7833 0.0335 4.7447 0.6368
300 15 0.2751 0.0514 0.7869 0.0330 4.6944 0.5999
900 13 0.2750 0.0535 0.7898 0.0320 4.8463 0.5906
300 13 0.2749 0.0522 0.7873 0.0321 4.8805 0.5019
100 9 0.2749 0.0512 0.7863 0.0329 4.8635 0.5261
700 13 0.2748 0.0533 0.7887 0.0330 4.7963 0.6013
300 19 0.2747 0.0537 0.7828 0.0344 4.8122 0.6029
700 15 0.2747 0.0519 0.7875 0.0315 4.7450 0.6254
500 13 0.2742 0.0530 0.7884 0.0328 4.8130 0.5701
700 19 0.2742 0.0539 0.7834 0.0337 4.7788 0.5252
100 19 0.2741 0.0520 0.7810 0.0312 4.7947 0.6287
100 5 0.2732 0.0515 0.7867 0.0316 4.8141 0.5231
300 17 0.2732 0.0556 0.7846 0.0306 4.8294 0.5501
700 3 0.2724 0.0530 0.7960 0.0316 4.5609 0.5111
300 11 0.2723 0.0533 0.7875 0.0326 4.7622 0.5582
900 3 0.2717 0.0531 0.7959 0.0313 4.5778 0.4970
500 3 0.2716 0.0536 0.7967 0.0310 4.5447 0.4309
100 13 0.2715 0.0535 0.7815 0.0329 4.7452 0.5181

100



Table A.1: Grid search results for Dknown, limited to intrinsic features (cont.)

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 21 0.2709 0.0537 0.7835 0.0310 4.7441 0.6639
300 21 0.2708 0.0537 0.7814 0.0353 4.7105 0.7142
700 21 0.2708 0.0536 0.7836 0.0317 4.7105 0.6817
500 21 0.2693 0.0538 0.7822 0.0337 4.7444 0.6908
300 3 0.2693 0.0527 0.7951 0.0321 4.5109 0.5073
100 15 0.2683 0.0514 0.7807 0.0326 4.7280 0.5796
100 11 0.2679 0.0538 0.7819 0.0313 4.7794 0.6366
900 23 0.2678 0.0547 0.7822 0.0307 4.7275 0.6277
100 17 0.2671 0.0557 0.7814 0.0292 4.7280 0.4843
100 7 0.2667 0.0622 0.7839 0.0286 4.7458 0.5701
100 21 0.2665 0.0582 0.7753 0.0329 4.7275 0.6844
700 23 0.2662 0.0531 0.7803 0.0303 4.6772 0.6164
300 23 0.2650 0.0555 0.7765 0.0309 4.5931 0.6496
500 23 0.2647 0.0537 0.7785 0.0316 4.6606 0.6460
100 3 0.2609 0.0567 0.7870 0.0355 4.4939 0.4848
100 23 0.2607 0.0549 0.7709 0.0336 4.5089 0.6965
900 1 0.2486 0.0533 0.7892 0.0339 4.4603 0.5085
700 1 0.2473 0.0524 0.7899 0.0334 4.5445 0.5062
500 1 0.2453 0.0495 0.7893 0.0332 4.5614 0.4929
300 1 0.2432 0.0504 0.7884 0.0326 4.4778 0.5488
100 1 0.2408 0.0551 0.7840 0.0313 4.4600 0.3934

Table A.2: Grid search results for Dknown using neighbourhood features

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 5 0.1797 0.0245 0.7830 0.0282 3.7530 0.6563
900 3 0.1781 0.0264 0.7852 0.0278 3.8874 0.7110
700 3 0.1776 0.0274 0.7837 0.0280 3.8871 0.7445
500 5 0.1774 0.0244 0.7811 0.0300 3.7866 0.6990
700 5 0.1774 0.0241 0.7812 0.0291 3.7524 0.6312
300 5 0.1765 0.0240 0.7786 0.0307 3.8035 0.6657
100 5 0.1762 0.0256 0.7766 0.0324 3.7355 0.6725
500 3 0.1762 0.0266 0.7826 0.0276 3.8701 0.6828
300 3 0.1738 0.0249 0.7809 0.0288 3.8868 0.6242
100 3 0.1715 0.0263 0.7734 0.0313 3.8193 0.6275
900 1 0.1664 0.0251 0.7777 0.0270 3.7857 0.6780
700 1 0.1654 0.0248 0.7768 0.0259 3.8024 0.6369
500 1 0.1647 0.0254 0.7760 0.0264 3.8196 0.6437
300 1 0.1636 0.0257 0.7721 0.0282 3.8196 0.6347
100 1 0.1628 0.0300 0.7636 0.0308 3.7183 0.5570
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Table A.3: Grid search results for Dknown using score features

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 1 0.1003 0.0198 0.6846 0.0183 2.3884 0.3093
700 3 0.1001 0.0201 0.6848 0.0188 2.1197 0.5616
100 3 0.1001 0.0222 0.6785 0.0197 2.4054 0.5933
700 1 0.0998 0.0200 0.6835 0.0182 2.3213 0.4059
500 1 0.0996 0.0201 0.6825 0.0175 2.1538 0.3074
300 3 0.0995 0.0196 0.6836 0.0176 2.2035 0.5031
900 3 0.0994 0.0201 0.6843 0.0194 2.1199 0.5412
500 3 0.0994 0.0199 0.6841 0.0191 2.0530 0.3671
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Table A.4: Grid search results for Dknown using all features

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

700 9 0.3028 0.0560 0.8399 0.0173 5.4350 0.4333
900 11 0.3025 0.0562 0.8381 0.0172 5.4017 0.4480
300 9 0.3022 0.0566 0.8374 0.0196 5.3175 0.4139
500 9 0.3016 0.0561 0.8393 0.0175 5.3842 0.4287
900 9 0.3016 0.0548 0.8395 0.0174 5.3845 0.4515
900 7 0.3009 0.0541 0.8423 0.0173 5.4697 0.5291
700 11 0.3009 0.0571 0.8377 0.0174 5.3847 0.4172
500 7 0.3005 0.0562 0.8424 0.0165 5.3522 0.5242
500 11 0.3004 0.0572 0.8368 0.0176 5.4186 0.4511
700 7 0.3003 0.0562 0.8426 0.0172 5.4864 0.5055
500 5 0.2992 0.0551 0.8411 0.0176 5.3678 0.4885
700 15 0.2991 0.0571 0.8366 0.0202 5.3167 0.4234
300 11 0.2989 0.0557 0.8345 0.0192 5.4011 0.4712
700 5 0.2986 0.0548 0.8419 0.0179 5.3856 0.4591
900 13 0.2976 0.0574 0.8363 0.0183 5.1826 0.4061
500 15 0.2975 0.0562 0.8349 0.0204 5.3173 0.4303
900 5 0.2974 0.0551 0.8427 0.0175 5.4525 0.4928
900 15 0.2973 0.0564 0.8362 0.0200 5.3003 0.4486
700 13 0.2967 0.0562 0.8357 0.0180 5.2165 0.3593
300 5 0.2964 0.0570 0.8403 0.0186 5.3850 0.5284
300 7 0.2962 0.0537 0.8401 0.0159 5.3522 0.5077
700 19 0.2958 0.0540 0.8326 0.0204 5.1993 0.4288
900 19 0.2958 0.0539 0.8330 0.0205 5.2329 0.4786
500 13 0.2957 0.0566 0.8357 0.0181 5.1823 0.4305
500 19 0.2957 0.0547 0.8313 0.0203 5.2664 0.3600
100 9 0.2957 0.0583 0.8299 0.0189 5.2334 0.5063
300 15 0.2954 0.0580 0.8344 0.0227 5.3339 0.4762
900 17 0.2953 0.0541 0.8337 0.0202 5.2837 0.4499
300 19 0.2944 0.0524 0.8307 0.0203 5.2162 0.4404
700 17 0.2941 0.0534 0.8334 0.0211 5.2498 0.4698
300 13 0.2937 0.0542 0.8372 0.0193 5.2670 0.3587
500 17 0.2933 0.0550 0.8322 0.0221 5.2673 0.5185
900 23 0.2932 0.0538 0.8314 0.0225 5.2168 0.5884
700 21 0.2931 0.0505 0.8313 0.0219 5.2331 0.4819
900 21 0.2929 0.0509 0.8323 0.0215 5.2498 0.4575
700 23 0.2927 0.0545 0.8321 0.0226 5.1496 0.5809
500 21 0.2921 0.0509 0.8305 0.0209 5.1993 0.4358
300 17 0.2917 0.0544 0.8305 0.0225 5.1323 0.4564
500 23 0.2917 0.0542 0.8315 0.0227 5.1157 0.5740
700 25 0.2909 0.0514 0.8307 0.0193 5.1826 0.5581
900 25 0.2907 0.0513 0.8314 0.0198 5.1823 0.5562
300 21 0.2902 0.0508 0.8301 0.0206 5.1484 0.3500
500 25 0.2900 0.0517 0.8307 0.0195 5.1154 0.5463
300 25 0.2899 0.0500 0.8299 0.0194 5.0985 0.5883
300 23 0.2897 0.0507 0.8307 0.0218 5.2329 0.5192
700 27 0.2897 0.0525 0.8303 0.0211 5.1154 0.5809
900 27 0.2895 0.0522 0.8308 0.0206 5.1326 0.5597
100 11 0.2888 0.0551 0.8316 0.0173 5.2167 0.3910
700 33 0.2878 0.0509 0.8284 0.0194 5.1157 0.6081
900 3 0.2876 0.0524 0.8436 0.0159 5.3189 0.5665
500 27 0.2876 0.0520 0.8289 0.0214 5.1162 0.5783
500 3 0.2875 0.0528 0.8427 0.0159 5.2511 0.4618
100 15 0.2873 0.0617 0.8299 0.0260 5.1826 0.3447
700 3 0.2871 0.0530 0.8434 0.0163 5.2850 0.5234
900 29 0.2869 0.0488 0.8305 0.0211 5.1826 0.5643
900 31 0.2868 0.0517 0.8282 0.0236 4.9968 0.5895
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Table A.4: Grid search results for Dknown with all features (cont.)

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

300 29 0.2867 0.0496 0.8294 0.0224 5.1323 0.5373
700 31 0.2865 0.0518 0.8283 0.0244 4.9632 0.6188
100 21 0.2865 0.0513 0.8276 0.0220 5.0313 0.4794
900 33 0.2863 0.0510 0.8289 0.0204 5.0987 0.5774
500 29 0.2862 0.0487 0.8298 0.0217 5.1651 0.5054
700 29 0.2860 0.0481 0.8308 0.0218 5.1823 0.5715
500 33 0.2856 0.0513 0.8282 0.0206 5.1329 0.5054
300 3 0.2855 0.0537 0.8412 0.0150 5.2173 0.5018
300 27 0.2854 0.0497 0.8280 0.0228 5.1334 0.6285
100 29 0.2854 0.0516 0.8279 0.0247 5.1660 0.6101
100 7 0.2849 0.0555 0.8291 0.0167 5.1331 0.5289
300 31 0.2849 0.0520 0.8259 0.0242 4.9966 0.5520
100 17 0.2848 0.0549 0.8229 0.0199 5.0321 0.4352
700 35 0.2845 0.0510 0.8264 0.0208 5.0310 0.5846
500 31 0.2845 0.0512 0.8283 0.0251 4.9463 0.5498
100 5 0.2844 0.0576 0.8305 0.0193 5.0320 0.5333
500 35 0.2843 0.0506 0.8263 0.0205 5.0141 0.6141
100 13 0.2842 0.0571 0.8299 0.0221 5.1162 0.4510
300 33 0.2837 0.0503 0.8278 0.0201 5.1323 0.5001
900 35 0.2837 0.0501 0.8266 0.0208 5.0477 0.5769
100 19 0.2831 0.0431 0.8295 0.0224 5.0981 0.3894
100 25 0.2830 0.0533 0.8253 0.0177 5.0985 0.5110
100 3 0.2829 0.0601 0.8325 0.0161 5.1837 0.4644
100 31 0.2827 0.0522 0.8185 0.0251 4.9799 0.5838
300 35 0.2825 0.0493 0.8262 0.0206 5.0643 0.5210
100 35 0.2813 0.0470 0.8234 0.0195 5.0818 0.5815
100 27 0.2793 0.0491 0.8221 0.0232 5.1337 0.5976
100 23 0.2784 0.0485 0.8246 0.0216 5.0151 0.4783
100 33 0.2770 0.0458 0.8234 0.0211 5.0479 0.5634
700 1 0.2592 0.0510 0.8338 0.0158 4.7630 0.5281
500 1 0.2590 0.0526 0.8332 0.0167 4.7127 0.5087
900 1 0.2586 0.0525 0.8342 0.0159 4.8305 0.6192
300 1 0.2559 0.0511 0.8303 0.0151 4.7291 0.4416
100 1 0.2450 0.0487 0.8197 0.0159 4.7466 0.6262

Table A.5: Grid search results for Dfraud using intrinsic features

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 5 0.1550 0.0465 0.7698 0.0306 4.2754 0.9531
900 7 0.1546 0.0466 0.7664 0.0342 4.2486 0.7971
700 5 0.1544 0.0462 0.7702 0.0317 4.2767 0.9167
500 7 0.1543 0.0476 0.7647 0.0369 4.2479 0.7872
300 7 0.1536 0.0467 0.7619 0.0384 4.2492 0.8474
700 7 0.1533 0.0463 0.7655 0.0345 4.2479 0.8629
500 5 0.1533 0.0462 0.7691 0.0320 4.1736 0.9475
700 3 0.1529 0.0466 0.7713 0.0308 4.2736 0.9565
300 5 0.1527 0.0475 0.7677 0.0362 4.1979 0.7863
900 3 0.1527 0.0471 0.7720 0.0314 4.3498 0.9128
300 3 0.1526 0.0450 0.7641 0.0302 4.3517 0.8389
900 9 0.1524 0.0454 0.7666 0.0325 4.0967 0.8897
500 3 0.1523 0.0454 0.7699 0.0327 4.2992 0.9270
700 1 0.1519 0.0492 0.7710 0.0306 4.2973 0.8590
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Table A.5: Grid search results for Dfraud with intrinsic features (cont.)

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 11 0.1514 0.0439 0.7593 0.0369 4.1217 0.8735
500 9 0.1513 0.0461 0.7653 0.0338 4.0955 0.8484
700 9 0.1511 0.0449 0.7662 0.0336 4.0455 0.9653
900 15 0.1505 0.0475 0.7599 0.0364 4.0955 0.8320
100 7 0.1503 0.0488 0.7526 0.0404 4.0705 0.9827
900 1 0.1499 0.0487 0.7718 0.0303 4.2717 0.8531
700 17 0.1496 0.0430 0.7537 0.0374 4.0711 0.7833
500 1 0.1493 0.0481 0.7710 0.0306 4.1961 0.7645
700 11 0.1493 0.0428 0.7586 0.0357 3.9705 0.7757
300 11 0.1492 0.0448 0.7550 0.0363 3.9698 0.8074
300 9 0.1491 0.0460 0.7656 0.0332 4.0948 0.7701
300 15 0.1489 0.0443 0.7615 0.0384 4.1211 0.8251
900 13 0.1483 0.0456 0.7595 0.0347 4.0717 0.9056
100 13 0.1483 0.0451 0.7544 0.0403 4.0455 0.8724
500 17 0.1482 0.0422 0.7534 0.0377 4.0448 0.7319
700 15 0.1482 0.0455 0.7611 0.0363 3.9942 0.7582
900 17 0.1482 0.0445 0.7541 0.0392 4.0705 0.8581
300 17 0.1479 0.0445 0.7499 0.0392 4.0198 0.8366
500 11 0.1479 0.0455 0.7583 0.0367 4.0217 0.7741
700 13 0.1479 0.0458 0.7583 0.0348 4.0723 0.8735
900 19 0.1477 0.0437 0.7515 0.0375 4.1205 0.8510
500 15 0.1475 0.0451 0.7613 0.0356 4.1717 0.8825
300 13 0.1475 0.0457 0.7573 0.0395 3.9955 0.7620
300 1 0.1473 0.0460 0.7680 0.0306 4.1961 0.6866
500 13 0.1468 0.0461 0.7591 0.0361 4.0473 0.7431
500 19 0.1468 0.0460 0.7512 0.0397 4.1723 0.8723
700 19 0.1467 0.0446 0.7515 0.0384 4.1467 0.7620
300 19 0.1463 0.0459 0.7485 0.0411 4.0198 0.8328
700 21 0.1462 0.0415 0.7492 0.0407 4.1986 0.6807
900 21 0.1461 0.0416 0.7491 0.0399 4.1229 0.7597
500 21 0.1446 0.0413 0.7490 0.0424 4.1992 0.8583
300 21 0.1446 0.0419 0.7474 0.0401 4.1467 0.7267
100 17 0.1444 0.0430 0.7477 0.0458 4.0467 0.8685
100 21 0.1441 0.0437 0.7447 0.0421 3.9936 0.8042
100 11 0.1440 0.0456 0.7481 0.0371 3.9692 0.7661
100 3 0.1437 0.0457 0.7579 0.0359 4.3286 1.0357
100 9 0.1433 0.0463 0.7548 0.0345 4.1967 0.9255
700 23 0.1432 0.0444 0.7485 0.0389 4.1979 0.7957
100 15 0.1429 0.0454 0.7526 0.0312 4.0698 0.9082
900 23 0.1427 0.0445 0.7474 0.0404 4.1986 0.7678
100 1 0.1424 0.0468 0.7520 0.0326 4.0942 0.6993
100 5 0.1423 0.0436 0.7583 0.0420 3.9923 0.8849
300 23 0.1420 0.0453 0.7433 0.0408 4.0961 0.7865
500 23 0.1410 0.0443 0.7463 0.0415 4.1992 0.8844
100 23 0.1401 0.0437 0.7442 0.0378 4.0698 0.7634
100 19 0.1397 0.0428 0.7452 0.0416 4.0461 0.8787
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Table A.6: Grid search results for Dfraud using neighbourhood features

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 5 0.1677 0.0508 0.7772 0.0259 4.0111 0.9006
300 5 0.1667 0.0521 0.7706 0.0282 4.0367 0.8542
700 5 0.1660 0.0512 0.7772 0.0263 4.0880 0.9013
500 5 0.1656 0.0500 0.7762 0.0244 4.1136 0.8829
900 3 0.1621 0.0540 0.7785 0.0280 4.0873 0.8966
700 3 0.1618 0.0537 0.7788 0.0281 4.1123 0.9592
500 3 0.1614 0.0532 0.7765 0.0289 4.0617 0.8995
300 3 0.1608 0.0533 0.7748 0.0299 4.0617 0.8995
100 5 0.1582 0.0537 0.7625 0.0302 4.0123 0.7754
100 3 0.1569 0.0540 0.7676 0.0334 4.0117 0.8443
700 1 0.1439 0.0485 0.7698 0.0270 3.9361 0.7974
500 1 0.1438 0.0470 0.7690 0.0260 3.9361 0.8454
900 1 0.1425 0.0478 0.7697 0.0267 3.9361 0.8218
300 1 0.1417 0.0465 0.7668 0.0258 3.8336 0.8426
100 1 0.1390 0.0477 0.7636 0.0274 3.8849 0.8099

Table A.7: Grid search results for Dfraud using score features

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

300 5 0.0745 0.0228 0.6736 0.0253 2.3911 0.5518
500 5 0.0744 0.0223 0.6768 0.0234 2.3143 0.5619
900 5 0.0742 0.0215 0.6798 0.0211 2.3143 0.5641
700 5 0.0735 0.0207 0.6787 0.0214 2.2880 0.6719
100 7 0.0734 0.0219 0.6734 0.0248 2.3399 0.5338
700 1 0.0734 0.0192 0.6836 0.0206 2.0849 0.7270
900 7 0.0734 0.0216 0.6776 0.0263 2.3393 0.4365
700 3 0.0732 0.0208 0.6795 0.0205 2.2880 0.5563
700 7 0.0730 0.0220 0.6757 0.0270 2.4911 0.5142
300 7 0.0728 0.0217 0.6746 0.0284 2.3137 0.5380
500 7 0.0728 0.0218 0.6752 0.0279 2.2612 0.4905
900 3 0.0728 0.0204 0.6805 0.0217 2.3893 0.5781
300 1 0.0724 0.0187 0.6825 0.0195 2.1605 0.3718
500 3 0.0723 0.0203 0.6790 0.0218 2.3649 0.3926
100 1 0.0723 0.0180 0.6807 0.0218 2.4155 0.6266
300 3 0.0722 0.0208 0.6774 0.0227 2.3911 0.4480
100 5 0.0722 0.0238 0.6668 0.0297 2.1862 0.5182
500 1 0.0720 0.0187 0.6834 0.0200 2.2899 0.5859
900 1 0.0718 0.0182 0.6841 0.0208 2.0349 0.5718
100 3 0.0695 0.0211 0.6676 0.0275 2.2087 0.4763
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Table A.8: Grid search results for Dfraud using all features

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 3 0.1862 0.0457 0.8254 0.0227 5.2135 0.6567
700 3 0.1848 0.0474 0.8237 0.0241 5.0860 0.5907
500 3 0.1826 0.0464 0.8213 0.0244 5.0873 0.5536
900 5 0.1821 0.0417 0.8274 0.0220 5.1123 0.5598
700 5 0.1810 0.0400 0.8276 0.0227 5.1379 0.5171
500 5 0.1807 0.0419 0.8269 0.0221 5.2392 0.5675
300 3 0.1802 0.0452 0.8201 0.0261 5.0617 0.5605
300 5 0.1794 0.0423 0.8265 0.0227 5.0860 0.6336
300 1 0.1781 0.0383 0.8151 0.0223 4.7311 0.4455
500 7 0.1780 0.0389 0.8225 0.0222 4.8323 0.6304
700 7 0.1775 0.0390 0.8240 0.0215 4.8073 0.6478
500 1 0.1772 0.0404 0.8160 0.0234 4.8323 0.5516
900 7 0.1765 0.0391 0.8254 0.0205 4.8073 0.6478
900 9 0.1765 0.0415 0.8226 0.0212 4.6786 0.6709
900 1 0.1760 0.0422 0.8155 0.0227 4.8579 0.5586
100 3 0.1757 0.0468 0.8115 0.0308 4.9354 0.6133
500 9 0.1753 0.0415 0.8222 0.0210 4.7804 0.7524
300 9 0.1749 0.0427 0.8235 0.0201 4.7036 0.6888
100 5 0.1741 0.0441 0.8159 0.0290 4.8335 0.5895
300 7 0.1741 0.0365 0.8206 0.0234 4.7561 0.5985
700 1 0.1741 0.0419 0.8162 0.0221 4.7823 0.5220
700 9 0.1736 0.0392 0.8219 0.0211 4.7548 0.6504
100 7 0.1726 0.0368 0.8127 0.0276 4.8335 0.4775
100 1 0.1722 0.0376 0.8051 0.0241 4.8817 0.4601
900 11 0.1710 0.0396 0.8229 0.0233 4.6286 0.4992
700 11 0.1707 0.0403 0.8222 0.0245 4.6017 0.5972
500 11 0.1707 0.0410 0.8226 0.0246 4.6536 0.5924
300 11 0.1706 0.0408 0.8210 0.0245 4.6536 0.5774
500 13 0.1699 0.0429 0.8175 0.0262 4.7054 0.6229
900 13 0.1692 0.0416 0.8199 0.0249 4.6286 0.6378
500 17 0.1690 0.0423 0.8161 0.0253 4.6304 0.5529
700 13 0.1690 0.0419 0.8191 0.0255 4.6292 0.6907
300 13 0.1689 0.0428 0.8168 0.0271 4.6548 0.6454
900 19 0.1679 0.0412 0.8179 0.0246 4.6292 0.6487
700 19 0.1677 0.0409 0.8175 0.0241 4.7048 0.5977
900 17 0.1677 0.0419 0.8152 0.0251 4.6811 0.5682
700 17 0.1671 0.0401 0.8160 0.0243 4.6042 0.5182
500 19 0.1670 0.0413 0.8171 0.0247 4.7054 0.6334
900 21 0.1662 0.0404 0.8158 0.0235 4.7317 0.6010
700 21 0.1657 0.0401 0.8149 0.0237 4.7054 0.5847
300 19 0.1657 0.0415 0.8164 0.0257 4.7048 0.6298
900 15 0.1656 0.0376 0.8170 0.0254 4.6298 0.6451
500 15 0.1654 0.0380 0.8163 0.0262 4.5517 0.5947
300 17 0.1653 0.0361 0.8146 0.0241 4.7567 0.5138
500 21 0.1640 0.0397 0.8150 0.0234 4.7304 0.5698
100 13 0.1637 0.0451 0.8044 0.0328 4.5536 0.7449
100 11 0.1635 0.0370 0.8110 0.0259 4.6548 0.5541
500 23 0.1635 0.0345 0.8132 0.0213 4.7561 0.6568
100 9 0.1635 0.0389 0.8138 0.0223 4.6023 0.5136
700 15 0.1633 0.0355 0.8157 0.0258 4.5267 0.6225
700 23 0.1630 0.0359 0.8130 0.0216 4.7811 0.6218
900 23 0.1629 0.0353 0.8138 0.0224 4.8317 0.6431
100 19 0.1629 0.0405 0.8165 0.0257 4.7823 0.6563
300 15 0.1625 0.0358 0.8144 0.0278 4.5786 0.5329
300 21 0.1623 0.0373 0.8173 0.0241 4.7567 0.5833
700 25 0.1620 0.0370 0.8126 0.0250 4.6779 0.6475
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Table A.8: Grid search results for Dfraud with all features (cont.)

AUC-PR AUC-ROC Top Decile Lift

No. of trees Features per split Mean Std. Mean Std. Mean Std.

900 27 0.1620 0.0363 0.8124 0.0242 4.7048 0.4355
700 27 0.1619 0.0357 0.8117 0.0255 4.7048 0.4355
500 25 0.1618 0.0362 0.8119 0.0255 4.7292 0.5640
100 21 0.1615 0.0368 0.8086 0.0211 4.6298 0.6772
300 23 0.1609 0.0355 0.8114 0.0228 4.5798 0.6121
900 25 0.1608 0.0351 0.8134 0.0243 4.6273 0.6642
300 27 0.1603 0.0335 0.8110 0.0275 4.7298 0.3825
500 27 0.1600 0.0337 0.8119 0.0255 4.6542 0.4485
300 25 0.1595 0.0350 0.8089 0.0264 4.7036 0.6077
100 17 0.1589 0.0396 0.8035 0.0240 4.7073 0.7782
100 15 0.1582 0.0350 0.8089 0.0239 4.6298 0.6416
900 29 0.1577 0.0342 0.8110 0.0242 4.8573 0.5636
100 27 0.1575 0.0344 0.8060 0.0263 4.7548 0.3764
700 29 0.1569 0.0324 0.8095 0.0249 4.7561 0.5155
100 25 0.1569 0.0370 0.8030 0.0305 4.7048 0.4384
500 29 0.1568 0.0323 0.8101 0.0257 4.7554 0.5793
700 31 0.1548 0.0336 0.8073 0.0251 4.7548 0.4083
900 31 0.1545 0.0329 0.8068 0.0256 4.7298 0.3985
300 29 0.1544 0.0364 0.8035 0.0287 4.8054 0.6285
500 33 0.1540 0.0312 0.8058 0.0224 4.6798 0.4379
900 33 0.1536 0.0313 0.8050 0.0237 4.8317 0.4414
100 23 0.1536 0.0313 0.8018 0.0266 4.6536 0.7398
700 33 0.1531 0.0318 0.8050 0.0232 4.7554 0.4300
300 33 0.1526 0.0332 0.8023 0.0223 4.5773 0.4148
500 31 0.1523 0.0304 0.8068 0.0248 4.7036 0.4808
100 33 0.1512 0.0293 0.8025 0.0176 4.5273 0.4767
700 35 0.1511 0.0306 0.8015 0.0223 4.6542 0.4885
300 31 0.1505 0.0310 0.8038 0.0285 4.7298 0.3492
900 35 0.1505 0.0294 0.8022 0.0227 4.7317 0.5493
100 31 0.1504 0.0332 0.7993 0.0273 4.7311 0.4005
500 35 0.1500 0.0285 0.8026 0.0224 4.6542 0.6041
300 35 0.1476 0.0301 0.7998 0.0242 4.7048 0.3877
100 35 0.1467 0.0303 0.7978 0.0203 4.7036 0.5700
100 29 0.1459 0.0347 0.7970 0.0333 4.7029 0.6122
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Appendix B

Standard Deviations in Sequential
Feature Addition Results
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Figure B.1: Ten-fold cross-validated performance of LR models for sequential
feature addition with error bars representing standard deviations
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Appendix C

Model Summaries of Adapted
Models

Table C.1: Summary of time-weighted LR model for Dknown with intrinsic features

Dknown

Variable Coef Std. Err z P > |z|

.const -2.4366 0.065 -37.725 0.000
age -0.3502 0.027 -12.813 0.000
amount 0.3201 0.021 15.305 0.000
amount1 0.0718 0.029 2.504 0.012
claimAge -0.7651 0.034 -22.475 0.000
lastClaim -0.204 0.040 -5.138 0.000
numContracts -0.1468 0.029 -5.065 0.000
organisations -0.2129 0.025 -8.382 0.000
people -0.154 0.030 -5.217 0.000
refused1 0.0982 0.028 3.543 0.000
responsibilityCode_2 -1.0704 0.478 -2.239 0.025
responsibilityCode_3 0.8545 0.125 6.842 0.000
responsibilityCode_x 0.2635 0.076 3.459 0.001
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Table C.2: Summary of time-weighted LR model for Dfraud with intrinsic features

Dfraud

Variable Coef Std. Err z P > |z|

age -0.2922 0.026 -11.082 0.000
amount 0.1606 0.018 9.140 0.000
amount1 0.0907 0.022 4.176 0.000
claimAge -0.6619 0.033 -20.076 0.000
daysReport 0.0704 0.017 4.122 0.000
lastClaim -0.3049 0.042 -7.187 0.000
lastClaim_x 0.0997 0.029 3.454 0.001
nClaims1 0.0952 0.04 2.365 0.018
nClaims5 -0.1059 0.046 -2.306 0.021
numContracts -0.2686 0.032 -8.375 0.000
organisations -0.0874 0.024 -3.671 0.000
responsibilityCode_3 0.9359 0.119 7.875 0.000
responsibilityCode_x 0.2918 0.072 4.040 0.000
sameSits1 -0.1527 0.030 -5.026 0.000
sameSits5 0.1637 0.031 5.360 0.000

Table C.3: Summary of time-weighted LR model for Dknown with score features

Dknown

Variable Coef Std. Err z P > |z|

.const -1,8061 0,023 -77,708 0,000
n1.max -0,5011 0,048 -10,486 0,000
n1.q1 0,3963 0,116 3,429 0,001
scores0 0,1923 0,036 5,298 0,000

Table C.4: Summary of time-weighted LR model for Dfraud with score features

Dfraud

Variable Coef Std. Err z P > |z|

.const -1.830 0.024 -77.764 0.000
n1.max -0.5949 0.049 -12.080 0.000
n2.max 0.1735 0.037 4.705 0.000
scores0 0.2301 0.030 7.585 0.000

Table C.5: Summary of time-weighted LR model for Dknown with neighbourhood
features

Dknown

Variable Coef Std. Err z P > |z|

.const -1.9095 0.028 -68.77 0.000
n1.size -0.1420 0.024 -5.912 0.000
n2.binFraud -0.0854 0.024 -3.525 0.000
n2.ratioFraud 0.3677 0.039 9.382 0.000
n2.ratioNonFraud 0.0830 0.029 2.902 0.004
n2.size -0.6197 0.055 -11.194 0.000
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Table C.6: Summary of time-weighted LR model for Dfraud with neighbourhood
features

Dfraud

Variable Coef Std. Err z P > |z|

.const -2.9405 0.191 -15.370 0.000
n2.ratioFraud 0.3368 0.036 9.440 0.000
n2.size -3.6121 0.529 -6.828 0.000

Table C.7: Summary of time-weighted LR model for Dknown with all features

Dknown

Variable Coef Std. Err z P > |z|

Intercept -2.8442 0.071 -39.826 0.000
age -0.3698 0.028 -13.186 0.000
amount 0.2652 0.020 13.008 0.000
claimAge -0.8025 0.035 -22.729 0.000
lastClaim -0.1902 0.040 -4.707 0.000
n1.size -0.3877 0.153 -2.529 0.011
n2.binFraud -0.3209 0.051 -6.307 0.000
n2.max 0.3155 0.067 4.687 0.000
n2.q1 -0.4605 0.153 -3.013 0.003
n2.ratioFraud 0.3638 0.050 7.222 0.000
n2.size -0.8181 0.077 -10.584 0.000
numContracts -0.1253 0.029 -4.252 0.000
organisations 0.2703 0.125 2.154 0.031
refused1 0.0824 0.030 2.785 0.005
responsibilityCode_1 0.1609 0.082 1.962 0.050
responsibilityCode_2 -0.9858 0.494 -1.994 0.046
responsibilityCode_3 0.9897 0.126 7.843 0.000
responsibilityCode_x 0.6252 0.080 7.844 0.000
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Table C.8: Summary of time-weighted LR model for Dfraud with all features

Dfraud

Variable Coef Std. Err z P > |z|

.const -4.4838 0.667 -6.724 0.000
age -0.3320 0.027 -12.080 0.000
amount 0.0780 0.018 4.235 0.000
amount1 0.0708 0.023 3.143 0.002
claimAge -0.6737 0.034 -19.789 0.000
lastClaim -0.2978 0.043 -6.890 0.000
lastClaim_x 0.1007 0.030 3.349 0.001
n1.max 0.1460 0.073 2.012 0.044
n1.q1 0.2576 0.119 2.166 0.030
n2.binFraud -0.1681 0.049 -3.425 0.001
n2.max 0.2422 0.064 3.813 0.000
n2.ratioFraud 0.1239 0.029 4.267 0.000
n2.size -5.2108 0.719 -7.243 0.000
nClaims1 0.0832 0.042 1.982 0.047
nClaims5 -0.1411 0.048 -2.946 0.003
numContracts -0.1886 0.032 -5.885 0.000
responsibilityCode_1 0.2898 0.078 3.740 0.000
responsibilityCode_3 1.0379 0.122 8.517 0.000
responsibilityCode_x 0.7761 0.076 10.212 0.000
sameSits1 -0.1711 0.032 -5.361 0.000
sameSits5 0.1889 0.031 6.188 0.000

Table C.9: Summary of shared resources LR model for Dknown with intrinsic
features

Dknown

Variable Coef Std. Err z P > |z|

.const -2.4366 0.065 -37.725 0.000
age -0.3502 0.027 -12.813 0.000
amount 0.3201 0.021 15.305 0.000
amount1 0.0718 0.029 2.504 0.012
claimAge -0.7651 0.034 -22.475 0.000
lastClaim -0.2040 0.040 -5.138 0.000
numContracts -0.1468 0.029 -5.065 0.000
organisations -0.2129 0.025 -8.382 0.000
people -0.1540 0.030 -5.217 0.000
refused1 0.0982 0.028 3.543 0.000
responsibilityCode_2 -1.0704 0.478 -2.239 0.025
responsibilityCode_3 0.8545 0.125 6.842 0.000
responsibilityCode_x 0.2635 0.076 3.459 0.001
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Table C.10: Summary of shared resources LR model for Dfraud with intrinsic
features

Dfraud

Variable Coef Std. Err z P > |z|

age -0.2922 0.026 -11.082 0.000
amount 0.1606 0.018 9.140 0.000
amount1 0.0907 0.022 4.176 0.000
claimAge -0.6619 0.033 -20.076 0.000
daysReport 0.0704 0.017 4.122 0.000
lastClaim -0.3049 0.042 -7.187 0.000
lastClaim_x 0.0997 0.029 3.454 0.001
nClaims1 0.0952 0.040 2.365 0.018
nClaims5 -0.1059 0.046 -2.306 0.021
numContracts -0.2686 0.032 -8.375 0.000
organisations -0.0874 0.024 -3.671 0.000
responsibilityCode_3 0.9359 0.119 7.875 0.000
responsibilityCode_x 0.2918 0.072 4.040 0.000
sameSits1 -0.1527 0.030 -5.026 0.000
sameSits5 0.1637 0.031 5.360 0.000

Table C.11: Summary of shared resources LR model for Dknown with score features

Dknown

Variable Coef Std. Err z P > |z|

.const -1.8212 0.023 -77.643 0.000
n1.max -0.4476 0.046 -9.641 0.000
n1.med -0.2401 0.120 -1.996 0.046
n1.q1 0.4982 0.121 4.116 0.000
scores0 0.1892 0.030 6.293 0.000

Table C.12: Summary of shared resources LR model for Dfraud with score features

Dfraud

Variable Coef Std. Err z P > |z|

.const -1.8672 0.024 -77.334 0.000
n1.max -0.5730 0.050 -11.466 0.000
n2.med -0.8076 0.175 -4.620 0.000
n2.q1 1.0339 0.194 5.334 0.000
scores0 0.2851 0.025 11.376 0.000
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Table C.13: Summary of shared resources LR model for Dknown with neighbour-
hood features

Dknown

Variable Coef Std. Err z P > |z|

.const -1.9095 0.028 -68.77 0.000
n1.size -0.1420 0.024 -5.912 0.000
n2.binFraud -0.0854 0.024 -3.525 0.000
n2.ratioFraud 0.3677 0.039 9.382 0.000
n2.ratioNonFraud 0.0830 0.029 2.902 0.004
n2.size -0.6197 0.055 -11.194 0.000

Table C.14: Summary of shared resources LR model for Dfraud with neighbour-
hood features

Dfraud

Variable Coef Std. Err z P > |z|

.const -2.9405 0.191 -15.370 0.000
n2.ratioFraud 0.3368 0.036 9.440 0.000
n2.size -3.6121 0.529 -6.828 0.000

Table C.15: Summary of shared resources LR model for Dknown with all features

Dknown

Variable Coef Std. Err z P > |z|

.const -2.8781 0.072 -39.854 0.000
age -0.3845 0.028 -13.605 0.000
amount 0.2680 0.020 13.219 0.000
atFault5 -0.0790 0.040 -1.968 0.049
claimAge -0.8011 0.035 -22.591 0.000
lastClaim -0.1963 0.041 -4.817 0.000
n1.max 0.2710 0.084 3.236 0.001
n1.q1 0.2447 0.123 1.993 0.046
n1.size -0.3159 0.156 -2.019 0.043
n2.binFraud -0.1786 0.057 -3.134 0.002
n2.ratioFraud 0.3024 0.056 5.395 0.000
n2.size -0.9936 0.084 -11.779 0.000
nClaims5 0.0953 0.045 2.133 0.033
numContracts -0.1211 0.029 -4.108 0.000
refused1 0.0876 0.030 2.931 0.003
refused5 -0.0862 0.038 -2.264 0.024
responsibilityCode_1 0.1619 0.083 1.958 0.050
responsibilityCode_2 -1.0518 0.513 -2.052 0.040
responsibilityCode_3 1.0341 0.126 8.220 0.000
responsibilityCode_x 0.6396 0.080 7.975 0.000
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Table C.16: Summary of shared resources LR model for Dfraud with all features

Dfraud

Variable Coef Std. Err z P > |z|

age -0.3202 0.028 -11.586 0.000
amount 0.0795 0.018 4.363 0.000
amount1 0.0600 0.023 2.644 0.008
claimAge -0.6654 0.034 -19.468 0.000
lastClaim -0.2781 0.043 -6.462 0.000
lastClaim_x 0.0995 0.030 3.288 0.001
n1.max 0.2577 0.079 3.242 0.001
n1.q1 0.2359 0.110 2.143 0.032
n2.ratioFraud 0.0964 0.023 4.113 0.000
n2.size -4.8314 0.638 -7.578 0.000
nClaims1 0.1005 0.042 2.403 0.016
nClaims5 -0.1149 0.048 -2.407 0.016
numContracts -0.2045 0.033 -6.25 0.000
responsibilityCode_1 0.2300 0.078 2.951 0.003
responsibilityCode_3 1.0096 0.121 8.334 0.000
responsibilityCode_x 0.7029 0.076 9.208 0.000
sameSits1 -0.1594 0.032 -5.036 0.000
sameSits5 0.1752 0.031 5.704 0.000
scores0 0.0879 0.029 3.075 0.002
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Appendix D

Declaration of Generative AI in the
Writing Process

During the preparation of this work the author used OpenAI’s ChatGPT based on GPT-3.5
for inspiration in paraphrasing in order to enhance readability. After using this tool/service,
the author reviewed and edited the content as needed and takes full responsibility for the
content of the publication.
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