
A fast instruction language for functional programs
ERIK OOSTING, University of Twente, The Netherlands

Within computer science, there is a variety of ways in which algorithms
can be expressed. One of these ways is functional programming, in which
functions and recursion are used to express programs and control flow. In
this paper, an intermediate language is proposed that marries the functional
programming style to the imperative nature of native assembly code that is
found running in most compiled applications

Additional Key Words and Phrases: Haskell, Compilers, LLVM, Intermediate
Languages, ANF

1 INTRODUCTION
When creating a program for a computer, one tends to do that via
a programming language. These programming languages make it
easier to grasp the logic that the computer program is executing
on, but it is not a one-to-one translation of how the computer ac-
tually executes this logic. The execution of this logic happens in a
local machine code, which is often unreadable at a casual glance.
To bridge this gap between developer-readable program code and
machine-readable machine code, compilers are used. However, not
all compilers are created equal.
Internally, a computer runs on a set of registers, a stack and a

heap. These are all increasingly larger pieces of of computer memory
that are being used for different purposes. Simple arithmetic can be
done using the registers, variables can be fetched on the stack, and
large data structures can be put on, and read from the heap. Special
attention needs to be paid when a programmer decides to create
a function. In that case, arguments that are passed to the function
when it is called need to be put on the stack, along with additional
information for when the function returns.

As described in the abstract, there are various paradigms in which
programmers can write programs. This research will be focusing
on the functional programming. The main problem with functional
programming is that it uses a lot of functions. For advanced pro-
grams, this can be an issue as the stack fills up with many nested
function calls if the functional programming language compiler
is created naively. Moreover, this research looks into whether the
compiler framework LLVM [10] can help optimize these functional
programming languages, as if they are imperative (for what it’s
worth: not functional) languages.

One of the things that distinguishes functional programming lan-
guages from LLVM bytecode is the appearance of nested functions.
This means that functions can be defined inside of the bodies of
other functions. Since LLVM is incapable of doing that. We will
have to properly organize our code to make the transformation
from nested function to non-nested function happen. One of the
most important parts here that can help us is to make all variable

TScIT 40, February 2, 2024, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

names in the program different, while not changing the semantics
of the program.

1.1 RQ1
Can we make a intermediate language, designed for functional
programming, that enjoys the optimizations of LLVM? [11]

1.2 RQ2
How do we prevent nested functions from appearing in our target
program?

1.3 RQ3
How do we correctly substitute variables in our programming lan-
guage?

2 RELATED WORK
Functional programming languages are usually made without much
regards to a von Neumann architecture [2]. This has as consequence
that compiling a functional programming language is quite diffi-
cult, since you have to translate the program to an entirely new
programming paradigm. Boquist & Johnsson [3] point out that this
difference can incur a performance penalty to functional languages,
due to it having to bridge that gap . A lot of implementations of a
function IL have been made before [6, 9, 16], mostly for their own
programming languages. Other, smaller languages (such as Idris 2
[4] and unison [8]) have resorted to using Chez Scheme [5] as their
back-end language. Chez is a scheme compiler with many optimiza-
tions, therefore making it a pretty suitable high-level language to
use as a compiler backend. A big codebase to also look towards for
inspiration is MLton [6, 11], a version of Standard ML that focuses
on whole-program-optimization. It produces very fast programs,
and the LLVM backend produced by Leibig [11] can serve as an
example on how to compile a high-level language directly to LLVM.

3 METHODOLOGY
The goal is to make an intermediate language that compiles to LLVM.
The idea is that the language is high-level enough for it to be easy
to make a high-level functional language in it, but low-level enough
that it can be agnostic towards all kinds of functional programming
languages. The GRIN project [3, 14] is an example of this. However,
the implementation of it is seemingly still missing some to the steps
described in Boquist and Johnson’s original paper.

3.1 Features
Functional programming languages rely a lot on functions. This
means that function handling, or at least the closures of functions,
need special attention. Normally, every time a function is called,
the argument and local variables of that function are put on the
call stack. This can blow up the call stack with arguments that are
potentially not even needed anymore. Along with that, functional
languages often work with the assumption that the values it works

1

TScIT 40, February 2, 2024, Enschede, The Netherlands Author

Aexp 𝑎 ::= 𝑛 : number
| 𝑥 : variable
| " 𝑠 " : string
| 𝑎 + 𝑎 : addition
| 𝑎 − 𝑎 : subtraction
| ... other simple arithmetic operators
| 𝜆𝑥 .𝑐 : lambda expression

Table 1. BNF grammar for atomic expressions

Cexp 𝑐 ::= 𝑎 : atomic expression
| 𝑓 (𝑎, ...) : function call
| let 𝑥 = 𝑎 : let binding (atomic expression)
| let 𝑥 = 𝑓 (𝑎, ...) : let binding (function call)
| if 𝑎 then 𝑐 else 𝑐 : if statement
Table 2. BNF grammar for complex expressions

with are immutable. For this, the intermediate language should
perform closure conversion [1], so that the IL can support nested
closures and anonymous lambda functions.

3.2 ANF
The input of a program is done in a language called Administra-
tive Normal Form [15]. ANF is useful for directly translating to a
intermediate language. The general gist of ANF is that there are no
nested function calls. This allows for a clear program flow that tells
the consumer of the ANF program when to execute each function
along the way. To formalize this, ANF makes a distinction between
2 types of expressions, atomic and complex. Atomic expressions
are expressions that are guaranteed to terminate at all times. As
noted in 1, lambda expressions are also considered atomic, since
you cannot compute a lambda expression without an argument, so
computation is guaranteed to end there. (Do note that table 1 is just
an example and not representative of the full grammar
Complex expressions are everything else. This can include let

bindings and control flow statements. Note how the grammar in
figure table 2 only allows for function calls to be either in a let
binding or at the end of a chain of if-statements/let-bindings (tail
position).

Languages such as Idris [4] offer an ANF back-end which you can
use to let the language compile to a back-end of your choosing. This
means that in the end, we could potentially make a new backend
for Idris.
While ANF is a good start towards enforcing an order of opera-

tions in which functions will be expanded and evaluated, we still
allow different variables being given the same name. In order to
make our variables unambiguous in which value they point towards,
we will need to do variable substitution. There are a variety of ways
of doing that, but this paper will explore a novel approach: variable
substitution using generalized recursion schemes. For that, we will
first need to learn a bit more about recursion schemes themselves.

3.3 Recursion schemes
To get a better, more consistent hold over the recursive nature of
the AST, we will use recursion schemes [12]. Recursion schemes
are formalisms that help make correct traversals through recursive
data structures, where recursive data structures are structures that
are (partly) defined in terms of themselves (such as the grammars
defined in table 1 and 2). They can be subdivided into three types:

Catamorphisms (folds) are recursion types that take a recursive
datatype, and turn it into a final result. These are by far the most
common type of recursion, as most traversals of data structures seek
to get a single result out of that traversal. To get the result for a term
in the data type tree, you need the results of the underlying terms.
For this reason, catamorphisms represent bottom-up recursion. The
functions we pass to catamorphisms are called algebras, as they
take results and perform an operation on them based on a given
operator.
Anamorphisms (unfolds) are the opposite of catamorphisms.

They generate a recursive data structure from iterating on a sam-
ple value. They take in co-algebras as functions. Co-algebras are
algebras, but in reverse: they take a value, and based on the type of
value they produce a set of different values along with an accompa-
nying operator that binds the values together. As one layer defines
more values for lower layers, anamorphisms allow for a top-down
recursion.
When we take a value, unfold it into a data structure, and then

refold it into a into a different value using a separate algebra, that is
called a hylomorphism. Hylomorphisms take in a sample value, an
algebra and a co-algebra to change the supplied value with the help
of a recursive datastructure. However, we won’t use this combina-
tion of algebras and co-algebras as such for we don’t really deal with
final values all that much. Note also how both anamorphisms and
catamorphisms can be represented as hylmorphisms, by replacing
the supplied algebra or co-algebra with the identity function 𝜆𝑥 .𝑥 ,
respectively.

Another important recursive action is a change of representation.
This means that while the exact value of something may change,
it’s internal recursive structure will not. A good example of this is
mapping a list of values to a list of different values. The resulting list
is different from the original one, but the structure of the two lists is
identical. For this we can use either a fold or an unfold, whichever
works best for the specific change in representation we’d want to
accomplish.

3.4 Variable Substitution
At times, a language might want to re-bind a variable to a new
value. This means that in the input program there will be multiple
values that are bound to the same variable name, and likely multiple
instances where this variable is used. To make it unambiguous
as to whcih variable refers to which value, we perform variable
substitution. At the end of this, each variable assignment contains
a unique name. This guarantee means that later transformations
don’t have to investigate which in assignment a variable is bound.

2

A fast instruction language for functional programs TScIT 40, February 2, 2024, Enschede, The Netherlands

4 RESULTS
As it stands right now, the project defines algebraic datatypes for
ANF. We will first define these datatypes, then use the recursion-
schemes library to derive some helper datatypes, and finally define
a set of functions to help perform variable substitution.

4.1 Haskell Parser
Writing parsers for programming languages can be a tedious exer-
cise, luckily Haskell has a way to automatically generate a parser
in the form of deriving Read. Then, the whole AST of the pro-
gram can be expressed as an algebraic datatype, and an AST can be
serialized and deserialized in a lisp-style format
data AExp

= LitTrue | LitFalse
| Ident String | Number Integer | LitStr String
| AAdd AExp AExp | ASub AExp AExp
| AMul AExp AExp | ADiv AExp AExp
| AGt AExp AExp | ALt AExp AExp | AEq AExp AExp
| ABsl AExp AExp | ABsr AExp AExp
| AAnd AExp AExp | AOr AExp AExp | AXor AExp AExp
| Lam [String] CExp
deriving (Show, Read, Generic)

data Funcall
= Call String [AExp]
| Atom AExp
deriving (Show, Read, Generic)

data CExp
= Let String Funcall CExp
| If AExp CExp CExp
| FC Funcall
deriving (Show, Read, Generic)

An example factorial function can then be described as follows
factorial :: AExp
factorial =

(Lam
["n"]
(Let

"m"
(Call "factorial" [(ASub (Ident "n") (Number 1))])

(If
(ALt (Ident "n") (Number 2))
(FC (Atom (Number 1)))

(FC (Atom (AMul (Ident "m") (Ident "n"))))
)

)
)

4.2 Recursion Schemes
The recursion-schemes1 Haskell library does a lot of of heavy
lifting when it comes to traversing AST’s, as also shown by Tielen

1https://hackage.haskell.org/package/recursion-schemes

[17]. We can generate so-called "base functors" for the AST types
with some Template Haskell splices
makeBaseFunctor ''CExp
makeBaseFunctor ''AExp

A splice for Funcall isn’t needed, as the base functor of that is
structurally identical to itself’ This base functor allows for a layer-
by-layer analysis of the recursive algorithms that we can use to do
some of the more tricky parts of AST analysis. This may also be
a good time to explaining which types of recursion schemes we
are going to use. As explained in section 3.3, there are 3 important
types of recursion schemes we use: folds, unfolds and changes of
representation. We’ll go into each function we use and describe why
we use it

cata: cata2 is a function for straight-forward folds.Whenever this
function is used we don’t need anything other than the arguments
provided in the sub-values.

hoist: hoist3 is a change of representation. The change in repre-
sentation that we supply must be a pure function (e.g. a mapping
from base functor to base functor), and therefore cannot be wrapped
in side effects. one important note is because this is a change of
representation, we only get access to information available at that
exact layer of the recursive data structure. We can’t influence un-
derlying layers, even though they are available as arguments. (This
is due to a type-level restriction made in the recursion-schemes
library).
transverse: transverse4 is like hoist, except we can put side

effects in the resulting representation. Because our recursive struc-
ture is now wrapped ina side effect, the result of transverse is
strictly speaking no longer a recursive structure, so technically (and
implementation-wise), transverse is a fold.

cotransverse: cotransverse is transverse in reverse. It takes
a recursive structure, wrapped in a side effect, and handles that side
effect when changing representation. We can use this in order to
decide what kind of side effect we want to envelop the lower layers
of our recursive structure in. It is important to note that we are still
working with a hoist, so we can only affect one recursive layer at
a time.

4.3 Variable Substitution
Variable substitution is divided into 2 parts: replacing variables and
identifying variables that need to be replaced
For part 1, all variables that are identified will be replaced with

the same variable, appended with the character "_"
For atomic expressions, the process is relatively simple. Replace

identifiers if need be, and arguments as well. There is no need to
look into the deeper structure, so we can use a hoist to change the
AST
-- | replace bound variables in AExps
replaceVarsAExp :: String -> AExpF a -> AExpF a

2https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-
Foldable.html#v:cata
3https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-
Foldable.html#v:hoist
4https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-
Foldable.html#v:transverse

3

https://hackage.haskell.org/package/recursion-schemes
https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-Foldable.html#v:cata
https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-Foldable.html#v:cata
https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-Foldable.html#v:hoist
https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-Foldable.html#v:hoist
https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-Foldable.html#v:transverse
https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-Foldable.html#v:transverse

TScIT 40, February 2, 2024, Enschede, The Netherlands Author

replaceVarsAExp n (IdentF m) = IdentF $ compareNames m n
replaceVarsAExp n (LamF args body) =

LamF
(fmap (\x -> if x == n then x ++ "_" else x) args)
(cata replaceVarsCExp body n)

replaceVarsAExp _ rest = rest

For complex expressions, we use an simple algebra, but also use the
fact that String -> forms a monad that provides the given string
argument when trying to get a result from the id function
replaceVarsCExp :: CExpF (String -> CExp) -> String -
> CExp
replaceVarsCExp (LetF name fc restf) = do

env <- id
rest <- restf
let newName = compareNames name env
return $ Let newName (replaceVarsFC env fc) rest

replaceVarsCExp (IfF cond thenF elseF) = do
thenPart <- thenF
elsePart <- elseF
env <- id
return $

If
(hoist (replaceVarsAExp env) cond)
thenPart
elsePart

replaceVarsCExp (FCF fc) = do
env <- id
return $ FC (replaceVarsFC env fc)

Finally, the Funcall datatype can just be a normal function, as it is
not primitively recursive
-- | replace bound variables in Function calls
replaceVarsFC :: String -> Funcall -> Funcall
replaceVarsFC n (Atom aexp) =

Atom $ hoist (replaceVarsAExp n) aexp
replaceVarsFC n (Call name args) =

Call
(compareNames name n)
$ fmap (hoist (replaceVarsAExp n)) args

Part 2 is the actual checking which variables get substituted, this
is done with cotransverse5 algebras. As said in section 3.3, co-
transverse algebras are taking a layer of recursion, wrapped in a
side effect, and turning that into a pure layer with side-effected con-
stituent parts. In our case, the side effect is a constantly updating
list of variable names we can call the "environment" (env for short).

When we substitute variables, we try to find places where values
are being bound to values. This can be either in the arguments of
functions, or in let-statements. This means that in case of atomic
expressions, we’ll have to examine the lambda expressions, and
in the case that an argument is already in our environment (and

5https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-
Foldable.html#v:cotransverse

therefore, bound to a different value), we’ll append a _ to the variable
name, and then change the variable occurrences in the function body
accordingly with the replaceVarsCExp function.
subVarsAExp :: ([String], AExpF a) -> AExpF ([String], a)
subVarsAExp (env, LamF args body) =

let
toReplace = intersect env args
newArgs =

fmap
(\x -> if x `elem` toReplace then x ++ "_" else x)

args
newBody = foldl (cata replaceVarsCExp) body toReplace
in

LamF
newArgs
(cotransverse

subVarsCExp
(newArgs ++ env, [], newBody)

)
subVarsAExp (env, rest) = fmap (env,) rest

For complex expressions, the identification of variable bindings is
similarly easy. However, transformation of bound variables is a
bit more tricky. As the type of cotransverse ((Corecursive s,
Recursive t, Functor f) => (forall x. f (Base s x)->Base
t (f x)) f s -> t) doesn’t allow us to access the lower levels
of a complex expressions. While this limitation wasn’t an issue for
atomic expressions, as Lam is a leaf node in atomic expression trees,
it is a problem here, as we may need to edit variables occuring lower
in the CExp expression tree. To solve this, we add a new variable
to our side-effects called queue. This is a list of variables that were
found to be previously bound in the current complex expression
tree, but haven’t changed their variable names in later occurences
deeper in the tree. At each later of the CExp, check if a variable in
an assignment exists in the queue, and re-assign it accordingly if so.

{- | cotransverse of a complex expression.
| The first string list represents
| bound variables, the second one a queue of
| variables to be replaced

-}
subVarsCExp ::

([String], [String], CExpF a) ->
CExpF ([String], [String], a)

subVarsCExp (env, queue, LetF name fc rest) =
let

(newName, newFC) =
foldr

-- repeatedly replace variables in the function call
(\m (n, f) ->

if n == m
then (n ++ "_", replaceVarsFC n f)

else (n, f)
)

4

https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-Foldable.html#v:cotransverse
https://hackage.haskell.org/package/recursion-schemes-5.2.2.5/docs/Data-Functor-Foldable.html#v:cotransverse

A fast instruction language for functional programs TScIT 40, February 2, 2024, Enschede, The Netherlands

(name, fc)
queue -- make sure to do oldest first!

in
LetF

newName
newFC
(if name `elem` env

then (env, newName : queue, rest)
else (name : env, name : queue, rest)

)
subVarsCExp (env, queue, IfF cond thenPart elsePart) =

IfF
(foldr (\x c -> hoist (replaceVarsAExp x) c) cond queue)

(env, queue, thenPart)
(env, queue, elsePart)

subVarsCExp (env, queue, FCF fc) =
FCF $

foldr replaceVarsFC fc queue

5 FUTURE WORK
The project as it stands is far from done. Originally the plan was to
write an LLVM frontend, that would output LLVM bytecode that
could then be used by lld. In order to get to this point, there are a
few things left to do. In summary, first the in-line lambdas need to
be put into the top scope. Then, the in-haskell IR could be converted
to LLVM bytecode. Furthermore, the languages as it s right now
doesn’t have I/O capabilities, making it not very useful.

5.1 Defunctionalization
In LLVM, one cannot define a function inside of another function.
Therefore, in order to translate all the nested functions to LLVM,
we need to lift them to the global scope. This can be done using
a technique called "lambda lifting" [7]. This can be a three-step
process:

(1) Identify all free variables in a nested function
(2) Move these free variables to the function parameters
(3) Identify all call-sites of the nested functions and expand the

arguments with the arguments that were added
We don’t have to care about variables overlapping here, since we
already have used variable substitution to make all variables be
assigned only one time.

5.2 LLVM translation
The original goal of this project was to make a full LLVM front-end.
To this end, the plan was to use the llvm-codegen6 Haskell library.
This library provides a typed haskell interface for LLVM bytecode
so that possible errors in code generation can be caught earlier than
if codegen was done in a language like python 7. At this point the
efficacy of LLVM could also be analyzed to see how well LLVM
optimizes the programs by itself vs. manual optimizations we may
have to do ourselves.

6https://github.com/luc-tielen/llvm-codegen
7https://llvmlite.readthedocs.io/en/latest/

5.3 Optimizations
Because of the lack of an LLVM implementation, we could also
not identify if the implementation actually optimizes our language.
More research has to go into how well this language optimizes
functional programs in general.

5.4 I/O
As said before, a language that doesn’t have an effect on it’s sur-
roundings is limited to running a single computation per program.
In theory, an ultra-optimized compiler could take a language that
doesn’t have side effects, and compile the final answer that these
programs would compute immediately, thus basically creating an
interpreter. In order to have the created programs be interactive,
the intermediate language could be amended to support I/O

5.5 Example language
This paper discusses an intermediate language, and that means that
the language is not meant to be used by programmers by hand.
It is instead meant for there to be a front-end language for this
intermediate language. Such a language could for example be a lisp.
The most important step that should be considered here is that the
current intermediate language only supports strings, numbers and
functions. However, any custom data structures (such as lists) can
be converted to functions using a Mogensen-Scott encoding [13].
This encoding uses the fact that algebraic datatypes are in actuality
a set of functions that get you to a data representation, and that this
data representation is an intermediate step towards getting a final
result. This means that algebraic datatypes can be represented as
functions that can be filled in later when the algebraic datatype gets
consumed to produce a useful value.

6 DISCUSSION
A lot of design and implementation decisions were made in the
process of developing this language. We will go through some of
them in a similar order as we did in the rest of the paper

6.1 ANF
ANF has some important design limitations. Most importantly, be-
cause function calls only allow atomic variables in their arguments,
the language is forced to be eagerly evaluated.

6.2 Recursion schemes & variable substitution
Because of the aforementioned limitations of hoisting, the current
implementation of variable substitution on complex expressions 4.3
is sketchy to say the least. Due to time constraints this implementa-
tion has not be properly tested for issues in variable substitution,
but if there are issues to be found somewhere, it’s in the substitution.
This could potentially be solved by changing the type of cotrans-
verse to a more lenient version: (Corecursive t, Recursive s,
Functor f) => (f (Base s s) -> Base t (f s)) -> f s -> t.
This gives the representation-changing function information about
what the underlying building blocks of each layer are.

On amoreminor note, the use of do-notation in replaceVarsAExp
may be unnecessary, as we don’t really use the advantage of func-
tions being monads in haskell to it’s fullest extent in the function

5

https://github.com/luc-tielen/llvm-codegen
https://llvmlite.readthedocs.io/en/latest/

TScIT 40, February 2, 2024, Enschede, The Netherlands Author

definition. Also since the value of the argument doesn’t change at
any time, we could’ve also used the type String -> AExpF (AExp)
-> AExp, and forgo function usage in the definition altogether.

7 CONCLUSION
In this paper we have defined a new intermediate language, designed
to ease the implementation of functional programming languages
through the use of administrative normal form.
We have also shown an alternative way of doing variable sub-

stitution using recursion schemes. This implementation has been
informally justified to be correct.
Furthermore, we have discussed possible future avenues this

project can take, such as implementing the new IR in LLVM and
adding I/O. This language has a lot of potential in it, which could
be explored in later research

8 ACKNOWLEDGEMENTS
I would like to thank Peter Lammich for supervising this project,
and also the many people who helped me make a planning for it.

REFERENCES
[1] Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University

Press.
[2] John Backus. 1978. Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs. Commun. ACM 21, 8 (aug 1978),
613–641. https://doi.org/10.1145/359576.359579

[3] Urban Boquist and Thomas Johnsson. 1996. The GRIN Project: A Highly Opti-
mising Back End for Lazy Functional Languages. In Implementation of Functional
Languages, 8th International Workshop, IFL’96, Bad Godesberg, Germany, September
16-18, 1996, Selected Papers (Lecture Notes in Computer Science, Vol. 1268), Werner E.
Kluge (Ed.). Springer, 58–84. https://doi.org/10.1007/3-540-63237-9_19

[4] Edwin C. Brady. 2021. Idris 2: Quantitative Type Theory in Practice. 194 (2021),
9:1–9:26. https://doi.org/10.4230/LIPICS.ECOOP.2021.9

[5] R Kent Dybvig. 2006. The development of chez scheme. ACM SIGPLAN Notices
41, 9 (2006), 1–12.

[6] Kavon Farvardin and John Reppy. 2018. Compiling with Continuations and LLVM.
arXiv preprint arXiv:1805.08842 (2018).

[7] Sebastian Graf and Simon Peyton Jones. 2019. Selective Lambda Lifting. CoRR
abs/1910.11717 (2019). arXiv:1910.11717 http://arxiv.org/abs/1910.11717

[8] Simon Højberg, Paul Chiusano, Stew O’Conner, John Ericson, Mitchell Rosen,
Travis Staton, Vladislav Zavialov, and Noah Haasis. 2023. unison. https://github.
com/unisonweb/unison.

[9] Simon L. Peyton Jones. 1992. Implementing lazy functional languages on stock
hardware: the Spineless Tagless G-machine. Journal of Functional Programming 2,
2 (1992), 127–202. https://doi.org/10.1017/S0956796800000319

[10] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. (2004), 75–88. https://doi.org/10.
1109/CGO.2004.1281665

[11] Brian Andrew Leibig. 2013. An LLVM Back-end for MLton. Department of
Computer Science, B. Thomas Golisano College of Computing and Information
Sciences, Tech. Rep. https://api.semanticscholar.org/CorpusID:62345781

[12] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. 1991. Functional Program-
ming with Bananas, Lenses, Envelopes and Barbed Wire. In Functional Program-
ming Languages and Computer Architecture, 5th ACM Conference, Cambridge, MA,
USA, August 26-30, 1991, Proceedings (Lecture Notes in Computer Science, Vol. 523),
John Hughes (Ed.). Springer, 124–144. https://doi.org/10.1007/3540543961_7

[13] Torben Æ. Mogensen. 1992. Efficient Self-Interpretations in lambda Calculus. J.
Funct. Program. 2, 3 (1992), 345–363. https://doi.org/10.1017/S0956796800000423

[14] Peter Podlovics, Csaba Hruska, and Andor Pénzes. 2021. A Modern Look at GRIN,
an Optimizing Functional Language Back End. Acta Cybern. 25, 4 (2021), 847–876.
https://doi.org/10.14232/ACTACYB.282969

[15] Amr Sabry and Matthias Felleisen. 1993. Reasoning about Programs in
Continuation-Passing Style. LISP Symb. Comput. 6, 3-4 (1993), 289–360.

[16] Camil Staps, John van Groningen, and Rinus Plasmeijer. 2021. Lazy Interworking
of Compiled and Interpreted Code for Sandboxing and Distributed Systems. In
Proceedings of the 31st Symposium on Implementation and Application of Functional
Languages (Singapore, Singapore) (IFL ’19). Association for Computing Machinery,
New York, NY, USA, Article 9, 12 pages. https://doi.org/10.1145/3412932.3412941

[17] Luc Tielen. 2022. How to lower an ir? https://luctielen.com/posts/how-to-lower-
an-ir/

6

https://doi.org/10.1145/359576.359579
https://doi.org/10.1007/3-540-63237-9_19
https://doi.org/10.4230/LIPICS.ECOOP.2021.9
https://arxiv.org/abs/1910.11717
http://arxiv.org/abs/1910.11717
https://github.com/unisonweb/unison
https://github.com/unisonweb/unison
https://doi.org/10.1017/S0956796800000319
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://api.semanticscholar.org/CorpusID:62345781
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1017/S0956796800000423
https://doi.org/10.14232/ACTACYB.282969
https://doi.org/10.1145/3412932.3412941
https://luctielen.com/posts/how-to-lower-an-ir/
https://luctielen.com/posts/how-to-lower-an-ir/

	Abstract
	1 Introduction
	1.1 RQ1
	1.2 RQ2
	1.3 RQ3

	2 Related Work
	3 Methodology
	3.1 Features
	3.2 ANF
	3.3 Recursion schemes
	3.4 Variable Substitution

	4 Results
	4.1 Haskell Parser
	4.2 Recursion Schemes
	4.3 Variable Substitution

	5 Future Work
	5.1 Defunctionalization
	5.2 LLVM translation
	5.3 Optimizations
	5.4 I/O
	5.5 Example language

	6 Discussion
	6.1 ANF
	6.2 Recursion schemes & variable substitution

	7 Conclusion
	8 Acknowledgements
	References

