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Summary

Peristaltic pumps are used for transporting liquids within disposable tubes and are commonly found in
medical devices. A rotating pump wheel with several rollers is placed against the tube, such that a certain
amount of liquid is trapped between two consecutive rollers and subsequently ”pushed” through the tube.
The peristaltic pump principle, however, introduces disturbances, thereby distorting the desired rotational
speed of the pump. Demcon recently developed a peristaltic pump for one of its medical devices. The
pump uses linear proportional plus double integral (PI2) control to reject the aforementioned disturbances.
However, linear control suffers from fundamental trade-offs between performance and stability, thereby posing
limits on disturbance rejection. To further improve upon disturbance rejection of the peristaltic pump, this
thesis proposes both a hybrid and a disturbance-observer-based control strategy.

The hybrid control strategy makes use of the hybrid integrator-gain system (HIGS). The HIGS can be
exploited for constructing nonlinear filter elements that mimic the amplification characteristics of classical
linear filters such as integrators and low-pass filters, but with reduced phase lag. From a design point-
of-view, these HIGS-based filters provide additional freedom in controller tuning as gain and phase are
no longer related via Bode’s gain-phase relationship. This, in turn, allows for achieving higher bandwidths
and improved disturbance rejection capabilities without compromising transient performance and robustness
margins.

This thesis presents a novel HIGS-based PI2 controller that reduces the steady-state error of the motor
speed while additionally improving transient performance and maintaining robustness margins compared to
linear PI2 control. An initial design is presented by means of a conference paper. Subsequent thorough
analysis of HIGS-based PI2 controller design resulted in a structured tuning methodology for HIGS-based
PI2 controllers, eventually presenting an improved design compared to the paper. Simulation studies indicate
comparable performance at higher speeds but up to 24.7% improvement in root-mean-square (RMS) value
at lower speeds with the new HIGS-based PI2 design compared to the HIGS-based PI2 design from the
paper. Experimental validation of the new design on the peristaltic pump demonstrates up to 30.1% RMS
improvement over linear PI2 control, with additional transient improvements up to 50.0% in overshoot for
similar rise time, all while maintaining the same robustness margins.

The disturbance-observer-based control strategy considered is called inversion-based disturbance-observer-
based control (IBDOBC). The basic idea behind IBDOBC is to estimate input disturbances and/or uncer-
tainties using an inverse nominal plant model and directly compensate the controller output with the es-
timate. IBDOBC is an addition to a conventional feedback controller, which could for example be linear
or HIGS-based. The feedback controller can conventionally be designed according to tracking performance
specifications and stability, whilst IBDOBC is used to further reject disturbances and suppress uncertainties.
This thesis presents an IBDOBC design that allows for reducing the steady-state error of the motor speed
of the peristaltic pump. Experimental validation of the IBDOBC design in combination with linear PI2
control showed improvements up to 44.8% in terms of RMS value compared to linear PI2 control, whereas
the IBDOBC design in combination with HIGS-based PI2 control showed improvements up to 50.5%.
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Chapter 1

Introduction

1.1 Peristaltic pumps

Peristaltic pumps are used for the transport of liquids within plastic tubes. A rotating pump wheel with
several rollers is placed against the tube, such that a certain amount of liquid is trapped between two
consecutive rollers and subsequently ”pushed” through the tube [1]. Because there is no direct contact
between the pump wheels and the fluid, there is no chance of fluid contamination. Therefore, typical
applications of peristaltic pumps can be found in medical devices where the flow goes through disposable
tubes [2, 3].

A downside of peristaltic pumps is the occurrence of flow and pressure ripples in the fluid, which is inherent
to the peristaltic pump principle. The periodicity of these ripples directly depends on the rotational speed
of the pump and their presence distorts this speed. Besides, effects such as non-perfect commutation of the
(brushless) DC motor and friction can further disturb the desired motor speed. In this thesis, all effects
contributing to these ripples/pulsations about the desired motor speed are referred to as the pump ripple.

Recently, Demcon developed a peristaltic pump for one of its medical devices, schematically shown in
Figure 1.1. With the current linear feedback controller, the aforementioned pump ripple is strongly visible
in typically measured performance plots. This is illustrated in the time domain in Figure 1.2a, where a
clear pulsation effect about the setpoint value of 3 rotations per second (rps) can be observed. Figure 1.2b
shows the corresponding amplitude spectrum, indicating several pump ripple frequencies. A dominant peak
is visible at 12 Hz, which is 4 times the setpoint speed in rps. The factor 4 follows from the fact that there
are 8 pump wheels per rotation and there is a transmission ratio of 2 between the two pulleys within the
pump, hence the ratio 8/2 = 4. Higher harmonics of this effect in Hz occur at every multiple of 4 of the
setpoint speed in rps. These peaks are physically a result of the varying resistance between rollers and tube.
During pump motion, rollers are continuously engaging with and disengaging from the tube. A sudden
increase in resistance is observed upon impact of a roller, whereas the resistance is lost when a roller gets
released. Rollers are not placed symmetrically onto the tube, such that engaging and disengaging do not
occur at the exact same time instances. Besides, both phenomena might physically not be the exact same
effect. Furthermore, Figure 1.2b shows peaks related to non-perfect commutation. The brushless DC motor
uses 3-phase sinusoidal commutation, leading to peaks in Hz at multiples of 3 times the setpoint speed in
rps.

Figure 1.1: Schematic representation of the peristaltic pump developed by Demcon. The actuator is fixed
onto the small pulley on the left, whereas a pump wheel with eight rollers is secured onto the larger pulley
on the right.
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Figure 1.2: Typical pump speed measurement represented (a) in the time domain and (b) in an amplitude
spectrum using linear PI2 control.

1.2 Trade-offs in linear PID control design

Linear PID control is widely acknowledged in industry for its simplicity in implementation and limited
complexity, while it achieves the desired performance for the majority of mechatronic systems [4]. Currently,
the peristaltic pump developed by Demcon uses linear proportional plus double-integral (PI2) to control its
speed. The double integral action is used to realize a low sensitivity function at lower frequencies to strongly
reject the pump ripple. However, the addition of integral action to the controller directly comes at the
cost of an increased sensitivity in other frequency ranges, at the cost of performance. This is an inevitable
consequence of the Bode sensitivity integral, often referred to as the “waterbed effect” [5]. At the same time,
integral action inevitably adds 90 degrees of phase lag to the system, posing limitations on (robust) stability.
This is a result of Bode’s gain-phase relationship, stating that the phase of the frequency response of a linear
system is completely determined by its magnitude characteristics and vice versa [6]. Besides suffering from
limitations in the frequency domain, time-domain limitations also pose restrictions, as adding integral action
to the controller could result in overshoot in the step response of the system [5], for example.

1.3 Hybrid control as possible solution

An interesting development in the high-precision industry, where disturbance rejection also plays a crucial
role, is the use of the hybrid integrator-gain system (HIGS) within typical motion control architectures
[7, 8]. The HIGS can be exploited for constructing nonlinear filter elements that mimic the amplification
characteristics of classical linear filters such as integrators and low-pass filters, but with reduced phase lag.
From a design point-of-view, these HIGS-based filters provide additional freedom in controller tuning as gain
and phase are no longer related via Bode’s gain-phase relationship. This, in turn, allows for achieving higher
bandwidths and improved disturbance rejection capabilities, without compromising transient performance
and robustness margins [7].

A HIGS-based controller can be designed using conventional loop-shaping techniques, where the HIGS is
approximated in the frequency domain using so-called describing function analysis [9]. However, depending
on the severity of nonlinearity with the HIGS-based controller, there might be discrepancies between the
expected performance based on these frequency domain approximations and the actual time domain per-
formance [10], such that additional tuning based on time domain information might be necessary, see for
example [11].

1.4 Disturbance-observer-based control as possible solution

A common approach to further improve disturbance rejection performance compared to conventional linear
PID feedback control involves the addition of a disturbance observer. Disturbance observers reconstruct
disturbances from measurable variables, after which the reconstruction is used to determine a control action
to compensate for the effect of the disturbances. Uncertainties are typically lumped together with the
disturbances, such that these are also compensated for [12, 13]. The conventional feedback controller can
generally be designed according to tracking performance specifications and stability, whilst the disturbance
observer can separately be designed to further reject disturbances and suppress uncertainties [14].

This thesis considers a disturbance-observer-based control approach called inversion-based disturbance-
observer-based control (IBDOBC) [15]. IBDOBC makes use of an inverse nominal plant model to reconstruct
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input disturbances and uncertainties, eliminating the need for their direct measurement which could be ex-
ceedingly complex or unfeasible. The method is suited for both periodic and non-periodic input disturbances.
The pump ripple is a primarily periodic effect with quite well-understood dynamics in terms of frequency,
amplitude and phase. Note that control methods like repetitive control therefore also seem suited, as these
are specifically useful against periodic disturbances [16]. However, the dynamics of the pump ripple of the
peristaltic pump developed by Demcon can vary quite strongly due to the use of cheap disposable tubes. Be-
sides, the pump is practically used in a relatively unpredictable environment, such that additional unforeseen
(non-periodic) disturbances could be present, justifying the use of IBDOBC.

1.5 Research objective

This thesis aims to further reduce the steady-state setpoint error of the motor speed of the peristaltic pump
developed by Demcon using HIGS-based PI2 control and using IBDOBC. With HIGS-based PI2 control, the
goal is additionally to maintain the same robustness margins compared to linear PI2 control. Three control
designs will be considered:

• HIGS-based PI2 control;

• IBDOBC & linear PI2 control;

• IBDOBC & HIGS-based PI2 control.

The measures to quantify performance are given by:

• The root-mean square (RMS) value of the steady-state setpoint error in the time domain, computed

as
√

1
N

∑N
i=1 |ei(t)|2, where ei is the ith sample of the setpoint error with i ∈ [1, N ], N the number of

samples;

• A cumulative power spectral density plot of the steady-state setpoint error.

The main research question of this thesis is formulated as follows:

How is the steady-state performance of the peristaltic pump developed by Demcon improved using HIGS-
based PI2 control and using IBDOBC combined with either linear or HIGS-based PI2 control?

The subquestions are given by:

1. What is a suitable plant and pump ripple model design for the peristaltic pump developed by Demcon?

2. How can a HIGS-based PI2 controller be systematically designed and tuned?

3. What is a suitable IBDOBC design that can be combined with both linear and HIGS-based PI2 control
for the peristaltic pump developed by Demcon?

1.6 Outline

The remainder of this thesis is divided into four chapters. Chapter 2 provides a nominal plant and pump
ripple model of the peristaltic pump developed by Demcon. Chapter 3 starts with a conference paper
presenting an initial HIGS-based PI2 controller design for the pump. The chapter subsequently contains
several extensions to the paper, resulting in a systematic tuning methodology for HIGS-based PI2 controllers,
eventually presenting an improved design compared to the paper. Chapter 4 presents an IBDOBC design
for the peristaltic pump developed by Demcon. Chapter 5 provides a reflection of the obtained results by
summarizing the main conclusions of this thesis along with recommendations for future research.



Chapter 2

Modeling

2.1 Introduction

This chapter first presents a nominal plant model of the peristaltic pump recently developed by Demcon
(Section 2.2). Then, the dynamics of the pump ripple are reconstructed from measurements, after which an
analytical model of the pump ripple is derived (Section 2.3). The plant and pump ripple model are used to
design, analyze and validate the controllers designed in this thesis.

2.2 Nominal plant model

The peristaltic pump is shown in Figure 2.1. It consists of a pulley with eight rollers that are used to
compress a tube that carries fluids. The pulley is driven by a gear belt that is connected to another pulley
at the motor side. Typically, two to three rollers compress the tube simultaneously. The pump speed is
measured indirectly by differentiating the signal coming from the encoder installed at the motor shaft. A
spring-loaded tensioner provides tension within the belt.

A simplified model of the peristaltic pump is shown in Figure 2.2. Here, J1 = 7.8 · 10−6 kgm2 denotes
the combined inertia of the motor and small pulley with radius r1 = 8.2 · 10−3 m. J1 is connected to the
fixed world by means of a rotational damper with damping constant c = 4.5 · 10−3 Nms/rad, representing
viscous damping of the motor. The gear belt is modeled with translational stiffness k = 6.8 · 104 N/m and
damping d = 5 Ns/m. The large pulley has inertia J2 = 15.5 · 10−6 kgm2 with radius r2 = 17 · 10−3 m.
The angular displacements of the small and large pulley are denoted by θ1 and θ2, respectively. A motor
torque T is generated by voltage U , which will be used to accurately control the angular velocity of the
small pulley, denoted by θ̇1, to a desired speed θ̇r. The tensioner is not taken into account in the model,
because experiments show that its dynamics become apparent above 400 Hz, which is sufficiently far beyond
the required system bandwidth. Using first-principles modeling, the relation between voltage U and angular

(a)

Rollers

Tube

Gear belt

Pulley

(b)

Figure 2.1: Experimental setup of the peristaltic pump including (a) a front view and (b) a zoomed
isometric view.
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Figure 2.3: Modeled and measured frequency response function from input voltage U in %-duty cycle to
output motor speed θ̇1 in rps.

velocity θ̇1 is given by θ̇1(s) = Pn(s)U(s), with

Pn(s) =
1

2π

1

Jtots+ c

1
ω2

a
s2 + 2 ζa

ωa
s+ 1

1
ω2

r
s2 + 2 ζr

ωr
s+ 1

︸ ︷︷ ︸
Mechanical domain

92

100

ωact

s+ ωact
e−sts ,

︸ ︷︷ ︸
Electrical domain

(2.1)

where Jtot = J1+J2(
r1
r2
)2 = 11.4·10−6 kgm2, ωa =

√
2kr22
J2

= 253·2π rad/s, ωr ≈
√

2kr21Jtot

J1J2(
r1
r2

)2
= 306·2π rad/s,

ζa = 0.062, ζr = 0.12. Constant 1
2π is required rewrite θ̇1 from rad/s to rotations per second (rps), whilst

constant 92
100 is required to rewrite torque T in Nm to voltage U in %-duty cycle. Furthermore, ωact = 80 ·2π

rad/s represents the induction pole of the voltage-controlled brushless DC-motor. One computational sample
delay of ts = 0.001 s is taken into account to match the behavior of the digital platform that is used to
control the system. The model is discretized using the zero-order-hold method. Delay as a result of discrete
differentiation of the encoder signal is additionally taken into account. The discretized nominal plant model
is finally given by

Pn(z) =
113

100

(z + 2.55)(z − 1)(z + 0.22)(z2 + 0.046z + 0.83)

z2(z − 0.67)(z − 0.60)(z − 1)(z2 + 0.51z + 0.64)
. (2.2)

A Bode plot of Pn(z) is shown in Figure 2.3, along with a measured frequency response function. At
lower frequencies, the plant behavior is characterized by the motor damping c. At higher frequencies, the
inertia line 1

Jtots
is visible with an internal anti-resonance and resonance caused by the gear belt.

Furthermore, the observed rotational speed θ̇1 suffers from a quantization effect as result of a finite
encoder resolution of 4096 pulses per rotation. The encoder is a two-channel encoder, meaning it has a total
number of states of 4 · 4096, such that for a single rotation, the positional resolution equals 1

4·4096 rotation.
Dividing the positional resolution by the sample time ts = 0.001 s subsequently gives a rotational speed
resolution equal to 0.061 rps. The effect is independent of the rotational speed of the motor, such that
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Figure 2.4: General block scheme of feedback control.

discrete steps of 0.061 rps (or a multiple of 0.061 rps) can be expected at every rotational speed. This effect
is included in the simulations in this thesis.

2.3 Pump ripple model

In this section, the dynamics of the pump ripple are reconstructed from measurements, after which an
analytical linear model of the pump ripple as function of setpoint speed is derived.

2.3.1 Reconstruction

Consider the block scheme in Figure 2.4, with linear feedback controller C, plant P , reference r, error e,
controller output u, input disturbances d and output y. In this thesis, plant uncertainties are lumped into
the input disturbances, such that the pump ripple is considered part of the input disturbances. A relation
for input disturbances d is given by

d(z) = P−1(z)y(z)− u(z). (2.3)

Parameters y and u can be obtained from measurements, whilst the real plant P can be estimated with
nominal model Pn (2.2). However, Pn has a relative degree of 3, such that its inverse has a relative degree
of -3 and therefore is non-proper. Besides, Pn contains a non-minimum phase zero (z = 2.55), such that
inversion results in an unstable transfer function.

To obtain a stable inverse nominal plant model, P−1
n is appended with LTI filter Q, which effectively

cancels the unstable pole in P−1
n and replaces it by a similar stable term. Additionally, the Q-filter includes

as many delays as needed to ensure properness of QP−1
n . Input disturbances d are subsequently estimated

as

d̂(z) = Q(z)P−1
n (z)y(z)−Q(z)u(z). (2.4)

Note that additionally u is multiplied by the Q-filter. This is to ensure coherence between the first and
second term in 2.4 [15]. The Q-filter design itself is given by

Q(z) =
Bu(z)

B∗
u(z)

1

z3
, (2.5)

with

Bu = z + 2.55, (2.6)

and B∗
u representing the adjoint of Bu, i.e. B∗

u(z) = Bu(1/z). Multiplying with Bu cancels the unstable
pole in the inverse nominal plant model (2.2), whereas dividing by B∗

u ensures the magnitude characteristics
remain unchanged. Three sample delays are added to ensure properness. An analysis on the performance of
different Q-filter designs can be found in the appendix in Section 2.5.

Finally, (2.4) can be solved to obtain an estimate of the input disturbances, and thus of the pump ripple.
For this, steady-state measurements of u and y are used, which were obtained using controller (3.5). The
result is shown in Figure 2.5. The left column in Figure 2.5 shows a sample of 1 second in the time domain.
One should note that higher frequency contributions are less accurately reconstructed, as indicated in Figure
2.9 in the appendix in Section 2.5. The right column Figure 2.5 shows a sample of 90 s from the steady state
presented in an amplitude spectrum. For reasons of clarity, only frequencies up to 60 Hz are shown.

The largest peak in Hz for each setpoint speed occurs at 4 times the setpoint speed in rps, similar as
found in Section 1. The peak is related to the varying resistance/friction between rollers and tube. Higher
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(e) 5; to (f) 6 rps represented (left column) in the time domain and (right column) in an amplitude spectrum.
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Figure 2.6: Amplitudes of the four different contributions used for the pump ripple model obtained from
the amplitude spectrum in Figure 2.5, along with a 1st-order polynomial fit.

harmonics of this effect in Hz seem to occur and every multiple of 4 of the setpoint speed in rps, where
the first higher harmonic shows the largest peak for all 6 setpoint speeds. All six setpoint speeds also
have a significant peak at 0 Hz, although not clearly visible in Figure 2.5, indicating an offset. The main
contribution to this offset seems to be the constant resistance/friction between rollers and tube, since there
are two rollers attached to the tube at all times. Furthermore, similar as found in Section 1, peaks in Hz at
a multiple of 3 times the setpoint speed in rps can be expected as a result of non-perfect commutation. The
third harmonic of this effect, occurring at 9 times the setpoint speed in rps, shows the largest peak for this
effect.

2.3.2 Modeling

Using the reconstructed pump ripple dynamics, a model for the pump ripple can be made. Common for all
six setpoint speeds in Figure 2.5 are the three largest peaks in Hz at a factor 0, 4 and 8 times the setpoint
speed in rps, which all seem to be a result of (varying) resistance/friction due to the peristaltic effect. These
three main contributions are used for the pump ripple model. Then, especially for setpoint speeds larger
than 1 rps, there is a significant contribution at 9 times the setpoint speed in rps relative to the other peaks,
which seems a result of non-perfect commutation. Especially at speeds, and thus higher frequencies, where
bandwidth limits might arise and plant roll-off is limited, the effect of these peaks could become significant.
This contribution is therefore included in the model. Including these four contributions is expected to give
a sufficiently accurate model, such that all other contributions are neglected.

The amplitudes of the four considered contributions in the amplitude spectra in Figure 2.5 (right column)
are plotted as grey dots in Figure 2.6 for each of the six setpoint speeds. A 1st-order least-squares polynomial
is fitted to the data, which minimizes the sum of offsets between the data points and a 1st-order function. The
1st-order approximation is considered sufficiently accurate. The four polynomial fits are used to construct a
linear pump ripple model as function of speed ω. The final model (in Nm) is given by

dripple(ω) :

{
0, if ω = 0,

A0(ω) +A1(ω) sin(8ωπt) +A2(ω) sin(16ωπt) +A3(ω) sin(18ωπt), if ω > 0,
(2.7)

where ω represents speed, A0(ω) represents the peak in Hz at factor 0 times the setpoint speed in rps, given
by

A0(ω) = 0.0011ω − 0.070, (2.8)

A1(ω) the peak in Hz at factor 4 times the setpoint speed in rps, given by

A1(ω) = −0.0018ω − 0.025, (2.9)

A2(ω) the peak in Hz at factor 8 times the setpoint speed in rps, given by

A2(ω) = 0.000078ω − 0.011, (2.10)

and A3(ω) the peak in Hz at factor 9 times the setpoint speed in rps, given by

A3(ω) = −0.00067ω − 0.00041. (2.11)

Note that the three sinusoids in (2.7) all have a relative phase of zero, which was obtained through manual
fitting. Besides, it should be noted that the model is based on steady-state measurement data, such that it
might be less accurate in transient periods. The pump ripple model (2.7) is finally illustrated in Figure 2.7
and shown in comparison to the reconstructed pump ripple (2.4).
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Figure 2.7: Pump ripple model dripple (black) along with the reconstructed input disturbances d̂ (gray)
for setpoint speeds ranging from (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; to (f) 6 rps represented (left column) in the
time domain and (right column) in an amplitude spectrum.
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and ZMETC. Note that, compared to 2.16, 2.17 and 2.18, the three expressions are additionally multiplied
with P−1

n (z).

2.4 Conclusions

This chapter presented a nominal plant model of the peristaltic pump recently developed by Demcon. Be-
sides, the dynamics of the pump ripple were reconstructed from measurements, after which an analytical
linear model of the pump ripple as function of setpoint speed was derived, consisting of the main harmonic
contributions of the reconstructed pump ripple.

2.5 Appendix: Q-filter design

Three different Q-filter designs based on literature are considered, being NPZ-ignore (ignore unstable zeros),
ZPETC (match phase) and ZMETC (match gain) [17]. Matching phase with ZPETC comes at cost of
deviating in phase, while matching gain with ZMETC comes at cost of deviating in phase. NPZ-ignore is a
compromise between both methods, where neither gain nor phase is matched, but deviations in phase and
gain are less than with ZMETC and ZPETC, respectively.

Mathematically, this is realized as follows. First, nominal plant model Pn (2.2) is written in the form

Pn(z) =
113

100

Bs(z)Bu(z)

A(z)
, (2.12)

with Bs containing the stable zeros of the numerator, given by

Bs(z) = (z − 1)(z + 0.22)(z2 + 0.046z + 0.83), (2.13)

Bu the unstable zeros of the numerator, given by

Bu(z) = z + 2.55, (2.14)

and with A the denominator, given by

A(z) = z2(z − 0.67)(z − 0.60)(z − 1)(z2 + 0.51z + 0.64). (2.15)

The three different Q-filter designs are subsequently given by

NPZ-ignore =
Bu(z)

Bu(1)

1

z3
, (2.16)

ZPETC =
Bu(z)B

∗
u(z)

B2
u(1)

1

z3
, (2.17)

ZMETC =
Bu(z)

B∗
u(z)

1

z3
, (2.18)
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where B∗
u(z) indicates the adjoint of Bu(z), i.e. B

∗
u(z) = Bu(1/z). Each method requires three sample delays

to ensure properness of Q(z)P−1
n (z).

The models are plotted in Figure 2.8. Note that P−1
n is plotted here just as reference and cannot be

implemented in practice because it is unstable and non-proper. As expected, ZMETC has identical magnitude
as P−1

n , but deviates in phase. Although not clearly visible Figure 2.8, ZPETC would have identical phase
as P−1

n , but due to the three sample delays its phase differs exactly three sample delays. And finally, NPZ-
ignore shows behavior which can be considered in between ZMETC and ZPETC both in magnitude and
phase.

To make a proper choice between the three methods, the error between the actual input disturbances d
and the estimated input disturbances d̂ is evaluated for each of the three methods. A low error is desired
at lower frequencies, as the pump ripple mainly has lower frequency contributions. For this, a cumulative
power spectral density (cPSD) plot is used. Using (2.3) and (2.4), and estimating P with Pn, a formulation
of the error is given by

derror(z) = P−1
n (z)y(z)− u(z)− (Q(z)P−1

n (z)y(z)−Q(z)u(z)),

= (1−Q(z))(P−1
n (z)y(z)− u(z)), (2.19)

where Q is either (2.16), (2.17) or (2.18). To obtain the power spectral density (PSD) of the error, derror(z)
is rewritten as

derror(z)d
H
error(z) = (1−Q(z))(P−1

n (z)y(z)− u(z))dHerror(z), (2.20)

(2.21)

where H indicates the Hermitian. The resulting cPSD-plot for setpoint speeds ranging from 1 to 6 rps is
given in Fig. 2.9. For all speeds, ZMETC shows the lowest error at lower frequencies, approximately up to
200 Hz. ZMETC is therefore finally chosen for Q in (2.5).
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Figure 2.9: Cumulative power spectral density plot of the disturbance estimation error (2.20) with NPZ-
ignore, ZPETC and ZMETC for setpoint speeds ranging from (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; to (f) 6 rps
represented (left column) on a linear scale from 0 to 60 Hz and (right column) on a logarithmic scale from
60 to 500 Hz.



Chapter 3

Hybrid integrator-gain-based control

3.1 Introduction

This chapter presents a HIGS-based PI2 controller design for the purpose of reducing the steady-state
setpoint error of the motor speed of the peristaltic pump setup shown in Figure 2.1 compared to linear PI2
control while at least maintaining the same robustness margins. It first covers a conference paper in which a
HIGS-based PI2 controller design is presented for the peristaltic pump (Section 3.2). Next, some extensions
with respect to the paper are presented regarding HIGS-based integrator design (Section 3.3) and HIGS-
based PI2 controller design (Section 3.4). The analyses are based on simulations, eventually proposing an
improved HIGS-based PI2 controller design compared to the paper. Performance with the new HIGS-based
PI2 controller is subsequently compared to the performance with the HIGS-based PI2 controller from the
paper using simulations (Section 3.5), after which the performance with the new HIGS-based PI2 controller
is also experimentally validated on the peristaltic pump setup shown in Figure 2.1 (Section 3.6), followed by
a summary of the main conclusions from this chapter (Section 3.7).

3.2 Conference paper

The conference paper presented below is a first submission for the 2024 American Control Conference held in
Toronto. Some content of the paper might overlap with other parts of this thesis. The main contributions of
Thijs Tijman op Smeijers are Section II-B which describes the performance limitations of the linear controller,
Section III-B which describes the HIGS-based controller architecture, design of the HIGS weighing filters and
fine-tuning of the controller parameters, and Section IV which describes the implementation of the HIGS-
based controller on the experimental setup including an in-depth analysis of the results. Michiel Beijen has
initiated the idea of applying HIGS-based control to the peristaltic pump and has written the introduction
(Section I) and the main conclusions (Section V). Gijs Boerrigter has written the modeling part in Section II-
A and co-supervised Thijs together with Michiel during his graduation project. Sebastiaan van den Eijnden
has written the theoretical backgrounds of HIGS in Section III-A and supported with embedding this specific
contribution of HIGS-based control into the existing knowledge of HIGS-based control in literature.
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Hybrid control of a variable-speed peristaltic pump

Michiel Beijen1,2, Thijs Tijman op Smeijers1,2, Gijs Boerrigter2 and Sebastiaan van den Eijnden3

Abstract— Peristaltic pumps are used for transporting liquids
within disposable tubes, and are commonly found in medical
devices. The peristaltic pump principle, however, introduces
disturbances, thereby distorting the desired rotational speed
of the pump. Proportional plus double integral (PI2) control
is commonly used to reject these disturbances, but at the
cost of deteriorated transient response and robustness margins.
To balance these trade-offs in a more desirable manner, in
this paper we propose a hybrid PI2 control strategy that
allows for reducing the steady-state error while maintaining
robustness margins similar to linear PI2 control. Experiments
on a representative setup demonstrate up to 45% improvement
in disturbance rejection capabilities.

I. INTRODUCTION

Peristaltic pumps are used for transport of liquids within
plastic tubes. A rotating pump wheel with several rollers is
placed against the tube, where the rollers “push” the flow
forward [1]. Because there is no direct contact between
the pump wheels and the fluid, there is no chance of fluid
contamination. Therefore, typical applications of peristaltic
pumps can be found in medical devices where fluid goes
through disposable tubes [2], [3].

Due to the peristaltic pump principle, flow and pressure
ripples occur in the fluid whose periodicity directly depends
on the rotational speed of the pump and which distort this
speed. Besides, effects such as non-perfect commutation of
the brushless DC motor, friction and transient effects due
to continuous setpoint variations further disturb the desired
motor speed. For controlling the motor speed to a desired
setpoint, classical linear methods such as PI(2)D control
are typically used [3]. Linear control, however, suffers from
fundamental trade-offs between performance and robustness
properties [4], thereby limiting the extent to which pump
ripples can be attenuated.

Several advanced control techniques have been considered
to balance these trade-offs in a more desirable manner, and
improve the rejection of pump speed disturbances. An at-
tempt with fuzzy control has been considered in [3] but in the
same work it was concluded that PID control outperformed
the fuzzy controller. In [5], [6], [7], repetitive controllers
are proposed which use sampling in the spatial domain
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PROACTHIS, no. 101055384.

1Department of Engineering Technology, Group of Precision Engineer-
ing, University of Twente, PO Box 217, 7500 AE Enschede, The Nether-
lands m.beijen@utwente.nl.

2Demcon high-tech systems, Institutenweg 25, 7521 PH Enschede, The
Netherlands.

3Department of Mechanical Engineering, Control Systems Technology
Group, Eindhoven University of Technology, PO Box 513, 5600 MB
Eindhoven, The Netherlands.

to suppress periodic disturbances, and in [8] a repetitive
controller with adaptation capabilities has been proposed.
However, such repetitive controllers are only intended for
specific disturbances and require a priori knowledge of the
disturbance characteristics. Moreover, it takes time to let
these controllers “learn” the optimal magnitude and phase
characteristics of the compensating signal. A disturbance
observer along with repetitive control has been proposed in
[9], and a similar disturbance observer approach has been
considered in [10] to reject periodic disturbances in brushless
DC motors. In [2] an extended Kalman filter is applied to
control the pressure in a medical device using an observer-
based signal instead of a direct measurement. However,
such observer-based methods also require assumptions on the
underlying disturbance models which are not always easy to
obtain, especially within an unpredictable environment.

An interesting development in the high-precision industry,
where robustness and disturbance rejection also play a crucial
role, is the use of hybrid integrator-gain systems (HIGS)
within typical motion control architectures [11], [12]. HIGS
can be exploited for constructing nonlinear filter elements
that mimick the amplification characteristics of classical
linear filters such as integrators and low-pass filters, but
with reduced phase lag. From a design point-of-view, these
HIGS-based filters provide additional freedom in controller
tuning as gain and phase appear to be no longer related.
This, in turn, allows for achieving higher bandwidths and
improved disturbance rejection capabilities, without compro-
mising transient performance and robustness margins [11].

So far, HIGS-based controllers have mainly been con-
sidered for control of high-precision motion systems that
operate in predictable and contained environments [12], [13].
The main contribution of this paper is to demonstrate the
feasibility of HIGS-based controllers on less predictable
systems. Specifically, we aim to improve the performance
of peristaltic pumps equipped with disposable tubes without
using a priori knowledge of the disturbances. An intuitive
replacement of an existing linear PI2 controller by its HIGS-
based counterpart is proposed to improve the system band-
width and broad-band disturbance rejection, while preserv-
ing the same transient performance and robustness margins
as obtained with linear control. The performance gain of
HIGS-based controllers is demonstrated experimentally on a
representative peristaltic pump setup.

The remainder of this paper is organized as follows.
Section II describes the application at hand and the currently
implemented linear controller. HIGS-based controller design
is discussed in Section III. The results of experimental vali-
dations are presented in Section IV, and the main conclusions
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are given in Section V.

II. LINEAR CONTROL OF A PERISTALTIC PUMP

In this section, we will introduce the peristaltic pump
and derive a mathematical model of the system. Moreover,
we will discuss the baseline linear control strategy for this
application, and showcase some of the resulting trade-offs
which motivate the use of a HIGS-based control strategy.

A. Mathematical model

The peristaltic pump considered in this paper is shown in
Fig. 1 and consists of a pulley with eight rollers that are used
to compress a tube that carries fluids. The pulley is driven
by a gear belt that is connected to another pulley at the
motor side. Typically, two to three rollers compress the tube
simultaneously. The pump speed is measured indirectly by
differentiating the signal coming from the encoder installed
at the motor shaft.

A simplified model of the system is shown in Fig. 2. Here,
J1 = 7.8 · 10−6 kgm2 denotes the combined inertia of the
motor and small pulley with radius r1 = 8.2 · 10−3 m. J1
is connected to the fixed world by means of a rotational
damper with damping constant c = 4.5 · 10−3 Nms/rad,
representing viscous damping of the motor. The gear belt
is modeled with translational stiffness k = 6.8 · 104 N/m
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Fig. 3: Modeled and measured frequency response function
from input voltage U to output motor speed θ̇1.

and damping d = 5 Ns/m. The large pulley has inertia
J2 = 15.5 · 10−6 kgm2 with radius r2 = 17 · 10−3 m.
The angular displacements of the small and large pulley are
denoted by θ1 and θ2, respectively. A motor torque T is
generated by voltage U , which will be used to accurately
control the angular velocity of the small pulley, denoted by
θ̇1, to a desired speed θ̇r. Using first-principles modeling, the
relation between voltage U and angular velocity θ̇1 is given
by θ̇1(s) = P (s)U(s) with

P (s) =
1

2π

1

Jtots+ c

1
ω2

a
s2 + 2 ζa

ωa
s+ 1

1
ω2

r
s2 + 2 ζr

ωr
s+ 1

92

100

ωact

s+ ωact
e−sts ,

(1)
where Jtot = J1 + J2(

r1
r2
)2 = 11.4 · 10−6 kgm2, ωa =√

2kr22
J2

= 253 · 2π rad/s, ωr ≈
√

2kr21Jtot

J1J2(
r1
r2

)2
= 306 · 2π rad/s,

ζa = 0.062, ζr = 0.12. Constant 1
2π is required rewrite θ̇1

from rad/s to rotations per second (rps), whilst constant 92
100

is required to rewrite torque T in Nm to voltage U in %-
duty cycle V. Furthermore, ωact = 80·2π rad/s represents the
induction pole of the voltage-controlled brushless DC-motor.
One computational sample delay of ts = 0.001 s is taken into
account to match the behavior of the real-time platform. The
plant model is discretized using the zero-order-hold method.
A Bode plot of the modeled response from input voltage U
to output motor speed θ̇1 is shown in Fig. 3, along with a
measured frequency response function. At lower frequencies,
the plant behavior is characterized by the motor damping.
At higher frequencies, the inertia line 1

Jtots
is visible with

an internal anti-resonance and resonance caused by the gear
belt. The model (1) provides valuable insights in the true
system behavior and will be used for controller design in
the next section.
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linear PI2 controller.

B. Linear control design and performance tradeoffs

The control objective considered in this paper is to reduce
the steady-state setpoint error e(t) = θ̇1(t) − θ̇r(t) using
feedback control. We consider the following performance
measures:

• Peak-to-peak value in the time domain, computed as
maxt(ei(t)) − mint(ei(t)), where ei is the ith sample
of the setpoint error with i ∈ [1, N ], N the number of
samples;

• Root-mean square value in the time domain, computed

as
√

1
N

∑N
i=1 |ei(t)|2;

• Square-rooted cumulative power spectral density plot.

For achieving these performance objectives, we consider
a linear PI2 controller Clin as the baseline,

Clin(s) = kp

(
1 +

ω1

s

)(
1 +

ω2

s

)
, (2)

in which kp = 4 · 10−4, ω1 = 30 · 2π rad/s and ω2 =
10 · 2π rad/s are tuned by means of classical loop-shaping
techniques [14]. The corresponding open-loop, sensitivity
and Nyquist characteristics are shown in Fig. 6–8. It is
observed that this linear controller provides an open-loop
cross-over frequency of 29.4 Hz with a sufficiently high
modulus margin of 0.56.

Typically measured performance plots in both the time-
and frequency-domain of the system with linear PI2 control
are shown in Fig. 4. In the time-domain plot, a clear pump
ripple is visible around the setpoint value of 3 rps. From
the amplitude spectrum plot a dominant ripple at 12 Hz
is visible, which is 4 times the setpoint value of 3 rps.
The factor 4 follows from the fact that there are 8 pump
wheels per rotation but there is a gear ratio of 2 between the
two pulleys, hence the ratio 8/2=4. Besides, several other
disturbing frequencies are present in the amplitude spectrum
which might have different causes such as non-perfect motor
commutation, friction, et cetera. Since there are so much
disturbing frequencies, it is desired to improve the broadband
disturbance rejection which is possible using HIGS-based
control.

III. HIGS-BASED CONTROL OF A PERISTALTIC PUMP

To reduce the setpoint error, the HIGS-based PI2 controller
design will be presented in this section.

A. HIGS description

In order to discuss our control design in detail, we start
by formally introducing HIGS [15] as

H :





ẋh = ωhz, if (z, u, ż) ∈ F1,

xh = khz, if (z, u, ż) ∈ F2,

u = xh,

(3)

where xh ∈ R denotes the integrator state, z ∈ R is the input
to HIGS, u ∈ R is the generated output, and ωh ∈ [0,∞)
the integrator frequency, and kh ∈ (0,∞) the gain. In this
paper, kh = 1. The sets F1 and F2 dictate the active modes
(integrator-mode, and gain-mode) of (3) and are given by

F1 =
{
(z, u, ż) ∈ R3 | khzu ≥ u2 ∧ (z, u, ż) ̸∈ F2

}
, (4a)

F2 =
{
(z, u, ż) ∈ R3 | u = khz ∧ ωhz

2 > żz
}

(4b)

for which the union defines the “[0, kh]-sector”

F := F1 ∪ F2 =
{
(z, u, ż) ∈ R3 | khzu ≥ u2

}
. (5)

The rationale underlying the formulation (3), (4) is as fol-
lows. In its preferred mode of operation, HIGS follows linear
integrator dynamics. The integrator dynamics, however, can
only be used for as long as the input–output pair (z, u) of
H remains inside the sector F in (5). In this way, the signs
of the integrator’s input z and its output u are forced to be
equivalent at all times. At moments when the input–output
pair (z, u) of H tends to leave the sector F , a switch to the
so-called gain-mode is made to ensure (z, u) ∈ F . In gain-
mode, HIGS can only return to integrator-mode if the vector
field following the integrator dynamics points toward the
interior of F . This is governed by the condition ωhz

2 > żz
in (4b). A typical response of HIGS to a sinusoidal input
z(t) = sin(ωt) is shown in Fig. 5. When compared to the
response of an LTI integrator to the same input, it can be
seen that the amplification properties with HIGS are roughly
the same, whereas the phase lag appears to be reduced.



Fig. 5: Time response of HIGS in (3) (solid black) to a
sinusoidal input along with the response of an LTI integrator
(dashed).

This alleged “phase” advantage can be made more intuitive
through conducting a describing function analysis, that is,
by finding the complex mapping from a sinusoidal input
z(t) = sin(ωt) to (3) to the fundamental harmonic in
the corresponding output u(t) as depicted in Fig. 5. The
describing function of HIGS is given by [11]

D(jω) =
ωh

jω

(
γ

π
+ j

e−2jγ − 1

2π
− 4j

e−jγ − 1

2π

)

+

(
π − γ

π
+ j

e−2jγ − 1

2π

)
,

(6)

with γ = 2arctan
(

ω
ωh

)
∈ [0, π] the periodic switching

instance between integrator-mode and gain-mode, see also
Fig. 5. The describing function (6) reveals (weak) integrator
characteristics, with an induced phase lag of at most 38.15
degrees. The latter is a significant reduction as compared to
the 90 degrees typically induced by an LTI integrator.

B. HIGS-based PI2 controller architecture

Equipped with the definition of the HIGS element H in
(3) and its describing function D in (6), the HIGS-based PI2
controller design is provided in this section. For this purpose,
we first construct a HIGS-based integrator I{H} as follows.
Perform a pre- and post-multiplication of H with linear filters

L1(s) := V (s)

(
s

ωc
+ 1

)
, and L2(s) :=

1

s
V −1(s),

where ωc := ωh |1 + 4j/π|, such that

I{H} := L1 · H · L2. (7)

The design philosophy for the HIGS-based integrator (7)
stems from describing function analysis. That is, a de-
scribing function for the HIGS-based integrator is given by
I(jω) := L1(jω)D(jω)L2(jω), which yields the precise
magnitude characteristic of a classical integrator, but with
(locally) reduced phase lag. This phase benefit will be the key
mechanism for both bandwidth and transient performance
improvements. The filter V (s) in L1(s) is a weighting filter
that is added for the purpose of conditioning the input signals
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Fig. 6: Bode diagram of the open loop with linear (black)
and HIGS-based control (red).

to HIGS, whereas its inverse V −1(s) is added in L2(s) for
keeping the describing function, and with that the loop-gain,
unaffected. In our design, we choose V (s) to be a second-
order lag filter of the form

V (s) =
ω2
p

ω2
z

(s+ ωz)
2

(s+ ωp)2
, (8)

with ωz = 5000 rad/s and ωp = 500 rad/s. This design choice
stems form the observation that quantization effects in the
measured error signals may induce high-frequent switching
of HIGS, thereby inducing gain-loss [13].

Note that due to the simple integrator in L2(s) we intro-
duce an additional state, which acts as a buffer in I{H} and
ensures that, similar to an LTI integrator, our HIGS-based
integrator is capable of sustaining a DC output.

With the design of a HIGS-based integrator in place, a
HIGS-based PI2 controller is constructed by replacing the
linear integrators in (2) with their HIGS-based counterparts
(7), that is

CHIGS {H} = kp (1 + ω1I1 {H}) (1 + ω2I2 {H}) . (9)

Here, kp = 4 · 10−4, ω1 = 30 · 2π rad/s and ω2 = 10 ·
2π rad/s are chosen to match the linear controller design. A
frequency-domain approximation of CHIGS {H} is given by

CHIGS(jω) = kp
(
1 + ω1Ii(jω)

)(
1 + ω2Ii(jω)

)
, (10)

where Ii(jω), i = {1, 2} are the describing functions of the
individual HIGS-based integrators. In our design, we choose
the values for ωh,i = αωi, i = {1, 2}. The factor α can be
used to let the behavior of the HIGS controller tend toward
that of a Clegg integrator (α → 0) or a linear integrator
(α → ∞) [13]. In this paper, the value α = 0.5 is found as
a good trade-off.

The open-loop, sensitivity and Nyquist characteristics of
both linear and HIGS-based controller designs are shown
in Fig. 6–8. Note that for the HIGS design, the frequency-
domain characteristics are plotted using the describing func-
tion approximation in (10) which are quasi-linear approxi-
mations of the non-linear HIGS elements. Therefore, these
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plots do not give an exact representation of stability and
performance such as known for linear systems, but based on
experiences from earlier work it is known that these plots
give at least a good indication and therefore they will be
used to assess performance and stability.

The open-loop Bode plot is shown in Fig. 6, demonstrating
clear advantages of the HIGS-based control approach. There
is a phase advantage over a broad frequency range while at
the same time the cross-over frequency has been increased
from 29.4 Hz to 40.2 Hz. Note that the increase in magnitude
results from summing complex numbers where both the real
and imaginary parts are nonzero in (10) as compared to the
summation of orthogonal complex numbers in (2).

Fig. 7 shows a Bode magnitude diagram of the sensitivity
function with linear and HIGS-based control, indicating
improved disturbance rejection properties of the HIGS-based
approach up to 64 Hz thanks to the increased cross-over
frequency in the open-loop plot from Fig. 6.

TABLE I: P2P values of the setpoint error with HIGS-based
control and linear control for setpoint speeds ranging from 1
to 6 rps. Improvement is calculated using P2P linear−P2P HIGS

P2P linear ·
100%.

Setpoint (rps) 1 2 3 4 5 6
P2P linear (rps) 0.671 1.099 1.587 1.892 2.380 2.625
P2P HIGS (rps) 0.671 0.977 1.221 1.465 1.648 1.831
Improvement (%) 0 11 23 23 31 30

TABLE II: RMS values of the setpoint error with HIGS-
based control and linear control for setpoint speeds rang-
ing from 1 to 6 rps. Improvement is calculated using
RMS linear−RMS HIGS

RMS linear · 100%.

Setpoint (rps) 1 2 3 4 5 6
RMS linear (rps) 0.090 0.192 0.322 0.451 0.568 0.662
RMS HIGS (rps) 0.110 0.185 0.214 0.259 0.314 0.361
Improvement (%) -22 4 34 43 45 45

The Nyquist diagram of the open loops are shown in
Fig. 8. Both open loops remain to the right of the point -1
along the trajectory, implying that the closed-loop is stable
according to the Nyquist stability criterion [14]. Additionally,
the 6 dB modulus margin is plotted, indicating that both the
linear and HIGS-based open loop have sufficient modulus
margin to ensure robust stability, with a similar value.

IV. EXPERIMENTAL VALIDATION

In this section we compare performance of the linear
and HIGS-based control strategies on the peristaltic pump
setup discussed in Section II. During the experiments, the
system is subject to six different angular velocity setpoints.
For each setpoint, steady-state measurements of 90 seconds
are conducted using either linear or HIGS-based control.
The measured velocity is used to quantify the peak-to-
peak (P2P) and root-mean-square (RMS) values which are
defined as performance measures in Section II. The results
are summarized quantitatively in Table I, Table II and Fig. 9.

Small fragments of 0.5 s of the measured pump speed with
linear (black) and HIGS-based control (red) are shown in the
left column in Fig. 9. Both the time-domain plots in Fig. 9 as
well as the P2P values in Table I show that for lower pump
speeds the performance of both controllers is comparable
whereas for higher pump speeds the HIGS-based controller
outperforms the linear controller. This observation is in line
with the expectations coming from the (approximate) sensi-
tivity plots in Fig. 7. From this plot, the largest performance
improvement is expected in the range from 10−40 Hz, which
corresponds to higher pump speeds (recall from Section II
that a dominant disturbance frequency can be expected at
four times the rps setpoint, i.e., 4 Hz at 1 rps and 8 Hz at
2 rps, and so on). At higher pump speeds the P2P values
indicate a performance improvement up to 31%.

A frequency-domain analysis in terms of the square-rooted
cumulative power spectral density (

√
cPSD) is shown in the

right column of Fig. 9. As expected, the largest harmonic
contribution to the setpoint error is the base frequency (4
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Fig. 9: (left) Steady-state time domain measurements and
(right) square-rooted cumulative power spectral density rep-
resentation of the setpoint error with linear (black) and
HIGS-based control (red) for setpoint speeds ranging from
(a) 1; (b) 2; (c) 3; (d) 4; (e) 5; (f) 6 rps.

times the rps setpoint) of the pump ripple. The values at
the Nyquist frequency (500 Hz) indicate the RMS values of
the setpoint error, for which the exact values are also listed
in Table II. At a motor speed of 1 rps, corresponding to a
dominant disturbance of 4 Hz, there appears to be a deteri-
oration in terms of RMS values. This seems to be attributed
to the gain-loss phenomenon and the generation of higher-
harmonic content in HIGS [11]. At higher input velocities,
there is a significant improvement in RMS values up to 45%
with HIGS-based control, indicating the performance benefits
of this strategy.

V. CONCLUSIONS

In this paper, we have applied a HIGS-based PI2 con-
trol strategy to a variable-speed peristaltic pump for the
purpose of reducing the setpoint error of the pump speed.
Performance of the hybrid control strategy is experimentally
validated and compared to that of the linear PI2 controller.
The measurement results demonstrate up to a significant 45%
improvement in disturbance rejection, expressed in terms of
peak-to-peak and root-mean-square values of the setpoint
error. Future work includes formal stability and performance
assessment of the closed-loop controlled system, as well as
extended tuning guidelines to further exploit the additional
design freedom of HIGS-based controllers.
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3.3 HIGS-based integrator designs

In this section, two different HIGS-based integrator designs are presented and analyzed. The designs are
identical when approximated in the frequency domain, but result in different behavior when evaluated in the
time domain. An examination of tuning parameter ωh is conducted for each HIGS-based integrator design
in both domains. Additionally, an analysis on the utilization of so-called gain loss filters is performed, which
are linear time-invariant (LTI) shaping filters used to reduce the effect of gain loss [11] within the HIGS-
based integrators. The complete analysis performed in this section provides additional insights compared
to the paper (Section 3.2), enabling a structured design approach for HIGS-based PI2 controller design in
Section 3.4.

3.3.1 Configuration

As introduced in the paper (Section 3.2), the design philosophy for the HIGS-based integrator stems from
describing function analysis [9]. That is, the first-order describing function of HIGS (given in (6) in the paper)
shows first-order low-pass magnitude characteristics, such that it should be appended with a PI filter with its
zero identical to the crossover frequency of the first-order describing function of HIGS to obtain magnitude
characteristics of a linear integrator. The PI filter can be split into a PD filter and linear integrator, given
by

V (s) = 1 +
s

ωc
, and W (s) =

1

s
, (3.1)

respectively, where ωc represents the crossover frequency of the first-order describing function of the HIGS,
given by ωc := ωh |1 + 4j/π|. The use of V here should not be confused with the use of V in the paper,
where it represented a gain loss filter. Performing this split and putting PD filter V in front of the HIGS
is expected to give improved transient performance, similar as found in [18]. However, examples where PD
filter V is located behind the HIGS also exist [10], whilst no reasons not to locate it behind the HIGS are
known yet. Therefore, in this thesis, both locations for PD filter V are considered. On the other hand, the
location of linear integrator W is always behind HIGS. HIGS itself cannot maintain a buffer (zero input
gives zero output), but the linear integrator can. By placing the linear integrator behind HIGS, the HIGS
functions as a filling/depletion mechanism of the linear integrator [18].

The two considered HIGS-based integrator designs in this thesis are therefore given by

I1{H} = V · H ·W, and I2{H} = H · VW, (3.2)

where H refers to the switched differential-algebraic equations describing HIGS (given in (3) in the paper)
and the dot indicates that the order between filters is important. With I2, the order between linear filters
V and W is thus irrelevant. Despite resulting in different behavior in the time domain, both HIGS-based
integrator configurations are identical when approximated in the frequency domain, and are given by

I(jω) = V (jω)D(jω)W (jω), (3.3)

where D represents the first-order describing function of HIGS (given in (6) in the paper).

3.3.2 Tuning parameter ωh

Integrator frequency ωh is the tuning parameter for HIGS (gain kh is always set to 1). The value for
ωh determines the location of the crossover frequency of the HIGS (ωc in the paper) and therefore also
from which frequency onward the phase lead of the HIGS-based integrator starts. Choosing ωh relatively
small increases the phase advantages of the HIGS, enabling the largest bandwidths and/or best disturbance
rejection performance. This is illustrated in the Bode diagram in Figure 3.1, where HIGS-based integrator
(3.3) is plotted for different values of ωh, being 5, 0.5 and 0.1 Hz. The larger ωh, the more the HIGS-based
integrator resembles a linear integrator, whereas the smaller ωh, the more it resembles a Clegg integrator
[19].

However, when analyzing the HIGS-based integrator designs (3.2) in the time domain, disadvantages of
a small ωh arise. In contrast to LTI systems, with HIGS, a single-frequency input signal typically induces a
response that contains, in addition to the excitation frequency, harmonic content at multiple other frequencies
(higher harmonics). This is illustrated in Figure 3.2, where both HIGS-based integrator configurations (3.2)
are subjected to a single harmonic input of the form z(t) = sin(2πt) for different values of ωh, again being 5,
0.5 and 0.1 Hz. The smaller the value for ωh, the larger the relative power content of the higher harmonics.
When comparing both HIGS-based integrators, one can observe that I2 contains relatively more power
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Figure 3.1: Bode diagram of the HIGS-based integrator (3.3) with kh = 1 and (a) ωh = 5 Hz; (b) ωh =
0.5 Hz; (c) ωh = 0.1 Hz.

5 5.5 6

Time (s)

-0.2

0

0.2

0.4

A
m
p
lit
u
d
e

(a)

10 -1 10 0 10 1 10 2

Frequency (Hz)

0.85

0.9

0.95

1

N
or
m
.
am

p
li
tu
d
e2

(a)

5 5.5 6

Time (s)

-0.2

0

0.2

0.4
(b)

10 -1 10 0 10 1 10 2

Frequency (Hz)

0.85

0.9

0.95

1

(b)

5 5.5 6

Time (s)

-0.2

0

0.2

0.4
(c)

10 -1 10 0 10 1 10 2

Frequency (Hz)

0.85

0.9

0.95

1

(c)

Figure 3.2: HIGS-based integrator I1 and I2 (3.2) subjected to input z = sin(2πt), with kh = 1 and (a) ωh

= 5 Hz; (b) ωh = 0.5 Hz; (c) ωh = 0.1 Hz, presented (top-row) in a time domain plot and (bottom-row) in
a normalized cumulative power spectral density plot.
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Figure 3.3: HIGS-based integrator I1 (3.2) subjected to quantized input z(t) = sin(2πt), with kh = 1
and (a) ωh = 5 Hz; (b) ωh = 0.5 Hz; (c) ωh = 0.1 Hz, presented (top-row) in a time domain plot and
(bottom-row) in a normalized cumulative spectral density plot.

content at higher harmonics compared to I1, and although not indicated by the figure, this is also the case
in absolute terms. This is a result of the fact that for I2 the generated higher harmonics by the HIGS are
amplified by PD filter V , whereas for I1 this is not the case as amplification by PD filter V occurs in front
of HIGS. It is expected that the increased power of higher harmonic content results in worse performance.
Based on these observations, I1 seems more suited for HIGS-based controller design than I2.

However, depending on the application, I1 has other disadvantages. The peristaltic pump setup shown
in Figure 2.1 experiences a quantization effect due to the finite resolution of the encoder (Section 2.2).
To evaluate the effect of this quantization on the switching behavior of the HIGS-based integrators, input
z(t) = sin(2πt) is subjected to this quantization effect, resulting in the response shown in Figure 3.3. For
I2, the output with quantization is similar to the output without quantization in Figure 3.2, whereas with
I1, this is not the case. This is a typical result of an effect called gain loss [11], which states that the
presence of parasitic higher frequency components in the input of the HIGS can cause the HIGS to switch
very frequently between integrator and gain mode, such that the integrator mode cannot build up sufficient
gain for lower frequency components in the input. Quantization frequencies are generally present at higher
frequencies compared to the input frequency. With I1, PD filter V in front of the HIGS amplifies these
higher frequency contributions, such that their amplitude becomes larger relative to the lower frequency
contribution(s), resulting in gain loss. Additionally, a lower value for ωh shifts the zero of PD filter V to a
lower frequency, increasing the amplification of higher frequency contributions in the input of the HIGS and
thereby possibly further increasing the amount of gain loss.

Where I2 suffers from the amplification of generated higher harmonics, I1 suffers (more) from gain loss.
However, gain loss is a nonlinear phenomenon that occurs at the input side of HIGS, such that when shaping
the input of HIGS with additional LTI filters, one could reduce or remove the effect of gain loss. Additionally
shaping the output of HIGS with LTI filters could ensure the loop gain remains unaffected. In contrast, the
amplification of generated higher harmonics with I2 is a nonlinear phenomenon that occurs at the output
side of the HIGS. Its effect could be reduced or removed by shaping the output of HIGS, but this alters
the loop gain and is therefore undesired. The amplification of higher harmonics with I2 is thus inevitable,
whereas the gain loss with I1 can be reduced or removed by shaping the HIGS with additional LTI filters.
There are however disadvantages to latter approach as well, as elaborated on in Section 3.3.3. Note that
depending on the input signals of the HIGS, I2 might experience gain loss as well (Section 3.4.4), but this is
generally significantly less severe than with I1. Concluding, I1 and I2 each possess different advantages and
disadvantages, such that both remain plausible choices for HIGS-based controller design.

3.3.3 Gain loss filters

The effect of gain loss can be reduced or removed by appending the HIGS with additional LTI shaping filters,
referred to as gain loss filters. The sole purpose of these filters is to ensure that HIGS switches based on the
desired (lower) frequency content, such that the output of HIGS is unaffected by parasitic higher frequency
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(a) (b)

Figure 3.4: Controller with proportional double integrator action (a) in series configuration and (b) in
parallel configuration.

components. Typical choices for gain loss filter are a low-pass, lag, (skew) notch or band-pass filter [11].
Which type to use is application-dependent. Regarding the example in Figure 3.3, a perfect gain loss filter
would ensure that irrespective of the quantization effect, HIGS-based integrator I1 generates a similar output
as shown in Figure 3.2.

Gain loss filters are implemented as follows. The idea is to shape the input towards HIGS favourably,
whilst the total loop gain is kept identical, such that (robust) stability properties based on frequency domain
approximations remain unaffected. This can be realized by pre-filtering the HIGS with some LTI filter that
reduces the amplitude of higher frequency content, and post-filtering with the inverse of this LTI filter. For
this, the HIGS-based integrator designs (3.2) should be adjusted to

I1{H} = CglV · H ·WC−1
gl , and I2{H} = Cgl · H · VWC−1

gl , (3.4)

where Cgl represents the gain loss filter. Note that despite the example in Figure 3.3 shows hardly any gain
loss with I2, there could be situations where I2 shows more gain loss and a gain loss filter is favourable.

There are however trade-offs in the design and the use of a gain loss filter as well. A general downside
of the use of a gain loss filter is that post-filtering the HIGS with the inverse of the gain loss filter amplifies
higher harmonic content generated by the HIGS, possibly affecting performance. A downside in the design
of the gain loss filter is that the effectiveness of the filter depends on the parasitic high-frequency content in
the input towards HIGS. If the parasitic high-frequency content differs per use case, finding a single suitable
gain loss filter might be challenging. In Section 3.4.4, it is evaluated for different HIGS-based PI2 controller
designs whether gain loss filters are favourable.

3.4 HIGS-based PI2 controller design

Equipped with the two HIGS-based integrator designs and the corresponding design considerations (Section
3.3), this section presents an improved HIGS-based PI2 controller design compared to the paper. First, a
baseline linear PI2 controller configuration is chosen, which differs from the one used in the paper (Section
3.2). Then, eight different HIGS-based PI2 controller configurations are presented, which are designed by
replacing one or both of the linear integrators with either of the HIGS-based integrators designs (3.2). A
gain loss filter design is subsequently presented, which could be used for both HIGS-based integrator designs
within any of the eight HIGS-based PI2 controllers. Then, a structured tuning methodology for HIGS-based
PI2 controllers is provided, after which an optimal HIGS-based PI2 controller design is presented and its
performance is compared to the HIGS-based PI2 controller from the paper and subsequently experimentally
validated on the peristaltic pump setup shown in Figure 2.1.

3.4.1 Controller configurations

In contrast to the paper (Section 3.2), a different baseline configuration is chosen. The paper considers a
series configuration of two PI filter blocks (Figure 3.4a), whereas from now on a parallel configuration is
considered (Figure 3.4b). The corresponding newly designed baseline linear PI2 controller is given by

Clin(s) = kp

(
1 +

ki,1
s

+
ki,1ki,2

s2

)
, (3.5)

with kp = 0.033, ki,1 = 60π and ki,2 = 20π, realizing a modulus margin (MM) of 0.51. An analysis on how
these values were obtained can be found in the appendix in Section 3.8. The HIGS-based PI2 controllers
are subsequently designed by keeping the values for ki,1 and ki,2 identical (ki,1 = 60π and ki,2 = 20π), but
by adjusting the value for kp to realize a MM of 0.51 for each design. More on this can be found in Section
3.4.3. Figure 3.5 shows a Bode diagram of the open loop with the new parallel linear PI2 controller design
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Figure 3.5: Bode diagram of the linear PI2 controller design in series configuration (paper) and in parallel
configuration (new design).

Figure 3.6: Schematic overview of the different HIGS-based PI2 controller configurations possible with the
parallel configuration given in Figure 3.4b.

and with linear PI2 controller design used in the paper. Despite having very similar frequency domain
characteristics, a parallel baseline configuration is preferred for the design of HIGS-based PI2 controllers
based on time-domain reasoning.

The reason to switch from a series to parallel configuration is as follows. The parallel configuration has
relevant advantages over the series configuration for some HIGS-based controller designs. Consider the case
that the second linear integrator is replaced by a HIGS-based integrator. With the series configuration, the
input towards the second HIGS is the first proportional path and a HIGS-based integrator path. The HIGS-
based integrator path provides roll-off, whereas the proportional path does not. Despite the fact that the
first proportional path cannot contain directly generated higher harmonics, it can contain higher harmonics
present in the closed-loop system or other parasitic high-frequency content (e.g. quantization frequencies),
which all could affect gain loss. With the parallel configuration, the input towards the second HIGS contains
only an integrator path and thus less parasitic high-frequency content, thereby being less prone to gain loss.

Furthermore, the location of kp is arbitrarily chosen in front of the controller loop. Placing it at the end
of the controller loop is empirically found to give the same result irrespective of input frequency/frequencies
and irrespective of HIGS-based PI2 controller design. Similarly, the location of the integrator gains can be
in front or after a HIGS-based integrator, both giving the same response.

Finally, the HIGS-based PI2 controller designs are schematically represented in Figure 3.6. One could
replace both of the linear integrators with either of the HIGS-based integrator designs (3.2), but one could
also replace only the first or second linear integrator with a HIGS-based integrator. Considering all different
options, this gives a total of eight possible configurations.

3.4.2 Gain loss filter design

In this subsection, a gain loss filter that is suited for both HIGS-based integrator designs (3.2) within each of
the eight HIGS-based PI2 controller designs is presented. First, the origin of gain loss within the peristaltic
pump system is analyzed, as well as the effect of different motor speeds on the amount of gain loss. Then,
trade-offs in the design of a gain loss filter are elaborated on, after which the final gain loss filter design is
presented. The design is also briefly compared to the design in the paper (Section 3.2).
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Figure 3.7: Input towards the second HIGS with HIGS-based PI2 controller configuration VHW |VHW
(without gain loss filters) for a setpoint speed of (a) 1; (b) 4 and (c) 6 rps, without including quantization.

Origin of gain loss

In order to design a gain loss filter, the origin of gain loss within the HIGS-based integrator should first be
analyzed. As mentioned in Section 3.3.2, a prominent factor causing gain loss is quantization. Quantization
is generally a very nonlinear and therefore unpredictable phenomenon, as quantization frequencies and
the corresponding amplitudes strongly depend on the input frequencies. However, an observation from
simulations is that the quantization frequencies are mainly present at frequencies above the input frequency
or input frequencies, thereby being a prominent source for gain loss. With HIGS-based integrator design
VHW , PD filter V in front of the HIGS additionally amplifies high-frequency components in the input
towards HIGS, such that the severity of gain loss is generally larger than with HIGS-based integrator design
HVW , as also concluded in Section 3.3.2.

An additional factor causing gain loss is the presence of higher harmonics. Especially for configurations
with two HIGS-based integrators, the second HIGS-based integrator is likely to experience gain loss as a
result of higher harmonics generated by the first HIGS-based integrator. Using simulations, it is found that
prominent higher harmonic peaks in the input of HIGS are generally present at frequencies in Hz starting
from factor 12 times the setpoint speed, whereas the largest higher harmonic peaks in Hz are generally
present around factor 16 to 20 times the setpoint speed in rps. This is shown in an example in Figure 3.7,
where the input of the second HIGS of HIGS-based PI2 controller configuration VHW |VHW (without gain
loss filters) is shown for a setpoint speed of 1, 4 and 6 rps, without including quantization. Here, pump ripple
frequencies in Hz are present at factor 4, 8 and 9 times the setpoint speed in rps (Section 2.3.2), whereas
the other peaks visible are higher harmonics generated by the HIGS elements.

Motor speed-dependency

The amount of gain loss experienced by a HIGS-based integrator within a HIGS-based PI2 controller is
motor speed-dependent. Generally, more gain loss occurs at lower motor speeds, as found in the paper
(Section 3.2). The reason for this is twofold. First of all, at lower speeds, pump ripple frequencies are lower
(see Figure 2.7), thereby prominent higher harmonic frequencies and quantization frequencies are generally
lower. At lower frequencies, there is less attenuation by the roll-off characteristics of linear integrators and
by roll-off characteristics of the plant, such that the amplitude of the higher harmonics and quantization
remains larger relative to the amplitude of the pump ripple frequencies, causing more gain loss. Secondly,
at lower speeds, pump ripple frequencies are lower, thereby disturbance rejection is better, such that the
setpoint error is smaller compared to higher speeds. Additionally, pump ripple amplitudes are lower at lower
motor speeds, also contributing to a smaller setpoint error (see Figure 2.7). The result is generally that
the quantization step size of the input towards HIGS is relatively large, i.e. the amplitude of quantization
frequencies is large relative to the amplitude of the pump ripple frequencies, resulting in more gain loss. This
was found to be the case especially with HIGS-based integrator design VHW , as here PD filter V amplifies
high-frequency content in the input towards HIGS. At higher speeds, the opposite could be true, such that
less or no gain loss occurs. A gain loss filter would then not improve performance, but possibly deteriorate
performance as a result of post-filtering the HIGS with the inverse of the gain loss filter, thereby amplifying
generated higher harmonics. One could design a gain loss filter with poles and/or zeros proportional to the
motor speed, which possibly improves performance at all speeds. The additional complexity involved with
designing an adaptive gain loss filter however does not outweigh the expected performance improvements
with such a filter.
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Figure 3.8: Bode diagram of the discretized gain loss filter used in the paper (Section 3.2), the newly
designed gain loss filter (3.6) and its discretized version.

Trade-offs in design

The fact that the peristaltic pump operates at setpoint speeds from 1 to 6 rps poses trade-offs in the design of
the gain loss filter. For a speed of 1 rps, the largest pump ripple frequency is 9 Hz, such that attenuation with
a gain loss filter is desired after 9 Hz, as after 9 Hz, prominent parasitic higher harmonics and quantization
frequencies could be present. For a speed of 6 rps, the largest pump ripple frequency is 54 Hz, such that
attenuation with a gain loss filter is desired after 54 Hz. When attenuation would start below 54 Hz, pump
ripple frequencies are suppressed as well, which is undesired. There thus exists a trade-off between sufficiently
attenuating parasitic high-frequency content at low speeds and not attenuating pump ripple content at higher
speeds.

Final design

The gain loss filter that desirably deals with the aforementioned trade-off is found to be a fourth-order lag
filter given by

Cgl(s) =
ω4
p

ω4
z

(s+ ωz)
4

(s+ ωp)4
, (3.6)

with ωz = 50000 rad/s and ωp = 500 rad/s. The filter is discretized using the Tustin method. Note that the
zero ωz = 50000 rad/s is located at a higher frequency than the Nyquist frequency (500·2π rad/s), which in
continuous time would not be implementable. However, when discretized, this results in an implementable
filter that has characteristics which are not possible to obtain in continuous time, but are desired to have.
The rational behind the newly designed discretized gain loss filter is to ensure attenuation starts from
approximately 24 Hz onwards, which is the largest base frequency of the pump ripple considered, and
attenuation becomes stronger especially after 54 Hz, which is the largest pump ripple frequency considered.

The discretized gain loss filter (3.6) is shown in a Bode diagram in Figure 3.8. Additionally, the discretized
gain loss filter used in the paper (Section 3.2) is plotted for comparison. The newly designed gain loss filter
is preferred over the gain loss filter in the paper as it provides stronger suppression at higher frequencies,
thereby providing more attenuation against parasitic high-frequency content in the input towards HIGS.
The flattening magnitude shape of both filters close to the Nyquist frequency ensures that post-filtering the
HIGS with the inverse gain loss filter does not excessively amplify generated higher harmonic content.

3.4.3 Tuning methodology

HIGS-based PI2 controllers with one HIGS-based integrator

Four out of the eight HIGS-based PI2 controller configurations (Figure 3.6) contain only one HIGS-based
integrator and one linear integrator, being

• Linear|VHW ,
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Figure 3.9: Tuning methodology of HIGS-based PI2 controllers with one HIGS-based integrator and one
linear integrator.

• Linear|HVW ,

• VHW |Linear,

• HVW |Linear.

A tuning methodology for these controller configurations is developed, which is schematically illustrated in
Figure 3.9. The methodology is further elaborated on below.

Integrator frequency ωh is the tuning parameter for HIGS (kh is always set equal to 1), and is defined as

ωh,j = αjki,j , j = {1, 2}. (3.7)

It follows from frequency domain approximations that αj should be chosen small to realize optimal phase
advantages (see Figure 3.1), which in turn opts for the largest bandwidths/disturbance rejection performance.
Additionally, choosing αj small results in local magnitude improvements for a HIGS-based PI filter compared
to a linear PI filter, as shown in the paper (Section 3.2). An infinitely low value for αj however is of no
use, as phase and local magnitude improvements are not unbounded and robustness margins pose limits on
closed-loop bandwidth and disturbance rejection properties. A value of αj = 0.001 is found sufficiently low.

However, such a low value for αj also gives more nonlinearity. With HIGS-based integrator I2, the output
of HIGS is subject to PD filter V (3.1), thereby strongly amplifying higher harmonics generated by the HIGS,
possibly affecting performance if subsequent roll-off by integrators or by the plant is not sufficient. With
HIGS-based integrator I1, the input of HIGS is subject to PD filter V (3.1), thereby strongly amplifying
high-frequency noise in the input towards the HIGS, possibly resulting in gain loss and thereby affecting
performance.

If gain loss occurs, appending the HIGS with gain loss filter (3.6) could improve performance. If this
does not improve the overall performance, the filter should again be removed. Finally, one should check
whether similar or improved performance is obtained for all speeds. If so, the design is done. If not, one
should increase αj . This will then generally improve performance, or at least result in similar performance
as with linear PI2 control, as for larger αj , the HIGS-based integrator approaches a linear integrator (see
Figure 3.1). However, this also reduces the phase advantages of HIGS, thereby reducing the performance
improvements compared to linear PI2 control.
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HIGS-based PI2 controllers with two HIGS-based integrators

Four out of the eight HIGS-based PI2 controller configurations contain two HIGS-based integrators, being

• VHW |VHW ,

• HVW |HVW ,

• VHW |HVW ,

• HVW |VHW .

By means of extensive trial and error using simulations, it is found that the tuning settings of HIGS-based
PI2 controllers with only one HIGS-based integrator can almost straightforwardly be applied to HIGS-based
PI2 controllers with two HIGS-based integrators, e.g. the optimal tuning settings for HVW |Linear and
Linear|VHW can almost straightforwardly be combined to get the optimal tuning settings for HVW |VHW .

Two additional actions should however be performed, the first one being adjusting kp to ensure a modulus
margin of 0.51. Secondly, it should be verified whether the addition of gain loss filter (3.6) to the second
HIGS-based integrator is beneficial. Due to the fact that higher harmonic content generated by the first
HIGS-based integrator is propagated towards the input of the second HIGS-based integrator, possibly (more)
gain loss occurs. Besides, if the first HIGS-based integrator contains a gain loss filter, its generated higher
harmonics might additionally be amplified as a result of post-filtering with the inverse gain loss filter,
thereby resulting in additional parasitic high-frequency content in the input towards the second HIGS-based
integrator, possibly resulting in (more) gain loss.

3.4.4 Selecting the optimal design

Using the tuning methodology described in Section 3.4.3, the different HIGS-based PI2 controllers are tuned,
analyzed and compared. A summary of the findings is presented below.

It is found that configurations with HVW as replacement of the second linear integrator are unsuited
both in configurations with one and with two HIGS-based integrators. As a result of post-multiplicating the
HIGS with PD filter V (3.1), higher harmonics generated by the HIGS are strongly amplified. The higher
harmonics are subsequently looped to the plant, affecting performance. Especially at lower motor speeds,
where pump ripple frequencies are lower, such that higher harmonics occur at lower frequencies and roll-off
from linear integrator W (3.1) and roll-off from the plant is limited, the effect is significant. By increasing
αj , one shifts the zero of PD-filter V (3.1) forward, such that generated higher harmonics are less amplified.
However, the necessary increment in αj is too large to still experience the desired (phase) advantages from
HIGS, both in constructions with one and two HIGS-based integrators.

Configurations with VHW as replacement of the second linear integrator are suited. For αj = 0.001, the
construction Linear|VHW experiences a slight amount of gain loss. Quantization frequencies seem mostly
attenuated by the first linear integrator, such that these hardly affect switching of the HIGS within VHW .
The addition of a gain loss filter hardly improves switching at lower speeds but reduces performance at
higher speeds. The reason is that HIGS already switched desirably at higher speeds, such that the addition
of a gain loss filter, thereby amplifying generated higher harmonics in the post-filter, reduces performance.
A gain loss filter is thus not desired here.

For configurations with two HIGS-based integrators in the controller, only VHW |VHW andHVW |VHW
are thus left as suitable options. Both configurations benefit from having a gain loss filter within both HIGS-
based integrators. The configurations show similar performance. It is found that the two aforementioned
configurations give overall better performance than any configuration with one HIGS-based integrator, such
that configurations with one HIGS-based integrator are not further considered. To make a proper choice
between VHW |VHW and HVW |VHW , an additional transient performance analysis is performed, which
can be found in Section 3.4.5. In short, a significant improvement in overshoot for similar rise time was
found for VHW |VHW compared to HVW |VHW , such that finally, VHW |VHW is found to be the optimal
HIGS-based PI2 configuration and is therefore selected. An overview of the tuning settings for VHW |VHW
can be found in Table 3.3, where it is referred to as ’New design’.

3.4.5 Transient analysis

In this section, a small transient performance analysis in terms of rise time and overshoot is performed
for HIGS-based PI2 controller designs VHW |VHW and HVW |VHW , after which an optimal design is
chosen based on the analysis. The tuning settings used for both controllers can be found under the name
’New design’ in Table 3.3. Note that for both VHW |VHW and HVW |VHW , both HIGS-based integrators
contain a gain loss filter.
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Table 3.1: Overshoot values with HIGS-based control and linear control for setpoint speeds ranging from
1 to 6 rps. Improvement is calculated using OS linear−OS HIGS

OS linear · 100%.

Setpoint (rps) 1 2 3 4 5 6

OS linear (rps) 0.22 0.48 0.70 0.94 1.22 1.50
OS VHW |VHW (rps) 0.11 0.27 0.43 0.51 0.65 0.75
Improvement (%) 44.0 43.8 38.6 45.7 47.5 50.0

Table 3.2: Overshoot values with HIGS-based control and linear control for setpoint speeds ranging from
1 to 6 rps. Improvement is calculated using OS linear−OS HIGS

OS linear · 100%.

Setpoint (rps) 1 2 3 4 5 6

OS linear (rps) 0.22 0.48 0.70 0.94 1.22 1.50
OS HVW |VHW (rps) 0.21 0.37 0.61 0.80 1.05 1.17
Improvement (%) 4.5 22.9 12.9 14.9 13.9 22.0

For the transient analysis, the setup in Figure 2.1 is subjected to a pulse of the form

rpulse(ω) :

{
ω
2 , if t < tstep,
ω, if t ≥ tstep,

(3.8)

where ω represents the speeds considered, being 1 to 6 rps, and where t represents time and tstep is the
time instance at which the pulse/step occurs. The actuator used in the peristaltic pump setup might have
a preferred starting position, such that the pulse is not initiated from zero speed, but at half the speed of
the final setpoint speed. Besides, the experienced transient response is found to strongly depend on the
configuration of the rollers, i.e. whether rollers are engaging with and disengaging from the tube during the
transient period. To omit this configuration dependence, the system is consecutively subject to 20 of these
pulses, occurring 2π s apart, from which the average findings are used for further analysis.

Measurements are performed using linear PI2 controller (3.5) and using HIGS-based PI2 controllers
VHW |VHW and HVW |VHW . The obtained rise time values with all three controllers are found very
similar and as low as in the order of 0.01 s for all six setpoint speeds (1 to 6 rps). The differences between
HIGS-based PI2 controllers are in the order of 0.001 s, which is considered negligible, such that rise time
is not further analyzed. However, significant differences in overshoot (OS) were found and are displayed in
Table 3.1 and 3.2.

The overshoot significantly reduces with both HIGS-based PI2 controllers. With VHW |VHW , the
improvement in overshoot is significantly more than with HVW |VHW . Pre-multiplication with PD filter
V (3.1) results that HIGS switches based on a differentiated signal, such that it ’predicts’ the future and
therefore seems to act sooner on a changing input, thereby resulting in less overshoot. According to this
analysis, configuration VHW |VHW is thus preferred.

3.5 Conference paper design versus new design

In this section, performance with the HIGS-based PI2 controller designed in the paper (Section 3.2) is
compared to the performance with the newly designed HIGS-based PI2 controller (Section 3.4). As a
reference, performance with linear PI2 controller (3.5) is also evaluated. For a fair comparison between both
HIGS-based controllers, values for their tuning parameters are obtained according to the same methodology,
being that integrator gains ki,1 and ki,2 are kept identical to the values of linear PI2 controller (3.5), but kp
is altered to ensure a MM of 0.51. An overview of the two HIGS-based PI2 controller designs can be found
in Table 3.3.

Table 3.3: Overview of the HIGS-based PI2 controller design from the paper (Section 3.2) and the new
HIGS-based PI2 controller design (Section 3.4).

Configuration kp α1 α2 Cgl(s)

Paper Series 0.025 0.5 0.5
ω2

p

ω2
z

(s+ωz)
2

(s+ωp)2

New design Parallel 0.029 0.8 0.001
ω4

p

ω4
z

(s+ωz)
4

(s+ωp)4
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Figure 3.10: (a) Bode diagram of the open loop and (b) Bode magnitude diagram of the sensitivity function
with linear PI2 controller (3.5) (black), the HIGS-based PI2 controller from the paper (Section 3.2) (dark
gray) and the newly designed HIGS-based PI2 controller (Section 3.4) (red).

Table 3.4: RMS values of the simulated steady-state setpoint error with linear PI2 controller (3.5), with
the HIGS-based PI2 controller design from the paper and with the new HIGS-based PI2 controller design
for setpoint speeds ranging from 1 to 6 rps. Improvement of the new HIGS-based controller w.r.t. the

paper is calculated using RMS HIGS (paper)−RMS HIGS (new design)
RMS HIGS (paper) ·100% and improvement w.r.t. the linear PI2

controller is calculated using RMS linear−RMS HIGS (new design)
RMS linear · 100%.

Setpoint (rps) 1 2 3 4 5 6

RMS linear (rps) 0.064 0.218 0.383 0.558 0.703 0.822
RMS HIGS (paper) (rps) 0.085 0.181 0.291 0.360 0.500 0.673
RMS HIGS (new design) (rps) 0.064 0.149 0.245 0.356 0.495 0.666
Improvement w.r.t linear (%) 0 31.7 36.0 35.5 29.6 19.0
Improvement w.r.t paper (%) 24.7 17.7 15.8 1.1 1.0 1.0

Figure 3.10a shows a Bode diagram of the open loop with linear PI2 controller (3.5), with the HIGS-based
PI2 controller from the paper (Section 3.2) (dark gray) and with the newly designed HIGS-based controller
(Section 3.4) (red). Figure 3.10b shows a Bode magnitude diagram of the sensitivity function with the
three controllers. The HIGS-based controllers are approximated in the frequency domain using describing
function analysis, similar to the approach outlined in the paper (Section 3.2). The figures indicate very
similar frequency domain characteristics for both HIGS-based controllers, thereby hardly any difference in
performance is expected based on these frequency domain approximations.

However, in the time domain, significant differences can be observed. For this, performance with the
three controllers is simulated on nominal plant model (2.2), additionally using pump ripple model (2.7) and
including the effect of quantization (Section 2.2). The system is subject to angular speed setpoints ranging
from 1 to 6 rps. For each of the six setpoints, steady-state simulations of 60 s are conducted using either
linear PI2 control or either of the HIGS-based PI2 control strategies. The simulated steady-state setpoint
error of the motor speed, defined as e(t) = θ̇1(t) − θ̇r(t), is used to quantify the RMS values, which are
defined as performance measure in Section 1. The results are summarized quantitatively in Table 3.4 and
Figure 3.11.

Small fragments of 0.5 s of the simulated steady-state setpoint error with linear PI2 controller (3.5)
with the HIGS-based PI2 controller from the paper (dark gray) and with the newly designed HIGS-based
controller (red) are shown in the left column in Figure 3.11, whereas a frequency-domain analysis in terms
of the cumulative power spectral density is shown in the right column in Figure 3.11. The square root of the
cumulative power spectral density plot at the Nyquist frequency (500 Hz) indicates the RMS values of the
setpoint error, for which the exact values are listed in Table 3.4.

Both the time-domain plots in Figure 3.11 as well as the RMS values in Table 3.4 show that for lower
motor speeds, performance with the new HIGS-based controller design is significantly improved compared
to the design in the paper. This seems attributed to a reduction in gain loss. This is partly contributed to
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Figure 3.11: (left) Steady-state time domain simulations and (right) cumulative power spectral density
representation of the setpoint error with the HIGS-based PI2 controller design from the paper (dark gray)
and with the new HIGS-based PI2 controller design (red) for setpoint speeds ranging from (a) 1; (b) 2; (c)
3; (d) 4; (e) 5; to (f) 6 rps.
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Table 3.5: RMS values of the measured setpoint error with linear PI2 controller (3.5) and with the new
HIGS-based PI2 controller design for setpoint speeds ranging from 1 to 6 rps. Improvement is calculated

using RMS linear−RMS HIGS (new design)
RMS linear · 100%.

Setpoint (rps) 1 2 3 4 5 6

RMS linear (rps) 0.085 0.170 0.277 0.386 0.454 0.501
RMS HIGS (new design) (rps) 0.093 0.159 0.210 0.270 0.325 0.368
Improvement (%) -9.4 6.5 24.2 30.1 28.4 26.5

the improved gain loss filter design. Another part is contributed to the parallel configuration, which ensures
the input towards the second HIGS contains less parasitic high-frequency content compared to the series
configuration. The largest factor reducing the amount of gain loss is the increased value for α1 compared to
the paper, which increases the frequency of the zero of PD filter V (3.1), thereby providing less amplification of
parasitic high-frequency content in the input towards the first HIGS-based integrator. Besides, the increased
value for α1 reduces the higher harmonic content generated by the first HIGS-based integrator, such that the
input towards the second HIGS-based integrator contains less parasitic high-frequency content. Furthermore,
the reduced value for α2 increased the magnitude and phase improvements with the second HIGS-based
integrator, thereby making up for the reduced magnitude and phase improvements of the first HIGS-based
integrator as a result of a higher α1.

3.6 Experimental results

In this section, performance with linear PI2 controller (3.5) is experimentally compared to the performance
with the newly designed HIGS-based PI2 controller (Section 3.4) on the peristaltic pump setup shown in
Figure 2.1. During the experiments, the system is subject to angular speed setpoints ranging from 1 to 6 rps.
For each of the six setpoints, steady-state measurements of 60 s are conducted using either linear or HIGS-
based control. The measured steady-state setpoint error of the motor speed, defined as e(t) = θ̇1(t)− θ̇r(t),
is used to quantify the RMS values, which are defined as performance measure in Section 1. The results are
summarized quantitatively in Table 3.5 and Figure 3.12.

Small fragments of 0.5 s of the measured setpoint error with linear (black) and HIGS-based control
(red) are shown in the left column in Figure 3.12. A frequency-domain analysis in terms of the cumulative
power spectral density is shown in the right column in Figure 3.11. At higher speeds, the HIGS-based PI2
controller outperforms the linear PI2 controller, with improvements up to 30.1% in terms of RMS value.
This observation is in line with the expectations coming from the (approximate) sensitivity function plots
in Figure 3.10b. However, at a motor speed of 1 rps, corresponding to a base frequency of the pump ripple
of 4 Hz, there appears to be a slight deterioration in terms of RMS value, which is not in line with the
expectations coming from these plots. This seems attributed to gain loss at a frequency of 4 Hz. Note
that the cumulative power spectral density plot shows a significantly larger power at 4 Hz with HIGS-based
control compared to linear control, whereas the power distribution at larger frequencies is relatively similar.
A similar observation can be made for a motor speed of 2 rps, corresponding to a base frequency of the pump
ripple of 8 Hz, although the difference between expectation based on approximated sensitivity function plots
and the cumulative power spectral density plots is much smaller. A simple adjustment that likely improves
performance at 1 and 2 rps is increasing the value for α1, but note that this likely comes at the cost of
performance at higher speeds.

Furthermore, note that the experimental performance shows differences with the performance obtained
with simulations (compare Figure 3.11 and Table 3.4 with Figure 3.12 and Table 3.5, respectively). This
seems strongly attributed to time-variance in the dynamics of the peristaltic pump shown in Figure 2.1, which
was observed throughout the experimental validation. The models used within the simulations are based on
measurement data from a different day compared to the measurement data in this section. Time-variance
of the dynamics is not further analyzed in this thesis.

3.7 Conclusions

This chapter presented a HIGS-based PI2 controller design for the peristaltic pump developed by Demcon
to reduce the steady-state setpoint error of the motor speed compared to linear PI2 control while at least
maintaining the same robustness margins. An initial design was provided by means of conference paper
submission. After an elaborate analysis on HIGS-based PI2 controller design, a structured tuning method-
ology for HIGS-based PI2 controllers was developed, eventually resulting in an improved design compared
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Figure 3.12: (left) Steady-state time domain measurements and (right) cumulative power spectral density
representation of the setpoint error with linear PI2 control (black) and with HIGS-based PI2 control (red)
for setpoint speeds ranging from (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; to (f) 6 rps.
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Table 3.6: Controller parameters of the linear PI2 controller design.

Design 1 Design 2 Design 3 Design 4

kp 0.033 0.040 0.025 0.024
ki,1 60π 25π 90π 90π
ki,2 20π 25π 10π 30π

to the paper. Where the conference paper design lacked at lower speeds, the new design made up for this,
showing improvements up to 24.7% in terms of RMS value using simulations. Key for these improvements
is contributed to a different gain loss filter design, a switch from series to parallel baseline configuration
and different values for HIGS tuning parameter ωh. Experimental validation of the new HIGS-based PI2
controller design showed slightly deteriorated performance at the lowest motor speed compared to linear PI2
control, which seems to be attributed to gain loss, but improved performance for all higher considered motor
speeds, showing improvement up to 30.1% in terms of RMS value. Additionally, transient improvements
up to 50.0% in terms of overshoot were observed, all for similar rise time, and while maintaining the same
robustness margins as obtained with linear PI2 control.

3.8 Appendix: Linear PI2 controller design

A linear PI2 speed controller is designed for the peristaltic pump shown in Figure 2.1. The controller adheres
to the parallel configuration presented in Figure 3.4b. Nominal plant model Pn (2.2) is used as plant for the
controller design. The design of the controller should comply with set requirements by Demcon, being that
the closed-loop system should

• be robustly stable (gain margin > 2, phase margin > 30◦, modulus margin > 0.5) and

• have a bandwidth ≥ 30 Hz.

Furthermore, there are additional design considerations. The pump ripple is considered an input distur-
bance. Rejection of input disturbances is characterized by the sensitivity function, which is given by

S(s) =
1

1 + P (s)C(s)
. (3.9)

As stated in Section 2.3.1, the most prominent pump ripple frequencies occur up to 54 Hz, whereas the
largest peaks occur up to 24 Hz. A strong disturbance rejection, i.e. a low sensitivity function, up to 54 Hz
is thus desired, and especially up to 24 Hz.

Four different considerable controller designs with the parallel configuration in Figure 3.4b are shown in
the top-left in Figure 3.13. The designs are discretized using the Tustin method. All designs are robustly
stable with a modulus margin equal to 0.51, as indicated in the sensitivity function plot in Figure 3.13. A
larger gain margin comes at cost of a larger phase margin, as shown in the open loop plot in the top-right in
Figure 3.13. All designs also meet the bandwidth requirement of 30 Hz, as indicated in the Bode magnitude
plot of the complementary sensitivity function in the bottom-right in Figure 3.13. The controller parameters
for the four different options are displayed in Table 3.6.

As stated above, a low sensitivity function is desired up to 54 Hz, and especially up to 24 Hz, as this is
the frequency of the most prominent contribution to the pump ripple. Above 54 Hz, the sensitivity function
can be larger. Up to 14 Hz, Design 4 has the lowest sensitivity function, Design 3 between 14 and 19.5 Hz
and Design 2 between 19.5 and 66.5 Hz. As a result of the waterbed effect, increments in a certain frequency
range come at cost of decrements in another. The large increment in sensitivity between 14 and 54 Hz is
undesired, just as the large increment between 3 and 17 Hz with Design 2, so these designs are not chosen.
Design 1 shows an improved sensitivity function below 9 and above 25.5 Hz compared to Design 3, whereas
Design 3 overrules Design 1 in between these frequencies. To quantify the overall difference, the area under
the sensitivity function up to 54 Hz is calculated for both designs, indicating a 13% lower area for Design 1
than Design 3. Besides, Design 1 has a bandwidth of 85.8 Hz whereas Design 3 has a bandwidth of 74.2 Hz,
which benefits reference tracking. Then, the peristaltic pump is in practice mainly being used at relatively
low speeds, where Design 1 shows a better disturbance rejection. The final choice for a baseline linear PI2
controller is therefore Design 1.
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Figure 3.13: (a) Four different linear controller designs; (b) the corresponding open loops; (c) the sensitivity
functions along with the 0.5 modulus margin; (d) the complementary sensitivity functions along with the
bandwidth requirement of 30 Hz.



Chapter 4

Inversion-based
disturbance-observer-based control

4.1 Introduction

This chapter presents a disturbance observer design for the purpose of reducing the steady-state setpoint
error of the motor speed of the peristaltic pump shown in Figure 2.1 compared to linear PI2 control. The
specific method used here is called ’inversion-based disturbance-observer-based control’ (IBDOBC), which
is a variant of ’disturbance-observer-based control’ (DOBC) [15]. The concept of IBDOBC is illustrated
in Figure 4.1, with conventional feedback controller C, plant P , nominal plant model Pn, LTI filter Q,
reference r, error e, feedback controller output c, disturbance observer output d̂, total controller output u,
input disturbances d and output y. The basic idea behind IBDOBC is to estimate input disturbances and/or
uncertainties using an inverse nominal plant model and directly compensate the controller output with the
estimate. The method assumes an LTI system and considers uncertainties or unmodeled dynamics as a part
of the input disturbances, such that the effect of uncertainty on stability is disregarded. The disturbance
observer is an addition to a linear feedback controller. The linear feedback controller can conventionally be
designed according to tracking performance specifications and stability, whilst the disturbance observer is
used to further reject disturbances and suppress uncertainties [14].

The design of the disturbance observer will closely resemble the approach outlined in Chapter 2.3.1,
where the dynamics of the pump ripple were reconstructed from measurements. However, in this chapter,
estimation of the pump ripple is not performed offline, but online, and the estimate is directly used to
compensate the controller output. Latter implies that an additional loop is closed, such that stability of this
closed loop should be checked. Besides, a different Q-filter design than (2.5) that is more suited for online
implementation is considered.

This chapter is organized as follows. Section 4.2 presents some fundamentals of reference tracking and
disturbance rejection with IBDOBC. A stability condition is elaborated on in Section 4.3. The Q-filter design
is presented in Section 4.4, whereas performance with the disturbance observer is evaluated and compared

Figure 4.1: General block scheme of of IBDOBC.

40
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Figure 4.2: General block scheme of IBDOBC rewritten, with S = (1 + PC)−1 and T = PC(1 + PC)−1.

to the performance with only linear PI2 control using simulations in Section 4.9 and experimentally in
Section 4.5. In addition, the performance with the combination of IBDOBC with HIGS-based PI2 control
is evaluated and compared to linear PI2 control in Section 4.6. Section 4.7 outlines the main conclusions of
this chapter.

4.2 Reference tracking and disturbance rejection

For conventional linear feedback systems (Figure 2.4), reference tracking and disturbance rejection can be
expressed in terms of the complementary sensitivity function and the process sensitivity function, i.e. in the
transfer from r to y and from d to y, respectively, given by

y(s) =
P (s)C(s)

1 + P (s)C(s)
r(s) +

P (s)

1 + P (s)C(s)
d(s). (4.1)

With IBDOBC, this relation should be rewritten to

y(s) =
P (s)C(s)

1 +Q(s)(P−1
n (s)P (s)− 1) + P (s)C(s)

r(s) +
P (s)(1−Q(s))

1 +Q(s)(P−1
n (s)P (s)− 1) + P (s)C(s)

d(s). (4.2)

For a Q-filter design equal to 0, (4.2) and (4.1) are identical, as this describes the situation without IBDOBC.
For a Q-filter design equal to 1 and a perfect nominal plant model, i.e. P−1

n P = 1, the transfer from d to y
becomes zero, implying perfect compensation of d, whereas the transfer from r to y remains unaffected by
IBDOBC. However, for a Q-filter design equal to 1 and an imperfect nominal plant model, i.e. P−1

n P ̸= 1,
the transfer from d to y is still zero, but the transfer from r to y is now affected by the uncertainty. Latter is
undesired, as the disturbance observer is used for improved disturbance rejection without altering reference
tracking performance. Then there are options where a Q-filter has a value in between 0 and 1, which could
ensure a balance in aforementioned trade-offs.

In this thesis, the Q-filter cannot equal 1 as it needs to be used to ensure that the inverse nominal plant
model (2.2) becomes stable and proper (similar as concluded in Section 2.3.1). The effect of different Q-filter
designs on tracking and disturbance rejection is therefore evaluated in Section 4.4, as well as the effect of
plant uncertainty.

4.3 Stability

Since IBDOBC closes an additional loop compared to a conventional linear feedback system, an additional
stability check should be performed. To this end, the small-gain theorem [20] is used, as defined in Theorem
4.3.1.

Theorem 4.3.1 (Small-gain theorem) Consider a system with a stable loop transfer function L(s). Then
the closed-loop system is stable if

||L(jω)|| < 1 ∀ω, (4.3)

where ||L|| denotes any matrix form satisfying ||AB|| ≤ ||A|| · ||B||.

Consider the block scheme in Figure 4.2. Here, the general block scheme of IBDOBC shown in Figure
4.1 is rewritten in a form suited for small-gain theorem analysis. A derivation on how this form is obtained
can be found in Appendix A in Section 4.8. In order to satisfy closed-loop stability according to Theorem
4.3.1, the loop transfer function

L(s) = Q(s)(P−1
n (s)P (s)− 1)S(s) (4.4)
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Table 4.1: Three different low-pass filter designs with poles at 100, 200 and 300 Hz to be used for Clp(z)
(4.5).

Pole location Low-pass filter

Clp,1 100 Hz 0.47
z−0.53

Clp,2 200 Hz 0.72
z−0.28

Clp,3 300 Hz 0.85
z−0.15

should be stable and its magnitude should be below 1. Conventional feedback controller C and plant P
are generally stable. The Q-filter should be a stable LTI filter and can be used to ensure QP−1

n becomes
stable. Besides, it can be tuned to ensure the magnitude of the loop transfer function is below 1. The
effect of different Q-filter designs on stability is further evaluated in Section 4.4, as well as the effect of plant
uncertainty. Note that additionally the transfer functions in front of r and d in Figure 4.2 should be stable.
This will however typically be the case, as C, QP−1

n , P and T are generally stable.

4.4 Q-filter design

The Q-filter design is very similar to the approach taken in Section 2.3.1 to reconstruct the dynamics of the
pump ripple. Again, Pn (2.2) is used as a nominal plant model. The model is NMP and strictly proper,
such that its inverse is unstable and non-proper. The Q-filter is again used to ensure that Q(z)P−1

n (z) is
stable and proper. To ensure stable inversion, ZMETC (2.18) is used. However, in contrast to Section 2.3.1,
where three delays were used to ensure properness of Q(z)P−1

n (z), a cubed first-order low-pass filter is used.
Specifically, the Q-filter design is given by

Q(z) =
Bu(z)

B∗
u(z)

C3
lp(z). (4.5)

The choice for a low-pass filter, thereby attenuating high-frequency components in the input disturbance
estimation, is substantiated as follows. Pump ripple frequencies are known to mainly occur at lower fre-
quencies, especially up to 54 Hz (Section 2.3.1). Besides, high-frequency content in the input disturbance
estimation is undesired as it induces actuator wear when being compensated for. Also, the accuracy of the
input disturbance estimation reduces for higher frequencies, as indicated by the estimation error in Figure
2.9. And finally, high-frequency input disturbances are already attenuated by roll-off of the plant.

Furthermore, there exists are trade-off between disturbance rejection and stability within the design of
the Q-filter. The pole of low-pass filter Clp can be used to balance this trade-off desirably. Further in
this section, three different low-pass filter designs are compared in performance and stability characteristics
using simulations. Performance is compared with frequency domain information on tracking and disturbance
rejection (4.2), whereas differences in stability characteristics are validated and compared using (4.3). A
scenario with and without plant uncertainty is examined. The scenario with plant uncertainty concerns an
example of a situation where the actual plant has a reduced belt stiffness, which could in practice be a result
of belt loosening.

4.4.1 Low-pass filter design

The pole locations of the three considered low-pass filters within the Q-filter are 100, 200 and 300 Hz. The
specific designs are given in Table 4.1. Figure 4.3 shows the effect on reference tracking and disturbance
rejection, i.e. the transfer from r to y and from d to y, respectively, with respect to only using linear PI2
control. A value below 1 indicates improvement, whereas a value above 1 indicates deterioration.

Figure 4.3a and 4.4a consider a scenario without plant uncertainty, i.e. P = Pn. Tracking performance
remains unaffected, whereas disturbance rejection is improved for lower frequencies. The improvement is
limited as the Q-filter does not equal 1, but also due to causality. As expected, a larger pole value results in
better disturbance rejection at lower frequencies. With Clp,1, disturbance rejection is improved up to 31 Hz,
with Clp,2 up to 48 Hz and with Clp,3 up to 58 Hz. Besides, Figure 4.4a indicates stability is ensured for each
of the three designs. Considering prominent pump ripple frequencies mainly occur up to 54 Hz (Chapter
2.3.1), Clp,3 seems most suited.

However, in practice, different plant uncertainties could be present, i.e. P ̸= Pn. One probable scenario
would be loosening of the belt over time, which results in a lower belt stiffness. As an example, the effect of
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Figure 4.3: Effect on reference tracking and disturbance rejection for several different Q-filter designs
compared to using only linear PI2 control, calculated by dividing the terms in front of r and d in (4.2) by the
terms in front of r and d in (4.1), respectively, with (a) no plant uncertainty and (b) plant uncertainty where
the actual plant has a 10% reduction in belt stiffness. A value below 1 indicates improvement, whereas a
value above 1 indicates deterioration.
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Figure 4.4: Stability condition (4.3) with each of the three low-pass filter designs with (a) no plant
uncertainty and (b) plant uncertainty where the actual plant has a 10% reduction in belt stiffness.
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Table 4.2: RMS values of the measured steady-state setpoint error of the motor speed with linear PI2
control and with linear PI2 control combined with IBDOBC for setpoint speeds ranging from 1 to 6 rps.
Improvement is calculated using RMS linear−RMS IBDOBC & linear

RMS linear · 100%.

Setpoint (rps) 1 2 3 4 5 6

RMS linear (rps) 0.085 0.170 0.277 0.386 0.454 0.501
RMS IBDOBC & linear (rps) 0.079 0.128 0.153 0.216 0.275 0.365
Improvement (%) 7.1 24.7 44.8 44.0 39.4 27.1

a 10% reduction in stiffness on reference tracking and disturbance rejection is considered in Figure 4.4b. For
both, the low-frequency characteristics are unchanged, but above 200 Hz, where the internal anti-resonance
and resonance of the belt are located, changes can be observed. The higher the pole location, the worse the
effect of this stiffness reduction. Regarding reference tracking, the plant uncertainty is not so problematic as
it occurs far beyond the system bandwidth. Regarding disturbance rejection, high-frequency noise, e.g. from
quantization, is more amplified, which could affect performance. Besides, the reduced stiffness has an effect
on stability. The higher the pole location, the closer the system is to instability. It should be noted that this
is just an example of a plant uncertainty, whereas in practice different unforeseen plant uncertainties could
be present.

Therefore, it is decided that the advantage of increased disturbance rejection performance up to 54 Hz
does not outweigh the possibility of increased high-frequency noise amplification and instability as a result
of plant uncertainty. Robustness is valued over performance here, so Clp,3 is not chosen. Then, Clp,1 shows
significantly worse disturbance rejection performance compared to Clp,2, while at the same time Clp,2 is
expected to be sufficiently robust against plant uncertainty. The final choice is therefore Clp,2, such that the
complete Q-filter design is given by

Q(z) =
Bu(z)

B∗
u(z)

C3
lp,2(z). (4.6)

4.5 Experimental results

In this section, performance with linear PI2 controller (3.5) is experimentally compared to the performance
with IBDOBC combined with linear PI2 controller (3.5) on the peristaltic pump setup shown in Figure
2.1. During the experiments, the system is subject to angular speed setpoints ranging from 1 to 6 rps. For
each of the six setpoints, steady-state measurements of 60 s are conducted using either of the two control
methods. The measured steady-state setpoint error of the motor speed, defined as e(t) = θ̇1(t) − θ̇r(t), is
used to quantify the RMS values which are defined as performance measure in Section 1. The results are
summarized quantitatively in Table 4.2 and Figure 4.5.

Small fragments of 0.5 s of the measured steady-state setpoint error of the motor speed with linear PI2
control (black) and IBDOBC combined with linear PI2 control (blue) are shown in the left column in Figure
4.5. A frequency-domain analysis in terms of the cumulative power spectral density is shown in the right
column in Figure 4.5. As stated before, the square root of the cumulative power spectral density plot at
the Nyquist frequency (500 Hz) indicates the RMS values of the setpoint error, for which the exact values
are listed in Table 4.2. The addition of IBDOBC outperforms linear PI2 control at all considered motor
speeds, with improvements in RMS values up to 44.8%. Considering setpoints speeds 3, 4, 5 and 6 rps,
both Figure 4.5 as well Table 4.2 indicate that the improvement becomes smaller for higher setpoint speeds.
This observation is in line with the expected improved disturbance rejection performance coming from the
frequency domain plots in Figure 4.3a, as for higher setpoint speeds, pump ripple frequencies are higher
(Section 2.3.2), whereas disturbance suppression is smaller. At a setpoint speed of 1 and 2 rps, improvement
is smaller than expected based on these plots. This seems mainly attributed to quantization. At lower
speeds, the fixed quantization step size is larger relative to the setpoint error. However, with IBDOBC the
setpoint error is even smaller, such that additional quantization power content seems to appear around 65
Hz and 130 Hz, resulting in a larger effect of quantization relative to the setpoint error. This observation is
similar as found with simulations in Appendix B in Section 4.9, where quantization could be included and
excluded to observe its effect.

Furthermore, note that the experimental performance shows differences with the performance obtained
with simulations (compare Figure 4.10 and Table 4.4 with Figure 4.5 and Table 4.2, respectively). Similar
as stated in Section 3.6, this seems strongly attributed to time-variance in the dynamics of the peristaltic
pump shown in Figure 2.1, which was observed throughout the experimental validation. The models used
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Figure 4.5: (left) Steady-state time domain measurements and (right) cumulative power spectral density
representation of the setpoint error with linear PI2 control (black) and with IBDOBC combined with linear
PI2 control (blue) for setpoint speeds ranging from (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; to (f) 6 rps.
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with IBDOBC combined with HIGS-based PI2 control (dark gray), calculated by dividing the terms in front
d in (4.2) by the terms in front d in (4.1). A value below 1 indicates improvement compared to using only
linear PI2 control, whereas a value above 1 indicates deterioration.

Table 4.3: RMS values of the measured steady-state setpoint error of the motor speed with linear PI2
control and with HIGS-based PI2 control combined with IBDOBC for setpoint speeds ranging from 1 to 6
rps. Improvement is calculated using RMS linear−RMS IBDOBC & HIGS

RMS linear · 100%.

Setpoint (rps) 1 2 3 4 5 6

RMS linear (rps) 0.085 0.170 0.277 0.386 0.454 0.501
RMS IBDOBC & HIGS (rps) 0.078 0.136 0.145 0.191 0.248 0.325
Improvement (%) 8.2 20 47.7 50.5 45.4 35.1

within the simulations are based on measurement data from a different day compared to the measurement
data in this section. Time-variance of the dynamics is not further analyzed in this thesis.

4.6 Combination with hybrid integrator-gain-based control

In this section, performance of IBDOBC combined with the new HIGS-based PI2 controller design (Section
3.4) is experimentally compared to the performance with IBDOBC combined with linear PI2 controller (3.5)
on the peristaltic pump setup shown in Figure 2.1. Stability is verified using Theorem 4.3.1, for which the
HIGS-based PI2 controller is again approximated in the frequency domain using describing function analysis,
similar as in Section 3.4. The corresponding results are comparable to the results of IBDOBC combined
with linear PI2 control and are therefore not further elaborated on. Expected performance differences
are constructed by means of (approximate) sensitivity function plots, as shown in Figure 4.6, where a
value below 1 indicates improvement compared to only using linear PI2 control, whereas a value above 1
indicates deterioration. With the combination of IBDOBC and HIGS-based PI2 control one expects improved
performance within a frequency range of 1 to 70 Hz compared to the combination of IBDOBC and linear
PI2 control, with the largest improvements around 15 Hz. For the experiments, the same methodology is
conducted as elaborated on in Section 4.5. The results are summarized quantitatively in Table 4.3 and Figure
4.7.

Small fragments of 0.5 s of the measured steady-state setpoint error of the motor speed with linear PI2
control (black) and IBDOBC combined with HIGS-based PI2 control (dark gray) are shown in the left column
in Figure 4.5. A frequency-domain analysis in terms of the cumulative power spectral density is shown in
the right column in Figure 3.11, additionally showing the measured steady-state setpoint error of the motor
speed with HIGS-based PI2 control (red) as reference and with IBDOBC combined with linear PI2 control
(blue). IBDOBC combined with HIGS-based PI2 control outperforms linear PI2 control at all considered
motor speeds, with improvements in RMS value up to 50.5%. It shows similar or improved performance
compared to IBDOBC combined with linear PI2 control, with larger improvements for higher motor speeds.
At a motor speed of 1 and 2 rps, the base frequency of the pump ripple (4 and 8 Hz respectively) shows
to be less attenuated compared to IBDOBC combined with linear PI2 control. This is not in line with the
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Figure 4.7: (left) Steady-state time domain measurements and (right) cumulative power spectral density
representation of the setpoint error with linear PI2 controller (3.5) (black) and with the combination of
IBDOBC with the newly designed HIGS-based PI2 controller (Section 3.4) (gray) for setpoint speeds ranging
from (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; to (f) 6 rps. For comparison, results with the newly designed HIGS-
based PI2 controller and results with the linear PI2 controller combined with IBDOBC are also shown in
the cumulative power spectral density plot.
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Figure 4.8: Adjusted block scheme of IBDOBC. Compared to the general block scheme of IBDOBC shown
in Figure 4.1, d̂ is split into d̂p and d̂q.

expectations coming from (approximate) sensitivity function plots shown in Figure 4.6. This seems a typical
result of gain loss [11]. Relatively high-amplitude quantization frequencies seem to be present around 65 Hz
and 130 Hz, similar as found in Section 4.5, but also from 350 Hz onward. This parasitic high-frequency
quantization content seems to be the main factor causing gain loss at 4 and 8 Hz at a setpoint speed of 1
and 2 rps, respectively.

4.7 Conclusions

This chapter presented an IBDOBC design for the peristaltic pump developed by Demcon for the purpose
of reducing the steady-state setpoint error of the motor speed compared to linear PI2 control. The design
consists of a nominal plant model and a so-called Q-filter. The Q-filter is used to ensure that inversion of the
nominal plant model results in a stable and proper system, and to enforce stability of the closed-loop system.
Experimental results with IBDOBC show performance improvements compared to linear PI2 control for all
considered motor speeds, with improvements up to 44.8% in terms of RMS value when combined with linear
PI2 control and up to 50.5% when combined with HIGS-based PI2 control. Improvements at lower speeds
are less than expected based on frequency domain characterisations, which seems a result of quantization.
The combination with HIGS-based PI2 control additionally seems to suffer from gain loss at lower motor
speeds.

4.8 Appendix A: Small-gain theorem for IBDOBC

In this section, the general block scheme of IBDOBC shown in Figure 4.1 is rewritten in a form suited for
small-gain theorem analysis, which is performed in Section 4.3. For this, first consider the adjusted block
scheme shown in Figure 4.8, where d̂ is split into d̂p and d̂q. For small-gain theorem analysis, the loop-gain

between d̂p and d̂q should be derived.

For this, let us first rewrite u as function of d̂q and inputs r and d, so

u = c− d̂q,

= C(r − y)− d̂q,

= C(r − P (d+ u))− d̂q,

= Cr − PCd− PCu− d̂q,

(1 + PC)u = Cr − PCd− d̂q,

where dependence on Laplace variable s is omitted for reasons of clarity. Solving for u gives

u = CSr − Td− Sd̂q, (4.7)
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Figure 4.9: Adjusted block scheme of IBDOBC rewritten.

Table 4.4: RMS values of the simulated steady-state setpoint error of the motor speed with linear PI2
control and with linear PI2 control combined with IBDOBC for setpoint speeds ranging from 1 to 6 rps.
Improvement is calculated using RMS linear−RMS IBDOBC & linear

RMS linear · 100%.

Setpoint (rps) 1 2 3 4 5 6

RMS linear (rps) 0.064 0.218 0.383 0.558 0.703 0.822
RMS IBDOBC & linear (rps) 0.033 0.071 0.140 0.238 0.365 0.582
Improvement (%) 48.4 67.4 63.4 57.3 48.1 29.2

with

S =
1

1 + PC
, T =

PC

1 + PC
. (4.8)

As an intermediate step, let us write d̂p as function of inputs d and u, so

d̂p = QP−1
n y −Qu,

= QP−1
n (P (d+ u)−Qu,

= QP−1
n Pd+QP−1

n Pu−Qu,

= QP−1
n Pd+Q(P−1

n P − 1)u. (4.9)

Substitution of (4.9) in (4.7) results in the final relation for d̂p as function of d̂q and inputs r and d, thereby

also obtaining the loop-gain between d̂p and d̂q, so

d̂p = QP−1
n Pd+Q(P−1

n P − 1)(CSr − Td− Sd̂q),

= QP−1
n Pd+Q(P−1

n P − 1)CSr −Q(P−1
n P − 1)Td−Q(P−1

n P − 1)Sd̂q,

= Q(P−1
n P − 1)CSr +Q(P−1

n P − (P−1
n P − 1)T )d−Q(P−1

n P − 1)Sd̂q. (4.10)

Using this relation, the block scheme shown in Figure 4.8 can be rewritten into the form shown in Figure
4.9. Finally, Figure 4.2 shows the corresponding block scheme without splitting d̂ into d̂p and d̂q.

4.9 Appendix B: Simulation results

In this section, performance with linear PI2 controller (3.5) is compared to the performance with IBDOBC
combined with linear PI2 controller (3.6) using simulations. For this, nominal plant model Pn (2.2) is
subjected to angular speed setpoints ranging from 1 to 6 rps. For each setpoint, steady-state simulations of
60 s are conducted using either linear PI2 control (3.5) or IBDOBC combined with linear PI2 control (3.5).
Plant uncertainty is not considered, i.e. P = Pn. The simulated steady-state setpoint error of the motor
speed, defined as e(t) = θ̇1(t)− θ̇r(t), is used to quantify the root-mean-square (RMS) value of the setpoint
error, which was defined as performance measure in Section 1. The results are summarized quantitatively in
Table 4.4 and Figure 4.10.

Small fragments of 0.5 s of the simulated steady-state setpoint error with linear PI2 control (black) and
linear PI2 control combined with IBDOBC (blue) are shown in the left column in Figure 4.10, whereas a
frequency-domain analysis in terms of the cumulative power spectral density is shown in the right column in
Figure 4.10. The addition of IBDOBC significantly outperforms linear PI2 control at all considered motor
speeds, with improvements in RMS value up to 67.4%. Apart from a setpoint speed of 1 rps, both Figure 4.10
as well Table 4.4 indicate increasing improvement for lower setpoint speeds. This observation is in line with
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Figure 4.10: (left) Steady-state time domain simulations and (right) cumulative power spectral density
representation of the setpoint error with linear (black) and IBDOBC (blue) for setpoint speeds ranging from
(a) 1; (b) 2; (c) 3; (d) 4; (e) 5; to (f) 6 rps.
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the expected improved disturbance rejection performance coming from the frequency domain plots in Figure
4.3a, as for lower setpoint speeds, pump ripple frequencies are lower (Section 2.3.2), whereas disturbance
suppression is larger. At a motor speed of 1 rps, improvement is smaller than expected based on these plots.
This is attributed to quantization. At lower speeds, the fixed quantization step size is larger relative to the
setpoint error. However, with IBDOBC the setpoint error is even smaller, such that additional quantization
power content seems to appear around 65 Hz, resulting in a larger effect of quantization relative to the
setpoint error.



Chapter 5

Conclusions and recommendations

5.1 Conclusions

In this thesis, a HIGS-based PI2 controller is presented with the objective to reduce the steady-state setpoint
error of the motor speed of a peristaltic pump while at least maintaining robustness margins obtained with
linear PI2 control. Besides, an IBDOBC design that can be combined with either linear or HIGS-based PI2
control is presented with the objective to reduce the steady-state setpoint error of the motor speed of a
peristaltic pump.

Models of the peristaltic pump and its prominent experienced disturbances are used to realize the HIGS-
based PI2 controller and IBDOBC design. A structured tuning methodology for HIGS-based PI2 controller
design was developed and used to improve upon an initial HIGS-based PI2 controller design. This initial
design was also developed within this thesis and was presented by means of a conference paper. Simulation
results indicated similar performance at higher speeds, but improvements up 24.7% in terms of RMS value
at lower speeds with the new HIGS-based PI2 controller design compared to the HIGS-based PI2 controller
design from the paper. Key for these improvements was contributed to a switch from series to parallel
baseline configuration, a different gain loss filter and different values for HIGS tuning parameter ωh.

Finally, experimental validation of the new HIGS-based PI2 controller design showed slightly deteriorated
performance at the lowest motor speed compared to linear PI2 control, which seems to be attributed to gain
loss, but improved performance for all higher considered motor speeds, showing improvement up to 30.1%
in terms of RMS value. Transient performance was additionally enhanced as well, showing improvements up
to 50.0% in terms of overshoot for similar rise time compared to linear PI2 control.

Experimental results with IBDOBC showed performance enhancements compared to linear PI2 control
for all considered motor speeds, with improvements up to 44.8% in terms of RMS value when combined
with linear PI2 control and up to 50.5% when combined with HIGS-based PI2 control. Improvements at
lower speeds were less than expected based on frequency domain characterisations, which seemed a result of
quantization.

5.2 Recommendations

Based on the results and conclusions presented in this thesis, several recommendations for future research
directions are formulated:

• Stability with the HIGS-based PI2 controller is validated using the Nyquist stability criterion, for which
both HIGS elements are approximated using describing function analysis. No formal stability proof of
the HIGS-based PI2 controller exists yet, whereas the existence of this would ensure more certainty
regarding stability. Especially in the medical industry, where design requirements are generally strict,
such a proof would be greatly valued.

• The transient performance with IBDOBC has not been evaluated in this thesis. However, it would be
interesting to see whether IBDOBC combined with either linear or HIGS-based PI2 control improves
or deteriorates the transient performance compared to not using IBDOBC.

• Robust performance and stability of IBDOBC has been addressed in this thesis by means of an example
of a probable plant uncertainty. However, a suitable method to analyse robust stability and performance
with IBDOBC in the presence of plant uncertainties in general is missing and not yet available in
literature.

52
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• The peristaltic pump setup used in this thesis seems to exhibit time-variant dynamics. This seems
largely attributed to the degradation of the stiffness of the disposable tubes used during pump op-
eration. Besides, slight misalignments resulting from shock loads or thermal effects possibly further
alter the dynamics of the peristaltic pump from time to time. A more thorough analysis on this time-
variance might be beneficial to eventually design a suitable robust controller or realize an improved
mechanical redesign of the pump.

• In this thesis, HIGS-based PI2 control and IBDOBC are considered approaches to reduce the effects
of the pump ripple, without using the periodicity of the pump ripple. Control methods that would
make use of this periodicity, such as repetitive control, seem promising as well. One could apply such
a strategy in the time domain, but also in the spatial domain to make the compensation independent
of the actual pump speed [21].

• In this thesis, only the disturbance corresponding to the pulsation/ripple about the desired speed
is considered: the pump ripple. However, the peristaltic pump principle introduces an additional
periodic disturbance as a result of the fact that fluid is displaced in parts, resulting in a so-called flow
ripple. One could use an external flow sensor to analyze the severity of this ripple on the flow and
thereby determine whether additional control action would be desired. Similar as for the pump ripple,
disturbance-observer-based control methods might be suited for this.



Bibliography
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