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Testing and verification are integral parts of software development that

happen at every level of abstraction. When testing software written on one

level, software engineers might consider the layer below as intransparent

and assume it to not produce any unspecified behaviour. However, this is not

always the case, and low-level compiler bugs can go unnoticed for years. One

powerful strategy to investigate output of compilers is differential testing, or

differential fuzzing. Recently, a general approach to differential testing was

introduced to the field in the form of Xsmith: a potent tool that can be used

to write fuzz testers in arbitrary languages. Xsmith has been implemented

for a variety of programming languages, and its effectiveness has been

demonstrated by the discovery of bugs in implementations of Racket, Dafny

and WebAssembly. We extend that list by investigating the effectiveness

and limitations of Xsmith when used to implement a differential tester

for the Haskell programming language. These limitations are investigated

by evaluating program generation speed and compiler coverage for the

generated Haskell programs.

Additional Key Words and Phrases: differential testing, differential fuzzing,

compiler validation, GHC.

1 INTRODUCTION
For software engineers building on the abstraction provided by a

high-level programming language, compilers and interpreters are

important tools. By providing semantic and syntactical analysis,

and generating (optimized) machine code, they form a large part of

the bridge between human mind and computer processor. However,

compilers are not always free from imperfections, and cracks in the

bridge can be both impactful and hard to find. This has made com-

piler validation an active research topic, where researchers explore

a variety of testing strategies. One powerful strategy is differential

fuzzing or differential testing, where the same programs are com-

piled with different compilers, to find differences in execution [17].

A recent development in differential testing is the publication of

Xsmith. Hatch et al. [11] introduce their contribution as “a Racket

library and domain-specific language that provides mechanisms for

implementing a fuzz tester in only a few hundred lines of code.” In

order to generate programs that only fail differential tests in case of

implementation errors, Xsmith limits itself to generating “conform-

ing” programs. This term was coined by Hatch et al. [11] to describe

inputs (programs) “that conform strictly to the language specifi-

cation, as well as avoiding undefined, implementation-defined, or

nondeterministic behavior.”

We explore the use of Xsmith as a way to generate conforming

programs in a functional programming language. Specifically, we im-

plement a fuzz tester for Haskell and use cross-optimization testing

strategies on inputs generated by Xsmith. For all compiler testing
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in this research, the Glasgow Haskell Compiler (GHC) is used to

compile randomly generated programs using different optimization

levels. This provides insight on the performance and limitations of

Xsmith for functional programming implementations. Additionally,

a thorough fuzzing campaign may find previously undiscovered

bugs in implementations of the Haskell programming language.

The problem statement is summarized in the following research

question: How can Xsmith be used to implement an effective fuzz

tester for evaluating Haskell compilers? The answer to this question

can be constructed by first answering the following sub-questions:

RQ1 How effective can we make an Xsmith-based Haskell fuzz

tester?

RQ2 What limitations does Xsmith impose on the development of

a Haskell fuzz tester?

2 RELATED WORK
This section provides an overview of related work in differential

testing, GHC testing, and Xsmith-based fuzz testers.

2.1 Differential testing
Differential testing in software is a test oracle: a mechanism that

decides whether a test is passed or failed. Finding or generating the

right test oracle for the right circumstances is difficult and includes

balancing effectiveness and computation cost, and balancing the

evaluation load between human and computer.

2.1.1 History. Differential testing as a test oracle was formally in-

troduced in 1988 by McKeeman [17] who introduced a prototype

differential tester for testing C compilers. To illustrate the advantage

of differential testing, he states the following: “Differential testing ad-

dresses a specific problem — the cost of evaluating test results.” [17]

This refers to the problems of evaluating possibly “millions of tests”

to find bugs in software. Differential testing is an effective way to

automate the process of finding interesting test results. However,

different results for the same input programs might still not indicate

an implementation fault, notably in cases where input programs

execute instructions that are specified to produce non-deterministic

or undefined behaviour.

2.1.2 Csmith. In 2011, the publication of Csmith provided an in-

fluential demonstration of the effectiveness of compiler fuzzing. By

implementing overflow checks and using static analysis to generate

programs free from undefined and unspecified behavoiur, Yang et

al. [22] discovered over 325 previously unkown C compiler bugs.

Per ACM citation metrics, their publication has been cited over

600 times, and Csmith has inspired numerous studies and publica-

tions. A recent example is the development of CsmithEdge, which

relaxes the conservative static analysis of Csmith to find new bugs

in C compilers and achieve greater code coverage in the compiler

codebases [6].

2.1.3 Effectiveness. In a 2016 comparison, Randomized Differential

Testing (RDT) was measured against Different Optimization Level
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(DOL) and Equivalence Modulo Input (EMI) using programs gener-

ated by Csmith. By keeping track of the bugs found by each testing

strategy, Chen et al. [2] draw some conclusions that are relevant for

this research:

• “RDT oracle is the strongest, whereas EMI oracle is the weak-

est.”

• “Efficiency has the most significant impact on the effective-

ness of compiler testing, and the effectiveness of generated

test programs has the least significant impact.”

Here, the strength of test oracles refers to which testing oracle

finds the most bugs per program, efficiency refers to the number

of programs that can be tested per time interval, and effective-

ness of generated programs refers to the number of bugs found

per tested program. The first conclusion supports the choice to

use cross-compiler and cross-optimization testing for this research.

The second conclusion provides insight for the evaluation of ’ef-

fectiveness’ when answering sub-question RQ1: efficiency must be

weighed heavily when balanced against other parameters.

2.1.4 Greybox fuzzing. In an effort to combat compiler immuniza-

tion against fuzzers, some fuzzers have taken a more dynamic ap-

proach in the form of greybox fuzzing. Greybox fuzzers use the

compiler codebase coverage from previously generated tests as feed-

back. This feedback is then used to maximize the coverage of newly

generated test programs, by guiding the mutation of previously gen-

erated programs. Notable examples are the AFL and AFL++ frame-

works [8, 23], and the libFuzzer library [19]. In a recent publication,

the greybox fuzzer GrayC pioneers the use of “semantics-aware

mutation operators” to avoid generating syntactically invalid pro-

grams with naive mutations; Even-Mendoza et al. [7] used GrayC to

discover 25 previously unknown compiler and code analyser bugs.

Additionally, they report achieving more middle- and back-end cov-

erage for the LLVM compiler than other greybox and blackbox

fuzzers.

2.2 GHC testing
Differential testing for GHC is not new. In 2011, Palka et al. [18]

take a goal-directed approach to generating simply-typed lambda

calculus programs in Haskell. The goal is a “target type”, which

is provided as input together with an “environment containing all

variables and constants that can be used in the terms.” Then, the

syntax rules of lambda calculus are traversed backwards to obtain

an expression that results in a term of the specified target type. The

generated programs are then used as input for cross-optimization

GHC tests, at which point a bug was discovered in GHC’s strictness

analyzer. Though the generated expressions can achieve high depths,

they cover only a limited subset of possible Haskell programs due to

the simple nature of simply-typed lambda calculus and lack of effect

analysis. For example, values are limited to a small set of constants,

and functions to list operations from the Haskell Prelude, while

Hatch et al. [11] claim Xsmith fuzzers “can be featureful, generating

correct code for conditionals, rich types, variable references, and so

on.”

2.3 Xsmith generators
Hatch et al. [11] provide Xsmith fuzzers for Racket, Dafny, Standard

ML, WebAssembly as well as Python, Lua, and Javascript. However,

the last three fuzzers were “not used in substantial fuzzing cam-

paigns.” Besides these out-of-the-box fuzzers, a thorough internet

search only reveals the Xsmith-based R7RS fuzzer ’rattle-smith’ but

it is unclear whether it has been used succesfully [16]. The collection

of existing fuzzers provides the possibility for replication studies,

but leaves ample space for researching new implementations of

Xsmith-based fuzzers. The implementation of a fuzzer for a func-

tional programming language like Haskell will likely give rise to

problems that have not been explored within the Xsmith domain.

3 GENERATING HASKELL PROGRAMS
In order to evaluate Xsmith in a functional context, we provide a

simple Haskell fuzzer [4]. It is implemented in Racket, to make use

of the Xsmith library.

3.1 Haskell
Haskell is a purely functional programming language, specified in

the Haskell 98 Language report and the Haskell 2010 Language

Report [13, 14]. The latter describes it as providing “higher-order

functions, non-strict semantics, static polymorphic typing, user-

defined algebraic datatypes, pattern-matching, list comprehensions,

a module system, a monadic I/O system, and a rich set of primi-

tive datatypes.” Haskell’s strong, static typing system guarantees

that no type errors can occur at runtime. A conforming Haskell

program can therefore only crash in a limited number of ways,

like pattern-matching failure, unsafe arithmetic, or the use of other

unsafe language features like partial functions or the Foreign Func-

tion Interface. Xsmith provides useful infrastructure for generating

type-correct programs, meaning that generating error-free Haskell

programs is relatively straightforward, provided that unsafe features

are omitted from the Xsmith specification.

3.1.1 Syntax. In order to facilitate the many features mentioned at

the start of this section, the Haskell 2010 Language report specifies

a complex context-free syntax with more than 70 variables and over

150 rules [14]. However, the developed fuzzer does not implement

all the specified grammar rules: it is limited to generating single

argument lambda abstractions and function applications, as well

as literals and one- and two-argument functions for certain data

types. This code example shows the Haskell syntax for a simple,

one-argument lambda function application: (\x →x + 1) 5

Here, x is the parameter and x + 1 is the expression that defines

the function body. In this case, the lambda abstraction simply incre-

ments its argument by 1, so this expression evaluates to 6. Lambda

abstractions are powerful and can be nested indefinitely; In fact, the

the GHC compiler desugars all multi-argument functions into nested
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single-argument lambda abstractions. Listing 1 contains an example:

-- Haskell syntax

f x y = x + y

-- Desugared version

f =

\x →
\y → (+) x y

Listing 1. Example of Haskell syntax desugaring into lambda functions

3.2 Xsmith
Xsmith uses the Scheme library RACR to define a reference attribute

grammar specification. Attribute grammars allow the addition of

attributes to their rules and nonterminals. RACR allows referential

attributes, which can be used for the “controlled rewriting” of an

Abstract Syntax Tree (AST) after evaluation [1]. Xsmithmakes use of

this feature, together with choice objects to guide the generation of a

randomAST [9]. Choice objects have choicemethods which are used

to guide generation by filtering the grammar productions. Finally,

Xsmith provides properties, which are “compile-time macros for

generating attributes and choice methods and so are not themselves

used during generation.” [9] We do not directly use choice methods

and attributes in the provided fuzzer: since Haskell eliminates the

need of an effect analysis through its lack of side effects, the main

area of interest for the development of theHaskell fuzzer is satisfying

Haskell’s type system. We use the type-info property provided by

Xsmith for this. It is used to describe the relation between a node’s

type, and the types of its children.

3.3 Program generation
This section provides a detailed description of certain key features of

the Haskell fuzzer like typing, unsafe functions, and structure of the

generated programs. Additionally, this section includes an overview

of Xsmith-related obstacles encountered throughout development.

3.3.1 Typing. The fuzzer emulates Haskell’s typeclasses Numeric,

Real, Integral, and Fractional. To do this, we first define each type-

class as a nonleaf Xsmith base-type. This means that these these

types must eventually be resolved to a leaf subtype. Additionally,

the Real typeclass is defined as a real-type, subtype of numeric-

type. Integral, and Fractional become subtypes of real-type in

order to emulate their Numeric and Real class constraints. Finally,

we add int-type and float-type as subtypes of integral-type and

fractional-type, respectively. These types are leaf types, meaning

that no further subtypes can be created. Listing 2 contains the Racket

code for these definitions. Each type is defined as a product of the

base-type function, which takes a name, an optional supertype (de-

fault false) and leaf property (default true).

This hierarchy was designed to work with the Xsmith function

fresh-subtype-of, which takes a type t and returns a type variable

constrained to a subtype of t. This was assumed to return the first

nonleaf subtype of t, which would make calling (fresh-subtype-of

number-type) an elegant way to constrain all children nodes of a

Numeric function to either Ints or Floats. This prevents the gener-

ation of expressions constrained (Integral a, Fractional a) ⇒a,

which are not printable. However, in practice fresh-subtype-of t

(define number-type

(base-type 'number #:leaf? #f))

(define real-type

(base-type 'real number-type #:leaf? #f))

(define integral-type

(base-type 'integral real-type #:leaf? #f))

(define int-type

(base-type 'int integral-type))

(define integer-type

(base-type 'integer integral-type))

(define fractional-type

(base-type 'fractional real-type #:leaf? #f))

(define float-type

(base-type 'float fractional-type))

Listing 2. Hierarchy of numeric types used by the fuzzer

does not seem to constrain t to anything. Initially, the Xsmith devel-

opment team identified this as a potential bug [21]. However, upon

further review, it was clarified that this was intended behaviour, al-

though implementing the described behavior as an optional feature

could be beneficial. We now implement types of numeric functions

by explicitly defining their type variables as integral or fractional:

(fresh-type-variable integral-type fractional-type.

3.3.2 Program structure. A crucial step in differential testing is

comparing program output across different systems under test. In

order to print output that contains information about the program,

we simply prepend the generated program with main = print. The

AST is then rendered starting from a single argument lambda func-

tion application whose body can contain a range of expressions,

including more lambda function applications. It is important that

lambda functions are always applied to enough arguments, since

partially applied functions are not valid arguments for print. In

order to avoid generating partially applied functions, we restrict

the generation of lambda expressions to child nodes of procedure

applications. This ensures that lambda functions are always applied

to an argument, guaranteeing a printable result.

Listing 3 contains a simplified code example showing how the

add-to-grammar form is used to add the productions that form the

root nodes of our AST to the Haskell fuzzer raskell. For every pro-

duction, we specify its name, its supertype, and a list of child nodes.

Assuming program generation is specified to start at the Program

node, it is impossible for a LambdaExpression to be generated without

being provided an argument from a parent ProcedureApplication

node. This is achieved by not marking LambdaExpression as a sub-

type of Expression. This means that LambdaExpressions can only be

used to fill the corresponding LambdaExpression hole nodes, which

are only created by ProcedureApplication nodes. Additionally, the

print [] expression is normally ambiguous since the Show class con-

straint for the use of the print function is not satisfied by an empty

list. This happens because the Show instance of a list is normally

derived from the Show instance of a list’s element type. However,

the empty list has no element type unless explicitly specified, re-

sulting in an ambiguous type variable error. We solve this problem
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(add-to-grammar

raskell

[Program #f ([𝜆 : ProcedureApplication])]

[ProcedureApplication Expression

([procedure : LambdaExpression]

[argument : Expression])]

[LambdaExpression #f

([parameter : FormalParameter] [body : Expression]))

Listing 3. Overview of the structure at the root of every AST

by enabling GHC’s extended type defaulting rules through the -

XExtendedDefaultRules flag. This allows GHC to default the empty

list’s element type to the unit type (), resolving the error.

3.3.3 Unsafe functions. Generating programs that result in runtime

exceptions complicates differential testing. Halting the program

early prevents code, that was possibly expensive to generate, from

being evaluated. In order to avoid this bottleneck, we avoid certain

unsafe functions by providing our own safe versions or importing

them from the Safe library. For example, the div function is unsafe

because it throws a divide by zero exception for any x in x `div` 0.

We provide a custom function to replace it that returns zero when

the divisor is zero.

safeDiv :: Integral a ⇒ a → a → a

safeDiv x 0 = 0

safeDiv x y = div x y

Listing 4. safeDiv definition

Another set of unsafe functions is the partial functions included

in Haskell’s standard module Prelude. It includes list operations

like the head function, which returns the first element of a list. If

the provided list is empty, head throws an exception. Likewise, the

list index function !! returns an index too large exception when

the list it is applied to is shorter than the provided index. For these

cases we use alternatives from the Safe module that take an extra

fallback argument which is only returned when the function would

otherwise return an exception.

3.3.4 Canned components. To simplify fuzzer development, Xsmith

provides “canned components”. These are implemented as library

which provides functions to quickly add common expressions to a

language component. The canned-components library adds gram-

mar productions to their relevant type-info attributes, leaving es-

sentially only defining the render-info attribute to the user. Besides

its use as a source of valuable examples, this library was used to

implement basic boolean logic, list literals, and safe list reference.

To do this, we simply enable the Boolean and MutableArray flags,

and provide the correct Haskell syntax through the render-info

property. For other applications, the ’canned’ grammar specification

proved to be too inflexible to implement the simple, custom pro-

gram structure explained in section 3.3.2. For example, the provided

LambdaExpression can be generated outside of being a child node

of a ProcedureApplication node. This leads to the generation of

partially applied lambda functions, which are difficult to evaluate

during testing.

3.4 State of the fuzzer
The Fuzzer is designed to generate type-correct Haskell programs

conforming to the Haskell 2010 language specification. It generates

basic expressions and a selection of functions from the Prelude mod-

ule [3], a standard Haskell module available to all Haskell programs

by default.

• Single argument lambda functions and function application

• Boolean literals (True, False) and functions (||, &&, not)

• Numeric literals (Int, Float)

• Numeric functions (+, -, *, negate, abs, signum, fromInteger,

subtract, even, odd, gcd, lcm, ˆ, ˆˆ, fromIntegral, realToFrac)

• Safe implementations of integral functions (quot, rem, div,

mod)

• Other integral functions (toInteger)

• Fractional division: (/)

• List literals

• Safe implementations of partial list functions (head, last, tail,

init, !!)

4 MEASUREMENT TOOLS
This section gives a brief overview of the tools used, clarifying their

role in the research, as well as any possible technical limitations.

4.1 Test driver
The Flux research group provides a harness to run a fuzzing cam-

paign on their distributed testbed emulab [10]. At its core, it con-

tains a Python script for running the fuzzer, feeding the generated

program to different compilers, executing the binary and then com-

paring the output. This script was used with custom configuration

files for each of the experiments in section 5.

4.2 Glasgow Haskell Compiler
We limit the evaluation of compiler codebase coverage and distri-

bution to GHC, because of its flexible build system and extensive

documentation. It is a mature open source compiler and interac-

tive interpreter, in compliance with the full Haskell 2010 language

specification.

Attempts at alternative implementations of the Haskell 2010 stan-

dard include the Utrecht Haskell Compiler (UHC) [5] and the LLVM

Haskell Compiler (LHC) [12]. These compilers were initially consid-

ered for cross-compiler testing, but ultimately rejected for several

reasons. Even though UHC supports large parts of the Haskell 98

and 2010 standards, we do not use it for tests because official doc-

umentation appears to be offline and it lacks recent contributions:

UHC’s last commit was made on the 1
st
of January 2018. Addition-

ally, we do not consider LHC a viable option as it has been limited

to compiling “very simple programs for now” since 2014 [12].

4.2.1 Structure of the compiler. In order to reason about coverage,

it is important to understand GHC’s general structure. Based on an

article on GHC’s general structure by lead developers Peyton-Jones

and Marlow [15], we divide the compiler into three main parts:

• The front end, which parses, renames and type-checks the

Haskell source code before desugaring it into a simplified

core language called GHC Core. The Core language is a small,
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expressive, and strongly typed intermediate representation

that GHC uses for analyses and optimizations.

• The Simplifier, which applies a series of transformations to

the Core language, such as inlining, strictness analysis, and

simplification, to improve the performance and correctness

of the generated code.

• The back end, which converts the optimized Core code into

STG, before being translated into C–. Finally, the C– code

is translated to native machine code, C code, or LLVM code

which is passed to the LLVM compiler. Additionally, since

version 9.6.1, GHC can be built to compile to WebAssembly

and JavaScript. However, these features should be regarded as

technology previews and are not available in standard builds

of GHC 9.6.1 [20]

4.3 Haskell Program Coverage
GHC ships with the Haskell Program Coverage (HPC) toolkit, which

provides code coverage information for Haskell code. It can be used

to obtain detailed information of Haskell programs compiled with

GHC’s -fhpc flag. Since GHC is bootstrapped with an older version

of GHC, it is possible to instrument the compiler source code with

the code coverage flag enabled. GHC’s build system Hadrian was

used to target the the Haskell files for the GHC modules and binary

with this flag. The resulting GHC binary outputs a .tix file every

time it compiles a Haskell program. This file details howmany of the

compiler’s declarations, alternatives, and expressions were reached

during execution.

The sum and combine tools provided by HPC can then be used

to combine multiple .tix files into one, in order to obtain cumulative

coverage information. These tools are used to calculate the total

coverage of the Haskell fuzzer over multiple test runs. The outputs

of these tests can then be used as input for the report and markup

tools to provide detailed, human-readable output in text or HTML,

respectively.

5 EXPERIMENTAL SETUP
We take an empirical approach to measuring the performance and

effectiveness of Xsmith and the Haskell fuzzer.

5.1 Parameters
In order to evaluate the fuzzer, it is important to select a fitting

metric for fuzzer effectiveness. In some related work, fuzzers are

categorized by the amount of bugs they can find in a certain time

frame [2]. However, this method is not a reasonable metric for

evaluating the developed Haskell fuzzer, as its scope is likely too

small too discover any compiler bugs at the time of publication.

Therefore, we evaluate the effectiveness of the Haskell compiler

according to the following parameters:

(1) efficiency (at different levels of AST depth)

(2) compiler codebase coverage

(3) compiler coverage distribution

A small cross-optimization testing campaign will still be conducted:

randomly generated Haskell programswill be compiled using GHC’s

3 optimization levels. The 3 resulting binaries will be executed and

tested for different output, since varied outcomes for the same input

program indicate a compiler bug. Each experiment will be conducted

in the same testing environment: A Linux Mint 21.3 computer with

an AMD Ryzen 5 2600X Six-Core Processor and 16GB of 3200 MHz

DDR4 memory installed.

5.2 Efficiency
To investigate the relationship between program generation speed

and generated program complexity, the Haskell fuzzer will be exe-

cuted with different values for the Xsmith command line argument

--max-depth. The fuzzer will run for 2 hours each at levels 1, 3, 5,

and 7 to obtain a varied performance profile. Together with infor-

mation about compiler coverage achieved at different AST depths,

this can provide insight into the ratio between computational cost

and effectiveness.

5.3 Compiler coverage
To investigate the effect of including different expressions in the

fuzzer, we run the Haskell fuzzer for 2 hours at every AST max

depths 1, 3, 5, and 7, using the HPC-enabled build of GHC 9.8.1.

The coverage file of every run is aggregated and compared across

AST depths. Additionally, the effect of including expressions will

be evaluated by comparing the coverage results of an old, simple

version of the fuzzer against the latest one.

5.4 Coverage distribution
We convert the aggregated .tix file from the --max-depth 7 coverage

experiment to XML format with the HPC report tool. In order

to gain a high-level overview of the coverage data, all the data

for subdirectories of GHC is aggregated into a single entry. For

example, the coverage information for ghc-9.8.1/GHC/Hs.Binds and
ghc-9.8.1/GHC/Hs.Decls is summed and then stored under the Hs

component. These components can then be assigned to the front-,

middle-, or back-end of the GHC compiler on a best-effort basis.

The difference in coverage between the compiler parts can be used

to reason about the validity of Xsmith’s claim to fame: finding deep

semantic bugs [11].

6 RESULTS
This section presents an examination of the results obtained by

executing the specified experiments.

6.1 Program generation speed
The results of the experiment exploring program generation speed

at different AST depths are detailed in table 1. The ’AST depth’

column corresponds to themax-depth option provided to the Xsmith

Command Line Interface. ’Programs generated’ provides the number

of programs that were generated over a 2 hour testing period, while

’Xsmith errors’ indicate the amount of times Xsmith crashed or

timed out during the test. ’GHC errors’ indicates the amount of

generated programs that failed to compile.

There is no significant difference in generation speed between

depths 1 and 3. This indicates that the cost of increasing the AST

complexity at these levels is negligible compared to the overhead

associated with program generation in general. At depth 5, genera-

tions speed is reduced approximately twofold. At depth 7, program

5
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AST depth Programs Xsmith errors GHC errors

1 1054 0 0

3 1049 0 0

5 470 19 10

7 168 12 3

Table 1. Number of programs generated in 2 hours at different AST depths

generation speed further decreases with a factor of approximately

3. Xsmith and GHC errors start to occur at depth 5 and higher. All

GHC errors are associated with two-argument Numeric functions

(e.g. subtract) generating one Fractional argument (e.g. a Fractional

literal) and one Integral argument (e.g. application of the div func-

tion). These errors are likely a result of the rewriting of the type-info

property for numeric functions as discussed in section 3.3.1.

6.2 Compiler coverage
The results of the experiment exploring GHC compiler coverage are

available in table 2. There is a clear division between depths 3 and

5, but the coverage information is otherwise similar. This indicates

that some compiler code paths are impossible to reach for smaller

programs, even if they are generated quicker. The increase in depth

from 5 to 7 does not increase compiler coverage as dramatically: it

appears that the fuzzer can exhaust most possible code paths in 2

hours at AST depth 5.

The cross-optimization fuzzing campaign did not uncover any

compiler bugs. In 4 hours, 403 conforming programs were generated,

all of which maintained consistent results across different compiler

optimization levels.

6.3 Compiler coverage at different fuzzer complexity
A comparison between the results of a simple version and more com-

plex version of the fuzzer is provided in table 3. The simple fuzzer

supports integer and boolean literals, and the following functions:

+, -, ∗, safeDiv, <, and >. There is slight increase in all coverage

metrics for the complex version of the fuzzer. This means that ex-

tending the fuzzer to cover more of Haskell’s language specification

has a positive effect on compiler coverage. However, the small size

of the effect coupled with the fact that the the compiler codebase is

not nearly fully covered indicates that there is still significant room

for improvement in the fuzzer’s features.

6.4 Coverage distribution
Table 3 contains a selection of the results of aggregating and simpli-

fying coverage information after 2 hours of generating programs at

depth 7. Front-end components like Parser, Rename, and Tc (Type-

checker) do not show large differences in coverage compared to

the middle-end Core module or back-end modules like the Cmm

and Stg modules. This could offer support to the claim that Xsmith-

generated programs can reach “deep” code paths, but this would

require a more extensive analysis of the functionalities and scope

of GHC’s submodules.

7 CONCLUSION
We conclude that Xsmith provides useful infrastructure for writing

a differential tester for a functional programming language like

Haskell. The use of attribute grammars provides a straightforward

way of satisfying the type checker. In a statically typed and purely

functional context, this greatly simplifies generating conforming

programs. Xsmith’s canned-components library provides a practical

and educational interface, but can be limited in flexibility. Addi-

tionally, we find that, for the provided fuzzer, limiting the max AST

depth speeds up program generation and slightly decreases compiler

coverage. Further research with a more complete fuzzer is required

to draw conclusions about the nature of this effect. Finally, consider-

ing the demonstrated importance of developing a featureful fuzzer

and Xsmith’s previous successes [11], we believe that with adequate

future research, Xsmith can play an important role in increasing

the reliability of the Glasgow Haskell Compiler.

8 DISCUSSION
The conducted experiments indicate that the fuzzer built for this

study was likely too small to conclusively determine whether the

depth of the AST has meaningful effects beyond enabling all gram-

mar productions to be used. Coupled with the fact that compiler

coverage increases with the amount of fuzzer features, we empha-

size the need for further research to fully understand the impact

of Xsmith’s AST depth on fuzz testing. Future works could focus

on expanding the feature set of the Haskell fuzzer. This would sig-

nificantly improve its effectiveness in verifying the correctness of

Haskell compilers by either reporting bugs or confidently verifying

that they are rare.
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