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Abstract

This thesis investigates the application of Time Series Classification (TSC) algorithms
to enhance credit risk models, focusing on the historical balance data of retail customers.
The primary aim was to explore how TSC models could improve the discriminatory
power of these risk models. Employing various TSC techniques, including deep learning,
shapelets, and Canonical Interval Forest (CIF) algorithms, the study rigorously evaluated
their performance in predicting the Probability of Default (PD). Additionally, this thesis
contributes to the evolving field of credit risk modeling by introducing a novel approach
that integrates TSC with traditional credit risk assessment methods.

The research revealed that TSC algorithms, particularly when applied to end-of-day
balance data, have the potential to significantly enhance the predictive accuracy of credit
risk models. The CIF model, in particular, demonstrated notable efficacy, rivaling the per-
formance of existing credit risk models. However, applying TSC algorithms to multivariate
monthly data showed limited effectiveness, suggesting the removal of critical information
in such data aggregation. The study also highlighted the interpretability challenges with
complex TSC models and the need for more holistic data inclusion for a comprehensive
credit risk assessment.

Keywords: Time Series Classification, Credit Risk Modeling, Machine Learning, Fi-
nancial Data Analysis, Probability of Default, Canonical Interval Forest, Shapelets, Deep
Learning.
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Chapter 1

Introduction

This chapter starts our research journey by introducing the current credit risk models in
the literature. We then introduce a case study from a large Dutch bank, using it as a
specific example to explore broader issues in the field. This case study helps us clearly
define the problem as it is seen in the broader industry. We then introduce our research
methodology and describe our research design based on this methodology. By the end of
this chapter, we aim to give a clear and complete picture of what this research is about,
how we plan to do it, and why it is important, both for the specific case of the Dutch bank
and the field of credit risk in general.

1.1 Credit Risk Models

Credit risk, defined by the Cambridge dictionary (2023) as ’the degree to which it is possible
that a person, company, or government will not be able to pay back borrowed money’, is a
fundamental concern in the field of banking and finance. The magnitude of this financial
risk is illustrated by the current outstanding household debt in the European Union (EU),
which stands at a staggering e6.907 trillion as of June 2023, accounting for 48% of the EU’s
nominal GDP (CEIC, 2023a). In the Netherlands, the scenario is even more pronounced
with household debt totaling e974 billion, constituting 94% of the country’s nominal GDP
(CEIC, 2023b).

The importance of accurate and robust credit risk models plays a pivotal role in bank-
ing. It helps distinguishing between creditworthy and high-risk customers, safeguarding
banking institutions from the potential financial risks associated with inappropriate credit
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granting decisions (Kao et al., 2012). The dynamic nature of the financial sector has
prompted banking institutions to continually seek ways to optimize their loan approval
processes, recognizing the substantial financial implications that may arise from inaccu-
rate risk assessments (Antonio Bahillo et al., 2016).

The advancements in cost-effective data storage and computational power have already
enabled the banking industry to implement Machine Learning (ML) in credit risk models
and enable the automation of the loan approval process. Additionally, the introduction
of the Payment Services Directive 2 (PSD2) has been pivotal. PSD2 facilitates banks
in sharing customer data, provided they have the necessary consent from the customers
themselves (McKinsey, 2018). This regulatory change and the increasing adoption of digital
payment systems have significantly contributed to integrating big data analytics into the
loan approval process.

The journey of utilizing statistical models for credit risk assessment dates back to the
pioneering research conducted by Durand (1941). This study laid the groundwork for a
plethora of subsequent research to develop quantitative models to assess consumer credit
behavior for making informed credit-granting decisions (Wiginton, 1980). One significant
milestone in this evolution was the comprehensive review by Hand and Henley (1997),
which highlighted how the surge in credit demand, combined with increased commercial
competition and advancements in computational capabilities, had collectively fostered the
application of diverse statistical models designed to streamline and enhance the credit-
granting process.

Ensemble models have become increasingly popular across a variety of fields. Informally
defined, these advanced methods in ML enhance prediction accuracy by combining outputs
from multiple simpler ML algorithm (Sagi & Rokach, 2018). The effectiveness of ensemble
models in credit risk assessment is particularly notable, as evidenced by various studies,
including those by Abellán and Castellano (2017), Lessmann et al. (2015), Tripathi et al.
(2022), and Yu et al. (2008). As Thomas (2010) pointed out is that in credit risk modeling
there is a search for the ’silver bullet’ in optimally constructing credit risk models. Showing
that there is no definite solution.

In parallel, hybrid models have emerged as a compelling approach, comparable to en-
semble models but distinct in their methodology. These models are characterized by their
integration of diverse single-classification models. Combining different classifiers allows
hybrid models to capture a broader spectrum of features and insights, which is especially
advantageous in complex applications like credit risk assessment (Zhang & Yu, 2024). The
efficacy of this approach is also evidenced in the literature, as demonstrated by Gao et al.
(2021).
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This thesis marks a significant contribution to the literature on credit risk assessment by
delving into advancing cutting-edge models. It specifically hones in on integrating the ML
models that consider the temporal time aspects of data, an area not thoroughly explored
in existing studies. These models belong to a specialized category within classification
models, known as Time Series Classification (TSC) models. We propose that merging these
models could notably enhance predictive accuracy. The core hypothesis of our research is
that combining an ensemble model with a ML approach, which is designed to have the time
dimension of data in mind, will result in more effective predictions of credit risk defaults
compared to using an ensemble model alone.

1.2 Research Context

1.2.1 Company Problem Background

This study is situated within the Dutch Bank ING. This is one of the largest banks in the
Netherlands and is offering service to retail and wholesale customers. The department we
are situated in is the model risk management department, which manages model-related
risks within the bank. The credit risk models are vital tools to predict potential credit
losses from default events, essential for compliance with International Financial Reporting
Standards 9 (IFRS 9), Internal Ratings-Based (IRB) calculations, and credit approval de-
cisions. The department focuses on model validation, robustness, alignment with intended
purposes, and proposing enhancements.

ING is currently focusing on a strategic objective to enable instant lending to re-
tail customers through automated credit decision models. These models assess credit
risk—essentially, the likelihood of a customer defaulting—using customer historical infor-
mation. Based on this assessment and the bank’s risk appetite, these models autonomously
approve or reject loan applications and apply risk-based pricing. The model specifically
addresses term loans, which are typically used for purposes like buying a car or home ren-
ovations. During my thesis work at ING, this model was undergoing a validation process,
a vital step given its role in approving loans without human intervention. Additionally,
the model estimates defaults on overdrafts and credit cards. Although overdrafts aren’t
officially considered as disbursed loans by the bank, it is still essential for the bank to
estimate the risks of overdrafts.

There are plans to evolve this model into an application programming interface (API)
for wholesale clients. This would allow these clients, with customer consent, to use our

3



default estimates based on customer data. To contextualize the model’s scale, the training
dataset currently encompasses about e800 million in loans disbursed in the Netherlands
over six years.

1.2.2 Problem Description

In credit risk modeling, a significant scientific challenge lies in integrating historical transac-
tional data of retail customers. For example, how do you ensure the data’s time dimension
is understood in the extracted features? Traditionally, this involves a feature engineer-
ing process that relies heavily on expert judgment. This method, while effective, could
potentially overlook crucial insights within time series data due to its reliance on human
experience and subjective decision-making.

Emerging automated techniques in feature engineering present a promising avenue for
research. These methods offer the possibility of streamlining the feature engineering pro-
cess, reducing the reliance on manual input, and potentially uncovering more nuanced
patterns within the time series data.

The central scientific problem in credit risk modeling can be articulated as follows:

”Credit risk modeling heavily depends on labor-intensive feature engineering, which may
miss critical insights from time series data.”

This issue extends to exploring algorithms that can operate without traditional feature
engineering or have this integrated in the model design, thereby capturing more intricate
patterns and relationships in the balance data of retail customers. The ultimate goal is to
enhance the predictive accuracy, granularity, and risk-based pricing in lending decisions.
While this research is initially conducted in the context of ING Bank, its implications are
far-reaching, potentially benefiting other banks and industries facing similar challenges in
handling complex feature engineering and selection in classification problems.

1.3 Research Approach

1.3.1 Research Objective

The research aim is to explore alternative methods to extract information from the histor-
ical balance data of retail customers, specifically, we will be focusing on TSC algorithms.
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These algorithms are designed to incorporate the time aspect and do not require us to create
features based on expert judgement and can directly interpret the raw time series data of
the historical balance account. We expect that this reduces reliance on expert-judgement,
minimize manual feature engineering, and still ensure comprehensive information capture
for accurate credit risk assessment.

1.3.2 Research Questions

To address the stated research objective, the primary research question guiding this study
is as follows:

How can time series classification algorithms on historical balance data of retail
customers enhance credit risk models’ discriminatory power?

The following sub-research questions are formulated to answer the main research questions.

1. What are the current best practices for time series classification of historical balance
data to predict the default of retail customers?

(a) What current methods used for time series data in credit risk prediction?

(b) What time series classification algorithms exist that could work on credit risk
predictions?

2. What evaluation metrics are most suitable for assessing and comparing predictive
performance among different ML models?

3. How can the decisions made by the credit risk prediction model be explained to
stakeholders, ensuring transparency and understanding of the model’s behavior?

1.3.3 Research Methodology

We have adopted a well-defined research methodology to ensure our research is structured
and directed effectively. Our chosen approach is the Design Science Research Methodology
(DSRM), as introduced by Peffers et al. (2007), the overview of which is illustrated in
Figure 1.1. We selected this methodology for several compelling reasons. First, the DSRM
is renowned for its evidence-based approach, ensuring that our problem-solving strategy
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Figure 1.1: Design Science Research Methodology (Peffers et al., 2007)

is grounded in a robust, well-established method. Second, each step in the DSRM process
aligns closely with the needs of our study, ensuring a comprehensive approach to system
design without overlooking critical aspects. Lastly, the DSRM offers an iterative process
with flexible entry points for research, making it particularly well-suited to address our
specific problem.

1.3.4 Research Design

Having established our research objective, formulated the research questions, and selected
our research methodology, we are now poised to integrate these elements into a cohesive
research design. It’s important to note that while our approach is structured, as depicted in
Figure 1.1, it also incorporates a feedback loop. This loop allows for flexibility and iterative
refinement throughout the research process. The steps we will follow in our research, as
guided by the DSRM methodology, we outline it as follows:

1. Problem identification: This stage involves recognizing and defining the central
problem our research aims to address. This is done at the beginning of our research
as we have already done in Chapter 1.

2. Solution objectives: Here, we outline our research goals. The focus is to answer our
research questions in the literature study. This enables us to have a good theoretical
basis in creating a solution objective.

6



3. Design and development: This phase is about creating a blueprint for our so-
lution. It involves translating theoretical solutions we found in literature into a
practical implementation, where ideas are transformed into a tangible model.

4. Demonstration: During this stage, we showcase how our solution works in an
experimental setup. It’s about providing a practical example of our research in
action, illustrating its application and effectiveness.

5. Evaluation: Evaluation is critical to assess the success of our solution against defined
criteria. This involves testing and analyzing the results to determine if the objectives
have been met and to what extent our solution has addressed the problem.

6. Communication: The final step is effectively communicating our research findings,
methodology, and conclusions. This includes the overall thesis, presenting results,
and discussing the implications and potential for future research in the field.

The structure of the thesis is as follows: Chapter 2 reviews the literature on credit
risk prediction models, focusing on classification methodologies and the handling of time
series data. Chapter 3 proposes a model improvement that outlines our methodology,
including evaluation metrics and techniques for model explainability, aligning with our
research questions. Chapter 4 details our dataset and experimental setup, setting the
foundation for empirical work and ensuring transparent data handling. Chapter 5 presents
our experimental results, comparing existing models with our proposed enhancements.
Finally, Chapter 6 concludes the thesis, discussing our findings, their implications, and
potential areas for future research.

7



Chapter 2

Literature Review

This chapter delves into the existing literature on credit risk modeling, emphasizing the
nuances of TSC. Our exploration begins with thoroughly examining the current state-
of-the-art credit risk models, followed by analyzing how these models are explained and
their performance quantified in existing research papers. We then shifted our focus to
time series data, closely examining the classification algorithms that could be employed to
derive meaningful insights from them. The solution objective is this chapter’s design step
in the DSRM. Creating guidance and a foundation for model enhancements.

2.1 Methodology

The research questions we are trying to answer require us to search for unbiased informa-
tion. We accomplish this by using Scopus1, an Elsevier search engine created to search
for academic literature. We used the search term ’(consumer AND credit AND risk AND
prediction) OR (consumer AND default AND prediction) OR (consumer AND scorecard)’.
This resulted in 344 search results on the Scopus search engine. To further specify, we
selected only English articles published between January 2018 and October 2023. This
resulted in 93 search results. We then selected the areas of - economics, econometrics and
finance, - business management and accounting, - computer science, and - decision sciences.
This resulted in a total of 72 papers. From this point, a selection was made that was most
suitable for this research by reading the titles and abstracts, resulting in 30 papers that will
be read thoroughly. Appendix A gives an overview of the papers used in this literature.

1https://www.scopus.com/
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We uncover the three sub-research questions in each paper and whether it was addressed.
Namely, what classification method was used, how was the performance evaluated, and
how did the authors explain the model. We then looked at any links between TSC and
credit risk predictions. Afterward, we purely focus on the domain of time series classifica-
tion that is unrelated to credit risk but could be applied to historical balance time series
data.

2.2 Credit Risk Models

The literature on credit risk models is vast and complex, encompassing various method-
ologies and approaches (Dastile et al., 2020). Credit risk models in the literature employ
supervised ML techniques, such as Logistic Regression (LR) (Bryga la, 2022; Li et al.,
2023; Liang & Cai, 2020). However, as Li et al. (2023) points out, these linear models
often make unrealistic assumptions about the distribution and relationships in the data
and require creating highly discriminant features. Common input features for credit risk
models include application data (e.g., age, marital status, time with the bank), aggregated
balance data on a monthly or yearly basis and feature engineering on the transactional
data (Bryga la, 2022; Correa Bahnsen et al., 2016; Gao et al., 2021; Kvamme et al., 2018;
Ma & Lv, 2019; Mahbobi et al., 2021; Tripathi et al., 2022). In recent years, we see in the
research that ensemble models, such as XGBoost, outperform single classifiers in credit risk
modeling, thanks to their ability to capture non-linear relationships in the data (Abellán &
Castellano, 2017; Alam et al., 2020; Lessmann et al., 2015; Tripathi et al., 2022; Yu et al.,
2008). Furthermore, H. Wang (2021) and Merćep et al. (2021) highlight the potential for
further improvements in the application of big data and non-linear models in consumer
finance credit risk management.

Various studies have demonstrated the successful application of advanced ML tech-
niques that surpass traditional credit models discriminatory power (Gao et al., 2021;
Kvamme et al., 2018; Mahbobi et al., 2021; Merćep et al., 2021; van Thiel & van Raaij,
2019; Yu et al., 2008). The research of Gao et al. (2021) compared the performance of
a combined XGBoost model with Long-Short Term Memory (LSTM) network model and
a standalone XGBoost model, both applied to credit information data. The results indi-
cated that the deep learning approach improved performance and eliminated the need to
construct 81 features. The study found that features related to transaction flow are the
most powerful for predicting credit card defaults. It also highlighted that extracting useful
features from transaction data requires deep understanding. But this type of deep learning
application is not uncontroversial as Gunnarsson et al. (2021) points out that standalone
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deep learning does not outperform XGBoost on their data sets.

Our research identified the standalone application of XGBoost as a leading method in
consumer credit risk modeling. This assertion is supported by extensive literature reviewed
in Appendix A. Notably, our review reveals a scarcity of studies integrating classical ML
techniques with TSC. However, the singular study of Gao et al. (2021) we identified in this
context demonstrates promising outcomes. This finding suggests a significant opportunity
for enhancing existing models by incorporating TSC methodologies into traditional ML
frameworks.

2.2.1 Explainability

The current challenge with advanced ML models is their ’black-box’ nature, which makes
them difficult to interpret and explain. This is a critical issue, especially considering the
implementation of the Basel II and ’general data protection regulation’ acts that mandate
European banks to maintain a certain level of explainability in their data-based decision-
making models (de Lange et al., 2022). Despite this requirement, most of the literature we
investigated in Appendix A on credit decision models tends to overlook the explainability
of their proposed models. Common metrics utilized in studies that do address model
explainability include feature importance (Bryga la, 2022; Gao et al., 2021; Kao et al., 2012;
Ma & Lv, 2019), and SHapley Additive exPlanations (SHAP)-values (Bücker et al., 2022;
de Lange et al., 2022). The paper of Bücker et al. (2022) posits that interpreting modern
complex ML models can be comparable to more traditional ones, such as LR. The author
proposes a framework to facilitate this process and underscores that data preparation and
explicit feature engineering will become increasingly costly and complex as data grows,
making their proposed framework essential for compliance to keep understanding advanced
models. There is an ongoing effort within the realm of explainable Artificial Intelligence
(AI) to render black-box models more transparent and trustworthy, ultimately facilitating
our comprehension of these advanced models (Adadi & Berrada, 2018). A notable method
also introduced to explain AI is local Intepretable Model-Agnostic Explanations (LIME)
(Ribeiro et al., 2016). Although not seen in the literature on credit risk models, we do not
include LIME since improving the explainability of the models is not the main focus of our
research.
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2.2.2 Model Evaluation

A standard method to test model performance involves splitting the data into training and
test set. The splitting can be a single or cross-validation split where the test set varies
over iterations. Most studies in our literature study credit risk models prefer the single
train-test split (Addo et al., 2018; Alam et al., 2020; Gao et al., 2021; Kvamme et al.,
2018). In contrast, some performed a cross-validated evaluation of the model (Liang &
Cai, 2020; Yu et al., 2008). The test set, serving as an independent observation, helps
evaluate the model’s performance because the model did not see this data. As noted by
Cawley and Talbot (2009), a decrease in accuracy on the test set could suggest overfitting
to the training data.

Addressing the challenge of imbalanced datasets in credit risk modeling is crucial, as
the class of defaulted customers is typically underrepresented. Such imbalance can skew
performance indicators, leading to a bias towards the majority class at the expense of
the minority class. Several techniques in literature are employed to counteract this. For
instance, Alam et al. (2020) uses undersampling, oversampling and Synthetic Minority
Oversampling Technique (SMOTE) to balance the dataset, effectively mitigating this is-
sue.Addo et al. (2018) and Alam et al. (2020) showed for his dataset that the specific
K-means SMOTE technique resulted in the best accuracy gain. Alternatively, employing
performance metrics that account for class imbalance is another approach. A majority of
studies in our literature review, including works by (Addo et al., 2018; Correa Bahnsen
et al., 2016), utilize the confusion matrix and the Area Under Curve (AUC) score as evalu-
ation metrics. The confusion matrix sheds light on the true positive/true negative and false
positive/false negative. The AUC score represents the area under the receiver operating
characteristic curve, indicating the model’s ability to distinguish between classes. Other
metrics like the Brier score (Kvamme et al., 2018; Mahbobi et al., 2021), the H measure
(Kvamme et al., 2018), and the F-measure (Correa Bahnsen et al., 2016; Dastile et al.,
2020) are also used. The Kolmogorov-Smirnov (KS) statistic, as suggested by Y. Tan and
Zhao (2022), is particularly beneficial for models dealing with imbalanced datasets.

2.3 Time Series

Banks hold time series data on their customers, such as the end-of-day balances of the
current and savings accounts and the daily debited/credited amounts. These time series
are often aggregated to monthly/quarterly/yearly statistics to create and tabulate highly
discriminant features (Gao et al., 2021; Mahbobi et al., 2021). We also mentioned earlier
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that creating and testing these features requires effort and domain knowledge. In recent
years, the research in TSC has seen a rise in publications. Two literature review studies of
Bagnall et al. (2017) and Middlehurst et al. (2023) looked at state-of-the-art TSC models on
a large number of different time series datasets of the archives accessible at the University
of California (no financial data was present in any of the datasets). These algorithms show
good predictive accuracy on various applications in TSC challenges. To our knowledge,
we have not seen any research in combining TSC and credit risk models, except for deep
learning methods in, for example, the study of Kvamme et al. (2018) where a neural network
was applied, or in the study of Liang and Cai (2020) where an LSTM was implemented.
These methods eliminate the requirements of creating discriminant features and directly
classify time series. In the next section, we will look at interesting TSC models that
could be applied to time series data of customers in the banking industry. We will not
test all the possible TSC methods as done in the study of Bagnall et al. (2017) as we do
not have the resources for that. Consequently, our selection of methods within the TSC
algorithm taxonomy was strategic and aligned with our research objectives. We opted
for interval methods, drawing inspiration from the current model used by ING, which
also incorporates intervals. The choice of deep learning methods was influenced by the
successful implementations found in the studies by Kvamme et al. (2018) and Liang and
Cai (2020). We included shapelets for their unique ability to identify distinct time series
shapes, thereby providing a highly explainable approach to classification. Lastly, hybrid-
based methods were chosen for their capacity to amalgamate the strengths of various
methodologies, thereby optimizing overall performance.

2.3.1 Time Series Classification

TSC has emerged as a prominent area of study in ML, particularly due to the unique
attributes of time series data (Chakraborty & Yoshida, 2017; Middlehurst et al., 2023).
In TSC, as defined by Löning et al. (2019), we deal with N instances of training data,
each comprising a pair of features and labels (xi, yi), where i = 1, . . . , N . Each feature
instance xi in this context is a time series, which is denoted as xi = (xi(t1), . . . , xi(tT )).
The aim in TSC is to utilize this training data to construct a predictive model f̂ that
can accurately forecast a target class label ŷ for a new, unseen time series x∗, with the
relationship expressed as ŷ = f̂(x∗).

In contrast to standard classification tasks, TSC specifically addresses the classification
of data points that are sequentially ordered. While typical classification methodologies
operate under the assumption that data points are independent and identically distributed,
TSC assumes a dependence between data points based on their order in time (Löning et al.,
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2019). This key distinction highlights the necessity of considering the entire sequence of
data points in TSC, rather than evaluating them in isolation.

The mathematical representation in TSC considers these sequential dependencies. For
a univariate time series, this is represented as (Löning et al., 2019):

xi = (xi(t1), xi(t2), . . . , xi(tT )) (2.1)

In cases of multivariate time series, where multiple observations are recorded at each
time point, the representation is:

xi =


xi,1(t1) xi,1(t2) . . . xi,1(tT )
xi,2(t1) xi,2(t2) . . . xi,2(tT )

...
...

. . .
...

xi,M(t1) xi,M(t2) . . . xi,M(tT )

 (2.2)

In equation 2.2, xi,m(t) signifies the observation of the m-th variable at time t for the
i-th series. The length of the time series, T , may vary across different instances. The goal
in TSC is then to define a model f̂ that maps a time series X to a discrete class label Y .
This model is formally described as:

f̂ : X → Y (2.3)

In equation 2.3, X represents the domain of all possible time series data, either uni-
variate or multivariate, and Y denotes the set of discrete class labels Y = {y1, y2, . . . , yk}.
The model f̂ , thus, encapsulates the essence of TSC, transforming the temporal patterns
within the time series data into meaningful class predictions (Löning et al., 2019).

Feature Interval Based

In the domain of TSC, identifying meaningful patterns often hinges on strategically ex-
tracting relevant features. Christ et al. (2018) emphasized that feature engineering for
time series data can be an arduous process aimed at isolating salient attributes. One
common strategy in handling transactional data, as highlighted by Correa Bahnsen et al.
(2016), is to aggregate historical transactions. This aggregation simplifies the observation
of customer spending behavior and addresses the challenge of uneven time series lengths
frequently found in transactional data sets. Building on this, Alam et al. (2020) aggregated
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credit card data on a monthly basis. Creating features based on how much is billed to the
credit card and how much is paid off. Thereby, 24 distinct features of the last 12 months
to enhance credit card default predictions.

While feature extraction forms the foundation of TSC, the methods used for classifica-
tion are equally pivotal. Deng et al. (2013) introduced the time series forest, a paradigm-
shifting approach that combines the principles of entropy gain and a distance measure,
termed ’Entrance’ gain. This method aligns computational efficiency with the complex-
ity of time series. In performance comparisons, it has displayed an edge over traditional
techniques, such as one-nearest-neighbor classifiers paired with dynamic time warping.

In pursuit of concise yet informative time series feature sets, Lubba et al. (2019) unveiled
Catch-22. This method’s genius lies in its ability to condense a vast 4791 feature set
down to 22 features. Such drastic dimensionality reduction ensures a monumental drop
in computation time. Remarkably, this reduction comes at only a slight compromise on
classification accuracy, rendering Catch-22 an efficient solution for real-world challenges
(Lubba et al., 2019).

Noteworthy methods in the TSC landscape include the Supervised Time Series Forest
(STSF) and the Canonical Interval Forest (CIF). While the former, as explored by Cabello
et al. (2020), accentuates certain sub-series within the original time series through a top-
down search mechanism, the latter, as done by Middlehurst et al. (2020), synthesizes STSF
and Catch-22 methodologies into a CIF model. This merger results in a better-performing
classification performance as evidenced by the benchmark of Middlehurst et al. (2023).

Deep Learning

Deep learning presents an advantage in eliminating the need to create explicit time series
data features. Neural networks can autonomously extract and identify complex relation-
ships. For instance, Kvamme et al. (2018) implemented a convolutional neural network on
historical consumer transaction data, demonstrating good predictive accuracy using only
end-of-day balance information. Another study by Gao et al. (2021) utilized an ensemble
model, XGBoost for applicant information, combined with a LSTM neural network trained
on transaction data, resulting in strong classification performance for default prediction.
Additionally, they implemented a deep neural network and achieved high accuracy with
multiple network designs. A comprehensive review on deep learning methods for TSC was
conducted by Fawaz et al. (2019) emphasizing that TSC is one of the most challenging
problems in data mining. However, a consensus regarding using artificial neural network
models in default prediction modeling is yet to be established. Concerns regarding these
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models’ stability, performance, and transparency were raised by Addo et al. (2018), in-
dicating that they may not always provide the best performance. Similarly, Gunnarsson
et al. (2021) concluded that deep neural networks may not be optimal models for credit
scoring and are outperformed by XGBoost. Dempster et al. (2020) showcased that linear
classifiers equipped with Random Convolutional Kernel Transform (ROCKET) can achieve
state-of-the-art accuracy. Notably, these classifiers manage this with only a fraction of the
computational burden associated with their counterparts.

Shapelets

Shapelets, initially introduced by Ye and Keogh (2009), are defined as ’subsequences within
time series data that are maximally representative of a particular class’. Ye and Keogh
(2009) highlights the substantial advantages of utilizing shapelets in TSC. One signifi-
cant advantage is their ability to yield interpretable results by showcasing the specific
shapelet within the time series, facilitating comprehension for domain experts. Further-
more, shapelets demonstrate superior accuracy and robustness on certain data sets due
to the minimal number of hyper-parameters requiring tuning. And lastly, they offer im-
proved computational efficiency compared to existing state-of-the-art approaches in TSC.
Grabocka et al. (2014) introduced an effective algorithm that searches for near-optimal
shapelets based on stochastic gradient descent and does not need to try out many candi-
date solutions. Shapelets have seen a rise in literature in the past decade (J. Chen et al.,
2022; Eamonn, 2022). However, no literature is found on the application of financial data.

Hybrid Models

The study of Bagnall et al. (2017) concluded that the HIVE-COTE hybrid model sig-
nificantly outperforms other models in the classification task. While this model boasts
remarkable accuracy, it demands substantial computational resources, leading some to
favor simpler alternatives. Nevertheless, its prominence led to an enhanced version, HIVE-
COTEv2, introduced by Middlehurst et al. (2021). This newer model further elevates clas-
sification accuracy but also intensifies computational challenges. The study of Middlehurst
et al. (2023) recently reproduced the study of Bagnall et al. (2017) with new and expanded
UCR archives and new TSC algorithms introduced. This study again demonstrated the
prevailing performance of the HIVE-COTE-v2.
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2.4 Conclusion

In addressing our main research question, “How can time series classification algorithms
on historical balance data of retail customers enhance credit risk models’ discriminatory
power?”, our literature review identified several key findings on our sub-research questions:

1. Current Best Practices for Time Series Classification (Sub-Question 1):
We identified XGBoost as the current state-of-the-art model in credit risk modeling,
offering robust performance across various datasets. Our exploration into the time
series classification of historical balance data highlighted three promising methods:
feature interval-based, shapelet-based, and deep learning-based algorithms. These
methods, particularly when integrated into existing models like XGBoost, might have
the potential to enhance the discriminatory power of credit risk models significantly.

(a) Methods Used for Time Series Data in Credit Risk Prediction (Sub-Question
1a): Current practices predominantly utilize feature engineering, creating sum-
mary statistics on intervals of time series data. However, studies like those
of Kvamme et al. (2018) and Liang and Cai (2020) demonstrate the efficacy
of deep learning methods in analyzing transactional data, suggesting a shift
towards more complex approaches.

(b) Time Series Classification Algorithms for Credit Risk Predictions (Sub-Question
1b): While traditional methods focus on feature engineering, our review indi-
cates a growing potential in algorithms that directly classify time series data
which could be applied to banking customer time series data.

2. Evaluation Metrics for Predictive Performance (Sub-Question 2): The lit-
erature consistently utilizes the AUC score. Particularly useful in addressing class
imbalances commonly encountered in credit risk data. Studies mostly use a single
train and test split, while some apply cross-validation to enhance the robustness of
their outcomes. Beyond the AUC score, other metrics like the Brier score and the H
measure are also used, underscoring the diversity of evaluation approaches in current
research.

3. Explainability of Credit Risk Prediction Models (Sub-Question 3): Despite
the critical importance of model explainability for regulatory and stakeholder trust,
our review notes a general oversight in this area. However, methods like SHAP
analysis and feature importance metrics are employed in some studies.
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In summary, our research reveals significant opportunities for enhancing credit risk
models through the integration of TSC algorithms. By incorporating TSC techniques into
current models like XGBoost, there is potential for deeper insights into customer behav-
ior and an improvement in predictive accuracy. Our study suggests that future research
should focus on the practical implementation of these advanced TSC methods in credit
risk models, aiming not only to improve discriminatory power but also to ensure mod-
els remain interpretable and transparent to meet regulatory requirements and stakeholder
expectations. Embracing these methodologies could lead to more accurate, efficient, and
trustworthy credit risk assessment tools in the banking industry.
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Chapter 3

Methodology

This chapter delves into the methodology adopted for our study, laying the groundwork
for the model design and the selection of TSC models. Our approach is twofold, beginning
with an in-depth analysis of the existing model currently utilized at ING. By doing so, we
aim to provide a comprehensive understanding of how our envisioned model design can be
integrated and utilized effectively in the broader industry.

Following the analysis of the current model, we transition to exploring the TSC models
that we propose to apply in this context. The selection of these models is a critical
component of our research, and as such, we will provide detailed reasoning behind the
choice of each model.

This chapter offers a clear and detailed exposition of our methodological approach.
From the analysis of existing models to the rationale behind selecting specific TSC models,
we endeavor to present a well-rounded and robust methodology that underpins the sub-
sequent stages of our research. This chapter corresponds to the design and development
step in the DSRM process.

3.1 Model Design

The explored literature on credit risk models and advanced TSC algorithms sets the stage
for discussing our proposed implementation strategy. ING currently employs automated
credit decision models, which leverage customer application details and historical transac-
tion/balance information to enable prompt lending solutions for retail clients. This process
utilizes an ensemble approach, integrating two distinct sub-models (X and Y) to predict
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Probability of Default (PD) for term loans and overdraft facilities. Figure 3.1 shows an
overview of the model architecture. In the proposed framework, Model X is designed to
process application data using a LR approach. In contrast, Model Y is specifically tailored
to leverage historical transaction data through the application of the XGBoost algorithm.
The innovation lies in the ensemble model that combines the PD estimates derived from
both Model X and Model Y. This integration is further refined by incorporating a cut-
off mechanism aligned with ING’s risk appetite. The culmination of this process is the
final loan approval decision, which is determined by an advanced LR model, effectively
integrating the insights garnered from both models.

Figure 3.1 provides a comprehensive overview of the current model architecture within
ING. It details the design of models X and Y, illustrating the specific data flow processes
for each. Our proposed TSC model will utilize balance information as its primary input to
estimate PD, subsequently feeding into model Y. Here, ’balance information data’ refers
to the historical balance records of a customer’s current and savings accounts. In contrast,
’transaction information’ encompasses all transaction details, such as transaction type,
amount, date, etc. ’Application data’ includes all applicant-specific information.

To understand the logic of why we believe this addition to the model could lead to a
great accuracy improvement, we need to take a closer look at model Y.1 The design of
model Y is encompassed with a great effort of feature engineering to tabulate the balance
data and transaction data. We will not dive into the details of all these features, as this
is outside the scope of this research. But we give an overview for understanding. 310
features are created on the balance data, and 2472 features are created on the transaction
data. The balance features have been aggregated over 1, 3, 6, and 12 months with various
indicators. Also, various ratios between these features have been computed. Appendix B.1
gives a high-level overview of the features.

The feature selection pipeline of the model minimized this to a final features set to
10 balance features and 30 transaction features. Notably, a relatively higher number of
features originating from the balance account data have survived the selection procedure
compared to the transaction data features. The feature selection pipeline can be seen
in Appendix B.2. Furthermore, the model explanation was investigated using the mean
absolute SHAP values to rank the features; it turns out that four out of the top 5 features
were balance account data features. However, interpretation and conclusions should be
carefully taken on the mean absolute SHAP values. It is an interesting observation and
justifies the increased focus on historical balance data. The final feature set and their
absolute mean SHAP values of model Y can be seen in Appendix B.2.1.

1This analysis is based on internal documentation and expert opinion
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Figure 3.1: Flowchart model architecture.

We argue that the model can be improved by using TSC models on the historical balance
data of customers. The current features on the balance data summarize information to
aggregated terms of 1, 3, 6, and 12 months. This does indeed give high discriminatory
power to the features. But also remove much information from the original data that could
contain important information. This model setup also addresses one of the limitations of
Kvamme et al. (2018): it incorporates more data than daily aggregated balance data. We
assume it can improve the model by applying models designed to understand the time
aspect of the classification problem.

3.2 TSC Algorithms

This section presents the selected TSC algorithms for testing on historical consumer balance
data. Our literature review explored interval-based, deep learning, and shapelet-based
methods. Figure 3.2 provides an overview of the proposed model. We have implemented
two types of TSC algorithms: interval-based and deep learning-based.

We hypothesize that interval-based methods are promising for integration into our
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Figure 3.2: Time series classification model design.

model as they align with the approach used in the current model. In the existing frame-
work, intervals of 1, 3, 6, and 12 months are selected, and discriminant statistics for these
intervals are computed and utilized as features in the XGBoost model. Unlike this manual
selection of intervals, the interval-based TSC algorithms in our study automatically identify
intervals, eliminating the need for expert judgment and testing. Further questioning with
the model developers also showed that these intervals are chosen, because it has a proven
track record in previous models and it is generally accepted in the business interpretation.

Furthermore, deep learning methods have demonstrated effectiveness in credit risk pre-
diction models, as indicated by existing literature. This motivates their inclusion and
testing in our proposed TSC framework. An overview of all the TSC literature investi-
gated in this research is shown in Table A.2.

3.2.1 Interval Based

Supervised Time Series Forest

STSF, proposed by Cabello et al. (2020), is an adaptation of the random forest algorithm
optimized for time series data. STSF builds on the principles of ensemble learning by
generating a multitude of decision trees, where each tree is trained on a randomly selected
subset of the data and features.

In the classification process, each decision tree within the STSF makes an indepen-
dent prediction on the class label for a given time series input. The features used for
making these predictions are the mean, standard deviation, minimum, maximum, median,
interquartile range, and the slope of the time series subset. STSF distinguishes itself by
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efficiently searching for the optimal subset of these interval features that contribute to the
most accurate classification.

One notable advantage of STSF, highlighted by Cabello et al. (2020), is the inter-
pretability of its output by visualizing the regions of interest. This is particularly bene-
ficial in practical applications. The final classification is derived from a majority voting
scheme among the individual trees, which tends to yield more accurate and reliable re-
sults. The simplicity and efficiency of STSF make it particularly appealing for handling
time series data, which can vary greatly in length and other properties. Its effectiveness
has been demonstrated in several time series classification tasks, proving the approach’s
utility introduced by Cabello et al. (2020).

Canonical Interval Forest

CIF shares its foundational architecture with the STSF. CIF diverges from STSF by em-
ploying the Catch-22 feature set, a powerful toolset introduced by Lubba et al. (2019) for
capturing a broad and informative range of time series characteristics.

CIF begins its process by systematically dissecting each time series into predefined
canonical intervals. Leveraging the insights provided by Middlehurst et al. (2020), CIF
utilizes the Catch-22 features within each segment, encompassing a diverse array of de-
scriptive statistics and characteristics that provide a rich, multidimensional view of the
data.

The construction of the CIF’s decision trees follows, with each tree being trained on a
specific subset of canonical intervals. These intervals, alongside their Catch-22 calculated
features and associated class labels, form the basis of the CIF’s classification mechanism
(Middlehurst et al., 2020).

In the broader context of TSC, CIF’s application has proven innovative and advan-
tageous. Its ability to integrate detailed feature sets with interval-based classification
strategies allows CIF to deliver superior performance, as evidenced by its benchmarking
against other TSC methods in the study of Middlehurst et al. (2020).

While the STSF algorithm applies a recursive interval search and selection based on
the Fisher score, the interval search in CIF uses a random interval generation as seen
in the original paper of Middlehurst et al. (2020) and in algorithm 1 which shows the
implementation in Löning et al. (2019) package that is used in this study. We will also
argue here that implementing a more intelligent search could improve this interval search
algorithm.
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Algorithm 1 CIF Random Interval Creation (Löning et al., 2019)

Input: n_intervals, series_length, min_interval, max_interval

FOR each interval j from 0 to n_intervals - 1:

StartSelected <- random choice between True or False

IF StartSelected THEN

start <- random number from 0 to series_length - min_interval

maxEnd <- minimum of series_length and start + max_interval

end <- random number from start + min_interval to maxEnd

ELSE

end <- random number from min_interval to series_length

maxStart <- maximum of 0 and end - max_interval

start <- random number from maxStart to end - min_interval

END IF

intervals[j] <- (start, end)

END FOR

3.2.2 Deep Learning

LSTM

An LSTM network can learn long-term dependencies in the sequential data. The study
of Gao et al. (2021) already combined the LSTM network with an XGBoost model and
showed superior performance as compared to a standalone XGBoost model. Implying that
the standalone model could not capture the temporal dependencies in the sequential data.
The framework we will implement for our LSTM model is sourced from Karim et al. (2019)
designed for time series classification tasks.

An LSTM network can learn long-term dependencies in sequential data. The study
of Gao et al. (2021) already combined the LSTM network with an XGBoost model and
showed superior performance compared to a standalone XGBoost model, implying that
the standalone model could not capture the temporal dependencies in the sequential data.
The framework we implement for our LSTM model is sourced from Karim et al. (2019),
designed for time series classification tasks.

23



ROCKET

The ROCKET technique, introduced by Dempster et al. (2020), offers a significant leap
in the classification of time series data by leveraging the potency of convolutional kernels,
traditionally the backbone of Convolutional Neural network (CNN), while introducing an
element of randomness to each kernel property. This innovative approach equips ROCKET
with the ability to transform time series data into an optimally classifiable format with
an unprecedented blend of efficiency and scalability since we do not have to learn all the
optimal hyper-parameters of the convolutional kernels.

As Kvamme et al. (2018) demonstrated the successful application of CNNs in default
predictions of mortgages, we have a well-founded expectation for ROCKET to perform well
in the same setting. Its computational expediency is a notable advantage of ROCKET.
Compared to the exhaustive training demands of a full CNN, ROCKET’s approach to
feature extraction markedly reduces computation time, presenting a swift and streamlined
alternative without sacrificing the depth and robustness of the analysis. Once ROCKET
has distilled time series data into a rich feature set, subsequent classification can be under-
taken by models such as linear classifiers. These classifiers interpret ROCKET’s complex
feature map, enabling precise predictions while maintaining the model’s overall computa-
tional lightness.

3.2.3 Shapelets

As introduced in Chapter 2 of our literature study, shapelets are defined as ’subsequences
within time series data that are maximally representative of a particular class’ Ye and
Keogh (2009). We did not find any literature on applying shapelets in credit risk models
for consumer loans. Shapelets are particularly interesting for these models due to their
direct interpretability and explainability. However, there are some drawbacks; for exam-
ple, finding shapelets is computationally complex. Multiple algorithm proposals have been
made to approximate the top k shapelets, as introduced by Hills et al. (2014). An il-
lustration of a shapelet is given in Figure 3.3. From this, we can extract two features:
the location of the best-fitted shapelet and the total absolute distance between all the
datapoints in the time series T and the shapelet S

3.2.4 Hybrid Model

The two benchmark studies by Middlehurst et al. (2023) and (Bagnall et al., 2017) showed
that HIVE-COTE-v2 is currently the best performing TSC algorithm on a wide range of
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Figure 3.3: Illustration of the best matching location in time series T for shapelet S. (Ye
& Keogh, 2009)

classification problems. This model represents a culmination of multiple different types
of TSC models, each with its own strengths and weaknesses. While each sub-model can
pick up signals from the data with its strengths, the hybrid model combines all these
signals into a final classification. However, as the literature also points out, this model is
computationally expensive, as it requires training multiple TSC algorithms and complicates
interpretation. For these reasons, we chose not to implement this model, as it would
lead to high computational costs and provide limited interpretive insights. Nonetheless,
this approach does highlight that integrating diverse model types on time series data can
enhance performance.

3.3 Model Performance Metrics

In evaluating ML models, especially in imbalanced datasets, selecting the right perfor-
mance metrics is crucial for accurately assessing model effectiveness and reliability. To
address this, we have implemented stratified k-fold cross-validation in our study. This
method is particularly beneficial for imbalanced datasets as it ensures that each fold of
the validation process maintains the same proportion of classes as the original dataset.
The use of stratified k-fold cross-validation aligns with best practices in the field, as it not
only provides a more robust and reliable evaluation but also reflects real-world application
scenarios, thereby enhancing the practical relevance of our findings (Berrar, 2018).

3.3.1 Confusion Matrix

The confusion matrix is a tabular representation that provides detailed insight into a
model’s classification performance. It distinguishes between correct predictions, depicted
as True Positives (TP) and True Negatives (TN), and incorrect predictions, represented
as False Positives (FP) and False Negatives (FN), also referred to as type I and type II
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errors, respectively (Branco et al., 2015). The matrix is instrumental for diagnosing and
refining the model’s capabilities, as visualized in Table 3.1.

Table 3.1: Confusion matrix (Branco et al., 2015).

Predicted
Positive Negative

True
Positive TP FN
Negative FP TN

Derived from these metrics, a set of performance indicators are computable and cru-
cial for evaluating model efficacy. These are delineated from equations 3.1 through 3.6.
Notably, equation 3.5 combines precision and recall into a singular metric, offering a harmo-
nized evaluation that mitigates the respective trade-offs that are introduced by equations
3.1 to 3.4 that make it hard to choose a model based on one metric. Furthermore, equa-
tion 3.6 is tailored for scenarios involving imbalanced datasets, providing a more nuanced
performance measure (Branco et al., 2015).

accuracy =
TP + TN

TP + FN + TN + FP
(3.1)

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

Specificity =
TN

TN + FP
(3.4)

F1 = 2 · TP

2TP + FP + FN
(3.5)

Gmean =

√
TP

TP + FN
× TN

TN + FP
(3.6)

The confusion matrix offers a granular view of a model’s performance, allowing us to
identify areas of improvement, assess the impact of different decision thresholds, and make
informed decisions regarding model deployment and optimization, which we have also seen
being applied in our literature literature study.
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3.3.2 Area under Receiver Operator Curve

The receiver operating characteristic curve represents a model’s performance, plotting the
True Positive Rate (Sensitivity) against the False Positive Rate (1-Specificity) as the deci-
sion threshold varies. AUC represents the area under this receiver operating characteristic
curve, ranging from 0 to 1. AUC is a widely used metric for evaluating the discriminative
power of a binary classification model (Branco et al., 2015). It is also widely used in the
literature on credit risk models for retail lending. The metric comprehensively measures
a model’s ability to distinguish between positive and negative instances across various
decision thresholds.

While the AUC is an invaluable metric for model evaluation, its application in im-
balanced datasets requires a cautious approach due to its tendency to present an overly
optimistic view, especially for the minority class (Branco et al., 2015). Comparing different
models solely on AUC can be misleading, as it favors models that perform well on average,
potentially overlooking those that excel at specific threshold settings. This can be seen
in figure 3.4 where curves A and B perform better in different regions where appropriate
thresholds can be chosen. Selecting a model purely under the AUC does not give the whole
picture, and the ROC should be plotted to ensure the optimal model choice. Generally, a
model with a higher AUC is considered more effective, with 0.5 denoting a performance
no better than random chance and a score above 0.5 reflecting an ability to discriminate
between classes more effectively. The pinnacle of performance is an AUC of 1.0, which
indicates flawless discrimination, meaning the model can perfectly differentiate between
positive and negative instances. It should be noted that even though the AUC metric has
significant shortcomings in imbalanced data-sets it is still widely used within the literature
as a standard metric for comparing (credit risk) models.

The AUC and the confusion matrix are indispensable tools for assessing the performance
of machine learning models in time series classification and binary classification tasks. AUC
provides a holistic measure of discrimination, while the confusion matrix offers a detailed
breakdown of classification outcomes, helping us make informed decisions about model
performance and improvements. One downside of the confusion matrix is the choice of a
threshold. Within banking, it is reasonable to accept loans if the PD estimate is below
10%, while the confusion matrix typically uses the threshold of 50%. For this reason, the
AUC does not require such business decisions to be made.
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Figure 3.4: Receiver operator characteristics curve (Branco et al., 2015).

3.4 Explainability

SHAP values are a powerful tool for interpreting machine learning models. They provide
a way to understand and quantify the contribution of individual features to a model’s
predictions on a local level (Adadi & Berrada, 2018). SHAP values are based on from
cooperative game theory and offer a principled approach to attributing the prediction of a
particular instance to its constituent features (Bücker et al., 2022). By calculating SHAP
values for each feature, we can unravel the ”black box” of complex models and gain insights
into why a model makes specific predictions (de Lange et al., 2022). These values enhance
model interpretability and facilitate feature selection, debugging, and model improvement,
making them a valuable asset in machine learning interpretability.

While interval models generate discriminative features that can be explored using the
SHAP method, and the approach outlined in Cabello et al. (2020) identifies and visualizes
regions of interest directly on the time series, thereby enhancing model interpretability.
The same cannot be said for deep learning approaches involving LSTM or ROCKET.
These methods process raw time series data to predict default flags but do not offer a
straightforward way to interpret or explain their predictions. This characteristic makes
extracting meaningful explanations from these models an infeasible task. Although other
methods like LIME exist, our study does not focus on multiple explainable AI techniques;
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thus, we will not delve into them further.

3.5 Final Model

The predicted output from the superior TSC framework will serve as an input feature for
the XGBoost model. We chose this method for two reasons. Namely, it is currently the
best-performing algorithm in the literature, as highlighted by our literature study. Sec-
ondly, it is the method currently used by ING. To maintain a consistent benchmark for
comparison, the feature set and hyperparameters, as architected by the original model de-
velopers, will be left unaltered. This approach directly evaluates our model enhancements
relative to the established norms. The introduction of a preliminary classification model
to precede the XGBoost framework is not a novel concept but is instead adapted from
precedents in the literature, such as the methodology outlined by Gao et al. (2021), albeit
the specific TSC algorithms selected for our implementation represent a pioneering step in
this domain.
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Chapter 4

Experimental Setup

This chapter delves into the comprehensive experimental setup of our study. We begin
by providing an in-depth overview of the dataset utilized in this research. This includes
a detailed description of the data attributes, the nature of the data, and its relevant
characteristics, with particular emphasis on the target variable.

Following the data overview, the chapter discusses the data preprocessing methodolo-
gies employed in our study. We elaborate on the various steps taken to prepare the data for
analysis. This crucial stage encompasses data cleaning, normalization, specific transforma-
tions. The quality and suitability of the pre-processing directly influence the performance
and reliability of the TSC models.

Lastly, The utilized TSC models are sourced from the ’sktime’ package (Löning et al.,
2019), a well-regarded toolkit in the Python ecosystem for TSC.

4.1 Data

In the existing framework, Model Y requires specific criteria for customer transactions:
[Classified criteria]. If a customer does not meet these criteria, Model X is employed
instead as a standalone model. This approach primarily ensures sufficient data availability
for feature creation and operates under the assumption that the customer primarily banks
with this institution. For our study, we will adhere to these established guidelines. This
allows for a direct comparison between the current operational model and our proposed
enhancements. Consequently, our initial data will utilize the same anonymous customer
data as the original model developers selected and filtered.
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Regarding data sources, we have access to two key datasets for our research: a small
univariate dataset detailing end-of-day account balances and a multivariate dataset with
monthly account balance data. Appendix C shows the distribution shape and summary
statistics. We will delve into these two datasets more comprehensively later in this chapter.

Target Variable

The core of our model is a binary target variable designed to indicate customer default
status. It is assigned a value of 1 in instances of customer default and 0 if no default
occured. The criteria for defining a default are stringent: a customer is considered to have
defaulted if they are 90 days overdue on a loan or overdraft payment or under certain
conditions such as early termination, bankruptcy, financial instability, fraud, refinancing,
or restructuring. These default triggers are assessed within 12 months post-disbursement
of a loan or overdraft.

Our dataset consists of XXX customers, with a default rate of X.XX% from 2017 to the
end of 2021. The temporal evolution of the default rate and the customer base are depicted
in Figure 4.1. A significant increase in the number of customers with loans is observable
in 2020, which aligns with the moment overdrafts are included in the dataset. Overdrafts,
while not traditionally classified as loans, are treated as such under legislative frameworks
and are consequently incorporated into the model. This highlights the changing behavior
of our data and suggests close monitoring while it is being used for business decisions.

An intriguing trend is the sharp decline in default rates observed towards the end of
2021. This phenomenon may be attributable to various factors, including the economic and
social impacts of the COVID-19 pandemic. Additionally, Figure 4.2 reveals fluctuations
in total defaults over time for term loans and overdrafts, highlighting the dynamic nature
of financial behaviors and market conditions that could influence the model performance
over time.

Time Interval Per Customer

A critical aspect of our data analysis involves understanding the temporal dimension. Ide-
ally, data from all customers would span the same time interval. However, this uniformity
is not present in our dataset. We have data from one year prior to each loan application
date. Since these applications occurred at various times across different years, the time
intervals for customers are not uniform.
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Figure 4.1: Default rate and number of customers per quarter.

Figure 4.2: Defaults per quarter per product type.
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Table 4.1: Example of current accounts data of monthly data

party nbr date feature 1 ... feature 6
XXX 2020-01-01 619.21 ... 13.15
XXX 2020-02-01 -4.00 ... -5.64
XXX 2020-03-01 430.90 ... 3.07
XXX 2020-04-01 0.66 ... -5.63

Our model adopts a standardization approach for the time series data to mitigate this
inconsistency. Instead of aligning the data with calendar dates, we index it based on a fixed
12-month period leading to the loan disbursement. This method ensures that all customer
data are consistent and comparable, enhancing the accuracy of our analysis.

It is important to note that our dataset encompasses a one-year interval. An argument
could be made for a two-year interval to observe each month twice, potentially capturing
income seasonality more effectively. However, we contend that spending behavior from two
years prior may not accurately reflect current financial behaviors. Consequently, while a
one-year interval may limit our ability to observe long-term seasonal trends, it likely offers
a more relevant depiction of recent financial activities.

Multivariate Monthly Balance Data

The multivariate monthly balance dataset encompasses seven summary statistics calculated
monthly for each customer’s current account. These statistics are detailed in Table 4.2.
A key advantage of using summary statistics over daily data, discussed in the subsequent
section, is the reduction in data dimensionality. The daily dataset’s 365 data points are
condensed into 84 data points per customer (months×nbr features), significantly reducing
the input dataset.

However, it is essential to recognize that the computational complexity of algorithms
scales differently with the length of the time series and the number of time series per
sample.

Table 4.2: Multivariate Monthly Time Series Data

Time series feature Description
Classified Classified

A significant challenge is the account-specific nature of the data. Customers may have
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multiple current accounts for different purposes, such as shared or individual spending
accounts. The current model employs heuristics to determine which account to use for
feature calculation. The variability in account opening and closing times also leads to
incomplete data. We further refine our dataset to include only customers with a single
current account and at least 12 months of data. This decision is based on the fact that
such customers constitute the majority of the data (66.6%) and we are certain that this
is used as a current account. However, this approach introduces a limitation by excluding
customers with multiple accounts.

The final dataset comprises XXX individuals, with a default rate of X.XX%. This
limitation underscores an opportunity for future research to enhance the model’s robustness
and applicability. Incorporating individuals with multiple accounts and varying account
durations could expand the model’s scope and improve its predictive accuracy. Table 4.1
presents an illustrative monthly current account data example.

Univariate End-Of-Day Balance Data

The univariate dataset in our study consists of daily end-of-day balance data for customers’
current accounts. This dataset is not as comprehensive as the multivariate one because it is
not used within the current model. In aligning with the selection criteria of the multivariate
data, we included only those customers with a continuous record of at least 365 days. This
rigorous selection process results in a dataset comprising 7,905 customers, with a default
rate of 36 %—significantly smaller than the multivariate dataset. But this smaller sample
also helps us in reducing our dataset. The 7 905 persons have 365 datapoints, resulting in
2.8 million datapoints (Nbr customers× nbr days).

The primary aim of using this univariate dataset is to explore the potential for enhanc-
ing our model’s accuracy by leveraging more granular data. While promising in terms of
model refinement, this approach introduces certain challenges. The increased data gran-
ularity leads to higher computational demands for training the models. Processing and
analyzing a detailed dataset of this nature requires substantial computational resources,
posing limitations on our methodology.

4.2 Data Preprocessing

We anticipate the need to downscale the training sample to mitigate these computational
challenges in our model. Additionally, the selection of hyper-parameters for the model
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will be strategically tailored to simplify the model’s complexity. These adjustments are
crucial for balancing model precision and computational efficiency. Despite the constraints,
the univariate dataset offers valuable insights into customer behavior patterns at a more
detailed level, providing a nuanced perspective that complements the broader analysis
conducted with the multivariate data.

4.2.1 Handling Imbalanced Datasets

Imbalanced datasets are a prevalent challenge in machine learning, impacting various fields
such as face recognition, software engineering, and financial modeling (Fernandez et al.,
2018). In addressing imbalanced datasets, the primary objective is to balance the trade-
off between enhancing predictions for the minority class and controlling false positives
(Fernandez et al., 2018). To this end, sampling techniques have emerged as prominent
solutions, predominantly categorized into undersampling and oversampling.

Undersampling reduces the size of the majority class to balance the class distribution.
Its benefit lies in creating a compact and balanced training set, thus reducing the compu-
tational cost of the learning stage (Fernandez et al., 2018). However, it can increase the
classifier’s variance and may discard useful examples, potentially affecting the classifier’s
generalization ability, especially in high imbalance scenarios. Conversely, oversampling
increases the minority class size, with methods ranging from simple replication to more
complex techniques like the SMOTE (Fernandez et al., 2018).

For our study, undersampling was chosen over other methods like oversampling and
SMOTE. Our dataset’s specific characteristics and research objectives informed this deci-
sion, prioritizing computational efficiency and model performance while minimizing overfit-
ting risks. In the context of our large-scale, high-dimensional data, undersampling offered
an optimal balance between simplicity and effectiveness.

4.2.2 Data Normalization

Data normalization is a crucial preprocessing step in machine learning, especially for models
sensitive to the scale of input data. Our study employed different normalization strategies
for the models under consideration based on their inherent characteristics and requirements.

Data normalization is unnecessary for the CIF model. The CIF model, leveraging a
random forest algorithm that operates on features calculated on canonical intervals, is

35



inherently robust to variations in the scale and distribution of input data. Therefore, the
CIF model processes the raw time series data without normalization.

However, normalization is a standard and essential practice for the ROCKET, LSTM
and shapelet models. These models are sensitive to the scale of the input data, require nor-
malized inputs to function effectively. We have chosen to implement Z-score normalization
for these models, as indicated by Equation 4.1:

Xnormalized =
X − µ

σ
(4.1)

Here, Xnormalized represents the normalized data, X is the original time series, µ is the
mean of the time series, and σ is the standard deviation.

Moreover, we split the normalization process into two distinct approaches: absolute
and relative normalization. Relative normalization, which involves normalizing data per
customer, is particularly interesting in our context. This approach is necessitated by
customers with significantly high incomes, which could otherwise skew the overall mean
(µ) of the dataset. Such a method aligns with the findings of Kvamme et al. (2018), who
noted the trade-off inherent in this approach: while it helps in managing outliers, it limits
the deep learning models only to discern relative patterns within the data.

In summary, our data normalization strategy is tailored to the specific requirements of
each model used in our study. While the CIF model works effectively with raw data, the
ROCKET, LSTM and shapelet models benefit from the Z-score normalization technique,
with a special emphasis on relative normalization to accommodate the unique distribution
of our dataset.

4.2.3 Out-Of-Sample Validation

To ensure the robustness and reliability of our model, we employed a 10-fold stratified
cross-validation technique. This method involves partitioning the dataset into ten equally
sized folds or subsets of data. In each iteration of the validation process, one fold is used
as the test set, and the remaining nine folds are used as the training set. This process is
repeated ten times, with each fold serving as the test set exactly once.

Stratified cross-validation ensures that each fold represents the whole well by maintain-
ing the same proportion of classes as in the original dataset. This approach is important
in our study due to the imbalanced nature of our dataset, with the default class being
significantly underrepresented.
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This rigorous validation method allows us to assess the performance and generalizability
of our model accurately. It also helps mitigate overfitting, ensuring that our model’s
predictions are not merely artifacts of the particular sample of data used for training. The
entire training, testing, and validating process is summarized in Algorithm 2.

4.2.4 Hyper-Parameter Tuning

Hyper-parameter tuning is critical to building robust ML models. Hyper-parameters, dis-
tinct from model parameters, are not learned from the data but are set before the training
process. These parameters play a pivotal role in controlling the behavior of the learning
algorithm and can significantly impact the model’s performance.

Proper selection of hyper-parameters is essential. Setting them too high can lead to
overfitting, where the model becomes overly complex and performs well on the training
data but fails to generalize to new, unseen data. Conversely, setting them too low may
result in an underfitted model, lacking the complexity to capture the underlying patterns
in the data. Additionally, inappropriate hyper-parameter values can lead to unnecessarily
long training times, which is especially critical in scenarios dealing with large datasets.

The final set of hyper-parameters chosen for each model was based on a balance between
accuracy and computational efficiency. A list with all the hyper-parameters is provided in
Appendix C.

4.3 Final Model

In the final model, the study identifies the most effective TSC model by utilizing the AUC
metric, a widely recognized standard for measuring the accuracy of predictive models. The
model with the highest average AUC over the cross folds is selected as the superior model
for this study.

An intriguing aspect of the methodology involves revisiting the previously excluded
data points - those rejected during the undersampling process. The model’s performance
on these samples offers valuable insights, especially since undersampling is commonly em-
ployed to address class imbalance in datasets. By estimating these samples with the trained
TSC, the study sheds light on the model’s effectiveness across a broader data spectrum.

Moreover, the PD for each customer is computed and recorded. The current model used
by ING is trained on the selected sample. This training is conducted twice: once with the
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Algorithm 2 Pseudocode for training, testing, and validating TSC models

input: Preprocessed datasets (multivariate, univariate), hyper-parameters

FOR each dataset in [multivariate, univariate]:

undersample dataset until balanced

Perform 10-fold stratified cross-validation:

FOR each fold:

1. Train the CIF model without normalization

2. Normalize the data:

a. Train the LSTM-FCN model on normalized data

b. Train the ROCKET model on normalized data

c. Train Shapelet model on normalized data

3. Relatively normalize the data:

a. Train the LSTM-FCN model on relatively normalized data

b. Train the ROCKET model on relatively normalized data

4. Test the models on current fold and record performance metrics

END FOR

Aggregate and analyze the performance metrics across all folds

END FOR

inclusion of the PD estimates derived from the TSC model as a feature, and once without
these estimates as shown in Figure 3.2. This comparative approach aims to evaluate the
added value, if any, provided by the PD estimates from the TSC model.

This comparison is vital to understanding the incremental benefit of integrating the
TSC model’s insights into the existing model model. By evaluating the performance of the
ING model with and without the PD estimates, the study can demonstrate the practical
implications of the TSC model in a real-world banking environment.

4.4 Explainability

The explainability of our models within our framework, particularly the best-performing
TSC model, is investigated whenever a feasible method is available. Such exploration offers
deeper insights into our model choices and enhances our understanding of the data. As we
highlighted in our literature study in Chapter 2, explainability is often found to be lacking
in most research. In response, we adopt a more holistic approach by incorporating explain-
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ability into our framework. This strategy extends beyond merely assessing performance; it
encompasses considerations of usability, addressing the need for models that stakeholders
can trust. However, it should be noted that our focus is not on expanding the research
area of explainable AI.

The final model is examined using mean absolute SHAP values to evaluate the contri-
bution of the TSC-PD estimate. This technique highlights the importance of our newly
introduced feature in the XGBoost framework, giving us insight into whether it is con-
tributing.
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Chapter 5

Results

This chapter presents the performance of evaluating the TSC model on both multivariate
and univariate datasets. We will choose the best-performing model and examine its inter-
pretability. Then, we train the XGBoost, both with and without the PD estimate as a
feature, and evaluate its performance. This chapter corresponds to the demonstration step
in the DSRM process.

5.1 Time Series Classification Model Results

This section delves into all the results of the TSC models. Understanding the creation
steps of our model is essential, so we summarize the experiment procedures as described in
Chapters 3 and 4. Initially, we selected customers with at least one year of historical bal-
ance information, marking a deviation from the currently used model. The existing model
calculates features on data without requiring a minimum one-year historical balance, mak-
ing our model more stringent. We then focused only on customers with a single current
account, disregarding those multiple current accounts and removing the savings accounts.
This approach is a notable limitation of our model as it needs to provide a complete cus-
tomer profile. However, the current model excludes savings accounts and applies predefined
rules for feature calculation on selected current accounts. We have created two datasets:
1) a multivariate monthly dataset and 2) a univariate end-of-day current account dataset.
We undersampled the data in each set to achieve balanced datasets. We then trained and
tested these datasets using stratified 10-fold cross-validation, saving the results from each
test fold. For models incorporating neural networks, we applied both absolute and relative
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z-normalization to the data. In summary, we introduced two additional assumptions in
our model, deviating from the model currently in use:

• The customer has at least 12 months’ worth of historical balance data of the current
account

• the customer has exactly one current account

These assumptions allow for cleaner data, providing a clearer insight into customers’
spending behavior. We have not tested the impact of applying zero padding to missing
data. It would also be interesting to merge all the current accounts into one time series
or even combine all current and savings accounts into a single time series to evaluate the
model’s performance. Additionally, all banks can inquire the end-of-day balance data of
the current account from customers outside the bank using the PSD2 system.

5.1.1 Multivariate

The CIF model leads in performance with an AUC of 0.68, surpassing all other models.
The LSTM model also demonstrates notable results on normalized data, achieving an AUC
of 0.64 and ranking among the top performers. However, models trained on relatively
normalized data, such as ROCKET and LSTM, exhibit bad performance differences, with
AUC scores of 0.58 each. In contrast, the ROCKET model on normalized data achieves
a slightly higher AUC of 0.59. Overall, the performance on the multivariate dataset is
modest. For comparison, ING’s current model Y achieves a significantly higher AUC of
0.XX. Despite the advances in deep learning methods, including LSTM, they fall short in
performance compared to the other techniques on our dataset.

The CIF model’s performance is notable as it closely resembles the current industry-
standard models. Its robustness to outliers is due to calculating summary statistics on
intervals and creating numerous intervals. The LSTM model shows a performance gain,
aligning with expectations based on the Gao et al. (2021) study. However, this performance
diminishes on relatively normalized data, suggesting that this relative normalization tech-
nique removes critical information as expected, which is important for the model. The
ROCKET model’s performance on both relatively normalized and just normalized data
is also subpar, leading us to conclude that it is not well-suited for multivariate monthly
datasets. We argue that the prevalence of outliers in the data, as shown in the distribution
plots in Appendix C, complicates the performance of deep learning methods.
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5.1.2 Univariate

The CIF model again outperforms deep learning methods, achieving an AUC of 0.80. The
shapelet-based approach also shows excellent performance on normalized data, with an
AUC of 0.79. These results are particularly impressive [Classified], as they are achieved
using only end-of-day balance data.

Among the other models, the LSTM model on normalized data scores the highest with
an AUC of 0.72, followed by its performance on relatively normalized data with an AUC
of 0.70. The ROCKET model shows a slightly lower performance with AUC scores of 0.67
on normalized data and 0.68 on relatively normalized data.

The CIF model’s robustness is evident in this application, and the shapelet’s strong per-
formance, despite lengthy training times, suggests that the two classes are distinguishable
by their shapes. The LSTM model performs better than the ROCKET model, consistent
with the observations in the multivariate case. Models trained on relative data underper-
form in both univariate and multivariate settings, indicating that relative normalization
may not be the best approach for handling this data. The high AUC score of 0.80 is in-
dicative of strong model performance, although it should be noted that defaults can occur
unexpectedly due to unforeseen circumstances like illness or job loss.

We conclude that aggregating data into a monthly format significantly diminishes valu-
able information, thereby weakening the performance of TSC models. This result is logical,
as these models are designed for time series data, and the aggregation process transforms
these into statistical monthly features.

The underperformance of deep learning models in both multivariate and univariate
datasets can be attributed to the significant number of outliers, as observed in our data
exploration and illustrated in Appendix C. The distribution x-axis had to be scaled with
log to visualize the plots, indicating the high outliers. These outliers alter the mean and
standard deviation, affecting most customers’ time series. Applying relative normalization
resolves this issue by facilitating comparisons of relative movements in end-of-day balances,
but it sacrifices the ability to make absolute comparisons. Alternatively, removing outliers
is an option, but this disregards customers who might be significant outliers.

Enhancing the model could involve adding more time series data to the end-of-day
series. For future research, we propose aggregating all current accounts into one time
series, all savings accounts into another, and creating separate daily credited and debited
amount time series, which can then be fed into multiple TSC models.

Based on these results, our continued analysis will focus on CIF and shapelets using
the univariate end-of-day balance data.
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5.1.3 Computation Time

This section presents a comparative analysis of the computation times from a theoretical
and empirical perspective of the CIF and the Shapelet algorithms.

Theoretical Time Complexity

The time complexity of an algorithm can be measured in the amount of time it takes to
run it as a function of the length of the input, called the big O notation.

The time complexity of the CIF algorithm, as derived from the work of Middlehurst
et al. (2020), incorporates several key parameters: the number of trees generated r, the
number of intervals per tree k, the number of cases per tree n, the number of attributes
subsampled per tree a, and the computation of Catch-22 features m1.16. These parameters
combine to yield a total time complexity for the CIF model of O(rknam1.16). This for-
mulation indicates that the computation time increases linearly with the number of trees,
intervals, cases, and attributes. However, the computation of the Catch-22 features, which
scales with m to the power of 1.16, introduces a superlinear factor into the complexity. It
is important to note that the algorithm does not compute all features for each interval.
Instead, it selects a random subset of features for computation, which mitigates the com-
putational burden as detailed by Middlehurst et al. (2020). Given that it scales linearly
with the input size the algorithm is desirable for practical applications.

The time complexity of the Shapelet algorithm, as calculated by Bagnall et al. (2017),
is O(p2q4), where p is the number of time series and q is the length of each series. This
significant computational complexity arises from the exhaustive search for the optimal
shapelets within the dataset. Due to this complexity, considerable research is in developing
methods to approximate the shapelet discovery process. One such approach involves using
heuristics to find near-optimal shapelets, reducing computational demands while retaining
the quality of the identified shapelets. An example of this line of research can be found in
the work of Grabocka et al. (2014), which proposes a heuristic-based method for shapelet
discovery. We used the same approach as Grabocka et al. (2014).

Empirical Training Time

From a practical standpoint, we have analyzed the training times of various algorithms
on our univariate end-of-day training set, with the results displayed in Figure 5.1. The
visualization illustrates the fast computation time of the ROCKET algorithm. In stark
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Figure 5.1: Average Computation time and RAM used in the univariate cross-validation
process.

contrast, the shapelet algorithm exhibits the longest training duration, underscoring the
implications of its time complexity on practical application. The CIF algorithm, while
not as swift as ROCKET, demonstrates a more moderate computation time, offering a
viable compromise between speed and the granularity of interval analysis. By constructing
trees in parallel, significant reductions in computation time can be achieved, which is a
testament to the CIF algorithm’s adaptability to multi-core processing environments and
practicality in business.

Imbalanced Dataset

To optimize computation time and enhance model performance, we balanced our dataset, a
strategy supported by existing literature. However, it’s notable that most credit risk model
studies do not employ dataset balancing (Dastile et al., 2020). To explore the effects of
this, we trained the CIF model on an unbalanced dataset, considering the limitations of our
computational resources. Consequently, we had to reduce the model’s complexity, which
involved halving the number of trees in the CIF model.

The test yielded an average AUC of 0.71 (std=0.02), a considerable decrease compared
to the balanced dataset. This decline in performance suggests that using an imbalanced
dataset impacts the model’s effectiveness. Additionally, we believe that the further reduc-
tion in the AUC score is partly due to the simplified model architecture, which included
reducing the number of trees from 200 to 100 to maintain computational feasibility.
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5.1.4 Explainability

CIF Algorithm and Its Explainability

The CIF algorithm, which integrates a random forest model with an interval-based ap-
proach, enhances interpretability through methods such as SHAP. This combination pro-
vides a nuanced method for interpreting time series data, enabling ways to understand
individual sample-level decisions. To illustrate how the model makes decisions and which
features it prioritizes, we have visualized the decision process using a Partial Dependence
Plot. This approach is demonstrated in Figure 5.2, which displays the top 10 features
across the entire interval in the classification process.

Central to the CIF algorithm’s performance is the high information gain of the pe-
riodicity of the Wang feature.1 The feature effectively measures time series periodicity,
distinguishing series with consistent patterns from those with rapid fluctuations and noise.
Higher values are assigned to series with more significant periodicity, while lower values
indicate more irregularities in the time series. The Wang feature thus plays an important
role in analyzing the periodic nature and consistency of customers’ financial behaviors,
offering a sophisticated lens for observing time-related consistency. For a more personal-
ized model explanation, SHAP can be exploited on the random forest, demonstrating the
individual contribution of each feature to the decision-making process.

In conclusion, the CIF algorithm, illustrated in Figure 5.2, effectively delivers a holistic
perspective on utilizing the entire interval in feature analysis. We observe a slight increase
in information gain in the year’s second half, but it is essential to consider the entire period
for a comprehensive analysis. For a detailed understanding of all the Catch-22 features, one
can refer to Appendix D. The Wang feature emerges as one of the most crucial elements,
providing an efficient method for credit risk modeling on the end-of-day current account
data. This prominence of the Wang feature underscores the potency of both the CIF
algorithm and the Catch-22 methods in the context of credit risk models, highlighting
their effectiveness in capturing essential dynamics in financial data.

Imbalanced Dataset

To optimize computation time and enhance model performance, we balanced our dataset, a
strategy supported by existing literature. However, it is notable that most credit risk model
studies do not employ dataset balancing (Dastile et al., 2020). To explore the effects of this,

1Name in the legend: PD PeriodicityWang th0 1 of Figure 5.2, as presented by X. Wang et al. (2007)
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Figure 5.2: Partial dependence plot of the top 10 most important features from the Catch-
22 features in the trained CIF model on the univariate end-of-day dataset.

we trained the CIF model on an unbalanced dataset, taking into account the limitations
of our computational resources. Consequently, we had to reduce the model’s complexity,
which involved halving the number of trees in the CIF model.

The test yielded an average AUC of 0.71 (std=0.02), a considerable decrease compared
to the balanced dataset. This decline in performance suggests that using an imbalanced
dataset impacts the model’s effectiveness. Additionally, we believe that the further reduc-
tion in the AUC score is partly due to the simplified model architecture, which included
reducing the number of trees from 200 to 100 to maintain computational feasibility.
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Shapelet Algorithm and Its Explainability

Unlike the CIF algorithm, the Shapelet algorithm is distinguished by its exceptional ex-
plainability, largely attributed to its utilization of shapelets. Shapelets can be directly
plotted over a customer’s end-of-day balance data, allowing for a clear graphical represen-
tation of divergence between lines, if the loan is not approved. This approach leverages data
patterns directly for classification, fostering transparency and simplifying interpretation.

The found shapelets, as illustrated in Figure 5.3, all identified an upward trend in the
current account. The weekly and monthly shapelets still show a noisy shape, whereas the
quarterly and half-yearly shapelets follow linear trends. This upward trajectory aligns well
with business insights, particularly in loan approval scenarios, where a positive income
trend in a current account suggests a healthy financial status. The algorithm calculates
the distance between these desirable upward shapelets and the actual time series, utilizing
this measurement as a feature.

The shapelets identified and illustrated in Figure 5.3 consistently indicate an upward
trend in the current account data. The weekly and monthly shapelets exhibit some variabil-
ity, contrasting the quarterly and half-yearly shapelets, demonstrating more linear trends.
In loan approval, this upward trend is insightful as it suggests a stable and growing finan-
cial status in the current account. The algorithm capitalizes on this insight by calculating
the distance between these preferred upward-trending shapelets and the actual time series
data at the best fitting position, employing this measurement as a key feature for analytical
purposes.

A key advantage of shapelets is their autonomous determination of the optimal fitting
period, which does not require pre-set instructions for the duration of the time series, such
as one or three months. This algorithm feature effectively tackles the challenges outlined
in Chapter 4.1 - ’Time Interval Per Customer,’ enabling shapelets to adjust to the most
suitable period. However, we observed an unusual pattern in the yearly shapelet, with an
unexpected flattening in income. To maintain the efficiency of the shapelet’s automatic
timeframe adjustment, we advise against using shapelets longer than half the length of the
time series. This strategy ensures preserving the shapelets’ inherent strength in adapting
to varied time frames.

The strength of the Shapelet algorithm lies in its ability to identify and create complex
shapelet shapes, providing a distinct advantage in scenarios where pattern recognition is
paramount. Although there were no complex shapes found in our dataset. Compared
to the CIF algorithm, which offers a macro-level understanding, the Shapelet algorithm’s
direct interpretability allows for a more precise and insightful analysis of time series data.
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Figure 5.3: Top found normalized shapelets for different time intervals.

Both the Shapelet and CIF algorithms contribute various methods to make the models
explainable and, consequently, more trustworthy. This makes them particularly suitable
for applications where transparency is a critical factor. Despite their different approaches
and strengths, both models offer effective pathways for ensuring explainability in complex
data environments.

5.2 Final Model Results

The final XGBoost model is trained with and without the PD estimate of our CIF model
as a feature. Without our estimate, the current model gives us a benchmark with the same
dataset. It should be noted that there is a risk of overfitting the data since we are reusing
the same samples used to train the TSC model and give this as an input for the combined
model. The models are again tested on 10-fold cross-validation, and the out-of-sample fold
is used to calculate the performance metrics.

The combined model shows a performance gain to an AUC of 0.81 compared to our
CIF model with an AUC of 0.79. Model Y has an AUC of 0.77, while the model developers
claim an out-of-sample AUC of 0.XX. The under-performance of model Y is likely caused
by data reduction. We applied more stringent filtering of persons having just one current
account and at least 365 data points, resulting in a sample size drop from 180k to 10k
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samples, which damaged the performance of model Y. The combined model Y does show
an improvement with the additional PD estimate as a feature.

Even though this model stacking approach where the TSC prediction is used as a feature
in the main model was a logical choice for deep learning models, as it is also done in the
research of Gao et al. (2021) because these models do not create features. The CIF model
does calculate features on different time intervals. a continuation in the research could
be to fully migrate the features to the XGBoost, simplifying the model architecture and
enabling the XGBoost model to find relationships between the features instead of the PD
estimate.

5.2.1 Random Dataset Validation

We conducted training and testing using randomly generated data to verify the unbiased
nature of our model’s estimates. This process involved the creation of time series data,
synthesized by drawing from a normal distribution with parameters mirroring the mean
and standard deviation of the per-person current account in our samples. The target
variable was also generated to reflect the portfolio’s default rate change (X.XX%). This
approach aimed to mirror real-world variability and unpredictability.

Following this, we applied the same 10-fold cross-validation procedure as with our
original model. The combined model’s AUC for predictions on this random dataset was
0.503 for the balanced dataset and 0.505 for the unbalanced dataset. These results, hovering
around the 0.5 mark, indicate that the model’s predictions on the random dataset align
closely with what would be expected by chance (Mathai et al., 2020). Such an outcome
reinforces the conclusion that our model’s design is inherently unbiased. Furthermore, it
suggests that our dataset is sufficiently comprehensive to enable the model to converge to
an estimate reflective of random chance, thereby supporting the validity of our modeling
approach.

5.2.2 Explainability

Figure 5.4 presents the top 9 features in our model, ranked by their mean absolute SHAP
values. The PD estimate from the TSC model is identified as the most influential feature,
with an absolute mean SHAP value of 0.35, indicating a substantial impact on the model’s
predictions.

The analysis, however, underscores a challenge in interpretability due to the model’s
stacked structure. The significant role of the PD estimate in the TSC model is clear, but
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(a) Model Y without TSC PD estimate (b) Model Y with TSC PD estimate

Figure 5.4: Absolute SHAP value contribution of the top 10 features in the final model
with and without our TSC estimate

its specific impact remains less transparent, suggesting a potential benefit in integrating
the TSC model directly into the XGBoost framework. Such integration would enhance
explainability by simplifying the feature attribution process, making it easier to understand
and justify the model’s predictions.

Moreover, it’s important to recognize that while absolute mean SHAP values quantify
the average impact of features, they do not indicate the direction of this impact. The high
value of the PD estimate signifies its strong influence, but further analysis of non-absolute
SHAP values is necessary to determine the nature of this influence.
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Chapter 6

Conclusion

This research embarked on an innovative journey to harness TSC algorithms for enhancing
credit risk models, with a special focus on the historical balance data of retail customers.
The origin of our study stemmed from a notable main research problem in the field: the
creation of features on time series data is labor intensive and might overlook crucial insight
in time series data. This challenge shaped our central research question:

”How can time series classification algorithms on historical balance data of retail
customers enhance credit risk models’ discriminatory power?”

Our quest to address this question revealed a notable void in existing academic lit-
erature: there is no current literature researching the synergy between TSC and credit
risk modeling for handling time series data. This discovery positioned our study at the
forefront of bridging this gap, representing a novel and significant stride in the field. We
delved into an array of TSC methodologies, encompassing deep learning, shapelets, and
interval-based approaches. Each method underwent a rigorous assessment to evaluate its
capacity to refine the accuracy and enhance the performance of credit risk predictions.
The outcomes of these evaluations not only underscore the viability of TSC techniques in
this context but also mark a groundbreaking advancement in the realm of financial risk
assessment.

The most significant achievement of our research was the successful incorporation of
the optimal TSC-based PD prediction method into a comprehensive credit risk model.
This method, when used alongside traditional feature sets in an XGBoost model, demon-
strated a significant enhancement in the discriminatory power of credit risk models. Our
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findings not only highlight the potential of TSC techniques in credit risk assessment but
also set a precedent for future research in this domain, potentially revolutionizing credit
risk management strategies in the financial industry.

In our study, we investigated various TSC methodologies, including CIF, shapelet-
based models, and two advanced deep learning approaches. Both standalone TSC models,
namely the shapelet and CIF, demonstrated promising results, effectively competing with
the existing models prevalent in the industry. However, it is important to acknowledge
the interpretability aspect of the CIF model. Given that it processes a feature set derived
from hundreds of intervals.

The difference in interpretability becomes particularly evident when we compare these
TSC models with the current industry-standard model, which are typically developed with
business-centric features. In this context, the shapelet-based model emerges as notably
more interpretable. Plotting the identified shapelets with the customers’ end-of-day bal-
ance data facilitates a more direct and intuitive understanding of the model’s decision-
making process. This attribute of the shapelet-based approach underscores its potential
for providing clear, actionable insights in the domain of credit risk assessment.

An important observation from our research is the limited efficacy of deep learning
classification methods when applied to both the end-of-day balance data and the multi-
variate monthly dataset. We attribute this underperformance to numerous outliers in retail
customers’ balance data. These outliers pose significant challenges in data normalization,
a prerequisite for deep learning models to function effectively. The normalization pro-
cess, while essential, can be significantly hampered by outliers, leading to issues in model
convergence and overall performance.

Moreover, a critical limitation of deep learning models in the context of credit risk
modeling is their inherent lack of transparency at an individual decision level. This lack of
transparency in decision-making processes is a significant drawback, particularly in credit
risk assessment, where understanding the rationale behind each credit decision is crucial
for regulatory compliance and gaining stakeholder trust.

Nonetheless, Our research introduces a novel approach that connects TSC with credit
risk models, making a valuable contribution to the evolving literature on credit risk mod-
eling. Our quantitative testing, supported by a comprehensive review of current literature,
confirms that TSC models effectively can discriminate between default and non-default
retail customers.
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6.1 Limitations and Future Research

6.1.1 Limitations

Our research journey, while fruitful, encountered several limitations that are important to
acknowledge. These challenges impacted our study and provided valuable insights into the
complexities of working with TSC models and large datasets.

• Limited computational resources somewhat constrained item our capabilities. This
limitation restricted our ability to explore the full spectrum of TSC models, poten-
tially leaving out some promising approaches.

• Each TSC method we examined required different amounts of computation time.
This discrepancy posed a challenge in creating a fair comparison framework, as bal-
ancing the sample size and model complexity to equalize training times would make
the comparison fairer.

• The dataset we utilized, specifically the univariate dataset, was incomplete compared
to the multivariate dataset. Consequently, the customers in the training and testing
of the models were different between these two.

6.1.2 Future Research

The scholarly dimension of our study presents numerous opportunities to broaden the
research spectrum. Our investigations have unveiled promising avenues for integrating
TSC with credit risk modeling frameworks. To further refine and extend the scope of our
research, we propose the following recommendations:

• Investigate the inclusion of various account types (e.g., savings accounts) in the model
to present a more holistic financial profile of customers.

• Consolidate how to handle clients with more than one current account.

• Distinguish between overdrafts and term loan defaults and explore their performance
in the model.

• Examine the impact of extending the dataset beyond the COVID-19 period to assess
the model’s robustness in varying economic climates.
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• Consider the integration of additional TSC algorithms that were not covered in this
study, broadening the scope of algorithmic comparison.

• investigate the added benefits of using TSC in other domains in finance, such as early
warning systems and fraud detection.

6.1.3 Operational Recommendations for Business Implementa-
tion

This research not only holds academic value but also exhibits significant business poten-
tial. It offers avenues for enhancing model precision, streamlining model structures, and
consolidating data sources. To effectively translate these research insights into business
practice, we suggest the following operational strategies:

• Develop an optimal interval search strategy for the current model to maximize its
predictive accuracy. Putting more emphasis on the interval choice.

• Add the Catch-22 and shapelet features to the current model feature set. Also,
discuss the acceptability of these features with stakeholders. Specifically, look into
the application of the periodicity of Wang feature for intervals chosen by ING.

• Create a multivariate end-of-day dataset using the same information as the current
model features (i.e., debit/credit, savings, etc.) to equalize the data of the TSC
models and the current model.

• Analyze the relative positions of identified shapelets in classification algorithms to
enrich the model’s interpretative power and gain more insight into the data.

This research has taken significant strides in integrating TSC models with credit risk
assessment, offering new perspectives and methodologies in the field. While we have un-
veiled promising avenues, the journey towards fully understanding and optimizing these
models continues. The recommendations and limitations highlighted in this study serve as
a roadmap for future research, steering toward a more inclusive, accurate, and comprehen-
sive credit risk modeling framework.
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Appendix A

Studies in credit risk

Table A.1: Summary studies on consumer credit risk models. SVM = Support Vector
Machine, NN = Neural Network(aggregated term), LR = Logistics regression, KNN =
K-Nearest Neighbor

Paper ML model Data Evaluation
metrics

Explain-
ability

Validation
method

Hybr/
en-
sem-
ble

Yu et al.
(2008)

NN’s, SVM,
ELM’s

Application
data on
retail cus-
tomers

Confusion
matrix,
AUC

None train-test
split

Ensemble

Liang
and Cai
(2020)

NN Time series
of loan de-
fault rate

mean abso-
lute error

None moving and
rolling cross-
validation

Ensemble

Ma
and Lv
(2019)

MLIA, LR application
information
of retail
customers

AUC None train-test
split

None

Bryga la
(2022)

LR application
information
of retail
customer

Confusion
matrix,
Total effec-
tiveness

Significance train-test
split

None
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Paper ML model Datatype Evaluation
metrics

Explain-
ability

Validation
method

Hybr/
en-
sem-
ble

Merćep
et al.
(2021)

LR, SVM,
RF, GB, NN

aggregated
balance and
transaction
features

AUC, H-
measure
Brier score

- cross-
validation

None

H. Wang
(2021)

SVM, ADA
Boost, RF

Credit card
data, data
internet
crawlers

Accuracy,
precision,
recall, F1

None train-test
split

Ensemble

de Lange
et al.
(2022)

Light-GBM,
LR

balance and
behavioral
data

AUC, PR-
curve,
Approxi-
mated costs
of imper-
fect credit
scoring
models

SHAP-
value on
explanatory
variables

train-test
split

Ensemble

Bücker
et al.
(2022)

GBM-model inAnonimized
credit infor-
mation

AUC, Importance,
SHAP-value

train-test
split

Ensemble

Khandani
et al.
(2010)

CART
model

credit card
data

Confusion
matrix,
AUC

claim inter-
pretable

train-test
split

Hybrid

Gao
et al.
(2021)

LSTM-
XGBOOST

Monthly
transaction
and billing
information

Confusion
matrix,
AUC

Feature im-
portance

train-test
split

Ensemble

Kvamme
et al.
(2018)

CNN, RF,
Ensemble

End-of-day
balance
data on all
accounts
customer

Confusion
matrix,
AUC, Brier
score, H-
measure

None train-test
split

-
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Paper ML model Datatype Evaluation
metrics

Explain-
ability

Validation
method

Hybr/
en-
sem-
ble

Correa
Bahnsen
et al.
(2016)

LR, DT, RF Aggregated
and raw
features

total savings None Train-test
split

Ensemble

Mahbobi
et al.
(2021)

SMOTE,
NN, SVM,
KNN

Behavioral
and billing
features

Confusion
matrix,
Brier score,
cross-
entropy
loss

relative fea-
ture impor-
tance

train-test
split

None

Addo
et al.
(2018)

SMOTE,
NN, SVM,
KNN

Enterprise
dataset

AUC,
RMSE

None train-test
split

Ensemble

Kao
et al.
(2012)

CART, LR,
BP, SVM,
MARS

application
data and
income
features

Confusion
matrix

Feature im-
portance

train-test
split

-

Li et al.
(2023)

ADA Boost,
RF, NN, dis-
tance based

Data on en-
terprises

Accuracy,
AUC

Visualization
of classes

3fold cross-
validation

-

van
Thiel
and van
Raaij
(2019)

RF, NN mortgage
application
data

Confusion
matrix,
AUC

None Train-test
split

Ensemble

Literature review papers on credit risk models
Dastile
et al.
(2020)

overview
multiple
models

no data used PCC, AUC,
G-mean, F-
measure

Rationalize
outcomes

Train-test
split

Ensemble

Zhang
and Yu
(2024)

overview
multiple
models

no data used Confusion
matrix,
G-mean,
F-measure

None cross- vali-
dation

Both
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Paper ML model Datatype Evaluation
metrics

Explain-
ability

Validation
method

Hybr/
en-
sem-
ble

Lessmann
et al.
(2015)

Overview
single and
ensemble
classifiers

Credit card
data

AUC, PCC,
BS, H, KS

None train-test
split

Both

Abellán
and
Castel-
lano
(2017)

Combining
different
ensemble
meth-
ods with
different
classifiers

6 credit card
datasets

accuracy,
AUC

None 5 fold cross
validation

Ensemble

Tripathi
et al.
(2022)

various hy-
brid and
ensemble
approaches

5 credit card
datasets

Accuracy None 10 fold cross
validation

Hybrid

Table A.2: Studies in Time Series Classification

Paper TSC Taxonomy Context
Deng et al. (2013) Interval This study introduces a tree-ensemble

method for time series classification
Lubba et al.
(2019)

feature This study introduces ”catch22,” a method
that identifies a compact set of 22 time-
series features with strong classification per-
formance

Cabello et al.
(2020)

interval This study introduces the Supervised Time
Series Forest (STSF) as a novel method for
time series classification

Middlehurst et al.
(2020)

interval This study introduces the Canonical Interval
Forest (CIF), a novel classifier that combines
the strengths of the Time Series Forest (TSF)
and the ’catch22’ feature set.
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Paper TSC Taxonomy Context
Flynn et al.
(2019)

interval This study introduces an enhanced version
of the Random Interval Spectral Ensemble
(RISE) called c-RISE

Eamonn (2022) shapelet This study introduces time series shapelets
as a solution to the limitations of the nearest
neighbor algorithm for time series classifica-
tion.

Bagnall et al.
(2017)

all In this study, the authors evaluate 18 recently
proposed time series classification algorithms
on an expanded dataset of 85 time series
datasets, conducting 100 resampling experi-
ments for each

Middlehurst et al.
(2023)

all This study revisits the study of Bagnall et
al. (2017) that compares the analysis of Time
Series Classification (TSC) algorithms, orig-
inally conducted on 85 datasets from the
University of California, Riverside (UCR)
archive, and assesses the progress in various
algorithm categories.

Karim et al.
(2019)

deep learning This study extends the capabilities of univari-
ate time series classification models, such as
the Long Short Term Memory Fully Convolu-
tional Network (LSTM-FCN) and Attention
LSTM-FCN (ALSTM-FCN), to address mul-
tivariate time series classification.

Dempster et al.
(2020)

deep learning this study demonstrates that simple linear
classifiers with random convolutional kernels
achieve state-of-the-art accuracy while signif-
icantly reducing computational costs.

Kiranyaz et al.
(2021)

deep learning This study offers a comprehensive review of
1D Convolutional Neural Networks (CNNs),
highlighting their architecture, principles,
and recent engineering applications.
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Appendix B

Feature selection process model Y

B.1 Original features created from balance data

Classified

B.2 Feature selection pipeline

The model developers of model Y have chosen to remove features that have 90 percent
missing values, have constant values with variance 0, and drop features with high corre-
lation (Pearson correlation = 1). Figure B.1 shows the total feature selection. Then the
model developers chose to drop features based on the following reasons:

1. Feature importance. Features with exactly zero feature importance on the IT data
are eliminated.

2. PSI-based feature selection. Population stability index (PSI) is a measure of how
much the distribution of a single feature has shifted. Here, we compute PSI values
using CV on the IT data.

3. Correlation-based feature selection. Highly correlated features can inhibit the
model performance and make interpretation of the final feature set difficult. There-
fore, we explicitly removed features that were highly correlated to other features
using the Pearson correlation coefficient.
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4. Recursive feature selection with cross-validation. This approach is performed
as the last step of the feature selection pipeline and is meant to remove features that
do not significantly contribute to the overall model performance (selected number of
features: 340). However, by all stakeholders, the model developers selected a lower
number of features since it provided comparable performance and ensured a far lower
burden on implementation and monitoring.

B.2.1 Top 10 features Model Y

Table B.1: Top 10 most important features ranked with mean absolute SHAP value.

Feature SHAP-value
Feature 1 0.254827
Feature 2 0.225686
Feature 3 0.167179
Feature 4 0.12847
Feature 5 0.119022
Feature 6 0.10675
Feature 7 0.101947
Feature 8 0.0971233
Feature 9 0.0900051
feature 10 0.0848077
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Figure B.1: Overview feature selection model Y
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Appendix C

Experimental setup

C.1 summary statistics

Table C.1: Summary statistics of monthly balance data

mean std min 0.25 0.5 0.75 max
Time series 1 XXX XXX XXX XXX XXX XXX XXX
Time series 2 XXX XXX XXX XXX XXX XXX XXX
Time series 3 XXX XXX XXX XXX XXX XXX XXX
Time series 4 XXX XXX XXX XXX XXX XXX XXX
Time series 5 XXX XXX XXX XXX XXX XXX XXX
Time series 6 XXX XXX XXX XXX XXX XXX XXX
Time series 7 XXX XXX XXX XXX XXX XXX XXX

C.2 Distribution Shapes

Distribution shapes of the multivariate monthly dataset are given in Figure C.1

C.3 Hyperparameters models
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Table C.2: Hyperparameters of used models

Model Name Hyperparameters
CIF • nestimators = 200

• nintervals =
√

series length ×
√

n dims
• att subsample size = 8
• min interval = 7
• max interval = 365
• base estimator = DecisionTreeClassifier

SHAPELET • n shapelet samples = 1000
• max shapelets = nclasses/nn shapelet samples

• max shapelet length = None
• estimator = Random Forest
• transform limit in minutes = 0
• time limit in minutes = 0

ROCKET • num kernels = 8,000
LSTM • n epochs=2000

• batch size=128
• dropout=0.8
• kernel sizes=(8, 5, 3)
• filter sizes=(128, 256, 128)
• lstm size=8
• attention=False
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(a) Time series 7 (b) Time series 5

(c) Time series 6 (d) Time series 4

(e) Time series 3

Figure C.1: Distribution shapes of the multivariate monthly dataset.
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Appendix D

Catch-22 features

Catch-22 features1

1Sourced from: https://time-series-features.gitbook.io/catch22-features/
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Feature Description Category

DN HistogramMode 10: 10-bin histogram mode Distribution Shape
DN HistogramMode 5: 5-bin histogram mode Distribution Shape
CO f1ecac: First autocorrelation coefficient Linear Autocorrelation
CO FirstMin ac: First minimum in the autocorrelation function Linear Autocorrelation
CO HistogramAMI even 2 5: Automutual information with even bins,
delay 2

Nonlinear Autocorrela-
tion

CO trev 1 num: Time reversal asymmetry statistic Nonlinear Autocorrela-
tion

MD hrv classic pnn40: Proportion of NN intervals differing by more
than 40 ms

Incremental Differences

SB BinaryStats mean longstretch1: Mean length of longest homoge-
neous segments

Symbolic

SB TransitionMatrix 3ac sumdiagcov: Sum of diagonal covariance in
transition matrix

Symbolic

PD PeriodicityWang th0 01: Periodicity measure by Wang et al. Linear Autocorrelation
CO Embed2 Dist tau d expfit meandiff: Mean difference in embedded
point distances

Other

IN AutoMutualInfoStats 40 gaussian fmmi: Automutual information
with Gaussian window, lag 40

Nonlinear Autocorrela-
tion

FC LocalSimple mean1 tauresrat: Ratio of mean period of local maxima
to minima

Incremental Differences

FC LocalSimple mean3 stderr: Standard error over mean of local simple
features

Simple Forecasting

DN OutlierInclude p 001 mdrmd: Outlier measure for positive outliers Extreme Event Timing
DN OutlierInclude n 001 mdrmd: Outlier measure for negative outliers Extreme Event Timing
SP Summaries welch rect area 5 1: Area under Welch’s spectral density
estimate

Linear Autocorrelation

SP Summaries welch rect centroid: Centroid of Welch’s spectral density
estimate

Linear Autocorrelation

SB BinaryStats diff longstretch0: Difference in longest homogeneous
segments of zeros

Symbolic

SB MotifThree quantile hh: Entropy of successive pairs in symbolized
series

Symbolic

SC FluctAnal 2 rsrangefit 50 1 logi prop r1: Fluctuation analysis (low-
scale scaling)

Self-Affine Scaling

SC FluctAnal 2 dfa 50 1 2 logi prop r1: Detrended fluctuation analysis
(low-scale scaling)

Self-Affine Scaling

Table D.1: Description of Catch22 Features with Categories
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Glossary

Catch-22 In the context of time series analysis, Catch-22 refers to a curated set of 22
highly informative characteristics. These features are selected for their ability to
succinctly capture the essential properties of time series data, facilitating various
analytical tasks such as classification or pattern recognition (Lubba et al., 2019). 14,
22, 43, 45, 54

XGBoost An advanced implementation of gradient boosting algorithms, XGBoost (eX-
treme Gradient Boosting) is an ensemble learning technique that enhances predictive
accuracy by aggregating the outputs of several simpler models. This method leverages
gradient boosting frameworks at scale and is recognized for its efficiency, flexibility,
and portability (T. Chen & Guestrin, 2016). 9, 10, 14–17, 19, 21, 23, 29, 39, 40,
48–51
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