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Abstract

This thesis undertakes a comprehensive case study focusing on the development of a predic-
tion model aimed at classifying the prospective credit risk of retail clients within Rabobank.
Rabobank considers 4 ordinal Credit Risk Classification (CRC) classes: CRC [Good], CRC
[Early Warning], CRC [Financial difficulties] and CRC [Default]. The primary objective
is to enrich the existing early warning credit risk monitoring system, SAMAS, by incorpo-
rating a machine learning-based forward looking approach. The central research question
driving this thesis is: “How can machine learning algorithms be applied to predict the CRC
class of retail clients at LBBB three months into the future for clients currently on the
watchlist as CRC [Early Warning]?”

The problem approach involves an extensive systematic literature review (SLR) delv-
ing into the concept of Machine Learning in Early Warning Systems and Credit Risk.
These findings, coupled with insights from the data review, formed the empirical study de-
sign. This thesis strives to contribute to the field of the multi-class classification problems
characterized by imbalanced classes and within the context of credit risk. The research
deploys a branch of under- and oversampling techniques, in conjunction with a multitude
of Machine Learning techniques including Random Forest (RF), XGBoost (XGB), Sup-
port Vector Machine (SVM), Feedforward Neural Networks (NN), Multinomial Logistic
Regression (MLR), and Linear Discriminant Analysis (LDA), which are compared to a
Naive Bayes model. Hence in total 28 models are compared and an optimal model for this
RSME client dataset is selected.

The evaluation of these models hinges on two accurateness perspectives. One describes
an accurate model to be a model that classifies each class equally well while the other
accounts the pure accurateness of the prediction model. It becomes apparent that the
models struggle to predict the minority class, CRC [Default]. Because of this, the problem
is restructured as a 3-class multi-class classification problem by rewriting all CRC [De-
fault] cases to CRC [Financial Difficulties]. This mutation yields to a model that show
promising results that align with our definition on an accurate model. The optimal model
emerges as an ensemble method combining Random Forest, eXtreme Gradient Boosting,
Support Vector Machine, and Multinomial Logistic Regression. Subsequently, this final
model undergoes additional assessments across another time generalization, boasting an
average balanced F-1 score of 0.7005 and an average weighted F-1 score of 0.7429 with a
confident balanced avg. precision of 0.8252. The results affirm the model’s potential to
generalize over time and indicate potential cost savings for practical implementation. A
proof of concept is also developed on how the extension can be implemented into practice.
Nevertheless, further research, such as window forward cross-validation, is imperative to
establish a more confident feasibility of its practical use.

In conclusion, this research presents a valuable practical contribution to the field of
credit risk analysis, while it also demonstrated its solutions potential to forecast the CRC
with a proof of concept. The innovative tool enhances the current risk monitoring systems
and can be utilized to form risk mitigation strategies. Additionally, it underscores theoret-
ical contributions applicable to the broader banking industry, emphasizing the potential of
machine learning in reshaping credit risk early warning monitoring systems.



Keywords: Prediction model, Rabobank, Machine Learning, Early Warning System (EWS),
Credit Risk Credit Risk Classification, Multi-class classification problems

2



List of Abbreviations

• AI - Artificial Intelligence

• AUC - Area Under The Curve

• BCBS - Basel Committee on Banking Supervision

• CRC - Credit Risk Classifier

• DL - Deep Learning

• DPD - Days Past Due

• DT - Decision Tree

• EAD - Exposure at Default

• ECB - European Central Bank

• EW - Early Warning

• EWS - Early Warning System

• FD - Financial Difficulties

• RFE-RF - Recursive Feature Elimination - Random Forest

• GS - Global Standards

• LBBB - Lokale Banken Bedrijf Business

• LR - Logistic Regression

• MCC - Matthews Correlation Coefficient

• ML - Machine Learning

• NN - Neural Networks

• NPL - Non-Performing Loans

• PD - Probability of Default

• RF - Random Forest

• QA - Qualative Assesment

• RC - Regulatory Capital

1



• RRR - Rabobank Risk Rating

• RSME - Retail Small Medium Enterprise

• RWA - Risk-Weighted Assets

• SCE - Single Credit Exposure

• SLR - Systematic Literature Review

• SVM - Support Vector Machine

• XGB - XG-Boost

2



Chapter 1

Introduction

1.1 Credit Risk Class monitoring with Early Warning Sys-
tems

Commercial banks are a type of financial institution that provide financial services such
as storing deposits, making business loans, and offering basic investment products. The
services that include credit expose institutions to credit risk i.e. in the event of non-
performing loans [29]. It is therefore vital that commercial banks monitor the credit risk
of client adequately and continuously [30].

Continuous and adequate monitoring aims to detect problematic credited obligors as
early as possible. Adequate and continuous monitoring of the credit risk exposure on client
level does not only provide more internal financial stability to the firm, but also contributes
in meeting regulatory demands. One of the methods used by banking institutions to
detect, adequately monitor and report on these obligors are early warning systems (EWS)
[39]. EWS use triggers and financial credit risk metrics to detect obligors in financial
distress as early as possible. Triggers act as binary flag variables that activate when
certain conditions are met, while credit risk metrics denote a non-negative variable that is
continuously present on client level. Based on this data, clients are automatically classified
in the severity of their financial distress position. Depending on the classification, timely
actions – such as forbearance measures – can be taken by the bank in order to avoid or
mitigate losses. Classification can be conducted on a multitude of classes. In general, a
high probability of loan repayment - or similarly a low probability of default - are classified
in a financial stable client group and customers with a high probability of default are
classified in the financially distressed client group [4] . In general the class that concerns
a classification of first signs of financial distress can be considered watchlist classes, note
that this definition may vary per financial institution.

Banks with efficient use of EWS can reduce unsecured exposures for clients on a watch-
list by about 60 percent within nine months, whereas average banks reduce only around
20 percent unsecured-exposure [6]. Therefore, successful implementation of EWS can sig-
nificantly reduce lost exposure due to defaults. While at the same time, a timely alert
and financial guidance proactively stimulates the bank-client relationship. Besides it con-
tributes from a compliance perspective to cope with the Basel rules imposed by the Basel
Committee on Banking Supervision (BCBS), the implications of these rules in the credit
monitoring system are discussed in chapter 2. The BCBS is not a regulatory body in
itself but a forum for cooperation among banking supervisory authorities [9]. It sets in-
ternational standards and guidelines for banking regulations on (credit) risk management.
The European Central Bank (ECB) takes on a supervisory role and provides unbinding
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guidance in the regulation on these standard and guidelines, but the underlying financial
institution is responsible for their own methods and standards on monitoring and reporting
credit risk [9]. This case-study focuses on the credit monitoring at Rabobank Group.

In the following section, we explore positioning of Rabobank’s credit monitoring system
within the case study’s problem context.

1.2 Problem Context

Rabobank Group is a Dutch multinational commercial banking and financial services com-
pany with the second-largest total assets in the Netherlands. Rabobank contributes to resp.
17% and 35% on the domestic market shares in mortgages and savings [36]). Private Loans
such as mortgages are only a small part of the credit portfolio at Rabobank, other asset
classes involve retail small medium enterprises, wholesale, rural and some other. Rabobank
Group also monitors the credit-risk portfolio of its other business units such as The Lage
Landen and Obvion. Rabobank EWS is called the Credit Risk Classifier CRC. The CRC
considers four classes that indicate the severity of the clients credit risk, in ascending or-
der of severity Rabobank considers CRC: [Good (G)], [Early Warning (EW)], [Financial
Difficulty (FD)] and [Default (D)] [43]. From now on, we refer to a status as class and
denote the specific class i.e. good as CRC [G] - without a hyperlink to the abbreviation.
In figure 1.1, an ordinal overview of the CRC classes is presented.

Figure 1.1: This figure shows the four CRC classes in ascending (left to right) order from severity
and is taken from the internal report Global Standards on Credit Risk Parameters [43]

The class is mostly determined based on the presence of triggers. Triggers - as indicated ear-
lier - function as a binary flag mechanism that indicate if certain corresponding thresholds
- by means of a change in underlying credit risk metrics over time - are breached. Triggers
are mostly automatically computed, but can also be manually added to the clients data
profile by a portfolio holder at Rabobank. When (a set of) certain triggers are reported,
an automatic CRC transition between the four possible statuses immediately occurs [43].
This research focuses on if and when transitions occur, therefore the so-called entry and
exit criteria for each CRC status - essentially a decision tree following pre determined rules
- will not be deeply discussed in the research. However, if necessary, a comprehensive
flowchart including a set of rules of these criteria is available in Appendix 1. For now it
is important to understand what a certain CRC class defines. CRC [G] follows from no
indication that the client is in financial distress. A transition to CRC [EW] shows first
financial distress i.e. a trigger indicating that the clients payment is 30 days overdue, but
to an extent that no forbearance measures are given. CRC [FD], the CRC [EW] class has
become more severe, additional triggers e.g. a change in Rabobank Risk Rating (RRR)
status has been flagged and forbearance measures are applied to the client. CRC [D] is
labeled to a client when forbearance measures fail to get the client out of financial distress
and the last measures are taken to avoid default or too mitigate losses. A client should
“ideally” follow through all of these statuses before being labeled as CRC [D] but in reality,
some triggers allow clients to immediately transition to default [35]. Furthermore although
the classification are ordinal, its true placement is uncertain. We therefore, don’t assume
true ordinality within the classification problem. The question arises, can we foresee that
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immediate transitions occur and does the reported data on client level posses predictive
power to accomplish this? To do so we will check if a snapshot of one years date in time
contain information on potential transitions 3 months into the future. An answer on this
question remains central in this research and will be elaborated to further extent in the
next section: the problem statement.

1.3 Problem Statement

We discussed that CRC automatically classifies clients their risk status based on set of
triggers immediately in real-time. The set of triggers and other relevant financial data
on clients are assembled, accessed and reported through one single application: SAMAS.
SAMAS is Rabobank’s application that ensures effective internal reporting to monitor on
the CRC of the client, the triggers and other credit risk metrics. The triggers form the
basis on how classes take form. I.e. certain triggers can indicate in realtime that thresholds
are breached and thus the client (likely) shows financial distress. The watchlist class at
Rabobank is CRC[EW], and functions as a temporary class. It is expected that these
clients soon have to be transitioned to their actual corresponding class where reasonable
possible. This transition occurs both automatically and manually based on qualitative
assessment or by means of additional triggers.

Currently, the systems shows to effectively monitor their exposure to credit risk [36] and
the CRC has no drastic problem required solving. However, we can provide a (problem)
statement on potential extensions to the SAMAS application. It is important to take
into account that such additions remain in line with SAMAS objectives - which rely on
transparent and objective reporting. Additionally, the defined objectives should not merely
focus as a consulting report for Rabobank, but also reflect on general monitoring and
reporting methods of credited clients at financial institutions – using Rabobank’s CRC as
context - and contribute to the literature on effective credit monitoring and EWS.

Aligned with these objectives, we propose to implement a predictive mechanism into
SAMAS to predict the CRC, by using data available to assess the client’s prospective
risk. It is imminent that thee CRC transition occur automatically, as a result of triggers
reported, in real-time. Triggers, in their place, only occur when threshold are breached
over time. So real-time predictions based on a snapshot of data have no useful impact
as there is no uncertainty there. However, an attempt can be made to use the historical
data available to discover patterns in certain prospective CRC transitions. Furthermore,
additional data that is not used for the initial CRC1 determination but which is available
on client level can also be utilized to enhance the predictive power in pattern recognition
i.e. the operating sector and the current absolute value of the exposure at default (EAD).
While it also improves useful insights on the use of these metrics. Additionally, literature
shows that by implementing ML into big data, accurate predictions on classification can
be realized [14] [18], more about the approach is discussed in the next chapter.

Concluding, the problem statement is to be interpreted as an innovation to the current
system. It aims to make the EWS more effective in indicating early financial distress of
clients by predicting the class they are likely to be in into the future. In the next chapter
we dive into how we approach the innovation - we remain to call it the problem approach
- by means of objectives, research question and a research design. Also, we asses the scope
of the clients investigated in this research.

1Last hyperlink for CRC Abbreviation
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1.4 Research Objectives

The primary objective is to accurately predict the CRC class of RSME (LBBB) clients
three months into the future based on the clients data. In order to achieve this, we train a
multitude of Machine Learning (ML) algorithms to asses if patterns between the data exists,
hence separability of classes can be determined. The best performing ML algorithm can
then be selected. The selected subset of data that is considered significant can be further
analyzed to gain insights on the most important predictors to asses the CRC [Class] of
the client. While CRC transitions in real-time are solely based on triggers, more data is
available on client level and can thus also be exploited in the prediction model, further
improving timeliness. It also contributes to answer what defines an adequate prediction
model. Furthermore, we want to gain insight if the implementation of the prediction model
truly contributes to practical insights and is feasible to implement into SAMAS. In other
words, does the model generalized over time and can losses be mitigated by extending
the EWS with the prediction model. A Proof of Concept is also made to emphasize its
potential and feasibility.

In short, we formulate the following objectives to contribute to the credit risk moni-
toring system:

• Forward Looking Approach: Currently, SAMAS primarily includes backward
looking approaches on analysing the CRC. The proposed extension contributes to a
forward looking approach on the prospective risk of the client by means of forecasting.
This method incorporates historical data of clients to discover patterns used to predict
a CRC Classification 3 months into the future.

• Feature Importance: Investigate which features (predictors) are considered to
contribute on the separability of CRC [Classes]. And also, highlight if additional
data - apart from triggers - contribute to the separability of CRC [Classes].

• Timeliness:: CRC classification is conducted in real time. This means that clas-
sification is done instantly and involves no uncertainty. The proposed extension
attempts to detect a CRC transition at an earlier stage, which enables Rabobank to
undertake forbearance measures in advance.

• Practical insights: The predictions can be tested on associated costs and measure
if losses can be mitigated by following the prediction models outcome, improving
the watchlist functionality. Also, a proof of concept is developed to stimulate its
potential use.

1.5 Research Questions

Based on the aforementioned research objectives, we define the following main research
question:

“How can machine learning algorithms be applied to predict the CRC status of
RSME clients at LBBB three months into the future?”

The main research question is divided into a number of subquestions, each subquestion
is either answered by means of at least one of the following: Literature Research (L),
Modelling (M), Data Analyses (DA) and Internal expertise opinions (I). Additionally, the
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chapter in which the research question is (partly) answered is denoted next to the corre-
sponding subquestion.

1. What is the existing literature on the topic so far and what are the results found?

a. To what extent is machine learning applied in monitoring credit risk? What are
possible interesting algorithms to include? (L) - Chapter 2

b. to what extent are EWS used to monitor credit risk? (L) - Chapter 2

2. What scope should be defined and how what properties does the data within this
scope have?

a. What scope should be defined and where should the data be filtered on? (I)
Chapter 1.7

b. How does the raw data and the properties of the features look like? (DA)
Chapter 3.4

c. What type of predictors have been proven to be effective or present in current
CRC transitions? (DA) (L) (I) Chapter 3.4

3. How can a prediction model be created to classify the clients based on their prospec-
tive risk?

a. What constitutes an adequate prediction model? (L) Chapter 2

b. What kind of pre-processing methods are necessary for the dataset to conduct?
(L) & (M) Chapter 4.1 & 4.2 & 5.1

c. Which ML and DL methods can be used in credit risk and how can we implement
these? (L) & (M) Chapter 3.4 & 4.2 & 5

d. What kind of evaluation methods and metrics are suitable to reflect on the
predictive power for each of the models? (L) Chapter 4.3 & Chapter 5.6

4. How can we implement the prediction model into SAMAS?

a. How are the outcomes of the model best compared against the current perfor-
mance? (L) Chapter 5.6

b. How can the model be implemented into SAMAS? And how is the intuition
behind the model best explained for practical use? (L) & (I) Chapter 6.4 6.5

5. How are the results interpreted?

a. How can we back test the results to confirm consistent model performance? (L)
& (M) Chapter 6.3

b. What kind of implication does the result have on both practical and theoretical
insights? (DA) & (L) Chapter 7.3 & 7.2

1.6 Research Design

We organize our research systematically by employing "The Standard Thesis Structure"
outlined by David Evans in his work cited as \cite{Evans2014}. This structure helps us
segment our content into distinct chapters. The structure – found in figure 1.2 - serves as
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Figure 1.2: Structed research design of the thesis according to the Standard Thesis Approach
by David Evans [20]

a foundation for this research and is useful for keeping the project orderly as it unfolds.
We follow the steps as proposed by Evans as follow. Prior to the introduction, an outline
is given that briefly states what is discussed on chapter level. The introduction, problem
statement, aim and scope has been put in the introduction chapter. In the first chapter
we stated that no direct problem is indicated by Rabobank but we propose a innovation
the on current application by extending it with a predictive mechanism in.

Consequently in the same chapter, we establish an approach, that includes research
objectives and research questions. The design strategy, as part of the research questions,
encompasses the methods used to answer the research question by means of either literature
research, results from modelling, data analyses or internal expert opinions.

From this point we start with specifying the scope, background and related work. First
related work - depcited as background, history and current theory - is investigated in
chapter 2 and is deployed by use of a systematic literature review (SLR). Then, we dive
into the data properties by means of a data review.

After, we execute the empirical study design by Akkad [3]. This study design gives
insight on the implementation of machine learning classification problems. We start by
discussing technical intuition behind the applied methods in chapter 4 Consequently, we
walk through the empirical implementation in chapter 5. Then model performance across
the different machine learning algorithm is presented in chapter 6. The conclusions are
discussed in chapter 7, here we also reflect on the research objectives and the main research
question. In the same chapter, we end with the implications of the prediction model both
in terms of its limitations and the theoretical and practical contribution.
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1.7 Thesis Scope

In this section we elaborate on the chosen scope and answer research question 2.a. In
section 1.2 we already stated that entry and exit criteria of CRC classification at Rabobank
depend on both the assets class and business unit. Rabobank distinguishes several different
asset Classes in their entire credit portfolio. Each asset class has its own level in credit
granting, credit monitoring and credit reporting. A mixture of assets classes in the data set
is not desired, as this also takes on a mixture of different guidelines and criteria assessing
the CRC [class]. Therefore, this research solely takes on the data on the asset class Retail
Small Medium Enterprise RSME.

From a similar perspective, including a mixture of different business units in the dataset
is also not desired. Because of this, our research also filters on clients from the business
unit "Lokale Banken Bedrijven Business" (LBBB).

Additionally, we focus on clients that are already in CRC [EW], as these clients are
already on the watchlist and therefore expected to make a transition in the near future.

Ultimately, this means that we focus on RSME clients from the business unit LBBB
that are currently in CRC [EW] and predict their CRC 3 months into the future.
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Chapter 2

Literature review

Credit risk is most simply defined as the potential that a borrower or obligor will fail to
meet its obligations in accordance with agreed terms [32], when this occurs we speak of an
obligor in default. According to LCD, the 10-year default rate average for US Leveraged
Loans is 1.57% [13]. Without any proper intervention or forbearance measures, defaults
can result in huge and permanent losses for the issuer. To mitigate the risk of default, cer-
tain credit-risk metrics are monitored. Monitoring of these metrics is either done manually
or automatically [41].

With the immense growth in the area of artificial intelligence in the past two decades,
ML is becoming an interesting method to contribute to monitoring credit decision making.
Such monitoring systems involve EWS, capable of indicating clients in potential financial
distress and default [24]. There are already internal credit scoring systems and credit rating
agencies that provide their analysis of a customer to banks, but the exploration of using
various ML techniques to improve the accuracy level of these ratings is still limited [8].
Predictive ML techniques are capable to identify the pattern behavior and classification
of the imminent credit risk that potential clients pose to the financial institutions [45].
However, one of the significant challenges that has been integral to the method is about
the alignment of the ML models to the internal monitoring, reporting and information
systems that can support overall system enhancement and comprehensibility [40].

For this reason, a systematic literature review (SLR) on the implementation of ML
in credit risk is conducted. This SLR attempts to reflect the research questions 1.1 as
defined in section 1.5: To what extent is machine learning applied in monitoring credit risk
and what are feasible algorithms to include? The SLR found 342 articles in Scopus using
the following search terms: ( TITLE-ABS-KEY ( machine AND learning ) AND TITLE-
ABS-KEY ( bank ) AND TITLE-ABS-KEY ( credit AND risk ) OR TITLE-ABS-KEY (
early AND warning )). Filtering on Language: “English”, selecting Keyword: “Credit Risk”,
Filter on Relevance (TOP 25), excluding topic: “Credit Card” and include: accessible open
source literature. This resulted in a total of 10 papers suitable for comparison. From this
SLR we conclude that the SLR is somewhat limited as most articles do not solely focus on
the RSME scope but to loans in general. Another conclusion is that no direct relationship
to EWS or similar CRC classes are present in many of the literature as most articles
focused on other types of prediction models than a classification problem i.e. probability
of default. Regarding the methods used in model development, most papers followed a
similar theoretical framework as developed by [3]: Pre-processing, feature selection, cross
fold, multiple machine learning algorithms and evaluation methods are included in the

10



same order. Also, we found that most articles are not older than 2020, indicating a recent
uprise of machine learning applications in credit risk.

Additionally, we include papers that conduct similar SLRs on the topic [8][39]. We
combine our own SLR together with these SLRs and find that the majority of the papers
include models based on first taking the best features from a feature selection method and
by investigating potential correlations between variables. Consequently they discuss on su-
pervised machine- and deep learning methods including Multinomial Logistic Regression
(MLR), Linear Discriminant Analyses (LDA), Support-Vector-Machine (SVM), Decision
Tree (DT), Random Forrest (RF), Neural Networks (NN), XG-Boost (XGB). Almost all
paper include some kind of cross fold validation before training the models. However, no
undersampling problems seems to be present in the data sets of these papers. Furthermore,
the models are evaluated on a test set based on several metrics. Most of the measures are
based on metrics from the confusion matrix such as accuracy, precision, recall, f-1 score.
While some also articles also include metrics as Area under the Curve, and two additional
metrics from the confusion matrix, Mathews correlation coefficient and the G-Mean. F-1
score seems to work as a promising metric as it is able to represent multiple metrics into
one comprehensible metric [22], as the f-1 score provides a balanced metric on the false
positive rate as the false negative rate. However, the evaluation metric usually differs
based on the research objective. We also found that DL techniques such as NN are mostly
defined as DL techniques, to enhance clarity we treat DL methods as ML methods from
this point onwards. Similarly, we regard the MLR as a ML algorithm too.

In the second SLR we aim to answer research question 1.2: "to what extent are EWS
used to monitor credit risk?". Therefore, we perform an additional literature review on the
application of EWS in credit risk by banking institutions. The key terms used in Scopus
located 37 papers and were: ( TITLE-ABS-KEY ( early AND warning AND system ) AND
TITLE-ABS-KEY ( banking ) AND TITLE-ABS-KEY ( credit AND risk ) OR TITLE-
ABS-KEY ( early AND warning )) Filters based on articles limited to Language: “English”,
Keyword: “Credit Risk”, Include: Only free-access or licensed literature. This resulted in 6
new papers (compared to the prior SLR to be taken into account. Likewise to the previous
SLR, detailed answers on this SLR can be found in appendix .2. Unfortunately, little useful
insights were found in the second SLR. No similar study considers its EWS in a similar way
as at Rabobank. Where we hoped to find studies that had more than 3 classes in the EWS,
but only less than 3 were found. Most of the researches emphasize on creating an EWS
by solely introducing a single EWS trigger just before default. However, the multi-class
classification problem is widely researched, although less than two class problem. Here,
the aforementioned ML remain viable but the evaluation metrics require some alteration
compased to a two class problem. We further dive into the technical insight on this in
chapter 4.3.

Ultimately from both SLRs, the paper that relates most to our work is a case study
on monitoring credit risk of ING by University of Twente student Daniel Chen [14]. He
defines the EWS as a early warning system that enables the effective monitoring of the
credit portfolio by providing Early Warning Indicators and triggers to alert stakeholders -
such as risk and account managers - when there are early signs of financial distress. The
graduate author tries to effectively classify wholesale clients at ING on a watchlist based
on their prospective credit risk. ING uses an application called ARIA, which has similar
functionality as Rabobank’s SAMAS, to classify clients based on their prospective credit
risk. Opposed to the four classes from SAMAS, Aria includes three stages and thus has
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only one watchlist status. At ING, the CRC stages are mostly determined manually based
on indication of triggers, whereas at Rabobank CRC transitions are performed in real time
and are automatically based on triggers following the decision tree. The predictors that
were considered most important following the feature selection method called mutual infor-
mation – and therefore also included in the models – were predictors that were non-triggers
but values from internal data such as exposure at default and risk-weighted assets.

In conclusion, the SLRs in appendix .2 contributed to answer both research questions
1.a and 1.b. From the first SLR we asses that literature on successfully implementing
machine learning in monitoring credit risk exist. Combining the SLR with existing ones
[8], [39] we form a list of algorithms that are deployed in our empirical study: Multinomial
Logistic Regression (MLR), Linear Discriminant Analyses (LDA), Support-Vector-Machine
(SVM), Decision Tree (DT), Random Forrest (RF), Neural Networks (NN), XG-Boost
(XGB). Methodology on the specific machine learning methods used will be discussed in
chapter 4. Furthermore, we answer the use of EWS in credit monitoring in the second SLR,
where we found that the existing literature is rather limited on this topic, But the concept of
multi-class classification problem is prominent in all cases. This involves theory on general
methods for multi-class classification problems and is not necessarily related to credit risk.
Also, the SLRs enhanced our view of potential predictors to include. Which opposed to
the CRC entry- and exit criteria not only included triggers but also continuous predictors.
Specifically the probability of default is frequently denoted as the most significant predictor.
In the paper of Chen [14], we find that triggers are not as contributing as other metrics
such as exposure at default and risk-weighted assets. Based on this expected feasibility
of ML into credit risk systems and its prior insights, we are confident that we are able to
contribute to the current credit monitoring system at Rabobank and also enhance both
theoretical and practical insights on the topics of ML and EWS.
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Chapter 3

Data Review

In this section we delve into the dataset used to train and test the prediction model. The
objective of this chapter is to get more familiar with the dataset and to gain intuition
behind the predictors and its relation to the outcome variable. This intuition is described
both in statistical terms as well as its use in credit risk. To conclude the chapter, we
summarize our hypotheses regarding the significance of the predictors and their impact on
the model’s separability.

In section 1.7 we stated that we focus on RSME clients from the business unit LBBB
that are currently on the watchlist in CRC [EW] and want to predict their CRC 3 months
into the future. Of course, to train such a model, we need to specify the specific months that
are used. We choose to predict the CRC most recently reported at the time of research,
which is Aug-23 and is called the outcome variable. Consequently, 3 months prior to
the outcome variable, is data reported at May-23 and the variables used to do so are
called predictors. Together they form to be the so-called merged data frame. To increase
comprehensibility we consider the predictors to come from three pipelines. An overview of
these pipelines (including corresponding reporting months) is given in figure 3.1.

Figure 3.1: This figure shows the three pipelines that constitute the predictors, grouped by the
client ID, the data is merged into one dataset.

This means that the latest known data before the prediction is at may-23, the data
reported and used at this moment in time is called the snapshot. Based on this snapshot
either one of the four transitions as denoted by figure 3.2 occur 3 months into the future.
Initially, the three pipelines that are considered contain all the data made available by
Rabobank through the SAMAS application. A straightforward method is to let data
mining do the work and automatically dilute the significant predictors. However, this
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Figure 3.2: This figure shows the possible transitions from all clients that are in CRC [EW] at
May-23 to the four possible CRC [Classes] at Aug-23

does not allow us to gain a comprehensive understanding of the initial dataset before any
predictors are removed. Therefore, throughout this chapter, we conduct a thorough review
of each of these predictors, examining their relevance and significance in the context of
credit risk.

3.1 Data Constitution

The data from the three pipelines in figure 3.1 is extracted through Rabobank’s Cuberouter
and is accessed through a query. The query is able to extract all indicative dimensions
and convert this into a readable data frame. Rabobanks level to determine contracts
individually is on a so-called regulatory facility level. However, to enhance interpretibility
we define the lowest level to be on "Client_ID" level. We merge the data frames from
the pipelines and ensure that no clients are lost when matched by Client_ID and thus all
clients at least indicate a CRC [Class] at Aug-23. The total number of clients - called the
sample - in the particular dataset used is not presented in this thesis due to confidentiality
reasons, furthermore a client will also be referred to as a "row". The exact methods used
to filter and merge the merged dataset can be found in Appendix .3. After merging, the
client_ID is removed, in this way information is protected on client level. To further
enhance the clients privacy, no data on individual client level is published in this thesis.

To ensure consistent use of terminology, a feature, column or independent variable used
as an input for the prediction model will be called a predictor. We consider three types
of predictors according to the three pipelines in figure 3.1: triggers, internal data and
feature engineered predictors. The actual variable indicating the class to predict is called
the outcome variable - and has a equal meaning to target variable or dependent variable.
Elaboration on the included predictors and their relation to the outcome variable is given
throughout the rest of the thesis. All the modelling is conducted in R.

3.2 The Predictors

3.2.1 Triggers

Definitions

The inputted predictors can be seen as a vector X for each client. Across all predictors
inside the vector X a pattern is hoped to be conceived that corresponds to a certain class,
this classification is denoted the outcome variable (Y). In this section we delve into each
of these predictors. We start with the first pipeline: Triggers. We start with an overview
of the trigger types including a description in table 3.1.
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Symbol Description Type
T009 DPD > 30 days. Indicates 30 days past due, up to 60 days, for 100 EUR

exposure. No forbearance needed. Automatically registered. If triggered twice
in 3 months, QA needed.

Integer

T025 Direct external indication of unlikeliness to pay. Manually registered if notified
by other financial institutions of client’s financial distress.

Integer

T029 Other signs of unlikeliness to pay of the obligor. Manual registration based on
indirect signs of financial distress (e.g., payment refusals, untraceable client).

Integer

T030 Cross default trigger. Activates if a related facility or client is in default.
Definite CRC determined through QA. Automatically registered.

Integer

T043 Director/owner passes away trigger. Manually registered if client’s director,
owner, or partner deceases.

Integer

T044 Portfolio trigger. Automatic trigger if client falls under risk category following
from sector or portfolio analyses. Automatically transfer to CRC [EW]

Integer

T070 QA/CF analysis concluding non-CRC [FD], but better. Manually registered,
can only trigger if client is in CRC [FD]. Based on QA/CF, client transitions
to CRC [EW] or CRC [G].

Integer

T100 DPD > 1 day of at least 1 EUR. Early indication of potential financial distress.
No CRC transition. Automatically registered.

Integer

T104 DPD > 90 days. Considered a technical default, not an official CRC default
status but all relevant info must be logged and available. Automatically regis-
tered.

Integer

T117 Emergency funding trigger. Manually added for emergency funding or con-
tractual changes on short notice. QA needed for further CRC assessment.

Integer

T119 Trigger for client contact with Special Asset Management. Client unable to
fulfill obligations without bank help. Manually added.

Integer

T130 Rabo Bank Risk Rating (RRR) = R18 or R19 trigger. Detects if client is
in RRR18 or RRR19, indicating a high degree of financial distress by RRR
model. Automatically registered.

Integer

T131 Rabo Bank Risk Rating (RRR) < RRR18 trigger. Detects if client goes from
R18-20 to RRR < 18, indicating decreasing financial distress. Automatically
registered.

Integer

Table 3.1: Description of Triggers

Triggers act as binary flag variables that activate when certain conditions - i.e. thresh-
old breach in a underlying metric - are met. Only the triggers that are active at the
current reporting date May-23 are considered in our model, moreover the same trigger can
be present more than once. However, the latter is barely the case. It is worth noting
that in SAMAS much more triggers exist, but since we focus solely on clients in CRC
[EW] these triggers are are just not reported within this scope. Furthermore, triggers
occur automatically or are manually added by portfolio holders at the Rabobank W&R
department. Some of the automatic triggers give rise to a qualitative assessment (QA)
or cashflow analysis(CA), which can result in a CRC transition to occur. This makes the
prediction model especially useful since it can try to perceive a pattern in the outcome of
the QA and CA and take away some uncertainty there.
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Data Properties

In this section we describe the Data Properties of the Triggers. We start with a summary
of descriptive statistics.

Predictor mean sd median min max range skew kurtosis se
T009 0.0035 0.0587 0 0 1 1 16.92 284.40 0.0008
T025 0.0760 0.3210 0 0 5 5 5.24 35.71 0.0042
T029 0.0136 0.1204 0 0 2 2 9.26 92.17 0.0016
T030 0.0124 0.1124 0 0 2 2 9.16 86.01 0.0015
T043 0.0339 0.1973 0 0 3 3 6.45 47.55 0.0026
T044 0.0750 0.2724 0 0 2 2 3.58 12.37 0.0036
T070 0.0119 0.1101 0 0 2 2 9.38 90.41 0.0014
T100 0.0603 0.2387 0 0 2 2 3.73 12.14 0.0031
T104 0.0003 0.0186 0 0 1 1 53.76 2889.00 0.0002
T117 0.0098 0.1087 0 0 2 2 12.22 166.76 0.0014
T119 0.0003 0.0186 0 0 1 1 53.76 2889.00 0.0002
T130 0.7972 0.4102 1 0 3 3 -1.30 0.44 0.0054
T131 0.1064 0.3869 0 0 12 12 9.37 201.58 0.0051

Table 3.2: Statistical summary of triggers

The findings from this table are listed below.

• The range indicates the spread of data. Some predictors like "T009" and "T104"
have a narrow range (0 to 1), while others like "T130" and "T131" have a wider
range (0 to 3 or even 12). A histogram that specifies the spread per count can be
found in appendix .4.

• The mean and median statistics provide insight into the central tendency of the
data. For instance, "T130" has a mean of approximately 0.7972, indicating that this
predictor is flagged for most clients.

• The skew statistic indicates the skewness of the data distribution. Positive skewness
(values greater than 0) suggests a right-skewed distribution, while negative skewness
(values less than 0) suggests a left-skewed distribution. For example, "T130" has
a negative skew of approximately -1.30, indicating a left-skewed distribution. The
kurtosis column measures the degree of peakedness or flatness in the data distribu-
tion. Higher kurtosis values indicate more peaked distributions, while lower values
suggest flatter distributions. "T104" and "T131" stand out with an extremely high
kurtosis of approximately 2889.00, indicating a highly peaked distribution. This is
likely because the of the trigger is very rare.

Furthermore, we stated that triggers are either active or inactive and if they are active,
they can also be reported more than once. This statement is reflected in table 3.5, a range
of 0-1 indicates a binary variable, while the vast majority contains a wider range. If the
trigger is of binary value, the variance, skewness and kurtosis may not be as informative
or interesting as it is for continuous predictors and wider intervals. This is because binary
predictors take on only two possible values (0 and 1), which limits the variation within the
predictor. As a result, the variance of a binary predictor tends to be relatively small. This
also holds true in case that triggers with a wider range most of the time only report one or
zero triggers. As such, more than one counts should be seen as outliers. To check this, we
provided an overview of the total number of triggers reported, and include the proportion
that they are reported at least one from this total.
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Trigger code Total percent-
age trigger is
present

Percentage trig >1 over total

T009 0.35% 0.00%
T025 6.25% 17.96%
T029 1.31% 3.95%
T030 1.23% 1.41%
T043 3.09% 8.94%
T044 7.25% 3.33%
T070 1.17% 1.47%
T100 6.01% 0.29%
T104 0.03% 0.00%
T119 0.03% 0.00%
T117 0.88% 11.76%
T130 79.43% 0.33%
T131 9.62% 4.85%

Table 3.3: Table overview of frequency that triggers are present. The 2nd column
indicates the percentage that the trigger on client level is present at least once.
Where the 3rd column indicates the proportion the trigger is present >1 in from
the percentage_tot.

We see that in the 2nd and 3rd column most triggers - apart from T130 - are quite
unique per client, most triggers are < 10% present per client. Looking purely at three of
the most frequent triggers: T130, T131 and T044. T130 is a trigger that follow from a high
RRR and indicates decent sign of financial distress, hence the high percentage is intuitive.
Additionally, trigger T131 indicates decreasing financial distress and is probably associated
from clients that were previously CRC [FD] or worse, it is worthwhile to investigate in
the exploratory analyses what proportion of these clients continue on further decreasing
financial distress by checking if they are also are in CRC [G] in Aug-23. T044 is a Portfolio
trigger, and is a automatic trigger if client falls under risk category following from sector
or portfolio analyses. Its relatively high proportion might contain overly precociously
watchlisted clients, that in fact are not as financially distressed as they appear in the
CRC. Furthermore in the last column, from the total number of triggers, only a small
percentage is present more than once per client. Intuitively, it remains questionable to
regard the trigger as a numerical variable. However, since machine learning is able to cope
with both types of variable types, we include the triggers both as a numerical variable -
indicating the count - and as a binary variable - indicating its individual presence. These
binary variable will be stated throughout the rest paper i.e. as T131_Once for the triggers
applicable.

3.2.2 Internal Data

Definitions

The second pipeline contains internal data available through SAMAS, but of which the
stand-alone metrics are not directly included in the CRC transition criteria. Because of
this reason, valuable information might be contained in this data on CRC Transitions
which are not directly associated as such. Likewise to the previous section an overview
describing these predictors can be found in table 3.2.2. It is worth to mention that the
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numerical variables from this pipeline are common credit risk metrics (i.e. EAD). Also
a part of these metrics are explicitly mentioned in multiple Basel accords i.e. Basel IV
denoted that the regulatory capital RC is a mandatory capital that should be kept in by
the bank in cash on the balance sheet for the specific loan and is to be at least 8% of the
RWA [35].

Symbol Description Type
RRR Rabobanks Risk Rating framework. A Framework based on Basel

and EBA regulation and is used for assessing the probability of
Default (0-100%) for Obligors/Facilities to indicate the financial
distress. It can be interpreted as substages of the possible CRC sta-
tuses. Stages RRR:R1-R20 can be applied to CRC [G] CRC[EW]
CRC[FD]. RRRD1-D4 can be given to CRC[D].

Categorical

CRC_prev Previous CRC that the client had before the client became
CRC[EW]. Useful to include past information of client.

Categorical

New_EW Indicating if the client is new in EW this month Binary
New_EW_3 Indicating if the client was new in EW 3 months ago Binary
New_EW_6 Indicating if the client was new in EW 6 months ago Binary
New_EW_12 Indicating if the client was new in EW 12 months ago Binary

Sector Indicating the clients sector. It is indicated the least detailed cat-
egory as then options are most limited.

Categorical

O_Exp “Original Exposure” of the client. Which is to actually be consid-
ered the current exposure that the client has without the expected
3 interest fees.

Numerical

EAD Exposure at Default (EAD) indicates the predicted amount a bank
may be exposed to when a debtor defaults on a loan. For retail
loans, the amount is calculated based on the IRB approach. EAD
= O_exp * . Where indicates the on- & off balance outstanding
exposures, which includes lost interest.

Numerical

PD Probability of default of the client on a one year time horizon.
This is not the same as the probability that the client is going
to CRC [D]. PD is calculated based on approved internal model
calculations and the outcome widely varies based on the clients
attributes.

Numerical

RWA The Risk-Weighted-Asset value of the client. It indicates the mini-
mum capital that Rabobank should keep as a reserve to reduce the
risk of insolvency for this specific client. It is calculated using Stan-
dardized approach (obligatory since Basel IV to be implemented
in 2025). Calculated using RW% ĒAD. RW% is determined by
client attributes such as LGD, PD and the client’s risk profile.

Numerical

RC Minimum regulatory capital requirement to hold as bank on the
balance sheet according to regulators for the specific client. Since
Basel IV calculated to be at least 8% of the RWA. Including both
RWA and RC is expected not to bring much value to the model as
the formula provides a linearly correlation

Numerical
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Symbol Description Type
LGD Loss given default (LGD) is the amount of money a financial insti-

tution loses when a borrower defaults on a loan, after taking into
consideration any recovery, represented as a percentage of total
exposure at the time of loss. LGD = EAD*(1-Recovery Rate)/
EAD

Numerical

Data properties

In table 3.5 we provide descriptive statistics of the internal data. This includes the or-
dered categorical and binary data, which is rewritten to numerical data types and ex-
cludes the unordered categorical variable sector. Solely looking at table 3.5. We see that
New_EW_12 contains NA values, this is because it only has zero values and therefore
some statistics can not be calculated. This indicates that the predictor does not contain
any useful predictive power and can thus be removed. Furthermore, the descriptive statis-
tics of RWA and RC are identical. This can be explained as RC is at least 8% of the RWA.
The statistics show that Rabobank does not deviate from this minimum and therefore the
underlying metric RC is not included as a final predictor. Another interesting insight is
that PD predictor has a mean value of 0.074 and a low standard deviation of 0.067, with a
minimum value of 0. This suggests that PD is primarily concentrated around low values.

Predictor mean sd median min max range skew kurtosis se
RRR 5.466 0.851 6 2 7 5 -1.726 2.665 0.011
CRC_prev 1.623 0.951 1 1 4 3 0.920 -1.003 0.012
New_EW_6 0.048 0.213 0 0 1 1 4.245 16.022 0.003
New_EW 0.111 0.314 0 0 1 1 2.475 4.127 0.004
New_EW_12 0 0 0 0 0 0 NA NA 0
New_EW_3 0.160 0.366 0 0 1 1 1.859 1.455 0.005
PD 0.074 0.067 0.062 0 1 1 3.771 34.871 0.001
EAD 0.121 0.146 0.059 0 1 1 1.636 2.121 0.002
O_Exp 0.118 0.142 0.062 0 1 1 1.615 2.032 0.002
RC 0.031 0.067 0.008 0 1 1 5.110 36.819 0.001
RWA 0.031 0.067 0.008 0 1 1 5.110 36.819 0.001
LGD 0.127 0.089 0.123 0 1 1 1.636 8.961 0.001

Table 3.5: Summary statistics of predictors coming from the second pipeline
internal data. The numerical values are scaled from 0-1 to enhance confidentiality
of clients data.

Additionally, histograms and bar-charts are provided in appendix .4 to check how the
data is distributed. Three plots of interest are taken from the appendix and shown in
figure 3.3. These are useful to visualize the categorical variables. We are of specific interest
in the unordered categorical predictor: sector. We see that the sectors distribution is not
distributed uniformly. It is shown that wholesale and retail trade make up the biggest part
of the client sector, whereas there are many sectors that are not as much present. It is
worthwhile to investigate transitions against the fraction at which that sector is present as
it helps us to hypothesise about their separability per class. Furthermore, we see in the
same appendix that higher RRR stages are more frequently present in the dataset. Which
is expected as the RRR>18 trigger directly sends clients to CRC[EW]. The CRC_Prev
histogram is shows that the previous CRC count decreases for more severe previous classes,
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thus most clients in EW came from CRC[Good]. To further delve into the previous CRC
we will also explore the relation between CRC_prev to the CRC in Aug-23 in section 3.4.2.

Figure 3.3: This figure shows a barchart of CRC_Prev with the y axis indicating counts and
the x-axis the CRC from [G] = 1 to [D] = 4. The histograms show the x-axis as counts and the
y-axis indicates the category.

3.2.3 Feature Engineered Data

Definitions

Variable Description Type
CRC_n_days Represents the number of days that the client

is in CRC [EW]. Calculated based on the
range of days between two removed vari-
ables: CRC_date_changing_trigger and re-
porting_date_[month_yr].

Numerical

d_EAD, d_PD,
d_O_Exp, d_RC,
d_LGD

Represents the percentual change for the months
from apr_23 to may_23 and form a new engineered
predictor to our model

Numerical

Table 3.6: Feature Engineered Variables

The third pipeline are feature engineered predictors. Feature engineering is done by
manipulating data from the raw dataset to constitute a new predictor that aims to increase
the model performance. The feature engineered predictors calculate the percentual change
of the numerical predictors at may_23 against apr_23 and will be refered to use as the
delta predictors. Also, the number of days that client is in CRC[EW] is calculated to
give insight on how long the client is already labeled as CRC[EW] since its transition to
CRC[EW]. An overview is provided in table 3.6.

Data properties

Histograms on the distribution of the delta predictors can be found in appendix .4. Purely
looking at table 3.7 we see that the range can take huge positive values compared to its
negative values, this is because in theory a percentual increase can be infinitely high while
a decrease can never be lower than 100%. Because of this outliers are expected to make the
distribution right skewed. Intuitively, outliers are expected to posses the most predictive
power as they indicate abrupt changes on the short term. In the next section we discuss
the outcome variable that specifies the four CRC classes at Aug-23.
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Predictor mean sd median min max range skew kurtosis se
d_PD 0.220 1.132 0.045 -0.979 18.923 19.902 7.872 91.813 0.014
d_EAD 0.022 0.541 -0.005 -0.999 14.883 15.883 16.788 379.475 0.007
d_O_Exp -0.001 0.299 -0.004 -0.980 14.354 15.334 40.023 1857.242 0.004
d_RWA 0.452 11.202 0.003 -0.999 649.319 650.319 42.555 2159.864 0.147
d_LGD 0.096 1.694 0.000 -0.978 64.853 65.831 24.438 707.364 0.022
CRC_n_days 108.652 89.661 96 0 364 364 1.048 0.262 1.178

Table 3.7: Summary statistics of predictors from the third pipeline: feature en-
gineered predictors. The percentual change metrics indicate a time lag of 1, cal-
culating a delta between the months Apr-23 and May-23. While CRC_n_days
indicate how long the client has been in CRC[EW] up until the reporting date of
the snapshot at May-23.

3.3 Outcome Variable

3.3.1 Definitions

In machine learning the dependent variable is referred to as the Outcome Variable (Y), it
is sometimes also regarded as the target variable or dependent variable. In our model we
refer to our outcome variable as CRC_Y_Outcome.

CRC_Y_Outcome is a categorical variable that specifies the CRC Status at August 23
based on four classes, this means that we have multi class classification problem at hand.
We addressed that transitions occur instantaneously in real time without any uncertainty.
Therefore we are less interested to why transitions occur, we specifically care about if and
when they occur, such that the transitions is measured.

Based on the constituted merged dataset from section 3.1, the following transitions
from CRC [EW] occurred between May-23 up until Aug-23.

at_aug_23 CRC [G] CRC [EW] CRC [FD] CRC [D]

% of total 26.682% 60.069% 12.538% 0.711%

Table 3.8: Outcome variable: the CRC transtitions from May-23 (all clients are
in CRC [EW]) to Aug-23 as a proportion of the total set

We see that most clients (60.069%) stay in CRC [EW] after the target window of 3
months and only 0.711% transition to CRC[D], naturally a low percentage of CRC [D] is
considered a good thing. Though for our prediction model, this means that this specific
transition might be under sampled in the dataset. This invokes an imbalanced (skewed)
class distribution. AFexn imbalanced class distribution will have one or more classes with
only a few examples - the minority classes - and one or more classes with many examples -
the majority classes. This might imbalance training pattern recognition and makes a test
set much harder to accurately predict upon. We should therefore consider techniques that
can cope with imbalance during the training model and stratify a test set to ensure the
minority classes are represented, we further dive into this in section 4.1.

In the next section we conduct an exploratory analyses on the relation between predic-
tors and the classes of the outcome variable.
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3.4 Exploratory Analyses

In the previous section we already mentioned some predictors that required additional
analyses. In the exploratory analyses we conduct this analyses and seek a relation between
the predictors and true classes. The objective of the section is to gain further intuition
behind the predictors and to hypothesise about the separability of classes from these pre-
dictors. The predictors include the start date in EW: CRC_n_days and the prev_CRC.
Furthermore, we delve into the sector and the trigger frequency per class. Additionally,
we compute a Spearman correlation matrix to see if relations between predictors and the
outcome variable exist. The aim of the exploratory analyses is to hypothesise about the
predictive power that the predictors might have, while it also contributes to becoming more
familiar with the data set as a whole.

3.4.1 Spearman Correlation Matrix

A Spearman correlation matrix is computed to examine potential relationships between
the predictors and the outcome variable. The corresponding correlation plot can be found
in Fig 3.4. The Spearman correlation coefficient ( ρ) measures the strength and direction
of monotonic relationships between pairs of variables by assessing the covariance of the
ranks of the variable. It is not as effective on non ordinal categorical data. But it certainly
fits better on these predictors than the more commonly used Pearson correlation matrix,
which is limited to continuous numerical data types [25],.

In total, this analysis involved 33 predictors, resulting in 1089 pairwise correlations.
With so many relations to consider, interpreting the correlation plot can become over-
whelming. To address this, we chose to focus our attention on Spearman correlation
coefficients exceeding 0.6 and -0.6, indicating the substantial monotonic relationships.

It’s important to note that a high correlation between variables in Spearman’s rank
correlation coefficient does not necessarily imply causation, just like in the case of Pearson
correlation. Spearman’s correlation measures the strength of a monotonic association be-
tween two variables based on their ranks rather than their actual values. This method is
less sensitive to outliers, making it more robust in the presence of extreme values [23].

However, it should be noted that Spearman’s correlation - like Pearson - cannot es-
tablish a definite causation. Nevertheless, we can hypothesize that these predictors are
essential features contributing to the separability of the model, based on the findings in
the Spearman correlation plot.

1. 1. ρ = 1. Relation between RC and RWA they have exact linearity as following Basel
[32] banking institutions are required to hold at least 8% capital for each loan, hence
RC = 8% * RWA. Of course, the same holds for the deltas of RWA and RC.

2. ρ = 0.99. Relation between EAD and O_exp, which mostly are of equal value. In
some cases, EAD indicates a higher value when loans include expected interest that
are lost at default.

3. ρ = 0.861 - 0.802. All combinations EAD, RC, RWA, O_exp. EAD is an input
variable for all formulas and explains why the r coefficient of the combination of
these variables(the blue block in the upper right). Furthermore because of that
d_EAD correlates with the corresponding delta’s of RC, RWA and O_exp too.

4. ρ = 0.703. Relation between RRR and PD relative high correlation. The RRR stages
are mostly based on ranges of PD value and a relation is intuitive (also explain a low
positive with T130).
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Figure 3.4: This figure shows the Spearman Correlation of all viable predictors

5. ρ = 0.653-0.612. Relation between T130 and resp. PD and RRR. One of the few
trigger that shows relative high positive correlation with predictors. T130 indicates
that the RRR=18 or 19 and thus a relation to RRR is expected.

6. ρ = 0.622. Relation between T044 and New_EW_3. T044 is a portfolio trigger that
sends clients to CRC [EW] and is quite apparent for clients whom specifically arrived
exactly 3 months ago.

7. ρ = -0.638. Relation between T130 and T131. T130 triggers with an increase in
financial distress whereas T131 triggers with decreasing financial distress. So this
negative coefficient is intuitive.

8. The Outcome Variable does not indicate a strong coefficient with one of the predic-
tors. However PD is considered the most significant (Positive Correlation) predictor.
And therefore also expected to contribute on the separability for the predictions.

9. A further interesting indication (wide white cross in the matrix) is that the delta
predictors do not seem to show any consistent relation with any of the predictors
(except for d_EAD as explained in 3.). We therefore question their contribution the
the separability of classes and the effect of small scale time series to the predictions.
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3.4.2 Previous CRC and days in [EW]

In this section we dive into the relation between the previous CRC and the number of
days in EW against the outcome variable. This analysis first delves into the entry dates

Figure 3.5: This figure shows histogram plots for the proportion of the outcome variable against
the entries per month at which the client transitioned to CRC [EW]

of clients (month based) in the CRC [EW] class and plots them against the respective
CRC_Outcome_Y observed in August 2023. The plot can be found in figure 3.5 It shows
both the total occurrences per CRC_Outcome_Y each month, as well as the class distri-
bution for that month (as a proportion of the total transition). Notably, the majority of
entries in CRC [EW] appear to be relatively recent. This observation aligns logically with
the primary objective of CRC [EW], as its serves as a watchlist status and is thus meant
as a temporary state for clients within the system. Furthermore, the proportion of non
CRC [EW] transition are more dominant in recent months. Indicating that the clients that
entered recently in CRC [EW] are also transitioning. We do notice a kink in observations
for March, however the class distribution remains is in proportion to neighboring months
February and April, so we still expect that the models might find a separability on lower
CRC_n_days.

Additionally, we plot the CRC_prev against the class CRC_outcome_Y in Aug-23 in
Figure 3.6. In the violin plot the thickness presents the count distribution of the combina-
tions of values for CRC_prev and class CRC_outcome_Y . In the violin plot we preferably
see an ascending or descending order of thickness. As we care about the class distribution,
we primarily look at the plot on column level. We see that clients in CRC[G] at Aug-23
are likely previously from CRC [G] and thus return back to their class. Whereas the re-
mainders of CRC [EW] also came mostly from CRC [G]. One could argue that a big part
of clients are overly cautious put on the watch list. For the transitions to CRC [FD], no
conclusion can be made as both the previous CRC for [FD] and [G] shows equal thickness.
CRC [D] also shows no clear indication for a relation between previous [CRC] thicknesses
are widely spread. Briefly looking at the plot on row level, the previous CRC also shows
no consistent relation, indicating no clear relation with CRC_prev and the CRC[D] class.
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Figure 3.6: This figure shows a violin plot of the previous CRC [EW] against the
CRC_Outcome_Y. All clients are currently in CRC [EW], so their CRC_Prev cannot be CRC
[EW], hence we see no density there. We see that most clients who previously came from CRC [G]
are most likely to be in CRC[G] again in August. Whereas, when we look at clients previously in
CRC [FD], are as likely to go back to CRC [FD] as to go to CRC [G] (the width is about equal).

3.4.3 Sector

In figure 3.7 the proportion of the total occurrences of the specific sector are plotted against
the CRC in Aug-23. This relation was specifically requested for investigation by Rabobank.
Also, for our prediction model it is an interesting predictor, as it as unordered categorical
predictor and therefore has no intuitive generalization. This is because categorical data
that is unordered consists of categories with no inherent numerical order or meaningful
distance between categories. For unordered categorical data, you cannot calculate corre-
lation coefficients because there is no natural way to assign ranks or determine a linear or
monotonic relationship between the categories. In the plot a dashed lined representing the
class proportion from table 3.8, the sector all show to be around this dashed line line with
only some individual outliers per class(from a batch of 23 options). This indicates that
their is likely no consistent separability of the class based on the sector. CRC [D] indicates
an outlier for "Other F&A" (2.929%), but this only account for 3 samples and likely does
not have significant influence on the predictors separability. Concluding, we expect that
the predictor "sector" will not provide significant importance on the separability of classes.

3.4.4 Trigger distribution

In this section we want to investigate the relation between the trigger types and the outcome
variable. To visualize this, we plot the trigger frequency in a heat map in figure 3.8. This
heatmap shows how sensitive a trigger is to the CRC Outcome variable i.e. the block in the
upper-right shows that from all clients in CRC[G] at Aug-23 97.48% have a active T130
trigger reported. The dark-red blocks are expected not to be of significant importance on
the separability of the class, hence do not contain predictive power. The most significant
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Figure 3.7: This figure shows the proportion of total occurrences per sector against the CRC
[class] in Aug-23. We see that there is no distinct sector overly present in one of the classes.

cells following from the plot are as follows.

Figure 3.8: This figure visualizes the trigger frequency distribution

• T131 is relatively high for both CRC [EW] and CRC [D] and might contain a signifi-
cant contribution to the separability of classes. Intuitively, as T131 detects decrease
in financial distress, one would expect them to be in CRC[G]

• T130 is frequently present for all CRC_outcome_Y. However CRC [EW] is drasti-
cally lower than the other CRC_outcome_Y classes. Hence, in case that the T-130
is not reported, a likeleniss that the customer remains in CRC[EW] at Aug-23 can
be interpreted.

• T100 is distinctively high for CRC [FD] and indicates early financial distress ( 1
DPD).

• T44 is a portfolio trigger and awaits qualitative assessment the outcome is either
positive (resulting in stay in CRC [EW] or negative and go to CRC[D] - just like the
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other client in portfolio. It is uncertain if separability by models is found as both
have quite an equal value.

• Note that significant influence on CRC [D] by triggers is hard to determine for the
minority class is undersampled (the most sensitive trigger after T-130) is only for
5/41= 12.20 % of the samples.

3.5 Key findings & Hypotheses

The data review helped us to gain knowledge and insight on the predictors, outcome
variable and their relation. It also helped to accumulate an answer on research questions
2b and 2c. The key findings following these research questions are as follows. The findings
are formulated as hypotheses on the predictors power to separate the CRC_Y_Outcome
class. This is useful as we can reflect if these predictors indeed contribute to the predictive
power of the model, which confirms a solid intuition behind the dataset.

• New_EW_12 shows 0 variance (all clients indicate 0) and is thus removed as a
predictor.

• RC and d_RC are perfectly linearly correlating with resp. RWA and d_RWA and do
not uniquely contribute on the separability of classes. RC and d_RC is thus removed
to reduce computation time.

• PD is expected to be of signifcant importance as it shows a relative high pearson
correlation to the outcome variable

• Since PD is positive correlated to the outcome variable. Its own relation EAD,
O_Exp, RWA are also expected to be of statistically significant and posses predictive
power. We chose to remain both the EAD and O_Exp in the model - instead of
removing one - as they are not perfectly correlated (although very high).

• CRC_n_days is expected to provide some predictive power as most transition occur
for the more recent entries.

• CRC_prev is likely to posses predictive power for determining the CRC [G] and
[EW] are likely from clients that came previously from CRC[G].

• Sector is expected not to provide any predictive power, as all sector are somewhat
evenly spread around the expected uniform distribution.

• T130 and T100 are expected to be the triggers - if any - to be most significant and
posses some predictive power.
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Chapter 4

Methodologies

In this chapter we provide technical insight on the methodologies used to develop and
interpret the prediction model. The methodologies addressed in this chapter follow from
the methods found in the literature chapter 2. Furthermore, we found in chapter 2 that the
outcome variable showed an imbalanced class distribution. We therefore start this chapter
by explaining the methods to cope with imbalanced datasets.

4.1 Imbalanced multi-class classification problem

In the vast field of Machine Learning, the general focus is to predict an outcome using the
available data. The prediction task is a called a "classification problem" when the outcome
represents different classes, hence discrete outcomes. A "regression problem" problem on
the other hand, would address the prediction of a continuous numeric measurement [37].
We focus on four classes and therefore our problem is called a "multi-class classification
problem".

Multi-class classification can invoke class imbalance, which is considered to be a crucial
problem in machine learning. In an imbalanced dataset with respect to classes, the num-
ber of one or more classes present are much greater - majority classes- than the other –
minority classes [28]. In our case, the minority classes are CRC [FD] and CRC [D], where
specifically CRC [D] contributes to only a small proportion of the total sample. Models
trained on imbalanced dataset as such tend to favor the majority class, leading to biased
predictions [10]. This leads to predictions performing well on the majority class but poorly
on the minority class, even though the minority class, in our case CRC [D] is considered as
equally important to predict. This imposes a lot of issues to interpret the "accurateness"
of the prediction model, as the accuracy becomes quite a misleading metric for multi-class
imbalanced datasets. In example, a model could already achieve a relatively high accu-
racy (> 60%) by naively predicting the majority class CRC [EW] for all cases, even if it
fails to identify any of the minority class instances correctly. This problem is specifically
addressed in multi-class classification, as certain classes become more unique the more
classes are possible [1]. Therefore, we should be aware that interpreting the accurateness
of a prediction model should not be mismatched against the accuracy metric, as they are
not the same. How accurateness is to be interpreted is presented from three perspectives
below.

• The first perspective considers predicting each class equally important, hence a bal-
anced accuracy has to be measured.
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• The second perspective considers the pure accurateness from the model by weighting
the classification against the proportion that it is present in the data. Here a weighted
accuracy constitutes. It aims not to punish false predictions on the minority class as
much.

• If the imbalanced class is not able to capture an accurate prediction model, we train
the models as a 3-class problem by rewriting the biggest minority class CRC [D] to
CRC [FD].

Each of these perspectives gives another meaning to the accurateness and provides
more interpretation possibilities on the effectiveness of the prediction model. Further elab-
oration on the evaluation metrics from each of these perspectives is given in chapter. What
is important for now is that the class distribution imbalance can lead to a model’s bias
towards the majority class during training, making it less sensitive to the minority classes
and potentially resulting in under fitting for those classes. To improve the representation
of classes, multiple under- and oversampling strategies are considered. The methods con-
sidered originate from the paper [2] by Agrawal and is cited throughout the rest of this
section. Under- and oversampling are methods to manipulate the dataset such that the
dataset becomes less imbalanced. Oversampling involves techniques that adds artificial
samples of the minority class instances. Its objective is to improve its representation in
the dataset, while also preserving the true information within the original rows. However,
the generation of synthetic samples could in their place introduce over fitting, especially if
the synthetic samples do not represent the true underlying distribution accurately. Under-
sampling on the other hand, makes that dataset less imbalanced by applying discarding
techniques to reduce the representation of the majority class. Here again, discarding the
majority class samples can lead to the loss of valuable information present in the dataset,
potentially affecting the model’s ability to learn the underlying patterns and lead to biased
predictions particularly if the retained samples do not sufficiently represent the actual dis-
tribution of the majority class. The benefit from this is that the minority classes increase
its proportion of occurrence and the overall computational time decreases. Concluding,
this means that under- and oversampling techniques can increase the performance of the
prediction model, but its use come at a cost and its impact should therefore always be com-
pared when choosing the best performing prediction model. The oversampling technique
considered in this research is called SMOTE (Synthetic Minority Over-sampling Tech-
nique). SMOTE generates synthetic samples by interpolating between existing minority
class samples, aiming to maintain the underlying characteristics of the minority class. The
undersampling technique used is called Expectation-Maximization (EM), which forms a
subset of majority classes based on the probability distribution formed by a mixture of
Gaussian’s of these samples. SCUT is a technique that combines both of these techniques
into one algorithm. The implementation of these method is discussed in chapter 5.3.

4.2 Machine Learning Algorithms

In this chapter, we delve into the details of each machine learning algorithm technique
utilized in our empirical study, explaining their principles, strengths and weaknesses. The
chosen techniques follow from the SLR conducted in chapter 2 and covers a diverse set
of machine learning approaches, including deep-learning methods as neural networks, en-
semble methods like Random Forest and XGBoost, but also statistical method like multi-
nomial logistic regression, support vector machines (SVMs), linear discriminant analysis,
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and Naïve Bayes. As you might have noticed we regard all of these techniques as ma-
chine learning algorithms throughout the thesis. Each method brings its unique set of
capabilities and advantages, making them suitable for different types of classification tasks
and applicable to compare the best performing metrics against each other. It is worth to
mention that none of the algorithms account for the order of classes. This is because the
exact nature of the ordinal relationship of CRC is uncertain. However at a later stage this
will be included by means of a cost matrix, punishing the false prediction based on the
mismatch of classes.

Furthermore, we explore the concept of feature selection and dimensionality reduction
using Recursive Feature Elimination with Random Forest (RFE-RFE). High-dimensional
datasets can pose challenges in terms of computational complexity and model performance.
RFE-RF offers a solution to address these issues by identifying relevant subsets of features.
While other techniques like Lasso or Ridge regression could also be considered, we opt for
RFE-RF to maintain consistency with the intuition behind the use of Random Forest in
our study.

4.2.1 Random Forest

Random Forest Algorithm

The Random Forest (RF) algorithm is a machine learning technique capable of handling
multi-class classification problems. The algorithm uses multiple decision trees (DT) to asses
its prediction. In most cases the power to accurately predict using RF is stronger than
using DT on its own [42], for this reason DT as a standalone algorithm is not considered
in this research. However, the underlying concept of DT is important to understand how
the RF algorithm operates.

Figure 4.1: This figure shows how RF uses decision trees to asses the definite prediction that
follows from the average of all predictions (the most voted class)

In figure 4.2 you can see how the decision trees act like a flowchart following decisions
made at each node. The set of splits form a tree that always ends with one of the four
classifications as an output. Each tree learns from a subset of the data and makes its own
set of rules to form a decision. This is how the standard DT operates. Now RF does not
create one big decision tre (i.e. Tree 1 of figure 4.2), but creates many trees. Each tree
is trained on random different subsets of predictors. As such, Random Forest is basically
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an Ensemble of DTs in a parallel matter [27]. It thereby aims to predict the class label
or category to which the data belongs. The order or ranking of classes is generally not
considered necessary, as Random Forest focuses on correctly assigning data points to their
respective classes based on the provided features neglecting any order. The prediction that
follows is based on output of the multitude class of trees that are created, where each tree
will “vote” for a particular class. The class with the most votes is chosen as the prediction
outcome. The prediction outcome is compared to the actual test data, hence a confusion
matrix constitutes that can be evaluated on different metrics.

To have a good ensemble, base classifiers are to be diverse (i.e. they predict differently)
and accurate whereby adding endless amounts of tree does not improve accuracy (hence,
there is an optimum) [26]. Therefore one should choose hyper-parameters to optimize the
trained model. This optimization can be achieved using 5-cross fold validation tuning the
parameters on the one fold as the validation set while using the other 4 to train them -
more on this method is discussed in section 5.5. The eventual hyper tuned parameters for
RF - being the optimal number of trees and the maximum depth of each tree - are selected
as input parameters the final model. Random forest is widely used as a ML algorithm
for classification with its strong ability to automatically reduce over-fitting, handle large
data sets and is capability of reflecting on its significant predictors [26]. Therefore we also
utilize RF as a feature selection technique to reduce dimensionality.

Recursive Feature Elimination using Random Forest

High dimensionality poses a challenge for training machine learning models, as they can
become prone to overfitting. This is because more dimensions (predictors) increases the
complexity of models, making them more likely to capture noise and spurious correlations
in the training data. While the same pattern is not assessed in the test data. Feature
(predictor) selection techniques have proven to be useful in processing high-dimensional
data and in enhancing learning efficiency of the trained models i.e computation time. It
is referred to as the process of obtaining a relevant subset from an original feature set
according to certain feature selection criterion. It plays a role in compressing the data
processing scale, where the redundant and irrelevant features are removed [11].

Our research uses the Recursive feature elimination - Random Forest (RFE-RF tech-
nique, which is a supervised machine learning methods (based on RF) capable to work
with high dimensional data and multi-class classification. As the name suggests, it does
so recursively, starting with all features in the set and iterates over all possible subset
of features. The Gini Importance is calculated for each iteration and computes the total
decrease in node impurity, which indicates the features marginal contribution to minimiz-
ing the impurity (uncertainty) impact on the model’s decision-making process. Features
causing higher impurity decreases are considered more important. Once a certain subset
outperforms another, it overwrites the selected features as the most important features
and form to be the eventual vector of predictors inputted in the model [16].

4.2.2 eXtreme Gradient Boosting

Extreme Gradient Boosting (XGB) is another commonly used machine learning algorithm
([14] [15] [18] [22]). XGB works quite similarly as random forest. Like Random Forest,
it is an ensemble method of decision trees, but instead of using multiple decision trees in
parallel (as in Random Forest), XGBoost builds trees sequentially in a gradient-boosting
framework. This means that the algorithms builds trees one at a time, but corrects each
tree on the errors made. It uses a gradient descent optimization technique to correct its
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errors, which is an iterative procedure that aims to minimize a loss function by adjusting
the model’s parameters in the direction that reduces the error ([15]). Throughout the
iterations, XGB monitors the performance on a separate 5-cross fold validation dataset to
determine that best hyper parameters.

4.2.3 Radial - Support Vector Machine

Support Vector Machine (SVM) is another powerful machine learning algorithm used for
multi-class classification [8] [5] [14] [17], relying on statistical principles. It aims to find the
optimal hyperplane that maximizes the margin between different classes while minimizing
classification errors. This wider margin signifies greater classification confidence. SVM
efficiently handles high-dimensional datasets using kernel functions, such as the radial
basis function (RBF), to map data into higher-dimensional spaces. The kernel trick avoids
explicit data mapping, enhancing computational efficiency, particularly beneficial for large
datasets. Hyperparameters, including the choice of kernel and regularization strength
(C), are fine-tuned through techniques like 5-fold cross-validation to optimize the model’s
performance for robust multi-class classification. The algorithm identifies support vectors,
data points closest to the hyperplane, to determine its position and orientation, ensuring
balanced class separation.[17].

4.2.4 Neural Networks

Figure 4.2: This figure shows how Feed-forward NN uses nodes from input, hidden and output
layers to constitute a prediction (in our case there are 4 output nodes in the layer)

Neural networks (NN) is a machine learning algorithm inspired by the structure and
functioning of the human brain. Many different types of NN exist. In this research we
deploy Feed-forward Neural Network. It is commonly used for classification problems
[8] [37] [14] [34]. Figure 4.2 shows how NN is composed of interconnected nodes (called
neurons) that are organized into layers, the layers function as the foundation to make
the predictions. First the data is put into the input layer, than one or more hidden
layers make decisions, and an output layer outputs the class. Each layer in a neural
network performs specific computations on the data it receives. The interconnected nodes
(neurons) within a layer – the hidden layers - are responsible for processing information
and passing it to the next layer. The layers collectively work as the foundation for the
network to process input data and make predictions as an output. During training, the
network adjusts the weights assigned to connections between the neurons in each layer
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to minimize the difference between predicted and actual outputs. This process, known
as back-propagation, uses optimization techniques to fine-tune the weights, improving the
network’s ability to make as accurate predictions as possible [34].

4.2.5 Multinomial logistic regression

Multinomial logistic regression (MLR is an extension on logistic regression specifically
designed for multi-class classification problems. It uses a softmax function (also known as
the normalized exponential function) to model the probabilities of each class. It utilizes
the linear combination of predictors into probabilities that sum up to one across all classes.
The model estimates coefficients for each predictor variable per class. These coefficients
are trained using the maximum likelihood estimation. The method assumes that the
relationships between the predictors and the log-odds of each class are linear. Log odds
refer to the logarithmic likelihood of an event happening compared to the likelihood of
it not happening. It also assumes that the predicted errors are independent and follow a
multinomial distribution. Since the exact nature of the ordinal relationship is uncertain,
we opt not to run the algorithm as an ordinal logistic regression.

4.2.6 Linear Discriminant Analyses

Figure 4.3: This figure is to improve intuition behind LDA. Suppose you plot data points in
two dimensions (a flat surface) that represent different classes. When these points are projected
onto a line (a lower-dimensional space), the line should be chosen in such a way that the projected
points from different classes are as far apart from each other as possible along that line in order
to maximize separately.

The linear discriminant analysis (LDA) is a fundamental data mining method originally
proposed by R. Fisher dating back to 1936 [19]. The concept behind Linear Discriminant
Analysis (LDA) is to find a lower-dimensional subspace in which the data points from
the original high-dimensional dataset become more separable or distinguishable. In other
words, LDA aims to transform the data into a new space where the different classes or
categories are well-separated, making it easier to classify or discriminate between them.
Figure 4.3 tries to visualize this concept by plotting two dimensions into one. LDA is
a statistical method where the separability is defined in terms of statistical measures of
mean value and variance. The original algorithm was proposed for binary class problems
but multi-class generalizations have been developed in more recent years [44]. The LDA
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assumes linear separability in the dataset, so it might not perform well as not all predictors
are linearly separable.

4.2.7 Naïve Bayes

Naive Bayes is a probabilistic classifier based on Bayes’ theorem. It is called "naive" be-
cause it assumes that the presence of a particular feature in a class is independent of the
presence of other features. It use conditional probabilities to determine the prediction.
This means that when Naive Bayes calculates conditional probabilities, it’s assessing the
likelihood of a specific class being the correct prediction given the observed values of indi-
vidual features, assuming that these features are independent within each class. The Naive
Bayes model that we use assumes features to follow a Gaussian distribution. Limitations
with this method is expected as the assumption of feature independence might not hold
true to our dataset. Because this technique is quite naïve, we regard the naïve classification
method as our minimum metric to improve in order to see if other algorithms are truly
viable [33].

4.3 Evaluation Metrics for multi-class classification problems

In this section we delve into the evaluation metrics used to asses the performance of our
prediction model. Each prediction model is trained based on a specified machine learning
algorithm. Once trained, a prediction is deployed based on a new set of unseen data, called
test data. This unseen data contains the same type of predictors as have been put into
the training model. The most likely class predicted – based on the prediction algorithm
used - will be checked for its actual outcome of the specific client. Further elaboration on
the train-test-validation split is discussed in chapter 5.2. For now, we only focus on the
intuition and metrics used to asses the performance of the prediction model.

One should consider the predictions as a vector ŷ and the actual classifications a vector
y. In this way both vectors can be compared. Within both vectors, each row denotes
one of the class possibles discrete classifications. Given a total range of 4 classifications,
n equals 4. Hence, the possible unique combination of values for both of these vectors
are given to be n2 = 42 = 16. The occurrences of these combinations are presented in a
so-called confusion matrix. Interpreting a binary confusion matrix is more straightforward
compared to multi-class confusion matrices. In this section we dive into the evaluation
metrics of the multi-class confusion metrics as denoted by Grandini [21].

Figure 4.4: This figure shows a fictionalized example of a 4x4 confusion matrix. The matrices
are viewed from the b-class perspective. In practice the evaluation metric loops the TP over
the diagonal n-class= 4 times, thus n=4. Consequently the FP, TN, FN change following the
TP position on the diagonal. The single metrics that form is an (weighted) average of all these
perspectives combined.
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In figure 4.4 an example of the 4x4 confusion matrix is shown. The sum of the total
number of times that a combination is observed is denoted in each corresponding cell
of the matrix. Here each possible observation is denoted either a true positive (TP),
false positive (FP), true negative (TN) or false negative (FN) observation. Considering
4-class classification, one needs to measure the metrics for each class perspective, after all
the TP can be either one of the cells on the diagonal. To do so, the metric iteratively
runs the TP class perspective along the diagonal. Consequently, a single metric can be
constructed by taking the average of all perspectives combined [21]. Repeating this for
all n iteration the ith iteration also switches position of the TP, TN, FN. Here the True
Positive (TP) indicate the correctly classified units for a class, False Positive (FP) and
False Negative (FN) indicate the wrongly classified elements on the predictions and actual
classes respectively. True Negative (TN) are all the other tiles, and will later show not to
be very important to calculate any of the metrics. This research considers a multitude of
metrics to evaluate the performance of each model inspired from the paper on multi-class
classification metrics by Grandini [21]: Accuracy, Avg. Balanced Recall (Accuracy), Avg.
Weighted Recall (Accuracy), Avg. Balanced Precision, Avg. Weighted Precision, Avg.
Balanced F-1 Score, Avg. Weighted F-1 Score and the G-Mean.

Accuracy =

n∑
i=1

TP (i)

TP (i) + TN(i) + FP (i) + FN(i)
(4.1)

Accuracy: Accuracy is considered to be the most used classification evaluation metric,
the accuracy returns an overall measure on the models power to correctly predict the
classification of a single individual client. It is an average measure which is - as previously
discussed - a rather unsuitable metric for imbalanced datasets. This is because it does not
consider the class distribution. In our dataset CRC[D] only makes up for 0.711% of the
dataset, if we would predict all other classes correctly and all CRC[D] falsely, we would
still achieve an accuracy of 99.289%. Which is considered a model that can predict very
accurately, but misses out on the objective to accurately classify each class.

To gain more intuition behind the metric we calculate it using the fictionalized example
in figure 4.4:

Accuracy =
50

1550
+

480

1550
+

765

1550
+

101

1550
= 0.90 = 90%Accuracy (4.2)

To check if the accuracy is not misleading due to the imbalanced classes, we review
the rest of the metrics from both a balanced and a weighted perspective. By providing
the metrics both as a balanced metric as well as a weighted metric, we can interpret the
accurateness of the model from the perspectives in chapter 4.1. Which first considers
accurateness as predicting each class equally important (hence balanced) and then from
the weighted proportional perspective. Here the weights can be any desired vector, but we
regard the weights as the proportion that the class is present in the dataset as denoted in
table 3.8. Because of this the weighted metrics allow us to indicate the pure accurateness
of the model across all classes. We first start with the recall/accuracy metrics of the 4x4
confusion matrix.

Avg. Balanced Recall =
1

n

n∑
i=1

TP (i)

TP(i) + FNs(i)
=

1

n

n=4∑
i=1

Recall(i) (4.3)
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The Avg. Balanced Recall calculates the proportion of the correct predictions
over the total amount of actual samples for that class, it recalls the models sensitivity to
correctly identify positive instances among all actual positive instances. Recall is therefore
sometimes also referred to as the sensitivity. It can be regarded as the row performance
metric over the diagonal. After each iteration is calculated it balances the measurements
over the diagonal by taking the arithmetic mean of each iteration, hence the Balanced
Recall constitutes. This is in fact the same as calculating the balanced accuracy, where each
iteration of the accuracy would be weighted by a factor 1/n = 0.25. It is thus "balanced"
because every class has the same weight and the same importance. A consequence is
that smaller classes eventually have a more than proportional influence on the formula.
Intuitively this make sense if the data set is quite balanced, i.e. the classes are almost the
same size, Accuracy and Balanced Recall/Accuracy tend to converge to the same value
[21]..

Given the fictionalized example in figure 4.4, the avg. Balanced Recall is calculated
as follows.

The Avg. Balanced Recall =
1

4

(
37

50 + 27 + 24 + 39
+

480

10 + 480 + 5 + 3

+
765

14 + 10 + 765 + 1
+

101

0 + 2 + 9 + 101

)
= 0.7746

= 77.46% Avg. Balanced Recall

(4.4)

From this point we assume that the examples demonstrate the calculation of the metrics
sufficiently and we only continue with the plain formula for the other metrics.

Avg. Weighted Recall =
n∑

i=1

TP (i)

TP(i) + FNs(i)
× w(i), where

n∑
i

w(i) = 1 (4.5)

The Avg. Weighted Recall takes advantage of the Balanced Recall formula by
multiplying each recall by the weight of its class([i]), which we consider to be a vector
with the proportion that each class is present in the entire dataset. As argued, one can
consider any weights by changing value in the vector w([i]). Avg. Weighted Recall is useful
as it allows to separate algorithm performances based on different class weights, because
of this we may influence classes that are of less importance to classify. Note that the avg.
balanced recall/accuracy is the same as the avg. weighted recall/accuracy if w_([i])=0.25.
Moreover, if - as in our case - we assign the weight vectors equal to the class proportion
distribution, Hence, for our case, w(i) = [0.2668, 0.60069, 0.1254, 0.711]. By doing so the
avg. weighted recall/accuracy becomes just the same as the accuracy, proof on this can be
found in appendix.5.

Avg. Balanced Precision =
1

n

n∑
i=1

TP (i)

TP(i) + FPs(i)
=

1

n

n∑
i=1

Precision(i) (4.6)

Avg. Weighted Precision =

n∑
i=1

TP (i)

TP(i) + FPs(i)
× w(i), where

n∑
i

w(i) = 1 (4.7)

The Avg. Balanced Precision and Avg. Weighted Precision follows the same
principle. However, it indicates how "precise" the true positive prediction are over the
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total number of attempts to predict a certain class. In the test set the total number
of actual classifications per class is always the same, but the total number of attempted
predictions is not. The precision is therefore especially interesting as the metric also
shows how convinced the algorithm is that a classification pattern is discovered and newly
observed for a certain class. It can be regarded as the column performance metric over the
diagonal. Both are put into one metric by calculating the metric balanced as well weighted
to its proportion [21].

Avg. Balanced F1-score =
1

n

n∑
i=1

2×
Precision(i) × Recall(i)
Precision(i) + Recall(i)

(4.8)

Avg. Weighted F1-score =
n∑

i=1

2×
Precision(i) × Recall(i)
Precision(i) + Recall(i)

×w(i), where
n∑

i=1

w(i) = 1 (4.9)

The F-1 score is commonly used metric in both binary and multi-class classification
to measure a model’s accuracy. It is calculated using the harmonic mean of precision and
recall and provides a balance between these two measures. The F-1 provides a harmonic
mean of precision and recall, giving a balanced view that includes the algorithms power to
make predictions as well as not miss out on actual classes. Both the precision and recall
are calculated for each iteration across TP over the diagonal and the single metric is both
constituted as the Avg. Balanced F-1 score and the Avg. Weighted f-1 score [21].

G-Mean = n

√√√√ n∏
i=1

recall(i) (4.10)

Finally, the geometric mean (G-mean) is the higher root product of each class-wise
recall. The g-mean alongside the other metrics can provide a more nuanced evaluation of
a machine learning model’s performance. It considers the geometric mean across multiple
recall values, which can provide a fairer evaluation in scenarios where classes are dispropor-
tionate in size such as our dataset. Note that its formula is the balanced accuracy formula
but than using the geometric mean, this makes the metric vulnerable to zero values in case
there are 0 TPs for a class. It is a use full metric as it immediately shows when a certain
class has missed out on predicting a certain class [21].

A common metric (given a 2x2 confusion matrix) that is left out is Specificity. Speci-
ficity focuses on the model’s ability to correctly identify true negatives and does not con-
sider the classes on its own. This makes the metric unable to provide a comprehensive
assessment of the model’s overall accurateness across classes.

In this chapter we delved into the methodologies that we use in the next chapter:
Empirical Implementation. Furthermore the chapter helped us to answer research question
3b, 3c and 3d.
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Chapter 5

Empirical Implementation

In this chapter we reflect on the model development. In Figure 5.1 the concept of the
prediction model is visualized. As stated in the problem statement, it functions as an
extension on the current EWS application of SAMAS.

Figure 5.1: This figure shows a fictionalised example of how the model operates. The data is
reported at May-23 on client level. The predictors contain data from the so-called "time window"
interval, internal data is taken at May-23, Feature engineered predictors are take from Apr-23 and
May-23 and triggers are active one year to date (May-23). The "target window" describes the
time interval that we measure and predict the CRC transition, being Jun-23 to Aug-23.

The figure shows an example of how the model works on client level. In this example,
the client received a total of 5 triggers during the time window of 12 months. The time
interval is 12 months as clients cannot be in CRC[EW] longer than 12 months. The triggers
that are reported however, did not lead to any further CRC transition, hence the client is in
CRC[EW]. During the target window - the time that (potential) transitions are measured
- at July 2023, it is known that a CRC transitions to CRC[FD] takes place. The clients
data known at May 2023 – the snapshot - will therefore be trained for a CRC transition to
CRC [FD]. In real time CRC transitions occur as a consequence of CRC Changing triggers,
while our prediction model also takes into account internal data and feature engineered
predictors known at the time of the snapshot. Because of this, more data can be utilized to
discover patterns (based on the ML algorithms to classify the clients. Of course in reality,
a mixture of likewise examples occur. The total number of these clients constitute the
rows in our merged data-set. The next figure 5.2 depicts a general overview of the steps
conducted during the model development.
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Figure 5.2: This figure depicts a step-wise overview of the task conducted during the model development. Elaboration on the steps conducted will be discussed
throughout the chapter.
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5.1 Pre-processing

Data pre-processing involves several tasks aimed at cleaning, transforming, and organizing
raw data into a format that is more suitable and understandable for analysis or machine
learning purposes. In this section we delve into the pre-processing steps from figure 5.2.
Some of the pre-processing steps have already been put forward in chapter 2, these include
steps merging filtering, feature engineering and data analysis (which lead to removal of
redundant predictors). After the data analysis on the merged dataset took place, the
predictors are scaled using Min-Max Scaling [12], this benefits the computation time of the
machine learning algorithms. While it also ensures that all predictors have values within the
same range, which can help prevent certain features from dominating the learning process
simply because of their larger scale. The three pipelines are extracted from Rabobank
server. The data is filtered, converted and merged according to the steps in appendix .3.
A total of n clients constitute the merged dataset and are now ready to be split for training
and testing.

5.2 Train-Test Split

Each dataset is split into a train-test ratio of 0.75, which is considered a fair rate for an
(imbalanced) dataset of our size [31]. It results that 75% of the clients is used for training
the models, the training set will also be split up into 5 folds - where each time one fold
functions as a validation set - and will be discussed in section 5.5. The test-set makes up
for the leftover of 25% and is used as unseen data to test the final performance of each
prediction by means of the confusion matrix. The test-set is always kept as a subset of
unseen data and is not used for training or tuning the model and its parameters.

5.3 Under- and oversampling Techniques

In chapter 2 we mentioned that we have an imbalanced dataset at hand, To tackle this issue,
we propose a branch of the trainset to 4 different under- and oversampling strategies as
discussed in section 4.1. Each of the following 4 techniques will be compared to eventually
choose the best performing model:

1. The "main dataset" leaves that dataset intact as it was after merging and splitting
in the train dataset.

2. The "smote dataset" volves adding minority classes to the dataset based on the over-
sample SMOTE (Synthetic Minority Over-sampling Technique) technique. SMOTE
generates synthetic samples by interpolating between existing minority class samples,
aiming to maintain the underlying characteristics of the minority class.

3. The "SCUT dataset" combines both SMOTE and undersampling methods called
SCUT (SMOTE and Clustered Undersampling Technique). SCUT applies under
sampling techniques to the class that (in case of 4 classes) present more than 25% of
the sample and likewise under sampling for classes less than 25% of the sample. In the
unlikely case that the classes rpresent exactly present 25% of the sample, they remain
intact. Undersampling is based on the Expectation-Maximization (EM) technique,
which forms a subset of majority classes based on the probability distribution formed
by a mixture of Gaussians of these samples. The oversampling technique on the
minority class follow the SMOTE technique.
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4. The "3-class dataset" rewrites all CRC [D] to CRC[FD], this reduces the number of
classes to 3 and consequently significantly reduces the class imbalance.

Because of this the class proportion of the train dataset on changes as denoted in table 5.1.
We see that we have significantly increased the CRC [D] sample for the 2nd and 3rd method,
We also rewritten all CRC[D] to CRC[FD] in the 4th method, to see how the algorithms
would operate without the CRC [D] class at all. By comparing each implementation, we
can to determine if the prediction model improves in case that the imbalance is mitigated.

# Aug-23
CRC [G] CRC [EW] CRC [FD] CRC [D]

1. Main dataframe (no changes) 26.68% 60.07% 12.54% 0.71%
2. Smote 25.58% 57.58% 12.02% 4.82%
3. SCUT 25% 25% 25% 25%

4. CRC[D] to CRC[FD] 26.68% 60.07% 13.25% 0.0%

Table 5.1: The class distribution after a branch in under and oversampling tech-
niques on the original training set. The three methods are implemented to tackle
the issue of imbalance of the severe minority class: CRC [D].

5.4 Recursive Feature Elimination - Random Forest

In section 4.2.1 we discussed that we utilize Random Forest as a Recursive Feature Elim-
ination Technique to select the optimal predictors for each branched training set. During
the process the model evaluates per subset of predictors the accuracy using cross fold val-
idation. Based on this metric the RFE-RF selects the subset of features that maximizes
the performance metric. The RFE-RF gives us the following set of predictors per branched
dataset as depicted in table 5.2.

Table 5.2: Selected and removed predictors for each branched training set follow-
ing the RFE-RF.

Main df Smote df Scut df CRC [D] to CRC [FD] df
Selected n = 37 Selected n = 31 Selected n = 30 Selected n = 22

PD PD PD PD
RRR RRR CRC_n_days RRR

T130_once T130 CRC_prev T130
T130 T130_once Sector T130_once

O_Exp RWA d_EAD O_Exp
T044 EAD d_LGD RWA

T044_once CRC_n_days d_O_Exp T044
RWA O_Exp RRR EAD
EAD CRC_prev T130_once T044_once

CRC_n_days T100 T130 CRC_n_days
T025_once T100_once RWA CRC_prev

T025 T030_once d_RWA T025
CRC_prev T044 LGD T025_once

Continued on next page
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Table 5.2 – Continued from previous page
Main df Smote df Scut df CRC [D] to CRC [FD] df

T043_once T044_once EAD T043_once
T043 T030 d_PD T043

d_RWA T131_once O_Exp T100
T100 Sector T100 T100_once

T030_once T131 T100_once d_RWA
T100_once d_RWA T030_once T030

T030 T025 T030 T030_once
T070 d_EAD T131_once T070
LGD LGD T044_once CRC_Outcome_Y
d_PD d_PD T131 Removed n = 19

d_EAD d_O_Exp T044 New_EW_6
T029 T025_once New_EW New_EW

New_EW_3 d_LGD T025 New_EW_3
T029_once T029 T025_once Sector

d_LGD T029_once New_EW_3 LGD
d_O_Exp T043 New_EW_6 d_PD

T131 New_EW_3 CRC_Outcome_Y d_EAD
T117 CRC_Outcome_Y Removed n = 11 d_O_Exp

T131_once Removed n = 10 T009 d_LGD
Sector New_EW_6 T029 T009

New_EW New_EW T043 T029
T117_once T009 T070 T104
T009_once T070 T104 T117

CRC_Outcome_Y T104 T117 T119
Removed n = 4 T117 T119 T131

New_EW_6 T119 T009_once T009_once
T009 T009_once T029_once T029_once
T104 T043_once T043_once T117_once
T119 T117_once T117_once T131_once

As can be seen, the over- and under sampling techniques are able to significantly to
reduce the number of predictors required to asses separability of classes. Here the triggers
and "new_EW_" predictors are eliminated in most cases.

5.5 Cross-fold validation and Hyper-parameter tuning

Now that we have determined and selected the final set predictors for each of the branched,
the training set is prepared for 5-fold cross-validation. This method divides the training
set into 5 equally sized subsets (folds), each being 1/5*75% (training set)= 12.5% of the
merged dataset. These folds are used to iteratively evaluate the model during training.
The amount of iterations are equal to the amount of folds. This is because one fold serves
as the validation set while the remaining four folds act as the training set. This allows the
model to learn from the training data while validating its performance against the fold kept
aside for validation. Additionally, within each iteration, the model fine-tunes its hyper-
parameters by exploring the entire grid of potential options to identify the optimal settings.
The 5 fold cross validation offers a more robust estimation of the model’s performance by
averaging the results from the 5 rounds of training and by using the validation fold for
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hyper-parameter tuning [38].

5.6 Trained Models and Hyper-parameters

A multitude of models are trained according to the methodologies of the machine learning
algorithms discussed in section 4.2. During training the cross-fold validation set allows
to find the optimal hyper-parameters over 5-folds from the training set. These optimal
parameters are put into the algorithms final model of which this optimization is either
performed using ransom search. A grid search would provide more precise parameters, but
increase computational time significantly [7]. The eventual optimal hyper parameters vary
depending on the under and oversampling technique. We include 7 algorithms being:

• Random Forest: Tuned hyperparameters include ntree (number of trees) and mtry
(maximum features per split).

• XGBoost: Tuned hyperparameters include nrounds (number of boosting rounds),
max_depth (maximum tree depth), and eta (learning rate).

• SVM Radial: Tuned hyperparameters include cost (regularization parameter) and
the radial kernel parameter sigma.

• (Feedforward) Neural Networks: Tuned hyperparameters include the number of
hidden layers, neurons per layer, learning_rate, and dropout.

• Linear Discriminant Analysis: No hyperparameter tuning was used.

• Multinomial Logistic Regression: No hyperparmeter tuning was used.

• Naïve Bayes: No hyperparmeter tuning was used. The Naïve Bayes is considered
to be the dummy model and is used to compare if the other algorithms indicate
improvements.

5.7 Model Evaluation

Each branched training set is trained on each of the 7 algorithms. After cross-fold vali-
dation and hyper parameter tuning, the predictions are compared against the unseen test
data. Figure 5.2 indicates that the test set is split accordingly. The vector containing
the predicted classifications are compared against the vector of actual classification and
are constituted in the confusion matrix as discussed in section 4.3. This confusion matrix
allows us the evaluate the model by means of calculating the metrics as listed below.

• Accuracy: Measures the proportion of correctly predicted instances.

• Avg. Balanced Recall (Accuracy): Calculates balanced recall for each class and
takes the average. It accounts for class imbalances.

• Avg. Weighted Recall (Accuracy): Similar to Avg. Balanced Recall but uses
weighted averages based on class sizes.

• Avg. Balanced Precision: Calculates balanced precision for each class and takes
the average. It measures the precision of predictions.

• Avg. Weighted Precision: Similar to Avg. Balanced Precision but uses weighted
averages based on class sizes.
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• Avg. Balanced F-1 Score: Calculates balanced F-1 score for each class and takes
the average. It balances precision and recall.

• Avg. Weighted F-1 Score: Similar to Avg. Balanced F-1 Score but uses weighted
averages based on class sizes.

• G-Mean: The geometric mean of sensitivity and specificity. It balances the trade-off
between sensitivity and specificity, useful for imbalanced datasets.

The accurateness of the model is perceived from the two perspectives denoted in chap-
ter 4.1 and is assessed primarily through the F-1 score.

1. Avg. Balanced F-1 Score: Accurately predicting each class is considered equally
important, any imbalance in the classes is balanced out. Conducted first as 4-class
then as a 3-class.

2. Avg. Weighted F-1 Score: Accurately predicting each class is considered weighted
to the proportion that the class is present in the data set, any imbalance is balanced
to its proportionalized weights. Conducted first as 4-class then as a 3-class.

The other metrics will be used to dive deeper into the models performance and can be
utilized to capture distinct aspects of a model’s performance. In short, and more deeply
elaborated in section 4.3, accuracy focuses on overall correctness, Precision measures the
preciseness of positive classes, recall measures the sensitivity for false negative classes,
while F-1 shed light on both the model’s performance concerning positive and false nega-
tive classes. Using multiple metrics provides a more comprehensive understanding of the
model its behavior.

This chapter reflected on the steps conducted during the empirical implementation. It
argued why certain decisions where made and how they were implemented. Additionally
they helped to answer research questions 3b, 3c, 3d and 4a. In the next chapter we discuss
the interpretation of the empirical results.
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Chapter 6

Emperical Results

6.1 Result interpretation & Model Comparison

In this chapter we present the results, they are put in an overview in table 6.1 and denote
each ML algorithm per under- and oversampling technique each denoted as a ’branched
dataset". We use this section to compare and select the best model based on the accurate-
ness perspectives defined.

DF_Main RF XGB SVM NN MLR LDA NB
Accuracy 0.7863 0.7815 0.7642 0.6003 0.7911 0.7545 0.6217
Avg. Balanced Recall 0.5119 0.5194 0.5776 0.2588 0.5064 0.4765 0.3275
Avg. Weighted Recall 0.7863 0.7815 0.7606 0.6003 0.7911 0.7545 0.6217
Avg. Balanced Precision 0.5886 0.5802 0.4665 0.3539 0.6002 0.5710 0.3135
Avg. Weighted Precision 0.7850 0.7807 0.7642 0.5213 0.7883 0.7561 0.4538
Avg. Balanced F-1 0.5259 0.5319 0.4868 0.2100 0.5315 0.5058 0.3013
Avg. Weighted F-1 0.7725 0.7713 0.7416 0.4644 0.7767 0.7415 0.5110
Avg. G-Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DF_Smote RF XGB SVM NN MLR LDA NB
Accuracy 0.7828 0.7863 0.7234 0.7593 0.7835 0.7483 0.5546
Avg. Balanced Recall 0.5134 0.5178 0.4892 0.4608 0.5036 0.4681 0.4896
Avg. Weighted Recall 0.7828 0.7863 0.7157 0.7593 0.7835 0.7483 0.5546
Avg. Balanced Precision 0.5894 0.5828 0.4710 0.5559 0.5921 0.5683 0.4567
Avg. Weighted Precision 0.7838 0.7831 0.7234 0.7489 0.7832 0.7515 0.7572
Avg. Balanced F-1 0.5295 0.5337 0.4789 0.4786 0.5287 0.4985 0.4147
Avg. Weighted F-1 0.7716 0.7757 0.7182 0.7361 0.7720 0.7338 0.5838
Avg. G-Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DF_SCUT RF XGB SVM NN MLR LDA NB
Accuracy 0.7268 0.7420 0.6902 0.5145 0.5802 0.5539 0.4039
Avg. Balanced Recall 0.5396 0.5495 0.4496 0.5402 0.5485 0.5049 0.4198
Avg. Weighted Recall 0.7268 0.7420 0.6958 0.5145 0.5802 0.5539 0.4039
Avg. Balanced Precision 0.5041 0.5088 0.4621 0.4423 0.4788 0.4622 0.4768
Avg. Weighted Precision 0.7607 0.7677 0.6902 0.6700 0.7319 0.7054 0.7307
Avg. Balanced F-1 0.5143 0.5225 0.4530 0.4237 0.4611 0.4427 0.3092
Avg. Weighted F-1 0.7331 0.7462 0.6895 0.5512 0.6208 0.5964 0.3865
Avg. G-Mean 0.0000 0.0000 0.0000 0.5228 0.5143 0.4526 0.3386
DF_3class RF XGB SVM NN MLR LDA NB
Accuracy 0.7939 0.7911 0.7856 0.7773 0.7891 0.7586 0.4613
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Table 6.1 continued from previous page
DF3_class RF XGB SVM NN MLR LDA NB
Avg. Balanced Recall 0.6932 0.6960 0.6606 0.6681 0.6694 0.6339 0.5149
Avg. Weighted Recall 0.7939 0.7911 0.7856 0.7773 0.7891 0.7586 0.4613
Avg. Balanced Precision 0.7941 0.7963 0.7885 0.7531 0.7857 0.7534 0.6377
Avg. Weighted Precision 0.7977 0.7984 0.7864 0.7720 0.7882 0.7582 0.7518
Avg. Balanced F-1 0.7162 0.7161 0.6926 0.6950 0.7008 0.6705 0.4410
Avg. Weighted F-1 0.7842 0.7820 0.7712 0.7671 0.7761 0.7447 0.4390
Avg. G-Mean 0.6534 0.6558 0.6098 0.6322 0.6237 0.5968 0.4273

Table 6.1: Overview of the evaluation metrics for each of the branched datasets.
Note that the zero value at the G-mean indicates that one of the classes has zero
true positives.

As the overview can be quite overwhelming, we consistently zoom in on the specific
results of the table necessary. But first some general notes on the result interpretation.
A G-mean of zero is explained because one class has 0 True Positive predictions, after
investigating this always occurs for the CRC [D] class. The highest value for each of
the metric per under and oversampling branch has been emphasized in bold, the under
performing algorithms (<0 bold s cells excluding g-mean metrics) are not considered for
further inspection to determine the best model. These algorithms include NN and LDA -
NB remains included for comparison purposes.

Furthermore, when we look at the metrics of df_main on its own, we see that df_main
shows a variety of best performing models per metric. The Avg. Balanced F-1 score is the
highest for XGB but, MLR scores better on almost any other metric. After the techniques
of SMOTE and SCUT are applied, the XGB-Smote tend to out perform MLR-main again
on the balanced F-1 score. However, the rest of the metrics do not necessarily increase.
More importantly, even after applying the over- and undersample techniques, the CRC[D]
class remains not to have any True Positives and does not indicate consistent improvements
on metrics at all. This is even the case after the SCUT method allowed the model to train
on 1448 CRC[D] samples. We can therefore argue that the under- and oversampling tech-
niques on the dataset have no significant impact on the separability of classes. Its main
purpose was to get a grip on the ability to predict the CRC[D] class and even though
the balanced metric seems to improve marginally in XGB Smote, this remains unachieved.
Further explanation on the problematic class will be discussed in more detail in the next
question. For now we conclude that the over and undersample techniques did not manage
to get a hold on the CRC [D] class, and its overall implementation did not benefit the
performance metrics consistently disregarding expectations.

1. Which model performs best when we consider that accurately predicting each class
equally important?

To answer this question we have to look at the balanced metrics, we argued that the
Avg. F-1 score is our most indicative metric to answer the question. Therefore ,we zoom
in on the Avg. F-1 score per branch in table 6.2

Avg. Balanced F-1 RF XGB SVM NN MLR LDA NB
Main 0.5259 0.5319 0.4868 0.2100 0.5315 0.5058 0.3013
Smote 0.5295 0.5337 0.4789 0.4786 0.5287 0.4985 0.4147
SCUT 0.5143 0.5225 0.4530 0.4237 0.4611 0.4427 0.3092
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Table 6.2 continued from previous page
Avg. Balanced F-1 RF XGB SVM NN MLR LDA NB
3-Class 0.7162 0.7161 0.6926 0.6950 0.7008 0.6705 0.4410

Table 6.2: Avg. balanced F-1 score performance per branch and model

Perceiving the prediction model as a 4-class problem, We see that XGB is the best model
outperforming the NB by +0.1189. However a f-1 score around 0.5 might be considered
acceptable in some cases, it is in general not showing sufficient predictive powers. We
therefore further inspect the confusion matrix of XGB-Smote to gain a more detailed view
of the models performance in table 6.3.

Prediction (row)
Actual (Col) CRC [G] CRC[EW] CRC[FD] CRC[D]

CRC [G] 308 78 0 0
CRC[EW] 95 756 17 1
CRC[FD] 23 84 73 1
CRC[D] 2 6 2 0

Table 6.3: This table displays the transposed confusion matrix for XGB-Smote.

In this table, we see that CRC [D] has only 2 positive predictions (row) of which zero
are true positive prediction. Because of this the balanced metrics and thus the Avg. Bal-
anced F-1 score relatively low. Purely looking at the accurateness of XGB-smote we see
that indeed that 0.7853 accuracy rate can be misleading when the objective is to accurately
predict each class equally important.

Clearly, a problem occurs for the balanced metrics when the CRC[D] class is not mit-
igated. When we consider the problem as 3-class problem, significant improvements can
be perceived in the avg. balanced F-1 score, with RF indicating the highest. Considering
the same metric, this model is outperforming XGB-Smote by +0.1825 and the NB-3class
by +0.2752. The corresponding confusion matrix used to calculate these metric is de-
picted below in table 6.4. Together with table 6.1 it shows a strong balanced precision
metric (where CRC[FD] contributes a precision of 75/(75+15)=0.83 to this average. Also
it indicates strong avg. balanced recall where CRC[EW] recall 759/(759+95+15)=0.87
contributes nicely to the 0.6960 avg. balanced recall.

Prediction (Col)
Actual (Row) CRC [G] CRC[EW] CRC[FD]

CRC [G] 314 72 0
CRC[EW] 95 759 15
CRC[FD] 22 94 75

Table 6.4: This table displays the transposed confusion matrix for RF-3Class.

This means that the XGB model performs best when we consider accurately predicting
each class equally important for a 4-class and RF for a 3-class. However, the 4-class best
performing balanced metric remains to be considered too low. While as a 3-class problem
the metric significantly jumps to a sufficient balanced metric. This means that one can only
achieve an equally accurate prediction model across all classes if the CRC [D] is mitigated
and the 3-class problem is considered.
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To check if CRC [D] is truly the bottleneck class in these classification. We review
the metrics also from the perspective of the models pure accurateness, this is done by
weighting the classification based on the actual proportion of the class in the dataset.
We would expect that mitigating class imbalance by multiplying these weight will provide
equal f-1 scores for both the 3-class and 4-class.

2. Which model performs best when we consider pure model accurateness and weigh the
metrics to the class proportions?

We recall that the weighted metrics in our case are a vector of the class proportionalized
weights, as stated in chapter 4.3. In theory, the vector can be made interactive by altering
its weight accordingly. But sticking to our purpose, the proportionalized weights show
the model pure accurate ability to classify. This phenomenon is emphasized by our prove
that the avg. weighted recall becomes the same as the accuracy, as shown in appendix.5.
Earlier, we stated that the Avg. Weighted F-1 score is the most indicative metric to answer
this question on the models pure accurateness. We therefore zoom in on the Avg. F-1 score
per branch in table 6.5.

Table 6.5: F-1 score performance

Avg. Balanced F-1 RF XGB SVM NN MLR LDA NB
Main 0.7725 0.7713 0.7416 0.4644 0.7767 0.7415 0.5110
Smote 0.7716 0.7757 0.7182 0.7361 0.7720 0.7338 0.5838
SCUT 0.7331 0.7462 0.6895 0.5512 0.6208 0.5964 0.3865
3-Class 0.7842 0.7820 0.7712 0.7671 0.7761 0.7447 0.4390

Table 6.5: Avg. Weighted F-1 score performance per branch and model

If we perceive the problem as a 4-class problem we see that the MLR-Main trained set
performances best, with a score of 0.7767. This value can be considered as fairly accurate
prediction model and a big improvement on the avg. balanced accuracy of XGB Smote.
It also scores the highest on both the Avg. Weighted Recall and Precision. The Confusion
matrix is found below in table 6.6. What we see is that the model is quite sensitive on
the recall for CRC[EW] and fairly precise for CRC[FD]. However, again it misses out on
accurate classifications of CRC[D]. This time however the metric diminishes this impact on
the pure accuracy as it limits the class influence by the small proportion of 0.7%. Looking
at the descending order of false positives per class, the MLR indicates an ordinal pattern
of the CRC. Even though this is not explicitly indicated during training (i.e. we would
train an ordinal logistic regression). Furthermore, it shows that machine learning methods
(RF, XGB) can still be outperformed by more traditional statistical methods as MLR.

Prediction (Col)
Actual (Row) CRC [G] CRC [EW] CRC [FD] CRC [D]

CRC [G] 286 100 0 0
CRC [EW] 64 790 14 1
CRC [FD] 11 102 68 0
CRC [D] 0 9 1 0

Table 6.6: This table displays the confusion matrix for the MLR-Main model.

From a 3-class perspective on the avg. weighted F-1 score, RF is again the best per-
forming model. This confusion matrix can be found in table 6.4.
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Now to come to an overall conclusion which model should we take the metric according
to the following research objective perspectives as put in table 6.7

4-Class 3-Class
Avg. Balanced F-1 0.5319 0.7162
Avg. Weighted F-1 0.7767 0.7842

Table 6.7: This table shows the average balanced and weighted F-1 scores for
both the 4-class and 3-class scenarios.

The first research objective considers predicting each class equally important, To achieve
this XGB-Smote is the best for the 4-class problem but still performs poorly with its Avg.
Balanced F-1 score of 0.5319 (<0.6). Considering it as a 3-class problem however, the
objective can be met and is best predicted by MLR-main with 0.7162 (>0.7). Thus this
objective is only achieved for the 3-class problem. When we view the accurateness from
the second perspective objective, RF is the best choice for both the 4 and 3 class problems
(resp. 0.7767 0.7842). These weighted metrics are in line with the expectations that these
values should be about equal, indicating that the minority CRC [D] class is indeed prob-
lematic. It is thus clear that continuing the problem as 4 class problem will keep the the
CRC[D] class to cause poor predictions, if it is able to predict the class at all. Therefore, we
state that under the current methods CRC[D] is an unpredictable and problematic class.
Its further reasoning is argued as follows.

1. Using the time window of clients from [EW] does not possess the power to predict
CRC [D] within a target window of 3 months. It can be argued that most of the
information to why the CRC[D] occurs is only present during the target window, and
thus is not used in the training data.

2. The reason that CRC [D] occur are not available in the data at all. Following from
direct defaults that are by definition abrupt and therefore hard to predict.

3. There are just too little CRC [D] in the test set. Broadening the scope to other
clients apart from RSME might enhance the separability of the class.

Concluding, only accurateness across each class equally is reached when the CRC[D]
class influence is mitigated or removed. From the models pure accurate view, the model
already shows to be a promising prediction model, hence the problem originates from
CRC[D]. Furthermore, the model is also able to separate the order of classes rather well,
even though this is not assumed in the algorithms (i.e. Multinomial is used opposed to
Ordinal). We can show this in the confusion matrix, here the number of FP and FN per
class are decreasing with the CRC [class] order.

Now that we assessed that RF is the best model to predict the classification of the
3-class problem, we also check how the model performed on the validation set. During the
5 cross fold validation an average accuracy of 0.7973 is perceived on the validation sets.
The difference is not substantial. Both accuracy’s are relatively high, indicating that the
model performs reasonably well on unseen data. Furthermore, we check that the estimates
the Out of the Bag error rate to be 20.20%. Which is in line with the expectation that the
Out of the Bag error rate is equal to 1 - (observed accuracy).

From the point we further embrace the prediction model as a solution to the 3-class
problem, as interpreting the 4-class solely by means of weighting metrics is considered cum-
bersome. This new transition diagram is depicted in figure 6.1. To become more confident
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on the definite prediction we explore the options of ensemble methods. After which, we
test the model generalization across test data on other time intervals and calculate the
cost impact of the FP FN predictions using a cost matrix. We end with conceptual tool
on how the prediction model can be implemented into the SAMAS application.

Figure 6.1: This figure indicates the transition diagram of the 3-class problem. Here all CRC
[FD] classes are rewritten to CRC [D] classes.

6.2 Model optimization: Ensemble Methods

In the previous section, we determined to continue on optimizing and the analysing the
problem further as a 3-class. This is because regarding the problem as 4-class classification
is cumbersome with an unpredictable CRC [D] class. In table 6.1 we see that that RF
is the best performing metric on both the Avg. Balanced F-1 and Avg. Weighted F-1.
XGB is performing better on some of the other metrics. SVM and MLR are runner-ups
with relatively the same scores per metric, however they showed to be promising in other
under- and oversampling branches. We therefore consider an ensemble method for the
combination of each of these models. The method is called weighted model voting and
uses multiple machine learning model for its final prediction. Here, each model predicts a
class and the class with the majority vote is chosen, if there is a tie, the prediction from
in order of RF, XGB or MLR is chosen. By means of this ensemble method we are able to
to improve the RF model if we combine the votes of the all 4 methods. Here each of the
metrics are improved, as can be seen in table 6.8.

DF_class RF Ensemble NB
Accuracy 0.7939 0.7974 0.4613
Avg. Balanced Recall 0.6932 0.6935 0.5149
Avg. Weighted Recall 0.7939 0.7974 0.4613
Avg. Balanced Precision 0.7941 0.8006 0.6377
Avg. Weighted Precision 0.7977 0.8010 0.7518
Avg. Balanced F-1 0.7162 0.7191 0.4410
Avg. Weighted F-1 0.7842 0.7880 0.4390
Avg. G-Mean 0.6534 0.6550 0.4273

Table 6.8: The performance metrics for the ensemble method by combining the
weighted model voting of RF, XGB, SVM, and MLR for the 3-class problem, show-
ing a decent prediction model compared to the Naive Bayes model.

This model will be used to asses to what extent the prediction model can be used in
practise. First we will test how well the trained data generalizes on test data from other
months.
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6.3 Consistent model generalization

The ensemble method using XGB, RF, SVM and MLR is considered the best method to
accurately predict each class of the CRC equally well, while it also the more pure accurate
model as addressed in the the weighted metrics. However, these metrics are solely tested
on unseen data from the same target window Jun-23 until Aug-23. In order to test if
the model remains consistent for future use, we should also put in unseen data from time
intervals - time window + target window - from other months. By doing so, we can provide
insights into the model’s generalization across time.

We therefore deploy the trained ensemble prediction model on a random other time
interval from the query. Unfortunately, we are somewhat limited in finding new data as
the query only possess data from Feb-Aug. We therefore take March as our snapshot such
that Feb can be used to feature engineer the percentual change between these months. We
aim to predict the CRC in June and do not include clients that are also in the train set,
otherwise the samples in the train and test set can overlap. The new test set allows to
stratify a significantly larger test set out to make predictions on. The following confusion
matrix in table 6.9 is constituted.

Metric Ensemble_may_aug Ensemble_mar_jun Perc. Change
Accuracy 0.7974 0.7501 -5.93%
Avg. Balanced Recall 0.6935 0.6538 -5.72%
Avg. Weighted Recall 0.7974 0.7695 -3.50%
Avg. Balanced Prec 0.8006 0.8252 +3.08%
Avg. Weighted Prec 0.8010 0.7685 -4.05%
Avg. Balanced F-1 0.7191 0.7005 -2.59%
Avg. Weighted F-1 0.7880 0.7429 -5.72%
Avg. G-Mean 0.6550 0.6263 -4.39%

Table 6.9: Performance Metrics Comparison

We see that almost all of the metric seems to perform slightly less on unseen data from
another time interval, except for the balanced precision. Moreover, the metrics remain
to show fairly good metrics with scores above 0.7. More importantly, the Balanced and
weighted F-1 have proven to remain above the threshold. This indicates that the model
is able to generalize decently well over time. However this generalization is achieved quite
straightforward and we need to emphasize that there is still a decrease in most metrics and
a certain consistency is therefore not reassured. Unfortunately, testing the data on more
time interval is limited due to the query restriction.

6.4 The prediction model put into practice

In this section we implement a cost matrix to asses the performance against associated
costs. As such, we determine if implementing the prediction model is considered costly or
cost saving. Previously we already used the confusion matrices its TP, TN, FP, and FN to
calculate the precision, recall, and F1-score for each class. Now we will use the TP, TN,
FP, and FN and assign costs and rewards to each of these predictions made.

This method of multiplying a cost matrix with a confusion matrix is a technique used in
cost-sensitive classification and identifies the impact of different types of misclassifications.
In this context, a confusion matrix is typically of a multi-class classification problem with

51



three classes [38]. The rows of the confusion matrix represent the predicted classes, and
the columns represent the actual classes.

The confusion matrix is computed using the ensemble method and is tested against the
initial test data from Aug-23 as well as the new test data from jun-23 in table 6.9. This
constituted the following confusion matrix.

Prediction (Col)
Actual (Row) CRC [G] CRC[EW] CRC[FD]

CRC [G] 843 547 1
CRC[EW] 207 2567 25
CRC[FD] 41 345 343

Table 6.10: This table displays the combined matrix of the test data from both
time intervals.

The first thing that we want to see is that the falsely predicted (both positive and
negative) classification are in descending order, this is indeed the case. Also, we see that
the model is more precise than that is sensitive. From a practical point of view, this
is preferred because the prediction model is to be seen as an extension to the SAMAS
application and thus we care that it provides confident predictions rather than missed
predictions that would otherwise be missed without the model anyhow. Anyway, this
quick notion is further investigate in the next section. To compute the total cost, we
multiply the values of the confusion matrix by the corresponding values of the cost matrix
and sum them up. This will give you us overall cost value that accounts for the different
types of classifications and their associated costs.

The reason classifications further away from the diagonal should be more punished is
because they represent cases where the model’s predictions are further from the true classes.
In our case, this means that our model is to reward the true class (diagonal entries) of
transitions a bit more, and punishes errors farther from the diagonal should be penalized
more because they indicate more severe misclassifications. By using a cost matrix, we
allow to emphasize the importance of different types of errors based on their impact in a
real-world context. [38]

Prediction (row)
Actual (Col) CRC [G] CRC[EW] CRC[FD]

CRC [G] € 2.00 € -2.00 € -4.00
CRC[EW] € -2.00 € 1.00 € -2.00
CRC[FD] € -6.00 € -4.00 € 3.00

Table 6.11: This table displays a fictionalized cost matrix for punishing and
rewarding the predictions made.

Table 6.11 is a simple version of a fictionalized cost matrix that punishes false predic-
tions and rewards true predictions. In practise the costs are much bigger, but for now the
ratio is important. We see that we punished predicting financial distress when this is not
the case less than predicting no financial distress when it actually is the case. Now we
simply multiply the matrices from both tables and then take the sum of the multiplied
matrix, this leads to a positive (saved) cost value of + €2143 . This indicates that by
implementing the predictions of the ensemble model, the extended EWS is able use of to
save costs by €2143 (given the fictionalized confusion matrix). Of course, this method is
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quite a simple implementation to the associated costs in the real world, as different client
also have i.e. different EAD, additionally many other metrics and factors have to be imple-
mented to get to a more accurate cost output. Nevertheless, this approach represents an
initial phase in demonstrating the efficacy of the prediction model within the context of the
3-class problem, showcasing its ability to make accurate class predictions and suggesting
the potential for cost-saving benefits.

6.5 Implementing the prediction model into SAMAS

In this section we briefly describe a proof of concept on how the prediction model can
be implemented into SAMAS. We consider the ensemble method for the 3-class to be the
final prediction model that is put into practise. Here, Random Forest is prioritized in its
votes above XGB, SVM and MLR. The confusion matrix of this ensemble method can be
found in table 6.10. In the previous section we also punished the missed classification,
however this does not necessarily has to be the case. In example, if we solely regard the
implementation of the model, the precision of the changing classes forms an important
metric to measure. This is especially the case since all starting clients are by definition of
the scope regarded as CRC [EW], hence the recall is less important. This is intuitive as
without a model, no prediction is deployed anyhow.

Let’s deploy this theory on our confusion matrix. We calculate the precision of the
CRC [FD] class to be 343

369 = 0, 93, likewise the CRC [G] gives us 0,77. If we would follow
this intuitive thinking, the model is highly precise in predicting [FD] and fairly in CRC
[G]. That it did not recognize all actual classes and thus missed - by means of recall -
predicting 386 CRC [FD] and 548 CRC [G] is not as important as they would be missed
without the model anyhow. The question thus remains is it useful to blindly follow the
precision metrics when a non CRC [EW] prediction is made. The answer upon this question
is not straightforward and requires additional testing. But a proof of concept can already
be made that implies how we can implement this forward looking approach.

Client_ID Predictors i.e. sort EAD Actual Prediction Prob [G] Prob [EW] Prob [FD]
Client111 ... 15000 CRC [FD] CRC[FD] 0.012 0.11 0.878
Client222 ... 14000 CRC[G] CRC[G] 0.582 0.362 0.056
Client333 ... 13000 CRC[G] CRC[G] 0.582 0.362 0.056
Client444 ... 12000 CRC[EW] CRC[EW] 0.012 0.758 0.23
Client555 ... 11000 CRC[FD] CRC[EW] 0.002 0.856 0.141

Table 6.12: This figure illustrates an example of how the prediction model can be
implemented into practise. The predictors shown are removed or fictionalized but
the outcome variable and prediction are truly observed.

Let us suggest that a portfolio holder monitors the credit risk of a set of clients. By
using the prediction model as an extension to its current monitoring system, a forward
looking approach is implemented that checks if transitions from the CRC [EW] class is
most likely to occur (the actual class is of course not available in real-time). Given its
preciseness across [FD] and [G], the portfolio holder can determine if a notified transitions
requires additional inspection. It can use the prediction model as an automatic trigger
that simply follow from the majority voted class or to provide additional insight into the
models estimated class probabilities during a qualitative assessment. Now, this is only
a proof of concept, the implementation can be developed to more technical extent i.e.
creating a dashboard. Note that additional steps might come at a cost of the prediction

53



models interpretibility.
Furthermore, we enhance the interpretibility of the model by delving into each of the

predictors contribution in determining the class. To do so, we inspect into the primary
algorithm of the ensemble method: the Random Forest model. Random Forest allows to
sort the most significant predictors that contributed to the separability of the three classes.
The technical process operates by selecting the predictor that maximizes the reduction in
Mean Gini impurity (mean Decrease Gini). Predictors with a higher Mean Decrease Gini
values are more likely to be selected for splitting because the greater impurity reduction
indicates more predictive power. This method is already used in the Recursive Feature
Elimination technique to reduce dimensionality, for a technical overview we refer to chap-
ter 4.2.1 and the paper on RFE-RF from Darst[16]. We repeat this algorithm to asses the
predictive power of each predictor within the eliminated subset. In figure 6.2 below we
present a decreasing order of the Mean Decrease Gini together with the percentage per
predictor of the total metric. The significance of these predictors are compared with the
hypotheses on their separability in section 7.1.

Figure 6.2: This figure shows the decreasing order of the Mean Decrease Gini together with the
percentage per predictor of the total metric. Indicating pure distinction of the PD metric, followed
by d_RWA and d_PD and a minor significance from most Triggers apart from T130.

In this chapter we discussed the empirical results. Consequently, we assessed the best
performing model based on two accurateness perspectives. We concluded that the CRC
[D] class is not able to be predicted under the current methods. Therefore the problem is
further investigated as 3-class problem. The models are optimized by means of an ensemble
voting method between RF, XGB, SVM and MLR and is generalized across different time
intervals and put into practise. We end by proposing a proof of concept on how the
prediction model can be implemented and interpretted into the SAMAS application. The
topics reflected upon the research questions 4b amd 5a.
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Chapter 7

Discussion & Conclusion

In this chapter we delve into the discussion and conclusion. We conduct the chapter
constructively by answering and reflecting on the research question and objectives. Fur-
thermore, we summarize the limitations and elaborate on the practical and theoretical
insights. We end with recommendations, limitations and prospects for further research.

7.1 Reflecting on research objectives

We recall the primary objective: To accurately predict the CRC class of RSME (LBBB)
clients three months into the future based on the clients data. We conclude that a model
is developed that is able to significantly improve naive predictions. However, accurate-
ness should be measured from two perspectives to form a definite answer if an adequate
prediction model is developed.

First we consider that each class has to be predicted - given the balanced metrics -
decently well, this fails to be acheived for the 4-class model. This is because none of
the models is able to predict the CRC [D] class, hence the bad balanced performance
metrics. Efforts haven been put in to enhance the predictability of CRC [D], including
under- and oversampling techniques, but effects were negligible. Reviewing the problem
from the models pure accurateness - given the weighted metrics - the 4-class MLR model
shows decent accurateness with a F-1 score of 0.7767. However, in practice this model
would become quite cumbersome as it of no use to implement a model of which one class
is unpredictable. Thus, the methods were reran but than as 3-class CRC problem, here
CRC [D] is rewritten to CRC[FD]. Ultimately the 4 best performing models - RF, XGB,
SVM, MLR - were assembled into one prediction model. This one was able to provide a
robust model that indicated decent metrics across both the balanced and weighted metrics.
This model is later reran on a test set from months of an independent time interval and
remained to show decent performance metrics. Testing the viability into practise using
a cost matrix, indicated that by implementing the prediction model, costs can be saved.
Therefore, we conclude that we are able to accurately predict the CRC class of clients three
months into the future, but only by mitigating the CRC [D].

Furthermore, reflecting upon the secondary objectives, the latter paragraph indicates
that the model successfully regards the models forward looking approach and timeliness
objective. Also, the practical viability is proven with independent new test data and
uses the same confusion matrix to asses that its implementation is able to save costs.
Furthermore, the model is able to indicate the predictors that are of significant importance
on determining the CRC transitions, which is specifically requested by the problem owner
Rabobank. An interesting conclusion from the model separability of classes is seen when
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the RFE approach showed that the more the imbalance of the CRC [D] class was mitigated
the less predictors the model required. Now regarding the 3-class model as our main model,
we can also reflect that the key findings in chapter 3.5 are in line with the outcome. Given
table 5.2 a first subset is made of important predictors. Within this subset we repeat the
RFE-RF approach and find that PD is indeed of significant importance to the model, while
also the expected correlated metrics as O_Exp, EAD and RWA are of expected significance.
The lagged feature between the delta d_PD and d_EAD indicate decent significance too.
Furthermore, from the exploratory analyses the conclusion that CRC_n_days, CRC_Prev
is of some importance is correct and likewise that Sector is not. Lastly, the triggers T100
and T130 were also correctly expected of significant importance, while the other triggers
did not posses as much predictive power. To conclude, this thesis contributes to further
include machine learning methods into the Rabobank’s credit monitoring system. Although
further research is required for definite use, its considered an innovative contribution to
the EWS and presents a proof of concept on its implementation.

7.2 Theoretical Contributions

This section delves into the significance and impact of theoretical contributions of the re-
search. The contributions are outlined below. Note that the contributions are based upon
the 3-class problem where the CRC[D] class is rewritten to the CRC [FD] class.

Imbalanced Multi-class classification Problems: The first noteworthy theoretical
contribution is to multi-class classification as whole, with especially addressing the chal-
lenge of severe class imbalance. Specifically, it emphasizes the limitations of conventional
algorithms in multi-class scenarios with severe imbalance. We find that by mitigating the
most imbalanced class , substantial performance improvements are seen. Here RF, XGB,
SVM and MLR are considered the best performing algorithms. This study also highlights
the limited existing research dedicated to multi-class imbalance, indicating the necessity of
further exploration on multi-class classification problem compared to binary classification
problems. Furthermore, it provides anti-intuitive insights by showing that commonly used
under and oversampling techniques like SCOPE and SCUT do not consistently enhance
multi-class classification models. Also, we found that given a multi-class confusion matrix,
the avg. weighted recall when weighted to the proportion is equal to the accuracy. We
may question the relevance of the metric as proposed by Grandini [21]
.

Reevaluation of Feature Importance in credit risk: The thesis challenges ex-
isting research by demonstrating that triggers in traditional credit risk models, allow to
contribute to credit risk assessment. Related work showed that the concept of triggers is
not always included, let alone as a forward looking model. One research that included
triggers, ended up not including them into the model as they did not provide as much
significance. We show to contradict this action. Of course, this is highly dependent of
how triggers are defined within the problems context but it highlights the need for a more
nuanced understanding of feature importance in credit risk management for financial in-
stitutions.

Literature on Early Warning Systems: The core theoretical contribution of this
thesis is the development of a prediction model that classifies clients’ prospective risk.
While traditional early warning systems primarily focus on identifying and alerting about
existing or imminent risks, our model goes a step further by forecasting future risks as-
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sociated with clients. This prospective risk classification enhances the proactive nature
of early warning systems, enabling preemptive actions - such as forbearance measures -
to mitigate potential problematic clients and by providing more timeliness to the Early
Warning System.

Interpretability and Explainability: The thesis explores methods to make machine
learning models more practicable and interpretive, Giving the algorithms a context to work
on and evaluating its performance in the credit risk context. Likewise, it contributes to the
exploitation of Machine Learning methods in the Credit Risk Department at Rabobank.
Enhancing mutual interest of a rather new and theoretical tool in the practical field of
credit risk.

7.3 Practical contributions Recommendations

In this section we reflect on the practical contributions and recommendations concluded
from the thesis.
Again note that the contributions are based upon the 3-class problem where the CRC[D]
class is rewritten to the CRC [FD] class. This is because within the target window of
3 months, the models are not able to grasp any consistent pattern of this class. Over-
sampling the class did not contribute to any improvement, as the algorithm were still not
able to predict any of the classes right (number of prediction attempts also remained low).
Indicating that the class is just very unpredictable in the current target window. It can be
such that the data becomes more indicative to separate CRC [D] clients in smaller target
windows as indication are rather abrupt and close to the actual transitions, however this is
only speculation and out of scope for this research. One key limitation that thus remains
is on the CRC[D] class their unpredictability, which is indeed quite logical as the financial
institutions are ever seeking for the secret formula to foresee its defaulting clients, while it
will possibly never find it.

Forward looking approach: Now as a 3-class model, the ensemble model is signif-
icantly able to contribute to credit risk early warning system. It is able to show that not
only triggers are of influence on (future) CRC transitions, but also extra data known to
the client should be taken into account. As such, it provides an forward looking model,
that distinct itself from the real-time transitions on which most of the internal documents
are based. The model has a good f-1 score able to grasps both a good precision and recall.
Here considering the most important metric for practical use is the precision. Which is
scoring especially high the merged confusion matrix across multiple target windows. In-
dicating that if predictions are made, they are most of the time correct. Whereas a lower
recall states that missed some predictions, which without a prediction model would have
been missed anyhow. Following this line of thought, it does not necessarily matter if the
model missed a decent bunch of predictions, but as soon as it did predict, the predictions
are likely to be confident and precise. Therefore, this increased precision allows for more
accurate identification and classification of credit risk classes among clients, leading to
better-informed credit monitoring decisions and forbearance measures.

Interactive evaluation and cost Efficiency: The algorithm’s practical contribu-
tion includes multiple evaluation methods and analyses its cost efficiency. In this research
pre-determined weights (by class proportion) are used as well as cost matrix. These models
remain viable on its standalone use and the interpretation can be altered to the problems
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owner preferences. In the current settings, we show that Rabobank can achieve substan-
tial cost savings while maintaining the quality of credit risk evaluation when the prediction
model is implemented.

Consistency Across Time: Even though huge additional steps can be performed on
this aspect. Our model already offers the practical advantage of being relatively consistent
across time. Metrics decrease in new unseen data but only to little extent. This allows
to consistency facilitate long-term planning and decision-making, as it provides a stable
foundation for assessing credit risk over extended periods. However, it should be performed
more in depth to provide a more robust conclusion on to this. Such that it can be said that
even in the face of evolving cyclic and non-cylic economic conditions, the model remains
accurate and precise.

Improved Risk Mitigation Strategies: The algorithm’s precision empowers Rabobank
to develop more effective risk mitigation strategies. By accurately identifying clients with
varying class credit risk, the bank can tailor risk management approaches to specific client
profiles, reducing potential financial losses. While we cannot guarantee absolute accu-
racy in credit risk assessment due to the inherent uncertainties in financial markets, our
model’s is quite adaptable to changing conditions and thus a practical contribution. It
equips Rabobank with the tools to respond dynamically to evolving risk factors and mar-
ket dynamics.

Future-Proofing with Window Forward Cross-Methods: The recommendation
to develop a more representative model using window forward cross-methods is a practical
contribution aimed at enhancing the algorithm’s robustness over time. By incorporating
forward-looking data and retraining the model iteratively, Rabobank can proactively ad-
dress emerging risks and opportunities.

In summary, our machine learning algorithm contributes practically by offering a pre-
diction model with enhanced precision, cost efficiency, and shows consistency across other
timer intervals. While it cannot guarantee absolute accuracy and precision, it is fairly de-
cent, hence the balanced en weighted F-1 score of resp 0.70051 & 0.7429. That being said,
we provided a first step to show that machine learning methods has the potential to be used
into practise for more efficient credit risk monitoring at Rabobank. More exploitation on
this topic has to power to enable better risk mitigation strategies and consistently adapts
to evolving conditions. The recommendation for window forward cross-methods further
bolsters the algorithm’s representatives and long-term viability, ensuring Rabobank re-
mains well-equipped to navigate the complex landscape of credit risk management and the
application of Early Warning Systems.

7.4 Limitations & Further Research

There are some limitations to this research which can be overcome in further research.
Regarding the 4-class problem, the CRC[D] class made us miss out on the main primary
research objective to predict each class about equally well. To potentially succeed in the
research as a 4-class problem, we should improve the predictability of this minority class by
focusing on a different or wider scope. The three factors that can be altered are the asset
class of the clients - here RSME - , the business unit - here LBBB - and the target window
- here 3 months. Especially evaluating on a larger target window is expected to account
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for more randomness in the clients behaviour and thus likely that more transitions occur,
including defaults. A method to achieve this can be done with the use of window forward
cross methods. With this method, the algorithms become more generalized across time,
taking into accounts lagged features to have a robust trained model across i,e. an entire
year. This would provide the current model with additional time series expansion, of which
we were currently in limited reach of. This is due to a rather recent gathering of data in
the SAMAS application evoking data issues while and inability to match clients across a
multitude months as they get lost the more lagged features are added. Furthermore, in
this research we assumed that during training there is no ordinal nature of the outcome
variable, as classification from the dataset might indicate inaccurate financial distress in
some of its cases. Therefore, we trained the model using multinomial regression, ideally we
should also have trained an ordinal logistic regression model, assuming ordinal nature of
the outcome variable. Regardless, the conclusion is that prediction models using machine
learning are able to accurately predict if transitions occur from the CRC [EW] 3 months into
the future. The model is able to generalize across other time intervals with a balanced f-1
score of 0.7005 and shows potential for practical implementation with a confident balanced
precision of 0.82125.
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Chapter 8

Appendices

.1 Appendix A: Determination of CRC in real-time

The determination of the CRC [Class] should be based on ability of the obligor to meet
its financial commitments on a going concern basis and should not take into account any
elements related to actions of the bank to claim its security position (e.g. collateral,
guarantees etc.). Hence, it should be objective. The CRC can be determined at any point
in time during the credit life cycle. It is based on specific trigger events which lead to either:
The direct assignment of a CRC class, or in some cases further analysis to determine the
appropriate CRC class. CRC transition for RSME clients are depicted in figure 1 including
a table of entry and exit criteria in table 1.

CRC Good No triggers are hit
Entry EW >EUR 100 is more than 30 but no more than 60 days past due and

one of the following applies (qualitative assessment needed);
i. the arrears can be resolved without help from the bank, or;
ii. the arrears can be resolved with help from the bank that fits
within regular commercial underwriting criteria;
iii. The amount past due relates to a forborn, but not reclassified
from Default, contract and this contract.
A hit of EW Triggers no. 7, 8, or 12 in the Qualitative Assessment
concludes EW;
A hit of EW Trigger(s) (no. 5, 6, 9, 11, 14) assigns the Obligor to
the EW list;
Trigger 9 (R18-R19) isn’t applicable for Standardized Approach
portfolios without a RRR model;
A management decision;
An SCE is in the Forbearance Probation period and FD is not ap-
plicable.

Exit Contract has no Forbearance probation period anymore;
EW triggers aren’t hit anymore. De-activation depends on specific
EW triggers;
No >30 DPD in the last 3 months;
RRR should be better than R18 for at least 3 consecutive months.

Table 1: This table contains an overview of entry and exit criteria and is taken
from the internal document [43]
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Figure 1: This figure shows the four CRC classes in ascending (left to right) order from severity
and is taken from the internal report Global Standards on Credit Risk Parameters [43]
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.2 Appendix B: SLR
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Machine Learning in Credit Risk  
 

Scopus: ( TITLE-ABS-KEY ( machine  AND  learning )  AND  TITLE-ABS-KEY ( bank )  AND  TITLE-ABS-KEY ( credit  
AND  risk )  OR  TITLE-ABS-KEY ( early  AND  warning ) ) 

n = 370 

Language: “English” n = 361 

Keyword:  “Credit Risk” n = 53 

Filter on Relevance n = 25 

Exclude topic: “Credit Card” n = 17 

Include: Only free-access or licensed literature n = 9 

Manually added University of Twene Library: Same keys as above n = 10 

SLR Research questions to answer: To what extent is machine learning already used in Credit Risk Monitoring?  
 

1. Unsupervised ML methods applied if yes which? 
2. Which ML algorithms is used for training, which for cross fold and validation? 
3. What type of ML validation methods are used? 
4. Is the research focused on a case study or purely theoretical? 
5. How successful is the research? Is it addressed in terms of metrics? 
6. Is there a mention of CRC stages and or a watchlist/early warning system? 
7. Is the research focused on predicting (probability of) default or any other related CRC stage? What software is used? 
8.    What are the main findings and result? 
9.    What is the client scope (rural, wholesale, RSME etc.)? 

 

 

Source 1 2 3 4 5 6 7 8 9 

(Alabi et al. 
2021) 

Feature 
selection: 
Chi- Square 

SVM-(RBF),  
trained with 10-
crossfold 

Confusion 
matrix. Acc 
main metric 

No, 
theoretical 

Yes accuracy 
of 93% 

No Predicting 
credit scoring 
loan. Using 
matlab 

The result 
shows that RBF 
and SVM-RBF 
accuracy was 
93% shown in 
the predictive 
performance 

General 
loans of 
Taiwan 
bank credit 
data set 



table. This 
study confines 
with the 
prediction of 
credit loan 

(Kalayci and 
Arslan 
2017) 

Extra 
features are 
added 

RF vs LR, SVM, 
DT 

Confusion 
matrix, acc 
main metric 

No 
theoretical 

Unknown, 
accuracy 
82,25% 

Yes Predict NPL 
classification. 
Uknown 
software. 

The proposed 
system aims to 
support a 
warning 6 
months ahead 
to detect NPL 
state. RF 
outperforms 
other ML 
methods 

SMEs 
turkey 

(G. 2016) Correlation 
variables, 
ranking 
importance 
using RF 

DT Confusion 
matrix, all 
metrics 
used. 

No 
theoretical 
on public 
dataset 

Not compared 
but has 
accuracy of 
94,3% 

Not directly, 
uses PD 
without any 
thresholds 
mentioned 
to 
determine a 
class label 

Predicting PD 
of new loan 
applications 
of a bank. 
Using R 

DT is used to 
predict the 
class labels of 
the new loan 
applicants, 
based on their 
Probability 
of Default. 

Not 
mentioned 

(T. Liu and 
Huang 
2022) 

Ranking 
importance 
using RF 

LR, RF incl. 
hyperparameter 
tuning 

Confusion 
matrix, main 
accuracy 

Not 
mentioned 

“Relative high 
accuracy” 

EW is 
mentioned 

Predict the 
loan viability 
using 
classification. 
Unknown 
software. 

Designed a rf 
algorithm to 
make risky 
early warning 
classifiers 

Credit loan 
businesses 

(L. Wang 
and Zhang 
2023) 

Not used 
deliberately, 
as it is not 
always 

Two stage N-
model, SVM, DT, 
RF , MLP , LTSM. 
 

Confusion 
matrix 
matrix and 

Only used 
theoretically 

Two staged N-
model 
outperformed 
common ML 

Compared 
with 
corporate 
credist risk 

Predict EW. 
In order to 
mitigate risk 
of default. 

This article 
builds a new 
two-stage 

Unknown 



better to 
feature 
select 

Uses 5 fold cross F1-score + 
G-mean 

algorithms 
with F1 
87,29% and 
G-mean 
89,47% 

early 
warning 
indicators. 
But no 
mentioned 
of CRC like 
banking 
stages 

Unknown 
software. 

ensemble 
model using a 
variety of 
machine 
learning 
methods 
represented by 
deep learning 
for 
corporate 
credit risk early 
warning 

(Jiang and 
Wang 
2022) 

Unknown NN, XGBoost, 
LGB, CatBoost, 
LR 

Confusion 
matrix and 
AUC 

Only used 
theoretically 

All show 
accuracy 
>88%. Not 
compared to 
current 
method. NN 
has best AUC 
score.  

Not 
mentioned 

Predict 
classification 
problem and 
use the data 
from 
LendingClub 
company. 
Unknown 
software. 

This paper 
considers the 
use of six kind 
of machine 
learning 
methods to 
model credit 
risk 
management 
problems for a 
classification of 
clients 

Not 
mentioned 

(Hegde et 
al. 2023) 

Some 
features 
selection in 
Keras Library 
is used 
unknown 
which one 

K-fold is used. 
DT, SVM, LR, RF, 
XGBoost are 
used.  

Confusion 
matrix on 
Accuracy 

Only used 
theoretically 

Focused on 
accuracy. LR is 
best with 
slight margin 
over RF and 
XGBoost 

Not 
mentioned 

Prediciting 
the chance 
that loans are 
granted. Not 
a certain CRC 
stage.  

The 
experimental 
results 
indicates that 
logistic 
regression 
model is more 
accurate for the 

Unknown 



credit risk 
predicition 

(Tan and Lin 
2023) 

Lasso 
regression  

XGboost with 5 
cross fold 

accuracy, 
recall, 
specificity, 
AUC, G-
mean to 
evaluate the 
XGBoost 
model. 

Used as case 
study on 
unknown 
company 

AUC of 95,8 
and G-mean 
91,7% 

Own early 
warning 
system 
without 
specific 
stages 

Classification 
stages not 
specified.  
But 
prediction on 
some sort of 
classification 
is the idea. 
Python used. 

Credit risk early 
warning 
method for 
companies 
based on 
XGBoost and 
SHAP. 

General 
banking 
clients. 

(D. T. Chen 
2022) 

Mutual 
information 
and many 
other pre-
process 
methods 

DT, LDA, LG, 
SVM, GBM, RF, 
XGB, ANN, 
(dummy) 

Acc, Prec, 
F1, MCC, 
AUC, Recall,  
Correlation 

Theoretical 
applied on 
ING 
database 

Assessed on 
all metrics. RF 
does best on 
all metrics 
except 
accuracy. 

Good, EW, 
Def. Almost 
same as 
Rabo. 
Though 
research 
focuses on 
negative 
mitigations 
and not 
specific 
transitions. 

Tries to 
effectively 
classify WB 
clients at ING 
on a 
watchlist 
based on 
their 
prospective 
credit risk. 
Using 
machine 
learning in 
Python 

This financial 
distress 
prediction uses 
machine 
learning based 
on internal 
triggers, 
external 
triggers, and 
internal client 
data as input to 
predict if a 
client will be in 
financial 
distress.  RF 
scores best on 
chosen metrics 

Wholesale 
at ING 

(Guerra, 
Castelli, 
and Côrte-
Real 2022) 

RF with 85% 
feature 
importance 
threshold. 
PCA 

LR, SVM, NBC, 
RFC, XGB. 5-fold 
cross for 
training. 

The 
confusion 
matrix 
(Precision 
and recall) 

Practical and 
theoretical 
implications 

Assessed on 
all metrics. 
Following F1-
score the 
most. Best on 

The best 
performing 
model can 
be set up as 
a decision 

This work 
investigates 
whether 
machine 
learning 

The results 
show that 
extreme 
gradient 

General 



considered 
but less 
accurate 
though 
giving model 
more 
efficiency.  
Correlation 
matrix 
between 
features and 
targets 

and the f1-
score.  

XGB followed 
by RF. 

support 
system, 
either as 
stand-alone 
stress-
testing tool, 
or as part of 
an EWS. No 
mention of 
any or 
similar CRC 
stages. 

techniques 
can 
successfully 
predict 
liquidity risk, 
thus 
providing 
insights for 
stress-testing 
scenarios. 
Uses python 

boosting 
(XGBoost) 
outperforms 
other methods 
for this 
classification 
problem. The 
resulting model 
can be 
set up for a 
production 
environment 
and provide 
scenarios for 
stress-testing, 
or as an 
early warning 
system (EWS), 
thus supporting 
the overall 
SREP exercise. 

 

 

 

 

 

 
 
 



Early warning systems in credit risk 
 

Scopus: ( TITLE-ABS-KEY ( early AND  warning AND system )  AND  TITLE-ABS-KEY ( banking )  AND  TITLE-ABS-
KEY ( credit  AND  risk )  OR  TITLE-ABS-KEY ( early  AND  warning ) ) 

n = 37 

Limited to Language: “English” n = 33 

Keyword:  “Credit Risk” n = 11 

Include: Only free-access or licensed literature n = 4 

Manually added University of Twene Library: Same keys as above n = 6 

SLR Research questions to answer: To what extent are early warning systems already used in Credit Risk Monitoring?  
 

1. What type of credit risk is monitored? 
2. How is the early warning system defined 
3. Are there more stages to except good and default in the EWS and if yes how many? 
4. Can we find any Machine learning methods in the paper? 
5. Main findings and conclusion? 

 

 

Source 1 2 33 4 5 

(Kalayci and Arslan 
2017) 

Credit risk for RSME 
at bank Turkey 

The EWS, is an early 
watchlist system 
that supports 
classifying SME 
customers as non-
performing or 
performing and is 
targeted during 
lifetime of the credit 

1. Non performing and 
performing. With one 
Watchlist status in 
between. 

yes, RF algorithm is compared 
with different machine learning 
algorithms like Logistic 
Regression, Supp ort Vector 
Machine and Decision Tree 

The proposed system aims to 
support a warning 6 months ahead 
to detect NPL state. RF 
outperforms other ML methods 



(D. T. Chen 2022) Credit risk for 
Wholesale and rural 
clients at bank (ING) 

An Early Warning 
System (EWS) 
enables the 
effective monitoring 
of the credit 
portfolio by 
providing Early 
Warning Indicators 
(EWI) and triggers 
to alert stakeholders 
such as risk and 
account managers 
when there are 
early 
signs of default. 

1. Non performing and 
performing. With one 
Watchlist status in 
between. 

Yes. Both unsupervised and 
supervised methods are trained 
to find best suitable model. 

Tries to effectively classify WB 
clients at ING on a 
watchlist based on their 
prospective credit risk. Using 
machine learning in Python 

(Koyuncugil and 
Ozgulbas 2012) 

Credit risk for RSME 
at bank Turkey 

An early warning 
system (EWS) is a 
system which is 
using for 
predicting the 
success level, 
probable anomalies 
and is reducing 
crisis risk of cases, 
affairs transactions, 
systems, 
phenomena, firms 
and people. 
Furthermore, 

No immediate case EWS 
with stages is considered. 
They consider 15 
indicators and dilute 2 
indicators that can be 
used as an EWS.   

Data mining is used but no 
specicifc ML methods are 
mentioned 

Writers developed a financial EWS 
based on financial 
risk by using data mining. CHAID 
algorithm has been used for 
development of the EWS. 
Developed EWS can be served like 
a tailor made financial advisor in 
decision making process of the 
firms with its automated nature to 
the ones who have inadequate 
financial background. 

(Jin and Nadal De 
Simone 2014) 

32 European 
banking groups  

Not given No immediate stages 
though combining the 

Not given This study proposes a novel 
framework which combines 
marginal probabilities of default 
estimated 



GDFM applied to a large 
macrofinancial database 
with a structural 
credit risk model not only 
produces an “early 
warning indicator”, 
but also can help 
identying the economic 
forces driving the increase 
in vulnerabilities 

from a structural credit risk model 
with the consistent information 
multivariate density optimization 
(CIMDO) methodology and the 
generalized dynamic factor model 
(GDFM) supplemented by a 
dynamic 
t-copula. 

(Lin and Wu 2011) Banks  Not given No mention No use GRA approach compared 
to machine learning. Not very 
helpful paper on EWS. 

The results illustrate that in the 
prediction of financially crisis as 
well as financially sound banks, the 
proposed GRA model 
demonstrates better prediction 
accuracy than the conventional 
ones. The results also imply that 
the financial data set one year 
before the crisis leads to the best 
accuracy. It is helpful for the 
establishment of early warning 
models of financial crisis for banks 

(Bakurova, 
Pasichnyk, and 
Tereschenko 2021) 

Banking in Ukraine  Early warning 
signals provide 
information about 
the credit quality of 
the debtor, as well 
as a wide range of 
credit analytics and 
scenario analysis for 
companies. 

No mentioned No mentioned The main result of the work is a 
light ontology based on the 
analysis of bank documents in the 
OWL language in the Protégé 
editor and the production system 
to support credit decision-making 
in banking institutions of Ukraine. 
The 

 



.3 Appendix C: Data merging & filtering

Since our scope is pre-defined and we use data of multiple moments in time, we have to
filter and merge our data based on these specifications. Because this research involves
merging of multiple data frames, we slightly differentiate from the theoretical framework
by [3], as some pre-processing steps are put forward in the model development process.
Following the GS on CRC, data is not reported on client level but on a so-called regulatory
facility level. For consistency throughout the thesis we will regard a unique regulatory
facility as a unique client_ID.

The query already included a filter on the clients asset class RSME and the chosen
business unit LBB, as defined in section scope. To account for data at a specific moment
in time, we filter the data based on the dimension “Reporting Data Month”. The last day
of the concerning month is always taken as the snapshot to be reported. Three reporting
months of data need to merged: April 23 (to feature engineer changes compared to May
23), May 23 (including all relevant variables from the query) and August 23 to attribute the
outcome variable (CRC) at August 23 for each client present in data of May 23. Table ref
indicates the filters on row basis that follow from merging and filtering.

Step Description Resulting Rows
1 Merge aug_23 CRC variable to may_23 n (confidential)
2 Remove clients containing F4LF in client_ID (-1265)
3 Unfound match based on client_ID (-2067)
4 Merge apr_23 numerical variables to new may_23 (-419)
5 Filter out unspecified previous CRC values (-2729)
6 Filter out missing values for PD and LGD (-171)
7 Merge rows specifying triggers based on Client_ID (-1162)

Table 2: Summary of Data Manipulation Steps

1. The core data frame, resulting from a query on may_23 with filters on RSME and
LBB, initially contains n rows.

2. Combining dimensions into one query resulted in an incorrect extraction due to the
CRC being determined at the client level while clients can have subsets of contracts
(single credit exposures). Rows with "F4FL" in their names are removed, resulting
in the removal of 1265 rows from the data frame.

3. Merging the may_23 data frame with the CRC outcome variable from August 23
necessitates grouping both data frames by client_ID, resulting in the loss of 2067 rows
due to mismatches in client_ID. This could occur if client contracts with Rabobank
were terminated between the reporting dates.

4. A similar process to step 3 is executed to merge the updated core data frame with
numerical variables from apr_23. This inclusion allows for the potential feature
engineering of differences between these variables monthly.

5. Unspecified CRC or missing data are not imputed but instead removed. This ap-
proach prevents potential bias introduced by imputation, allowing the data to be
treated as true observations.

6. Similarly, a few missing values for PD and LGD are removed without imputation.
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7. Within SAMAS, each trigger reported adds a separate row, potentially resulting
in multiple identical rows differing only in the trigger code variable. To merge all
client_IDs successfully, one-hot encoding of the trigger ID variable is required. After
encoding, rows based on Client_IDs can be merged, summing binary triggers while
retaining identical variables.

.4 Appendix D: Visuals from predictors in Data Review chap-
ter

Removed for confidentiality reasons

.5 Appendix E: Mathematical intuition behind proportional-
ized weights and accuracy

This appendix shows that accuracy equals (average) weighted accuracy when the class
proportion is equal to the weight each iteration.

Accuracy =
∑ TP

TP+FP+FN+TN

Revisiting weighted accuracy:

Weighted accuracy =
∑ TP×propdata

Row sums of confusion matrix

If the dataset is weighted such that the proportions in ‘propdata‘ match the actual
distribution of classes in the confusion matrix:

Weighted accuracy =
∑ TP×actual_distribution

Row sums of confusion matrix

Where the actual distribution (hence the ‘propdata‘) can be obtained from the con-
fusion matrix due to the test set being stratified. Each iteration represents the actual
proportion of the class:

Actual distribution =

[
TP + FN

TP + FP + FN + TN

]

Weighted accuracy =
∑ TP ×

[
TP+FN

TP+FP+FN+TN

]
TP + FN

Weighted accuracy =
∑ TP

TP + FP + FN + TN

Therefore, the weighted accuracy in this case would be equal to the accuracy when the
weights are proportionolized to the class distribution.
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