
Finding Smaller Parity Game Solutions by Identifying and Solving
Subgames using Oink
STIJN DIJKSTRA, University of Twente, The Netherlands

Solving parity games is an important step in some reactive synthesis tools.
Reactive synthesis is the process of synthesising a controller that implements
a formal definition. Finding smaller solutions to parity games can lead to
smaller controller designs. Decreasing the size of controllers improves their
efficiency. We propose an algorithm that identifies subgames of parity games
to find smaller solutions. We implement subgame identification by building
on the tool Oink and discover how it benefits performance. We compare
multiple approaches to the problem and we show that pruning algorithms
are a more viable approach to finding subgames than growing algorithms.
We also compare the quality-based performance of various solvers to get a
better understanding of the tool Oink.

Additional Key Words and Phrases: Parity Games, Reactive Synthesis, Knor,
Oink

1 INTRODUCTION
A parity game is a turn-based 2-player game played on a finitely
large directed graph. Solving parity games is an important step in
synthesising reactive systems from formal specifications. To solve
a parity game problem, we need to find a winning strategy for
the even player from a specific starting node. This problem was
first solved in 1998 by Zielonka [11]. In 2018, the tool Oink was
developed by Van Dijk [9]. Oink is a high-performance library that
implements multiple state-of-the-art solving algorithms. Oink is
integrated into Knor by Van Dijk, Van Abbema and Tomov [10],
a tool for synthesising AIGER circuits from linear temporal logic
specifications.
In the yearly reactive synthesis competition (SYNTCOMP) [6],

researchers compare the tools they developed for solving synthesis
problems. In 2020 the parity game track was added, in which the task
is to synthesize an AIGER circuit from a parity game. Knor ranked
highest in the time-based ranking of the parity game track in 2021
and 2022, performing 10 times faster than the competitors ltlsynt and
Strix. However, Strix performed much better in the quality-based
ranking, which is based on the number of gates in the synthesized
AIGER circuit.

The size of the AIGER circuit is highly important because it
directly relates to the physical size of the hardware. The size of a
parity game solution is defined by the number of reachable vertices
from the initial vertex and directly relates to the number of latches in
the synthesized circuit. However, there is no direct relation between
the number of latches in a circuit and the total number of gates in
that circuit. Nonetheless, the hypothesis is that in general a smaller
parity game solution results in a smaller circuit design.

TScIT 40, February 2, 2024, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

We researched a novel optimization approach that leverages the
efficiency of the tangle learning implementation of the Oink solver
to find smaller solutions. The approach involves identifying and
solving increasingly large subgames until a solvable subgame is
found. We hypothesised that this would result in finding smaller
solutions.
The contributions of this paper are as follows. We implement

novel pruning and growing algorithms to identify subgames in
Python to find solutions to the parent game. We evaluate the im-
plemented algorithms by comparing the sizes of their solutions to
the solutions found by Oink using the benchmarks from the 2023
edition of SYNTCOMP. We find that these algorithms do not find
smaller solutions. We discover and compare the behaviour of prun-
ing algorithms and growing algorithms. The discoveries made give
further insight into how parity games are structured and what sub-
structures exist within them. We also propose a different method
of leveraging the computational efficiency of tangle learning using
subgames.

1.1 Outline
The preliminaries aim to familiarize the reader with important con-
cepts by explaining what parity games are and why current solvers
have shortcomings, it will then define the concept of a subgame. In
the methodology section, the paper discusses how the research was
conducted and why certain choices were made. This is followed
by the results and findings of the research and a discussion of the
results, including a recommendation for how the results can be used
in future work.

2 RELATED WORK
As mentioned in the introduction, our research is based on the
research done during the development of the tools Oink [2, 8, 9] and
Knor [10]. Other tools that compete in the parity game category of
SYNTCOMP are Strix [3, 4] and ltlsynt [5, 7]. Both configurations
of Strix perform the best in the quality-based ranking.
One thing we can see in the results from SYNTCOMP 2022 [6]

is that the different configurations of Knor (synt_sym, synt_sym_-
abc and synt_tl) perform very differently. The synt_sym and synt_-
sym_abc configurations implement symbolic algorithms based on
fixpoint algorithms developed by Lijzenga and Van Dijk [2]. While
the synt_tl configuration implements tangle learning developed by
Van Dijk [8]. The tangle learning approach performs the best in the
time-based rankings by far. However, in the quality-based ranking,
it is not competitive.
As far as we are aware, the approach of using subgames to find

smaller solutions has not been explored before.

1

TScIT 40, February 2, 2024, Enschede, The Netherlands Stijn Dijkstra

3 PRELIMINARIES

3.1 Parity Games
A parity game is a type of directional graph in which each vertex
has a priority given by a positive integer. In a parity game each
vertex must have at least one outgoing edge. A parity game can
be seen as an infinite game played between two players who both
control the same pawn that moves between vertices. Each vertex
is owned by one and only one of the two players. The two players
are referred to as ’even’ and ’odd’. Players do not take turns in the
traditional sense, instead, the acting player is determined by who
owns the vertex that the pawn is currently on. The acting player
chooses which outgoing edge the pawn traverses next. In other
words, the player who owns the vertex decides the next move. Since
each vertex has at least one outgoing edge and players must make a
move, a parity game never ends.
To determine the winner of a parity game we assume that each

player has a defined strategy, meaning that from each vertex a player
owns, that player will always make the same move, other informa-
tion is irrelevant. Positional strategies are applicable to parity games.
In other words, to determine the optimal next move, the player only
needs to know the current position of the pawn, no information
about any previous moves is necessary. Since the graph is finite and
the number of vertices visited in a game is infinite, the game always
eventually visits a subset of the vertices an infinite number of times.
To determine the winner of a game given the two positional strate-
gies, we determine the subset of vertices that are infinitely visited.
The winner is given by the parity of the highest priority in that
subset.
When both players have a strategy, we can determine for each

vertex which player would win if the pawn starts from that vertex.
Additionally, algorithms that compute the optimal strategy for one
player, also compute the optimal strategy for the other player as
part of that process.

3.2 Solutions and solution domains
A solution to a parity game is given as the optimal strategy for the
even player and includes for each vertex whether that vertex is won
using this strategy. Within the field of reactive synthesis, we are
only interested in a single initial vertex and its solution domain. The
initial vertex represents the initial state of the controller that we
are synthesising. If the initial vertex is not won by the even player,
we consider the parity game unsolvable and a controller can not be
synthesised.

The solution domain is defined as the subset of vertices that can
be reached from the initial vertex given the strategy of the even
player. Since we have no control over the strategy of the odd player,
we look at all possible paths that can be taken. The solution size
is the size of the solution domain. All the vertices that are not in
the solution domain represent non-reachable states, which can be
ignored in the following synthesis steps.
Figures 1, 2, 3 and 4 show how the solution domain is deter-

mined. For this to be a solution domain and not just a subgame, the
highest priority in each of the 3 possible cycles must be even. Oth-
erwise, it means that an odd strategy exists for which we do not win.

initial

b c

d

ef

Fig. 1. Assuming the even strategy ((𝑖𝑛𝑖𝑡 → 𝑏), (𝑑 → 𝑒), (𝑒 → 𝑐)) (given
in blue edges) is a winning strategy, the blue vertices would be the solution
domain. Figures 2, 3 and 4 illustrate all the possible cycles that can result
from different odd strategies. Squares are even vertices, and diamonds are
odd vertices. Priorities are not shown here.

initial

b c

Fig. 2. Given the even strategy illustrated in Figure 1. This figure illustrates
the infinite cycle given the odd strategy ((𝑏 → 𝑖𝑛𝑖𝑡), (𝑐 →?), (𝑓 →?)) .

initial

b c

Fig. 3. Given the even strategy illustrated in Figure 1. This figure illustrates
the infinite cycle given the odd strategy ((𝑏 → 𝑐), (𝑐 → 𝑖𝑛𝑖𝑡), (𝑓 →?)) .

initial

b c

Fig. 4. Given the even strategy illustrated in Figure 1. This figure illustrates
the infinite cycle given the odd strategy ((𝑏 → 𝑐), (𝑐 → 𝑏), (𝑓 →?)) .
Notice that the initial vertex is not always included in the infinite cycle.

2

Finding Smaller Parity Game Solutions by Identifying and Solving Subgames using Oink TScIT 40, February 2, 2024, Enschede, The Netherlands

3.3 Subgames
A subgame is a region of the original parity game (from now called
the parent game) that contains the initial vertex. For a region to be
considered a subgame there needs to exist a strategy for the even
player such that the pawn always stays within the region, regardless
of the strategy of the odd player. In other words, all vertices in the
region that the even player owns should have at least one successor
inside the region, and all vertices in the region that the odd player
owns should not have any successor outside the region. Any vertices
for which these requirements do not hold are deemed problematic.
Note that the concept of subgames in this case relies on the

existence of an initial vertex. This is an extension of the concept of a
parity game, which does not normally have a defined initial vertex.
The initial vertex can be added because in the context of reactive
synthesis, there is also an initial state. This means that the proposed
improvements do not apply to parity games in general.

3.4 Tangle Learning
The reason why the synt_tl configuration of Knor performs faster
is that it uses tangle learning, developed by Van Dijk [8]. Tangle
learning revolves around finding tangles and dominions. The issue
with tangle learning is that it works by gradually increasing the size
of tangles, which may make it less likely to find small solutions.

3.5 Visual Representation
To better explain our findings we use multiple graphs in this paper.
In these graphs, we use squares to represent even vertices and dia-
monds to represent odd vertices. When discussing a set of vertices,
we use green vertices to indicate vertices that are within the set and
are non-problematic. We use red vertices to indicate vertices that
are within the set and are problematic. Grey vertices are outside of
the set.

even odd

a b

non-problematic problematic

c d

Fig. 5. A visual example of the different possible vertices.

4 METHODOLOGY

4.1 Technologies and Tools
While Knor and Oink are both written primarily in C++ and C,
we use Python for the implementation of our algorithms. Using
Python does limit the possibilities of using execution time metrics
for comparing performance. However, our research is primarily
concerned with finding higher-quality solutions, rather than finding
solutions quicker, meaning that execution time metrics are less
important for evaluating results. Additionally, we run the larger

benchmarks, which Oink can solve in seconds, for up to 10 minutes.
This way we ensure that no interesting results are lost due to poor
optimization. We use the parity game format that was previously
introduced by the tool PGSolver [1] and is now being widely used
in related research.

4.2 Identifying Subgames
The methods for subgame identification that we use all consist
of 2 components. The first component generates a set of vertices
based on the distance of each vertex from the initial vertex. The
algorithm starts with a small set of vertices and gradually increases
the maximum distance from the initial vertex.

The distance can be calculated in various ways. We evaluate three
options; SDSI (Simple Distance Subgame Identification), SDSI-BI
(SDSI-Bidirectional) and SDSI-REV (SDSI-Reverse). SDSI calculates
the distance based on the number of edges that need to be traversed
to get from the initial vertex to the other vertex, taking into account
the direction of the edges. SDSI-BI and SDSI-REV do the same, except
SDSI-BI ignores the direction of edges, and SDSI-REV traverses
edges in the reverse direction.

The vertexset that is generated by the first component is in most
cases not a subgame. It is more likely that it contains one or more
problematic vertices. The second component is responsible for re-
moving those problematic vertices from the vertexset. We evaluated
two approaches; pruning and growing. Pruning finds a subgame
by repeatedly removing vertices from the set. Growing finds a sub-
game by repeatedly adding vertices to the set. These approaches are
explained in more detail in the findings and results section.

4.3 Evaluating Results
To evaluate the results we time the execution of different algorithms
for each benchmark. We use the benchmarks of SYNTCOMP 2023
and use Knor to convert them to parity games in the PGSolver
format.[1] This means that we evaluate the algorithms using the
exact same experiments as were used to evaluate the performance
of Oink. A 60-second timeout was used, this should be more than
enough, even on a relatively slow system.

5 FINDINGS AND RESULTS
In this section, we discuss the performance of various algorithmic ap-
proaches to the problem of subgame identification. We first discuss
the differences in performance between SDSI, SDSI-Bidirectional
and SDSI-Reverse, all using pruning as the second component. Then
we discuss the performance of pruning methods and why the grow-
ing methods did not offer valuable results. Finally, we discuss our
findings regarding subgames and how they relate to each other and
other structures. For reference, the system used for performance
evaluation is a desktop system running Windows and a Debian
image using WSL. The system uses an Intel i5-4670k at 4GHz and
16Gb of memory. Oink is not GPU-accelerated.

5.1 SDSI, SDSI-BI and SDSI-REV
During testing we found that the algorithm SDSI-Reverse has an
issue. Since the algorithm only traverses edges backwards, and some
vertices are only reachable from the initial vertex by traversing the

3

TScIT 40, February 2, 2024, Enschede, The Netherlands Stijn Dijkstra

0-1
9

20
-29

30
-99

10
0-9
99
9

10
4 -10

6

60

80

100

83
87 86

82 80
83

95 93
97

100

Size of parent game

Si
ze

of
su
bg
am

e
(%
)

Relative Size of Subgames

SDSI SDSI-Bidirectional

Fig. 6. The average size of subgames found by SDSI and SDSI-BI, relative
to the parent game. The games are grouped by the number of vertices in
the parent game.

edges in the normal direction, it is not guaranteed that as we increase
the maximum distance the whole graph is eventually included in the
vertexset. This means that it will not contain all possible subgames.
Therefore we op to exclude it from our results.

For SDSI it is also not guaranteed that it will eventually contain all
vertices. However, SDSI will always eventually include all vertices
that are reachable from the initial vertex. Since any vertices in a
solution domain must be reachable from the initial vertex, we know
that SDSI never excludes any vertices that may be part of a solution
domain.

SDSI-Bidirectional will always eventually include the whole game,
meaning that it also never misses any subgames. However, this is
also why SDSI works better than SDSI-Bidirectional in many cases.
SDSI will never include any vertices that are not reachable from
the initial vertex, while SDSI-Bidirectional will sometimes include
vertices that can not be part of a solution domain. One situation
where SDSI-Bidirectional offers better results is when the initial
vertex is part of a cycle, then it requires fewer iterations because
each iteration travels that cycle in both directions simultaneously.
Fewer iterations can lead to a smaller subgame.
As we can see in Table 1 SDSI finds subgames in 135 out of

208 cases, whereas SDSI-Bidirectional only finds subgames in 55
cases. However, in some cases, SDSI-Bidirectional finds even smaller
subgames than SDSI. In Figure 6 we show the size of subgames found
by SDSI and SDSI-BI relative to the size of the parent game. We
grouped the 208 different benchmarks by their size and took the
average relative size. The 0-19 group contains 44 benchmarks, the
20-29 group contains 40 benchmarks, the 30-99 group contains 54
benchmarks, the 100-9999 group contains 61 benchmarks and the
104-106 group contains 9 benchmarks. This graph clearly shows that
in the benchmarks that we tested, the benefit of SDSI-BI diminishes

< = >

SDSI v Parent 135 73 0
SDSI-BI v Parent 55 153 0
SDSI v SDSI-BI 102 97 9

Table 1. This table compares the size of the subgames found by SDSI and
SDSI-BI to the size of the Parent game and compares them to each other.
For example, there are 135 benchmarks where SDSI finds a subgame that is
smaller than the parent game, and there are 73 benchmarks where the best
subgame it finds is as big as the parent game, meaning that it is the parent
game itself.

when games get larger, while the relative size of SDSI remains
around 84% for each group of games.

5.2 Pruning
When a set of vertices does not represent a subgame because there
exist problematic vertices in the set, it is possible to prune it. The
process of pruning repeatedly removes any problematic vertices.
Note that removing a vertex can cause neighbouring vertices to
become problematic, that is why we should repeat the process over
multiple iterations. If at any point the initial vertex is removed, we
should abort the process and the pruning is unsuccessful. In figures
7, 8, 9 and 10 we illustrate how the algorithm works.

An interesting characteristic of pruning is that a problematic ver-
tex can never become non-problematic by removing another vertex,
thus pruning always results in the same subgame independent of in
what order the problematic vertices are removed. This means that
there is never an intermediate state of the set that is a subgame. This
also means that pruning always finds the largest possible subgame
in a set of vertices. Using this information we can conclude that if
the pruning process is unsuccessful, it is proven that there exists no
subgame within the given set of vertices.

We improved the pruning algorithm further by only considering
the neighbouring vertices of vertices that were deleted in the previ-
ous iteration. When vertex 𝑓 is removed from the set as illustrated

a

b c

d

ef

Fig. 7. The complete parity game with initial vertex 𝑎. In this example, we
are interested in finding the largest subgame that does not contain the
vertex 𝑒 .

4

Finding Smaller Parity Game Solutions by Identifying and Solving Subgames using Oink TScIT 40, February 2, 2024, Enschede, The Netherlands

a

b c

d

ef

Fig. 8. Vertex 𝑓 is problematic because it is odd and it has an outgoing edge
to vertex 𝑒 which is outside the set. Vertex 𝑑 also has an outgoing edge to
vertex 𝑒 but is not problematic because it is even and it also has an outgoing
edge to vertex 𝑓 (which at this point is still in the set).

a

b c

d

ef

Fig. 9. Vertex 𝑑 has now become problematic because it has no successors
within the set.

a

b c

d

ef

Fig. 10. There are no longer any problematic vertices. Both odd vertices
𝑏 and 𝑐 have no successors outside the set and the even vertex 𝑎 has one
successor within the set. The set of vertices (𝑎,𝑏, 𝑐) represents a subgame.
Subgame (𝑎,𝑏, 𝑐) is the largest subgame that does not contain the vertex 𝑒 .

in figure 8 only the vertices 𝑎, 𝑐 and 𝑑 would be rechecked. The effi-
ciency improvement that comes from this method depends heavily
on the structure of the game. Structures in which only one vertex is
removed per iteration benefit most from this optimization.
In Algorithm 1 we show the optimized algorithm. In this algo-

rithm, 𝐺 indicates the parent game, V indicates the vertexset that
is being pruned, P is a temporary value that stores the problematic
vertices of each iteration and N is a temporary value that stores the
neighbours of the vertices that were in P in the previous iteration.

Algorithm 1 Pruning algorithm
𝐺 = parent game
𝑉 = vertexset to prune
𝑃 ← ∅
for 𝑣 ∈ 𝑉 do

if 𝑜𝑤𝑛𝑒𝑟 (𝑣) = 𝑒𝑣𝑒𝑛 then
if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑣) ∩𝑉 = ∅ then

⊲ Vertex is even and has no successors in the set.
𝑃 ← 𝑃 + 𝑣

end if
else if 𝑜𝑤𝑛𝑒𝑟 (𝑣) = 𝑜𝑑𝑑 then

if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑣) −𝑉 ≠ ∅ then
⊲ Vertex is odd and has successors outside the set.
𝑃 ← 𝑃 + 𝑣

end if
end if

end for
while 𝑃 ≠ ∅ ∧ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝐺) ∉ 𝑃 do

𝑉 ← 𝑉 − 𝑃
𝑁 ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑃) ∪ 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑃)
𝑃 ← ∅
for 𝑛 ∈ 𝑁 do

if 𝑜𝑤𝑛𝑒𝑟 (𝑛) = 𝑒𝑣𝑒𝑛 then
if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑛) ∩𝑉 = ∅ then

⊲ Vertex is even and has no successors in the set.
𝑃 ← 𝑃 + 𝑛

end if
else if 𝑜𝑤𝑛𝑒𝑟 (𝑛) = 𝑜𝑑𝑑 then

if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑛) −𝑉 ≠ ∅ then
⊲ Vertex is odd and has successors outside the set.
𝑃 ← 𝑃 + 𝑛

end if
end if

end for
end while
if 𝑃 ≠ ∅ then

𝑉 ← ∅
end if

5

TScIT 40, February 2, 2024, Enschede, The Netherlands Stijn Dijkstra

5.3 Growing
The alternative to pruning is growing. We start with a set of vertices
that is not a subgame and try to resolve any problems by adding
vertices. In contrast to pruning, growing can lead to multiple dif-
ferent subgames, as it is dependent on the order of adding vertices.
One problem can have multiple solutions.
We tested an algorithm which creates a new branch for each

possible next vertexset. We tested this method with both a breadth-
first approach and a depth-first approach by using queue and stack
data structures respectively. We applied additional optimization
by storing a hash of each previously evaluated vertexset, so that
other branches can be evaluated more quickly. Both the breadth-first
approach and the depth-first approach were unsuccessful because
the number of branches increases too rapidly with each iteration.
Results show that the computational complexity of these algorithms
is too high for larger parity games.
We opt to not include the performance metrics of the growing

algorithms because there is no value in them. The algorithms are
only capable of finding solutions to the smallest parity games in
the benchmark. The existing solvers in Oink are capable of solving
them in milliseconds and these implementations are unable to solve
them within 60 seconds. Furthermore, we tested the algorithms with
a 10-minute timeout on a select number of parity games from the

a

b c

a

b c

a

b c

Fig. 11. An example where the growing method has multiple possible solu-
tions. Vertex 𝑎 is problematic because it does not have a successor inside the
set. Adding either vertex 𝑏 or vertex 𝑐 to the set could resolve this problem
and create a subgame.

benchmark and found that they were also unable to find smaller
solutions.

5.4 Subgames
We discovered that the vertices in a solution domain always repre-
sent a subgame. For any given solution domain, it must be true that
there is no way for the odd player to escape the domain. It must
also be true that all even vertices in the domain have at least one
successor going back into the domain. It must also be true that the
solution domain contains the initial vertex. This means that all the
requirements hold for the set of vertices of the solution domain to
be a subgame. Therefore all solution domains are subgames.
More formally, let 𝑆 be the set of sets that represents all possi-

ble subgames in parent game 𝐺 and let 𝐷 be the set of sets that
represents all possible solution domains in the parent game 𝐺 . We
know ∀𝑑 ∈ 𝐷∃𝑠 ∈ 𝑆 (𝑠 = 𝑑). Then we also know that 𝐷 ⊆ 𝑆 . In
some parity games 𝐷 = 𝑆 , for example, a trivial game with only one
vertex with even priority with only one outgoing edge back to itself.
This does not hold for all parity games because there are games
that are unsolvable and any game can be expressed as a subgame
of a larger game. Any unsolvable game logically does not contain a
solution domain because there is no solution.
We experimented using this property to quickly find small sub-

games. We first solve the parent game using Oink and get a solution
domain 𝑑 . Then for each vertex 𝑣 ∈ 𝑑 , we create a new set 𝑑′ where
𝑑′ = 𝑑 − 𝑣 . For each set 𝑑′ we prune the set. If the pruning is suc-
cessful, the resulting subgame is again solved using Oink. For each
subgame that is solvable, we calculate the size of the solution do-
main. We use the solution domain with the smallest size to repeat
the process until we no longer find smaller solution domains. This
greedy approach does work for quickly finding small subgames, but
it does not lead to smaller solution sizes.

5.5 Evaluation of Oink
After finding the negative results of the subgame-solving approach,
we decided to further analyse the performance of the various solvers
in Oink. We tested Tangle Learning (TL), Parallel Distraction Fix-
point Iteration (FPI), Fixpoint Iteration using Justifications (FPJ),
Parallel Zielonka’s Recursive Algorithm (ZLK), Parallel Strategy
Improvement (PSI), and Priority Promotion (PP). Contrary to our
expectations, all the algorithms found solutions with the exact same
sizes for every single problem, as seen in Table 2. This suggests
that those solutions may be the best possible solutions to the parity
game problems. However, as noted by Van Dijk in [8] many solving
algorithms implicitly use the concept of tangles. This indicates that
the various solving algorithms may be more similar to each other
than previously thought and may mean that all those algorithms
have similar blind spots.

6 DISCUSSION
The performance of our testing tool is limited because our subgame
identification algorithms are not integrated directly with the solving
algorithms inOink. Currently, the implementation stores data in files
before using Oink to solve them. This adds considerable overhead
to solving games.

6

Finding Smaller Parity Game Solutions by Identifying and Solving Subgames using Oink TScIT 40, February 2, 2024, Enschede, The Netherlands

finds smallest known runtime
solutions (full benchmark)

TL ✓ 3.445s
FPI ✓ 7.191s
FPJ ✓ 4.840s
ZLK ✓ 7.147s
PSI ✓ 7.539s
PP ✓ 3.512s

Table 2. The performance of 6 solvers in Oink with parallelization enabled.
We see that all solvers are capable of finding the smallest known solutions
to the problems.

We would suggest further research on the performance of the
SDSI and pruning combination. Currently, it is only tested with the
208 benchmarks from SYNTCOMP.
As we discussed in our findings, for any possible game the set

of solution domains is a subset of the set of subgames. Therefore it
may seem more interesting to look deeper into solution domains.
However, at that point, we are straying so far from subgame identi-
fication that it becomes an addition to existing solving techniques.
We deliberately tried not to create a quasi-solving algorithm.

We pivoted our approach multiple times during our research.
In multiple instances, the preliminary results of an implemented
algorithm showed that our initial approach was not viable. This is
unavoidable in exploratory research. During implementation, we
gained better insight into how computationally expensive some
initially proposed algorithms are, a good example of this is the
growing algorithm.

7 CONCLUSION
In this work, we explored the problem of subgame identification
as a separate problem from parity game solving. We created algo-
rithms that are capable of identifying subgames in parity games and
determined that using SDSI with pruning is the best approach for
identifying subgames among the tested algorithms. We hypothe-
sised that finding small subgames would also lead to small solutions,
but our data shows no evidence of this.
As we noted in our findings, the mediocre performance in the

quality-based rankings of SYNTCOMP is not a result of the tangle
learning algorithm. All the existing algorithms in Oink, including
tangle learning, are capable of finding small solutions to parity
games. Therefore subgame identification may not be the solution to
the issues with quality-based performance in Oink.

However, there are potential efficiency benefits to using subgame
identification as a preprocessing step. We propose a system that
uses a combination of the available solvers. This allows us to verify
that subgames have a solution first using the quick evaluation that
tangle learning in Oink offers, and then find a small solution to
that subgame by using a different solving algorithm. In the large
benchmarks, SDSI with pruning identifies subgames that are on
average 80% of the size of the parent game. Given the suspected non-
polynomial complexity of parity game problems, the 25% decrease
in size can even result in more than 25% decrease in runtime.

ACKNOWLEDGMENTS
I want to express my appreciation for the help I got from my su-
pervisors dr. Tom van Dijk and Matthew Maat MSc. They aided
me in my research by guiding me towards interesting papers and
engaging in useful discussions about the subjects at hand. They
were genuinely invested in my research and this gave me a lot of
motivation.

REFERENCES
[1] Oliver Friedmann and Martin Lange. 2010. The PGSolver Collection of Parity

Game Solvers Version 3. https://api.semanticscholar.org/CorpusID:17467844
[2] Oebele Lijzenga and Tom van Dijk. 2020. Symbolic Parity Game Solvers that Yield

Winning Strategies. In GandALF (EPTCS, Vol. 326). 18–32.
[3] Philipp J. Meyer and Salomon Sickert. 2022. Modernising Strix. https://api.

semanticscholar.org/CorpusID:247080664
[4] Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. 2018. Strix: Explicit

Reactive Synthesis Strikes Back!. In CAV (1) (Lecture Notes in Computer Science,
Vol. 10981). Springer, 578–586.

[5] Thibaud Michaud and Maximilien Colange. 2018. Reactive Synthesis from LTL
Specification with Spot. In Proceedings Seventh Workshop on Synthesis, SYNT@CAV
2018 (Electronic Proceedings in Theoretical Computer Science, Vol. xx). xx.

[6] Guillermo Perez. 2022. SYNTCOMP 2022 Results | The Reactive Synthesis Com-
petition. http://www.syntcomp.org/syntcomp-2022-results/

[7] Florian Renkin, Philipp Schlehuber, Alexandre Duret-Lutz, and Adrien Pommellet.
2021. Improvements to ltlsynt. Presented at the SYNT’21 workshop, without
proceedings..

[8] Tom van Dijk. 2018. Attracting Tangles to Solve Parity Games. In CAV (2) (Lecture
Notes in Computer Science, Vol. 10982). Springer, 198–215.

[9] Tom van Dijk. 2018. Oink: An Implementation and Evaluation of Modern Par-
ity Game Solvers. In TACAS (1) (Lecture Notes in Computer Science, Vol. 10805).
Springer, 291–308.

[10] Tom van Dijk, Feije van Abbema, and Naum Tomov. 2024. Knor: reactive synthesis
using Oink. (In submission) (2024).

[11] Wieslaw Zielonka. 1998. Infinite Games on Finitely Coloured Graphs with Ap-
plications to Automata on Infinite Trees. Theor. Comput. Sci. 200, 1-2 (1998),
135–183.

7

https://api.semanticscholar.org/CorpusID:17467844
https://api.semanticscholar.org/CorpusID:247080664
https://api.semanticscholar.org/CorpusID:247080664
http://www.syntcomp.org/syntcomp-2022-results/

	Abstract
	1 Introduction
	1.1 Outline

	2 Related Work
	3 preliminaries
	3.1 Parity Games
	3.2 Solutions and solution domains
	3.3 Subgames
	3.4 Tangle Learning
	3.5 Visual Representation

	4 Methodology
	4.1 Technologies and Tools
	4.2 Identifying Subgames
	4.3 Evaluating Results

	5 Findings and Results
	5.1 SDSI, SDSI-BI and SDSI-REV
	5.2 Pruning
	5.3 Growing
	5.4 Subgames
	5.5 Evaluation of Oink

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

