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cation for RESTful APIs. Despite OntoUML’s expressiveness in capturing
complex relationships within domains, a significant gap hinders effective
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1 INTRODUCTION
Many organisations, whether they are developers at corporations
or researchers at public institutions, use ontologies to represent an
ever-evolving landscape of information systems. They use them to
make the nature and structure of engineered systems more explicit
[17] while helping us to comprehend the different complexities that
the stakeholders and environment dictate for us [18]. Several on-
tology languages have been developed for this reason and one of
them is OntoUML, an extension of the Unified Modeling Language
(UML) and an ontology-driven conceptual modelling language de-
signed to reflect ontological distinctions of the upper-level ontology
called Unified Foundational Ontology (UFO). It serves as a frame-
work for capturing intricate relationships within any given domain.
Currently, OntoUML finds successful applications across various do-
mains at present [9] and more tools are being developed to support
its utilization and further enhance its impact.
The current landscape of information systems demands a mu-

tually beneficial relationship between ontological models and the
practicalities of software development. Despite the rich expressive-
ness that OntoUML provides in capturing intricate relationships
between concepts, a considerable gap persists in effectively trans-
lating this ontological knowledge into the language of developers,
specifically for this research, the OpenAPI Specification. A study in
2021 [5] analyzes the use of ontologies during the development of
tools that are used for building APIs. We find that in many cases
ontologies are not included in the design process, highlighting the
gap which represents a barrier to achieving effective collaboration.
Developers, tasked with creating functional software systems, often
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find themselves grappling with the challenge of integrating onto-
logical models into their workflows. The OpenAPI Specification [2]
stands as the basis of a communication language for web developers,
offering a standardized and interpretable text for both developer
and machine. Its widespread adoption has streamlined collabora-
tion among developers and enhanced the accessibility of APIs [3].
However, creating an API of the model is often a lot of work and a
small change in the model might have a large impact on the API [6].
This impedes collaboration because the developers often have little
knowledge of ontology models while ontologists spend countless
hours refining them [9].

The goal of this research is to develop a system for transforming
OntoUMLmodels into the OpenAPI Specification, thereby contribut-
ing to filling the gap. The aim is to ensure that the semantics of
OntoUML are harnessed within the widely adopted OpenAPI Speci-
fication. The goal is reached by the achievement of the sub-goals:

• Design a process for transforming OntoUML models into the
OpenAPI Specification. This includes defining clear guide-
lines and constraints to capture and ensure the preservation
of the semantic richness.

• Illustrate the transformation process by a use case example.
• Evaluate the implemented transformation process.

In the upcoming sections of this paper, we will navigate through
the background research which lays the foundation for the approach
of the transformation and explains the tools that are used. After this,
section 3 analyses which requirements a successful transformation
should adhere to. The main contribution of this paper is given in
section 4, which is divided into two parts: abstraction and mapping.
When applying abstraction we reduce the original graph to not
overcomplicate the result, then we convert the reduced graph to
OpenAPIwith distinctmappings. A use case illustration is given next
to the entire transformation to supply you with visual context. Next,
section 5 compares the results presented there with relevant related
work and we conclude in section 6 with some final considerations
and future work ideas.

2 RESEARCH BASELINE

2.1 OntoUML
The need for ontologies, as described by Mizoguchi and Borgo in
[11], is indicated by the significance of understanding a system. They
show the interaction and dynamic functionality between entities
within the models as well as their relations. The Unified Founda-
tional Ontology (UFO) [8] is one of these ontologies. It is a frame-
work developed to provide dynamic entities and their interactions
and relies on micro-theories that address a range of conceptual
modelling topics. Together, they cover the taxonomy of objects, the
nature of part-whole relationships and the classification of events
and roles among subjects. [16] shows that the UFO is currently the
second most used ontology, but is also being adopted by more and
more researchers as the fastest-growing ontology. OntoUML is an
ontology-driven conceptual modelling language that extends UML
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class diagrams by defining a set of stereotypes that reflect UFO
ontological distinctions into language constructs. Between these
stereotypes, we define more intricate relations that give more mean-
ing than many standard associations provided by UML. OntoUML
has some important distinctions between entities:

2.1.1 Types and individuals. Within the context of OntoUML, a
type is something that classifies a thing. They are abstract ideas
that help us classify the things around us. For example, a person is
a type, but you and I are not. We are instantiations of that type or
so-called individuals. OntoUML does not define individuals, only
types.

2.1.2 Identity. Identity focuses on how entities establish and main-
tain their distinctiveness within a system. This involves understand-
ing the criteria and characteristics that define the identity of entities
and how these criteria influence their representation and behaviour
within the ontology. We talk about types that provide identity and
those that do not. For example1, when distinguishing between a
complete statue or the same statue that misses an arm, most would
argue that the statue’s appearance has changed, but its identity has
not. It is still the same statue, it just misses an arm. Identity classes
are also referred to as sortals, and consequently, classes that do not
provide identity are non-sortals.

2.1.3 Rigidity. When we look at rigidity in OntoUML, the empha-
sis is on capturing the degree to which an entity’s properties and
identity remain constant or change over time. Rigidity is crucial in
understanding the dynamic nature of entities within a system and
how their attributes may evolve or persist under various conditions.
We distinguish between types that are rigid and types considered
non-rigid. If a person grows older, is that person still the same per-
son? Well yes, but what if we look at a student? A person can be a
student forever, but that role usually changes over time.

2.2 Ontology abstraction
Before the transformation of a graph to any desired structure, it is
good practice first to reduce it to a minimized version of that graph.
That way, we do not overcomplicate our final results and ensure an
easier understanding of the underlying patterns and relationships
within the data. Abstraction plays a crucial role in this process, as it
allows us to focus on the essential elements of the graph while dis-
carding unnecessary details. Multiple approaches have been created
for the abstraction of ontologies.
One particular approach [10] suggests four rules for different

patterns within OntoUML. This paper builds on the ideas proposed
by Egyed in [4]. His approach proposes some standardized replace-
ments in a small subsection of a UML graph. Abstraction of the
graph can be substantial if it is possible to replace enough patterns
while keeping the graph as close to the expansion as possible. In
general, every rule abstracts a small structure into a smaller form.
They are formed according to two principles:

• Objects are prioritized over Relators because the latter inher-
ently relies on the existence of the former.

1This example is reused fromhttps://ontouml.readthedocs.io/en/latest/theory/identity.html

• The most important object types are those that provide iden-
tity and are rigid because they establish a stable foundation
for the essentials of the model and aspects of the domain.

Other approaches such as [15], or extending approaches as [14]
also use abstraction for the minimization of graphs in OntoUML,
but the suggested rules by [10] are used as the methodology be-
cause the research limits itself to the constructs abstracted there.
Thus, the rules of Guizzardi et al. lay a foundation for us to build a
transformation process on in section 4, and they are tackled shortly
down here one by one:

2.2.1 Abstracting Relators. A Relator defines a more intricate rela-
tion and always relies on other individuals to exist. In the abstraction
of a Relator, the Relator is removed and only the derived relations
are left. Between them then exists not a Material relation, but a
Formal relation with the same cardinalities. This is possible because
the relation still exists and is functional for an API, but this does
introduce an ambiguity problem as highlighted in [8] for conceptual
models.

2.2.2 Abstracting non-sortals. Classes that can have multiple iden-
tity principles are called non-sortals. They capture properties that
are shared by individuals of different kinds. This second rule repli-
cates all attributes of the non-sortal to the specializing types while
removing the non-sortal. Any relations of the non-sortal will also be
replicated and receive an annotation of the name of the non-sortal.
This achieves less complexity in the model but may add duplication
of properties.

2.2.3 Abstracting sortals. Although sortals are the building blocks
of an API and the most important classes within OntoUML it is
possible to abstract them. Through the abstraction of Subkinds,
Phases and Roleswe try to concentrate information around the Kinds
in our model. As opposed to lowering the attributes as seen above,
they are lifted towards the general stereotype. Relations are also
linked to the general class, but we could lose cardinality constraints
defined in the original model by doing so.

2.2.4 Abstracting partitions. Phase and Subkind partitions are gen-
eralisation sets defined in OntoUML and are a popular design pattern
for specifying the categories of a property of some class. The dif-
ference lies in their rigidity. Subkinds are static and their instances
cannot change between the elements of the generalisation set. Com-
pare this to dynamic phases which can be updated over time. The
4th rule states that we can abstract generalisation sets into enumera-
tions by lifting the attributes of the classes and basing the literals of
the enumeration on the names of the classes. The name of the enu-
meration should be retrieved from the name of the generalisation
set or composed from the different literals.

2.3 OpenAPI
The goal of OpenAPI is to enhance API development by providing
a standardized way an Application Programming Interface (API)
communicates. OpenAPI defines a schema for one or multiple APIs.
It describes certain information about the API itself, such as a title,
description and version, but more importantly, it describes the API’s
endpoints. Multiple HTTP methods can be defined for endpoints,
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which can all have possible responses to the request. Any endpoint
can also have parameters either in the path, query, headers or body.
The most straightforward way to standardize responses is to use
schema objects that might have different properties and types. It
is also possible to define combinations of types and have required
properties.
OpenAPI also describes security requirements and mechanisms,

which mostly cover how to handle servers and authorization. We
do not take this into regard because including authentication and
permissions within the transformation is not one of the key points
within the transformation and is thus beyond the scope of this paper.

2.4 JSON:API
While OpenAPI provides a systematic framework for the expected
communication the API provides, it can be integrated with JSON:API
to make sure responses are also standardized. JSON:API is designed
to minimize both the number of requests and the amount of data
transmitted. It is also readable by humans and uses a schema to
communicate.

The root structure defines either data or errors. We focus on the
data transmitted because errors are part of the API and not of the
model that describes the relations between objects. The data is a
resource object or a list of resources. Every resource object has a
type and identifier id and may have attributes and relationships.
Relationships within the object only define the type and id. The
actual resource it links to is transmitted in an included section on the
root object. That way, if multiple objects link to the same relation,
we do not duplicate data. JSON:API also defines links for every
resource and its relationships. These links are useful for querying
the exact data from that particular object.

3 REQUIREMENTS
To successfully transform any OntoUML model to the OpenAPI
specification, requirements are set that we wish to achieve. These
requirements can be perceived as the foundation and ensure a com-
prehensive and effective transformation process if they are met. To
keep this research within its proper bounds, only the stereotypes
Kind, Quantity, Collective, Subkind, Role, Phase, Category, Mixin,
RoleMixin, PhaseMixin and Abstract are transformed.
To achieve completeness, the finalized (transformed) OpenAPI

specification should be compatible with the OntoUML modelling
standards. That entails maintaining the integrity and properties of
the ontological constructs and relationships defined in the original
OntoUML diagram [7] throughout the process. Loss of informa-
tion or deviation from OntoUML standards should be avoided and
minimized where possible to ensure a seamless and recognizable
transition between the representations.

The process should also accurately try to capture all relevant con-
straints, relationship cardinalities and semantic nuances embedded
within the model. This is to some extent, because when flattening
the original model information can get lost and not everything can
be converted to the OpenAPI specification.
The comprehension of any ontological model without knowing

what it contains is crucial. What is meant by this, is that the transfor-
mation should be created even though it is unknown what models it

will be used for. It should be flexible and accommodate variations in
OntoUML models. There are quite a lot of recurring design patterns,
but different modelling conventions also pop up often. The objective
is to translate all diverse elements into the OpenAPI specification
and ensure adaptability and consistency throughout the OntoUML
practices without compromising the semantics of the result.

Additionally, the transformation process should support OntoUML
models of varying sizes and complexities. Whether dealing with
focused or intricate models, the process should efficiently generate
the corresponding OpenAPI specification without significant short-
comings. Complexity management of models should also extend to
the transformation process, not to limit its results, but to create a
comprehensive and usable outcome.

Next to that, given the dynamic nature of OntoUML models, the
transformation tool must be maintainable to accommodate changes
and updates in the OntoUML or OpenAPI specification. This re-
quires an extensible architecture that allows the integration of new
constructs or revisions without a necessary overhaul of the trans-
formation tool.

By addressing these requirements, the transformation tool should
provide a robust and reliable mechanism for converting OntoUML
models into OpenAPI specifications. This, in turn, facilitates a seam-
less and integrated transition between ontological modelling and
API development processes.

4 APPROACH
To showcase how the transformation works, the approach will be
demonstrated by a running example throughout the whole section.
The complete diagram can be found in the Appendix under figure 6.
It is an example based on a university structure within the OntoUML
models GitHub repository2.

4.1 Abstraction
The initial phase of the transformation process involves abstraction.
We base the approach for abstraction on four rules of a paper written
in 2019 by Giancarlo Guizzardi et al. [10]. The adaptations to the
approach are made to make the transition to an API easier, most
importantly the attributes and relation of the class are taken into
account. After all, what is a class within an API if it does not hold
actual data? For the abstraction visualisation the OntoUML plugin
within Visual Paradigm3 is used.

Hereafter we present a set of graph-rewriting rules based on [10]
and where some classes may lose or change stereotypes. Stereotypes
should during the abstraction process be looked at as a guideline
which shows their identity and rigidity and can be used to eventually
transform a model to OpenAPI. The abstraction result should not
be viewed as a valid OntoUML.

Another difference is that abstraction can be affected by previous
abstraction methods. Usually, generalisations and relationships can
hinder a step from completion until later. The flow for abstraction

2https://github.com/OntoUML/ontouml-models/tree/master/models/university-
ontology
3Visual Paradigm is a program that can be used to create many different modelling
diagrams. https://www.visual-paradigm.com/
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can be described as follows: Rules 1 to 4 from section 2.2 are repeat-
edly applied until the previous graph is the same as the graph before
it. That is to say, the graph can no longer be abstracted any further.
Let us start by abstracting all Relators as proposed by 2.2.1. We

make a distinction here between Relators that have attributes, gen-
eralisations or those that are ternary, meaning they have more than
two relationships(1), and all others (2). If the Relator fits in the sec-
ond category, it is removed as previously suggested. If on the other
hand, the Relator conforms to the second case, then the Relator’s
stereotype is changed to a kind, meeting the same identity and rigid-
ity principles and the Material is removed. Instead, the Mediations
are transformed to Formal relationships and keep the same cardi-
nalities. Figure 1 shows an example of a Student, Enrollment and
Course. Because the Relator Enrollment contains attributes, it cannot
be removed and is thus changed to a Kind. The Material relation is
removed and the Mediations become Formals.

Fig. 1. Relator Abstraction

For the second, third and fourth rule, we stick to the solution
from sections 2.2.2, 2.2.3 and 2.2.4. Additionally, every attribute that
moves between classes is prefixed by the name of the original class,
making the name clearer and easier to trace back to its original class.
You also prevent duplicate cases by doing so. Let us look at a couple
of structures that show the abstraction process.

Let us start with the removal of a non-sortal, in our case only the
Agent class of stereotype Category. Agent here is a representational
entity that should have a name. The abstraction shows how the
attribute name is brought down to the generalisation specifiers
Person and Organisation, prefixing it with the name of the Agent.
The result is shown on the left-hand side of figure 2 in Person, which
now contains an attribute agentName.

Fig. 2. First Sortal Abstraction

In a different step, but shown in the same figure, sortals are
abstracted. There are three occurrences:

• Professor: Professor can not yet be abstracted because of its
generalisation set Status and general role to the specific Cour-
seCoordinator. First, CourseCoordinator is abstracted, then we
look at Professor once more.

• Student: This Role can be abstracted into the Kind called
Person. We lift the attributes of Student and connect the re-
lationships it holds to Enrollment to Person. That does mean
that not the cardinality changes. Student had a requirement
to have at least one enrollment, but that semantic is sadly lost
when it is flattened to Person.

• CourseCoordinator: The same principle as above can be ap-
plied to CourseCoordinator. First, the attributes are lifted, and
then the relation is changed because not every Professor is a
CourseCoordinator.

The changes that are made can be seen in figure 2. The distinction
between classes removed in the abstraction process and the orig-
inal class, as seen in the example, lies in the presence of certain
attributes. If Professor has one or more courses, we know that they
are a CourseCoordinator.

Following this, the two generalisation sets are flattened. We look
at both cases separately:

• Status: This Phase partition is abstracted to an enumeration
by taking the names of the Phases and using them as literals
for the enum. The status of the professor can change over
time because of the non-rigid qualities of Phases. Status has
no other dependencies or relations, so the partial abstraction
is complete.

• Type: The organisation type is abstracted from a Subkind par-
tition. That means that it is a static enumeration and although
this is not shown in the graph, within OpenAPI this is even-
tually transformed into a read-only attribute. The relation
that existed between University and Faculty, is now a relation
to itself, also with the cardinality changed because not every
organisation (only Universities) has two Faculties, but only
some do.

Both results can be seen in figure 3.

Fig. 3. Generalisation Sets Abstraction
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All rules were abstracted, so we start over and see if any changes
can be made. Because Professor has no generalisation to CourseCo-
ordinator anymore, it is now possible to abstract this using a sortal
abstraction mentioned in 2.2.3. Professor is flattened into Student,
and noteworthy: the enumeration Status is not required anymore,
because only professors have this attribute. Figure 4 shows this.

Fig. 4. Second Sortal Abstraction

There are no classes that can be abstracted, and thus the abstrac-
tion process is now complete. A finalized graph can be seen in the
appendix as figure 7.

4.2 Mapping
After the abstraction, every OntoUML element left will be mapped
to some part within OpenAPI. We distinguish between the different
elements that are left within the model, namely classes, attributes
and relationships. A proof of concept transformation is built within
a fork of the ontouml-js repository on github4. In this repository,
there are already some other transformations, for example from
OntoUML to OWL. It also has tools that easily parse models and
show the structure of class properties, showcasing its potential and
the interest of others in this research area.
The basis of any OpenAPI schema is the following:

1 openapi: '3.0.0'
2 info:
3 title: UniversityModel
4 version: 1.0.0
5 # objects beneath are filled by the transformation
6 components:
7 schemas:
8 responses:
9 paths:

Because the space for this paper is limited, the next examples will
not show the entire example but individually refer to where they fit
in the schema.

4.2.1 Classes. Classes after abstraction are transformed into schema
objects that directly reflect the name of the Class. There are two
exception cases and a general one:

• Datatype Stereotype: All Datatypes are evaluated during the
attribute mapping in 4.2.2, and thus skipped here.

• Enumeration Stereotype: Enumerations are mapped to a string
schema type with the property enum which contains the
literals of the enum. Multiple values of the enumeration are
impossible because it is a disjoint and complete class.

4https://github.com/OntoUML/ontouml-js

• For all other cases: they are transformed into an object schema,
where properties can be added later. (4.2.2)

A partial example shown earlier is continued here:

Fig. 5. Mapping Example

When the class transformation is applied, the result is the follow-
ing:

1 Organisation:
2 type: object
3 Type:
4 type: string
5 readOnly: true # because of its static origin of Subkinds
6 enum:
7 - university
8 - faculty

As you can see above, both classes keep their name and become
schema objects. Organisation becomes an object schema where at-
tributes can be added later because it is a Kind and thus falls in the
other category, while Type is mapped to the enumeration schema.

4.2.2 Attributes. The information of our system is stored in at-
tributes of schema objects. OpenAPI defines six types, where the
first four are primitive:

• string (primitive)
• integer (primitive)
• number (primitive)
• boolean (primitive)
• object
• array

Every attribute is assigned to the schema it belongs to and the name
of the datatype is compared with the types above and other schemas.
If it does not match, the type is checked against the names of other
schema objects. It might be an Enumeration for example. If nothing
is found, we default to a string because it is the most dynamic and
able to represent other types. If the name of the datatype contains
an opening and closing square bracket, the type is assumed to be
an array and the rest of the name is matched as described before.
The string type can also fitted with a formatter to display dates and
emails for example.
We know that some attributes are not required, usually because

they were lifted from a specialized class to a general one. In the Ope-
nAPI specification, this can be denoted with the keyword nullable.
All other requirements are marked as required.

Attributes are not placed directly on the root object but are nested
into other property attributes. This fits the JSON:API description of
how attributes should be formatted in section 2.4.
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The first three attributes of Organisation are transformed from
figure 5 to show how an attribute is transformed.

1 Type: ... # Type is defined previously
2 Organisation:
3 type: object
4 properties:
5 attributes:
6 type: object
7 required:
8 - founded
9 - agentName
10 properties:
11 founded:
12 type: string
13 format: date
14 agentName:
15 type: string
16 type:
17 $ref: '#/components/schemas/Type'
18 nullable: true

Here can be seen that Type has no type, but references the enumer-
ation. This way, our result is understandable and users can see that
any reference to Type should conform to the specified enum.

4.2.3 Relations. As mentioned before, relationships in OntoUML
are pivotal in capturing associations between entities. While there
are many different stereotypes for relationships, we maintain our
focus on their existence and cardinalities. The reason for this is that
we minimize relations to the attribute relationships on schemas
and their stereotypes have no impact on the actual OpenAPI result.
Some validations are only part of the API, not its representation and
communication medium.
A distinction made for when a relation is a resource or when it

should be an array of said resources is based on the cardinality of
the relation. Within ontouml-js four cases pop up:

• zero-to-one: This emerges in theOrganisation previouslymen-
tioned. It should have a parent University if the organisation
is a faculty. University is in this case not required but can
specify a relation to University.

• zero-to-many: This relation is often seen because the abstrac-
tion of generalisation leads to some properties not being
required anymore. A Person can have multiple, or an array,
of enrollments.

• one-to-one: The resource is required and a single resource.
An Enrollment should for example always have exactly one
Person and Course.

• one-to-many: It is required and an array, even if this array
only contains one element. During abstraction, this is often
replaced because specializations that define these relations
get abstracted into the super-class.

Relations are defined within a property relationships, in line with
how attributes are also defined to fit the JSON:API schema. An
important note here is that a reference is made to the related object
schema for clarity. In reality, any object would only be dispatched
here with its id and type to be retrieved from the JSON:API included
section.
Although not seen in the abstracted diagram, relations that per-

haps specify a different relation with a minimum of required items,
for example, that a car should have a minimum of 4 wheels. In this

case, we can make use of the minItems and maxItems properties of
the array (and object) type.

1 Wheel: ...
2 Car:
3 type: object
4 properties:
5 relationships:
6 type: object
7 required:
8 - wheels
9 properties:
10 wheels:
11 type: array
12 minItems: 4
13 items:
14 $ref: '#/components/schemas/Wheel'

We continue with the example used before in figure 5 where the
relation between Organisation and Course is transformed. Because
an annotation has been made that only faculties can have courses,
Course receives a relationship called faculty which references an
Organisation. On the other end of the relation, we see that only
when an organisation is a faculty it can have courses. The relation
Organisation has to itself is left out of the example below.

1 Course:
2 type: object
3 properties:
4 relationships:
5 type: object
6 required:
7 - faculty
8 properties:
9 faculty:
10 $ref: '#/components/schemas/Organisation'
11 Organisation:
12 type: object
13 properties:
14 ... # previously included properties
15 relationships:
16 type: object
17 properties:
18 facultyCourses:
19 type: array
20 nullable: true
21 items:
22 $ref: '#/components/schemas/Course'

Next should be noted that OntoUML can have ternary relations,
or in terms of its properties: A relation with more than two end-
points. Although rarely seen5, they cannot be skipped. A ternary
relation should be transformed into an object schema with each end-
point of the relations as an attribute and the respective cardinality.
The endpoints can then reference back to the newly created object
schema.

4.2.4 Responses. Response standardization is done using JSON:API.
For every object type in our schema, we compose a path to be re-
trieved in bulk and to create objects. Retrieving, updating and delet-
ing objects can also be done individually. Using JSON:API we create
the responses according to the specification, generating examples
by recursively going through the schemas references and setting
examples. JSON:API also standardizes a way to filter and create
information, but that is left out to keep the examples simple to
understand.
5An example of a ternary relation can be seen in [13]
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The example beneath shows a fragment of the OpenAPI specifi-
cation. It uses a response component for a GET request for multiple
Organisations. The other requests are incomplete, but show the
endpoints where information can be retrieved from. They are im-
plemented in the same way as the collective GET.

1 components:
2 schemas:
3 Base:
4 type: object
5 properties:
6 id:
7 type: integer
8 type:
9 type: string
10 Organisation: ... # previously defined
11 responses:
12 Organisations:
13 content:
14 application/json:
15 schema:
16 type: object
17 properties:
18 data:
19 type: array
20 items:
21 allOf:
22 - $ref: '#/components/schemas/Base'
23 - $ref: '#/components/schemas/Organisation'
24 included:
25 type: array
26 items:
27 type: object
28 links:
29 type: object
30 paths:
31 '/organisations':
32 get:
33 responses:
34 '200':
35 $ref: '#/components/responses/Organisations'
36 post: ...
37 '/organisations/{id}':
38 get: ...
39 put: ...
40 delete: ...

5 RELATED WORK
Several initiatives have aimed to encourage the integration of ontol-
ogy languages into development practices. Three approaches map
the Web Ontology Language (OWL) to the OpenAPI specification.
One of them is Ontology-Based APIs (OBA) [6], an ontology-

based framework that generates complete server APIs with Ope-
nAPI specifications for OWL knowledge graphs. Different from the
implementation presented here, the mapping is direct and without
abstraction. That means generalisations are not flattened and thus
expressed by an allOf structure in OpenAPI. OBA defines an ex-
plicit mapping but is limited to the simple translation of classes,
subclasses and their properties and types.
[12] improves this by extending the work of OBA (and imple-

mentation of it in OBA) and contributes a more complex mapping
improving overall coverage by the use of non-primitive types, car-
dinalities and required values. Boolean operations such as inter-
sections, unions and complements are also supported, but their
combinations are not.

A large difference is that neither uses an underlying framework
for the communication of data. A completely separate approach [1]
uses JSON-LD, a frameworkwith the same purpose as JSON:API, and
also transforms OWL to OpenAPI, but misses an explicit mapping
making it hard to determine its effectiveness. [12] concludes by
manual inspection that the mapping is similar but seems to miss
the boolean class operations mentioned earlier.

Although these related works and this paper both use an ontology-
based model and result in an OpenAPI Specification, the approach
differs quite radically. The abstraction process takes up a big part
of this change, where we assume that the cost of lost semantics is
gained in the clarity of the result. Though a transformation with-
out the intervention of a human might abstract key features that
simplicity cannot capture, an API structured with every original
class becoming an endpoint is cluttered and leads to increasing API
requests.

6 CONCLUSION
In conclusion, this paper presents an approach to transform On-
toUML models into OpenAPI specifications for REST API develop-
ment. The overarching goal is to establish a system for transforming
OntoUML models into the OpenAPI Specification, thereby facilitat-
ing a seamless integration process. This integration aims to enhance
collaboration between ontologists and developers, ensuring that the
rich expressiveness of OntoUML is effectively harnessed within the
widely adopted OpenAPI Specification.

Clear guidelines and constraints are defined to capture and pre-
serve the semantic richness of OntoUML during the transformation
process, which involves abstraction and mapping, where the ab-
straction phase follows specific rules, adapting principles from prior
work by Guizzardi et al. [10]. Notably, relators are abstracted based
on their properties, while non-sortals are abstracted by merging
attributes into sortal classes for clarity. Specializing sortals can be
lifted to their super class and phases and subkind partitions can
be flattened to an enumeration which becomes an attribute of the
general class. In the mapping phase, classes are transformed into
schema objects with specific considerations for datatype and enu-
meration stereotypes. Relations are transformed into attributes with
cardinalities, reflecting the essence of the relationship in the re-
sulting API. Response standardization is achieved using JSON:API,
generating examples through recursive schema traversal.
While the current research focuses on specific elements of On-

toUML, future work may include all constructs to be transformed.
It could also present a more dynamic behaviour, such as naming
conventions, abstraction methods or which endpoints to use, that
the user could pick. A goal may be to include a user interface or
facilitate real-time updates.
Overall, this research lays the groundwork for bridging the gap

between OntoUML ontology modelling and REST API development,
offering a systematic and practical approach to transforming com-
plex ontological models into functional and well-structured API
representations.
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A APPENDIX

A.1 OntoUML models

Fig. 6. Complete OntoUML model

Fig. 7. Abstracted Model
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