
Improving the creation of AIGs from reactive synthesis
FLORIS HEINEN, University of Twente, The Netherlands

In the SYNTCOMP competition, correct hardware independent logic net-
works in the form of AIGs need to be created from logic descriptions. Knor,
a participating program that creates such solutions, converts during a final
stage its BDD to AIG which can be optimized. In this paper multiple AIG
minimization techniques are explored and benchmarked. A generally ap-
plicable AIG minimization strategy is found with the benchmarks, and the
possibility of merging this with the initial creation of the AIG is discussed.

Additional Key Words and Phrases: Reactive synthesis, And-Inverter Graphs,
Knor, ABC

1 INTRODUCTION
SYNTCOMP is a competition in the process of reactive synthesis,
with the aim to foster research in new tools for automatic synthesis
of systems [4]. Reactive synthesis, or the creation of state machines
from specifications such as Linear Temporal Logic (LTL) formulas,
can be solved with the help of parity games in one of SYNTCOMP’s
categories. Here, the participating reactive synthesis tools must
present their solutions as an And-Inverter Graph (AIG). The tools are
then ranked by the number of given problems they can solve within
a time limit. An additional ranking exists for quality of solutions,
based on the size of the solutions by counting the amount of logic
AND gates and latches.

Two participants, Knor[10] and Strix[5], compete in this parity
game synthesis category. In order to gain points in the secondary
’quality’ ranking, both try to minimize their resulting AIG with
the ABC tool[1], at the cost of longer calculation time. This ABC
tool hosts a plethora of commands to modify AIGs, ranging from
balancing to complete AIG rewriting. The two participants chain
these commands in the hope of restructuring the AIG in such a
way that the network shrinks. Due to the lack of research on min-
imizing AIGs created from parity games and the shear amount of
different commands ABC hosts, finding a single generic minimiza-
tion strategy for parity game solutions is tricky. Additionally, the
optimization strategies ABC offers are not focused on solutions of
parity games.
This research therefore has two purposes. Firstly, to give better

insight in the overall process of reactive synthesis. Secondly, to
research and explore different ABC commands to create a general
optimization strategy, including their strengths and weaknesses.
This way, future SYNTCOMP participants can expand upon the
insight we hope to create and improve upon this new optimization
strategy.

We will try to answer the following three questions. One, which
ABC commands work best in which situations? Two, how can these

TScIT 40, February 2, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

commands be chained for a generally optimal minimization strat-
egy? And three, can these minimization strategies be combined with
the creation of AIGs instead of applying them afterwards?
The structure of this paper is as follows: After this introduction

the prerequisite knowledge is found, where some basic concepts are
briefly explained. Then the methodology of the tests to be performed
is explained. Afterwards, the results will be extensively explained
and discussed. Lastly, in the Future works section, possible improve-
ments are discussed.

2 PRELIMINARIES
We explain the following logic networks due to their relevance to
this paper: AIGs and BDDs.

2.1 And-inverter graph
AIGs are a directed a-cyclic graph of logic AND and inverter gates.
Due to the possibility of redundancy, different AIGs can have the
same solution that function exactly the same as seen in figure 1.
This shows that minimization algorithms could reduce the AIG size
while maintaining the same functionality.

In Figure 1, two AIGs are shown, both representing the same
Boolean function. The circles as nodes represent an Boolean AND,
with the lines as edges connecting them. The SYNTCOMP and this
research ignore the cost of inverter gates, and focus solely on AND
gate and latch count, resulting in the right graph receiving a higher
score on AIG size.

2.2 Binary decision diagram
A BDD is a Boolean logic network made out of nodes that represent
a single input variable. Each node contains two outgoing edges,
each describing the path the network takes if the input variable is
true or false. Just like AIGs, BDDs can also be written differently
while having the same functionality, as shown in figure 2.

3 RELATED WORK
The SIS tool[2] tries to minimize AIGs globally. Downsides to this ap-
proach are the number of hand-tuning and trial and error necessary
to gain a beneficial result. The ABC tool[7] uses a local transforma-
tions to minimize an AIG. Even though this means that the result
is still sub-optimal after a single iteration, multiple iterations are
possible due to the significant decrease in calculation time. Multiple
iterations practically result in a global minimization, leading to a
technique that achieves smaller AIGs in less time than the former
global approach. Another AIG optimization technique is balancing.
Although this might not help us in the rankings of SYNTCOMP,
they do increase the amount of branches of an AIG and reduce the
depth[6]. Starting out with such an AIG might improve the amount
of iterations locally altering algorithms need. The process of convert-
ing a BDD into an AIG has been studied in [9]. This paper explores
converting to an AIG in Irredundant Sum Of Products(ISOP) format
in the hope of creating a small AIG. Even though this did not result

1



TScIT 40, February 2, 2024, Enschede, The Netherlands Floris Heinen

Fig. 1. Two And-Inverter graphs, both representing the same Boolean func-
tion. Circle nodes represent AND gates, and edges with a dot are inverted
signals. The leftmost AND node can be removed by inverting the edges of
the rightmost AND node and its own output edge.

Fig. 2. Two BDDs, both representing the same Boolean function, but the
right requiring one less node. When a circular node’s value holds, the solid
edge is followed. The dashed line is followed otherwise.

in generally smaller AIGs, it does result in a more balanced AIG.
Minimizing after this technique has been applied, might decrease
calculation time when compared to separately generating an AIG,
balancing it and then minimizing it.
BDD minimization will reduce the necessary time to convert, as
no time will be spent on redundant branches. These minimization
techniques have existed for a while[8]. This technique does not
consider properties these BDDs might have if they are generated
from parity games.

4 METHODOLOGY
If we want to figure out what the best way of getting the smallest
AIG throughout the whole synthesis process, we will need to go
through each possibility in that process as well. In this section, we
explain the exact process of the testing and its scope. We start by
briefly explaining the testing setup and corresponding flow. Then,
we go into further detail of each part of the process. Finally, we
explain the hardware on which the tests are run.

Synthesis
problem

Synthesis
problem

Synthesis
problem

...

Knor Unoptimized
AIG

Unoptimized
AIG

Unoptimized
AIG

...

ABC Optimized
AIG

Optimized
AIG

Optimized
AIG

...

Fig. 3. Synthesis flow. Each synthesis problem can be solved with Knor into
an unoptimized AIG in multiple ways. Each unoptimized AIG can in turn
be optimized with ABC in multiple ways.

4.1 The test setup and flow
At the origin lies a synthesis problem. The Knor program solves
these synthesis problems and outputs an AIG. The output AIG will
be further optimized with the help of ABC. The process is visualized
in figure 3. The figure shows how Knor solves a single synthesis
problem into multiple different unoptimized AIGs. Then, for each
unoptimized AIG, we will use ABC to test different optimization
strategies, resulting in different optimized AIGs.

4.2 Synthesis problem selection
Due to time limitations, we had to limit out scope to a subset of avail-
able synthesis problems picked from the SYNTCOMP benchmark
repository 1.
The selection consists of 22 randomly selected synthesis prob-

lems, with the requirement that they are realizable. Otherwise, we
ofcourse could not have tested and optimized the result. The selected
problems are listed in table 1

4.3 Solving with Knor
Knor is part of our first test as it creates the unoptimized AIG files.
Knor’s program flags modify the way in which it creates the AIGs.
Because these influence the structure of the resulting AIGs, they
might also impact the results of ABC optimizations. Therefore, the
different Knor arguments need to be tested in combination with
ABC optimizations to draw conclusions. Two types of Knor flags
can be chosen: solve flags and synthesis flags.

Solve flags indicate which solve algorithm is used. A large num-
ber of algorithms is available 2 so to limit the scope of this research,
we limit our solve flags to the recommended algorithms. The solve
flags picked for testing are described in table 5. Only a single solve
flag can be used per Knor command, leading us to test for 5 possible
solve flags.
Synthesis flags are used for picking the way in which Knor’s

internal strategy BDD gets converted into an AIG. The three flags
we will use for testing are ’–no-bisim’, ’–binary’ and ’–isop’, as de-
scribed in table 4. The ’–compress’ argument will perform basic AIG
1https://github.com/SYNTCOMP/benchmarks
2https://github.com/trolando/oink

2



Improving the creation of AIGs from reactive synthesis TScIT 40, February 2, 2024, Enschede, The Netherlands

Table 1. List of all randomly selected synthesis problems used in our testing.

Filename
ActionConverter.tlsf.ehoa

EscalatorCountingInit.tlsf.ehoa
MusicAppFeedback.tlsf.ehoa

Radarboard.tlsf.ehoa
SPIWriteSdi.tlsf.ehoa
SliderScored.tlsf.ehoa
TwoCounters4.tlsf.ehoa

TwoCountersInRangeA6.tlsf.ehoa
amba_decomposed_arbiter_5.tlsf.ehoa
amba_decomposed_encode_13.tlsf.ehoa
amba_decomposed_encode_8.tlsf.ehoa
amba_decomposed_lock_3.tlsf.ehoa
amba_decomposed_tsingle.tlsf.ehoa

full_arbiter_5.tlsf.ehoa
lilydemo21.tlsf.ehoa
loadcomp5.tlsf.ehoa
ltl2dba06.tlsf.ehoa
ltl2dba16.tlsf.ehoa
ltl2dba26.tlsf.ehoa
ltl2dpa01.tlsf.ehoa
ltl2dpa11.tlsf.ehoa
ltl2dpa21.tlsf.ehoa

compression after solving, so to not influence the ABCminimization
commands, we exclude this flag. The ’–best’ flag will choose for the
user which of the three initially synthesis discussed flags should be
used. This flag is also excluded, as one strategy might be beneficial
for the short term, but disadvantageous on the long term, so we
need to test for all. These picked synthesis flags can be combined
for a different result, resulting in 23 = 8 possible synthesis flag
combinations.
With 5 possible solve flags, combined with 8 possible synthesis

flag combinations, we take 5 ∗ 8 = 40 different Knor commands into
account for our tests. This results in 40 different unoptimized AIGs
per selected synthesis problem.

4.4 Optimizing with ABC
We use ABC to optimize our AIGs that result from using Knor.
ABC offers many commands, and the ones that seem promising
for our purpose of decreasing the amount of AND gates in AIGs
are summed up in table 2. We selected the promising commands
based on their name, description and code documentation, with the
requirement that they should be aimed towards reducing the amount
of AND nodes. In addition, commands that might positively modify
AIGs without reducing the amount of AND nodes, but create new
optimize opportunities for the other commands are shown table 3.
This includes graph balancing commands and redundancy removal
commands. Both tables contains ABC command arguments with
their description and corresponding command flags. Command flags
like ’-h’ for printing help information and ’-v’ for verbose messaging
are left out, as these do not influence the results. Number signs
(’#’) indicate that the flag requires a number to be used with. To

find optimal chaining strategies, we cannot go over every ABC
optimization combination, as the amount of possibilities grows
exponentially, while some predefined strategies contain over 15
commands. Therefore, for Test 1, we start out by comparing the
effectiveness of each individual ABC command. For Test 2, we test if
the cleanup arguments have effect on the unoptimized AIGs. Then,
for Test 3, we will devise some basic strategies and compare them
with the predefined ones.

4.5 Testing in python
A python script has been devised that can perform the previously
mentioned tests. It is able to generate a list of all possible flags for
both Knor and ABC. These flag combinations are then used to create
both solutions to the synthesis problems as well as optimizations
on the solutions. The AIG solutions of all solved synthesis problems
are saved. Their paths and statistics like their amount of AND gates
and the time necessary to solve the synthesis problem are stored
inside a JSON3 file. This way, when we want to optimize a specific
solution, we can find its path back by searching in the JSON file
for the matching solution. The outputs of AIG optimizations are
saved, with their corresponding statistics in the JSON file as well.
When a chain of optimizations is issued to the script, it will save
each intermediate result as if it were an individual optimization
command. This way, these intermediate results can be reused for
other optimizations that share their first part, like ’compress’ and
’compress2’.

4.6 Performed tests
In the first test we compare each ABC optimization. The script
performs every argument including many variations of them on
each synthesis solution. The results are discussed in 5.2. The second
test is similar to the first test, but aimed towards ABC cleanup related
commands according to their description. The third test compares
all predefined optimization strategies.

5 RESULTS
In this section we discuss the results of each test. Plots are shown as
letter-value plots, where each successive block outwards represents
only half of the remaining data. This plot type is picked as this
variation of a boxplot show more information about the distribution
and works well on smaller sample sizes [3].

5.1 Knor solve results
All synthesis problem files have been solved with each possible
Knor combination within the scope of this paper. First, we collected
all smallest AIGs per synthesis problem. Then, per Knor argument
combination, we compare the outcome to the minimum of that file,
where a gain of 1 means that the resulting AIG is equally big as the
smallest AIG of this we could create. A gain of 2 means the result is
twice as big by having twice as twice as many AND gates. All gains
are averaged per Knor argument over each synthesis problem. The
results are shown in figure 8. For visibility, the top part of the graph
is cut off, as our focus is on Knor flag combinations that are as close
to 1 as possible. The graph shows that using no synthesize flags or
3https://www.json.org/json-en.html

3



TScIT 40, February 2, 2024, Enschede, The Netherlands Floris Heinen

Table 2. Tested ABC optimize commands with their flags

Command Description Flags
balance transforms the current network into a well-balanced AIG [-ldsx]
rewrite performs technology-independent rewriting of the AIG [-lz]
drw performs combinational AIG rewriting [-C #] [-N #] [-lzr]

refactor performs technology-independent refactoring of the AIG [-N #] [-lz]
drf performs combinational AIG refactoring [-M #] [-K #] [-C #] [-elz]

drwsat performs combinational AIG optimization for SAT [-b]
resub performs technology-independent restructuring of the AIG [-KNF #] [-lz]
dc2 performs combinational AIG optimization [-blfp]
irw perform combinational AIG rewriting [-lz]
irws perform sequential AIG rewriting [-z]
iresyn performs combinational resynthesis [-l]

Table 3. Tested ABC cleanup commands with their flags

Command Description Flags
b Transforms the current network into a well-balanced AIG [-ldsx]

trim Removes POs def by constants and PIs wo fanouts []
cleanup Removes PIs w/o fanout and POs driven by const-0 [-io]
scleanup Performs sequential cleanup of the current network [-cenm] [-F #] [-S #]
csweep Performs cut sweeping using a new method [-C #] [-K #]
ssweep performs sequential sweep using K-step induction []
scorr Performs sequential sweep using K-step induction []

Table 4. Knor synthesis arguments

Parameter Description
–bisim Minimize the state space using bisimulation minimization prior to synthesis
–onehot Encode the states using one-hot encoding instead of logarithmic encoding
–isop Use ZDD covers for the conversion to AIG

Table 5. Knor solving arguments

Parameter Description
–sym Internal symbolic parity game solver
–tl Tangle learning
–rtl Recursive tangle learning
–fpi Distraction Fixpoint Iteration
–zlk Zielonka’s recursive algorithm

only the ’–isop’ results in a consistently small AIG, irrelevant of Knor
solve flags. Additionally, it shows that combining the ’–no-bisim’
and ’–binary’ arguments result in a significantly larger AIG. Only
using these Knor flags throughout the rest of the benchmarking
would be unwise, as we cannot exclude the possibility yet that a
larger initial AIG might lead to a better optimization later with ABC
commands.

5.2 Test 1
The number of AND gates of each ABC optimization command
result is compared to the number of AND gates the solution has by
calculating the decrease in size:

𝐺𝑎𝑖𝑛 =
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐴𝑁𝐷 𝑐𝑜𝑢𝑛𝑡

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐴𝑁𝐷 𝑐𝑜𝑢𝑛𝑡

Comparing optimizations through their gain instead of amount
of AND gates reduced allows us to compare the effectiveness of
each command regardless of the initial AIG size. Otherwise, using
a relatively little effective approach that reduces 1000 AND nodes
to 950 would seem equally effective as a relatively more effective
reduction from 100 to 50 AND nodes, as both remove 50. The results
are plotted in figure 4. In the letter-value plot, only the best 15
optimizations are shown for brevity, and are sorted from highest
median to lowest median, as can be seen from the gradual decline in

4



Improving the creation of AIGs from reactive synthesis TScIT 40, February 2, 2024, Enschede, The Netherlands

Table 6. ABC optimization strategies

Optimization
strategy

Arguments

c2rs b -l, rs -K 6 -l, rw -l, rs -K 6 -N 2 -l, rf -l, rs -K 8 -l, b -l, rs -K 8 -N 2 -l, rw -l, rs -K 10 -l, rwz -l,
rs -K 10 -N 2 -l, b -l, rs -K 12 -l, rfz -l, rs -K 12 -N 2 -l, rwz -l, b -l

compress b -l, rw -l, rwz -l, b -l, rwz -l, b -l
compress2 b -l, rw -l, rf -l, b -l, rw -l, rwz -l, b -l, rfz -l, rwz -l, b -l
compress2rs b -l, rs -K 6 -l, rw -l, rs -K 6 -N 2 -l, rf -l, rs -K 8 -l, b -l, rs -K 8 -N 2 -l, rw -l, rs -K 10 -l, rwz -l,

rs -K 10 -N 2 -l, b -l, rs -K 12 -l, rfz -l, rs -K 12 -N 2 -l, rwz -l, b -l
drwsat2 st, drw, b -l, drw, drf, ifraig -C 20, drw, b -l, drw, drf
r2rs b, rs -K 6, rw, rs -K 6 -N 2, rf, rs -K 8, b, rs -K 8 -N 2, rw, rs -K 10, rwz, rs -K 10 -N 2, b, rs -K

12, rfz, rs -K 12 -N 2, rwz, b
resyn b, rw, rwz, b, rwz, b
resyn2 b, rw, rf, b, rw, rwz, b, rfz, rwz, b
resyn2a b, rw, b, rw, rwz, b, rwz, b
resyn2rs b, rs -K 6, rw, rs -K 6 -N 2, rf, rs -K 8, b, rs -K 8 -N 2, rw, rs -K 10, rwz, rs -K 10 -N 2, b, rs -K

12, rfz, rs -K 12 -N 2, rwz, b
resyn3 b, rs, rs -K 6, b, rsz, rsz -K 6, b, rsz -K 5, b
rwsat st, rw -l, b -l, rw -l, rf -l
src_rs st, rs -K 6 -N 2 -l, rs -K 9 -N 2 -l, rs -K 12 -N 2 -l
src_rw st, rw -l, rwz -l, rwz -l
src_rws st, rw -l, rs -K 6 -N 2 -l, rwz -l, rs -K 9 -N 2 -l, rwz -l, rs -K 12 -N 2 -l

median line per letter-value bar. Median was picked over mean, as
the lower extreme values all approached 1, whereas higher extreme
values were boundless. This means grouping and sorting by the
mean would give a skewed result. The ABC optimization argument
’dc2’ shows most promise, with a median gain around 1.4, meaning
it minimizes unoptimized AIGs around 28%. The ’-b’ and ’-l’ flags
for the ’dc2’ optimization show no significant direct effect, but
the ’-f’ flag seems to negatively influence the performance of this
optimization. As for the ’rs’ command, the unifying factor seems
to be the ’-K’ flag, which is the highest allowed number by ABC. It
makes sense that this results in the better performance compared to
the other ’rs’ commands, as the ’K’ flag dictates the maximum cut
size it can use, which influences the amount of ways it can find new
and improved AIG structures. A similar thing can be said for the
’-N’ flag, where a higher number seems to allow the ’rs’ command
to look for more opportunities.

5.3 Test 2
Similar to Test 1, we compare the resulting amount of AND nodes of
each cleaned-up AIG to the amount of AND nodes available in the
synthesis solution. In contrast to Test 1, instead of using the median
to sort the arguments on effectiveness, we went for sorting based
on the mean. This is because only ’scorr’ and ’ssweep’ showed a
median gain higher than 1. They still appear on top if we sort on
mean, but nowwe can compare the other cleanup commands as well.
It is interesting to see how the cleanup arguments overall decrease
the amount of AND nodes less than the optimization commands,
but have significantly higher outliers. Lastly, the other commands
have a nearly identical effect on the decrease in size for the AIG
solutions.

1.0 1.5 2.0 2.5
Gain

dc2

dc2 -b

dc2 -b -l

dc2 -l

rs -K 15 -N 3 -F 5 -l

rs -K 15 -N 3 -F 5 -l -z

rs -K 15 -N 3 -F 0 -l

rs -K 15 -N 3 -F 0 -l -z

rs -K 15 -N 3 -F 5

rs -K 15 -N 3 -F 5 -z

rs -K 15 -N 3 -l

rs -K 15 -N 3 -l -z

drwsat -b

rs -K 15 -N 3 -z

rs -K 15 -N 3

A
B
C
 o
pt
im

iz
at
io
n 
co
m
m
an
d

Fig. 4. Effectiveness of the top 15 ABC optimization commands, expressed
in gain compared to the solution that is optimized. Most effective is ’dc2’
without the ’-f’ flag, followed by the ’rs’ commands with a ’-K 15’ and ’-N
3’ flag.

5.4 Test 3
The gains of each optimization strategy have been plotted in Figure
7. For readability purposes, the 15 lines have been separated into
two plots. For every step in each strategy, the total gain compared
to the original synthesis solution AIG is plotted. This is repeated for
every problem file, resulting in a line with corresponding confidence

5



TScIT 40, February 2, 2024, Enschede, The Netherlands Floris Heinen

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Gain

ssweep

scorr

scleanup -n -m -S 512

scleanup -e -n -F 1

scleanup -e -n -F 10 -S 5120

scleanup -e -n -F 10 -S 512

scleanup -e -n -F 10 -S 0

scleanup -e -n -F 10

scleanup -e -n -F 1 -S 51200

scleanup -e -n -F 1 -S 5120

A
B
C
 o
pt
im

iz
at
io
n 
co
m
m
an
d

Fig. 5. Effectiveness of the top 10 ABC cleanup commands, expressed in
gain compared to the solution that is optimized. Commands ’scorr’ and
’ssweep’ outperform all others, but still generally pale in comparison to the
decrease in amount of AND gates some ABC optimization commands offer.

interval. The ideal strategy would be a steep line that keeps increas-
ing the gain over the original AIG file for every step. Most ’resyn’
strategies flatten out quickly, indicating that they lose effectiveness
fast. The strategies ’comrpess2rs’ and ’resyn2rs’ look like they will
be able to continue creating higher gains after repeating the strategy.
The strategy with the most promise is ’src_rws’, as this has almost
already created the same amount of gain as the best few others but
in only 7 steps.

What is noticeable is that some strategies start with the ’st’ com-
mand, but according to the ABC documentation, this command
converts the given network into an AIG. This means removing this
first command already improves the performance of these com-
mands for Knor.

5.5 Test 4
From the previous three tests, we came propose the following op-
timization strategy: "ssweep, balance, dc2, dc2, balance, dc2, dc2".
We chose to start with ’ssweep’ to try to remove significant redun-
dancies. It is followed up by repetitions of the best performing ’dc2’
optimization and the ’balance’ command for structural balancing.
The performance of this strategy has been plotted in figure ??. The
new strategy under the name ’custom_0’ shows an almost doubling
in gain per step. We can conclude this new strategy is therefore a
significant improvement in optimization strategy if we are limited
to running each strategy once.

6 CONCLUSION AND FUTURE WORKS
Solving synthesis problems comes with many choices to be made.
Due to this, trying every possibility to come up with the single best
possibility is infeasible. In this paper, we have tested and compared

every single promising ABC command, we have compared the al-
ready existing optimization strategies, and based on our findings,
a new strategy was created that outperforms the other ones by
twofold. Further testing will need to be done to truly understand if
this new strategy will hold in every situation or if this only holds
in the specific circumstances of this study. Overall, the results in
this paper can be very useful, giving and improving insight in the
general synthesis problem. For future work, the new strategy could
be tested if the new gain per step stagnates fast or will slowly de-
crease. Additionally, because calculation time is also important in
the SYNTCOMP, the calculation time of each strategy could be mea-
sured and compared as well to find an optimal combination between
speed and quality of solutions.

7

REFERENCES
[1] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-

Strength Verification Tool. In Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6174), Tayssir Touili, Byron Cook, and Paul B. Jackson
(Eds.). Springer, 24–40. https://doi.org/10.1007/978-3-642-14295-6_5

[2] SENTOVICH M. E. 1992. SIS: A system for sequential circuit synthesis. Memoran-
dom no. UCB/ERL M92/41 (1992). https://cir.nii.ac.jp/crid/1574231873788055424

[3] Hadley Wickham Heike Hofmann and Karen Kafadar. 2017. Letter-Value
Plots: Boxplots for Large Data. Journal of Computational and Graphical Sta-
tistics 26, 3 (2017), 469–477. https://doi.org/10.1080/10618600.2017.1305277
arXiv:https://doi.org/10.1080/10618600.2017.1305277

[4] Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus Hell,
Robert Könighofer, Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk,
Ocan Sankur, Martina Seidl, Leander Tentrup, and Adam Walker. 2017. The first
reactive synthesis competition (SYNTCOMP 2014). Int. J. Softw. Tools Technol.
Transf. 19, 3 (2017), 367–390. https://doi.org/10.1007/S10009-016-0416-3

[5] Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. 2018. Strix: Explicit
Reactive Synthesis Strikes Back!. InComputer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 10981), Hana Chockler and Georg Weissenbacher (Eds.). Springer, 578–586.
https://doi.org/10.1007/978-3-319-96145-3_31

[6] Alan Mishchenko, Robert K. Brayton, Stephen Jang, and Victor N. Kravets. 2011.
Delay optimization using SOP balancing. In 2011 IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD 2011, San Jose, California, USA, November
7-10, 2011, Joel R. Phillips, Alan J. Hu, and Helmut Graeb (Eds.). IEEE Computer
Society, 375–382. https://doi.org/10.1109/ICCAD.2011.6105357

[7] Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. 2006. DAG-aware
AIG rewriting a fresh look at combinational logic synthesis. In Proceedings of
the 43rd Design Automation Conference, DAC 2006, San Francisco, CA, USA, July
24-28, 2006, Ellen Sentovich (Ed.). ACM, 532–535. https://doi.org/10.1145/1146909.
1147048

[8] Arlindo L. Oliveira, Luca P. Carloni, Tiziano Villa, and Alberto L. Sangiovanni-
Vincentelli. 1998. Exact Minimization of Binary Decision Diagrams Using Implicit
Techniques. IEEE Trans. Computers 47, 11 (1998), 1282–1296. https://doi.org/10.
1109/12.736442

[9] N. Tomov. 2022. Converting binary decision diagrams to and-inverter graphs
using prime-irredundant covers. http://essay.utwente.nl/91688/

[10] Tom van Dijk, Feije van Abbema, and Naum. 2024. Knor: reactive synthesis using
Oink. In TACAS 2024.

6

https://doi.org/10.1007/978-3-642-14295-6_5
https://cir.nii.ac.jp/crid/1574231873788055424
https://doi.org/10.1080/10618600.2017.1305277
https://arxiv.org/abs/https://doi.org/10.1080/10618600.2017.1305277
https://doi.org/10.1007/S10009-016-0416-3
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1109/ICCAD.2011.6105357
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1109/12.736442
https://doi.org/10.1109/12.736442
http://essay.utwente.nl/91688/


Improving the creation of AIGs from reactive synthesis TScIT 40, February 2, 2024, Enschede, The Netherlands

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Optimization step

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

To
ta

l g
ai

n

Strategy
compress
compress2rs
r2rs
resyn2
resyn2rs
rwsat
src_rw

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Optimization step

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

To
ta

l g
ai

n

Strategy
compress2
drwsat2
resyn
resyn2a
resyn3
src_rs
src_rws

Fig. 6. Gains per step for predefined optimization strategies. Split into two graphs for readability.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Optimization step

1.0

1.2

1.4

1.6

1.8

2.0

To
ta

l g
ai

n

Strategy
compress2rs
compress
compress2
drwsat2
r2rs
resyn
resyn2
resyn2a
resyn2rs
resyn3
rwsat
src_rs
src_rw
src_rws
custom_0

Fig. 7. Compared performance of newly made optimization strategy.

7



TScIT 40, February 2, 2024, Enschede, The Netherlands Floris Heinen

Fig. 8. Zoom-in of letter-value of mean over increase in AIG size. Smaller is better.

8


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 And-inverter graph
	2.2 Binary decision diagram

	3 Related work
	4 Methodology
	4.1 The test setup and flow
	4.2 Synthesis problem selection
	4.3 Solving with Knor
	4.4 Optimizing with ABC
	4.5 Testing in python
	4.6 Performed tests

	5 Results
	5.1 Knor solve results
	5.2 Test 1
	5.3 Test 2
	5.4 Test 3
	5.5 Test 4

	6 Conclusion and future works
	7 
	References

