Enhancing Privacy and Security in loT Environments through Secure

Multiparty Computation

RIK VAN DE HATERD, University of Twente, The Netherlands
SUPERVISOR: DR. ING. M.ELHA]JJ (MOHAMMED), University of Twente, The Netherlands

Abstract - With the increasing influence of IoT devices in our daily lives,
secure data-sharing is becoming ever more important. Sensors and other de-
vices are communicating vast amounts of possibly unencrypted data, which
poses a significant privacy concern. To tackle this problem, this research
implements two Partially Homomorphic Encryption (PHE) schemes, RSA
and the Paillier cryptosystem, to perform Secure Multiparty Computation
(SMPC) in the resource-constrained IoT environment. The environment con-
sists of a laptop connected to an Arduino Uno through a serial connection.
The RSA-based SMPC protocol has an average completion time of 2007ms.
However, due to the inability to use padding, RSA lacks semantic security.
Conversely, the Paillier-based protocol is semantically secure but cannot
complete the encryption due to dynamic memory issues. Even if resolved,
the estimated encryption time exceeds 103.3 minutes. Despite the potential
of SMPC in IoT environments for secure data handling, the results from this
research suggest that directly implementing PHE schemes on Arduino is
not practical based on the observed limitations.

Additional Key Words and Phrases: Secure Multiparty Computation, Internet
of Things, Resource-constrained device, Partially Homomorphic Encryption

1 INTRODUCTION

The Internet of Things (IoT) has steadily grown over the last couple
of decades[1]. With this growth, IoT devices are increasingly inte-
gral in daily life. These interconnected devices share sensitive data,
making the confidentiality and integrity of information a substan-
tial concern in the field of IoT security [2]. Furthermore, due to the
nature of the 10T, there are additional constraints, such as limited
resources, diversity of standards, and network vulnerabilities[3]. In
this resource-constrained environment, challenges regarding pri-
vacy during data aggregation and transport encryption emerge
[4] [5]. Traditional cryptographic algorithms encounter challenges
when applied to IoT scenarios due to inherent resource limitations
such as power constraints, limited battery capacity, and the need for
real-time execution[6]. Thus, this research focuses on addressing the
critical privacy and security challenges in resource-constrained IoT
environments by applying Secure Multiparty Computation (SMPC)
techniques.

1.1 Motivation

The field of SMPC has flourished with the rise of cloud computing
and data-sharing in IoT environments. However, the literature on
the practical application of SMPC protocols on resource-constrained
devices is lacking. Prior research has mostly been focused on devel-
oping secure protocols and testing them in virtual environments,
rather than on devices like an Arduino. Therefore, this research aims
to contribute to the literature by gaining insights into the practical

TScIT 40, Feb 2, 2024, Enschede, The Netherlands

© 2024 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

application of SMPC in resource-constrained devices within the IoT
environment.

1.2 Background

In the context of SMPC, a group of parties aims to collectively com-
pute a function based on their private inputs whilst ensuring only
the output is disclosed[7]. The problem was formally introduced as
the Millionaires’ Problem by Andrew Yao (1982)[8] and describes
two millionaires who want to know which one of them is richer,
without disclosing their actual wealth. Yao’s millionaire problem is a
Boolean predicate but was proven to be computationally feasible for
any function in 1986, again by Yao[9]. One of the possible building
blocks of SMPC is Homomorphic encryption (HE). HE allows for
computations to be performed on encrypted data without the need
of having to first decrypt it. The three main types of HE are:

o Partially Homomorphic Encryption (PHE): Partially Ho-
momorphic Encryption is the most computationally practical
form of HE but is also the most mathematically limited. PHE
schemes only support the evaluation of one gate and the two
operations of additive homomorphic encryption or multiplica-
tive homomorphic encryption.

¢ Somewhat Homomorphic Encryption (SHE): Somewhat
Homomorphic Encryption can evaluate two types of gates
but only for a subset of operations.

e Fully Homomorphic Encryption (FHE): Fully Homomor-
phic Encryption allows the evaluation of arbitrary circuits
made up of multiple gate types of unbounded depth. FHE is
the strongest type of HE but is also the most computationally
heavy.

Middleware is often deployed for the communication between
the hardware and application layer in IoT. IoT middleware generally
handles the collection, storage, analysis, processing, and forwarding
of results to the data consumers. Since the middleware gets full
access to the raw data it becomes a high-value target for attackers
[5]. Moreover, the middleware might not be under the control of the
owner of the smart environment and thus could be untrustworthy.
Finally, when outsourcing data to a third party, sources lose control
over how their data is used. An example of this is the aggregation of
data from different sensors in an IoT system. The client and a cloud
could work together to produce the targeted outcome, but at the
same time, private data could be leaked due to the communication
of unencrypted data [7]. Another problem in the IoT environment is
the resource-constrained nature of IoT devices. IoT devices cannot
perform complex computations to encrypt their data that non-IoT
devices can [10]. After an extensive literary review, SMPC showed
great potential in providing secure data-sharing in the resource-
constrained environment of IoT.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TSclT 40, Feb 2, 2024, Enschede, The Netherlands

1.3 Research questions

This research will investigate the following research questions (RQ).

(1) How can a customized cryptographic protocol based on SMPC
be implemented to ensure confidentiality and integrity of data
shared among IoT devices, considering the specific constraints
and requirements of IoT environments?

(2) What is the practicality, efficiency, and security of the imple-
mented SMPC-based cryptographic protocol in real-world IoT
use cases, and how do they compare with existing security
solutions in terms of computation time, resource utilization,
and power consumption?

1.4 Structure

Section 2 provides an overview of what is presented in the liter-
ature regarding the usage of SMPC to enhance privacy and secu-
rity in IoT applications. Then section 3 documents the hardware
and software configurations, implemented PHE schemes, and re-
search metrics. The section concludes with an in-depth review of
the testing environment and design choices. Next, section 4 details
the performance- and security analysis of the implemented PHE
schemes. The performance analysis delves into computation time,
power consumption, and memory usage, whilst the security analysis
examines the security model, cryptographic key size and semantic
security. Additionally, RQ1 and RQ2 are answered at the end of the
section. The paper concludes with section 5, which summarizes key
findings and outlines potential avenues for future research.

2 RELATED WORK

The field of SMPC has been rapidly evolving over the years and
many efficient protocols have been published. With the rise of more
efficient protocols, the application of SMPC in IoT is also becom-
ing more relevant. A study by authors in [11] offers two optimized
SMPC protocols for the Internet-like setting. Their protocols are
based on multiparty garbled circuits as described in the paper of
Beaver, Micali and Rogaway[12]. Furthermore, they provide a proto-
col based on the paper from Ben-Or, Goldwasser and Widgerson[13]
that incorporates the free-XOR technique as well as reducing round
complexity. With these optimizations they reduced overall runtime
from 355 seconds to 25 and the online time from 330 seconds to
<0.5 seconds compared to the 1987 paper from Goldreich, Micali and
Widgerson[14]. Another paper by authors in [15] looks at optimiz-
ing Shamir-Secret Sharing[16] (SSS) to achieve privacy-preserving
data aggregation in the IoT environment. They optimized the shar-
ing phase of SSS by lowering the degree of the polynomial. With
this optimization, they managed to make their aggregation time 6
and 9 times faster as well as using 7 and 10 times less radio-on time
in their testing environments (Flocklab and DCube respectively).
Cloud computing has a lot of potential for SMPC in the IoT setting.
Authors in [10] discussed the possibility of using the cloud to utilize
Homomorphic encryption in the IoT environment. In their architec-
ture, the IoT device encrypts their data and sends it to a cloud. Then
a ’data user’ can query for the data, which is then computed by the
cloud and delivered. They concluded that resource-constrained IoT
devices might not be able to afford the costs of Fully Homomorphic

Rik van de Haterd and Supervisor: Dr. Ing. M.Elhajj (Mohammed)

encryption. However, they did find that Partial Homomorphic en-
cryption has great potential for resource-constrained IoT devices.
The cloud can be used by IoT devices to offload their complex com-
putations. Authors in [17] proposed a protocol based on a modified
SSS[16] scheme where the source node can outsource its compu-
tation to a set of workers. The paper showed that the proposed
protocol met the requirements of full anonymity, confidentiality,
verification, and computation synchronization while also shifting
most of the computational costs to the workers, ensuring correct
results. These papers show that SMPC has great potential to be used
in the IoT environment.

3 METHODOLOGY

This section details the methodology employed in the research.
It begins with a description of the hardware and software setup,
providing the foundation for algorithm implementation. Then, the
research metrics are presented, followed by an outline of the chosen
PHE schemes. The section concludes with insights into the practical
implementation and testing environments used in the research.

3.1 Hardware and software setup

3.1.1 Tools. The hardware configuration is presented in Table 1,
providing a detailed account of the devices involved in the experi-
mental setup. Table 2 contains the specific software tools and appli-
cations pivotal to this research. Together, these tables serve as refer-
ences for understanding the components of the research methodol-
ogy. A schematic overview of the experimental setup can be found
in Figure 1.

Table 1. Hardware devices

Device Microcontroller / Flash SRAM
CPU memory

Arduino Uno ATmega328 32K bytes 2K bytes

MacBook Air 1,3 GHz Dual-Core 121 GB 4GB

Intel Core i5

AVHzY USB-Meter - - _
C3

3.2 Algorithms

This paper focuses on implementing two PHE encryption schemes
to cover both mathematical operations. RSA for its multiplicative
property and the Paillier cryptosystem for its additive property.

3.2.1 RSA. RSA [21] is a public-key cryptosystem that relies on the
practical difficulty of integer factorization[22], specifically for the
product of two large prime numbers. RSA encryption is described
by the following equation:

E(m) =m® mod n 1)
In this equation, m represents the plaintext message, e is the public

exponent, and n is the product of two large prime numbers, en-
suring the security of the encryption scheme. The multiplicative

Enhancing Privacy and Security in loT Environments through Secure Multiparty Computation

Table 2. Software environment

IDE Programming Libraries

language

Arduino C/C++ microRSA[138],

IDE 2.2.1 arduino-
cryptographic-
library[19]

Pycharm Python 3.11 OpenSSL + subpro-

CE 2021.3 cess, serial, python-

paillier[20]

homomorphic property of RSA is described by the equation:
E(my) * E(mz) = m$m§ mod n
=(m;*my)® modn
= E(my *my)

This property highlights the ability to perform multiplication on
the ciphertexts directly without the need for decryption.

3.2.2 Paillier cryptosystem. The Paillier cryptosystem[23] is a prob-
abilistic public-key encryption scheme based on a discrete logarithm
trapdoor modulo a large integer that is hard to factor [24]. Paillier
encryption is described by the following equation:

E(m) = ¢™™ mod n? 2)

In this equation, m represents the plaintext message, g is a generator
of the multiplicative group modulo n?, and r is a random value
chosen from the set {0, ..., n — 1}. The Paillier cryptosystem exhibits
an additive homomorphic property, described by the equation:

E(my) = E(mg) = (g™ r])(g"r}) mod n
= (g™ ™) ()" mod n?
= E(ml + ml)

This property enables the computation of the encryption of the sum
of corresponding ciphertexts directly.

3.3 Research metrics

This research aims to benchmark the implemented protocols based
on two metrics: performance and security To assess the performance
of the SMPC protocol, the following performance metrics will be
documented:

e Memory usage: The memory usage consists of the amount
of flash memory used by the program, as well as the amount
of dynamic memory used before and during the protocol
runtime, measured in bytes.

e Power consumption: The power consumption consists of
the voltage, wattage, and amperage of the Arduino Uno dur-
ing protocol runtime, measured in volts, milliwatts, and mil-
liamperes respectively.

e Computation time: The computation time consists of the
time it takes for the different components of the protocol to
complete their runtime, measured in milliseconds.

TScIT 40, Feb 2, 2024, Enschede, The Netherlands

To assess the security of the SMPC protocol, the following security
metrics will be analyzed:

o Security model: The security describes the different models
that detail adversarial behaviour during the protocol runtime.

e Cryptographic key size: Cryptographic key size refers to
the number of bits of a key and represents the upper limit of
the algorithm’s encryption security.

e Semantic security: Semantic security denotes the ability of
an attacker to guess whether the ciphertext is the result of
encrypting message 1 or message 2, i.e. the adversary can
gain knowledge based on the encryption alone.

3.4 Implementation

The laptop and Arduino Uno are connected by a USB cable. This
connection enables communication through the Serial port, estab-
lishing a reliable and straightforward channel for data exchange.
The laptop is designated to perform the computationally intensive
task of key generation. The key size is set at 1024 bits, which is a
tradeoff between security and memory usage. For RSA operations
on the laptop, the implementation leverages the Python subprocess
library to make use of the computational efficiency of OpenSSL. In
contrast, the Paillier encryption on the laptop utilizes the python-
paillier [20] library. On the Arduino Uno, a custom data structure
’bignum8’ is introduced to handle numbers of up to 512 bytes. For
Paillier encryption on the Arduino, the implementation relies on
the RNG library to generate cryptographically secure random num-
bers when computing r (Formula 2). Using modular arithmetic to
calculate g™ (Formula 2), g is set to n + 1. This transforms g™ into
n * m+ 1, which significantly reduces computational complexity.
Additionally, modular exponentiation (ME), outlined in the Appen-
dix (Algorithm 1), is employed to efficiently calculate r" (Forumla
2). These implementation choices aim to deliver a robust and secure
cryptographic system, optimizing performance and ensuring the
integrity of communication between the laptop and Arduino Uno.

3.4.1 RSA environments. For RSA encryption two different envi-
ronments interact with each other, the Python- and Arduino envi-
ronments. The Python environment generates a 1024-bit RSA key
pair in PEM format by utilizing OpenSSL. Then the modulus n (For-
mula 2) is extracted from the public key and sent to the Arduino to
be used in encryption. After the encryption is finished, the script
receives the ciphertext from the Arduino and can calculate the final
result by multiplying the two cypher texts. Finally, the resulting
ciphertext can be decrypted to check the correctness of the compu-
tation. The Arduino environment utilizes a modified version of the
microRSA library to ensure compatibility with an IoT environment.
The Arduino receives the modulus from the laptop and encrypts
its plaintext message. The following ciphertext is then sent to the
laptop for further calculations.

3.4.2 Paillier environments. The Paillier encryption uses the same
environment structure as the RSA encryption. The Python environ-
ment generates a 1024-bit Paillier key pair using the python-paillier
library. The script then extracts the modulus n and squared modulus
n? (Formula 2). After extraction, the two values are sent over the
serial connection. From here the same steps apply as in the RSA

TSclT 40, Feb 2, 2024, Enschede, The Netherlands

environment. The script waits for the encrypted Arduino message,
computes the sum, and decrypts the final result. The Arduino en-
vironment uses an extended version of the microRSA[18] library
to implement the missing mathematical operations. Once the Ar-
duino receives n and n? it can start encrypting its plaintext message.
Finally, the Arduino sends the ciphertext back to the laptop.

Generate key pair

ﬁ Generate message
ﬁ Send Public key data

__Je.0) l
USB Cable

— &
L S

Return ciphertext —
Calculate and decrypt

{ S

Encrypt message

Fig. 1. Schematic overview

4 RESULTS

This section includes an examination of the SMPC protocols, shed-
ding light on the performance and security aspects of the PHE
schemes. With a primary focus on RSA and the Paillier cryptosystem,
this section delves into the computation time, power consumption,
and memory usage analyses. The performance analysis is followed
by a security analysis which goes into the security model, crypto-
graphic key size and semantic security. Finally, the section concludes
with answering the research questions posed in the introduction.

4.1 Performance analysis

4.1.1 Computation time. This subsection delves into the exami-
nation of the computation time of cryptographic operations. To
provide a comprehensive view of the minimum, maximum, and av-
erage runtime, each reported time in the subsequent tables is based
on a sampling of 100 instances.
The runtime analysis presented in Table 3 provides a comprehensive
overview of the SMPC protocol using RSA. The execution times for
key generation (Keygen), encryption of Python message (EncryptP),
decryption (Decrypt) on the laptop, and encryption of the Arduino
message (EncryptA) on the Arduino are detailed. Notably, the total
runtime of the protocol is heavily influenced by the encryption
time on the Arduino, averaging 1807ms, which is approximately 100
times slower than its Python counterpart.
Key generation exhibits notable variability in both minimum and
maximum times. However, given that key generation is a less fre-
quent operation in the protocol, the observed variability is unlikely
to impact the overall performance of the protocol significantly.
The measured runtimes, encompassing key generation, encryption,
and decryption, are crucial metrics for assessing the computational
efficiency of the SMPC protocol using RSA with the Arduino Uno.
Table 4 provides a comprehensive breakdown of the computa-
tion time for the Paillier-based SMPC protocol on the laptop. Key

Rik van de Haterd and Supervisor: Dr. Ing. M.Elhajj (Mohammed)

Table 3. Computation time RSA

RSA Min Average Max
Keygen 191ms 256ms 578ms
EncryptA 1792ms 1807ms 1834ms
EncryptP 12ms 17ms 32ms
Decrypt 13ms 19ms 29ms
Total 2008ms 2099ms 2473ms

Table 4. Computation time Paillier Python

Pailler Python Min Average Max

Keygen 108ms 356ms 1054ms
Encrypt 24ms 32ms 51ms
Decrypt 7ms 10ms 24ms
Total 139ms 398ms 1129ms

Table 5. Computation time Arduino multiplication

Multiply in bytes 64 128 256

64 25ms 46ms 92ms
128 46ms 99ms 183ms
256 92ms 183ms 367ms

generation (Keygen), encryption of Python messages (Encrypt), and
decryption (Decrypt) are the key components analyzed. Key gen-
eration, similar to the RSA protocol, displays notable variability in
both minimum and maximum times, but, as mentioned earlier, this
variability is not expected to significantly impact the overall perfor-
mance of the protocol due to the infrequency of key generation.

The Paillier encryption faced memory issues preventing a com-
plete run on the Arduino, hindering the acquisition of concrete
runtime data. However, an estimate can be derived based on the
computational demands of the most intensive task within Paillier
encryption: modular exponentiation (Algorithm 1 in the appendix).
The algorithm entails 1024 cycles, corresponding to the number of
times n needs to be divided by 2 to reach 0. Additionally, within
these cycles, the code within the if statement is executed an ad-
ditional 512 times. This translates to 1536 multiplications of two
256-byte numbers and 1536 modulo operations with a 512-byte num-
ber modulo a 256-byte number. Using the information from Table 5
and 6, an estimate is computed. The multiplication step would take
1536 %367 ms, totalling 563,712 seconds or 9.4 minutes. Similarly, the
modulation step would take 1536 * 3668 ms, totalling 5634,048 sec-
onds or 93.9 minutes. Combined, the total runtime for the function
is estimated to be 103.3 minutes. These estimates, though approx-
imations provide insights into the computational demands of the
Paillier encryption function on the Arduino.

4.1.2 Power consumption. The power consumption analysis, de-
tailed in Table 7 and 8, provides insights into the energy require-
ments of the cryptographic algorithms implemented on the Ar-
duino Uno. In terms of amperage, the Arduino exhibited an average

Enhancing Privacy and Security in loT Environments through Secure Multiparty Computation

Table 6. Computation time Arduino modulo

Modulo in bytes 128 256 512

128 Ims 922ms 2766ms
256 Oms 2ms 3668ms

Table 7. Ampere usage Arduino

Function @ Min Average Max

RSA 20,1mA 20,4mA 20,8mA
Multiply 20,2mA 20,3mA 20,5mA
Modulate 20,ilmA 20,4mA 21,2mA

Table 8. Wattage Arduino

Function Min Average Max
RSA 102,9mW 103,8mW 105,8mW
Multiply 104,9mW 106,3mW 110,2mW

Modulate 103,7mW 104,2mW 106,2mW

usage of 19.0mA without any algorithms running, operating at a
voltage of 5.1 volts. When executing the cryptographic functions
(RSA, Multiply, and Modulate), the average amperage only slightly
increased to 20.4mA, with the highest peak observed at 21.2mA
during the modulation function. These values are well below the
Arduino Uno’s maximum power draw capacity, which is specified to
be at least 200.0mA[25]. It’s noteworthy that the recorded amperage
values align with the wattages, validating the consistency of the data
through Ohm’s Law (W = V x I). This strong correlation reinforces
the reliability of the power consumption measurements across the
cryptographic functions. Consequently, the power consumption
of these PHE schemes on the Arduino Uno is deemed negligible,
emphasizing that power constraints should not pose significant
challenges when implementing or discussing these cryptographic
algorithms on the Arduino platform.

4.1.3 Memory Usage. In the evaluation of memory usage for the
RSA and Paillier implementations on the Arduino, Table 9 provides
a comprehensive overview of Flash and dynamic memory consump-
tion before runtime. Both implementations stay well below the
maximum thresholds of 32K and 2K respectively, with the RSA uti-
lizing 6076 bytes of Flash and 330 bytes of dynamic memory, while
the Paillier implementation uses 10176 bytes of Flash and 493 bytes
of dynamic memory. Since the Arduino IDE does not support real-
time memory analysis, the subsequent calculations are estimates
based on line-by-line code analysis.

To gain insights into the dynamic memory usage during runtime,
the memory flow over specific events is depicted in Figures 2 and 3.
For the RSA implementation (Figure 2), the memory usage grows
during key generation, message generation, and conversion to the
custom bignum§ structure. The encryption phase introduces two
temporary variables, reaching an estimated highest memory usage
of 1226 bytes. The RSA implementation does not encounter memory

TScIT 40, Feb 2, 2024, Enschede, The Netherlands

Table 9. Memory before runtime in bytes

Memory type Flash Dynamic

RSA 6076 330
Paillier 10176 493

2,000 -
1,750 -
1,500 |-
w)
&
B
< 1250 Genegte7t2
op Generatet1 Free t1
2 o o
> 1,000 |-
g Convert_bignum
o
(%]
= 750|
Receive_n
[¢)
500 |- Generateamessage
Start Finish
o Q)
! ! ! ! !
0 5 10 15 20
Events
Fig. 2. Estimated memory usage RSA
issues.

The Paillier encryption on the other hand (Figure 3) involves higher
memory demands due to the reception of two large variables, n
(128 bytes) and n® (256 bytes). Additionally, during modular expo-
nentiation, the memory usage variable of r peaks at 512 bytes. The
estimated highest memory usage for the Paillier implementation is
1773 bytes, occurring during the modular exponentiation and the
final ciphertext calculation. Despite these estimates not reaching or
exceeding the Arduino’s maximum memory capacity of 2048 bytes,
the Paillier implementation experiences program breakdowns and
outputs zero values, indicating potential memory-related issues.

4.2 Security analysis

4.2.1 Security model. The security of a protocol is meaningful only
when discussed under a specific security model, as the capabilities
of the adversary define the security requirements. Three types of
security models are often outlined:

e Semi-honest Adversary Model: In this model, corrupted
parties must execute the protocol correctly. The adversary
can obtain information on corrupted parties but will attempt
to use this information discreetly. Protocols that achieve this
level of security prevent the leakage of information between
collaborating parties.

TSclT 40, Feb 2, 2024, Enschede, The Netherlands

2,000 - 7
ME_peaks Calculate_cypher
1,750 |- 2 2 :
Calculate_g™
“» 1,500 |- < B
2
>,
e}
e ME_starts ME. ends
& 1,250 | o o -
123 Generate R
= o
g‘ Receive_n2
g 1,000 - o 7
%
=
Receive_n
750 |- o .
(Generate_message
o
500 |- StSrt Flrgsh |
| \ \ \ \
0 10 20 30 40

Events

Fig. 3. Estimated memory usage Paillier

e Malicious Adversary Model: Corrupted participants in this
model may deviate from the protocol’s specifications based on
the adversary’s instructions. A protocol secure against a ma-
licious adversary can guarantee the failure of any adversarial
attacks.

e Covert Adversary Model: A covert adversary may exhibit
malicious behaviour but has a probability of being caught
cheating by honest participants.

This paper assumes a Semi-honest Adversary Model as the secu-
rity model during the execution of the protocol.

4.2.2 Keysize. NIST revised its recommendation for RSA key lengths
in 2015, now advising a minimum of 2048 bits[26]. This update su-
persedes the consensus which advocated for a minimum key size of
1024 bits. Consequently, the use of a 1024-bit key in encryption is
discouraged for safeguarding sensitive or critical data. However, if
the key’s lifespan or the protected data spans only days or weeks,
the necessity for employing a key resistant to years-long attacks
diminishes. The choice of key size and its associated security consid-
erations in the context of the IoT environment would be contingent
on specific usage. It’s noteworthy that 1024-bit keys represent the
upper limit of what an Arduino Uno, without additional memory
extensions, can effectively manage.

4.2.3 Semantic security. The intrinsic homomorphic property of
RSA makes the algorithm susceptible to semantic insecurity in the
absence of proper padding. The lack of semantic security renders the
encryption vulnerable to potential attacks such as Chosen Plaintext
and Message Replay. The introduction of padding however destroys
the homomorphic property, making performing SMPC impossible.

Rik van de Haterd and Supervisor: Dr. Ing. M.Elhajj (Mohammed)

The Paillier cryptosystem does offer semantic security against
chosen-plaintext attacks. The successful distinction of the challenge
ciphertext boils down to the ability to make decisions about compos-
ite residuosity, a task considered computationally intractable under
the assumption of decisional composite residuosity. However, de-
spite providing semantic security against chosen-plaintext attacks,
the system exhibits malleability due to its homomorphic proper-
ties. Thus, it does not achieve the highest level of semantic security,
lacking protection against adaptive chosen-ciphertext attacks.

4.3 Answering RQ1

A customized SMPC protocol based on PHE schemes can ensure the
confidentiality and integrity of data through the homomorphic prop-
erties of the algorithms. PHE schemes are the least computationally
complex type of HE and are therefore a logical consideration for the
resource-constrained IoT environment. With these homomorphic
properties, one can compute results based on ciphertexts rather
than on plaintext. This ensures that the context of the numbers is
lost and the parties involved do not learn any information about the
other participating parties. This protocol can be further extended
by implementing secret-sharing techniques like SSS or Oblivious
Transfer when distributing keys or ciphertexts.

4.4 Answering RQ2

The practicality of implementing the RSA and Paillier PHE schemes
on a resource-constrained device is rather lacking, as efficiency and
security perform insufficiently for the IoT environment. For the RSA
algorithm, encryption takes on average 1807ms which is too long for
the often real-time data needed in the IoT environment. Furthermore,
the RSA algorithm cannot make use of padding which makes it
semantically insecure. This results in the fact that parties can gain
knowledge about other participating parties, which goes against
SMPC requirements. The Paillier encryption on the other hand is
semantically secure but cannot finish encryption due to running out
of dynamic memory. Even if the Paillier algorithm could finish an
encryption, this would take at least 103,3 minutes. Again, this is way
too long for any practical application in the IoT environment. The
security status of the chosen 1024-bit key size is contingent on the
usage of the protocol, therefore no concrete conclusion can be made
regarding key size other than the fact that the protocols should
not be used to store critical data. Power consumption is the only
characteristic that both algorithms perform sufficiently. However,
this does not weigh up against the lack of computational efficiency
and security.

5 CONCLUSIONS

Privacy and security are pivotal in data-sharing within the IoT
environment. Despite this, there is a noticeable gap in the liter-
ature regarding the practical implementation of SMPC protocols
on resource-constrained devices within the IoT. This research de-
tails the implementation of two PHE-based SMPC protocols on the
resource-constrained Arduino Uno. One protocol is built upon the
RSA cryptosystem, and the other is based on the Paillier cryptosys-
tem. The protocols underwent benchmarking and security analysis.
For the performance, metrics important to resource-constrained

Enhancing Privacy and Security in loT Environments through Secure Multiparty Computation

devices such as memory usage, power consumption, and computa-
tion time were tested. Whereas the security analysis delves into the
security model, semantic security, and cryptographic key size. Based
on the results of this research I conclude that SMPC shows great
potential for the resource-constrained IoT environment. However,
it is not practical to directly implement Partially Homomorphic En-
cryption schemes on a resource-constrained device like the Arduino
Uno with the goal of SMPC.

I'would discourage attempts to optimize RSA and Paillier encryption
on the Arduino and instead focus on offloading complex compu-
tations and encryptions through the use of cloud computing and
secure data offloading. With these techniques, one could utilize
even more robust encryption algorithms more efficiently than the
Arduino can.

REFERENCES

[1] Adam Thierer and Andrea Castillo. Projecting the growth and economic impact
of the internet of things. George Mason University, Mercatus Center, June, 15, 2015.

[2] Lo’ai Tawalbeh, Fadi Muheidat, Mais Tawalbeh, and Muhannad Quwaider. Iot
privacy and security: Challenges and solutions. Applied Sciences, 10(12), 2020.

[3] Asma Haroon, Munam Ali Shah, Yousra Asim, Wajeeha Naecem, Muhammad
Kamran, and Qaisar Javaid. Constraints in the iot: the world in 2020 and beyond.
International Journal of Advanced Computer Science and Applications, 7(11), 2016.

[4] Joseph Migga Kizza. Internet of Things (IoT): Growth, Challenges, and Security,
pages 517-531. Springer International Publishing, Cham, 2020.

[5] Marcel von Maltitz and Georg Carle. Leveraging secure multiparty computation
in the internet of things. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’18, page 508-510, New
York, NY, USA, 2018. Association for Computing Machinery.

[6] Saurabh Singh, Pradip Kumar Sharma, Seo Yeon Moon, and Jong Hyuk Park.
Advanced lightweight encryption algorithms for iot devices: survey, challenges
and solutions. Journal of Ambient Intelligence and Humanized Computing, pages
1-18, 2017.

[7] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi Gao,

Hongwei Li, and Yu an Tan. Secure multi-party computation: Theory, practice

and applications. Information Sciences, 476:357-372, 2019.

Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on

Foundations of Computer Science (sfcs 1982), pages 160-164, 1982.

[9] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pages 162-167, 1986.
[10] Wang Ren, Xin Tong, Jing Du, Na Wang, Shan Cang Li, Geyong Min, Zhiwei
Zhao, and Ali Kashif Bashir. Privacy-preserving using homomorphic encryption

in mobile iot systems. Computer Communications, 165:105-111, 2021.

[11] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest se-

cure multiparty computation for the internet. Cryptology ePrint Archive, Paper

2016/1066, 2016. https://eprint.iacr.org/2016/1066.

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of

secure protocols. In Symposium on the Theory of Computing, 1990.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation. In Proceedings of

the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, page

1-10, New York, NY, USA, 1988. Association for Computing Machinery.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,

STOC °87, page 218-229, New York, NY, USA, 1987. Association for Computing

Machinery.

Himanshu Goyal and Sudipta Saha. Multi-party computation in iot for privacy-

preservation. In 2022 IEEE 42nd International Conference on Distributed Computing

Systems (ICDCS), pages 1280-1281, 2022.

[16] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, nov 1979.

[17] Oladayo Olufemi Olakanmi and Kehinde Oluwasesan Odeyemi. Trust-aware and

incentive-based offloading scheme for secure multi-party computation in internet

of things. Internet of Things, 19:100527, 2022.

qqglab. microrsa. https://github.com/qqqglab/microRSA, 2020.

Rhys Weatherley. Arduino cryptography library. https://rweather.github.io/

arduinolibs/crypto.html, 2023.

CSIRO’s Data61. Python paillier library. https://github.com/data61/python-

paillier, 2013.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM, 21(2):120-126, feb 1978.

8

[12]

[13]

[14]

[15]

(18]
[19]

[20]

[21]

[22

[23

[24

[26

TScIT 40, Feb 2, 2024, Enschede, The Netherlands

Kefa Rabah. Review of methods for integer factorization applied to cryptography.
Journal of applied Sciences, 6(1):458-481, 2006.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, pages
223-238, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, and Phong Q. Nguyen.
Paillier’s cryptosystem revisited. In Proceedings of the 8th ACM Conference on
Computer and Communications Security, CCS *01, page 206214, New York, NY,
USA, 2001. Association for Computing Machinery.

Microchip. megaavr® data sheet. https://ww1.microchip.com/downloads/en/
DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf,
2019.

Elaine Barker and Quynh Dang. Recommendation for key management part 3:
Application-specific key management guidance, 2015-01-22 2015.

https://eprint.iacr.org/2016/1066
https://github.com/qqqlab/microRSA
https://rweather.github.io/arduinolibs/crypto.html
https://rweather.github.io/arduinolibs/crypto.html
https://github.com/data61/python-paillier
https://github.com/data61/python-paillier
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf

TSclT 40, Feb 2, 2024, Enschede, The Netherlands Rik van de Haterd and Supervisor: Dr. Ing. M.Elhajj (Mohammed)

6 APPENDIX

Data: r: bignums, n: bignums, nsq: bignum3

Result: bignum§8

res < bignum8_init(1);

while not bignum8_is_zero(n) do

if bignum8_is_odd(n) then
res < bignum8_multiply_res(res,r);
bignum8_imodulate(res, nsq);

end

bignum8_shift_right(n);

r « bignum8_multiply_res(r,r);
bignum8_imodulate(r, nsq);
end

return res;
Algorithm 1: Modular exponentiation function

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Research questions
	1.4 Structure

	2 Related work
	3 Methodology
	3.1 Hardware and software setup
	3.2 Algorithms
	3.3 Research metrics
	3.4 Implementation

	4 Results
	4.1 Performance analysis
	4.2 Security analysis
	4.3 Answering RQ1
	4.4 Answering RQ2

	5 Conclusions
	References
	6 Appendix

