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Management summary 
The research is performed at HITEC Power Protection (HPP) in Almelo. HPP designs, develops, 

delivers, and supports uninterruptible power supply (UPS) systems across the globe. It is HPP’s 

mission to support critical facilities such as hospitals, airports, stock exchanges, data centres and 

industrial manufacturing processes by assuring safe, reliable, and conditioned power. UPS 

systems in industry in general have very high uptime to ensure power supply for these critical 

facilities. It is therefore crucial for the maintenance of UPS that the downtime, both planned and 

unplanned, of any part of the UPS system is minimized. The decrease of unplanned downtime 

currently shows higher benefit for the company. Therefore, minimizing the unplanned downtime 

is the focus of the research, resulting in the research objective as  

Improving the HPP maintenance service by decreasing the unplanned downtime of the UPS units 

through implementation of a PdM policy for a selected component of HPP’s UPS systems. 

The research examines the implementation of a predictive maintenance (PdM) policy to support 

the maintenance services of HPP. A PdM policy allows for maintenance planning prior to the time 
when maintenance action for a given component of the UPS system is required. Allowing for an 

immediate carrying out of the maintenance action when it is required. Resulting in a decreased 

unplanned downtime for the given component of the UPS system. The PdM policy is based on a 

developed predictive model predicting the future health state (HS) of a component of HPP’s UPS 

systems. First, a statistical predictive model is developed as the complexity of the relation 

between the data is not known prior to the research. Subsequently, a data driven predictive model  

is developed for comparison of model predictive ability. The better performing model is used for 

the development of the PdM policy. 

In the research a PdM policy to support the planning of maintenance actions for the kinetic energy 

module (KEM) inner bearing components is developed. The policy is developed using a linear 

regression statistical and regression based decision tree data driven model, predicting the HS of 

the KEM inner bearings 6 days into the future. A 6 day prediction period is selected as it provides 

enough time for HPP to plan a maintenance service in advance. The statistical linear regression 

based model is not able to make predictions for the non-healthy HSs of the KEM inner bearings. 

The model predicts the future HS for every instance to be a healthy HS. Therefore, the statistical 

linear regression based model is depicted as a not useful predictive model for the research. The 

data driven regression decision three model is able to correctly predict part of the non-healthy 

and healthy HSs. The data driven regression decision tree model is therefore depicted as useful 

and is used as basis for developing a PdM policy for HPP.  

The developed data driven model consists of 3 parts. Namely, data driven predictive model for 

predicting the KEM DE Vibration, known as Model DE. Second, data driven predictive model for 

predicting the KEM NDE Vibration, known as Model NDE. And last, HS prediction, where the 

predicted KEM DE and NDE Vibrations using Model DE and Model NDE are used to depict the 

associated predicted HS.  

During the predictive model development of Model DE and NDE it is observed that the KEM outer 

bearing temperature on driving end input variable for Model DE did not provide any value to the 

KEM DE Vibration predictions. Removing this input variable resulted in predicting 0 instead of 2 

incorrect HS predictions and decreased the prediction error key performance indicators (KPIs). 

Moreover, the analysis of the extracted features revealed the most valuable extracted features are 

standard deviation, variance, root mean square, shape factor, energy, skewness, and kurtosis. 

Addition of these extracted features also resulted in predicting 0 instead of 2 incorrect HS 

predictions and in a decrease of the prediction error KPIs. Moreover, the models revealed an 



effect of the operationality of the flywheel. Model predictions that are made separately for 

instances when the flywheel is and is not in operation resulted in the same number of incorrect 

HS predictions. However, the prediction error KPIs have decreased. 

The final predictive model predicting the HS of the KEM inner bearings is used as basis for the 

PdM policy for the KEM inner bearings. The PdM policy is defined using a safety factor α as an 

input variable, depicting the prediction certainty used for proposal of maintenance actions for the 

KEM inner bearings.  

The results for the testing data are: 

70% certainty prediction interval 

- 1 unnecessary maintenance action predicted 

- 152 (27.05%) necessary maintenance actions unpredicted 

- 99.88% of maintenance actions correctly predicted 

80% certainty prediction interval  

- no unnecessary maintenance action predicted 

- 162 (28.83%) necessary maintenance actions unpredicted 

- 99.87% of maintenance actions correctly predicted 

90 % certainty prediction interval 

- no unnecessary maintenance action predicted 

- 255 (45.37%) necessary maintenance actions unpredicted 

- 99.80% of maintenance actions correctly predicted 

For all prediction certainty intervals, with a penalty of 50 for predicting unnecessary maintenance 

action, the unplanned downtime has reduced. Assuming 50% decrease of unplanned downtime 

when the need for a maintenance action is known 6 days in advance. The highest reduction of 

unplanned downtime is associated with the 80% certainty prediction interval. Reducing the 

unplanned downtime by approximately 36% compared to the currently used maintenance policy. 

The unplanned downtime reduction for 70% certainty prediction interval is approximately 32%, 

and for 90% certainty prediction interval approximately 27%.  

The proposed PdM policy is not successfully validated using the available validation data set. The 

main aspect of the inability to validate the model is related to the varied step size between 

measurements of the input variables. This aspect directly affects the extracted features that are 

significant input variables for the underlying predictive model of the PdM policy. However, 

valuable insights for further development of the PdM policy and its underlying predictive models 

are made during the research.  

- First, the removal of input variables for reduction of the model input complexity is 
analysed. Resulting in removal of the KEM outer bearing temperature measurements. 

However, based on set decisions, more input variables can be removed from the model 

input to further reduce the complexity of model development.  

- Second, the value of inclusion of extracted features from the vibration data onto the model 

predictions is demonstrated. In the research the minimum number of extracted features 

is removed from the model input. However, a different approach where less extracted 

features are included in the model could further reduce the model complexity and lead to 

more accurate predictions.  



- Third, the effect of flywheel speed onto the model performance for instances when 

flywheel is in operation and when it is not in operation is evaluated. It is demonstrated 

that the instances when flywheel is in operation are better modelled by model solely 

developed based on instances from when the flywheel was in operation. However, it is 

also depicted that the operational status of the flywheel has more significant influence on 

the KEM inner bearings on the driving end of the KEM. Therefore, model distinction 

between model for the KEM inner bearings installed on the driving end (where the 

flywheel is installed) and on the non-driving end can be made. 

Taking into account the findings of the research, the research provides a good basis for developing 

a PdM policy for HPP. The policy supports the maintenance service of HPP by providing insight 

for the customers into the upcoming HS of the KEM component. However, additional aspects for 

further development of the PdM policy and its underlying model should be addressed first.  

- Further removal of input variables in order to decrease the number of needed sensors for 

the measurement of the variables. Also reducing the model robustness. 

- Further analysis of the most valuable extracted features. As removal of unnecessary 

extracted features decreases the execution time of the model and the PdM policy. Also 

reducing the model robustness. 

- Further analysis of the effect of the operationality state of the flywheel onto the Model DE 

and Model DE. Potentially improving the final HS prediction. 

Following the improvements, it is important for the validation of the new underlying predictive 

model that the time steps between the measurements of the input variables are constant. Once 

the underlying model is validated the PdM policy can be implemented at the customer sites and 

use the direct measurements from the UPS system for HS prediction. Then through the associated 

PdM policy the customer obtains predicted maintenance needs for the KEM component. 
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1 Introduction 
In February 2021, Texas experienced a major power 

crisis. At its peak, more than 4.5 million Texas homes and 

businesses were without power [1]. During these days of 

emergency all companies who installed HITEC Power 

Protection's Uninterruptable Power Systems did not come 

into problems due to the power loss [2]. 

HITEC Power Protection (HPP) delivers reliable power 

supply across the globe. The key markets supported by 

HPP are manufacturing, semiconductor, finance, telecom, 

data centre, and government. HPP’s mission is to support the critical facilities of these markets 

by assuring safe, reliable and conditioned power. That is why HPP designs, develops, delivers, and 

supports uninterruptible power supply (UPS) systems. The company currently serves and 

supports over 500 customers in 60 countries. From its headquarters in Almelo (the Netherlands) 

and customer support locations in Europe, America, and Asia. Figure 1.1 shows overview of the 

countries in which HPP UPS systems are installed.  

The company does not simply provide their systems to the customers. It provides a power supply 

service. This includes maintenance support for the customers. For their maintenance operations, 

HPP applies preventive maintenance (PM), carrying out maintenance operations before a failure 

occurs. This is so that the customers do not experience down time due to loss of power. The PM 

policy applied at HPP is a condition based maintenance (CBM). CBM makes use of real-time 

measurements to evaluate the current condition of a component and evaluates its need for repair 
or replacement. However, with new trends in the industry the focus shifts towards the analysis 

of the historical data of these measurements. Shifting from PM towards predictive maintenance 

(PdM) policies. PdM has the same basis as CBM, however, instead of observing when a certain 

threshold condition is reached it is predicted. This allows for planning instead of reacting when 

maintenance is needed. Section 1.1 provides introduction on the basics of HPP’s UPS systems and 

introduces the software system of the UPS systems, which is the basis for the HPP’s maintenance 

operations. Furthermore, the section presents the current maintenance policies at HPP, and 

presents the specific UPS systems which will be of focus in the research. In section 1.2 the 

motivation of HPP for investigating the suitability of PdM for their UPS systems is presented. 

Section 1.3 discusses the action and core problems that are currently present at the company. The 

approach for carrying out the research is presented in section 1.4.  

1.1 HPP UPS systems 
HPP manufactures diesel rotary UPS systems 

(DRUPS) to provide power supply to their 

customers. HPP provides power supply for 

both short break (SB) and no break (NB) loads. 

SB load is a non-essential load, for example a 

printer or a coffee machine. NB load is an 

essential load, for example air traffic control or 

hospital operating room. The electrical circuit 

of the PowerPRO2700 DRUPS system can be 

seen in Figure 1.2. The figure shows the DRUPS 

system in utility mode and in diesel mode. In 

diesel mode utility is not provided to the 

system. Utility is defined as public or general 

Figure 1.1: Countries with HPP UPS systems 

Figure 1.2: DRUPS  with PowerPRO2700 unit   
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utility power supply, normally available to 

power electrical appliances. A basic DRUPS 

system consists of 3 circuit breakers Q1, Q2, 

Q3, a reactor and a unit (Figure 1.2, unit is 

highlighted with orange). However, multiple 

units can be included in a system resulting in 

more circuit breakers and reactors needed 

(Figure 1.3, 2 units system). Q1 breaker is used for (dis)connection of the utility to the unit, Q2 

breaker for (dis)connection of the unit to the customer’s load, Q3 breaker for (dis)connection of 

the utility directly to customer’s load. A reactor is used to separate utility from the load and to 

allow the alternator to control the voltage of the load. Important components of a unit are 

alternator / generator, diesel / engine, freewheel clutch (FWC) and kinetic energy module (KEM). 

Generator can either be used as a running motor or a running generator, engine is used to provide 

long term energy supply, FWC is used for the (dis)engagement of the engine with the generator, 

and KEM is used to generate and store kinetic energy to support the system during utility loss.  

To demonstrate the basics of how the DRUPS system operates the transfer from utility to diesel 

mode consisting of 4 stages is described. Figure 1.4 shows the speed of rotary components of the 

DRUPS system during the different stages.  Fist stage is the utility mode in which the generator is 

used as a running motor to provide strong pure electrical power by filtering the electrical power 

provided by utility and by stabilizing its voltage output. At this time KEM operates at full speed 

generating and storing kinetic energy. When the utility is no longer provided the DRUPS system 

starts the transfer to diesel operation. This is the second stage. The generator is used as running 

generator to generate power output. During this stage a diesel engine is starting up but cannot 

yet support the system. Since no interruption to the power supply can occur, in the meantime the 

KEM supports the system with its stored kinetic energy. Once the diesel engine is started up the 

system is in a full diesel operation. This is the third stage. In this stage the KEM starts to return to 

its full speed to generate and store energy needed to support the system during the next transfer 

from utility mode to full diesel operation mode. Once the utility is provided again, the system re-

transfers back to utility mode. This is the fourth stage. The diesel engine disconnects from the 

generator, goes into cool down and the generator is used as a running motor again. It is important 

to note that the transfer from full diesel operation (no utility mode) to utility mode always lasts 

for at least 15 minutes, even if the utility outage lasts for only a few seconds. This is to provide 

enough time for the KEM to reach its maximum speed again, to generate and store enough energy 

to be ready to support the system during the next outage without any delay.  

 

Figure 1.4: Speed of rotary components of DRUPS 

Figure 1.3: UPS system with 2 units 
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When there is a failure with the DRUPS system during the utility mode the power is provided to 

the customer by another unit or directly from the utility through a bypass. For a system consisting 

of one unit, when the unit fails, the Q3 breaker is closed to provide the utility directly to the 

customer through a bypass. Q1 and Q2 breakers can be opened, and the unit can be disconnected 

from the system and undergo maintenance. Bypass is only used when no other operational unit 

can take over. In bypass mode the filtering of the signal and stabilizing of the voltage output are 

not provided, but the customer does receive power. In no utility state if there is no operational 

unit (when unit 1 and 2 are not operational in Figure 1.3) the customer does not receive power. 

1.1.1 Software system 
For maintenance purposes HPP 

monitors two types of performance 

measurements (PMSMTs) of their 

UPS systems. PMSMTs signify all 

measurements measured from the 

UPS system and UPS components. 

First, the UPS system PMSMTs are 

focused on the performance of the 

UPS system. Such as, the utility 

output voltage and frequency. Then, 

the UPS component PMSMTs focus 

on the health of the UPS components 

and the status of their environmental factors. For example, the bearing vibrations and room 

temperature.  

The software system integrated with a UPS system can be seen in Figure 1.5. The UPS system is 

physically attached to a unit control panel (UCP) in which operational software is located. Digital 

controller (Dicon) monitors the performance of the UPS by measuring the UPS system PMSMTs. 

Dicon provides this data to programmable logic controller (PLC). Based on the received data from 

Dicon the PLC evaluates and operates the system. For example, if the utility voltage is 0 the PLC 

evaluates that there is no utility and therefore, the engine needs to be started up to generate 

power. The PLC commands the engine to start up. 

Installed sensors on components of the UPS system measure the UPS component PMSMTs. These 

PMSMTs are then visualized in a Supervisory Control and Data Acquisition (SCADA) system. In 

addition to the UPS system PMSMTS, Dicon also contains set threshold values for all of the 

PMSMTs. These threshold values are used to depict the performance state of the UPS system, the 

health state of the UPS components, and the status of the environmental factors. These thresholds 

are also provided to the PLC. The PLC then based on the PMSMT values and the set thresholds 

evaluates the performance of the UPS system, health state of the UPS components, and the status 

of the environmental factors. These evaluations are then provided to Human Machine Interface 

(HMI) and SCADA for data visualizations for customers. HMI is a panel located on the outside of 

the UCP. SCADA is a control system that can be accessed remotely. In comparison to HMI, SCADA 

also visualizes past PMSMT data. 

 

 

 

Figure 1.5: Software overview 
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1.1.2 Maintenance policy 
Two maintenance policies are applied at HPP. First is the planned preventive maintenance (PPM). 
This maintenance is carried out in form of regular prescheduled maintenance operations, where 

the condition of the UPS is inspected. This is a static condition based maintenance (SCBM). Second 

is the unplanned preventive maintenance (UPM). This maintenance  makes use of the monitored 

PMSMT values. The UPM is a dynamic condition based maintenance (DCBM) policy. With this 

policy, maintenance operations are carried out whenever a PMSMT value goes out of its set 

threshold. When it comes to the health state of the UPS components, there are 3 health states (HS) 

defined by HPP: UPS component performs as intended (Healthy HS), UPS component performs 

with lower functionality (Degraded HS), or UPS component no longer performs and has failed 

(Failure HS). The thresholds for depicting the HS are set before installation of a UPS system at 

customer’s site. The UPS system thresholds are set by HPP. These thresholds are set based on the 

UPS customer’s site requirements. The UPS component PMSMT thresholds are set based on 

manufacturer’s requirements and experience of HPP. Figure 1.6 shows how the PMSMTs are 

visualized on the HMI panel and in SCADA.  

 When a PMSMT goes out of its threshold range this is referred to 

as alarm situation. Attention and warning alarm is within the 

degraded HS threshold (indicated by yellow in Figure 1.6). The 

failure alarm is within the failure HS threshold (indicated by red 

in Figure 1.6). The HPP health indicators in the HMI and SCADA 

visualizations light a yellow/orange and red light, respectively, to 

indicate these alarm states. 

The red failure light turns on when a new failure appears and 

turns off when all the failures have been reset. It is the most 

important health indicator light. During failure the UPS unit is out 

of order and stopped. The warning alarm signifies an error that 

must be solved now. It is a serious error that needs action to make 

sure the UPS unit can operate properly. It can still operate but 

probably not according to its specifications. The next indicator is 

the yellow attention light. This is used for a minor error. Similarly, 

as with warning, the UPS unit can still operate but probably not 

according to its specifications. However, the distinction between 

attention and warning alarm is fading and the company is 

transferring to combining them into one alarm category. The last 

health indicator is a green operational light. It flashes during the startup of the UPS unit and is 

continuously on when the UPS unit is fully operational. This health indicator is not considered an 

alarm.  

1.1.3 PowerPRO3600 and PowerPRO2700 
PowerPRO3600 (PP3600) and PowerPRO2700 (PP2700) are the newest DRUPS systems 

manufactured by HPP. For 60Hz applications PP3600 can reach power up to 3600kVA and 

PP2700 can reach power up to 2700kVA. PP3600 creates the highest power density per square 

meter in the industry. PP2700 while having the greatest reliability and uptime is the most 

compact power solution in today’s market. The focus on these UPSs is due to their relevance and 

data availability. From all the UPSs manufactured by HPP these are the systems with most 

available data. This is due to the software they are delivered with. Moreover, due to this software 

system, they are also the most suitable UPSs for implementation of PdM at HPP. 

Figure 1.6: PMSMT threshold range 
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Figure 1.7: PowerPRO3600 and PowerPRO2700 

The main difference between the two UPSs is the kinetic energy buffer. The PP3600 has an extra 

rotor combination to reach higher power.  

1.2 Research motivation  
‘As the population increases its reliance on communication and connectivity, urban expansion, and 

manufacturing and automation, the world’s power grids will continue to be stretched to their limits. 

This power dependency creates a significant risk that can lead to dramatic utility power outages 

that affect business-critical facilities such as hospitals, airports, stock exchanges, data centres and 

industrial manufacturing processes. HITEC Power Protection’s mission is to support these critical 

facilities by assuring safe, reliable and conditioned power.‘ [3]. 

The motivation for HPP is to provide UPS systems to customers with a high UPS uptime. For this, 

the UPS systems of HPP are often provided to the customers with maintenance contracts. The 

related costs for HPP carrying out a maintenance service are covered by the customers. Therefore, 

providing revenue to HPP. At the moment these contracts include maintenance service provided 

by HPP, based on SCBM and DCBM policies where the PMSMTs are monitored. Due to customers’ 

privacy reasons HPP does not have real time access to the PMSMT data for majority of the 

installed systems. In real time, the data is only used for visualizations of the current health state 

of components for the customers (as seen in Figure 1.6). Who then based on these values request 

a maintenance service from HPP.  

With the current trends in the industry, the maintenance services and therefore also customer 

demands are changing. The use of data driven, machine learning approaches in the industry, and 

also specifically in  the area of maintenance is growing. Data driven models allows for analysis of 

past and current PMSMT data in order to observe their development over time. This allows for 

developing predictive models with which the future values of the PMSMT data can be predicted.  

In the coming years HPP plans to use a new platform for the visualization of the system health 

state for the customers. One of the new features to be included are maintenance indicators which 

are based on data driven analysis of the PMSMT data. Based on real time analysis of current and 

past PMSMT data the maintenance indicators would evaluate the health state of the system. Based 

on the outcome of the analysis the maintenance indicators would indicate which maintenance 

actions are needed to be carried out. Furthermore, the analysis can be used to predict the RUL of 

different components and predict when alarms for the UPS will occur. However, first, a new 

maintenance policy has to be implemented at HPP.  

Maintenance indicators as seen nowadays in industry, and as envisioned by HPP, go hand in hand 

with implementation of a PdM policy. For HPP the main benefit of such policy is the potential to 
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decrease unplanned and planned downtime for the UPS units. Resulting in a UPS system with 

higher uptime, which is HPP’s motivation. Furthermore, customers can also benefit from a PdM 

policy when it comes to planning the maintenance service requested from HPP. Since the needed 

maintenance is known in advance, the planning can be done in a cost-effective way. For example, 

during a factory shutdown or together with other maintenance service. 

1.3 Problem identification 
As discussed in the Research motivation section, HPP provides maintenance services to their 

customers based on SCBM and DCBM policies. There are 3 action problems, which are defined as 

discrepancy between norm and reality [4],  that arise from these maintenance policies at HPP.  

First action problem is increased maintenance costs. Related to the SCBM policy, this occurs 

when expensive components are replaced based on their time in operation rather than based on 

their remaining useful life (RUL). Increased costs due to early maintenance do not affect the 

income of HPP. However, it has an effect on the attractiveness of the HPP UPS systems, as this 

extra cost affects the customer. On the other hand, related to DCBM policy, extra costs for HPP 

could occur. The occurrence is due to immediate planning of the service to be carried out. As an 

example, it is sometimes not investigated properly whether new components were installed in 

the system compared to the original installation and whether new replacement components 

taken for the service are suitable / fit in the currently installed system [5]. In case the component 

is not suitable, additional service visit needs to be planned to carry out the same maintenance 

operation. Therefore, additional costs are incurred. It cannot be easily determined how often this 

extra costs occur as this data is not easily available. However, it is not expected this happens often. 

The norm of HPP with regard to increased maintenance costs is: Lower the maintenance costs for 

the customers while not lowering the income of HPP gained through provided maintenance 

service.  

Building on the occasional need for repeated service visit for the same issue, the second action 

problem is defined as increased unplanned downtime. In situation when the unit is down, the 

repeated service increases the unplanned downtime period. With the current use of DCBM the 

planning of the maintenance service takes place once an alarm occurs. Therefore, in case of failure 

alarm, if a unit is down, the planning time takes place during the downtime of the unit. Again, 

increasing the unplanned downtime period. This downtime can be further increased due to 

current unavailability of resources. Such as personnel or components.  

The norm of HPP with regard to increased unplanned downtime is: Minimize the unplanned 

downtime while not decreasing the reliability of the system.  

Lastly, the third action problem is defined as increased planned downtime. Increased planned 

downtime is caused by carrying out the same maintenance operations during each PPM. 

Narrowing down the maintenance operations to components that actually require maintenance 

would decrease the planned downtime.  

The norm of HPP with regard to increased planned downtime is: Minimize the planned downtime 

while not decreasing the reliability of the system.  

The problem cluster depicting  the action problems can be seen in Figure 1.8. The selected action 

problem is increased unplanned downtime. Increased unplanned downtime is related to not 

knowing when and which maintenance actions will be needed. Knowing which maintenance 

actions are needed is something HPP is interested in for developing new maintenance indicators. 

Therefore, focusing on this action problem is in line with the goals of HPP. Two core problems are 
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identified as contributors to increased unplanned downtime. Namely, no predictive maintenance 

and no differentiation between customers. 

 

Figure 1.8: Problem cluster 

The first potential core problem to be selected for the research is not using a PdM policy. As a 

result of not having a PdM policy, there are no predictions for failure occurrence and RUL of 

components. Maintenance intervals for PPM cannot be determined dynamically. This means that 

for each customer the maintenance visits by HPP are prescheduled independent of the condition 

of their system. The customers have real time access to PMSMTs of their UPS system and 

components. Making use of this data with a real time analysis, a more optimal maintenance 

intervals could be determined dynamically. 

The second core problem focuses on not differentiating between the customers. And therefore, 

also not differentiating between the usage of the systems. Some customers are located in areas 

where utility is not provided more often, compared to other areas. For them the UPS system 

transfers to diesel mode more often. This also has an influence on the degradation of the UPS 

system and certain components. Therefore, a proper relation between usage and loads needs to 

be taken into account for the systems. Then an appropriate maintenance planning for each 

customer can be made. 

The selected core problem for the research is no predictive maintenance (PdM). This is due to 

the fact that to fully address the action problem, addressing core problem differentiation between 

customers still leaves the core problem of no PdM to be dealt with. On the other hand, addressing 

the core problem of no PdM can potentially address the core problem of no differentiation 

between customers. It provides opportunity to fully address the action problem by solving this 

one core problem, while eliminating the other core problem. 
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1.3.1 Deliverables 
The main deliverable of the research for HPP is a PdM policy proposal with underlying predictive 
model used for predicting the health state of  a selected component from the two newest HPP UPS 

systems. Furthermore, KPIs for evaluating the PdM policy and the underlying predictive model 

are provided for HPP. These can be used to further improve the PdM policy. Additionally, the 

research contributes to HPP by evaluating the impact of each of the used PMSMTs onto the 

developed predictive model. Moreover, also contributing to the industry in general, the impact of 

input variables and extracted features onto statistical and data driven models is evaluated. 

1.3.2 Research objective 
The reality of the selected action problem is that the maintenance operations are not always 

optimal and lead to increased unplanned downtime of the UPS units. By addressing the selected 

core problem, a PdM policy can be developed and implemented at HPP. Then HPP’s maintenance 

operations can be planned in advance and carried out when needed without expected delays. For 

achieving this norm, the research objective for the research is defined as: 

Improving the HPP maintenance service by decreasing the unplanned downtime of the UPS units 

through implementation of a PdM policy for a selected component of HPP’s UPS systems. 

1.4 Research approach 
Design science research methodology (DSRM) provides a guide for approaching a research 

project. Four main DSRM phases have been defined for the research project (Figure 1.9). The first 

phase focuses on setting the problem context and introducing the current situation at HPP. The 

second phase presents relevant literature related to the research. During the third phase a 

solution for the action problem is developed. This is done through developing and demonstrating 

an artifact. The artifact consists of a predictive model for predicting the health state of a selected 

component of HPP’s UPS system. Lastly, in the fourth phase the artifact is evaluated and used for 

implementing  a PdM policy. This PdM policy is then validated using a validation data set. 

Afterwards, conclusions of the research are presented. 

 

Figure 1.9: DSRM steps (adapted from [6]) 

For evaluating the research, the norm related to the selected core problem needs to be quantified. 

The norm is defined as minimizing the unplanned downtime while not decreasing the reliability 

of the system. With the current maintenance policy, the unplanned downtime of the UPS unit 

occurs when a degraded or failure HS for a component of the unit is observed. This unplanned 
downtime includes the planning for carrying out the necessary maintenance service. With a PdM 

policy the unplanned downtime occurs every time a degraded or failure time is predicted, instead 

of when it is observed. Therefore, this downtime does not include the planning of the necessary 

maintenance service. And therefore, it can be concluded that this unplanned downtime is shorter 

compared to the one related to the current maintenance policy applied at HPP.  
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Therefore, the reality and norm as quantified as follows: 

𝑅𝑒𝑎𝑙𝑖𝑡𝑦 = 𝑁𝐻𝑜𝑏𝑠 ∗ 𝑡𝑐 

𝑁𝑜𝑟𝑚 = 𝑈𝑛𝑑𝑒𝑟 ∗ 𝑡𝑐 + (𝑁𝐻𝑜𝑏𝑠 − 𝑈𝑛𝑑𝑒𝑟) ∗ 𝑡𝑛 + 𝑂𝑣𝑒𝑟 ∗ 𝑃 

𝑡𝑛 < 𝑡𝑐 

Equation 1: Core problem quantified (reality and norm) 

Where NHobs stands for number of observed non-healthy HSs. tc and tn stand for downtime related 

to current and new maintenance policy, respectively. Under and Over counters, introduced during 

predictive model development section, count the number of under and over HS predictions. P 

stands for penalty incurred by Over predicting a HS. 

1.4.1 Research questions 
An overview of research methodology approaches to answer the research questions (RQs) 

defined by the company, relevant to maintenance concepts, can be seen in Table 1.1. Moreover, 

an overview of research methodology relevant to RQs defined for the research by the author can 

be seen in Table 1.2. The research is exploratory, researching aspects that were not researched 

before. Or descriptive, reporting of already known and recorder information. All research is 

qualitative. The methods used to answer the RQs are either a literature study or an interview. 

Literature study is either based on literature or documentation of HPP. All interviews are held 

with the employees of the company. 

Five RQs are defined by the company to gain insights into maintenance concepts: 

1. What different maintenance policies are available? 

2. What are the new trends in PdM? 

3. Is the right PMSMT data available? 

4. Which assets or failures should be investigated first? 

5. How to evaluate maintenance policies for different assets? 

 

Table 1.1: Research methodology approach: RQs of the company 

Research questions 1 2 3 4 5 

Exploratory   X X  
Descriptive X X X X X 

Qualitative X X X X X 

Literature study: literature X X X X X 
Literature study: HPP docs   X   

Interview   X   

Report section 3.1 3.2 3.3 3.4 3.5 

Five RQs are defined to guide the research:  

6. What are the suitable approaches to develop a predictive model 

for the selected component of HPP’s UPS systems? 

7. What are the suitable methods to develop a predictive model 

for the selected component of HPP’s UPS systems? 

8. What are the selected models for developing a predictive model 

for the selected component of HPP’s UPS systems? 

9. How to validate the developed predictive models? 

10. How to develop and validate a PdM policy for HPP? 
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Table 1.2: Research methodology approach: RQs defined for the research 

Research questions 6 7 8 9 10 

Exploratory X X  X X 
Descriptive X X X X X 

Qualitative X X X X X 

Literature study: literature X X X X X 
Literature study: HPP docs      

Interview      

Report section 4.2 4.3 4.4 4.6 4.9 
 

1.4.2 Research scope and limitations 
To set a realistic scope for the research the predictive model is developed for a single component 

of HPP’s UPS systems. This is due to the set time restrictions for carrying out the research project. 
The development of the predictive model is also limited by the unavailability of historical data. 

Only currently accessible data, with history of up to 6 months, can be extracted from customers 

during the research. This constitutes of 7 data sets out of which 3 data sets contain limited failure 

data. On average, only one failure data set is available for each of the model development stages: 

training, testing, validation.  
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2 Context analysis 
This section provides the context for the research by describing the current maintenance related 

aspects at the company. To obtain a good understanding of the maintenance operations, first the 

current monitoring system is presented in section 2.1. Together with the PMSMT visualization 

systems. Next, PPM operations and UPM operations based on the PMSMTs from the monitoring 

system are described in section 2.2. This section includes information about maintenance 

activities, data storage and maintenance contracts. Section 2.3 focuses on determining the most 

critical components of PP3600 and PP2700 UPS systems. Then a specific component for which 

predictive model is developed is selected. 

2.1 Dicon  
PLC is the operational system of the UPS. In order to operate the system, it needs data from the 

Dicon measurement device. When a new UPS system is to be delivered and installed for a 

customer the Dicon needs to be set up. Figure 2.1 shows an overview of the setup process. Project 

Configurator software is a basis for the setup. The component requirements are defined in the 

Project Configurator. Based on these requirements the threshold values are set for the different 

components. In Project Builder a new project is designed for the UPS system to be installed. This 

consists of defining the system requirements such as voltage output, and by specifying 

manufacturers of the UPS components. In addition, PMSMTs to be measured are assigned. Once 

the project is registered, the Dicon Tool connects the project and its parameters to the actual UPS 

system via physical Dicon device. Once the connection is established the Dicon Scope can be used 

to visualize the PMSMTs. This visualization is used during commissioning when the system is 

installed to make sure everything is running as intended. Moreover, service engineers can also 

use the Dicon Scope during maintenance operations.  

 

Figure 2.1: Dicon setup process 

Once the setup is complete the Dicon collects the assigned PMSMTs. These are then provided to 

the PLC and subsequently to HMI and SCADA for visualizations. Regular PMSMTs are performed 

every 500ms. In case of an event, event log is recorded in SCADA and for a short period of time 

Dicon directly provides data to SCADA itself. This is done at a higher frequency of 10ms in order 

to have more detailed data for evaluating the event. What constitutes as an event is determined 

by the PLC. An example of an event is a certain PMSMT going out of its set threshold range. 

Dicon contains around 950 PMSMTs out of which around 200 PMSMTs are direct measurements 

from the UPS. Other PMSMTs are general parameters, limits (threshold range), controllers, 

commands, status parameters, and others. In section on SCADA the important PMSMTs visualized 

for the customers, affecting the operationality of the system, are presented. 
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2.1.1 HMI  
The HMI panel on the UCP consists of 4 main aspects (Figure 2.2). 1: Screen selection buttons 
where the operator selects which data screen they want to see. 2: Selected HMI screen which 

shows the current PMSMT values for the selected data screen. 3: Health indicators. 4: Operation 

switches. The data visualizations (1 ,2) are the same as in SCADA and will be discussed in SCADA 

section. The health indicators (3) are explained in section 1.1.2. The operation switches (4) are 

used to operate the UPS system and are further explained in this section. 

 

Figure 2.2: HMI panel layout of UCP for PP3600 (PP2700 can be found in Appendix A) 

The Unit mode switches are used to start the UPS unit by selecting ON and stop the UPS unit by 

selecting OFF. The NB Load Mode switches put the unit into a UPS mode when Auto is selected. 

And put the unit into bypass mode when Bypass is selected. Similarly, the SB Load Mode puts the 

unit into automatic mode by selecting Auto and into utility mode by selecting Utility. Diesel mode 

switches are used for carrying out diesel and system tests. Auto puts the unit into automatic UPS 

mode, Diesel test switch stars the diesel test, and System test switch starts the system test on the 

UPS unit. The diesel and system test are described in section on Maintenance as they are 

performed during maintenance operations. 

2.1.2 SCADA 
SCADA visualizes the UPS performance PMSMTs based on data received from Dicon, and the UPS 

component PMSMTs based on sensor measurements. SCADA provides the same visualizations of 

current PMSMT values as are shown on the HMI screen. However, in SCADA the past PMSMT 

values are also visualized. There are several views that can be selected in the SCADA system. For 

the system as a whole a minimum of 5 views is available. For each additional (second or more) 

NB load a new view is added. For a unit there are 8 views that can be selected. Since a system can 

consist of multiple units, operator can select for which unit the data should be visualized. 
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Figure 2.3: SCADA system overview 

System views are overview, utility, NB load, 

alarms, and trending. The overview view shows 

what the installation of the UPS system looks like. 

It also shows the system PMSMTs. Both, current 

ones within their set thresholds and past ones for 

visualizing their development over time (Figure 

2.3). The utility view visualizes the utility PMSMTs, 

and NB load view the NB load PMSMTs. The overview of these PMSMTs and SCADA maintenance 

counters can be seen in Figure 2.4. The alarms view shows active alarms and alarm history / event 

logs. These are sorted first by importance and then by time of occurrence. The trending view 

visualizes any selected PMSMTs on a graph with their relevant y axes and time domain x axis. An 

example for y axis is rpm for speed of flywheel or °C for room temperature. Again, this trending 

of PMSMTs is mostly looked at retrospectively when an event occurs to determine its cause. 

Unit views are overview, unit input, 

engine, clutch, generator, KEM, unit 

output, and room cooling. This is the 

SCADA for PP2700. For PP3600, KEM 

view is ETM view with an additional 

flywheel view. Similarly to the system 

overview,  unit overview shows the 

setup of the unit and the value of 

selected PMSMTs (Figure 2.5). Other 

unit views visualize their relevant 

PMSMTs. The PMSMTs related to each 

of the views can be seen in Figure 2.6. 

  

Figure 2.6: SCADA unit performance measurements 

Figure 2.4: SCADA system performance measurements 

Figure 2.5: SCADA unit overview 
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To demonstrate how the data is 

visualized, within set threshold 

values, the SCADA PMSMT 

visualization for an operational 

& failed generator is shown in 

Figure 2.7. The blue bar area 

depicts the values that are 

within the set operational 

threshold range and therefore 

do not trigger alarms. Once a 

measurement  goes out of the 

blue area into the grey area it is 

outside of the set operational 

threshold range. Attention / 

warning and failure threshold 

ranges are then highlighted to 

show the criticality of the current value of the PMSMT. In Figure 2.7, voltage and frequency of the 

failed generator are within the red failure range, visualizing that this generator has failed and is 

no longer operational. 

2.2 Maintenance operations 
Maintenance operations are a very important aspect of HPP’s power supply service. This section 

first discusses how the PM inspections are currently determined for HPP maintenance operations 

(section 2.2.1). Section 2.2.2 then describes the processes of the standard PM operations. Section 

2.2.3  describes the data storage process of PPM,  and section 2.2.4 the data storage process of 

UPM. In section 2.2.5 the processes of additional maintenance operations are presented. Section 

2.2.6 introduced the prio failure terminology. In section 2.2.7 the maintenance contracts 

contributing to HPP’s revenue are discussed. Lastly, in section 2.2.8 the maintenance costs of 

carrying out the maintenance operations are briefly mentioned. 

2.2.1 Determination of maintenance intervals 
The maintenance intervals for HPP PM operations are determined both in a static way (SCBM), 

before the system is in operation. And in a dynamic way (DCBM), when the system is already in 

operation. Static intervals are defined for system and component inspections, as well as for 

maintenance activities. There are daily, weekly, and monthly PPM intervals for inspections. And 

quarterly (only for PP3600), semi-annual, annual, and additional PPM intervals for maintenance 

activities. The dynamic intervals are determined based on the PMSMT values. If customers do not 

monitor the PMSMTs and health indicators outside of the scheduled inspection, the intervals 

remain static for them. However, it is expected that the customers do monitor the PMSMTs in real 

time to ensure the reliability of their system. 

2.2.2 Standard maintenance 
The current maintenance policy applied at HPP is CBM. 

SCBM, using static intervals for inspections and maintenance 

activities. And DCSM using real time monitoring of current 

PMSMTs. For this, the company and customers monitor the 

UPS system and component PMSMTs of the UPS system to 

determine whether maintenance action is needed. 

The requirements for the different inspections can be seen in Figure 2.8. Personnel defines who 

can perform the inspection and warranty signifies whether the inspection is a part of the 

Figure 2.7: Operational(top) and failed(bottom) generator PMSMTs 

Figure 2.8: Inspection  overview 



15 
 

warranty contract with the customer. If the inspection is a part of the warranty it is mandatory 

for the operator (customer) to have this inspection performed. Appendix B provides an extract 

from an inspection task list. It clearly specifies when and which components need to be inspected, 

and what specifically needs to be inspected for them.  

The daily inspections are highly recommended. However, they are not included in the warranty 

contract. SCADA can be accessed remotely to check the system and component PSMSTs and the 

alarm indicators. However, a physical walk around allows to inspect for leakages and unusual 

indicators. That is why it is highly advised to the operators to also perform the daily inspections. 

For the weekly and monthly inspections, the operators are instructed to register the results of 

the maintenance tasks. For this HPP provides maintenance logbooks (Appendix C). It is also 

requested that the current logbook results are compared with the ones from the previous 

inspection to check for abnormalities. If alarms are present and cannot be solved or abnormalities 

are found in the logbook, the HPP regional helpdesk should be contacted. 

Inspections are carried out in utility mode. However, for monthly inspections the system is also 

inspected during and after carrying out a diesel test, and during and after carrying out a system 

test. These tests can be started and stopped via the HMI panel. In case the utility supply stops 

during either of the tests, the UPS system overrules the tests and transfers to diesel mode. Diesel 

test is used to inspect the functionality of the diesel engine. The diesel engine will be started and 

run just below the specified rpm. For 50Hz application at 1450 instead of 1500 rpm, and at 60Hz 

application at 1750 instead of 1800 rpm. The system test is used to test the whole UPS system. 

Switching from utility to diesel mode by opening the utility breaker Q1 and starting up the engine.  

 

Figure 2.9: Unplanned maintenance process 
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Task list for quarterly (only PP3600), semi-annual, and annual PPM operations is provided by 

HPP (Appendix B). These maintenance operations can only be carried out by certified operators, 

HPP, or HPP’s global qualified service partner. In addition, UPM operations take place when 

alarms are present and cannot be solved by operator. Or when abnormalities in logbooks are 

found by the operators. The process of carrying out the UPM activities can be seen in Figure 2.9. 

2.2.3 Data storage of PPM 
Some customers do not like to share their data due to online security issues and privacy reasons. 

For the customers that do not share their data due to online security reasons the aim is to receive 

their data during each PPM visit. VIBROTEST 60 (VT60) measurement tool is used to measure the 

PMSMTs of the components. These are one point entry measurements only showing the current 

PMSMT values. For PP2700 these measurements are carried out once per year. For PP3600 the 

measurements are carried out every 3 months as this system is not equipped with the SCADA 

system. Therefore, for PP3600 only 4 measurements are available per year.  

For PP2700 continuous data from SCADA is exported onto a USB every half a year. The aim is to 

bring the data to HPP and use it for data analysis. For example, such data could be used for this 

research. However, this does not happen in reality. A potential reason is the extensive time period 
that is needed to export the half year data. For this research a selection of specific PMSMTs was 

made. However, even with this selection the export time of data was very extensive.  

2.2.4 Data storage of UPM 
When UPM takes place, the fault which triggered the maintenance is registered in a fault overview 

document. This is done by each HPP regional helpdesk (Americas, APAC, EMEA, UK) by filling out 

the same template fault overview document. These documents are then combined in a global 

faults overview documents consisting of faults from every region.  

The fault overview documents are Excel documents and allow for input mistakes. Each cell is free 

to be entered with any format. This allows for mistyping important references, such as project 

number. Also due to different regions / personnel contributing to the document a proper data 

analysis is not easily performed. As an example, in failed component field it was entered in one 

instance: suspected that faulty speed sensor, instead of just speed sensor. Analysing the data 

quantitatively, which is an important feature nowadays, is then not possible. Another issue is not 

having complete data. There are 24 fields that are defined to be filled for each fault. This does not 

happen in reality, as will be seen in the section on Critical components. 

For proper overview of a fault and its resolution, it is expected that each reported fault has 

properly stored data. Within the fault overview document each fault has a project reference 

number which links the fault to a specific customer project. Each project has its own folder in HPP 

storage. It is expected that for any fault, the fault relevant PMSMTs are stored in the project folder. 

Moreover, the maintenance report of whether and how the fault was resolved should be present. 

However, this is not the case. Sometimes the data is communicated through an email and never 
stored in the project folder. In some cases, the data was never obtained in the first place. For 

example, when it comes to KEM bearing faults, it happens that only a screenshot from SCADA 

trending view of KEM PMSMTs is obtained. The actual PMSMT data is not exported in many cases.   

In general, looking for relevant information is an issue. A lot of time was spent on relating the 

faults in fault overview to PP3600 and PP2700 systems. Fault is related to project, and UPS system 

to a project. Fault’s project number has to be searched for in the fault overview document. Then 

the project number is searched for in a project overview file. Then using these two documents it 

can be determined what is the installed UPS system of the registered fault. This is a timely process 

when evaluating all faults of a specific UPS systems.   
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2.2.5  Additional maintenance  
‘The purpose of the additional maintenance is to inspect carefully the system components and 
replace or repair any parts or components that show wear and tear of at least 50% of the service 

life and fatigue, corrosion, weather impact or aging with a risk of failure in the near future’ [7]. 

Table 2.1: Standard additional maintenance 

The standard additional maintenance covers but is 

not restricted to  items shown in Table 2.1. 

Additional maintenance can only be carried out by 

HPP or their global qualified service partner. It 

takes place every 5 years, with overhaul every 10 

years. Task list for these maintenance activities is 

provided by HPP. 

Items that are compulsory to be replaced after 5 

years of their operational life are: FWC. And after 10 

years of their operational life:  Stromag / Vulkan 

coupling, generator, ETM, and KEM. This is due to 

their criticality when it comes to the reliability of 

the UPS systems. 

 

 

2.2.6 Prio failures 
A prio failure signifies that a UPS unit with a faulty component has also failed. There are three 

levels of prio failures. Prio 1 is the most urgent failure, during which no utility is provided to the 

customer. At prio 2 level, the utility is delivered to the customer, however it is delivered through 

bypass and the quality of the electrical signal is not controlled. At prio 3 level, the utility is 

delivered through another unit within the UPS system. In this case, the failed unit was a redundant 

component and therefore this is the least urgent prio level failure.   

2.2.7 Maintenance contracts 
The maintenance contracts state that quarterly (only PP3600), semi-annual, annual, and 

corrective maintenance of the UPSs is carried out by HPP or any subcontractor assigned by HPP. 

The customer is not allowed to subcontract any of the work to third parties. The PPM visits are 

scheduled in advance with the customer. However, prior to every visit the customer needs to send 

a maintenance order to HPP. It might happen that in the fifth year when additional maintenance 

is needed, the customer is happy with their system and components are running well. They might 

then decide to not send an order for additional maintenance and just continue using the system 

as it is. Meaning that for example, the FWC is not replaced even though it is stated it needs to be 

replaced every 5 years (section 2.2.5). The customer then saves money on maintenance. However, 

the reliability of the system is affected. 

The contract further defines the exclusions from the scope of maintenance provided by HPP. 

These protect the company from damages caused to customer outside of the warranty, as the 

customers are the ones responsible for maintaining the system. HPP does not lose money when a 

failure occurs. On the contrary, the company gains money as it performs corrective maintenance 
for the customer. The contracts are valid for one year and are automatically renewed each year 

unless terminated by either the customer or HPP. Obligations of HPP then cease 3 months after 

termination of contract.  

PP3600 PP2700 

Cabinets - control panels Cabinets - control panels 

Diesel engine Diesel engine 

Freewheel clutch Freewheel clutch 

Stromag/Vulkan coupling Stromag/Vulkan coupling 

Generator Generator 

ETM KEM 

Flywheel - 

External fuel system External fuel system 

Engine cooling system Engine cooling system 

Base frame / Dampers Base frame / Dampers 

Arpex springs Arpex springs 

Exhaust system Exhaust system 

Room ventilation Room ventilation 

Load test Load test 

Copyright Copyright 
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2.2.8 Maintenance costs 
There are 5 cost categories for carrying out maintenance operations. Travel and accommodation, 
working hours and travel, materials / testing equipment, diesel service, and other costs. Travel 

and accommodation costs are the only setup costs. The other costs are dependent on the specific 

maintenance operations that are performed. 

2.3 Critical components 
To identify the most critical component of PP3600 and PP2700, the first focus in section 2.3.1, is 

on the most occurring failed components of these systems. Moreover, most observed failure codes 

of these systems are discussed. In section 2.3.2 the selected component is presented in more 

detail. Together with its PMSMTs relevant for developing a predictive model for its health state.  

2.3.1 Research component selection 
To determine the most critical component, an initial indicator is depicted by focusing on the most 

failing component from fault overviews. However, as mentioned before in section 2.2.4, this 

information is not always entered. The percentages of entries for which the failed component and 

failure code input are filled in can be seen in Table 2.2. This data is applicable for the first 5 months 

of the year 2023 (January until and including May 2023) and for the year 2022.  

Table 2.2: Availability of failed component and failure code data [8] [9] 

Jan - May Failed component Failure code 
 

2022 Failed component Failure code 
Americas  6% 100% 

 
Americas  0% 100% 

APAC 33% 100% 
 

APAC 40% 100% 
EMEA 0% 100% 

 
EMEA 0% 100% 

UK 0% 100% 
 

UK - - 

Overall 10% 100% 
 

Overall 14% 100% 

 

The analysis focusing on failed components is limited due to unavailability of this input data. 

Moreover, the current way of reporting faults in fault overviews is not suitable for proper 

quantitative analysis. Different entries for same component input are observed: FWC, freewheel 

clutch, freewheelclutch. These are then not considered as the same component during quantitative 

analysis. Carrying out qualitative analysis, the highest count of entries for failed component is for 

FWC and KEM [9]. Interviews discussing these findings reveal that the FWC failures are related 

to GMN clutches which are no longer in service and only in operation for old UPS systems. The 

new FWC from Stieber does not have many observed failures. Therefore, FWC should not be the 

focus of the research. It is instead suggested to focus on the KEM of PP2700 or on flywheel of PP 

3600 UPS system.  

 

Figure 2.10: Fault overview 2022 (adapted from [9]) 
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Prio failure analysis of 2022 reveals that PP2700 has contributed to more prio failures compared 

to PP3600 [10]. Therefore, it is decided to focus on the PP2700 failures. Moreover, the combined 

fault overview from all regions from year 2022 is consulted. Overview of all failure codes and 

subcodes can be found in Appendix D. In total there have been 43 failure codes registered. 

Contributing to 154 faults of PP3600 and PP2700 UPS systems in 2022 [9]. Figure 2.10 shows the 

overview of the failure codes which contributed with at least 3% (when rounded to a whole 

number) to the overall faults. These cover in total 70% of all faults and constitute of 17 different 

failure codes. Full overview of the faults from 2022 can be found in Appendix E.  

The fault overview from 2022 further highlights the priority of focusing on the KEM component 

(Figure 2.10). 3 failure codes related to KEM (grey) and only 1 failure code related to flywheel 

(black) are depicted. These contribute to 11.04% and 2.60% of the 2022 faults, respectively. The 

KOT failure code stands for KEM other failures which are unique failures. Therefore, the KEM 

failure code of the most interest is KIB – KEM inner bearings failure.  

2.3.2 KEM inner bearings 
The KEM component is used to generate and store kinetic energy 

to support the UPS system during utility outage while the engine 
is starting up. The KEM component can be seen in Figure 2.11. To 

get a better idea of the size of this component, it is noted that the 

mass of the KEM is around 6000kg.  

There are 7 PMSMTs measured for evaluating the condition of the 

KEM component (Figure 2.6). Through evaluating the fault 

overview documents and conducting interviews, it is depicted 

that the KEM failures are always accompanied by the increase in 

vibrations. As a reminder for the reader, the UPS systems and their components do not run until 

failure. Failure is signified as having PMSMT value in the failure threshold region. Therefore, the 

selected PMSMT for developing a predictive model for KEM component faults are the KEM DE 

vibration and the KEM NDE vibration. Moreover, the inner bearing temperature DE and the inner 

bearing temperature NDE are of interest. These 4 selected PMSMTs are the most important 

PMSMTs to develop the predictive model for depicting the health state of the KEM. The aim of the 

model is therefore, to predict when the KEM inner bearings transition between the healthy 

(operational), degraded (warning / attention), and failure (failure) health states.  

The threshold values for the healthy health state (HHS) are defined as range from lower bound 

(LB) to upper bound (UB). The degraded health state (DHS) has threshold LB equal to UB of HHS 

threshold and its own UB as UB. Failure health state (FHS) has threshold LB equal to UB of DHS 

threshold. It does not have an UB since there is no health state after failure. The LBs and UBs of 

the 4 KEM inner bearing PMSMTs are shown in Table 2.3.  

Table 2.3: Selected KEM PMSMTs’ thresholds 

 HHS DHS FHS  
Measurement LB  UB  LB  UB  LB  UB  Unit 
KEM DE Vibration 0 9 9 20 20 - mm/s 
KEM NDE Vibration 0 9 9 20 20 - mm/s 
Inner bearing temp. DE 0 70 70 85 85 - ◦C 
Inner bearing temp. DE 0 70 70 85 85 - ◦C 

 

Figure 2.11: KEM drawing 
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The mechanical drawing of the rotor combination, which is a crucial part of the KEM component 

is shown in Figure 2.12. The circled sections B and C correspond to the sections in which the KEM 

inner bearings are located. In section B, bearing 1 is located. This is a cylindrical bearing of type 

N218 (Figure 2.13, Left). The bearing has a width of 30mm, inner diameter of 90mm and outer 

diameter of 160mm. The inner ring rotates at 1500 rpm and the outer ring at 3900 rpm. With this 

input the manufacturer provides the calculation for ball pass frequency of outer race (BPFO) and 

ball pass frequency of inner race (BPFI). These are relevant parameters for vibrations in a 

frequency domain. For the N218, BPFO ≈ 288.73Hz and BPFI ≈ 391.27Hz [11]. 

 

Figure 2.12: KEM rotor combination 

Bearing 2 located in section C is a ball bearing 6319 (Figure 2.13, Right). The bearing has a width 

of 45mm, inner diameter of 95mm and outer diameter of 200mm. The manufacturer provides the 

calculation of the fault relevant parameters. The BPFO ≈ 123.837Hz and BPFI ≈ 196.163Hz [11]. 

 

Figure 2.13: Left: Bearing N218 [12], Right: Bearing 6319 [13] 

Due to the size and time needed for extracting available data for each PMSMT, a selection of 

PMSMTs relevant to KEM inner bearings and their condition is made. The following PMSMTs are 

selected for developing a predictive model for the KEM inner bearings: 

- Output Frequency 

- Inner Bearing Temperature DE 

- Inner Bearing Temperature NDE 

- Room Temperature 

- Outer Bearing Temperature NDE 

- Outer Bearing Temperature DE 

- Q1 Actions Counter 

- Flywheel Speed 

- Gen DE Vibration 

- Gen NDE Vibration 

- KEM DE Vibration 

- KEM NDE Vibration  
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3 Theoretical framework for HPP 
This section lays down the theoretical framework related to the RQs of HPP. In section 3.1 

different reliability centred maintenance policies are presented. In section 3.2 the relevant 

developments in predictive maintenance are discussed. Section 3.3 briefly evaluates the PMSMT 

data measured by HPP. In section 3.4 the guidelines for prioritizing failures and assets are 

presented. Lastly, section 3.5 shortly discusses the effectiveness of the current maintenance 

policy applied at HPP. The section also provides a formula for the evaluation of a maintenance 

policy. 

3.1 Reliability centred maintenance  
The International Organization for Standardization (ISO) defines reliability as ability of a product 

to perform specified functions under specified conditions for a specified period of time without 

interruptions and failures [14]. The reliability centred maintenance (RCM) is therefore concerned 

with maintenance strategy that is based on how long a machine can perform its intended function 

without a breakdown. There are 7 questions defined to guide the RCM process [15]: 

1. What are the functions and associated performance standards of the asset in its present 

operating context? 

2. In what ways does it fail to fulfil its functions? 

3. What causes each functional failure? 

4. What happens when each failure occurs? 

5. In what way does each failure matter? 

6. What can be done to predict or prevent each failure? 

7. What should be done if a suitable proactive task cannot be found? 

The first 5 questions are concerned with carrying out the failure mode, effects and criticality 

analysis (FMECA). The last two questions address the selection of a suitable maintenance policy 

for each defined failure mode. An overview of different RCM maintenance policies [15] and the 

characteristics of parts that are suitable for them [16] can be seen in Figure 3.1. 

 

Figure 3.1: Reliability centred maintenance policies (adapted from [15] and [16]) 

3.1.1 FMECA 
FMECA is a reliability procedure which documents all possible failures of a system and their 

criticality. It is a combination of failure mode and effects analysis (FMEA) and criticality analysis 

(CA). Within FMEA components of the system or its subsystems are defined. The potential failure 

modes are then listed for each of these subsystems and components. Potential failure effects of 

the failure modes determine the severity, potential causes the occurrence, and current controls 

the detection of the failure modes [17]. Failure effects can be anything having effect on the safety 

and environment. There are 4 possible cause categories for a failure mode. Namely, human error, 

load-carrying capacity, unavoidable, and avoidable load [15]. Current controls are for example, 
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sensors monitoring the condition of component of the failure mode. The severity, occurrence, and 

detection scores are then combined to calculate the risk priority number (RPN) of each failure 

mode so they can be ranked based on associated risk. The criticality analysis also uses the RPN 

score to rank the failure modes, however, in addition to this quantitative input it also takes into 

account qualitative input for determining the overall criticality and importance of failure modes. 

3.1.2 Reactive maintenance 
Reactive maintenance takes place after a failure has occurred. There are two reactive 

maintenance policy alternatives, corrective and detective. Corrective maintenance takes place 

only when failure actually occurs. This is a failure that is observed during the usage of a system. 

Similarly, detective maintenance takes place only when failure actually occurs. However, it is 

discovered during a check-up when the system is not in use. The main benefit of such 

maintenance strategies is that the RUL of a failed component of the system is not wasted. The 

main disadvantage of the strategies is the downtime during which the system cannot be used. 

Therefore, the strategy is mostly suitable for parts that are small, non-critical, inconsequential, 

unlikely to fail, or redundant.  

3.1.3 Proactive maintenance 
Proactive maintenance is carried out before a failure occurs. Either in a preventive way or in an 

opportunistic way. Opportunistic maintenance is triggered by another maintenance operation. 

While other component of a system is being maintained, another component can be preventively 

maintained to make use of the fact that the system is already down due to the other maintenance. 

This maintenance can be applied for any parts within the same (sub)system as the maintenance 

needing component. Preventive maintenance can either be condition based or predictive. For 

condition based maintenance a planning on how and when components need to be inspected is 

needed. Once a certain condition threshold is reached, maintenance or replacement of the 

component is necessary. This type of preventive maintenance is suitable for parts which have 

random failures and are not subject to wear. For parts that are subject to wear and do not have 

random failures which means their failure pattern can be defined, PdM is the best maintenance 

policy. 

3.2 Relevant developments in PdM 
‘Recently, predictive maintenance has become prevalent in the industry due to the capability of 

reducing maintenance costs, unexpected downtime, and while extending the life span of equipment.’ 

[18]. These benefits of PdM come from the 4th industrial revolution focused on digitalization. 

Where technological developments took place in order to automate, integrate, and exchange real 

time data of systems. Due to this growing complexity of systems, model based approaches for 

developing algorithms for PdM are too difficult to develop. Therefore, in practise, data driven 

artificial intelligence (AI) approaches are used to develop PdM models. A review of “Recent 

advances and trends of predictive maintenance from data driven machine prognostics 

perspective” proposes 2 AI prognostic model categories [18]. Namely, conventional machine 

learning based models and deep learning (DL) models. DL is an extension of ML, which makes use 

of larger number of layers in its models compared to ML. DL methods show outstanding 

performance as the data increases in dimensionality and volume.  

Four common machine learning / deep learning (ML/DL) methods are recognized [19]. First, 

clustering, which focuses on pattern analysis in order to group data points. Second, classification, 

which focuses on decision development in order to classify new data points. Third, regression, 

which focuses on trend analysis in order to predict values of new data points. Fourth, anomaly 

detection, which focuses on analysing the normal state of a system and depicting data points 

deviating from this normal state. Anomaly detection is a common approach for fault detection. 
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Three approaches for ML/DL methods are proposed [19]. First, unsupervised approach, where 

unlabelled data is used to develop models. This data can for example, be used to model normal 

behaviour of data and test how well the model describes a new set of data. Second, supervised 

approach, where labelled data is used to build a model. When it comes to anomaly detection for 

example, this data contains both healthy and anomalous data. Third, semi-supervised, where 

unlabelled data is available, and small data set with manually added labels is added to develop a 

model.  

3.3 PMSMTs 
This section first discusses the use of PMSMTs related to the implementation of a PdM policy at 

HPP, in section 3.3.1. Then, in section 3.3.2 the PMSMTs relevant for the depicting the HS of the 

KEM inner bearings are addressed.  

3.3.1 PMSMTs at HPP 
The access of HPP to the real time and historical PMSMT data at the customer sites has effect on 

the potential implementation of a PdM policy for their UPS systems. For developing a PdM policy 

it is necessary to have access to historical data from different customer sites with instances from 

different HSs. Currently this poses a challenge for HPP.  

For majority of the customers HPP does not have access to real time PMSMT data. In some cases, 

it is possible to export historical data during maintenance service. This data can be used to 

develop a predictive model for a PdM policy. However, for this, clear guidelines on which data 

needs to be exported need to be made. It has been observed that the export of selected PMSMTs 

for a history of 2 month period can be easily exported and shared with HPP. 

The real time access is not a must for a valuable PdM policy. Once a PdM policy has been 

implemented and validated, the policy can be setup within the operating system of the UPS 

system at the customer site. Using the direct PMSMTs from the UPS for PdM policy execution.  

However, the current structure of storing the PMSMT data also poses challenges for the PdM 

policy. Different UPS system have different name sets for the same PMSMTs. Moreover, the set 

dead bands and band withs for PMSMT storage affect the time steps between the PMSMTs. The 

PMSMTs measured in real time have set constant time steps. However, the stored PMSMT values 

have varied time steps. This poses a challenge for the PdM policy. Especially if the PdM policy 

would be set up such that it further develops during its operationality, re-evaluating its 

performance and improving accordingly. Therefore, for HPP a set PdM policy is a suitable option. 

3.3.2 PMSMTs for HS of KEM inner bearings 
A review of bearing fault detection techniques presents 4 monitoring approaches for the health 

state of bearings. Vibration measurements, acoustic measurements, temperature measurements, 

and wear debris analysis [20]. At HPP all of the 3 mentioned measurements are being performed.  

There are no issues with the vibration measurements at HPP.  

For the temperature measurements, there is a data collection issue for some installed bases, 

where the inner bearing temperatures are no longer being measured. For some bases not even 

the room temperature was properly monitored.  

For the acoustic measurements, there are 3 different acoustic measurements recorded for the 

KEM inner bearing DE and NDE side (together 6 different measurements). These are however not 

being used at HPP and are therefore also not included in the research. It should be evaluated 

whether these measurements are useful to measure or not. Then they can either to be used for 

data analysis in the future, or the relevant sensors can be removed. [21] performs a case study 
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concluding better bearing fault identification using acoustic signals compared to vibration 

signals. Therefore, it is advised to perform an analysis of the usefulness of the acoustic PMSMT. 

3.4 Failure and asset prioritization 
A suitable maintenance policy for each asset should be selected for a cost-efficient maintenance 

service. Assets are categorized based on 2 aspects, cost and criticality. Based on position of an 

asset within these categories, different maintenance policies are suitable. A diagram of suitable 

maintenance policies based on this asset categorization can be seen in Figure 3.2. 

Non-expensive non-critical assets do not require lot of effort to be put in when it comes to 

developing a maintenance policy. The operationality of system is not affected by their failure and 

it is cheap to simply throw them away and replace them with new ones when decided. This can 

either be once the asset fails or when other maintenance is being carried out on the system.  

When it comes to expensive non-critical assets, 

maintenance is important in order to prolong the 

operational life of the assets. This leads to saving costs 

by not purchasing a new asset more often than 

required. This can be done by monitoring the 

condition of the asset or by providing maintenance 

for the asset during other maintenance activities.  

On the other hand, when it comes to critical assets, a 

more advanced maintenance policy is required. For 

non-expensive critical components, condition 

monitoring of the asset through sensors or during 

other maintenance activities carried out on the 

system is a good option. However, if a suitable 

predictive maintenance is available/does not require  

a lot of developmental and implementational effort this is the best choice. For expensive critical 

assets either condition based or predictive maintenance should be used. These assets are too 

costly to replace before issues are observed. However, as they do affect the operationality of the 

system, they need to be maintained proactively. 

To depict which maintenance policy is the most suitable for a given asset with a certain position 

in the diagram there are other aspects that can be taken into account. For example, for the 

bearings, which are the main focus of the research, PdM is depicted as the most suitable policy. 

On one hand, bearings are not expensive, and it might be said that CBM is a suitable policy choice. 

However, the UPS installed bases are not easily accessible for regular short interval maintenance 

of bearings. As the bases are located all over the world. Moreover, the bearings are located deep 

within the UPS system, and it is not practical to have to dismantle the system to maintain the 

bearings during for example every weekly check. Moreover, the frequency of failures of the asset 
is an important factor. Bearings in general within the industry, are components that fail the most 

in machinery. Therefore, in this case the bearings could be characterized as one of the most 

important assets. 

3.5 Maintenance policy evaluation 
The current maintenance policy applied at HPP is CBM. This policy is effective, with a high uptime 

of the HPP UPS systems. However, during maintenance service a unit from the UPS system is 

disconnected from the system, removing a potential redundancy. This affects the customer 

satisfaction. Therefore, to improve the maintenance it is important to provide more insights for 

the customers into the HS of the UPS system and its components.  For this a PdM policy is needed. 

Figure 3.2: Maintenance policies  
suitable for different assets 



25 
 

To evaluate whether the selected maintenance policy is a suitable choice for a given asset, it is 

important to carry out a maintenance cost calculation. Where the following variables are used as 

input for the calculation: 

- CA: Cost of the asset replacement 
- CP: Cost of the preventive maintenance 
- CC: Cost of the corrective maintenance 
- PA: Probability of failure after time T 
- PB: Probability of failure before time T 

The value of the maintenance policy is calculated as  replacement asset value (RAV) percentage. 

Where the lower the percentage, the better the maintenance policy for the given asset.  

𝑅𝐴𝑉 =
𝑃𝐴 ∗ 𝐶𝐶 + 𝑃𝐵 ∗ 𝐶𝑃

𝐶𝐴
∗ 100 

Equation 2: Replacement asset value (adapted from [22] ) 
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4 Theoretical framework for the research 
This section provides the theory for development of a PdM policy for KEM inner bearings of HPP’s 

UPS systems (Figure 4.1). In order to develop the PdM policy, predictive models for evaluating 

the HS of the KEM inner bearings need to be developed. The current categorization of HS of the 

KEM inner bearings at HPP is presented in Table 4.1. Where ⋀ stands for AND operator, ⋁ stands 

for OR operator and the unit of the numerical values is mm/s. For simplicity, the KEM DE 

Vibration is referred to as DE and KEM NDE Vibration as NDE.  

Table 4.1: Health states split [Table 2.3] 

Health state Condition 
Healthy (DE < 9) ⋀ (NDE < 9) 
Degraded [(9 ≤ DE < 20) ⋀ (NDE < 20)] ⋁ [(DE < 20) ⋀ (9 ≤ NDE < 20)] 
Failure (20 ≤ DE) ⋁ (20 ≤ NDE) 

 

Therefore, for predicting the HS of the KEM inner bearings, two predictive models are developed. 

One for predicting the future value of KEM DE Vibration, and one for KEM NDE Vibration. These 

predictions are then used to evaluate the associated predicted HS according to Table 4.1.  

 

Figure 4.1: Theoretical framework: PdM policy development 

Before addressing the relevant PdM policy development theories, the data used in the research is 

presented. 7 data sets of PMSMT data are exported for the research. Each data set corresponds to 

a half year of PMSMTs of one UPS unit. Since HPP does not store/have access to historical 

PMSMTs, the data is exported from units where the current half year history of PMSMTs could 

still be accessed. 

There are 3 KEM inner bearing failure instances within the exported data sets. The data sets 

consist of time stamped PMSMTs. An overview of the exported data sets and their split for 

different stages of model development can be seen in Table 4.2. Train, Test, and Valid show the 

% of each data set included in training, testing, and validation data set, respectively. The split is 

randomized, but for reconstructive purposes seeds are used. With a set seed the same random 
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numbers are drawn every time. As a remark, the validation set is used when the PdM policy is 

already developed to validate the PdM policy. It is not used to validate the predictive models 

themselves.  

Table 4.2: Data sets overview 

Data Set nr Unit nr Site nr Status Train Test Valid 
1 1 1 Healthy 0.75 0.25 0 
2 2 1 Including failure 0.75 0.25 0 
3 3 1 Healthy 0.75 0.25 0 
4 5 1 Healthy 0.75 0.25 0 
5 3 2 Including failure 0.75 0.25 0 
6 5 3 Healthy 0.75 0.25 0 
7 6 3 Including failure 0 0 1 

 

The overview of the exported PMSMTs can be found in Table 4.3. Including their relation to the 

predictive models that are developed. Where model DE stands for model used for predicting the 

value of KEM DE Vibration, and model NDE for predicting the value of KEM NDE Vibration. 

Table 4.3: PMSMTs for model development 

PMSMT Description Model DE Model NDE 

OuterBearingTempNDE outer bearing temp. on KEM non-driving end Input Input  

OuterBearingTempDE outer bearing temp. on KEM driving end Input Input  

Q1ActionsCounter counter of switches to/from utility and diesel mode Input Input  

FlywheelSpeed  speed of the KEM rotor Input Input  

GenDEVibration generator vibrations on generator driving end Input Input  

GenNDEVibration generator vibrations on generator non-driving end Input Input  

KEMDEVibration inner bearing vibrations on KEM driving end Output Input 

KEMNDEVibration inner bearing vibrations on KEM non-driving end Input Output 

   

The rest of the section focuses on the theory relevant for the development process of the PdM 

policy (Figure 4.1). First, in section 4.1 the theory related to data preparation is presented. Next, 

in section 4.2 different approaches, and in section 4.3 different methods for developing predictive 

models are discussed. Suitable approaches and methods for the research are then selected. In 

section 4.4 the selected predictive model is introduced. In section 4.5 an alternative predictive 

model used for performance comparison is introduced. In order to compare the performance of 

the models, section 4.6 addresses different measures for evaluation of the predictive models. In 

section 4.7 approach for model performance improvement is introduced. The certainty of the 

predictions predicted using the predictive models is discussed in section 4.8. In section 4.9 the 

approach for evaluating the PdM policy is presented. Next, in section 4.10, the PdM policy 

development process for the research is presented. Lastly, in section 4.11, the integration of PdM 

policy within HPP is discussed. 

4.1 Data preparation 
First aspect of data preparation is qualitatively evaluating the data. This is done by cleaning the 

data from faulty measurements that would negatively affect the model performance. Moreover, 

for improving model development efficiency, duplicate data entries are removed.  
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Data normalization is another important aspect when it comes to model development efficiency. 

The effect of normalization or standardization of data on regression-based models is not expected 

[23]. However, [24] highlights the importance for data normalization when it comes to ML 

methods as it has a noticeable impact on the model performance. In the research a ML predictive 

model is also developed, therefore, data normalization is performed. The best normalization 

interval is subjective and therefore can be a parameter to be varied. For the research, the data is 

normalized using the [0,1] interval.  

4.2 Predictive model development approaches 
The key issue of predictive maintenance is to determine the maintenance inspection intervals. 

There are three criteria to take into account for this. Moment in the system life cycle at which 

intervals are determined, the way the system condition is assessed during the service life, and the 

prognostic approach that is followed [25].  

Determining the intervals before the service life is a static method for determining the 

maintenance inspection intervals. These are usually determined during the design phase of a 

component and are provided by a manufacturer. On the other hand, when the intervals are 

determined during the service life it is a dynamic method. The dynamic method can either be 

corrective or proactive. With corrective approach components are replaced once they reach a 

certain condition threshold. With proactive approach the current condition value is used to 

predict the RUL of the components. 

There are two possible ways to assess the condition of the components during their service life. 

First, using condition monitoring. For condition monitoring inspection intervals and/or sensors 

are used to  monitor the performance of components. The second option is to develop a relation 

between usage and loads onto the components. Then by monitoring the usage of the component, 

its degradation and RUL can be estimated through the defined usage and load relation. 

There are 3 prognostic approaches that can be followed for developing PM. Experience based, 

data driven, and model based. For condition monitoring, all three approaches can be applied. For 

usage and load relation, only data driven and model based approaches can be applied. The 

hierarchy of the prognostic approaches can be seen in Figure 4.2. The different approaches are 

discussed in more detail in the following sections. 

 

Figure 4.2: Hierarchy of prognostic approaches (adapted from [25]) 

4.2.1 Experience based approach 
Experience based approach uses statistical methods to analyse the past usage of a system. For 

this historical data is required. From the historical data numerical parameters are depicted to 

define the failure distributions. For example, exponential or Weibull distributions are often used 

for failure analysis [25]. This is the simplest prognostic approach. The predictions developed are 
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only accurate when the future usage is similar to the past / observed usage of a system. This is 

due to the fact that the usage and load relations are not known. The structure for applying 

experience based approach is shown in Figure 4.3.  

 

Figure 4.3: Experience based approach structure 

4.2.2 Data driven approach 
Data driven approach also requires availability of historical data. Advanced methods are applied 

to analyse the data to reveal underlying patterns, identify anomalies, and support the 

deterioration of components [26]. The predictions are based on correlations of performance 

measures and RUL. Again, the usage and load relations are not known, therefore, the accuracy of 

predictions is limited by the availability of historical data. Historical data sets from different usage 

scenarios are needed. However, when data is available, a failure model can be developed at low 

cost and in a short time [27]. The structure for applying the data driven approach can be seen in 

Figure 4.4. 

 

Figure 4.4: Data driven approach structure 

4.2.3 Model based approach 
Model based approach, also known as physics based approach, does not require historical data. 

Mathematical equations are used to define the relations between usage and its load onto the 

system. This is done in form of  physical models. With these models the degradation of the system 

can be quantified. Therefore, predictions for RUL of systems with usage that was not observed 

before can be done as well. This is suitable for systems operating in variable environments [28]. 

However, this approach is the most complex one and requires most developmental effort [25]. 

The structure for applying the model based approach can be seen in Figure 4.5. 

 

Figure 4.5: Model based approach structure (adapted from [28]) 

4.2.4 Selected model approach 
Three approaches were presented in this section: experience based, data driven, and model 

based. With the complexity of the UPS systems and their units, model based approach is too 

complex to develop. Moreover, the complexity of the relation between the PMSMTs is difficult to 

determine before analysing the data. Therefore, both experience and data driven approaches are 

depicted as suitable. Therefore, in the research the focus is on experience based and data 

driven model approaches.  



30 
 

4.3 Predictive model development methods 
Before diving into predictive model methods, it is important to decide on the domain in which the 

vibration data is analysed. There are three domains to choose from: frequency, time-frequency, 

and frequency domain. In time domain the x-axis represents time, and the y-axis represents the 

values of measurements. Creating a time series data. In frequency domain, the x-axis represents 

the frequency values of the measured signal consisting of several measurements, and the y-axis 

the count of the frequency occurrences within the signal.  

For the research the time domain is selected. There are two main reasons for this selection. First, 

the ease of implementation into the existing systems at HPP. The measurements are recorded in 

time domain, and therefore no transformation to frequency domain will be necessary. Time series 

data is a perfect match for the research. Second, the features from time domain are more 

significant compared to the ones obtained from frequency domain [29].  

 

Figure 4.6: PdM model methods in time domain [29] 

An overview of time domain statistical (Experience based approach) and machine learning (Data 

driven approach) predictive model methods can be seen in Figure 4.6 [29].  

For the research, first, a statistical predictive model is developed. At this point the complexity of 

the relations between different PMSMTs is not known. A statistical model helps to evaluate this 

complexity. If the complexity is not large, the statistical model can reach a good performance and 

make valuable predictions. However, if the complexity is too large, the statistical model is not able 

to make valuable predictions. A statistical regression based model making valuable predictions is 

defined as a model that is able to correctly predict at least 10% of the non-healthy HSs. 

Section 3.2 presents findings of ML models being the current trend in predictive maintenance. 

Therefore, a ML model is also developed. A simple ML model is developed to compare the model 

performances of these two models. To evaluate whether developing a statistical model is worth 

the developmental effort or a simple easily implemented ML model is enough.  

The selected statistical model method is regression-based method. There are 2 main reasons for 

this selection. First, as a part of the research, the company would like to gain insights into the 
PMSMT data measured from their UPS systems (RQ3). The core of regression-based methods is 

to gain insights into the relations between the input and output variables. Second, the method fits 

well with the available data of the research. Data from different bearings at different unknown 
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stages of operational life are available. Regression-based model looks at values of different 

variables at independent point in time. Both of these aspects are in line with the available data 

and the aims of the research. 

The basic theory behind regression-based models is determining the relation between the input 

variables and the output variable. Using this learned relation the model predicts the value of the 

output variable based on the observed values of the input variables. However, the observed 

values of input variables at time 𝑇 = 𝑡 are used to predict the output variable at time 𝑇 = 𝑡. This 

is not very useful for making future predictions. An approach to deal with this issue is lagging. A 

lag of size L can be used to make predictions L time steps into the future. Meaning the observed 

values of input variables at time 𝑇 = 𝑡  can be  used to predict the value of an output variable at 

time 𝑇 = 𝑡 + 𝐿. 

It is however important to note that vibrations do not have the same characteristics as the other 

PMSMTs. Temperature, for example, changes gradually and the change in its values can be easily 

visible. However, when it comes to vibration data it is not that simple. Vibration data changes 

rapidly, fluctuates, contains sudden peaks, without a visible trend. A comparison of temperature 

and vibration data can be seen in Figure 4.7.  

 

Figure 4.7: Temperature and Vibration data 

Due to this nature, a regression model, which looks at individual measurements at a given point 

in time is likely not going to produce valuable predictions. There are two approaches to deal with 

this nature of vibration data for developing a regression based statistical prediction model. One 

is related to the frequency domain. Where vibration data is transformed to frequency domain, 

where after filtering processes, trends eventually become visible. However, in the research the 

focus is on time domain. Therefore, the other approach, which is related to time domain, is the 

one of interest. For depicting trends in vibration data in time domain, statistical features need to 

be exported from the data. These statistical features represent a certain time period consisting of 

consecutive measurements in time. With this approach, trends in data signifying change in health 

state of a component can become visible. 

Extracted features can be used for regression-based models, to predict the transition between 

different health states. In a case study from ‘Adaptive framework for bearing failure prediction’ 

[30], regression based method is used to accurately detect health state transitions of bearings 

across multiple bearing failures. This approach, using extracted features with statistical 

regression-based models is suitable for the research. As the focus is on predicting the transition 

between health states of the KEM inner bearings.  
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A regression-based statistical model based on input variables including extracted features 

is developed and improved in the research. Furthermore, for a model performance comparison, 

a simple ML model is also developed. 

The selected ML model is a tree-based model. The three-based model is selected as it is a simple 

ML model with which the relations between input variables and the model predictions can be 

easily analysed. This is due to the structure of the tree-based models, which take the form of a 

decision tree. In case the statistical model is able to make valid predictions, the ML model is 

developed using the original input variables. In case the statistical model is not able to make valid 

predictions, the ML model using the input variables of the improved statistical model is also 

developed. 

4.4 Regression-based statistical model 
Regression-based model is a good start for developing a model for predicting a value of an output 

variable. It allows an initial exploration of the relations between the output and input variables. 

It is very likely that a simple regression model will not be suitable to predict the output variable. 

Especially the sudden peaks in vibrations corresponding to the degradation HS and failure HS of 

the bearing. As mentioned before, this is because of the nature of the vibration data. The evolution 

of vibrations over time is an important factor for a predictive model. This is not an aspect covered 

in regression models. Therefore, the extracted features are also added to the predictive model.  

The theory related to developing a statistical regression-based model first focuses on the theory 

evaluating the causality of the input variables used to predict the output variables. This can be 

found in section 4.4.1.  

Then the regression-based model assumptions that need to be met for developing a valid 

regression-based model are addressed. There are four such assumptions. These assumptions are 

related to the input and output variables for which the model is built. First, concerning the output 

variable, is assumption of normality. Second, concerning the relation between input and output 

variables, is assumptions of linearity and homoscedasticity. And third, concerning the relation 

between the input variables, is assumption of independence of observations. The theory 

addressing the 4 model assumptions is presented in section 4.4.2. 

For developing a regression-based model for vibration data the theory focused on the features to 

be extracted  is presented in section 4.4.3. Moreover, the lagging theory for making  predictions 

for the future is presented in section 4.4.4.   

4.4.1 Causality between  the input and output variables 
Before addressing the assumptions for applying a regression-based model, a causality test 

between the input and output variables is performed. The test depicts whether an input variable 

is valuable for predicting the output variable. And what is the time period into the future for which 

this input variable is valuable. The outcome of the test influences the initial selection of the input 

variables.  An input variable that does not have an effect on the output variable is not useful for 

predicting its value and can be removed immediately. Moreover, the outcome of the causality test 

depicts the period for which the input variable is useful for making predictions of the output 

variable. 

The causality test is known as the Granger test. The test defines a null and alternative hypothesis 

and tests for the rejection or acceptance of the null hypothesis. The null hypothesis of the Granger 

test is that there is no causality between the given input and output variable. The alternative 

hypothesis is that there is causality between these variables. In order to reject the null hypothesis 

and conclude there is no significant evidence to suggest no causality between the variables, the 
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p-value corresponding to the F statistic should be less than α. Where α is the significance level, 

representing the probability of wrongly rejecting the null hypothesis.  

There are 3 input parameters of the Granger Causality test: the input variable measurements, 

their corresponding output variable measurements, and the prediction period.  This test can 

easily be performed in R using the grangertest function from lmtest library. 

𝑔𝑟𝑎𝑛𝑔𝑒𝑟𝑡𝑒𝑠𝑡(𝑋~𝑌, 𝑜𝑟𝑑𝑒𝑟, 𝑑𝑎𝑡𝑎) 

Equation 3: Granger test in R 

The test checks whether variable Y Granger causes variable X. Order represents the prediction 

period and data the source from which the Y and X measurements are obtained.  

4.4.2 Model assumptions 
Normality assumption checks the distribution of the output variable. Ideally the output variable 

follows a normal distribution. Where the data is centred around the mean value of the distribution 

and 99.7% of the data lies within 3 standard deviations from the mean. However, this is not a 

hard assumption for applying regression.  

Relation between input and output variables determines the function that fits the data. Then 

according to this relation it can be determined which regression model can be used. For example, 

if the relation between input and output variable is linear, linear regression can be applied. For 

this, scatter plots of the output variable versus the input variables are plotted. To see whether the 

data meets the linearity assumption.  

Moreover, residual plots for linear regression model for each output and input variable pairing 

are developed. Then the data can be checked for homoscedasticity. By depicting whether the 

prediction errors of the linear regression model show significant changes in values.  

Relation between input variables is useful when it comes to reducing the complexity of the model, 

by reducing the number of input variables. The input variables that are not correlated to other 

input variables are independent and therefore, useful for the model. Moreover, input variables 

that contribute the most to the increase of variability of the data are candidates for removal. The 

contribution to the variability can be depicted through VIF (variation inflation factor). However, 

in order to compute the VIF a basic regression model needs to be developed first. 

4.4.3 Feature extraction 
For feature extraction, the concept of a sliding window is first introduced. A window of size W 

contains W subsequent instances. With sliding window, every time a new instance is added, the 

window shifts in time. The concept of sliding window is demonstrated in Figure 4.8. The window 

size W represents the number of measurements from which a feature is extracted. Function f(x) 

indicates a formula used for extracting the features from the data. Where x stands for the 

measurements that are included in the window.  

A window looks at a window of instances instead of looking at each instance individually, which 

is an important aspect for vibration data. With this concept, a regression-based approach suitable 

for developing a predictive model for the HSs of the bearing can be developed. The extracted 

features become additional input variables for a regression-based model. 
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Figure 4.8: Concept of sliding window 

There are several features that can characterize the degradation trend of a bearing. [31] and [32] 

focus on extraction of the following features: mean (Mean), standard deviation (Std), peak value 

(Peak), variance (Var), root mean square (RMS), shape factor (SF), margin factor (MF), energy 

(E), crest (Crest) kurtosis (Kurt), and skewness (Skew). However, it is stated that the features are 

only sensitive to a certain stage of degradation. Therefore, it might happen that the features are 

not able to indicate the different HSs properly. It is therefore important to evaluate whether these 

features are able to distinguish the differences between healthy and unhealthy measurements. 

The formulas for the features are show in Table 4.4. Where W stands for the window size. 

Table 4.4: Feature extraction formulas 
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Equation 10: Margin factor 
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Equation 11: Energy 
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Equation 12: Crest 
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Equation 13: Skewness 
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Equation 14: Kurtosis 

 

 

To select the most suitable feature, the features are subject to monotonicity, trendability, and 

prognostability check [33]. These checks serve as indication for feature that best indicates the 

degradation of the component. The checks are carried out on the KEM DE and KEM NDE Vibration 
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data containing time series from the healthy HS to the failure HS of a component. The data sets 

do not have the whole cycle from healthy state to failure. However, all data sets contain part of 

the health state degradation cycle, as the units are in operation. Therefore, based on the outcomes 

of the feature checks a selection of a feature that best represent the different health states is 

selected for the predictive model.  

The equations for carrying out the feature suitability checks are presented. Where the following 

expressions are included in the equations: 

- M: number of units / data sets 

- Ni: number of windows of unit i 

- xi: the vector of all values of extracted features from unit i 

- xi[j+1]: the value of the extracted feature from unit i from window j+1 

- xi[j]: the value of the extracted feature from unit i from window j 

𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 =
1

𝑀
∗∑ |∑

𝑠𝑔𝑛(𝑥𝑖[𝑗 + 1] − 𝑥𝑖[𝑗])

𝑁𝑖 − 1

𝑁𝑖−1

𝑗=1
|

𝑀

𝑖=1
 

Equation 15: Monotonicity 

𝑇𝑟𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = min
𝑖,𝑗

|𝑐𝑜𝑟𝑟(𝑥𝑖 , 𝑥𝑗)| 

𝑤ℎ𝑒𝑟𝑒𝑖, 𝑗 ∈ [1,𝑀] 

Equation 16: Trendability 

𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = exp(−
𝑆𝑡𝑑(𝑥𝑖[𝑁𝑖])

𝑚𝑒𝑎𝑛|𝑥𝑖[1] − 𝑥𝑖[𝑁𝑖]|
) 

Equation 17: Prognostability 

4.4.4 Lagging theory 
The lagging approach can be used to predict the future values of the output variable. The lagging 

process is demonstrated in Figure 4.9. The prediction period PP signifies the number of steps into 

the future for which the predictions are made. Then using input variables at time 𝑇 = 𝑡 the aim is 

to predict the value of the output variable at time 𝑇 = 𝑡 + 𝑃𝑃. 

 

Figure 4.9: Lagging process 

Using this approach, a regression model can be developed in order to predict the HS of the KEM 

inner bearing PP time steps into the future. 
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4.5 Tree-based data driven model 
Tree-based ML models take a form of a decision tree. When it comes to predicting a value of a 

continuous output variable, a regression tree is applicable. The tree defines split criteria that lead 

to a certain end nodes of the tree. Based on the input variables which are evaluated using the tree 

splits, an end node corresponding to a certain value of output variable is reached. The main 

advantage of a tree-based ML model, also the reason this ML model is selected for the research, 

is the readability of the model. Through evaluation of the tree splits it can be clearly evaluated 

how which input variables contribute do the prediction of the output variable.  

4.6 Predictive model performance evaluation 
There are 3 KPIs to measure when it comes to evaluation of the predictive model. 𝑅2, NRMSE, and 

MAPE. An overview of used expressions for their calculation is provided: 

- Yobserved: observed value of output variable from training data set (data set used to build the model) 

- Ypredicted: predicted value of output variable based on input variables from training data set 

- Xobserved: observed value of output variable from testing data set  

- Xpredicted: predicted value of output variable based on input variables from testing data set 

- n: number of instances 

𝑹𝟐 is the coefficient of determination. It determines how much the model fits the data by stating 

the proportion of total variance explained by the model [34]. 𝑅2 ∈ [0,1], where 𝑅2 = 1 represents 

a model that is able to make prefect predictions, and 𝑅2 = 0 represents a model that is not able 

to make predictions as the predictions (output variable values) are independent of the input 

variables. 

𝑅2 = 1 −
∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝐴𝑣𝑔(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑))2𝑛
𝑖=1

 

Equation 18: R squared 

𝐴𝑣𝑔(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) =
∑ 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖
𝑛
𝑖=1

𝑛
 

Equation 19: Average (output variable, training data) 

In this case the observed values are the ones used to build the model, not ones in a testing set. 

The predicted values are then also based on these training set observed values. This is due to the 

fact that 𝑅2 evaluates the model itself, instead of its performance when predicting new data. n is 

the count of the instances. 

The next measure is the NRMSE, normalized root mean squared error (RMSE) [35]. RMSE is a 

common measure to estimate a prediction model performance. It represents the deviation of 

predicted values from their observed values.  

𝑅𝑀𝑆𝐸 = √∑
(𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖)

2

𝑛

𝑛

𝑖=1
 

Equation 20: RMSE 

Where n is the count of values predicted. 𝑅𝑀𝑆𝐸 = 0 represents a model that predicts the output 

variable exactly as they are observed in testing data. There is no upper limit for RMSE. Therefore, 
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to be able to evaluate the value of RMSE the average value (Avg) of the prediction variable is also 

needed.  

𝐴𝑣𝑔𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
∑ 𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖
𝑛
𝑖=1

𝑛
 

Equation 21: Average (output variable, testing data) 

Where n is the count of observed values that are being predicted (same value as in RMSE formula).  

The NRMSE then looks at the ratio between the RMSE and Avg. A low NRMSE signifies a good 

result as the RMSE is low compared to the average value of the output variable.  

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝐴𝑣𝑔𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 

Equation 22: NRMSE 

MAPE (mean absolute percentage error) measures the accuracy of the predictions compared to 

their observed values.  

𝑀𝐴𝑃𝐸 =
1

𝑛
∗∑ |

𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖

|
𝑛

𝑖=1
 

Equation 23: MAPE 

The lower the MAPE, the more accurate the prediction model.  

4.7 Predictive model performance improvement 
Hyperparameter tuning is an approach for improving model performance by adjusting the 

training process of the model development. For linear regression statistical based models there 

is one such feature, set for the model development process. It is the measure to be minimized 

during the development process. Simple linear regression model is developed by establishing 

coefficients while minimizing the sum of squared residuals (RSS). 

𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑅𝑆𝑆 =∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)
2

𝑛

𝑖=1
 

Equation 24: Linear regression measure 

3 common approaches for tuning the hyperparameter are used. The approaches use cross-

validation to assess how well the model performs when new independent data set is applied to 

the model. First approach, also known as Ridge regression, minimizes the RSS with added penalty 

of squared magnitude of coefficients. 

𝑅𝑖𝑑𝑔𝑒𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑅𝑆𝑆 + 𝜆∑ 𝛽𝑗2
𝑛

𝑖=1
, 𝜆 ≥ 0 

Equation 25: Ridge regression measure 

Second approach, also known as Lasso regression, minimizes the RSS with added penalty of 

absolute value of magnitude of coefficients.  

𝐿𝑎𝑠𝑠𝑜𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑅𝑆𝑆 + 𝜆∑ |𝛽𝑗|
𝑛

𝑖=1
,𝜆 ≥ 0 

Equation 26: Lasso regression measure 
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The third approach, also known as Elastic net regression, is a combination of Ridge and Lasso 

regression. 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑁𝑒𝑡𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑅𝑆𝑆 + 𝜆 [(1 − 𝛼)∑ 𝛽𝑗2
𝑛

𝑖=1
+ 𝛼|𝛽𝑗|] ,𝜆 ≥ 0 

0 < 𝛼 < 1 

Equation 27: Elastic net regression measure 

The Ridge, Lasso, and Elastic net regression are especially applicable for model development 

using data where multicollinearity is present.  

4.8 Prediction certainty 
The implementation of the predictive model into a PdM policy requires additional output from 

the predictive model. Namely, the prediction probability. 2 options for evaluating the prediction 

probability are presented. First, evaluating the prediction probability by developing a confidence 

interval (CI). Second, evaluating the prediction probability by developing a prediction interval 

(PI). Both intervals can be easily computed in R. R provides an option where during statistical 

regression  model prediction calculation an option to calculate the intervals can be selected. 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = "confidence")𝑓𝑜𝑟𝐶𝐼𝑜𝑢𝑡𝑝𝑢𝑡 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = "prediction")𝑓𝑜𝑟𝑃𝐼𝑜𝑢𝑡𝑝𝑢𝑡 

Equation 28: Prediction probability in R 

Both options have the same output format where the values for fit, lwr, and upr are obtained. Fit 

= the predicted value, lwr = the lower bound of the computed interval, upr = the upper bound of 

the computed interval. By default, 95% intervals are computed. Meaning that 95% of the 

predictions made, with the given input variables, have output values 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ [𝑙𝑤𝑟, 𝑢𝑝𝑟]. The 

confidence limit can however be adjusted.   

Both probability intervals are good options for evaluating the prediction probability. The CI 

reflects the uncertainty around the mean predictions and the PI the uncertainty around a single 

predicted value. Therefore, the CI will provide a narrower interval compared to PI. Which is nice. 

However, knowing the prediction probability of a specific prediction is more valuable. Therefore, 

for the research the prediction probability is evaluated by computing the PIs.  

In case the statistical model provides valuable predictions the above method is used to compute 

the PIs. However, this is not applicable for the ML tree-based model. In order to develop the PIs 

for the tree-based model a quantile tree-based model needs to be developed.  

4.9 Maintenance policy evaluation 
In general, a maintenance policy is evaluated performing a cost calculation, such as in section 3.5. 

However, for HPP these costs are not directly relevant as the costs are covered by the customers. 

What is relevant for HPP is that the customer is aware of the HS of the UPS system and its 

components. The customers than have a better knowledge about needed maintenance for their 

system. Allowing them to plan the maintenance actions in advance, potentially lowering their 

costs. Making the HPP’s maintenance service more attractive.  
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4.10 Research PdM policy development  
The final PdM policy development approach adjusted following the theoretical framework is 

presented in Figure 4.10.  

 

Figure 4.10: Research PdM policy development 

The approach for predicting the HS of the KEM inner bearings consists of predicting the KEM DE 

Vibration and KEM NDE Vibration values.  This is done by developing a predictive model DE and 

model NDE. The variables used for development of these models are shown in Table 4.5.  

Table 4.5: Model DE and model NDE variables 

PMSMT Model DE Model NDE 
OuterBearingTempNDE Input Input 
OuterBearingTempDE Input Input 
Q1ActionsCounter Input Input 
FlywheelSpeed Input Input 
GenDEVibration Input Input 
GenNDEVibration Input Input 
KEMDEVibration Input Input 
KEMNDEVibration Input Input 
Unit Input Input 
Extracted features Input Input 
Lagged KEMDEVibration Output - 
Lagged KEMNDEVibration - Output 
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Where Unit is defined as data set number from Table 4.2. Furthermore, the variables are split for 

training, testing, and validation according to Table 4.1. The prediction results of the models are 

then used to evaluate the associated predicted HS of the KEM inner bearings according to Table 

4.1. 

4.11 Implementation of PdM at HPP 
The implementation of PdM at HPP requires effort when it comes to the software setup. During 

the installation of a UPS system at a customer site the model needs to be setup. The link between 

the model PMSMTs and the actual direct measurements of PMSMTs from the UPS system needs 

to be established. Furthermore, the outcomes of the PdM policy need to be visualized for the 

customers. This is to be done in the form of the proposed maintenance indicators, which initiated 

the research into PdM policy at HPP. 

When it comes to the operational side of the PdM policy, nothing changes for HPP. The customers 

request maintenance service and after the request HPP plans the maintenance service. Therefore, 

HPP performs the same maintenance, at the same time (when requested by customer). The 

adjustment to the maintenance occurs at the customer site. Where the customer needs to evaluate 

the benefits of early maintenance. Taking into account the fact that not all HS predictions can be 

reliable.  

This, however, also opens us a discussion for HPP on how much data to share with a customer. 

Especially related to the warranty aspect. If there is a prediction that in a certain prediction period 

a non-healthy HS will occur, the customer has a right to request a maintenance service that is les 

costly as a non-healthy HS is observed within a warranty period. Whereas, if the customer waits 

the prediction period, until when the non-healthy HS actually occurs. They might already be 

outside of the warranty period. Meaning, the maintenance service is more costly for the customer, 

and HPP earn bigger profit for their maintenance service.  
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5 Predictive model development 
In this section the predictive model predicting the HS of the KEM inner bearings used for 

implementing the PdM policy is developed. First, the data used for the model development is 

prepared in section 5.1. Next, features from KEM DE and KEM NDE Vibration data are extracted 

in section 5.2. In section 5.3 the assumptions for developing a statistical predictive model are 

checked. In the following section, section 5.4, the statistical model is developed. The model is used 

to predict the HS of the KEM inner bearings. Furthermore, the model is improved within the same 

section. In the next section, section 5.5, the alternative data driven prediction model is developed. 

The model is used to make predictions for the HS of the KEM inner bearings. In section 0, the 2 
models are compared and the model with better performance is selected for implementing the 

PdM policy.  

5.1 Data preparation 
The data consist of 8 PMSMTs extracted from 7 different units Table 4.2 and Table 4.3 provide 

overview of the extracted data. Before the data can be used for model development it needs to be 

processed. First, the data measurements are reduced in section 5.1.1. Then the measurements are 

qualitatively checked in section 5.1.2. Lastly, in section 5.1.3, the data is normalized.  

5.1.1 Data measurement reduction 
Before starting other manipulation of the data, the original data sets are reduced to adjusted data 

sets with only consecutive unique measurements. This helps reduce the size of the data sets while 

not removing any unique information. The usefulness of this adjustment can be seen in Table 5.1. 

Where it is stated that only 18% of the original measurements added unique information to the 

data sets. The following parameters are shown in the table: 

- Data set : data set number (data set number is also referred to as ‘unit’ in the rest of the paper) 

- #Original: number of instances in original data set 

- #Adjusted: number of instances in adjusted data set 

- Kept %: the percentage of instances from the original data set kept in adjusted data set 

Table 5.1: Transformation to unique data sets 

Data set  #Original  #Adjusted  Kept % 
1 191 595 32 761 17 % 
2 199 533 48 688 24 % 
3 276 981 66 215 24 % 
4 251 651 59 303 24 % 
5 367 450 312 581 85 % 
6 1 042 006 47 098 5 % 
7 1 254 878 84 703 7 % 
Total 3 584 094 651 349 18 % 

 

5.1.2 Data quality check 
Next, the data is qualitatively checked. The summary for unit 5 shows values that are out of their 

expected range. Temperatures of over 6000◦C are recorded. Moreover, vibrations reach values 

of 2000 mm/s. Which is not realistic. The process of dealing with these values can be seen in 

Appendix F. Moreover, the summary of data of unit 5 before and after processing can be seen in 

Figure 5.1 and Figure 5.2, respectively . The data set for unit 5 after qualitative check shows 
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realistic maxima for the variables. For example, for the KEM DE Vibration, the maximum value 

went from ≈20154 mm/s to ≈66 mm/s. 

 

Figure 5.1: Unit 5 summary 

 

Figure 5.2: Unit 5 summary after processing 

5.1.3 Data normalization 
Next, the data is normalized. For the predictive model, the data is normalized using the [0,1] 

interval. The normalization is performed for all data sets jointly. The summary of the data before 

normalization (Data) and after normalization (Data_Normalized) for units 1 to 6 can be seen in 

Figure 5.3. It can be seen that the normalized data indeed has all minima equal to 0 and all maxima 

equal to 1. Unit 7 is normalized separately as it is a validation unit.  
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Figure 5.3: Normalization data summary 

5.2 Extracted features 
There are 11 features to extract from data to be analysed for suitability as HS transition 

indicators. Namely, Mean, Std, Peak, Var, RMS, SF, MF, E, Crest, Skew, and Kurt (Table 4.4). These 

features are first extracted in section 5.2.1, using a window of half a month. Subsequently, in 

section 5.2.2, the extracted features are checked for suitability as HS transition indicators.  

5.2.1 Feature extraction  
The aim of the extracted features is indicating that a component is transitioning from one HS to 

another. Therefore,  it should be visible that the values of features change before observing a spike 

in the vibration data. The features are extracted using half a month windows. Therefore, for each 

data set 𝑊 =
𝑁𝐷

12
. Where ND stands for number of measurements of data set D. This selection of 

window size is made based on the size of the data sets and the feature extraction time. However, 

the effect of different window sizes is evaluated later on when a predictive model is developed. 

 

 

 

Figure 5.4: Extracted feature: Std 
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The extracted feature Std for data set 2 can be seen in Figure 5.4. The orange and red vertical lines 

represent the measurement from degraded and failure HS, respectively. The figures for the rest 

of the extracted features can be found in Appendix G. It can be seen in Figure 5.4 that there is an 

increase in the value of Std prior to and within the degradation and failure HS region. This can 

however be observed also within some healthy HS regions. However, there are other aspects of 

this extracted feature that can be distinguishable for the healthy versus degraded or failure HS 

region. For example, the steepness of the increase of the extracted feature value.  

 

 

 

Figure 5.5: Std increase steepness 

The Std increase of at least a certain increment value (Incr), in the example Incr = 0.00015, for 

data set 2 is visualized in Figure 5.5. To distinguish between healthy and non-healthy data it is 

also important to note the ‘streak’ for which this difference occurs. This streak count value is 
represented in y-axis. The x-axis stays the same and represents the time order of the measurement. The R 

code including the streak calculation is presented:  

Incr <- 0.00015 #set the increment value 

STDIncreaseCount <- data.frame(STD_DEVibration=Unit2_DE$STD, STD_DEIncrease=NA) #create table 
with Std values and an empty column for Std minimal increase streak count 

STDIncreaseCount$STD_DEIncrease[1] <- 0 #start the streak count at 0  

for(x in 2:nrow(STDIncreaseCount)) { #for second to last Std value 

  if (STDIncreaseCount$STD_DEVibration[x]>STDIncreaseCount$STD_DEVibration[x-1]+Incr) { #check if 
the current Std value is more than the increment larger than previous Std value 

    STDIncreaseCount$STD_DEIncrease[x] <- STDIncreaseCount$STD_DEIncrease[x-1] +1 #if yes increase 
the streak count by 1 

  } else { #if no 

    STDIncreaseCount$STD_DEIncrease[x] <- 0 #reset the streak count to 0 

  } } 
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Using the streak count a cut-off horizontal line (blue line in Figure 5.5 ) is defined to distinguish 

between healthy and non-healthy data. All points below the line are disregarded and all points 

above the line are considered as indicators of HS transition. It can be seen from Figure 5.5 that 

for the KEM NDE Vibration the Std extracted feature could predict the failure region at T=33000. 

However, for the failure region starting around T=675 the HS transition is identified when the 

failure occurs and not prior to it. Moreover, a HS transition is never identified during healthy HS, 

which is good. This example shows that the extracted features contain useful information for 

indicating a HS transition. Even though it might not  seem that way at first look (Figure 5.4).  

5.2.2 Feature evaluation 
An initial evaluation is made to check for suitability of the different extracted features when it 

comes to indicating the HS transitions of the KEM DE Vibration and KEM NDE Vibration. The 

results computed from all data sets for monotonicity, trendability, and prognostability check are 

shown in Figure 5.6. 

 

Figure 5.6: Feature suitability check 

The Std, VAR, and SF features look as promising indicators of HS transitioning as the 

prognostability result for both KEM DE Vibration and KEM NDE Vibration are high. However, no 

definitive conclusions can be made at this point. All the extracted features will be further 

evaluated during the model development / improvement step (section 5.4). 

5.3 Regression-based model assumptions 
This section focuses on preparation for developing a predictive regression-based model for 

predicting transition between different HSs of KEM inner bearings. First, in section 5.3.1, the 

causality checks between input and output variables are checked. Then the regression-based 

model assumptions are checked. In section 5.3.2 the normality check, in section 5.3.3 the linearity 

check, in section 5.3.4 the homoscedasticity check, and in section 5.3.5 the independence of 

observations check are performed. Lastly, in section 5.3.6 a conclusion regarding the model 

assumptions is made. 

Table 5.2: Health states count (seed: 123) 

Health state Index #Training  #Testing 
All - 424 977 141 662 
Healthy 0 423 225 141 109 
Degradation 1 1 707 536 
Failure 2 45 17 
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Before checking the regression-based model assumptions, a count of measurements for each 

health state is made (Table 5.2). Where index stands for the referral number for a given HS, 

#Training stands for the number of instances included in the training part of the data, and 

#Testing for the number of instances included in the testing part of the data. This provides an 

initial view of the number of data points coming from a non-healthy HS. 

5.3.1 Causality check 
For the causality test, three different prediction periods (PP) are evaluated: PP=1, PP=15, PP=30. 

Assuming that 1 time step corresponds to approximately 5 hours (Appendix H), the upper bound 

is selected as 30.  This should correspond to approximately a 6 day PP (30*5hr=150hr≈6days). 

The p-values of the F test statistics for the different causality tests for the HS output variable can 

be seen in Table 5.5. These are calculated using the grangertest function in R (Equation 3).The 

light green cells correspond to values where it is concluded with 95% probability that the input 

variables Granger cause the output variable. Similarly, the dark green cells signify the same 

conclusion with a 99% probability.  

A causality test for KEM DE Vibration and KEM NDE Vibration outputs are performed. The 

outcomes of these tests can be seen in Table 5.3 an Table 5.4, respectively. 

Table 5.3: Causality test –KEM DE Vibration 

Input variable \ p-value PP=1 (≈ 𝟓𝒉𝒓 ) PP=15 (≈ 𝟑𝒅𝒂𝒚𝒔 ) PP=30 (≈ 𝟔𝒅𝒂𝒚𝒔 ) 
OuterBearingTempNDE 7.27e-29    2.27e-16 1.98e-18 
OuterBearingTempDE 9.98e-34 5.67e-52 1.87e-54 
Q1ActionsCounter 3.47e-37 3.17e-35 1.07e-50 
FlywheelSpeed 0.00e+00 1.23e-197 3.99e-202 
GenDEVibration 0.00e+00 0.00e+00 0.00e+00 
GenNDEVibration 1.59e-239 0.00e+00 0.00e+00 
KEMNDEVibration 0.00e+00 0.00e+00 0.00e+00 
Unit 4.93e-231 1.83e-23 3.46e-13 

 

Table 5.4: Causality test – KEM NDE Vibration 

Input variable \ p-value PP=1 (≈ 𝟓𝒉𝒓 ) PP=15 (≈ 𝟑𝒅𝒂𝒚𝒔 ) PP=30 (≈ 𝟔𝒅𝒂𝒚𝒔 ) 
OuterBearingTempNDE 4.39e-26 2.35e-189 7.86e-195 
OuterBearingTempDE 5.33e-77 5.42e-130 1.97e-143 
Q1ActionsCounter 1.57e-67 4.12e-126 1.58e-142 
FlywheelSpeed 9.89e-241 0.00e+00 0.00e+00 
GenDEVibration 3.38e-221 0.00e+00 0.00e+00 
GenNDEVibration 8.96e-295 0.00e+00 0.00e+00 
KEMDEVibration  0.00e+00 0.00e+00 0.00e+00 
Unit 1.15e-124 1.27e-16 9.40e-12 

 

It is concluded from the causality checks that for predicting the KEM DE Vibration and KEM NDE 

Vibration, all the input variables can be useful. Therefore, no input variables are removed at this 

stage of the research. 

5.3.2 Normality assumption 
The histograms for both output variables, KEM DE Vibration and KEM NDE Vibration, are shown 

in Figure 5.7. Initially, the data does not seem to follow a normal distribution. However, two other 

distributions are also fitted to assess their suitability. It is then concluded that the normal 
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distribution fits the data the best. Therefore, it is concluded that for both models, model DE and 

model NDE, the normality assumption is met. 

 

Figure 5.7: Histogram:  KEM DE Vibration and KEM NDE Vibration  

5.3.3 Linearity assumption 
Scatterplots are developed to evaluate the relation between input and output variables. For visual 

evaluation the linear fit between the variables is visualized in the scatterplots. Additionally, a 

smooth fit between the variables is added for comparison. The results for both output variables 

versus the Outer Bearing Temp NDE input variable are shown in Figure 5.8. The scatterplots for 

the remaining input variables can be found in Appendix I. 

 

Figure 5.8: Scatterplot: OuterBearingTempNDE vs output variables 

Looking at the linear and smooth fits from the scatterplots, it can be seen that for the KEM DE and 

KEM NDE Vibration, there are visible differences in the fits. Therefore, the linearity assumption 

is not met for all data. However, as seen in [30] the nonlinearity for the non-healthy part of the 

data set can be exploited in the model. Therefore, scatterplots for evaluating linearity for only 

healthy data are developed. Scatterplot between healthy KEM DE and KEM NDE Vibration output 
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variables and Outer Bearing Temp NDE input variable can be seen in Figure 5.9. The scatterplots 

for the other input variables can be found in Appendix J.  

 

Figure 5.9: Scatterplot: OuterBearingTempNDE vs output variables – healthy data 

It can be seen from the healthy data scatterplots that the linear fit does fit the data. Therefore, it 

is concluded that the linearity check model assumption is met. 

5.3.4 Homoscedasticity assumption 
Plots of residual versus fitted values of linear regression models between the input and output 

variables are made to evaluate the model fit. A good fit has a horizontal (red) line of fit centred 

around zero. This signifies no outliers. Residual plots of linear fit between the output variables 

and Outer Bearing Temp NDE input variable are presented in Figure 5.10. The residual plots of 

other input variables can be found in Appendix K. 

 

Figure 5.10: Residual plot: OuterBearingTempNDE -  output variables 
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All scatterplots show an approximately straight line of fit centred around 0. Therefore, it is 

concluded for both, model DE and model NDE, that the homoscedasticity assumption is met. 

5.3.5 Independence of observation assumption 
The correlation values between all 

input and output variables are 

shown in Figure 5.11. Visualizations 

of correlation heat maps for the 

individual models can be found in 

Appendix L.  

Highly correlated input variables 

can be observed within the data 

(Figure 5.11). However, before 

removing the variables from the 

models, a linear regression model is 

built. All data is used as training data 

to calculate the VIF values for the 
input variables. The VIF values for 

the different models can be seen in 

Figure 5.12. 

 

The cut-off value of the VIF is set to 2.5. As VIF ≥ 2.5 indicates considerable collinearity [36]. To 

achieve this an iterative process of input variable removal is performed. In each iteration a 

variable with highest VIF value above 2.5 is removed from the model. The iterations are 

performed until model with a maximum VIF value of 2.5 is achieved. The individual iterations for 

each model can be found in Appendix M. After performing the iterations, the same selection of 

input variables for both models is observed (Figure 5.13). Flywheel Speed is removed as last. 

 

Figure 5.12: VIF values all input variables,  all models 

The selected input variables for the models are therefore: Outer Bearing Temp  DE, Gen DE 

Vibration, KEM DE Vibration (KEM NDE Vibration model), KEM NDE Vibration (KEM DE Vibration 

model), Unit, and Q1 Actions Counter. The final VIF values of the selected input variables are 

shown in Figure 5.13. It is observed that all values are below the cut-off point of 2.5.  

 

Figure 5.13: VIF values with selected input variables only, all models 

Figure 5.11: Correlation heatmap all input variables 
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A new correlation heatmaps with only the selected 

input variables are made. The correlation heatmap 

for model DE is shown in Figure 5.14. Correlation 

heatmap for model NDE can be found in Appendix N. 

From both heatmaps, the difference between the 

maximum correlation values can be observed. With 

all input variables included in the data the maximum 

absolute observed  correlation is equal to 0.86 (Figure 

5.11). This suggests a high collinearity between the 

input variables. Whereas, with only the selection of 

input variables included in the data the maximum 

absolute observed correlation value is equal to 0.59 

(Figure 5.14). This suggests a moderate collinearity 

between the variables. 

Therefore, it can be concluded that the independence of observations assumption is met for both 

models when only the selected input variables are included in the models. 

5.3.6 Conclusions of model assumption checks 
For both models, model DE and model NDE, the model assumptions are met. Therefore, the 

predictive model for both output variables can be developed. The models are developed as linear 

regression models with KEM DE Vibration and KEM NDE Vibration as output variables.  

5.4 Predictive regression-based model 
A predictive linear regression model is build using training data and evaluated using testing data. 

The testing and training data split is made according to Table 4.2, using a random seed of 123. 

First, a basic model for predicting KEM DE and KEM NDE Vibration variable is developed. Once 

the model is evaluated and base performance is obtained the model improvement consisting of 

different aspects of focus takes place.  

Due to lagging of output variables and windowing for feature extraction, the data measurements 

count is affected.  The new count is presented in Table 5.5. 

Table 5.5: Table 5.2: Health states count updated (seed: 123) 

Health state Index #Training  #Testing 
Healthy 0 373 643 124 602 
Degradation 1 1 692 548 
Failure 2 45 14 

 

The section is organized as follows. In section 5.4.1, additional model KPI is introduced. This KPI 

is focused on the HS prediction. Then in section 5.4.2 a base model for predicting the HS of the 

KEM inner bearings is developed. The model is then analysed and improved, focusing of the 

following aspects: input variables in section 5.4.3, feature extraction window size in section 5.4.4, 

extracted features in section 5.4.5, flywheel speed in section 5.4.6. Next, in section 5.4.7, the 

improved model is developed and analysed for selection of prediction period. Afterwards, the 

improved model is tuned using hyperparameter tuning in section 5.4.8. Lastly, in section 0, the 

PdM policy based on the develop predictive model is developed.  

Figure 5.14: Correlation heatmap: model DE  
with selected input variables 
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5.4.1 Over and Under KPI 
Model performance KPIs focused on the KEM DE Vibration and KEM NDE Vibration predictions 
are presented in section 4.6. In addition, 2 KPIs focused on evaluating the associated HS 

prediction are defined. Namely, Over and Under counter KPIs. 

For the HS prediction KPIs, the HSs are assigned a numerical value. Healthy HS is defined as 0, 

degraded HS as 1, and failure HS as 2. The Over KPI counts how many times a higher state than 

the observed one is predicted. And the Under KPI counts how many times a lower state than the 

observed one is predicted. The code for calculating the Over and Under KPI is as follows: 

𝑖𝑓(𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 > 𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖) 
{𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = "Over"} 
𝑒𝑙𝑠𝑒𝑖𝑓(𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 > 𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖) 
{𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = "Under"} 

𝑂𝑣𝑒𝑟 = 𝑠𝑢𝑚(𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = "𝑂𝑣𝑒𝑟") 

𝑈𝑛𝑑𝑒𝑟 = 𝑠𝑢𝑚(𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = "𝑈𝑛𝑑𝑒𝑟") 

Equation 29: Over and under counter 

Furthermore, when informative, a percentual evaluation is added to the Over and Under counters. 

Where the percentage is calculated as Over or Counter divided by the count of possible over and 

under predictions. Therefore for Over, the divisor is count of testing data from the healthy and 

degraded HS. And for Under, from the degraded and failure HS. With the set seed of 123 the 

divisor for the Over = 124602 + 548 = 125150,  and for the Under = 548 +14 = 562 (Table 5.5).  

5.4.2 Base predictive statistical model 
Predictive model signifies that the output variables are lagged. Ideally, predictions in the research 

can be made with lag size of  approximately 6 days. This corresponds to a lag  𝐿 =
𝑁𝐷

30
. Where ND 

stands for number of measurements for data set D. The performance of this predictive linear 

regression model with PP≈6days using all original input variables can be seen in Table 5.6. 

Table 5.6: Predictive linear regression model: all input variables 

Measure ModelDE ModelNDE 
R2 0.2889 0.2888 
NRMSE 0.6133 0.5664 
MAPE 0.3967 0.3466 
Over 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 
Measure Joint prediction 
Over 2   (00.002%) 
Under 562 (100.000%) 

 

5.4.3 Model improvement: input variables 
First aspect to focus on in this research when improving a predictive linear regression model, is 

evaluating the effect of single input variable on the model. For this, model performance results 

for removing a single input variable from the model input are developed. The results for models 

with PP≈6days can be seen in Table 5.7. Where the following input variables are removed from 

the models, A: Outer Bearing  Temp NDE, B: Outer Bearing Temp DE, C: Q1 Actions Counter, D: 

Flywheel Speed, E: Gen DE Vibration, F: Gen NDE Vibration, G: KEM DE Vibration, H: KEM NDE 

Vibration, I: Unit. For the model improvement, the input parameters are removed until no 
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removal would result in lowering either the NRMSE KPI or MAPE KPI value, while also lowering 

or at least keeping the same value for the other one of these two KPIs.  

Table 5.7:  Model KPIs: removal of specific input variables 

ModelDE -A -B -C -D -E -F -G -H -I 
R2 0.2878 0.2889 0.2819 0.2545 0.2736 0.2352 0.2860 0.2873 0.2409 
NRMSE 0.6141 0.6133 0.6160 0.6265 0.6211 0.6377 0.6139 0.6135 0.6362 
MAPE 0.4097 0.3963 0.3769 0.3955 0.5095 0.4509 0.4220 0.3942 0.5642 
Over 2 2 1 0 3 3 0 0 3 
Under 429 429 429 429 429 429 429 429 429 
ModelNDE -A -B -C -D -E -F -G -H -I 
R2 0.2859 0.2729 0.2774 0.2828 0.2703 0.2659 0.2788 0.2841 0.2392 
NRMSE 0.5677 0.5731 0.5710 0.6585 0.5738 0.5754 0.5703 0.5680 0.5867 
MAPE 0.3774 0.3550 0.3409 0.3444 0.3778 0.3839 0.3579 0.3565 0.4208 
Over 0 0 0 0 0 0 0 0 0 
Under 555 555 555 555 555 555 555 555 555 

 

Moreover, for each combination of removal of an input variable the associated HS is depicted. The 

joint Over and Under counter for all combinations can be found in Table 5.8 and Table 5.9, 

respectively. The results of the joint Under counter table at this point unfortunately do not show 

any difference between the different models and are all equal to 0. Meaning that all the non-

healthy HSs are not predicted as correct non-healthy HSs. 

Table 5.8: Joint Over counter: removal of specific input variables 

       \ DE 
NDE\ 

None -A -B -C -D -E -F -G -H -I 

None 2 2 2 1 0 3 3 0 0 3 
-A 2 2 2 1 0 3 3 0 0 3 
-B 2 2 2 1 0 3 3 0 0 3 
-C 2 2 2 1 0 3 3 0 0 3 
-D 2 2 2 1 0 3 3 0 0 3 
-E 2 2 2 1 0 3 3 0 0 3 
-F 2 2 2 1 0 3 3 0 0 3 
-G 2 2 2 1 0 3 3 0 0 3 
-H 2 2 2 1 0 3 3 0 0 3 
-I 2 2 2 1 0 3 3 0 0 3 

 

Table 5.9: Joint Under counter: removal of specific input variables 

       \ DE 
NDE\ 

None -A -B -C -D -E -F -G -H -I 

None 562 562 562 562 562 562 562 562 562 562 
-A 562 562 562 562 562 562 562 562 562 562 
-B 562 562 562 562 562 562 562 562 562 562 
-C 562 562 562 562 562 562 562 562 562 562 
-D 562 562 562 562 562 562 562 562 562 562 
-E 562 562 562 562 562 562 562 562 562 562 
-F 562 562 562 562 562 562 562 562 562 562 
-G 562 562 562 562 562 562 562 562 562 562 
-H 562 562 562 562 562 562 562 562 562 562 
-I 562 562 562 562 562 562 562 562 562 562 
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It can be seen from the model KPIs, and joint Over counter that model DE has bigger impact on 

the joint HS prediction. The model DE KPIs show less accurate predictions compared to model 

NDE (higher NRMSE and MAPE values). Moreover, from the joint Over counter table it can be seen 

that the counter is dependent on the input variable removal of model DE, while no differences 

based on model NDE input are depicted. Therefore, model DE input variables are addressed first. 

The model KPIs suggest that the removal of B: Outer Bearing Temp DE input variable from the 

model DE does not have large negative influence on the HS predictions. When comparing the 

model KPIs of the model using all input variables, and of the model where Outer Bearing Temp 

DE input variable is removed, the R2 has the same value. The same applies to the NRMSE value. 

Moreover, the MAPE is lower for the model with removed Outer Bearing Temp DE input variable, 

suggesting more accurate predictions. Therefore, Outer Bearing Temp DE is selected as first 

input variable to be removed from the model DE.  

The removal of further input variables for model DE is evaluated by performing the same KPI 

measurements for model DE with already removed Outer Bearing Temp DE input variable. These 

results are shown in Table 5.10. By removing any additional input variable from model DE the 

NRMSE KPI performs worse. Therefore, no additional input variable is removed from model DE. 

The decision process with clearer visualization can be found in Appendix O. 

Table 5.10: Model DE: removed B input variable 

ModelDE -A -C -D -E -F -G -H -I 
R2 0.2846 0.2819 0.2524 0.2725 0.2340 0.2848 0.2865 0.2366 
NRMSE 0.6152 0.6161 0.6279 0.6212 0.6377 0.6145 0.6140 0.6372 
MAPE 0.4192 0.3760 0.4001 0.4369 0.4535 0.4737 0.3930 0.4858 
Over 2 1 2 0 3 0 0 2 
Under 429 429 429 429 429 429 429 429 

 

Next, the focus is on removal of input variables from model NDE. However, for this model any 

removal of an input variable results in worse NRMSE value. Therefore, no input variables are 

removed from model NDE. Again, the decision process with clearer visualization can be found in 

Appendix O. 

The overview of the model KPIs built with selected input variables is shown in Table 5.11. In the 

end only one input variable from model DE is removed. Namely, the Outer Bearing Temp DE input 

variable is removed. For model DE, no input variable is removed.  

Table 5.11: Predictive linear regression model: selected input variables 

 Selected input variables All input variables (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.2889 0.2888 0.2889 0.2888 
NRMSE 0.6133 0.5664 0.6133 0.5664 
MAPE 0.3963 0.3466 0.3967 0.3466 
Over 2   (00.002%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 
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It should be noted that the input variable I: Unit is a very important one. Removal of the Unit input 

variable from either model results in the largest MAPE value increase. This means that the 

predictions of a given data set are sensitive to the predictions made based on models built on data 

from the different data sets. Therefore, in the current situation, to have a better prediction 

performance, for a given data set a model should be built only with the data from the given data 

set. However, the fact that only 2 out of 6 data sets contain no healthy HSs also influences this 

outcome. Therefore, for better HS prediction performance, instead of splitting the prediction 

models for each data set, more data should be obtained for model development.  

5.4.4 Model analysis: feature extraction window size 
The features for the model development are extracted using half a month window size (section 

5.2.1). This is based on the feature extraction time when it comes to extracting features from all 

data sets with measurements form a half year time period. In this section the effect of using 

different window sizes for the feature extraction is analysed.  For this, a simple model for data set 

6 and 2 is developed. The data sets are selected as they should provide good representation of the 

different data sets. Data set 6 is a healthy data set and data set 2 contains all 3 HSs. The data sets 

come from units from different customer sites. The model is developed using all extracted 

features as input variables. The model KPIs using 1 week, 2 week (a half a month), and 4 week (a 

month) window sizes are presented in Table 5.12. 

Table 5.12: Statistical model: varied window size for feature extraction 

 Window size (W) 
ModelNDE 1 week 2 weeks 4 weeks 
R2 0.5564 0.6312 0.6601 
NRMSE 0.4600 0.4149 0.4134 
MAPE - - - 
Over 0 0 0 
Under 11 9 9 
ModelNDE 1 week 2 weeks 4 weeks 
R2 0.5160 0.5999 0.6293 
NRMSE 0.5213 0.4698 0.4701 
MAPE - - - 
Over 0 0 0 
Under 19 17 17 
Joint 1 week 2 weeks 4 weeks 
Over 0 0 0 
Under 19 17 17 

 

The statistical regression-based model results show that an increase in window size improves the 

model performance. The model better understands the data (increase in R2) and predicts the 

output variable with smaller average error (lower NRMSE). The increase of window size from 1 

to 2+ week furthermore decreases the Over and Under counters. Therefore, for the statistical 

regression based model, selecting a larger window size (W=4 weeks) than the one used in the 

research (W=2 weeks) could improve the model performance. Nevertheless, due to the extraction 

time needed to extract features, the 2 week window size for the model development is kept. 

5.4.5 Model improvement: extracted features 
The model performance of model built using all input variables with addition of extracted 

features as input variables is evaluated. All original input variables are included. Therefore, the 

model performance is compared to the one obtained in Table 5.6. First, a model with adding all 
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extracted features is developed. The results of this model alongside the result of the original 

model can be seen in Table 5.13. The results for the model with all added extracted features 

performs better for all KPIs except for MAPE. The value of MAPE is too high. Therefore, same 

approach as with input variables is applied next, removing the least useful extracted feature from 

the model one by one, until all KPIs perform better than the ones of the original model. 

Table 5.13: Predictive linear regression model: all extracted features 

 All extracted features No extracted features (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.3140 0.3344 0.2889 0.2888 
NRMSE 0.6015 0.5465 0.6133 0.5664 
MAPE 0.4029 0.9263 0.3963 0.3466 
Over 0   (00.00%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.00%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 

 

The model DE and model NDE performance KPIs when single extracted feature is removed as an 

input variable are presented in Table 5.14 and Table 5.15, respectively. Furthermore, the joint 

Over and Under counters for the associated HS prediction are presented in Table 5.16. 

Table 5.14: Model DE: addition of specific extracted features 

ModelDE -Mean -Std -Peak -Var -RMS -SF 
R2 0.3140 0.3133 0.3140 0.3138 0.3139 0.3117 
NRMSE 0.6015 0.6019 0.6015 0.6016 0.6015 0.6024 
MAPE 0.3910 0.3873 0.3924 0.4176 0.3965 0.3878 
Over 0 0 0 0 0 0 
Under 429 429 429 429 429 429 

ModelDE -MF -E -Crest -Skew -Kurt  
R2 0.3140 0.3079 0.3140 0.3119 0.3115  
NRMSE 0.6015 0.6043 0.6015 0.6024 0.6025  
MAPE 0.3911 0.3997 0.4094 0.4552 0.4047  
Over 0 0 0 0 0  
Under 429 429 429 429 429  

 

Table 5.15: Model NDE: addition of specific extracted features 

ModelNDE -Mean -Std -Peak -Var -RMS -SF 
R2 0.3318 0.3338 0.3311 0.3328 0.3318 0.3321 
NRMSE 0.5476 0.5467 0.5480 0.5471 0.5476 0.5473 
MAPE 0.5295 0.5074 0.5400 0.7330 0.4697 0.4750 
Over 0 0 0 0 0 0 
Under 555 555 555 555 555 555 

ModelNDE -MF -E -Crest -Skew -Kurt  
R2 0.3344 0.3282 0.3340 0.3318 0.3330  
NRMSE 0.5465 0.5494 0.5465 0.5476 0.5471  
MAPE 0.7010 0.4582 0.6619 0.4692 0.5352  
Over 0 0 0 0 0  
Under 555 555 555 555 555  
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Table 5.16: Joint Over and Under counter: addition of specific extracted feature 

Measure -Mean -Std -Peak -Var -RMS -SF 
Over 0 0 0 0 0 0 
Under 562 562 562 562 562 562 

Measure -MF -E -Crest -Skew -Kurt  
Over 0 0 0 0 0  
Under 562 562 562 562 562  

 

The results from the different models unfortunately still show the inability to predict the non-

healthy HSs. This is depicted by the individual and joint Under counters being equal to 100% of 

the possible under predictions. Therefore, the choice of feature of removal is focused on the model 

KPIs and joint Over counters.  

The first extracted feature to be removed as input variable from the models is MF. This 

decision is made based on the KPI results. When removing MF from both model DE and NDE, the 

R2 is the same as before, and the value of NRMSE and MAPE is either the same or lower. Therefore, 

no KPI shows worse performance, and some KPIs do show improvement.  

To depict whether additional extracted feature should be removed from the models, the same 

KPIs are developed for models with already removed MF extracted feature. These results and 

removal selection process can be seen in Appendix P. In the end, 4 extracted features are 

removed as input variables: MF, Mean, Crest, and Peak. The KPIs of models with these extracted 

features removed as input variables, alongside the original models KPIs can be seen in Table 5.17. 

Table 5.17: Predictive linear regression model: selected extracted features 

 Selected extracted features No extracted features (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.3138 0.3285 0.2889 0.2888 
NRMSE 0.6016 0.5490 0.6133 0.5664 
MAPE 0.3900 0.3403 0.3967 0.3466 
Over 0   (00.00%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 

 

5.4.6 Model improvement: flywheel speed 
Another aspect to focus on is the Flywheel Speed input variable. It has been noted for a reason 

during the VIF input variable iterative process that Flywheel Speed is the last removed input 

variable. The Flywheel Speed has either value of 0, or operates at ~ 4000 rpm. With this huge 

difference, the changes in speed during operation might become negligible. Therefore, model 

performance for data during time when Flywheel is in operation (FWS>0) and when Flywheel is 

not in operation (FWS=0) are evaluated. These results are presented in Table 5.18. 
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Table 5.18: Model DE and NDE: flywheel in and not in operation 

Measure FWS>0 FWS=0 No split (Original) 
 ModelDE ModelNDE ModelDE ModelNDE ModelDE ModelNDE 
R2 0.1513 0.1540 0.3603 0.4635 0.2889 0.2888 
NRMSE 0.5604 0.5083 1.3871 1.1725 0.6133 0.5664 
MAPE 0.2918 0.2276 3.0390 0.9913 0.3967 0.3466 
Over 0  

(00.00%) 
0  

(00.00%) 
0 

(00.00%) 
1 

(00.005%) 
2 

(0.002%) 
0 

(00.00%) 
Under 429 

(100.00%) 
537 

(100.00%) 
10 

(100.00%) 
18 

(100.000%) 
429 

(100.000%) 
555 

(100.005) 

 

It can be seen that for FWS>0 the model has low R2, however makes more accurate predictions 

compared to the model with no split of FWS. On the other hand, for FWS=0 model, the R2 value is 

higher, however the prediction are less accurate. It is therefore proposed to develop a model 

where for FWS>0 predictions based on model developed for FWS>0 model are made. And for 

FWS=0, predictions based on no split (original) model are developed. The KPIs of the FWS split 

model, alongside the original model with no FWS split, are shown in Table 5.17. 

Table 5.19: Predictive linear regression model: FWS split 

 FWS split No FWS spit (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.2907 0.2953 0.2889 0.2888 
NRMSE 0.6126 0.5639 0.6133 0.5664 
MAPE 0.3946 0.3437 0.3967 0.3466 
Over 2   (00.002%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 2   (00.002%) 2   (00.002%) 
Under 562 (100.000%) 562 (100.000%) 

 

The KPIs of model with separate model for FWS > 0 and for FWS = 0 measurements outperforms 

the original model where no FWS split is made. Where FWS split model uses input data from FWS 

> 0 measurements to make predictions for when flywheel is in operation (FWS>0), and data from 

all measurements to make predictions for when flywheel is not in operation (FWS=0).  

5.4.7 Model analysis: prediction period 
Until now the prediction of non-healthy HSs has not been successful. Therefore, the selection of 

PP is analysed. The larger the PP, the further into future the predictions are made. The predictions 

are then also less accurate. The current selection of PP is approximately equal to 6 days. The 

model performance results for PP≈6 days, PP≈3 days, PP≈1 days are shown in Table 5.20. 

Table 5.20: Predictive linear regression model: prediction period 

ModelDE PP≈6days PP≈3 days PP≈1day 
R2 0.3155 0.3457 0.4277 
NRMSE 0.6013 0.5840 0.5433 
MAPE 0.3873 0.4470 0.3981 
Over 1 (00.0008%)    2 (00.002%) 4 (00.003%) 
Under 429 (100.0000%)  434 (100.000%) 379 (100.000%) 
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ModelNDE PP≈6days PP≈3 days PP≈1day 
R2 0.3333 0.3569 0.4510 
NRMSE 0.5471 0.5448 0.4952 
MAPE 0.3368 0.3584 0.3464 
Over 0 (00.00%) 0 (00.00%) 5 (00.004%) 
Under 555 (100.00%) 571 (100.00%) 533 (100.000%) 
Joint PP≈6days PP≈3 days PP≈1day 
Over 1 (00.0008%) 2 (00.002%) 6 (00.005%) 
Under 562 (100.0000%) 575 (100.00%) 541 (100.000%) 

 

When it comes to the model KPIs, the model with PP≈1 day shows the best performance (highest 

R2, low NRMSE and MAPE). However, when it comes to actually predicting the HS of the KEM 

inner bearings, the model with PP≈3 days shows the best results.  For the research the PP≈6 days 

is kept. This is due to the fact that this time period provides enough time for maintenance 

planning. However, HPP should consider whether for selected customer sites or components a 

shorter PP, PP≈3 days, could be suitable for their maintenance planning. 

5.4.8 Model improvement: hyperparameter tuning 
The Ridge, Lasso, and Elastic net regressions models are developed. The models are developed 

using the improved model input variables. Using the standard varied fold size of the k-fold cross-

validation = 10. The model results for the different regression models in comparison to the 

improved linear regression model can be seen in Table 5.21. 

Table 5.21: Predictive linear regression model: ridge regression 

ModelDE Linear 
regression 

Ridge 
regression 

Lasso 
regression 

Elastic net 
0.5 Ridge,  0.5 Lasso 

R2 0.3155 0.3107 0.3155 0.3155 
NRMSE 0.6013 0.6032 0.6013 0.6013 
MAPE 0.3873 0.3933 0.3901 0.3918 
Over 1  0 1 1 
Under 429  429 429 429 
ModelNDE  Ridge Lasso Elastic net 
R2 0.3333 0.3244 0.3331 0.3330 
NRMSE 0.5471 0.5510 0.5473 0.5473 
MAPE 0.3368 0.3301 0.3356 0.3357 
Over 0 0 0 0 
Under 555 555 555 555 
Joint  Ridge Lasso Elastic net 
Over 1 0 1 1 
Under 562 562 562 562 

 

Unfortunately, only the MAPE KPI for model NDE is a visible improvement. For the Ridge 

regression, also the Over counter reduces. However, in general the different regression models 

do not show better model performance. Therefore, ordinary linear regression is selected for the 

final predictive model. 

5.4.9 Final predictive statistical model 
The final predictive statistical model is developed by applying the improvements depicted during 

the improvement sections. The overview of the final model development is visualized in Figure 
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5.15. Moreover, the KPIs of the final model in comparison to the KPIs of the original model can be 

seen in Table 5.22. 

Table 5.22: Improved predictive linear regression model KPIs 

 All improvements Original model 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.3155 0.3333 0.2889 0.2888 
NRMSE 0.6013 0.5471 0.6133 0.5664 
MAPE 0.3873 0.3368 0.3967 0.3466 
Over 1   (00.0008%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.0000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 1   (00.0008%) 2   (00.002%) 
Under 562 (100.0000%) 562 (100.000%) 

  

 

Figure 5.15: Improved predictive linear regression statistical model 

It can be concluded that the final model outperforms the original model in all the model KPIs. 

However, the joint prediction of the KEM inner bearing HS only improves by predicting 1 less 

Over prediction. While all possible Under predictions are still under predicted. Meaning the 

model is not able to predict the non-healthy HSs. 

5.5 Tree-based data driven model 
Unfortunately, the statistical regression based model is not able to make valid HS predictions. A 

ML thee-based model is developed in this section. First, using the original input variables, and 

second, the improved input variables. The KPIs of these models alongside the KPIs of the 

statistical models are presented in Table 5.23. 
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Table 5.23: Predictive tree-based ML model 

ModelDE Statistical  
Original 

Statistical 
Improved 

ML 
Original 

ML 
Improved 

R2 0.2889 0.3155 0.7568 0.9534 
NRMSE 0.6133 0.6013 0.4078 0.1749 
MAPE 0.3967 0.3873 - - 
Over 2   (00.002%) 1   (00.0008%) 59  (00.05%) 10 (00.01%) 
Under 429 (100.000%) 429 (100.0000%) 278 (64.80%) 27 (06.29%) 
ModelNDE     
R2 0.2888 0.3333 0.7485 0.9708 
NRMSE 0.5664 0.5471 0.3814 0.1249 
MAPE 0.3466 0.3368 - - 
Over 0   (00.00%) 0   (00.00%) 195 (00.16%) 43 (00.03%) 
Under 555 (100.00%) 555 (100.00%) 218 (39.28%) 21 (03.78%) 
Joint     
Over 2   (00.002%) 1   (00.0008%) 229 (00.18%) 47 (00.03%) 
Under 562 (100.000%) 562 (100.0000%) 191 (33.99%) 24 (04.27%) 

 

The model performance KPIs for the ML models outperform the results of the statistical models. 

The ML models are able to make valid HS predictions. The number of Over predictions has 

increased compared to the statistical models. However, the number of Under predictions has 

finally decreased. Namely, approximately 95% of the non-healthy HSs are correctly predicted. 

While only 0.03% of the healthy or degraded HSs are over predicted. The tree-based model for 

model DE for FWS = 0 can be seen in Figure 5.16.   

 

Figure 5.16: Tree-based model DE for FWS=0 

Unfortunately, due to the size of the tree, the tree splits are not readable in the figure. Moreover, 

due to the size of the tree, the corresponding tree splits are not analysed in the research. The 

visualized model DE, FWS=0 has 346 terminal nodes. The variable importance for each model is 

depicted in Figure 5.17. 
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Figure 5.17: Tree-based model: variable importance 

It can be seen from the variance importance for each model that the extracted features are the 

most important input variables. Moreover, for each model, the Outer Bearing Temp DE and Outer 

Bearing Temp NDE (for NDE models) input variables are within 3 least important variables. The 

Flywheel Speed input variable is more important for the FWS>0 models. Moreover, it can be seen 

that the Flywheel Speed input variable is more important for the DE models. These observations 

suggest that the statistical model improvements have had a valuable impact on the final HS 

predictive model.  

To further analyse the data driven tree-based predictive model, the same aspects of analysis as 

were applied to the statistical model are evaluated. Namely, in section 5.5.1 the feature extraction 

window size is analysed. In section 5.5.2, the prediction period is analysed. 

5.5.1 Model analysis: feature extraction window size 
The same window size for feature extraction analysis as the one for the statistical model is 

performed. Therefore, the analysis is performed for data sets 6 and 2. For window sizes of 1 week, 

2 weeks (half a month), and 4 weeks (a month). The model results of these models are shown in 

Table 5.24. 

Table 5.24: Data driven model: varied window size for feature extraction 

 Window size (W) 
ModelNDE 1 week 2 weeks 4 weeks 
R2 0.9737 0.9806 0.9730 
NRMSE 0.1418 0.1017 0.1470 
MAPE - - - 
Over 0 1 4 
Under 3 0 4 
ModelNDE 1 week 2 weeks 4 weeks 
R2 0.9678 0.9775 0.9611 
NRMSE 0.1624 0.1238 0.1872 
MAPE - - - 
Over 5 0 2 
Under 2 7 9 
Joint 1 week 2 weeks 4 weeks 
Over 5 0 5 
Under 2 7 7 
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The data driven model results show the best performance for the window size of 2 weeks. The 2 

week window size model understands the data the best from the 3 models (highest R2). Moreover, 

it shows the lowest average prediction error (lowest NRMSE). Similarly, it shows the best 

performance when it comes to the Over and Under counters. Compared to the 4 week window 

size model, the Under counter shows the same result. However, the Over counter decreases. 

Compared to the 1 week window size model the count of Over and Under counters together is the 

same. However, the 2 week window size model shows lower number of Over counter, which is a 

more important aspect. This is due to the fact that providing maintenance for components when 

they are not in a need for maintenance is not desirable. 

5.5.2 Model analysis: prediction period 
The same prediction period analysis as the one for the statistical model is performed. Therefore, 

the analysis is performed on the fully developed data driven model. Using prediction periods of 

approximately 6 days, 3 days, and 1 day. The results from the 3 models are show in Table 5.25. 

Table 5.25: Predictive tree based model: prediction period 

ModelDE PP≈6days PP≈3 days PP≈1day 
R2 0.9534 0.9521 0.9503 
NRMSE 0.1749 0.1723 0.1880 
MAPE - - - 
Over 10 (00.01%) 20 (00.02%) 28 (00.02%) 
Under 27 (06.29%) 21 (04.84%) 29 (07.65%) 
ModelNDE PP≈6days PP≈3 days PP≈1day 
R2 0.9708   0.9750 0.9766 
NRMSE 0.1249 0.1378 0.1591 
MAPE - - - 
Over 43 (00.03%) 17 (00.01%) 30 (00.02%) 
Under 21 (03.78%) 57 (09.98%) 34 (06.38%) 
Joint PP≈6days PP≈3 days PP≈1day 
Over 47 (00.03%) 23 (00.02%) 42 (00.03%) 
Under 24 (04.27%) 59 (10.26%) 28 (05.18%) 

 

It can be seen from the results that none of the 3 PP models clearly outperforms the other models. 

For easier depiction of performance comparison, for each KPI the best result is shown with a 

green cell. The model with PP≈1day does not show the best performing KPIs except for one KPI. 

For the PP≈6 days and PP≈ 3 days it cannot be concluded which model performs better. Model 

comparison  

The statistical predictive model has been compared to the ML predictive model in the previous 

section. The KPIs for both models using original and improved input variables are presented in 

Table 5.23. The ML model with improved input variables is able to make valid HS predictions. 

With overestimating 0.03% of HSs and underestimating 4.27% of the HSs. This model is selected 

as the final predictive model used as basis for the PdM policy implementation for HPP’s UPS 

system’s KEM inner bearings. 
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6 PdM policy 
In this section the PdM policy is defined. The PdM policy HS predictions are defined as follows. 

Given a selected significance level α, a prediction is final when its lower bound (LB) and upper 

bound (UB) predictions result in the same HS prediction. Otherwise, it cannot be concluded with 

the given certainty what the HS prediction is. In that case, the lowest HS prediction is selected as 

the final prediction. To demonstrate, the HS predictions for a section of testing data, with selected 

significance level of α=0.1 (90%PI), are visualized in Figure 6.1. 

 

Figure 6.1: PdM policy 90% PI [90300:90500] 

The measurements for which the dark grey, grey, and orange colours overlap signify the same HS 

prediction for LB, UB, and direct HS prediction. This HS prediction is then the final HS prediction. 

The measurements where all 3 of the predictions don’t overlap result in the LB HS prediction 

(dark grey colour). 

The PdM policy is then defined as follows. When final prediction is a healthy HS, no maintenance 

action is taken. When final prediction is a degraded HS, a maintenance plan for KEM inner bearing 

repair is made. When final prediction is a failure HS, a maintenance plan for KEM inner bearing 

replacement is made. 

There is 1 input parameter for the PdM policy, the selection of significance level α. The effect of 

the significance level α onto the PdM policy is addresses in section 6.1. Moreover, the split 

according to which the different HSs are defined also affects the defined PdM policy. The effect of 

application of different HS splits onto the PdM policy is addressed in section 6.2. 

6.1 Significance level α  
The selection of α is an important input parameter for the PdM policy. With lower significance 

level, the certainty of the prediction is higher. However, on the other hand, it results into wider 

range of possible values that the prediction coming from a given terminal node can take. In some 

cases, it might be that the range of values ranges from healthy to failure HS, therefore, it cannot 

be predicted with the given certainty what the HS actually is.  There are 346 terminal nodes for 

the model DE, FWS=0 of the selected predictive model. Selected section of terminal nodes for 
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significance level α=0.1 (90%PI) and α=0.25 (75%PI) are visualized in Figure 6.2 and Figure 6.3, 

respectively. 

 

Figure 6.2: Terminal nodes: model DE, FWS=0 (90% PI) 

It can be seen from the figures that with a lower prediction certainty the range of values a 

prediction can take in each terminal node is narrower. For example, when a prediction results in 

terminal node 262, with a significance level α=0.1 the prediction is with a 90% certainty either 

healthy or degraded HS. However, with a significance level α=0.25 the prediction is with a 75% 

certainty a healthy HS. 

This is a trade-off that HPP needs to take into account when implementing a PdM policy for 

maintenance planning for their customers. 

 

Figure 6.3: Terminal nodes: model DE, FWS=0 (75% PI) 

6.2 HS splits 
The split of data into healthy, degraded and failure is defined by the current policies applied at 

HPP. The current categorization of HS of the KEM inner bearings at HPP is presented in Table 6.1. 

Where ⋀ stands for AND operator, ⋁ stands for OR operator and the unit of the numerical values 

is mm/s. For simplicity, the KEM DE Vibration is referred to as DE and KEM NDE Vibration as 

NDE.  
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Table 6.1: Health states split 

Health state Split (X=9, Y=20) 
Healthy (DE < X) ⋀ (NDE < X) 
Degraded [(X ≤ DE < Y) ⋀ (NDE < Y)] ⋁ [(DE < Y) ⋀ (X ≤ NDE < Y)] 
Failure (Y ≤ DE) ⋁ (Y ≤ NDE) 

 

The currently defined HSs are present at HPP already for a long time and are currently a standard 

when it comes to monitoring the condition of the KEM inner bearings. Since the bearings are 

replaced before actual failure it is difficult to depict whether these HS splits are representative of 

the condition of the bearings. However, the effect of defining different HS splits onto the PdM 

policy performance can be analysed.  

To evaluate the effect of the HS split onto the PdM policy, different splits for the HSs are defined 

for the PdM policy and evaluated. The HS split for observed HSs is kept the same. However, the 

HS split for the predicted HSs is adjusted. The policy is evaluated using the Over and Under 

counter KPI. Where with an Over prediction situation it is predicted that the KEM inner bearing 

should be repaired when there is no need for repair or should be replaced when only repair is 

needed. On the other hand, with an Under prediction situation it is not predicted that the KEM 

inner bearing needs repair when it actually needs repair, or it is not predicted that the bearing 

needs replacement when it needs replacement. 

The new splits are defined using the same approach, but with new set threshold values X and Y 

(Table 6.1). The PdM policy results for different HS splits are presented in Table 6.2. The policies 

are implemented using a significance level α=0.1.  

Table 6.2: Predictive tree based model: varied HS split 

Measure X=9, Y=20 X=7, Y=20 X=11, Y=20 X=9, Y=18 X=9, Y=22 

Over 1 
(00.0008%) 

147 
(00.1175%) 

0  
(00.0000%) 

1 
(00.0008%) 

1  
(00.0008%) 

Under 93 
(16.5480%) 

25 
(4.4484%) 

255 
(45.3767%) 

93 
(16.5480%) 

87  
(15.4804%) 

Good 125 070 
(99.9249%) 

124 992 
(99.8626%) 

124 909 
(99.7963%) 

125 070 
(99.9249%) 

125 076 
(99.9297%) 

 

It can be concluded from the results that increasing the degradation threshold (X) results in less 

Over predictions and more Under predictions. Overall, less correct predictions are made. 

However, since the number of Over predictions equals 0 this HS split for predictions actually 

provides better results for the PdM policy. As this new maintenance policy does not have a 

negative effect compared to the current policy. Only a positive effect of correctly predicting 

around 55% of the non-healthy HSs.  

Furthermore, when it comes to the failure threshold (Y), increasing the threshold results in less 

Under predictions. Meaning more non-healthy HSs are correctly predicted.  

Therefore, the HS split for predictions with X=11 and Y=22 is selected as the one for the final PdM 

policy.   
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7 Results 
In this section the research results are presented. First, in section 7.1, the PdM policy results 

based on tree-based ML predictive model using the improved input variables, and adjusted HS 

splits, are presented. Next, in section 7.2, the PdM policy is validated using the last data set (data 

set 7), which has not been used before in the research. Lastly, in section 7.3, the evaluation of the 

PdM policy and its value for HPP are discussed. 

7.1 PdM policy implementation 
The PdM policy is implemented using the training data sets and evaluated using the testing data 

sets for 70%, 80%, and 90% PI. The overview of Over, Under, and Good counters for the different 

PIs can be seen in Table 7.1. The Good counter represents the number of correct maintenance 

action predictions.  

Table 7.1: PdM policy: testing data set 

Measure 70% PI 80% PI 90% PI 

Over 1 (00.0008%) 0 (00.0000%) 0 (00.0000%) 
Under 152 (27.0463%) 162 (28.8256%) 255 (45.3737%) 
Good 125 011 (99.8778%) 125 002 (99.8706%) 124 909 (99.7963%) 

 

It can be seen from the results that with lower prediction certainty more non-healthy HS are 
predicted. Which is the aim of the PdM policy. However, at some point Over predictions start to 
occur. This in a negative side of the proposed PdM policy as with the current maintenance policy 
at HPP no necessary maintenance occurs. To evaluate the best PdM policy, the norm and reality 
for each PI is calculated. Using 𝑡𝑐 = 10, 𝑡𝑛 = 5, and 𝑃 = 50 (Equation 1). These results are shown 
in Table 7.2. 

Table 7.2: PdM policy reality and norm results 

PI Reality Norm 
70% 10*562=5620 10*(152)+5*(562-152+1*50)=3820 
80% 10*562=5620 10*(162)+5*(562-162)=3620 
90% 10*562=5620 10*(255)+5*(562-255)=4085 

 

The reality and norm represent the length of unplanned downtime. Therefore, lower number 
represents a better result. Therefore, for all PIs, the core problem has been solved as the norms 
are lower than the realities.  

Further, it can be concluded that for the test data set, the 80% PI shows better PdM policy 
performance compared to the 90% PI. The comparison between 70% PI and 80% PI is dependent 
on the penalty P. However, with the strong desire to avoid Over predictions, it is decided to select 
a penalty such that the 80% PI show better results when it comes to the norm of the core problem. 

Therefore, the overall results for best performing 80% PI PdM policy are visualized in Figure 7.1. 
With one zoomed in visualization shown in Figure 7.2. Visualizations for the other PIs can be 
found in Appendix Q. The time steps are not in order of time since the testing set consists of 
random split of data points. 
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Figure 7.1: PdM policy: testing data set (80% PI) 

The results show valuable predictions. Where only 28.83% of the non-healthy HSs are not 

correctly predicted. Meaning, the model correctly predicts 71.17% of the non-healthy HSs. 

Overall, 99.87% of the instances are correctly predicted. And no Over predictions are made. 

 

Figure 7.2: PdM policy: testing data set (80% PI) [54850,54950] 

It can be seen that for each of the instances when the repair maintenance action is proposed, the 

observed HS is either degraded or failure HS. Therefore, the PdM policy does improve the current 

maintenance policy at HPP. Since several non-healthy HSs are predicted correctly, approximately 

6 days in advance. Moreover, for no instances, it is predicted that a maintenance action for healthy 

state, or a replace maintenance action for degraded HS are predicted. 

7.2 PdM policy validation 
So far, the PdM policy has been evaluated on a testing data set, which has already been included 

during the predictive model and subsequent PdM policy development. Therefore, in order to 

validate the PdM policy, the validation set is used to evaluate the proposed maintenance actions. 

This is done by using the already developed PdM policy, based on an already developed predictive 

model. 
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The PdM policy predictions for the validation data set with a significance level of α=0.2 are 

visualized in Figure 7.3. The time steps are in order of time. Therefore, the figure represents a 

time series data for the validation data set. 

 

Figure 7.3: PdM policy: validation set (80% PI) 

It can be seen from the figure that the PdM policy does not provide valuable predictions. For none 

of the non-healthy HSs a maintenance action is proposed. Maintenance actions are proposed with 

a certain delay. Therefore, it cannot be predicted 6 days in advance that a maintenance action is 

needed. The KPIs for the PdM policy for the validation data set are presented in Table 7.3. 

Table 7.3: PdM policy: validation set 

Measure 70% PI 80% PI 90% PI 

Over 86   (00.1150%) 86   (00.1150%) 86   (00.1150%) 
Under 64 (100.0000%) 64 (100.0000%) 64 (100.0000%) 
Good 74 673   (99.7995%) 74 673   (99.7995%) 74 673   (99.7995%) 

 

Unfortunately, the results support the visualization. None of the non-healthy HSs have a predicted 

need for a maintenance action (100% Under). This means that the proposed PdM policy based on 

the developed underlying predictive model cannot be validated. It is expected that the main 

reason for the inability to validate the PdM policy is the varied step size between PMSMTs. This 

aspect directly influences the extracted features, which are significant input variables used for 

the development of the underlying predictive model. 

7.3 Value of the PdM policy for HPP 
For HPP the value of the PdM policy is not monetary. The value of the PdM policy is for providing 

better insight for the customers into the HS of the UPS system and its components. For providing 

value to the customer, it is important to validate the model such that the model does not provide 

false non-healthy HS predictions. When the model does not provide false non-healthy HS 

predictions it can only be beneficial. Whenever it correctly predicts a non-healthy HS a given 

unplanned downtime period is reduced. To provide a high certainty of correctness of non-healthy 

HS prediction, the PdM policy is developed such that for a given certainty prediction, both lower 

bound and upper bound of the prediction result in the same HS prediction. Ensuring the customer 

does not need to plan maintenance for a maintenance action that would not be necessary. 
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8 Conclusion  
The trends in industry show that companies are shifting towards implementation of data driven 

AI algorithms to guide their maintenance processes. However, implementation of such algorithms 

is not always straightforward. The proposed PdM policy in the research is a good basis for a future 

development of a PdM policy at HPP. Although the developed predictive model used as a basis for 

the proposed PdM policy was not successfully validated, it serves as a good basis for further 

development of such predictive model.  

The research highlights the importance of development of statistical models. Prior to the 

implementation of more advanced, in this case, data driven ML methods, for development of 

predictive models. Through the development of the statistical model the effect of individual input 

variables onto the model prediction performance was evaluated. In the research it was concluded 

to only remove one such input variable due to the decision of not allowing for removal when 

decrease in NRMSE KPI was observed.  

Moreover, the research provides valuable insights into developing prediction models for 

predicting the future HS of components based on vibration data. It was clearly demonstrated that 

in order to gain valuable information for developing either statistical or data driven predictive 

models using vibration data, feature extraction is a critical aspect.  

Another interesting finding was the effect of the flywheel speed on the prediction model 

performance. It was demonstrated that for the instances when flywheel was operational the input 

data without instances when flywheel was not operation provided better model results. 

Therefore, it was decided to only use data when flywheel was in operation to develop a model for 

making predictions for instances when flywheel is in operation. However, it was also later noted 

that for the KEM inner bearings on the driving end, the changes in the speed of the flywheel have 

a bigger impact on the prediction value. Whereas for the KEM inner bearings on the non-driving 

end the difference was not that significant.  
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9 Discussion and further work 
The PdM policy in the research was not validated. The main aspect to focus on for further 

development, which is expected to have a large effect onto the underlying model performance is 

step size between PMSMTs. In the research the step size is taken as equal along the 6 month 

period of PMSMTs. However, this is far from reality. The adjustment of PMSMTs into ones with 

constant equal time steps has not been implemented in the research. The time period for the 

research did not allow for such adjustment for all the data used in the research. It is strongly 

believed that this adjustment will have a large impact on the performance of the underlying 

predictive model, and subsequently also on the proposed PdM policy.  

The conclusions of the research open up areas for further work towards developing a suitable 

predictive models and PdM policy for predicting the KEM inner bearings at HPP. First, related to 

the input variables. The number of input variables affects the number of sensors / measurements 

needed to be monitored on the UPS system. Therefore, it is proposed for further work to look into 

further removal of the input variables. Similarly, the computation of extracted features affects the 

software ability of evaluating the PdM policy. Therefore, it is proposed for future development of 

the predictive model to further look into the value of different extracted features. Both of these 

future work improvements can result in a less robust underlying predictive model. Moreover, 

with regard to the effect of operationality of the flywheel, for the future it is proposed to further 

look into the difference between the Model DE and Model NDE.  

Furthermore, the PdM policy is implemented based on 6 day prediction period model with a given 

certainty. In a future more robust model with different prediction periods could be developed. 

Where a maintenance action with prediction period of 6 days is made and either revoked or 

further validated with prediction period of 3 days.  

Following the proposed future work improvements, the improved PdM policy should be 

validated. Following a successful validation, the PdM policy can be implemented in the UPS 

software at the customer sites. The PdM policy can be executed using the direct PMSMTs from the 

UPS. The PdM policy can be implemented for any UPS system with adjustments made based on 

varied PMSMT name sets. Then the PdM policy proposed maintenance actions can be used to 

improve the maintenance service of HPP and reduce the unplanned downtime of the UPS units. 
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12 Appendices 
Appendix A HMI panel layout of UPC for PP2700 
 

 

The UPS Unit switches are used to start the UPS unit by selecting ON and stop the UPS unit by 

selecting OFF. The NB Load switches put the unit into a UPS mode when UPS is selected. And put 

the unit into bypass mode when Bypass is selected. Similarly, the SB Load puts the unit into 

automatic mode by selecting Auto and into utility mode by selecting Utility. For P2600 the diesel 

and system test switches are located on the service screen tab. Auto puts the unit into automatic 

UPS mode, Diesel test stars the diesel test, and System test switch starts the system test on the 

UPS unit.  
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Appendix B Maintenance activities  
Following figures show extract from list of tasks that need to be carried out during the scheduled 

maintenance intervals and a list of remarks that are included for some of the maintenance tasks.  
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Appendix C Maintenance logbook 
The following figures show the front page  and extracts from  the logbook for recording the results 

of the weekly and monthly checks.. 
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Appendix D Failure Codes 
The following figures show the overview of the failure codes and sub failure codes. The failure 
codes highlighted with green are the ones that also contain failure sub codes. 
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Appendix E Fault overview 2022 
The following table shows the complete list of failure codes registered in the fault overview of 

2022 for PP3600 and PP2700 UPS systems. 

Failure code Count  Contribution Cummulative Unit failure count Unit failure contribution 

PPN 14 9% 9% 10 71% 

EPR 12 8% 17% 4 33% 

POT 7 5% 21% 1 14% 

KOT 7 5% 26% 1 14% 

GPR 7 5% 31% 2 29% 

OTH 6 4% 34% 1 17% 

PCB 6 4% 38% 0 0% 

KIB 6 4% 42% 4 67% 

PSP 5 3% 45% 2 40% 

FCS 5 3% 49% 1 20% 

PPH 5 3% 52% 4 80% 

EOT 5 3% 55% 1 20% 

FPM 5 3% 58% 0 0% 

RTV 4 3% 61% 0 0% 

KPR 4 3% 64% 3 75% 

DLU 4 3% 66% 0 0% 

FLU 4 3% 69% 0 0% 

PTS 3 2% 71% 0 0% 

DCO 3 2% 73% 1 33% 

DIC 3 2% 75% 3 100% 

DCS 3 2% 77% 3 100% 

PFR 3 2% 79% 0 0% 

GOT 3 2% 81% 0 0% 

PRE 3 2% 82% 0 0% 

PWI 2 1% 84% 0 0% 

SWI 2 1% 85% 2 100% 

DST 2 1% 86% 1 50% 

FPR 2 1% 88% 1 50% 

PPS 2 1% 89% 0 0% 

DBA 2 1% 90% 1 50% 

FBE 2 1% 92% 0 0% 

KBN 2 1% 93% 2 100% 

GVO 1 1% 94% 1 100% 

PPR 1 1% 94% 1 100% 

DHE 1 1% 95% 0 0% 

DOT 1 1% 95% 0 0% 

GBE 1 1% 96% 1 100% 

FBN 1 1% 97% 0 0% 

EBE 1 1% 97% 0 0% 

NOF 1 1% 98% 1 100% 

KPM 1 1% 99% 1 100% 

PPM 1 1% 99% 0 0% 

PBB 1 1% 100% 1 100% 

43 154 100%  54  
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Appendix F Data quality check 
The first issue 

 

Just remove 

 

Just remove 

 

First one ➔ 100 

Second ➔ 29 

Both remove because otherwise not unique , so no value to keep 
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Appendix G Extracted features 

VAR 

 

 

 

 
RMS 
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SF 

 

 

 

 
MF 
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E

 

 

 
 

Skewness
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Kurtosis

 

 

 

 

PeakAmp
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Crest

 

 

 
 

Crest
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Avg
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Appendix H Average time step 
 

Data 
set  

#Original  #Adjusted  Kept % Original t_diff 
(min) 

Adjusted t_diff 
(min) 

Min t_diff 
(min) 

1 191 595 32 761 17 % 4.67 1 373 501.08 1 304.85 
2 199 533 48 688 24 % 5.30 1 386 789.53 519.83 
3 276 981 66 215 24 % 4.59 1 761 442.43 284.79 
4 251 651 59 303 24 % 4.77 1 781 471.61 58.88 
5 367 450 312 581 85 % 3.01 108 774.87 1.50 
6 1 042 006 47 098 5 % 10.00 5 867 503.82 0.00 
7 1 254 878 84 703 7 % 10 4 925 870.59 10.00 
Total 3 584 094 651 349 18 % Mean≈ 5hours 
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Appendix I Scatterplots  
 

Outer Bearing Temp NDE 

 
Outer Bearing Temp DE 
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Q1 Actions Counter 

 
Flywheel Speed 
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Gen DE Vibration 

 
Gen NDE Vibration 
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KEM DE Vibration 

 
KEM NDE Vibration 
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Unit 
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Appendix J Scatterplots – healthy data 
 

Outer Bearing Temp NDE 

 
Outer Bearing Temp DE 
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Q1 Actions Counter 

 
Flywheel Speed 
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Gen DE Vibration 

 
Gen NDE Vibration 
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KEM DE Vibration 

 
KEM NDE Vibration 
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Unit 
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Appendix K Residual plots 
 

Outer Bearing Temp NDE 

 
Outer Bearing Temp DE 
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Q1 Actions Counter 

 
Flywheel Speed 
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Gen DE Vibration 

 
Gen NDE Vibration 
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KEM DE Vibration 

 
 

KEM NDE Vibration 
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Unit 
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Appendix L Correlation heatmaps 

OutputA (KEMDEVibration) 

 
 
OutputB (KEMNDEVibration) 
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Appendix M VIF iterations 

OutputA (KEMDEVibration) 

Iteration 0 

 

Iteration 1 

 

Iteration 2 

 

Final input 
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OutputB (KEMNDEVibration) 

Iteration 0 

 

Iteration 1 

 

Iteration 2 

 

Final input 
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Appendix N Correlation heatmaps after VIF 
 

OutputA (KEMDEVibration) 

 

OutputB (KEMNDEVibration) 
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Appendix O Removal of input variables 
Yellow cell: Same value as previous model, Green: Improved value compared to previous model. 

The improvement is signified by lower NRMSE or MAPE value.  

Original model performance 

Measure ModelDE ModelNDE 
R2 0.2889 0.2888 
NRMSE 0.6133 0.5664 
MAPE 0.3967 0.3466 
Over 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 
Measure Joint prediction 
Over 2   (00.002%) 
Under 562 (100.000%) 

 

Performance of model DE with removal of input variable 

ModelDE -A -B -C -D -E -F -G -H -I 
R2 0.2878 0.2889 0.2819 0.2545 0.2736 0.2352 0.2860 0.2873 0.2409 
NRMSE 0.6141 0.6133 0.6160 0.6265 0.6211 0.6377 0.6139 0.6135 0.6362 
MAPE 0.4097 0.3963 0.3769 0.3955 0.5095 0.4509 0.4220 0.3942 0.5642 
Over 2 2 1 0 3 3 0 0 3 
Under 429 429 429 429 429 429 429 429 429 

 

➔ Results for -B are the only ones to have every cell yellow or green, therefore B is 

removed as input variable 

 Removed input variable: B All input variables 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.2889 0.2888 0.2889 0.2888 
NRMSE 0.6133 0.5664 0.6133 0.5664 
MAPE 0.3963 0.3466 0.3967 0.3466 
Over 2   (00.002%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 

 

➔ Improved model, can more improvement be made? 

Performance of model with additional removal of input variable 

ModelDE -A -C -D -E -F -G -H -I 
R2 0.2846 0.2819 0.2524 0.2725 0.2340 0.2848 0.2865 0.2366 
NRMSE 0.6152 0.6161 0.6279 0.6212 0.6377 0.6145 0.6140 0.6372 
MAPE 0.4192 0.3760 0.4001 0.4369 0.4535 0.4737 0.3930 0.4858 
Over 2 1 2 0 3 0 0 2 
Under 429 429 429 429 429 429 429 429 
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➔ No additional input variable is removed from the model. Removal of additional variable 

would result in worse NRMSE value. NRMSE is more sensitive to outliers, therefore, it is 

more important KPI than MAPE. Therefore, slight improvement in MAPE value is not 

good selection when NRMSE shows worse performance. 

Original model performance 

Measure ModelDE ModelNDE 
R2 0.2889 0.2888 
NRMSE 0.6133 0.5664 
MAPE 0.3967 0.3466 
Over 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 
Measure Joint prediction 
Over 2   (00.002%) 
Under 562 (100.000%) 

 

Performance of model NDE with removal of input variable 

ModelNDE -A -B -C -D -E -F -G -H -I 
R2 0.2859 0.2729 0.2774 0.2828 0.2703 0.2659 0.2788 0.2841 0.2392 
NRMSE 0.5677 0.5731 0.5710 0.6585 0.5738 0.5754 0.5703 0.5680 0.5867 
MAPE 0.3774 0.3550 0.3409 0.3444 0.3778 0.3839 0.3579 0.3565 0.4208 
Over 0 0 0 0 0 0 0 0 0 
Under 555 555 555 555 555 555 555 555 555 

 

➔ In all cases NRMSE is worse, no input variable is removed. 
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Appendix P Removal of extracted features 
Yellow cell: Same value as previous model (one with extracted features), Green: Improved value 

compared to previous model (one with features). KPIs to be improved are highlighted with red.  

Original model performance 

 All extracted features No extracted features (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.3140 0.3344 0.2889 0.2888 
NRMSE 0.6015 0.5465 0.6133 0.5664 
MAPE 0.4029 0.9263 0.3967 0.3466 
Over 0   (00.00%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.00%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 

 

➔ Model with features not better in all KPIs, need to remove a feature 

Performance of model with additional removal of extracted feature 

ModelDE -Mean -Std -Peak -Var -RMS -SF 
R2 0.3140 0.3133 0.3140 0.3138 0.3139 0.3117 
NRMSE 0.6015 0.6019 0.6015 0.6016 0.6015 0.6024 
MAPE 0.3910 0.3873 0.3924 0.4176 0.3965 0.3878 
Over 0 0 0 0 0 0 
Under 429 429 429 429 429 429 

ModelDE -MF -E -Crest -Skew -Kurt  
R2 0.3140 0.3079 0.3140 0.3119 0.3115  
NRMSE 0.6015 0.6043 0.6015 0.6024 0.6025  
MAPE 0.3911 0.3997 0.4094 0.4552 0.4047  
Over 0 0 0 0 0  
Under 429 429 429 429 429  

 

ModelNDE -Mean -Std -Peak -Var -RMS -SF 
R2 0.3318 0.3338 0.3311 0.3328 0.3318 0.3321 
NRMSE 0.5476 0.5467 0.5480 0.5471 0.5476 0.5473 
MAPE 0.5295 0.5074 0.5400 0.7330 0.4697 0.4750 
Over 0 0 0 0 0 0 
Under 555 555 555 555 555 555 

ModelNDE -MF -E -Crest -Skew -Kurt  
R2 0.3344 0.3282 0.3340 0.3318 0.3330  
NRMSE 0.5465 0.5494 0.5465 0.5476 0.5471  
MAPE 0.7010 0.4582 0.6619 0.4692 0.5352  
Over 0 0 0 0 0  
Under 555 555 555 555 555  

 

➔ Results for -MF are the only ones to have every cell yellow or green, for both model DE 

and model NDE. Therefore MF is removed as input variable. 
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Model performance, removed extracted feature: MF 

 Removed feature: MF No extracted features (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.3140 0.3344 0.2889 0.2888 
NRMSE 0.6015 0.5465 0.6133 0.5664 
MAPE 0.3911 0.7010 0.3967 0.3466 
Over 0   (00.00%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 

 

➔ Model with features not better in all KPIs, need to remove a feature 

Performance of model with additional removal of extracted feature 

ModelDE -Mean -Std -Peak -Var -RMS -SF 
R2 0.3140 0.3128 0.3139 0.3134 0.3139 0.3117 
NRMSE 0.6015 0.6021 0.6016 0.6019 0.6016 0.6025 
MAPE 0.3905 0.3845 0.3891 0.3997 0.3928 0.3929 
Over 0 0 0 0 0 0 
Under 429 429 429 429 429 429 

ModelDE -E -Crest -Skew -Kurt  
R2 0.3078 0.3140 0.3114 0.3115  
NRMSE 0.6043 0.6015 0.6026 0.6025  
MAPE 0.4245 0.3981 0.4022 0.4026  
Over 0 0 0 0  
Under 429 429 429 429  

 

ModelNDE -Mean -Std -Peak -Var -RMS -SF 
R2 0.3317 0.3338 0.3310 0.3328 0.3318 0.3321 
NRMSE 0.5477 0.5467 0.5480 0.5472 0.5476 0.5474 
MAPE 0.5959 0.5033 0.8000 0.5224 0.4788 0.4873 
Over 0 0 0 0 0 0 
Under 555 555 555 555 555 555 

ModelNDE -E -Crest -Skew -Kurt  
R2 0.3282 0.3335 0.3318 0.3330  
NRMSE 0.5494 0.5468 0.5476 0.5471  
MAPE 0.4490 0.4835 0.4671 0.5005  
Over 0 0 0 0  
Under 555 555 555 555  

 

➔ Results for -Mean are the only ones to have every cell yellow or green, for model DE. For 

model NDE the amount of yellow and green cells is the maximum observed between the 

different model results. Therefore Mean is removed as input variable. 
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 Removed feature: MF, Mean No extracted features (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.3140 0.3317 0.2889 0.2888 
NRMSE 0.6015 0.5477 0.6133 0.5664 
MAPE 0.3905 0.5959 0.3967 0.3466 
Over 0   (00.00%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 

 

➔ Model with features not better in all KPIs, need to remove a feature 

Performance of model with additional removal of extracted feature 

ModelDE -Std -Peak -Var -RMS -SF 
R2 0.3117 0.3139 0.3134 0.3130 0.3113 
NRMSE 0.6026 0.6016 0.6019 0.6022 0.6026 
MAPE 0.3904 0.3895 0.3975 0.4082 0.3894 
Over 0 0 0 1 0 
Under 429 429 429 429 429 

ModelDE -E -Crest -Skew -Kurt  
R2 0.3060 0.3140 0.3113 0.3113  
NRMSE 0.6051 0.6015 0.6026 0.6026  
MAPE 0.3896 0.3909 0.3973 0.4012  
Over 0 0 0 0  
Under 429 429 429 429  

 

ModelNDE -Std -Peak -Var -RMS -SF 
R2 0.3313 0.3300 0.3316 0.3317 0.3242 
NRMSE 0.5479 0.5485 0.5477 0.5477 0.5508 
MAPE 0.4658 0.3782 0.5403 0.5697 0.7237 
Over 0 0 0 0 0 
Under 555 555 555 555 555 

ModelNDE -E -Crest -Skew -Kurt  
R2 0.3234 0.3304 0.3296 0.3313  
NRMSE 0.5516 0.5481 0.5486 0.5479  
MAPE 0.4263 0.3510 0.4401 0.5708  
Over 0 0 0 0  
Under 555 555 555 555  

 

➔ Results for -RMS are the only ones to have every cell yellow or green, for model NDE. 

However, the -RMS results for model DE show much worse performance, with only one 
yellow cell. Therefore RMS is not selected as next feature for removal. Instead, we focus 

on -Std, -Peak, -E, and -Crest. It is decided to remove Crest as next removed additional 

feature. This is due to the lowest average decrease in NRMSE value. Therefore Crest is 

removed as input variable. 
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 Removed feature: MF, Mean, Crest No extracted features (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.3140 0.3304 0.2889 0.2888 
NRMSE 0.6015 0.5481 0.6133 0.5664 
MAPE 0.3909 0.3510 0.3967 0.3466 
Over 0   (00.00%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 

 

➔ Model with features not better in all KPIs, need to remove a feature 

Performance of model with additional removal of extracted feature 

ModelDE -Std -Peak -Var -RMS -SF 
R2 0.3116 0.3138 0.3134 0.3127 0.3108 
NRMSE 0.6027 0.6016 0.6019 0.6023 0.6029 
MAPE 0.4060 0.3900 0.3976 0.3992 0.3934 
Over 0 0 0 1 0 
Under 429 429 429 429 429 

ModelDE -E -Skew -Kurt  
R2 0.3057 0.3111 0.3111  
NRMSE 0.6053 0.6027 0.6027  
MAPE 0.3702 0.3944 0.3987  
Over 0 0 0  
Under 429 429 429  

 

ModelNDE -Std -Peak -Var -RMS -SF 
R2 0.3302 0.3285 0.3303 0.3297 0.3162 
NRMSE 0.5482 0.5490 0.5482 0.5484 0.5538 
MAPE 0.3610 0.3403 0.3435 0.3401 0.3383 
Over 0 0 0 0 0 
Under 555 555 555 555 555 

ModelNDE -E -Skew -Kurt  
R2 0.3223 0.3283 0.3301  
NRMSE 0.5521 0.5491 0.5483  
MAPE 0.3373 0.3448 0.3437  
Over 0 0 0  
Under 555 555 555  

 

➔ Model DE already met the better KPIs performance compared to the original model. 

Removing Std, Var, RMS or Kurt would result in model DE not anymore having better KPIs 

than the original model. Therefore, these are not selected to be removed. The average 

value of NRMSE for the other extracted features is then calculated, and the feature 

corresponding to the lowest average NRMSE is selected.  
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 -Peak -SF -E -Skew 
NRMSE DE 0.6016 0.6029 0.6053 0.6027 

NRMSE NDE 0.5490 0.5538 0.5521 0.5491 

Average 0.5753 0.57835 0.5787 0.5759 

 

➔ The lowest average NRMSE value corresponds to the Peak feature. Therefore Peak is 

removed as input variable. 

 Removed feature:  
MF, Mean, Crest, Peak 

No extracted features (original model) 

Measure ModelDE ModelNDE ModelDE ModelNDE 

R2 0.3138 0.3285 0.2889 0.2888 
NRMSE 0.6016 0.5490 0.6133 0.5664 
MAPE 0.3900 0.3403 0.3967 0.3466 
Over 0   (00.00%) 0   (00.00%) 2   (00.002%) 0   (00.00%) 
Under 429 (100.000%) 555 (100.00%) 429 (100.000%) 555 (100.00%) 
Measure Joint prediction Joint prediction 
Over 0   (00.00%) 2   (00.002%) 
Under 562 (100.00%) 562 (100.000%) 

 

➔ Model with features better in all KPIs, no more extracted features are removed. 
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Appendix Q PdM policy plots 

70% PI 
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80% PI 
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90% PI 
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