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Management summary

The research is performed at HITEC Power Protection (HPP) in Almelo. HPP designs, develops,
delivers, and supports uninterruptible power supply (UPS) systems across the globe. It is HPP’s
mission to support critical facilities such as hospitals, airports, stock exchanges, data centres and
industrial manufacturing processes by assuring safe, reliable, and conditioned power. UPS
systems in industry in general have very high uptime to ensure power supply for these critical
facilities. It is therefore crucial for the maintenance of UPS that the downtime, both planned and
unplanned, of any part of the UPS system is minimized. The decrease of unplanned downtime
currently shows higher benefit for the company. Therefore, minimizing the unplanned downtime
is the focus of the research, resulting in the research objective as

Improving the HPP maintenance service by decreasing the unplanned downtime of the UPS units
through implementation of a PdM policy for a selected component of HPP’s UPS systems.

The research examines the implementation of a predictive maintenance (PdM) policy to support
the maintenance services of HPP. A PdM policy allows for maintenance planning prior to the time
when maintenance action for a given component of the UPS system is required. Allowing for an
immediate carrying out of the maintenance action when it is required. Resulting in a decreased
unplanned downtime for the given component of the UPS system. The PdM policy is based on a
developed predictive model predicting the future health state (HS) of a component of HPP’s UPS
systems. First, a statistical predictive model is developed as the complexity of the relation
between the data is not known prior to the research. Subsequently, a data driven predictive model
is developed for comparison of model predictive ability. The better performing model is used for
the development of the PdM policy.

In the research a PdM policy to support the planning of maintenance actions for the kinetic energy
module (KEM) inner bearing components is developed. The policy is developed using a linear
regression statistical and regression based decision tree data driven model, predicting the HS of
the KEM inner bearings 6 days into the future. A 6 day prediction period is selected as it provides
enough time for HPP to plan a maintenance service in advance. The statistical linear regression
based model is not able to make predictions for the non-healthy HSs of the KEM inner bearings.
The model predicts the future HS for every instance to be a healthy HS. Therefore, the statistical
linear regression based model is depicted as a not useful predictive model for the research. The
data driven regression decision three model is able to correctly predict part of the non-healthy
and healthy HSs. The data driven regression decision tree model is therefore depicted as useful
and is used as basis for developing a PdAM policy for HPP.

The developed data driven model consists of 3 parts. Namely, data driven predictive model for
predicting the KEM DE Vibration, known as Model DE. Second, data driven predictive model for
predicting the KEM NDE Vibration, known as Model NDE. And last, HS prediction, where the
predicted KEM DE and NDE Vibrations using Model DE and Model NDE are used to depict the
associated predicted HS.

During the predictive model development of Model DE and NDE it is observed that the KEM outer
bearing temperature on driving end input variable for Model DE did not provide any value to the
KEM DE Vibration predictions. Removing this input variable resulted in predicting 0 instead of 2
incorrect HS predictions and decreased the prediction error key performance indicators (KPIs).
Moreover, the analysis of the extracted features revealed the most valuable extracted features are
standard deviation, variance, root mean square, shape factor, energy, skewness, and kurtosis.
Addition of these extracted features also resulted in predicting 0 instead of 2 incorrect HS
predictions and in a decrease of the prediction error KPIs. Moreover, the models revealed an



effect of the operationality of the flywheel. Model predictions that are made separately for
instances when the flywheel is and is not in operation resulted in the same number of incorrect
HS predictions. However, the prediction error KPIs have decreased.

The final predictive model predicting the HS of the KEM inner bearings is used as basis for the
PdM policy for the KEM inner bearings. The PdM policy is defined using a safety factor a as an
input variable, depicting the prediction certainty used for proposal of maintenance actions for the
KEM inner bearings.

The results for the testing data are:
70% certainty prediction interval

- 1 unnecessary maintenance action predicted
- 152 (27.05%) necessary maintenance actions unpredicted
- 99.88% of maintenance actions correctly predicted

80% certainty prediction interval

- no unnecessary maintenance action predicted
- 162 (28.83%) necessary maintenance actions unpredicted
- 99.87% of maintenance actions correctly predicted

90 % certainty prediction interval

- no unnecessary maintenance action predicted
- 255 (45.37%) necessary maintenance actions unpredicted
- 99.80% of maintenance actions correctly predicted

For all prediction certainty intervals, with a penalty of 50 for predicting unnecessary maintenance
action, the unplanned downtime has reduced. Assuming 50% decrease of unplanned downtime
when the need for a maintenance action is known 6 days in advance. The highest reduction of
unplanned downtime is associated with the 80% certainty prediction interval. Reducing the
unplanned downtime by approximately 36% compared to the currently used maintenance policy.
The unplanned downtime reduction for 70% certainty prediction interval is approximately 32%,
and for 90% certainty prediction interval approximately 27%.

The proposed PdM policy is not successfully validated using the available validation data set. The
main aspect of the inability to validate the model is related to the varied step size between
measurements of the input variables. This aspect directly affects the extracted features that are
significant input variables for the underlying predictive model of the PdM policy. However,
valuable insights for further development of the PdM policy and its underlying predictive models
are made during the research.

- First, the removal of input variables for reduction of the model input complexity is
analysed. Resulting in removal of the KEM outer bearing temperature measurements.
However, based on set decisions, more input variables can be removed from the model
input to further reduce the complexity of model development.

- Second, the value of inclusion of extracted features from the vibration data onto the model
predictions is demonstrated. In the research the minimum number of extracted features
is removed from the model input. However, a different approach where less extracted
features are included in the model could further reduce the model complexity and lead to
more accurate predictions.



- Third, the effect of flywheel speed onto the model performance for instances when
flywheel is in operation and when it is not in operation is evaluated. It is demonstrated
that the instances when flywheel is in operation are better modelled by model solely
developed based on instances from when the flywheel was in operation. However, it is
also depicted that the operational status of the flywheel has more significant influence on
the KEM inner bearings on the driving end of the KEM. Therefore, model distinction
between model for the KEM inner bearings installed on the driving end (where the
flywheel is installed) and on the non-driving end can be made.

Taking into account the findings of the research, the research provides a good basis for developing
a PdM policy for HPP. The policy supports the maintenance service of HPP by providing insight
for the customers into the upcoming HS of the KEM component. However, additional aspects for
further development of the PdAM policy and its underlying model should be addressed first.

- Further removal of input variables in order to decrease the number of needed sensors for
the measurement of the variables. Also reducing the model robustness.

- Further analysis of the most valuable extracted features. As removal of unnecessary
extracted features decreases the execution time of the model and the PdM policy. Also
reducing the model robustness.

- Further analysis of the effect of the operationality state of the flywheel onto the Model DE
and Model DE. Potentially improving the final HS prediction.

Following the improvements, it is important for the validation of the new underlying predictive
model that the time steps between the measurements of the input variables are constant. Once
the underlying model is validated the PdM policy can be implemented at the customer sites and
use the direct measurements from the UPS system for HS prediction. Then through the associated
PdM policy the customer obtains predicted maintenance needs for the KEM component.
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List of abbreviations

CBM Condition based maintenance

DCBM Dynamic condition based maintenance

DE Driving end

DRUPS Diesel rotary uninterruptible power supply
HPP HITEC Power Protection

HS Health state

KEM Kinetic energy module

KPI Key performance indicator

NDE Non-driving end

PdM Predictive maintenance

PM Preventive maintenance

PMSMT Performance measurement (measurement from UPS system)
PP Prediction period

PPM Planned preventive maintenance

RUL Remaining useful life

SCBM Static condition based maintenance

UPM Unplanned preventive maintenance

UPS Uninterruptible power supply



1 Introduction
In February 2021, Texas experienced a major power [
crisis. At its peak, more than 4.5 million Texas homes and
businesses were without power [1]. During these days of
emergency all companies who installed HITEC Power
Protection's Uninterruptable Power Systems did not come
into problems due to the power loss [2].

HITEC Power Protection (HPP) delivers reliable power
supply across the globe. The key markets supported by
HPP are manufacturing, semiconductor, finance, telecom,
data centre, and government. HPP’s mission is to support the critical facilities of these markets
by assuring safe, reliable and conditioned power. That is why HPP designs, develops, delivers, and
supports uninterruptible power supply (UPS) systems. The company currently serves and
supports over 500 customers in 60 countries. From its headquarters in Almelo (the Netherlands)
and customer support locations in Europe, America, and Asia. Figure 1.1 shows overview of the
countries in which HPP UPS systems are installed.

Figure 1.1: Countries with HPP UPS systems

The company does not simply provide their systems to the customers. It provides a power supply
service. This includes maintenance support for the customers. For their maintenance operations,
HPP applies preventive maintenance (PM), carrying out maintenance operations before a failure
occurs. This is so that the customers do not experience down time due to loss of power. The PM
policy applied at HPP is a condition based maintenance (CBM). CBM makes use of real-time
measurements to evaluate the current condition of a component and evaluates its need for repair
or replacement. However, with new trends in the industry the focus shifts towards the analysis
of the historical data of these measurements. Shifting from PM towards predictive maintenance
(PdM) policies. PAM has the same basis as CBM, however, instead of observing when a certain
threshold condition is reached it is predicted. This allows for planning instead of reacting when
maintenance is needed. Section 1.1 provides introduction on the basics of HPP’s UPS systems and
introduces the software system of the UPS systems, which is the basis for the HPP’s maintenance
operations. Furthermore, the section presents the current maintenance policies at HPP, and
presents the specific UPS systems which will be of focus in the research. In section 1.2 the
motivation of HPP for investigating the suitability of PdM for their UPS systems is presented.
Section 1.3 discusses the action and core problems that are currently present at the company. The
approach for carrying out the research is presented in section 1.4.

1.1 HPP UPS systems Bypass Q3

Utilit Reactor L I Critical Load
HPP manufactures diesel rotary UPS systems 4 | @ Q2 2

(DRUPS) to provide power supply to their

customers. HPP provides power supply for
both short break (SB) and no break (NB) loads. &-‘ :
SB load is a non-essential load, for example a Eghe  Lmite e
printer or a coffee machine. NB load is an . ' : Bypsss Q3
essential load, for example air traffic control or  (Ne utility) | Q== Q/Z—l Sssiches
hospital operating room. The electrical circuit 3
of the PowerPRO2700 DRUPS system can be EER
seen in Figure 1.2. The figure shows the DRUPS '—T‘
system in utility mode and in diesel mode. In o é temator =
~ (Generator)

diesel mode utility is not provided to the

system. Utility is defined as public or general Figure 1.2: DRUPS with PowerPR02700 unit



utility power supply, normally available to Bypass @

power electrical appliances. A basic DRUPS “* i @ G| g
system consists of 3 circuit breakers Q1, Q2, m'

Q3, a reactor and a unit (Figure 1.2, unit is -
highlighted with orange). However, multiple | ”u.m:
units can be included in a system resulting in

more circuit breakers and reactors needed Figure 1.3: UPS system with 2 units
(Figure 1.3, 2 units system). Q1 breaker is used for (dis)connection of the utility to the unit, Q2
breaker for (dis)connection of the unit to the customer’s load, Q3 breaker for (dis)connection of
the utility directly to customer’s load. A reactor is used to separate utility from the load and to
allow the alternator to control the voltage of the load. Important components of a unit are
alternator / generator, diesel / engine, freewheel clutch (FWC) and kinetic energy module (KEM).
Generator can either be used as a running motor or a running generator, engine is used to provide
long term energy supply, FWC is used for the (dis)engagement of the engine with the generator,
and KEM is used to generate and store Kinetic energy to support the system during utility loss.

2-Q2

To demonstrate the basics of how the DRUPS system operates the transfer from utility to diesel
mode consisting of 4 stages is described. Figure 1.4 shows the speed of rotary components of the
DRUPS system during the different stages. Fist stage is the utility mode in which the generator is
used as a running motor to provide strong pure electrical power by filtering the electrical power
provided by utility and by stabilizing its voltage output. At this time KEM operates at full speed
generating and storing kinetic energy. When the utility is no longer provided the DRUPS system
starts the transfer to diesel operation. This is the second stage. The generator is used as running
generator to generate power output. During this stage a diesel engine is starting up but cannot
yet support the system. Since no interruption to the power supply can occur, in the meantime the
KEM supports the system with its stored kinetic energy. Once the diesel engine is started up the
system is in a full diesel operation. This is the third stage. In this stage the KEM starts to return to
its full speed to generate and store energy needed to support the system during the next transfer
from utility mode to full diesel operation mode. Once the utility is provided again, the system re-
transfers back to utility mode. This is the fourth stage. The diesel engine disconnects from the
generator, goes into cool down and the generator is used as a running motor again. It is important
to note that the transfer from full diesel operation (no utility mode) to utility mode always lasts
for at least 15 minutes, even if the utility outage lasts for only a few seconds. This is to provide
enough time for the KEM to reach its maximum speed again, to generate and store enough energy
to be ready to support the system during the next outage without any delay.

Kinetic Energy Module

3900/4200 ¢

: Generator

A n
g
j§ Engine
v
1 2 3 4 1
Utility Transfer Full diesel Re-transfer Time P
mode to diesel operation fo Utl"ty
operation mode

Figure 1.4: Speed of rotary components of DRUPS



When there is a failure with the DRUPS system during the utility mode the power is provided to
the customer by another unit or directly from the utility through a bypass. For a system consisting
of one unit, when the unit fails, the Q3 breaker is closed to provide the utility directly to the
customer through a bypass. Q1 and Q2 breakers can be opened, and the unit can be disconnected
from the system and undergo maintenance. Bypass is only used when no other operational unit
can take over. In bypass mode the filtering of the signal and stabilizing of the voltage output are
not provided, but the customer does receive power. In no utility state if there is no operational
unit (when unit 1 and 2 are not operational in Figure 1.3) the customer does not receive power.

1.1.1 Software system

For .mamtenance purposes HPP () Hardware e Uor ~N
monitors two types of performance _ [
measurements (PMSMTs) of their Operational ups pLC
UPS systems. PMSMTs signify all Data
measurements measured from the visuazliation
UPS system and UPS components. __ Physical Sensors inn
First, the UPS system PMSMTs are connection
Data

focused on the performance of the connection
UPS system. Such as, the utilit SCADA il

y y \_ )

output voltage and frequency. Then,
the UPS component PMSMTs focus
on the health of the UPS components Figure 1.5: Software overview
and the status of their environmental factors. For example, the bearing vibrations and room
temperature.

The software system integrated with a UPS system can be seen in Figure 1.5. The UPS system is
physically attached to a unit control panel (UCP) in which operational software is located. Digital
controller (Dicon) monitors the performance of the UPS by measuring the UPS system PMSMTs.
Dicon provides this data to programmable logic controller (PLC). Based on the received data from
Dicon the PLC evaluates and operates the system. For example, if the utility voltage is 0 the PLC
evaluates that there is no utility and therefore, the engine needs to be started up to generate
power. The PLC commands the engine to start up.

Installed sensors on components of the UPS system measure the UPS component PMSMTs. These
PMSMTs are then visualized in a Supervisory Control and Data Acquisition (SCADA) system. In
addition to the UPS system PMSMTS, Dicon also contains set threshold values for all of the
PMSMTs. These threshold values are used to depict the performance state of the UPS system, the
health state of the UPS components, and the status of the environmental factors. These thresholds
are also provided to the PLC. The PLC then based on the PMSMT values and the set thresholds
evaluates the performance of the UPS system, health state of the UPS components, and the status
of the environmental factors. These evaluations are then provided to Human Machine Interface
(HMI) and SCADA for data visualizations for customers. HMI is a panel located on the outside of
the UCP. SCADA is a control system that can be accessed remotely. In comparison to HMI, SCADA
also visualizes past PMSMT data.



1.1.2 Maintenance policy

Two maintenance policies are applied at HPP. First is the planned preventive maintenance (PPM).
This maintenance is carried out in form of regular prescheduled maintenance operations, where
the condition of the UPS is inspected. This is a static condition based maintenance (SCBM). Second
is the unplanned preventive maintenance (UPM). This maintenance makes use of the monitored
PMSMT values. The UPM is a dynamic condition based maintenance (DCBM) policy. With this
policy, maintenance operations are carried out whenever a PMSMT value goes out of its set
threshold. When it comes to the health state of the UPS components, there are 3 health states (HS)
defined by HPP: UPS component performs as intended (Healthy HS), UPS component performs
with lower functionality (Degraded HS), or UPS component no longer performs and has failed
(Failure HS). The thresholds for depicting the HS are set before installation of a UPS system at
customer’s site. The UPS system thresholds are set by HPP. These thresholds are set based on the
UPS customer’s site requirements. The UPS component PMSMT thresholds are set based on
manufacturer’s requirements and experience of HPP. Figure 1.6 shows how the PMSMTs are
visualized on the HMI panel and in SCADA.

When a PMSMT goes out of its threshold range this is referred to 52 .00

as alarm situation. Attention and warning alarm is within the I
degraded HS threshold (indicated by yellow in Figure 1.6). The 51.50
failure alarm is within the failure HS threshold (indicated by red Degraded HS
in Figure 1.6). The HPP health indicators in the HMI and SCADA 50.80[1
visualizations light a yellow/orange and red light, respectively, to

indicate these alarm states. >

Failure HS

The red failure light turns on when a new failure appears and Healthy HS
turns off when all the failures have been reset. It is the most
important health indicator light. During failure the UPS unit is out
of order and stopped. The warning alarm signifies an error that 49 30
must be solved now. Itis a serious error that needs action to make

) ) Degraded HS
sure the UPS unit can operate properly. It can still operate but

probably not according to its specifications. The next indicator is 48.50 .

oo - . . Failure HS
the yellow attention light. This is used for a minor error. Similarly, 48.00
as with warning, the UPS unit can still operate but probably not 50.13 Hz
according to its specifications. However, the distinction between Frequency

attention and warning alarm is fading and the company is
transferring to combining them into one alarm category. The last
health indicator is a green operational light. It flashes during the startup of the UPS unit and is
continuously on when the UPS unit is fully operational. This health indicator is not considered an
alarm.

Figure 1.6: PMSMT threshold range

1.1.3 PowerPR03600 and PowerPRO2700

PowerPRO3600 (PP3600) and PowerPRO2700 (PP2700) are the newest DRUPS systems
manufactured by HPP. For 60Hz applications PP3600 can reach power up to 3600kVA and
PP2700 can reach power up to 2700kVA. PP3600 creates the highest power density per square
meter in the industry. PP2700 while having the greatest reliability and uptime is the most
compact power solution in today’s market. The focus on these UPSs is due to their relevance and
data availability. From all the UPSs manufactured by HPP these are the systems with most
available data. This is due to the software they are delivered with. Moreover, due to this software
system, they are also the most suitable UPSs for implementation of PdM at HPP.



1 Diesel engine
2 Freewheel clutch

3 Generator

4.1 Energy transfer module (ETM)
4 2 Kinetic energy module (KEM)

5 Pony motor
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8 Choke cail

9 Flywheel

PowerPro3600 PowerPro2700

Figure 1.7: PowerPR03600 and PowerPRO2700

The main difference between the two UPSs is the kinetic energy buffer. The PP3600 has an extra
rotor combination to reach higher power.

1.2 Research motivation

‘As the population increases its reliance on communication and connectivity, urban expansion, and
manufacturing and automation, the world’s power grids will continue to be stretched to their limits.
This power dependency creates a significant risk that can lead to dramatic utility power outages
that affect business-critical facilities such as hospitals, airports, stock exchanges, data centres and
industrial manufacturing processes. HITEC Power Protection’s mission is to support these critical
facilities by assuring safe, reliable and conditioned power." [3].

The motivation for HPP is to provide UPS systems to customers with a high UPS uptime. For this,
the UPS systems of HPP are often provided to the customers with maintenance contracts. The
related costs for HPP carrying out a maintenance service are covered by the customers. Therefore,
providing revenue to HPP. At the moment these contracts include maintenance service provided
by HPP, based on SCBM and DCBM policies where the PMSMTs are monitored. Due to customers’
privacy reasons HPP does not have real time access to the PMSMT data for majority of the
installed systems. In real time, the data is only used for visualizations of the current health state
of components for the customers (as seen in Figure 1.6). Who then based on these values request
a maintenance service from HPP.

With the current trends in the industry, the maintenance services and therefore also customer
demands are changing. The use of data driven, machine learning approaches in the industry, and
also specifically in the area of maintenance is growing. Data driven models allows for analysis of
past and current PMSMT data in order to observe their development over time. This allows for
developing predictive models with which the future values of the PMSMT data can be predicted.

In the coming years HPP plans to use a new platform for the visualization of the system health
state for the customers. One of the new features to be included are maintenance indicators which
are based on data driven analysis of the PMSMT data. Based on real time analysis of current and
past PMSMT data the maintenance indicators would evaluate the health state of the system. Based
on the outcome of the analysis the maintenance indicators would indicate which maintenance
actions are needed to be carried out. Furthermore, the analysis can be used to predict the RUL of
different components and predict when alarms for the UPS will occur. However, first, a new
maintenance policy has to be implemented at HPP.

Maintenance indicators as seen nowadays in industry, and as envisioned by HPP, go hand in hand
with implementation of a PdAM policy. For HPP the main benefit of such policy is the potential to



decrease unplanned and planned downtime for the UPS units. Resulting in a UPS system with
higher uptime, which is HPP’s motivation. Furthermore, customers can also benefit from a PdM
policy when it comes to planning the maintenance service requested from HPP. Since the needed
maintenance is known in advance, the planning can be done in a cost-effective way. For example,
during a factory shutdown or together with other maintenance service.

1.3 Problem identification

As discussed in the Research motivation section, HPP provides maintenance services to their
customers based on SCBM and DCBM policies. There are 3 action problems, which are defined as
discrepancy between norm and reality [4], that arise from these maintenance policies at HPP.

First action problem is increased maintenance costs. Related to the SCBM policy, this occurs
when expensive components are replaced based on their time in operation rather than based on
their remaining useful life (RUL). Increased costs due to early maintenance do not affect the
income of HPP. However, it has an effect on the attractiveness of the HPP UPS systems, as this
extra cost affects the customer. On the other hand, related to DCBM policy, extra costs for HPP
could occur. The occurrence is due to immediate planning of the service to be carried out. As an
example, it is sometimes not investigated properly whether new components were installed in
the system compared to the original installation and whether new replacement components
taken for the service are suitable / fit in the currently installed system [5]. In case the component
is not suitable, additional service visit needs to be planned to carry out the same maintenance
operation. Therefore, additional costs are incurred. It cannot be easily determined how often this
extra costs occur as this data is not easily available. However, it is not expected this happens often.

The norm of HPP with regard to increased maintenance costs is: Lower the maintenance costs for
the customers while not lowering the income of HPP gained through provided maintenance
service.

Building on the occasional need for repeated service visit for the same issue, the second action
problem is defined as increased unplanned downtime. In situation when the unit is down, the
repeated service increases the unplanned downtime period. With the current use of DCBM the
planning of the maintenance service takes place once an alarm occurs. Therefore, in case of failure
alarm, if a unit is down, the planning time takes place during the downtime of the unit. Again,
increasing the unplanned downtime period. This downtime can be further increased due to
current unavailability of resources. Such as personnel or components.

The norm of HPP with regard to increased unplanned downtime is: Minimize the unplanned
downtime while not decreasing the reliability of the system.

Lastly, the third action problem is defined as increased planned downtime. Increased planned
downtime is caused by carrying out the same maintenance operations during each PPM.
Narrowing down the maintenance operations to components that actually require maintenance
would decrease the planned downtime.

The norm of HPP with regard to increased planned downtime is: Minimize the planned downtime
while not decreasing the reliability of the system.

The problem cluster depicting the action problems can be seen in Figure 1.8. The selected action
problem is increased unplanned downtime. Increased unplanned downtime is related to not
knowing when and which maintenance actions will be needed. Knowing which maintenance
actions are needed is something HPP is interested in for developing new maintenance indicators.
Therefore, focusing on this action problem is in line with the goals of HPP. Two core problems are



identified as contributors to increased unplanned downtime. Namely, no predictive maintenance
and no differentiation between customers.

— —
(O Selected action problem

Increased Increased Increased
O Selected core problem unplanned downtime maintenance costs planned downtime

[ | [ |

Lower reliability of Slower maintenance Mot pro_perly planned Not fully utilizing RUL N_ot dnTerenhatec_i
the system maintenance maintenance service
1 |
Failure Reactive maintenance
for functional failure
Alarms Early maintenance

[ | | I
No prediction Mo calculated Mo differentiation
for failure occurence estimate of RUL between usage

No predictive Mo differentiation
maintenance between customers
——

The first potential core problem to be selected for the research is not using a PdM policy. As a
result of not having a PdM policy, there are no predictions for failure occurrence and RUL of
components. Maintenance intervals for PPM cannot be determined dynamically. This means that
for each customer the maintenance visits by HPP are prescheduled independent of the condition
of their system. The customers have real time access to PMSMTs of their UPS system and
components. Making use of this data with a real time analysis, a more optimal maintenance
intervals could be determined dynamically.

Figure 1.8: Problem cluster

The second core problem focuses on not differentiating between the customers. And therefore,
also not differentiating between the usage of the systems. Some customers are located in areas
where utility is not provided more often, compared to other areas. For them the UPS system
transfers to diesel mode more often. This also has an influence on the degradation of the UPS
system and certain components. Therefore, a proper relation between usage and loads needs to
be taken into account for the systems. Then an appropriate maintenance planning for each
customer can be made.

The selected core problem for the research is no predictive maintenance (PdM). This is due to
the fact that to fully address the action problem, addressing core problem differentiation between
customers still leaves the core problem of no PdM to be dealt with. On the other hand, addressing
the core problem of no PdM can potentially address the core problem of no differentiation
between customers. It provides opportunity to fully address the action problem by solving this
one core problem, while eliminating the other core problem.



1.3.1 Deliverables

The main deliverable of the research for HPP is a PAM policy proposal with underlying predictive
model used for predicting the health state of a selected component from the two newest HPP UPS
systems. Furthermore, KPIs for evaluating the PdM policy and the underlying predictive model
are provided for HPP. These can be used to further improve the PdM policy. Additionally, the
research contributes to HPP by evaluating the impact of each of the used PMSMTs onto the
developed predictive model. Moreover, also contributing to the industry in general, the impact of
input variables and extracted features onto statistical and data driven models is evaluated.

1.3.2 Research objective

The reality of the selected action problem is that the maintenance operations are not always
optimal and lead to increased unplanned downtime of the UPS units. By addressing the selected
core problem, a PdM policy can be developed and implemented at HPP. Then HPP’s maintenance
operations can be planned in advance and carried out when needed without expected delays. For
achieving this norm, the research objective for the research is defined as:

Improving the HPP maintenance service by decreasing the unplanned downtime of the UPS units
through implementation of a PdM policy for a selected component of HPP’s UPS systems.

1.4 Research approach

Design science research methodology (DSRM) provides a guide for approaching a research
project. Four main DSRM phases have been defined for the research project (Figure 1.9). The first
phase focuses on setting the problem context and introducing the current situation at HPP. The
second phase presents relevant literature related to the research. During the third phase a
solution for the action problem is developed. This is done through developing and demonstrating
an artifact. The artifact consists of a predictive model for predicting the health state of a selected
component of HPP’s UPS system. Lastly, in the fourth phase the artifact is evaluated and used for
implementing a PdM policy. This PdM policy is then validated using a validation data set.
Afterwards, conclusions of the research are presented.

1. Problem context 2. Theory 3. Solution 4. Evaluation
Identify Design
problem Define Context Theoretical and Demonstrate Evaluaie Conclusions
and objectives analysis framework develop artifact artifact
motivate artifact
T Process iteration
Section 1.3 Section 2 Section 3, 4 Section 5 Section 6

Figure 1.9: DSRM steps (adapted from [6])

For evaluating the research, the norm related to the selected core problem needs to be quantified.
The norm is defined as minimizing the unplanned downtime while not decreasing the reliability
of the system. With the current maintenance policy, the unplanned downtime of the UPS unit
occurs when a degraded or failure HS for a component of the unit is observed. This unplanned
downtime includes the planning for carrying out the necessary maintenance service. With a PdM
policy the unplanned downtime occurs every time a degraded or failure time is predicted, instead
of when it is observed. Therefore, this downtime does not include the planning of the necessary
maintenance service. And therefore, it can be concluded that this unplanned downtime is shorter
compared to the one related to the current maintenance policy applied at HPP.



Therefore, the reality and norm as quantified as follows:
Reality = NH,p * t,
Norm = Under * t. + (NH,,s — Under) * t, + Over * P
ty < t,

Equation 1: Core problem quantified (reality and norm)

Where NHops stands for number of observed non-healthy HSs. tcand t, stand for downtime related
to current and new maintenance policy, respectively. Under and Over counters, introduced during
predictive model development section, count the number of under and over HS predictions. P
stands for penalty incurred by Over predicting a HS.

1.4.1 Research questions

An overview of research methodology approaches to answer the research questions (RQs)
defined by the company, relevant to maintenance concepts, can be seen in Table 1.1. Moreover,
an overview of research methodology relevant to RQs defined for the research by the author can
be seen in Table 1.2. The research is exploratory, researching aspects that were not researched
before. Or descriptive, reporting of already known and recorder information. All research is
qualitative. The methods used to answer the RQs are either a literature study or an interview.
Literature study is either based on literature or documentation of HPP. All interviews are held
with the employees of the company.

Five RQs are defined by the company to gain insights into maintenance concepts:

What different maintenance policies are available?

What are the new trends in PdM?

Is the right PMSMT data available?

Which assets or failures should be investigated first?

How to evaluate maintenance policies for different assets?

Ltk W=

Table 1.1: Research methodology approach: RQs of the company

Research questions 1 2 3 4 5
Exploratory X X
Descriptive X X X X X
Qualitative X X X X X

Literature study: literature X X X X X
Literature study: HPP docs X
Interview X

Report section 31 32 33 34 35

Five RQs are defined to guide the research:

6. What are the suitable approaches to develop a predictive model
for the selected component of HPP’s UPS systems?

7. What are the suitable methods to develop a predictive model
for the selected component of HPP’s UPS systems?

8. What are the selected models for developing a predictive model
for the selected component of HPP’s UPS systems?

9. How to validate the developed predictive models?

10. How to develop and validate a PdM policy for HPP?



Table 1.2: Research methodology approach: RQs defined for the research

Research questions 6 7 8 9 10
Exploratory X X X X
Descriptive X X X X X
Qualitative X X X X X

Literature study: literature X X X X X
Literature study: HPP docs
Interview
Report section 42 43 44 46 49

1.4.2 Research scope and limitations

To set a realistic scope for the research the predictive model is developed for a single component
of HPP’s UPS systems. This is due to the set time restrictions for carrying out the research project.
The development of the predictive model is also limited by the unavailability of historical data.
Only currently accessible data, with history of up to 6 months, can be extracted from customers
during the research. This constitutes of 7 data sets out of which 3 data sets contain limited failure
data. On average, only one failure data set is available for each of the model development stages:
training, testing, validation.
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2 Context analysis

This section provides the context for the research by describing the current maintenance related
aspects at the company. To obtain a good understanding of the maintenance operations, first the
current monitoring system is presented in section 2.1. Together with the PMSMT visualization
systems. Next, PPM operations and UPM operations based on the PMSMTs from the monitoring
system are described in section 2.2. This section includes information about maintenance
activities, data storage and maintenance contracts. Section 2.3 focuses on determining the most
critical components of PP3600 and PP2700 UPS systems. Then a specific component for which
predictive model is developed is selected.

2.1 Dicon

PLC is the operational system of the UPS. In order to operate the system, it needs data from the
Dicon measurement device. When a new UPS system is to be delivered and installed for a
customer the Dicon needs to be set up. Figure 2.1 shows an overview of the setup process. Project
Configurator software is a basis for the setup. The component requirements are defined in the
Project Configurator. Based on these requirements the threshold values are set for the different
components. In Project Builder a new project is designed for the UPS system to be installed. This
consists of defining the system requirements such as voltage output, and by specifying
manufacturers of the UPS components. In addition, PMSMTs to be measured are assigned. Once
the project is registered, the Dicon Tool connects the project and its parameters to the actual UPS
system via physical Dicon device. Once the connection is established the Dicon Scope can be used
to visualize the PMSMTs. This visualization is used during commissioning when the system is
installed to make sure everything is running as intended. Moreover, service engineers can also
use the Dicon Scope during maintenance operations.

D Hardware Project Configurator —»  Project Builder  —» Dicon Tool —»  Dicon Scope
Software

Data
visuazliation Sensors Dicon

— Process flow

Data connection SCADA PLC HMI
Figure 2.1: Dicon setup process

Once the setup is complete the Dicon collects the assigned PMSMTs. These are then provided to
the PLC and subsequently to HMI and SCADA for visualizations. Regular PMSMTs are performed
every 500ms. In case of an event, event log is recorded in SCADA and for a short period of time
Dicon directly provides data to SCADA itself. This is done at a higher frequency of 10ms in order
to have more detailed data for evaluating the event. What constitutes as an event is determined
by the PLC. An example of an event is a certain PMSMT going out of its set threshold range.

Dicon contains around 950 PMSMTs out of which around 200 PMSMTs are direct measurements
from the UPS. Other PMSMTs are general parameters, limits (threshold range), controllers,
commands, status parameters, and others. In section on SCADA the important PMSMTs visualized
for the customers, affecting the operationality of the system, are presented.
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2.1.1 HMI

The HMI panel on the UCP consists of 4 main aspects (Figure 2.2). 1: Screen selection buttons
where the operator selects which data screen they want to see. 2: Selected HMI screen which
shows the current PMSMT values for the selected data screen. 3: Health indicators. 4: Operation
switches. The data visualizations (1,2) are the same as in SCADA and will be discussed in SCADA
section. The health indicators (3) are explained in section 1.1.2. The operation switches (4) are
used to operate the UPS system and are further explained in this section.
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Figure 2.2: HMI panel layout of UCP for PP3600 (PP2700 can be found in Appendix A)

The Unit mode switches are used to start the UPS unit by selecting ON and stop the UPS unit by
selecting OFF. The NB Load Mode switches put the unit into a UPS mode when Auto is selected.
And put the unit into bypass mode when Bypass is selected. Similarly, the SB Load Mode puts the
unit into automatic mode by selecting Auto and into utility mode by selecting Utility. Diesel mode
switches are used for carrying out diesel and system tests. Auto puts the unit into automatic UPS
mode, Diesel test switch stars the diesel test, and System test switch starts the system test on the
UPS unit. The diesel and system test are described in section on Maintenance as they are
performed during maintenance operations.

2.1.2 SCADA

SCADA visualizes the UPS performance PMSMTSs based on data received from Dicon, and the UPS
component PMSMTs based on sensor measurements. SCADA provides the same visualizations of
current PMSMT values as are shown on the HMI screen. However, in SCADA the past PMSMT
values are also visualized. There are several views that can be selected in the SCADA system. For
the system as a whole a minimum of 5 views is available. For each additional (second or more)
NB load a new view is added. For a unit there are 8 views that can be selected. Since a system can
consist of multiple units, operator can select for which unit the data should be visualized.
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Figure 2.3: SCADA system overview
System views are overview, utility, NB load, [utiity NB Load Maintenance
alarms, and trending. The overview view shows | Voltage Voltage SW““: counter Q1
. . . Frequency Frequency Switch counter Q2

what the installation of the UPS system looks like. Current Engine running time

It also shows the system PMSMTs. Both, current
ones within their set thresholds and past ones for

Active power System running time
Apparent power

Reactive power

visualizing their development over time (Figure
2.3). The utility view visualizes the utility PMSMTs,
and NB load view the NB load PMSMTs. The overview of these PMSMTs and SCADA maintenance
counters can be seen in Figure 2.4. The alarms view shows active alarms and alarm history / event
logs. These are sorted first by importance and then by time of occurrence. The trending view
visualizes any selected PMSMTs on a graph with their relevant y axes and time domain x axis. An
example for y axis is rpm for speed of flywheel or °C for room temperature. Again, this trending
of PMSMTs is mostly looked at retrospectively when an event occurs to determine its cause.

Chtch KEM

Unit Input Engine
Current performance measurements

Unit setup (PP2700)

USSP

Figure 2.5: SCADA unit overview

Unk Output
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Figure 2.4: SCADA system performance measurements

Unit views are overview, unit input,
~  engine, clutch, generator, KEM, unit
output, and room cooling. This is the
SCADA for PP2700. For PP3600, KEM
view is ETM view with an additional
flywheel view. Similarly to the system
overview, unit overview shows the
setup of the unit and the value of
selected PMSMTs (Figure 2.5). Other
unit views visualize their relevant
PMSMTs. The PMSMTs related to each
of the views can be seen in Figure 2.6.

Active power
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Reactive power

Battery voltage
Coolant temp

Active power
Apparent power
Reactive power
Vibration engine side
Temp engine side
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Temp KEM side

Vibration engine side
Temp engine side
Vibration non driving end
Temp non driving end

Unit Input Engine Clutch Generator KEM Unit output Room cooling
Voltage Speed Bearings temp Voltage Inner rotor speed Voltage Status
Frequency Oil temp Oil temp Frequency Active power Frequency Temperature
Current Oil pressure Vibration Current Apparent power Current

Active power
Apparent power
Reactive power

Figure 2.6: SCADA unit performance measurements
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2.2 Maintenance operations

Maintenance operations are a very important aspect of HPP’s power supply service. This section
first discusses how the PM inspections are currently determined for HPP maintenance operations
(section 2.2.1). Section 2.2.2 then describes the processes of the standard PM operations. Section
2.2.3 describes the data storage process of PPM, and section 2.2.4 the data storage process of
UPM. In section 2.2.5 the processes of additional maintenance operations are presented. Section
2.2.6 introduced the prio failure terminology. In section 2.2.7 the maintenance contracts
contributing to HPP’s revenue are discussed. Lastly, in section 2.2.8 the maintenance costs of
carrying out the maintenance operations are briefly mentioned.

2.2.1 Determination of maintenance intervals

The maintenance intervals for HPP PM operations are determined both in a static way (SCBM),
before the system is in operation. And in a dynamic way (DCBM), when the system is already in
operation. Static intervals are defined for system and component inspections, as well as for
maintenance activities. There are daily, weekly, and monthly PPM intervals for inspections. And
quarterly (only for PP3600), semi-annual, annual, and additional PPM intervals for maintenance
activities. The dynamic intervals are determined based on the PMSMT values. If customers do not
monitor the PMSMTs and health indicators outside of the scheduled inspection, the intervals
remain static for them. However, it is expected that the customers do monitor the PMSMTs in real
time to ensure the reliability of their system.

2.2.2 Standard maintenance

The current maintenance policy applied at HPP is CBM. (inspection|personnel Warranty
SCBM, using static intervals for inspections and maintenance |paily Operatar *
activities. And DCSM using real time monitoring of current |Weekly [Operator v
PMSMTs. For this, the company and customers monitor the |Monthly |OperatororHITEC| v

UPS system and component PMSMTs of the UPS system to
determine whether maintenance action is needed.

Figure 2.8: Inspection overview

The requirements for the different inspections can be seen in Figure 2.8. Personnel defines who
can perform the inspection and warranty signifies whether the inspection is a part of the
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warranty contract with the customer. If the inspection is a part of the warranty it is mandatory
for the operator (customer) to have this inspection performed. Appendix B provides an extract
from an inspection task list. It clearly specifies when and which components need to be inspected,
and what specifically needs to be inspected for them.

The daily inspections are highly recommended. However, they are not included in the warranty
contract. SCADA can be accessed remotely to check the system and component PSMSTs and the
alarm indicators. However, a physical walk around allows to inspect for leakages and unusual
indicators. That is why it is highly advised to the operators to also perform the daily inspections.
For the weekly and monthly inspections, the operators are instructed to register the results of
the maintenance tasks. For this HPP provides maintenance logbooks (Appendix C). It is also
requested that the current logbook results are compared with the ones from the previous
inspection to check for abnormalities. If alarms are present and cannot be solved or abnormalities
are found in the logbook, the HPP regional helpdesk should be contacted.

Inspections are carried out in utility mode. However, for monthly inspections the system is also
inspected during and after carrying out a diesel test, and during and after carrying out a system
test. These tests can be started and stopped via the HMI panel. In case the utility supply stops
during either of the tests, the UPS system overrules the tests and transfers to diesel mode. Diesel
test is used to inspect the functionality of the diesel engine. The diesel engine will be started and
run just below the specified rpm. For 50Hz application at 1450 instead of 1500 rpm, and at 60Hz
application at 1750 instead of 1800 rpm. The system test is used to test the whole UPS system.
Switching from utility to diesel mode by opening the utility breaker Q1 and starting up the engine.
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Figure 2.9: Unplanned maintenance process
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Task list for quarterly (only PP3600), semi-annual, and annual PPM operations is provided by
HPP (Appendix B). These maintenance operations can only be carried out by certified operators,
HPP, or HPP’s global qualified service partner. In addition, UPM operations take place when
alarms are present and cannot be solved by operator. Or when abnormalities in logbooks are
found by the operators. The process of carrying out the UPM activities can be seen in Figure 2.9.

2.2.3 Data storage of PPM

Some customers do not like to share their data due to online security issues and privacy reasons.
For the customers that do not share their data due to online security reasons the aim is to receive
their data during each PPM visit. VIBROTEST 60 (VT60) measurement tool is used to measure the
PMSMTs of the components. These are one point entry measurements only showing the current
PMSMT values. For PP2700 these measurements are carried out once per year. For PP3600 the
measurements are carried out every 3 months as this system is not equipped with the SCADA
system. Therefore, for PP3600 only 4 measurements are available per year.

For PP2700 continuous data from SCADA is exported onto a USB every half a year. The aim is to
bring the data to HPP and use it for data analysis. For example, such data could be used for this
research. However, this does not happen in reality. A potential reason is the extensive time period
that is needed to export the half year data. For this research a selection of specific PMSMTs was
made. However, even with this selection the export time of data was very extensive.

2.2.4 Data storage of UPM

When UPM takes place, the fault which triggered the maintenance is registered in a fault overview
document. This is done by each HPP regional helpdesk (Americas, APAC, EMEA, UK) by filling out
the same template fault overview document. These documents are then combined in a global
faults overview documents consisting of faults from every region.

The fault overview documents are Excel documents and allow for input mistakes. Each cell is free
to be entered with any format. This allows for mistyping important references, such as project
number. Also due to different regions / personnel contributing to the document a proper data
analysis is not easily performed. As an example, in failed component field it was entered in one
instance: suspected that faulty speed sensor, instead of just speed sensor. Analysing the data
quantitatively, which is an important feature nowadays, is then not possible. Another issue is not
having complete data. There are 24 fields that are defined to be filled for each fault. This does not
happen in reality, as will be seen in the section on Critical components.

For proper overview of a fault and its resolution, it is expected that each reported fault has
properly stored data. Within the fault overview document each fault has a project reference
number which links the fault to a specific customer project. Each project has its own folder in HPP
storage. It is expected that for any fault, the fault relevant PMSMTs are stored in the project folder.
Moreover, the maintenance report of whether and how the fault was resolved should be present.
However, this is not the case. Sometimes the data is communicated through an email and never
stored in the project folder. In some cases, the data was never obtained in the first place. For
example, when it comes to KEM bearing faults, it happens that only a screenshot from SCADA
trending view of KEM PMSMTs is obtained. The actual PMSMT data is not exported in many cases.

In general, looking for relevant information is an issue. A lot of time was spent on relating the
faults in fault overview to PP3600 and PP2700 systems. Fault is related to project, and UPS system
to a project. Fault’s project number has to be searched for in the fault overview document. Then
the project number is searched for in a project overview file. Then using these two documents it
can be determined what is the installed UPS system of the registered fault. This is a timely process
when evaluating all faults of a specific UPS systems.
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2.2.5 Additional maintenance

‘The purpose of the additional maintenance is to inspect carefully the system components and
replace or repair any parts or components that show wear and tear of at least 50% of the service
life and fatigue, corrosion, weather impact or aging with a risk of failure in the near future’ [7].

Table 2.1: Standard additional maintenance

PP3600 PP2700

The standard additional maintenance covers but is

Cabinets - control panels

Cabinets - control panels

Diesel engine

Diesel engine

Freewheel clutch

Freewheel clutch

Stromag/Vulkan coupling

Stromag/Vulkan coupling

Generator

Generator

ETM

KEM

Flywheel

External fuel system

External fuel system

Engine cooling system

Engine cooling system

Base frame / Dampers

Base frame / Dampers

Arpex springs

Arpex springs

Exhaust system

Exhaust system

Room ventilation

Room ventilation

Load test

Load test

Copyright

Copyright

not restricted to items shown in Table 2.1.
Additional maintenance can only be carried out by
HPP or their global qualified service partner. It
takes place every 5 years, with overhaul every 10
years. Task list for these maintenance activities is
provided by HPP.

Items that are compulsory to be replaced after 5
years of their operational life are: FWC. And after 10
years of their operational life: Stromag / Vulkan
coupling, generator, ETM, and KEM. This is due to
their criticality when it comes to the reliability of
the UPS systems.

2.2.6 Prio failures

A prio failure signifies that a UPS unit with a faulty component has also failed. There are three
levels of prio failures. Prio 1 is the most urgent failure, during which no utility is provided to the
customer. At prio 2 level, the utility is delivered to the customer, however it is delivered through
bypass and the quality of the electrical signal is not controlled. At prio 3 level, the utility is
delivered through another unit within the UPS system. In this case, the failed unit was a redundant
component and therefore this is the least urgent prio level failure.

2.2.7 Maintenance contracts

The maintenance contracts state that quarterly (only PP3600), semi-annual, annual, and
corrective maintenance of the UPSs is carried out by HPP or any subcontractor assigned by HPP.
The customer is not allowed to subcontract any of the work to third parties. The PPM visits are
scheduled in advance with the customer. However, prior to every visit the customer needs to send
a maintenance order to HPP. It might happen that in the fifth year when additional maintenance
is needed, the customer is happy with their system and components are running well. They might
then decide to not send an order for additional maintenance and just continue using the system
as it is. Meaning that for example, the FWC is not replaced even though it is stated it needs to be
replaced every 5 years (section 2.2.5). The customer then saves money on maintenance. However,
the reliability of the system is affected.

The contract further defines the exclusions from the scope of maintenance provided by HPP.
These protect the company from damages caused to customer outside of the warranty, as the
customers are the ones responsible for maintaining the system. HPP does not lose money when a
failure occurs. On the contrary, the company gains money as it performs corrective maintenance
for the customer. The contracts are valid for one year and are automatically renewed each year
unless terminated by either the customer or HPP. Obligations of HPP then cease 3 months after
termination of contract.

17



2.2.8 Maintenance costs

There are 5 cost categories for carrying out maintenance operations. Travel and accommodation,
working hours and travel, materials / testing equipment, diesel service, and other costs. Travel
and accommodation costs are the only setup costs. The other costs are dependent on the specific
maintenance operations that are performed.

2.3 (Critical components

To identify the most critical component of PP3600 and PP2700, the first focus in section 2.3.1, is
on the most occurring failed components of these systems. Moreover, most observed failure codes
of these systems are discussed. In section 2.3.2 the selected component is presented in more
detail. Together with its PMSMTs relevant for developing a predictive model for its health state.

2.3.1 Research component selection

To determine the most critical component, an initial indicator is depicted by focusing on the most
failing component from fault overviews. However, as mentioned before in section 2.2.4, this
information is not always entered. The percentages of entries for which the failed component and
failure code input are filled in can be seen in Table 2.2. This data is applicable for the first 5 months
of the year 2023 (January until and including May 2023) and for the year 2022.

Table 2.2: Availability of failed component and failure code data [8] [9]

Jan - Ma Failed component | Failure code 2022 Failed component  Failure code

Americas 6% 100% Americas 0% 100%
APAC 33% 100% APAC 40% 100%
EMEA 0% 100% EMEA 0% 100%
UK 0% 100% UK - -
Overall 10% 100% Overall 14% 100%

The analysis focusing on failed components is limited due to unavailability of this input data.
Moreover, the current way of reporting faults in fault overviews is not suitable for proper
quantitative analysis. Different entries for same component input are observed: FWC, freewheel
clutch, freewheelclutch. These are then not considered as the same component during quantitative
analysis. Carrying out qualitative analysis, the highest count of entries for failed component is for
FWC and KEM [9]. Interviews discussing these findings reveal that the FWC failures are related
to GMN clutches which are no longer in service and only in operation for old UPS systems. The
new FWC from Stieber does not have many observed failures. Therefore, FWC should not be the
focus of the research. It is instead suggested to focus on the KEM of PP2700 or on flywheel of PP
3600 UPS system.

Fault overview 2022

. Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂnnnu

PPN EPR POT KOT GPR OTH PCB KIB PPH EOT FPM RTV KPR DLU FLU

Figure 2.10: Fault overview 2022 (adapted from [9])
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Prio failure analysis of 2022 reveals that PP2700 has contributed to more prio failures compared
to PP3600 [10]. Therefore, it is decided to focus on the PP2700 failures. Moreover, the combined
fault overview from all regions from year 2022 is consulted. Overview of all failure codes and
subcodes can be found in Appendix D. In total there have been 43 failure codes registered.
Contributing to 154 faults of PP3600 and PP2700 UPS systems in 2022 [9]. Figure 2.10 shows the
overview of the failure codes which contributed with at least 3% (when rounded to a whole
number) to the overall faults. These cover in total 70% of all faults and constitute of 17 different
failure codes. Full overview of the faults from 2022 can be found in Appendix E.

The fault overview from 2022 further highlights the priority of focusing on the KEM component
(Figure 2.10). 3 failure codes related to KEM (grey) and only 1 failure code related to flywheel
(black) are depicted. These contribute to 11.04% and 2.60% of the 2022 faults, respectively. The
KOT failure code stands for KEM other failures which are unique failures. Therefore, the KEM
failure code of the most interest is KIB - KEM inner bearings failure.

2.3.2 KEM inner bearings

The KEM component is used to generate and store kinetic energy
to support the UPS system during utility outage while the engine
is starting up. The KEM component can be seen in Figure 2.11. To
get a better idea of the size of this component, it is noted that the
mass of the KEM is around 6000kg.

There are 7 PMSMTs measured for evaluating the condition of the
KEM component (Figure 2.6). Through evaluating the fault
overview documents and conducting interviews, it is depicted
that the KEM failures are always accompanied by the increase in
vibrations. As a reminder for the reader, the UPS systems and their components do not run until
failure. Failure is signified as having PMSMT value in the failure threshold region. Therefore, the
selected PMSMT for developing a predictive model for KEM component faults are the KEM DE
vibration and the KEM NDE vibration. Moreover, the inner bearing temperature DE and the inner
bearing temperature NDE are of interest. These 4 selected PMSMTs are the most important
PMSMTs to develop the predictive model for depicting the health state of the KEM. The aim of the
model is therefore, to predict when the KEM inner bearings transition between the healthy
(operational), degraded (warning / attention), and failure (failure) health states.

Figure 2.11: KEM drawing

The threshold values for the healthy health state (HHS) are defined as range from lower bound
(LB) to upper bound (UB). The degraded health state (DHS) has threshold LB equal to UB of HHS
threshold and its own UB as UB. Failure health state (FHS) has threshold LB equal to UB of DHS
threshold. It does not have an UB since there is no health state after failure. The LBs and UBs of
the 4 KEM inner bearing PMSMTs are shown in Table 2.3.

Table 2.3: Selected KEM PMSMTs’ thresholds

HHS DHS FHS
Measurement 'LB | UB LB UB LB UB Unit
KEM DE Vibration 0 9 9 20 20 | - mm/s
KEM NDE Vibration 0 9 9 20 20 | - mm/s
Inner bearing temp. DE 0 70 70 85 85 | - ° C
Inner bearing temp. DE 0 70 70 85 85 | - ° C
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The mechanical drawing of the rotor combination, which is a crucial part of the KEM component
is shown in Figure 2.12. The circled sections B and C correspond to the sections in which the KEM
inner bearings are located. In section B, bearing 1 is located. This is a cylindrical bearing of type
N218 (Figure 2.13, Left). The bearing has a width of 30mm, inner diameter of 90mm and outer
diameter of 160mm. The inner ring rotates at 1500 rpm and the outer ring at 3900 rpm. With this
input the manufacturer provides the calculation for ball pass frequency of outer race (BPFO) and
ball pass frequency of inner race (BPFI). These are relevant parameters for vibrations in a
frequency domain. For the N218, BPFO ~ 288.73Hz and BPFI ~ 391.27Hz [11].
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Figure 2.12: KEM rotor combination

Bearing 2 located in section C is a ball bearing 6319 (Figure 2.13, Right). The bearing has a width
of 45mm, inner diameter of 95mm and outer diameter of 200mm. The manufacturer provides the
calculation of the fault relevant parameters. The BPFO = 123.837Hz and BPFI = 196.163Hz [11].
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Figure 2.13: Left: Bearing N218 [12], Right: Bearing 6319 [13]

Due to the size and time needed for extracting available data for each PMSMT, a selection of
PMSMTs relevant to KEM inner bearings and their condition is made. The following PMSMTs are
selected for developing a predictive model for the KEM inner bearings:

- Output Frequency

- Inner Bearing Temperature DE

- Inner Bearing Temperature NDE
- Room Temperature

- Outer Bearing Temperature NDE
- Outer Bearing Temperature DE

- Q1 Actions Counter

- Flywheel Speed

- Gen DE Vibration

- Gen NDE Vibration

- KEM DE Vibration

- KEM NDE Vibration

20



3 Theoretical framework for HPP

This section lays down the theoretical framework related to the RQs of HPP. In section 3.1
different reliability centred maintenance policies are presented. In section 3.2 the relevant
developments in predictive maintenance are discussed. Section 3.3 briefly evaluates the PMSMT
data measured by HPP. In section 3.4 the guidelines for prioritizing failures and assets are
presented. Lastly, section 3.5 shortly discusses the effectiveness of the current maintenance
policy applied at HPP. The section also provides a formula for the evaluation of a maintenance

policy.

3.1 Reliability centred maintenance

The International Organization for Standardization (ISO) defines reliability as ability of a product
to perform specified functions under specified conditions for a specified period of time without
interruptions and failures [14]. The reliability centred maintenance (RCM) is therefore concerned
with maintenance strategy that is based on how long a machine can perform its intended function
without a breakdown. There are 7 questions defined to guide the RCM process [15]:

1. What are the functions and associated performance standards of the asset in its present
operating context?

In what ways does it fail to fulfil its functions?

What causes each functional failure?

What happens when each failure occurs?

In what way does each failure matter?

What can be done to predict or prevent each failure?

What should be done if a suitable proactive task cannot be found?

N s W

The first 5 questions are concerned with carrying out the failure mode, effects and criticality
analysis (FMECA). The last two questions address the selection of a suitable maintenance policy
for each defined failure mode. An overview of different RCM maintenance policies [15] and the
characteristics of parts that are suitable for them [16] can be seen in Figure 3.1.

Reliability Centered Suitable parts:
Maintenance

¢ Small
Non critical
) ) Inconsequential
Reacie Unlikel}. to fai
I Redundant
Corrective Detective Preventive Opportunistic © Random failures
Mot subject to wear
i | }
O Known failure pattern
| Condition Based I Predictive Subject to wear

Figure 3.1: Reliability centred maintenance policies (adapted from [15] and [16])

3.1.1 FMECA

FMECA is a reliability procedure which documents all possible failures of a system and their
criticality. It is a combination of failure mode and effects analysis (FMEA) and criticality analysis
(CA). Within FMEA components of the system or its subsystems are defined. The potential failure
modes are then listed for each of these subsystems and components. Potential failure effects of
the failure modes determine the severity, potential causes the occurrence, and current controls
the detection of the failure modes [17]. Failure effects can be anything having effect on the safety
and environment. There are 4 possible cause categories for a failure mode. Namely, human error,
load-carrying capacity, unavoidable, and avoidable load [15]. Current controls are for example,
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sensors monitoring the condition of component of the failure mode. The severity, occurrence, and
detection scores are then combined to calculate the risk priority number (RPN) of each failure
mode so they can be ranked based on associated risk. The criticality analysis also uses the RPN
score to rank the failure modes, however, in addition to this quantitative input it also takes into
account qualitative input for determining the overall criticality and importance of failure modes.

3.1.2 Reactive maintenance

Reactive maintenance takes place after a failure has occurred. There are two reactive
maintenance policy alternatives, corrective and detective. Corrective maintenance takes place
only when failure actually occurs. This is a failure that is observed during the usage of a system.
Similarly, detective maintenance takes place only when failure actually occurs. However, it is
discovered during a check-up when the system is not in use. The main benefit of such
maintenance strategies is that the RUL of a failed component of the system is not wasted. The
main disadvantage of the strategies is the downtime during which the system cannot be used.
Therefore, the strategy is mostly suitable for parts that are small, non-critical, inconsequential,
unlikely to fail, or redundant.

3.1.3 Proactive maintenance

Proactive maintenance is carried out before a failure occurs. Either in a preventive way or in an
opportunistic way. Opportunistic maintenance is triggered by another maintenance operation.
While other component of a system is being maintained, another component can be preventively
maintained to make use of the fact that the system is already down due to the other maintenance.
This maintenance can be applied for any parts within the same (sub)system as the maintenance
needing component. Preventive maintenance can either be condition based or predictive. For
condition based maintenance a planning on how and when components need to be inspected is
needed. Once a certain condition threshold is reached, maintenance or replacement of the
component is necessary. This type of preventive maintenance is suitable for parts which have
random failures and are not subject to wear. For parts that are subject to wear and do not have
random failures which means their failure pattern can be defined, PdM is the best maintenance
policy.

3.2 Relevant developments in PAM

‘Recently, predictive maintenance has become prevalent in the industry due to the capability of
reducing maintenance costs, unexpected downtime, and while extending the life span of equipment.’
[18]. These benefits of PAM come from the 4th industrial revolution focused on digitalization.
Where technological developments took place in order to automate, integrate, and exchange real
time data of systems. Due to this growing complexity of systems, model based approaches for
developing algorithms for PdM are too difficult to develop. Therefore, in practise, data driven
artificial intelligence (AI) approaches are used to develop PAM models. A review of “Recent
advances and trends of predictive maintenance from data driven machine prognostics
perspective” proposes 2 Al prognostic model categories [18]. Namely, conventional machine
learning based models and deep learning (DL) models. DL is an extension of ML, which makes use
of larger number of layers in its models compared to ML. DL methods show outstanding
performance as the data increases in dimensionality and volume.

Four common machine learning / deep learning (ML/DL) methods are recognized [19]. First,
clustering, which focuses on pattern analysis in order to group data points. Second, classification,
which focuses on decision development in order to classify new data points. Third, regression,
which focuses on trend analysis in order to predict values of new data points. Fourth, anomaly
detection, which focuses on analysing the normal state of a system and depicting data points
deviating from this normal state. Anomaly detection is a common approach for fault detection.
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Three approaches for ML/DL methods are proposed [19]. First, unsupervised approach, where
unlabelled data is used to develop models. This data can for example, be used to model normal
behaviour of data and test how well the model describes a new set of data. Second, supervised
approach, where labelled data is used to build a model. When it comes to anomaly detection for
example, this data contains both healthy and anomalous data. Third, semi-supervised, where
unlabelled data is available, and small data set with manually added labels is added to develop a
model.

3.3 PMSMTs

This section first discusses the use of PMSMTs related to the implementation of a PdM policy at
HPP, in section 3.3.1. Then, in section 3.3.2 the PMSMTs relevant for the depicting the HS of the
KEM inner bearings are addressed.

3.3.1 PMSMTs at HPP

The access of HPP to the real time and historical PMSMT data at the customer sites has effect on
the potential implementation of a PAM policy for their UPS systems. For developing a PdM policy
it is necessary to have access to historical data from different customer sites with instances from
different HSs. Currently this poses a challenge for HPP.

For majority of the customers HPP does not have access to real time PMSMT data. In some cases,
it is possible to export historical data during maintenance service. This data can be used to
develop a predictive model for a PdM policy. However, for this, clear guidelines on which data
needs to be exported need to be made. It has been observed that the export of selected PMSMTs
for a history of 2 month period can be easily exported and shared with HPP.

The real time access is not a must for a valuable PdM policy. Once a PdM policy has been
implemented and validated, the policy can be setup within the operating system of the UPS
system at the customer site. Using the direct PMSMTs from the UPS for PdM policy execution.

However, the current structure of storing the PMSMT data also poses challenges for the PdM
policy. Different UPS system have different name sets for the same PMSMTs. Moreover, the set
dead bands and band withs for PMSMT storage affect the time steps between the PMSMTs. The
PMSMTs measured in real time have set constant time steps. However, the stored PMSMT values
have varied time steps. This poses a challenge for the PdM policy. Especially if the PdM policy
would be set up such that it further develops during its operationality, re-evaluating its
performance and improving accordingly. Therefore, for HPP a set PAM policy is a suitable option.

3.3.2 PMSMTs for HS of KEM inner bearings

A review of bearing fault detection techniques presents 4 monitoring approaches for the health
state of bearings. Vibration measurements, acoustic measurements, temperature measurements,
and wear debris analysis [20]. At HPP all of the 3 mentioned measurements are being performed.

There are no issues with the vibration measurements at HPP.

For the temperature measurements, there is a data collection issue for some installed bases,
where the inner bearing temperatures are no longer being measured. For some bases not even
the room temperature was properly monitored.

For the acoustic measurements, there are 3 different acoustic measurements recorded for the
KEM inner bearing DE and NDE side (together 6 different measurements). These are however not
being used at HPP and are therefore also not included in the research. It should be evaluated
whether these measurements are useful to measure or not. Then they can either to be used for
data analysis in the future, or the relevant sensors can be removed. [21] performs a case study
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concluding better bearing fault identification using acoustic signals compared to vibration
signals. Therefore, it is advised to perform an analysis of the usefulness of the acoustic PMSMT.

3.4 Failure and asset prioritization

A suitable maintenance policy for each asset should be selected for a cost-efficient maintenance
service. Assets are categorized based on 2 aspects, cost and criticality. Based on position of an
asset within these categories, different maintenance policies are suitable. A diagram of suitable
maintenance policies based on this asset categorization can be seen in Figure 3.2.

Non-expensive non-critical assets do not require lot of effort to be put in when it comes to
developing a maintenance policy. The operationality of system is not affected by their failure and
it is cheap to simply throw them away and replace them with new ones when decided. This can
either be once the asset fails or when other maintenance is being carried out on the system.

When it comes to expensive non-critical assets, Expensive
maintenance is important in order to prolong the
operational life of the assets. This leads to saving costs Reactive | Predictive /

by not purchasing a new asset more often than Condition based Condition based
required. This can be done by monitoring the

condition of the asset or by providing maintenance .,

for the asset during other maintenance activities. Critical crieal
On the other hand, when it comes to critical assets, a Opportunistic Cﬁf‘r’;ﬁ:ﬁ%ﬁ“ !

more advanced maintenance policy is required. For

non-expensive critical components, condition

monitoring of the asset through sensors or during Not

other maintenance activities carried out on the expensive

system is a good option. However, if a suitable Figure 3.2: Maintenance policies
predictive maintenance is available/does not require suitable for different assets

a lot of developmental and implementational effort this is the best choice. For expensive critical
assets either condition based or predictive maintenance should be used. These assets are too
costly to replace before issues are observed. However, as they do affect the operationality of the
system, they need to be maintained proactively.

To depict which maintenance policy is the most suitable for a given asset with a certain position
in the diagram there are other aspects that can be taken into account. For example, for the
bearings, which are the main focus of the research, PdM is depicted as the most suitable policy.
On one hand, bearings are not expensive, and it might be said that CBM is a suitable policy choice.
However, the UPS installed bases are not easily accessible for regular short interval maintenance
of bearings. As the bases are located all over the world. Moreover, the bearings are located deep
within the UPS system, and it is not practical to have to dismantle the system to maintain the
bearings during for example every weekly check. Moreover, the frequency of failures of the asset
is an important factor. Bearings in general within the industry, are components that fail the most
in machinery. Therefore, in this case the bearings could be characterized as one of the most
important assets.

3.5 Maintenance policy evaluation

The current maintenance policy applied at HPP is CBM. This policy is effective, with a high uptime
of the HPP UPS systems. However, during maintenance service a unit from the UPS system is
disconnected from the system, removing a potential redundancy. This affects the customer
satisfaction. Therefore, to improve the maintenance it is important to provide more insights for
the customers into the HS of the UPS system and its components. For this a PdM policy is needed.
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To evaluate whether the selected maintenance policy is a suitable choice for a given asset, it is
important to carry out a maintenance cost calculation. Where the following variables are used as
input for the calculation:

Ca: Cost of the asset replacement

Cp: Cost of the preventive maintenance
Cc: Cost of the corrective maintenance
Pa: Probability of failure after time T
Pg: Probability of failure before time T

The value of the maintenance policy is calculated as replacement asset value (RAV) percentage.
Where the lower the percentage, the better the maintenance policy for the given asset.

PA*Cc‘l'PB*Cp
*

RAV =
Ca

100

Equation 2: Replacement asset value (adapted from [22] )

25



4 Theoretical framework for the research

This section provides the theory for development of a PAM policy for KEM inner bearings of HPP’s
UPS systems (Figure 4.1). In order to develop the PdM policy, predictive models for evaluating
the HS of the KEM inner bearings need to be developed. The current categorization of HS of the
KEM inner bearings at HPP is presented in Table 4.1. Where A stands for AND operator, V stands
for OR operator and the unit of the numerical values is mm/s. For simplicity, the KEM DE
Vibration is referred to as DE and KEM NDE Vibration as NDE.

Table 4.1: Health states split [Table 2.3]

Health state Condition \
Healthy (DE<9) A (NDE <9)

Degraded [(9 <DE < 20) A (NDE < 20)] V[(DE <20) A (9 <NDE < 20)]
Failure (20 <DE) V (20 < NDE)

Therefore, for predicting the HS of the KEM inner bearings, two predictive models are developed.
One for predicting the future value of KEM DE Vibration, and one for KEM NDE Vibration. These
predictions are then used to evaluate the associated predicted HS according to Table 4.1.

F ' F' ' i ' y '

Predict future values Predict future values

. - ] of output variables Evaluate performance
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standardization development approaches data driven model performance evaluation
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Figure 4.1: Theoretical framework: PdAM policy development

Before addressing the relevant PdM policy development theories, the data used in the research is
presented. 7 data sets of PMSMT data are exported for the research. Each data set corresponds to
a half year of PMSMTs of one UPS unit. Since HPP does not store/have access to historical
PMSMTs, the data is exported from units where the current half year history of PMSMTs could
still be accessed.

There are 3 KEM inner bearing failure instances within the exported data sets. The data sets
consist of time stamped PMSMTs. An overview of the exported data sets and their split for
different stages of model development can be seen in Table 4.2. Train, Test, and Valid show the
% of each data set included in training, testing, and validation data set, respectively. The split is
randomized, but for reconstructive purposes seeds are used. With a set seed the same random
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numbers are drawn every time. As a remark, the validation set is used when the PdM policy is
already developed to validate the PdM policy. It is not used to validate the predictive models
themselves.

Table 4.2: Data sets overview

Data Set nr Unit nr Site nr Status Train Test Valid
1 1 1 Healthy 0.75 | 0.25 0
2 2 1 Including failure | 0.75 | 0.25 0
3 3 1 Healthy 0.75 | 0.25 0
4 5 1 Healthy 0.75 | 0.25 0
5 3 2 Including failure | 0.75 | 0.25 0
6 5 3 Healthy 0.75 | 0.25 0
7 6 3 Including failure 0 0 1

The overview of the exported PMSMTs can be found in Table 4.3. Including their relation to the
predictive models that are developed. Where model DE stands for model used for predicting the
value of KEM DE Vibration, and model NDE for predicting the value of KEM NDE Vibration.

Table 4.3: PMSMTs for model development

PMSMT ‘ Description Model DE Model NDE
OuterBearingTempNDE | outer bearing temp. on KEM non-driving end Input Input
OuterBearingTempDE outer bearing temp. on KEM driving end Input Input
Q1ActionsCounter counter of switches to/from utility and diesel mode | Input Input
FlywheelSpeed speed of the KEM rotor Input Input
GenDEVibration generator vibrations on generator driving end Input Input
GenNDEVibration generator vibrations on generator non-driving end | Input Input
KEMDEVibration inner bearing vibrations on KEM driving end Output Input
KEMNDEVibration inner bearing vibrations on KEM non-driving end | Input Output

The rest of the section focuses on the theory relevant for the development process of the PdM
policy (Figure 4.1). First, in section 4.1 the theory related to data preparation is presented. Next,
in section 4.2 different approaches, and in section 4.3 different methods for developing predictive
models are discussed. Suitable approaches and methods for the research are then selected. In
section 4.4 the selected predictive model is introduced. In section 4.5 an alternative predictive
model used for performance comparison is introduced. In order to compare the performance of
the models, section 4.6 addresses different measures for evaluation of the predictive models. In
section 4.7 approach for model performance improvement is introduced. The certainty of the
predictions predicted using the predictive models is discussed in section 4.8. In section 4.9 the
approach for evaluating the PdM policy is presented. Next, in section 4.10, the PdM policy
development process for the research is presented. Lastly, in section 4.11, the integration of PdAM
policy within HPP is discussed.

4.1 Data preparation

First aspect of data preparation is qualitatively evaluating the data. This is done by cleaning the
data from faulty measurements that would negatively affect the model performance. Moreover,
for improving model development efficiency, duplicate data entries are removed.
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Data normalization is another important aspect when it comes to model development efficiency.
The effect of normalization or standardization of data on regression-based models is not expected
[23]. However, [24] highlights the importance for data normalization when it comes to ML
methods as it has a noticeable impact on the model performance. In the research a ML predictive
model is also developed, therefore, data normalization is performed. The best normalization
interval is subjective and therefore can be a parameter to be varied. For the research, the data is
normalized using the [0,1] interval.

4.2 Predictive model development approaches

The key issue of predictive maintenance is to determine the maintenance inspection intervals.
There are three criteria to take into account for this. Moment in the system life cycle at which
intervals are determined, the way the system condition is assessed during the service life, and the
prognostic approach that is followed [25].

Determining the intervals before the service life is a static method for determining the
maintenance inspection intervals. These are usually determined during the design phase of a
component and are provided by a manufacturer. On the other hand, when the intervals are
determined during the service life it is a dynamic method. The dynamic method can either be
corrective or proactive. With corrective approach components are replaced once they reach a
certain condition threshold. With proactive approach the current condition value is used to
predict the RUL of the components.

There are two possible ways to assess the condition of the components during their service life.
First, using condition monitoring. For condition monitoring inspection intervals and/or sensors
are used to monitor the performance of components. The second option is to develop a relation
between usage and loads onto the components. Then by monitoring the usage of the component,
its degradation and RUL can be estimated through the defined usage and load relation.

There are 3 prognostic approaches that can be followed for developing PM. Experience based,
data driven, and model based. For condition monitoring, all three approaches can be applied. For
usage and load relation, only data driven and model based approaches can be applied. The
hierarchy of the prognostic approaches can be seen in Figure 4.2. The different approaches are
discussed in more detail in the following sections.

Model based Prediction by relation
Physical prognostics between usage and loads

models

Data driven Prediction by extrapolation of trends in
prognostics measured condition (correlation)

Fuzzy logic, neural
networks state estimation

Experience based

Statistical methods .
prognostics

Prediction based on past usage

Increasing accuracy ! complex ity

Figure 4.2: Hierarchy of prognostic approaches (adapted from [25])

4.2.1 Experience based approach

Experience based approach uses statistical methods to analyse the past usage of a system. For
this historical data is required. From the historical data numerical parameters are depicted to
define the failure distributions. For example, exponential or Weibull distributions are often used
for failure analysis [25]. This is the simplest prognostic approach. The predictions developed are
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only accurate when the future usage is similar to the past / observed usage of a system. This is
due to the fact that the usage and load relations are not known. The structure for applying
experience based approach is shown in Figure 4.3.

Iterate until data is rea dy Iterate for best distributinn

H'S‘.D“CE" Data Frepared Get numerical Failure Chosen
failure T
data processing data parameters distribution distribution

Figure 4.3: Experience based approach structure

4.2.2 Data driven approach

Data driven approach also requires availability of historical data. Advanced methods are applied
to analyse the data to reveal underlying patterns, identify anomalies, and support the
deterioration of components [26]. The predictions are based on correlations of performance
measures and RUL. Again, the usage and load relations are not known, therefore, the accuracy of
predictions is limited by the availability of historical data. Historical data sets from different usage
scenarios are needed. However, when data is available, a failure model can be developed at low
cost and in a short time [27]. The structure for applying the data driven approach can be seen in
Figure 4.4.

Iterate until data is ready Iteraternrtuest model

Historical
failure Data Prepared Apply Failure model Chosen model
data processing data algorithms

Figure 4.4: Data driven approach structure

4.2.3 Model based approach

Model based approach, also known as physics based approach, does not require historical data.
Mathematical equations are used to define the relations between usage and its load onto the
system. This is done in form of physical models. With these models the degradation of the system
can be quantified. Therefore, predictions for RUL of systems with usage that was not observed
before can be done as well. This is suitable for systems operating in variable environments [28].
However, this approach is the most complex one and requires most developmental effort [25].
The structure for applying the model based approach can be seen in Figure 4.5.

Critical : o ) -
component Fa||u_re Physical External Internal Date_l Ered|t.t|_o!'1 of Validation
calaction mechanisms model lpads Inads collection time to failure

Figure 4.5: Model based approach structure (adapted from [28])

4.2.4 Selected model approach

Three approaches were presented in this section: experience based, data driven, and model
based. With the complexity of the UPS systems and their units, model based approach is too
complex to develop. Moreover, the complexity of the relation between the PMSMTs is difficult to
determine before analysing the data. Therefore, both experience and data driven approaches are
depicted as suitable. Therefore, in the research the focus is on experience based and data
driven model approaches.
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4.3 Predictive model development methods

Before diving into predictive model methods, it is important to decide on the domain in which the
vibration data is analysed. There are three domains to choose from: frequency, time-frequency,
and frequency domain. In time domain the x-axis represents time, and the y-axis represents the
values of measurements. Creating a time series data. In frequency domain, the x-axis represents
the frequency values of the measured signal consisting of several measurements, and the y-axis
the count of the frequency occurrences within the signal.

For the research the time domain is selected. There are two main reasons for this selection. First,
the ease of implementation into the existing systems at HPP. The measurements are recorded in
time domain, and therefore no transformation to frequency domain will be necessary. Time series
data is a perfect match for the research. Second, the features from time domain are more
significant compared to the ones obtained from frequency domain [29].

Time Domain
Analysis

Statistical M ethods

M achine Learning

Regression-based Stochastic Neural Network- Unsupervised
filter-based based Anomaly
Detection
Wiener process
Covariate- Support Vector
based hazard Machine (SVM) Hidden-gamma
Gamma process Model-based
Hidden Tree-based Filtering
Markovian-based Markov-based
Gradient Boosting

Figure 4.6: PAM model methods in time domain [29]

An overview of time domain statistical (Experience based approach) and machine learning (Data
driven approach) predictive model methods can be seen in Figure 4.6 [29].

For the research, first, a statistical predictive model is developed. At this point the complexity of
the relations between different PMSMTs is not known. A statistical model helps to evaluate this
complexity. If the complexity is not large, the statistical model can reach a good performance and
make valuable predictions. However, if the complexity is too large, the statistical model is not able
to make valuable predictions. A statistical regression based model making valuable predictions is
defined as a model that is able to correctly predict at least 10% of the non-healthy HSs.

Section 3.2 presents findings of ML models being the current trend in predictive maintenance.
Therefore, a ML model is also developed. A simple ML model is developed to compare the model
performances of these two models. To evaluate whether developing a statistical model is worth
the developmental effort or a simple easily implemented ML model is enough.

The selected statistical model method is regression-based method. There are 2 main reasons for
this selection. First, as a part of the research, the company would like to gain insights into the
PMSMT data measured from their UPS systems (RQ3). The core of regression-based methods is
to gain insights into the relations between the input and output variables. Second, the method fits
well with the available data of the research. Data from different bearings at different unknown
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stages of operational life are available. Regression-based model looks at values of different
variables at independent point in time. Both of these aspects are in line with the available data
and the aims of the research.

The basic theory behind regression-based models is determining the relation between the input
variables and the output variable. Using this learned relation the model predicts the value of the
output variable based on the observed values of the input variables. However, the observed
values of input variables at time T = t are used to predict the output variable at time T = t. This
is not very useful for making future predictions. An approach to deal with this issue is lagging. A
lag of size L can be used to make predictions L time steps into the future. Meaning the observed
values of input variables at time T = t can be used to predict the value of an output variable at
timeT =t + L.

It is however important to note that vibrations do not have the same characteristics as the other
PMSMTs. Temperature, for example, changes gradually and the change in its values can be easily
visible. However, when it comes to vibration data it is not that simple. Vibration data changes
rapidly, fluctuates, contains sudden peaks, without a visible trend. A comparison of temperature
and vibration data can be seen in Figure 4.7.
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Figure 4.7: Temperature and Vibration data

Due to this nature, a regression model, which looks at individual measurements at a given point
in time is likely not going to produce valuable predictions. There are two approaches to deal with
this nature of vibration data for developing a regression based statistical prediction model. One
is related to the frequency domain. Where vibration data is transformed to frequency domain,
where after filtering processes, trends eventually become visible. However, in the research the
focus is on time domain. Therefore, the other approach, which is related to time domain, is the
one of interest. For depicting trends in vibration data in time domain, statistical features need to
be exported from the data. These statistical features represent a certain time period consisting of
consecutive measurements in time. With this approach, trends in data signifying change in health
state of a component can become visible.

Extracted features can be used for regression-based models, to predict the transition between
different health states. In a case study from ‘Adaptive framework for bearing failure prediction’
[30], regression based method is used to accurately detect health state transitions of bearings
across multiple bearing failures. This approach, using extracted features with statistical
regression-based models is suitable for the research. As the focus is on predicting the transition
between health states of the KEM inner bearings.
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A regression-based statistical model based on input variables including extracted features
is developed and improved in the research. Furthermore, for a model performance comparison,
a simple ML model is also developed.

The selected ML model is a tree-based model. The three-based model is selected as it is a simple
ML model with which the relations between input variables and the model predictions can be
easily analysed. This is due to the structure of the tree-based models, which take the form of a
decision tree. In case the statistical model is able to make valid predictions, the ML model is
developed using the original input variables. In case the statistical model is not able to make valid
predictions, the ML model using the input variables of the improved statistical model is also
developed.

4.4 Regression-based statistical model

Regression-based model is a good start for developing a model for predicting a value of an output
variable. It allows an initial exploration of the relations between the output and input variables.
It is very likely that a simple regression model will not be suitable to predict the output variable.
Especially the sudden peaks in vibrations corresponding to the degradation HS and failure HS of
the bearing. As mentioned before, this is because of the nature of the vibration data. The evolution
of vibrations over time is an important factor for a predictive model. This is not an aspect covered
in regression models. Therefore, the extracted features are also added to the predictive model.

The theory related to developing a statistical regression-based model first focuses on the theory
evaluating the causality of the input variables used to predict the output variables. This can be
found in section 4.4.1.

Then the regression-based model assumptions that need to be met for developing a valid
regression-based model are addressed. There are four such assumptions. These assumptions are
related to the input and output variables for which the model is built. First, concerning the output
variable, is assumption of normality. Second, concerning the relation between input and output
variables, is assumptions of linearity and homoscedasticity. And third, concerning the relation
between the input variables, is assumption of independence of observations. The theory
addressing the 4 model assumptions is presented in section 4.4.2.

For developing a regression-based model for vibration data the theory focused on the features to
be extracted is presented in section 4.4.3. Moreover, the lagging theory for making predictions
for the future is presented in section 4.4.4.

4.4.1 Causality between the input and output variables

Before addressing the assumptions for applying a regression-based model, a causality test
between the input and output variables is performed. The test depicts whether an input variable
is valuable for predicting the output variable. And what is the time period into the future for which
this input variable is valuable. The outcome of the test influences the initial selection of the input
variables. An input variable that does not have an effect on the output variable is not useful for
predicting its value and can be removed immediately. Moreover, the outcome of the causality test
depicts the period for which the input variable is useful for making predictions of the output
variable.

The causality test is known as the Granger test. The test defines a null and alternative hypothesis
and tests for the rejection or acceptance of the null hypothesis. The null hypothesis of the Granger
test is that there is no causality between the given input and output variable. The alternative
hypothesis is that there is causality between these variables. In order to reject the null hypothesis
and conclude there is no significant evidence to suggest no causality between the variables, the
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p-value corresponding to the F statistic should be less than a. Where a is the significance level,
representing the probability of wrongly rejecting the null hypothesis.

There are 3 input parameters of the Granger Causality test: the input variable measurements,
their corresponding output variable measurements, and the prediction period. This test can
easily be performed in R using the grangertest function from Imtest library.

grangertest(X~Y,order, data)

Equation 3: Granger test in R

The test checks whether variable Y Granger causes variable X. Order represents the prediction
period and data the source from which the Y and X measurements are obtained.

4.4.2 Model assumptions

Normality assumption checks the distribution of the output variable. Ideally the output variable
follows a normal distribution. Where the data is centred around the mean value of the distribution
and 99.7% of the data lies within 3 standard deviations from the mean. However, this is not a
hard assumption for applying regression.

Relation between input and output variables determines the function that fits the data. Then
according to this relation it can be determined which regression model can be used. For example,
if the relation between input and output variable is linear, linear regression can be applied. For
this, scatter plots of the output variable versus the input variables are plotted. To see whether the
data meets the linearity assumption.

Moreover, residual plots for linear regression model for each output and input variable pairing
are developed. Then the data can be checked for homoscedasticity. By depicting whether the
prediction errors of the linear regression model show significant changes in values.

Relation between input variables is useful when it comes to reducing the complexity of the model,
by reducing the number of input variables. The input variables that are not correlated to other
input variables are independent and therefore, useful for the model. Moreover, input variables
that contribute the most to the increase of variability of the data are candidates for removal. The
contribution to the variability can be depicted through VIF (variation inflation factor). However,
in order to compute the VIF a basic regression model needs to be developed first.

4.4.3 Feature extraction

For feature extraction, the concept of a sliding window is first introduced. A window of size W
contains W subsequent instances. With sliding window, every time a new instance is added, the
window shifts in time. The concept of sliding window is demonstrated in Figure 4.8. The window
size W represents the number of measurements from which a feature is extracted. Function f(x)
indicates a formula used for extracting the features from the data. Where x stands for the
measurements that are included in the window.

A window looks at a window of instances instead of looking at each instance individually, which
is an important aspect for vibration data. With this concept, a regression-based approach suitable
for developing a predictive model for the HSs of the bearing can be developed. The extracted
features become additional input variables for a regression-based model.
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Figure 4.8: Concept of sliding window

There are several features that can characterize the degradation trend of a bearing. [31] and [32]
focus on extraction of the following features: mean (Mean), standard deviation (Std), peak value
(Peak), variance (Var), root mean square (RMS), shape factor (SF), margin factor (MF), energy
(E), crest (Crest) kurtosis (Kurt), and skewness (Skew). However, it is stated that the features are
only sensitive to a certain stage of degradation. Therefore, it might happen that the features are
not able to indicate the different HSs properly. It is therefore important to evaluate whether these
features are able to distinguish the differences between healthy and unhealthy measurements.
The formulas for the features are show in Table 4.4. Where W stands for the window size.

Table 4.4: Feature extraction formulas

Mean Std Var

1 w
Wzizl l

Equation 4: Mean

W —_
i=1(%; — x)z

%[max(x) — min (x)] 1

Equation 5: Standard deviation Equation 6: Peak Equation 7: Variance

Equation 12: Crest

Equation 13: Skewness

Equation 14: Kurtosis

RMS SF | MF E |
W * RMS(x) W * max (x;) ZW 1,2
-~ 7 _— Xi
Il 1 lxil? =1
i€[1,W]
Equation 8: RMS Equation 9: Shape factor |  Equation 10: Margin factor | - Equation 11: Energy
Crest Skew Kurt
Peak(x) W (x; —%)3 YW — %)
RMS(x) W * Std (x)3 W * Std(x)*

To select the most suitable feature, the features are subject to monotonicity, trendability, and
prognostability check [33]. These checks serve as indication for feature that best indicates the
degradation of the component. The checks are carried out on the KEM DE and KEM NDE Vibration
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data containing time series from the healthy HS to the failure HS of a component. The data sets
do not have the whole cycle from healthy state to failure. However, all data sets contain part of
the health state degradation cycle, as the units are in operation. Therefore, based on the outcomes
of the feature checks a selection of a feature that best represent the different health states is
selected for the predictive model.

The equations for carrying out the feature suitability checks are presented. Where the following
expressions are included in the equations:

- M: number of units / data sets

- Ni: number of windows of unit i

- Xi: the vector of all values of extracted features from unit i

- xi[j+1]: the value of the extracted feature from unit i from window j+1

- xi[j]: the value of the extracted feature from unit i from window j

ZNi—l sgn(x;[j + 1] — x;[j])

1 M
Monotonicity =1+ Y’
onotonicity M* i1 Ni—l

i=1

Equation 15: Monotonicity
Trendability = mi.n|corr(xi,xj)|
iJ

where i,j € [1,M]

Equation 16: Trendability

Std (x;[N;])
mean|x;[1] — x;[N;]|

Prognostability = exp (— )

Equation 17: Prognostability

4.4.4 Lagging theory

The lagging approach can be used to predict the future values of the output variable. The lagging
process is demonstrated in Figure 4.9. The prediction period PP signifies the number of steps into
the future for which the predictions are made. Then using input variables at time T = t the aim is
to predict the value of the output variable at time T = t + PP.

PP=3 t=1 t=2 =3 t=4 =5 tpp=1 pp=2
Input variable 1 2750 [ 27.00 ] [ 27.25 ] [ 27.00 ] [ 27.00 ] Input variable 1 27.50
Inputvariable 2 | 2750 | [ 2700 ) [ 2725 | [ 2700 | [ 27.00 | * Input variable 2 | 27.50
Input variable 3 27.50 [ 27.00 ] [ 27.25 ] [ 27.00 ] [ 27.00 ] Input variable 3 27.50
Output varizble | 21.50 || 27.00 REZE 27.00 Output variable | 27.00

Figure 4.9: Lagging process

Using this approach, a regression model can be developed in order to predict the HS of the KEM
inner bearing PP time steps into the future.

3
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4.5 Tree-based data driven model

Tree-based ML models take a form of a decision tree. When it comes to predicting a value of a
continuous output variable, a regression tree is applicable. The tree defines split criteria that lead
to a certain end nodes of the tree. Based on the input variables which are evaluated using the tree
splits, an end node corresponding to a certain value of output variable is reached. The main
advantage of a tree-based ML model, also the reason this ML model is selected for the research,
is the readability of the model. Through evaluation of the tree splits it can be clearly evaluated
how which input variables contribute do the prediction of the output variable.

4.6 Predictive model performance evaluation
There are 3 KPIs to measure when it comes to evaluation of the predictive model. R?,NRMSE, and
MAPE. An overview of used expressions for their calculation is provided:

- Yobserved: observed value of output variable from training data set (data set used to build the model)
- Ypredicted: predicted value of output variable based on input variables from training data set

- Xobserved: observed value of output variable from testing data set

- Xpredicted: predicted value of output variable based on input variables from testing data set

- n: number of instances

R? is the coefficient of determination. It determines how much the model fits the data by stating
the proportion of total variance explained by the model [34]. R? € [0,1], where R? = 1 represents
a model that is able to make prefect predictions, and R? = 0 represents a model that is not able
to make predictions as the predictions (output variable values) are independent of the input
variables.

™ (Ypredicted; — Yobserved;)?

R?=1-
" ,(Yobserved; — Avg(Yobserved))?

Equation 18: R squared

Y.i=1 Yobserved;

n

Avg(Yobserved) =

Equation 19: Average (output variable, training data)

In this case the observed values are the ones used to build the model, not ones in a testing set.
The predicted values are then also based on these training set observed values. This is due to the
fact that R? evaluates the model itself, instead of its performance when predicting new data. n is
the count of the instances.

The next measure is the NRMSE, normalized root mean squared error (RMSE) [35]. RMSE is a
common measure to estimate a prediction model performance. It represents the deviation of
predicted values from their observed values.

n  (Xpredicted; — Xobserved;) 2
RMSE — z (Xp i i)
i=1 n

Equation 20: RMSE

Where n is the count of values predicted. RMSE = 0 represents a model that predicts the output
variable exactly as they are observed in testing data. There is no upper limit for RMSE. Therefore,
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to be able to evaluate the value of RMSE the average value (Avg) of the prediction variable is also
needed.

™ Xobserved;

AVg xobservea = n

Equation 21: Average (output variable, testing data)

Where n is the count of observed values that are being predicted (same value as in RMSE formula).

The NRMSE then looks at the ratio between the RMSE and Avg. A low NRMSE signifies a good
result as the RMSE is low compared to the average value of the output variable.

RMSE

NRMSE = ——————
AVg xobserved

Equation 22: NRMSE

MAPE (mean absolute percentage error) measures the accuracy of the predictions compared to
their observed values.

1 n Xobserved; — Xpredicted;
MAPE = — E |
i=1 Xobserved;

Equation 23: MAPE
The lower the MAPE, the more accurate the prediction model.

4.7 Predictive model performance improvement

Hyperparameter tuning is an approach for improving model performance by adjusting the
training process of the model development. For linear regression statistical based models there
is one such feature, set for the model development process. It is the measure to be minimized
during the development process. Simple linear regression model is developed by establishing
coefficients while minimizing the sum of squared residuals (RSS).

n
LinearRegression measure = RSS = Z (Xobserved; — Xpredicted,) ?
i=1
Equation 24: Linear regression measure
3 common approaches for tuning the hyperparameter are used. The approaches use cross-
validation to assess how well the model performs when new independent data set is applied to

the model. First approach, also known as Ridge regression, minimizes the RSS with added penalty
of squared magnitude of coefficients.

n
RidgeRegression measure = RSS + lz Bj?, A=0
i=1
Equation 25: Ridge regression measure

Second approach, also known as Lasso regression, minimizes the RSS with added penalty of
absolute value of magnitude of coefficients.

n
LassoRegression measure = RSS + AZ IBjl, A=0
i=1

Equation 26: Lasso regression measure
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The third approach, also known as Elastic net regression, is a combination of Ridge and Lasso
regression.

n
ElasticNetRegression measure = RSS + A [(1 —a) Z Bj*+a Iﬁjl] , A=0
i=1

0<ax<l1

Equation 27: Elastic net regression measure

The Ridge, Lasso, and Elastic net regression are especially applicable for model development
using data where multicollinearity is present.

4.8 Prediction certainty

The implementation of the predictive model into a PdM policy requires additional output from
the predictive model. Namely, the prediction probability. 2 options for evaluating the prediction
probability are presented. First, evaluating the prediction probability by developing a confidence
interval (CI). Second, evaluating the prediction probability by developing a prediction interval
(PI). Both intervals can be easily computed in R. R provides an option where during statistical
regression model prediction calculation an option to calculate the intervals can be selected.

predict(model, data, interval = "confidence") for CI output

predict(model, data, interval = "prediction”)  for PI output

Equation 28: Prediction probability in R

Both options have the same output format where the values for fit, lwr, and upr are obtained. Fit
= the predicted value, lwr = the lower bound of the computed interval, upr = the upper bound of
the computed interval. By default, 95% intervals are computed. Meaning that 95% of the
predictions made, with the given input variables, have output values Output € [lwr,upr]. The
confidence limit can however be adjusted.

Both probability intervals are good options for evaluating the prediction probability. The CI
reflects the uncertainty around the mean predictions and the PI the uncertainty around a single
predicted value. Therefore, the CI will provide a narrower interval compared to PI. Which is nice.
However, knowing the prediction probability of a specific prediction is more valuable. Therefore,
for the research the prediction probability is evaluated by computing the Pls.

In case the statistical model provides valuable predictions the above method is used to compute
the PIs. However, this is not applicable for the ML tree-based model. In order to develop the Pls
for the tree-based model a quantile tree-based model needs to be developed.

4.9 Maintenance policy evaluation

In general, a maintenance policy is evaluated performing a cost calculation, such as in section 3.5.
However, for HPP these costs are not directly relevant as the costs are covered by the customers.
What is relevant for HPP is that the customer is aware of the HS of the UPS system and its
components. The customers than have a better knowledge about needed maintenance for their
system. Allowing them to plan the maintenance actions in advance, potentially lowering their
costs. Making the HPP’s maintenance service more attractive.
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4.10 Research PdM policy development
The final PdM policy development approach adjusted following the theoretical framework is
presented in Figure 4.10.
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Figure 4.10: Research PdM policy development

The approach for predicting the HS of the KEM inner bearings consists of predicting the KEM DE
Vibration and KEM NDE Vibration values. This is done by developing a predictive model DE and
model NDE. The variables used for development of these models are shown in Table 4.5.

Table 4.5: Model DE and model NDE variables

PMSMT Model DE Model NDE
OuterBearingTempNDE Input Input
OuterBearingTempDE Input Input
Q1ActionsCounter Input Input
FlywheelSpeed Input Input
GenDEVibration Input Input
GenNDEVibration Input Input
KEMDEVibration Input Input
KEMNDEVibration Input Input
Unit Input Input
Extracted features Input Input
Lagged KEMDEVibration Output -
Lagged KEMNDEVibration - Output
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Where Unit is defined as data set number from Table 4.2. Furthermore, the variables are split for
training, testing, and validation according to Table 4.1. The prediction results of the models are
then used to evaluate the associated predicted HS of the KEM inner bearings according to Table
4.1.

4.11 Implementation of PAM at HPP

The implementation of PAM at HPP requires effort when it comes to the software setup. During
the installation of a UPS system at a customer site the model needs to be setup. The link between
the model PMSMTs and the actual direct measurements of PMSMTSs from the UPS system needs
to be established. Furthermore, the outcomes of the PAM policy need to be visualized for the
customers. This is to be done in the form of the proposed maintenance indicators, which initiated
the research into PdM policy at HPP.

When it comes to the operational side of the PdM policy, nothing changes for HPP. The customers
request maintenance service and after the request HPP plans the maintenance service. Therefore,
HPP performs the same maintenance, at the same time (when requested by customer). The
adjustment to the maintenance occurs at the customer site. Where the customer needs to evaluate
the benefits of early maintenance. Taking into account the fact that not all HS predictions can be
reliable.

This, however, also opens us a discussion for HPP on how much data to share with a customer.
Especially related to the warranty aspect. If there is a prediction thatin a certain prediction period
a non-healthy HS will occur, the customer has a right to request a maintenance service that is les
costly as a non-healthy HS is observed within a warranty period. Whereas, if the customer waits
the prediction period, until when the non-healthy HS actually occurs. They might already be
outside of the warranty period. Meaning, the maintenance service is more costly for the customer,
and HPP earn bigger profit for their maintenance service.
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5 Predictive model development

In this section the predictive model predicting the HS of the KEM inner bearings used for
implementing the PdM policy is developed. First, the data used for the model development is
prepared in section 5.1. Next, features from KEM DE and KEM NDE Vibration data are extracted
in section 5.2. In section 5.3 the assumptions for developing a statistical predictive model are
checked. In the following section, section 5.4, the statistical model is developed. The model is used
to predict the HS of the KEM inner bearings. Furthermore, the model is improved within the same
section. In the next section, section 5.5, the alternative data driven prediction model is developed.
The model is used to make predictions for the HS of the KEM inner bearings. In section 0, the 2
models are compared and the model with better performance is selected for implementing the
PdM policy.

5.1 Data preparation

The data consist of 8 PMSMTs extracted from 7 different units Table 4.2 and Table 4.3 provide
overview of the extracted data. Before the data can be used for model development it needs to be
processed. First, the data measurements are reduced in section 5.1.1. Then the measurements are
qualitatively checked in section 5.1.2. Lastly, in section 5.1.3, the data is normalized.

5.1.1 Data measurement reduction

Before starting other manipulation of the data, the original data sets are reduced to adjusted data
sets with only consecutive unique measurements. This helps reduce the size of the data sets while
not removing any unique information. The usefulness of this adjustment can be seen in Table 5.1.
Where it is stated that only 18% of the original measurements added unique information to the
data sets. The following parameters are shown in the table:

- Data set : data set number (data set number is also referred to as ‘unit’ in the rest of the paper)
- #0riginal: number of instances in original data set
- #Adjusted: number of instances in adjusted data set

- Kept %: the percentage of instances from the original data set kept in adjusted data set

Table 5.1: Transformation to unique data sets

Data set  #Original \ #Adjusted Kept %

1 191 595 32761 17 %
2 199 533 48 688 24 %
3 276 981 66 215 24 %
4 251 651 59 303 24 %
5 367 450 312581 85 %
6 1042006 47 098 5%
7 1254878 84 703 7%
Total 3584 094 651 349 18 %

5.1.2 Data quality check

Next, the data is qualitatively checked. The summary for unit 5 shows values that are out of their
expected range. Temperatures of over 6000 - C are recorded. Moreover, vibrations reach values
of 2000 mm/s. Which is not realistic. The process of dealing with these values can be seen in
Appendix F. Moreover, the summary of data of unit 5 before and after processing can be seen in
Figure 5.1 and Figure 5.2, respectively . The data set for unit 5 after qualitative check shows
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realistic maxima for the variables. For example, for the KEM DE Vibration, the maximum value
went from 20154 mm/s to 66 mm/s.

= summary(Units)

QuterBearingTempMDE CQuterBearingTempDE QlActionsCounter FlywheelSpeed
Min. : 0. 00 Min. : 0.00 Min. : 0.00 Min. : ]
1st Qu.: 34.00 1st Qu.: 3B8.00 1st Qu. :14.00 1=t Qu. :4196
Median : 38.00 Median : £1.00 Median :14.00 Median :4196

Mean : 39.17 Mean 41,311 Mean 134,73 Mean 3854

3rd Qu.: 43,00 3rd Qu.: 4£6.00 3rd Qu.:61.00 3rd Qu. :4197
Max. 16551, 00 Max. 6354, 00 Max. :165.00 Max. 4157
GenDEVibratian GenNDEVibration KEMDEVibration KEMNDEVibration
Min. : 0.03427 Min. : 0.02989 Min. H 0.031 Min. » 0.03344
1st Qu.: 2.253717 1st Qu.: 3.67615 1st Qu.: 1.233 1st Qu.: 2.22420
Median : 2.36449 Median : 3.79286 Median : 1.463 Median : 2.39425
Mean : 2.39598 Mean : 3.92686 Mean : 1.713 Mean 1 2.47626
3rd Qu.: 2.428%30 3rd Qu.: 4.47557 3rd Qu. : 1.704 3rd Qu.: 2.37019
Max. 112.43093 Max. 112.49402 Max. :20154. 260 Max. 1261. 33641

Figure 5.1: Unit 5 summary

= summary({Units)
OuterBearingTempMlDE OuterBearingTempDE QlActionsCounter FlywheelSpeed

Min. : 0.00 Min. : 0,00 Min. : 0.00 Min. : ]
1st Qu.: 34.00 1st Qu.: 38.00 1st Qu.:14.00 1st Qu. :4196
Median : 38.00 Median : 41.00 Median :14.00 Median :4196
Mean : 39.11 Mean 41,27 Mean 134,73 Mean 13894
3rd Qu.: 45.00 Ird Qu.: 46.00 3rd Qu. :61.00 3rd Qu. :4197
Max. :100.00 Max. :100. 00 Max. 185,00 Max. 14197
GenDEVibration GenNDEVi bration KEMDEVibration KEMMDEVibration
Min. 1 0.03427 Min. + 0.02989  Min. : 0.03114 Min. : 0.03344
1st Qu.: 2.25717 1=t Qu.: 3.67615 1zt Qu.: 1.23343 1=t Qu.: 2.22420
Median : 2.3644% Medjam : 3.79286 Median : 1.46332 Median : 2.39425
Mean : 2.39603 Mean » 3.92695 Mean . 1.64816 Mean t 2.47547
3rd Qu.: 2.428%0 3rd Qu.: 4.47557 3rd Qu.: 1.70416  3rd Qu.: 2.5701%
Max. 112.43093  Max. :12.49402 Max. 165.93390 Max. 177 0E56RT

Figure 5.2: Unit 5 summary after processing

5.1.3 Data normalization

Next, the data is normalized. For the predictive model, the data is normalized using the [0,1]
interval. The normalization is performed for all data sets jointly. The summary of the data before
normalization (Data) and after normalization (Data_Normalized) for units 1 to 6 can be seen in
Figure 5.3. It can be seen that the normalized data indeed has all minima equal to 0 and all maxima
equal to 1. Unit 7 is normalized separately as it is a validation unit.

= summary(Data)
OuterBearingTempMDE OuterBearingTempDE QlActionsCounter FlywheelSpeed

Min. ;0,00 Min. 0.0 Min. o 0.00 Min. : ]
1st Qu.: 33.00 1=t Qu.: 36.0 1st Qu.: 14.00 1=t Qu. :3897
Median : 39.00 Median : 41.0 Median : 28.00 Median :4196
Mean : 40,31 Mean t 41,1 Mean : 38.45 Mean 13438
3rd Qu.: 46.00 3rd Qu.: 46.0 3rd Qu.: &1.00 3rd Qu. :4196
Max. 1100, 00 Max. 1100.0 Max. :136.00 Max. 14197
GenDEVibration GenMNDEVibration KEMDEVibration KEMNDEVibration
Min. 0. 000 Min. 1 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 1.099 1=t Qu.: 1.439 1=t Qu.: 1.214 1=t Qu.: 1.524
Median Z.240 Median 3.578 Median @ 1.539 Median 2.286
Mean 2.013 Mean 2.773 Mean : 1.613 Mean : 2.131
3rd Qu.: 2.403 3rd Qu.: 3.837 3rd Qu.: 2.012 Ird Qu.: 2.59%5
Max. 12,431 Max. 12,494 Max. 163,934 Max. 177,066
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= summary(Data_Normalized)
QuterBearingTempMDE OuterBearingTempDE QlActionsCounter FlywheelSpeed

Min. +0. 0000
1=t Qu.:0.3300
Median :0.3900
Mean :0.4031
3rd Qu. :0.4600
Max. 1.0000
GenDEVibration
Min. 10, 00000
1=t Qu. :0.03844
Median 18017

o

o
Mean (0. 16194
Ird Qu. :0.19373
Max. :1. 00000

Min. :0.000
1st Qu. :0. 360
Median :0.410
Mean 0,411
3rd Qu. :0.460
Max. 1. 000
GenNDEVibration
Min. :0. 0000
1=t Qu. :0.1152
Median :0.2864
Mean 10,2220
3rd Qu. :0. 3071
Max. :1. 0000

Figure 5.3: Normalization data summary

5.2 Extracted features
There are 11 features to extract from data to be analysed for suitability as HS transition
indicators. Namely, Mean, Std, Peak, Var, RMS, SF, MF, E, Crest, Skew, and Kurt (Table 4.4). These
features are first extracted in section 5.2.1, using a window of half a month. Subsequently, in
section 5.2.2, the extracted features are checked for suitability as HS transition indicators.

5.2.1 Feature extraction
The aim of the extracted features is indicating that a component is transitioning from one HS to
another. Therefore, it should be visible that the values of features change before observing a spike
in the vibration data. The features are extracted using half a month windows. Therefore, for each

data set W = 1\1]—;’ Where Np stands for number of measurements of data set D. This selection of

Min. :0. 0000
1=t Qu. :0.1029
Median :0.20539
Mean 0.2827
3rd Qu. :0.4483
Max. :1. 0000
KEMDEVibration
Min. 0. 00000
1=t Qu.:0.01841
Median :0.02334
Mean »0, 02446
3rd Qu.:0.03052
Max. 1. 00000

Min. 0. 0000
1st Qu. :0.9284
Median :0.99%7
Mean 0.8192
Ird Qu. :0. 9998
Max. 1. 0000
KEMNDEVi bration
Min. 1 0. 00000
1=t Qu. :0.01978
Median :0.02966
Mean 0. 02765
3rd Qu. :0.03368
Max. :1. 00000

window size is made based on the size of the data sets and the feature extraction time. However,
the effect of different window sizes is evaluated later on when a predictive model is developed.

KEM DE Vibration

Unit2, Window: Half a month, Feature: STD
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Figure 5.4: Extracted feature: Std
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The extracted feature Std for data set 2 can be seen in Figure 5.4. The orange and red vertical lines
represent the measurement from degraded and failure HS, respectively. The figures for the rest
of the extracted features can be found in Appendix G. It can be seen in Figure 5.4 that there is an
increase in the value of Std prior to and within the degradation and failure HS region. This can
however be observed also within some healthy HS regions. However, there are other aspects of
this extracted feature that can be distinguishable for the healthy versus degraded or failure HS
region. For example, the steepness of the increase of the extracted feature value.

KEM DE Vibratiok/Nit2, Window: Half a month, RMSincrease: x2 > x1 + 0.00015 Kem NDE Vibration
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Figure 5.5: Std increase steepness

The Std increase of at least a certain increment value (Incr), in the example Incr = 0.00015, for
data set 2 is visualized in Figure 5.5. To distinguish between healthy and non-healthy data it is
also important to note the ‘streak’ for which this difference occurs. This streak count value is
represented in y-axis. The x-axis stays the same and represents the time order of the measurement. The R
code including the streak calculation is presented:

Incr <- 0.00015 #set the increment value

STDIncreaseCount <- data.frame(STD_DEVibration=Unit2_DE$STD, STD_DEIncrease=NA) #create table
with Std values and an empty column for Std minimal increase streak count

STDIncreaseCount$STD_DEIncrease[1] <- 0 #start the streak count at 0
for(x in 2:nrow(STDIncreaseCount)) { #for second to last Std value

if (STDIncreaseCount$STD_DEVibration[x]>STDIncreaseCount$STD_DEVibration[x-1]+Incr) { #check if
the current Std value is more than the increment larger than previous Std value

STDIncreaseCount$STD_DEIncrease[x] <- STDIncreaseCount$STD_DEIncrease[x-1] +1 #if yes increase
the streak count by 1

} else { #if no

STDIncreaseCount$STD_DEIncrease[x] <- 0 #reset the streak count to 0

3}
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Using the streak count a cut-off horizontal line (blue line in Figure 5.5 ) is defined to distinguish
between healthy and non-healthy data. All points below the line are disregarded and all points
above the line are considered as indicators of HS transition. It can be seen from Figure 5.5 that
for the KEM NDE Vibration the Std extracted feature could predict the failure region at T=33000.
However, for the failure region starting around T=675 the HS transition is identified when the
failure occurs and not prior to it. Moreover, a HS transition is never identified during healthy HS,
which is good. This example shows that the extracted features contain useful information for
indicating a HS transition. Even though it might not seem that way at first look (Figure 5.4).

5.2.2 Feature evaluation

An initial evaluation is made to check for suitability of the different extracted features when it
comes to indicating the HS transitions of the KEM DE Vibration and KEM NDE Vibration. The
results computed from all data sets for monotonicity, trendability, and prognostability check are
shown in Figure 5.6.
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Figure 5.6: Feature suitability check

The Std, VAR, and SF features look as promising indicators of HS transitioning as the
prognostability result for both KEM DE Vibration and KEM NDE Vibration are high. However, no
definitive conclusions can be made at this point. All the extracted features will be further
evaluated during the model development / improvement step (section 5.4).

5.3 Regression-based model assumptions

This section focuses on preparation for developing a predictive regression-based model for
predicting transition between different HSs of KEM inner bearings. First, in section 5.3.1, the
causality checks between input and output variables are checked. Then the regression-based
model assumptions are checked. In section 5.3.2 the normality check, in section 5.3.3 the linearity
check, in section 5.3.4 the homoscedasticity check, and in section 5.3.5 the independence of
observations check are performed. Lastly, in section 5.3.6 a conclusion regarding the model
assumptions is made.

Table 5.2: Health states count (seed: 123)

Health state  Index #Training  #Testing

All - 424977 141 662
Healthy 0 423 225 141109
Degradation 1 1707 536
Failure 2 45 17
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Before checking the regression-based model assumptions, a count of measurements for each
health state is made (Table 5.2). Where index stands for the referral number for a given HS,
#Training stands for the number of instances included in the training part of the data, and
#Testing for the number of instances included in the testing part of the data. This provides an
initial view of the number of data points coming from a non-healthy HS.

5.3.1 Causality check

For the causality test, three different prediction periods (PP) are evaluated: PP=1, PP=15, PP=30.
Assuming that 1 time step corresponds to approximately 5 hours (Appendix H), the upper bound
is selected as 30. This should correspond to approximately a 6 day PP (30*5hr=150hrx6days).
The p-values of the F test statistics for the different causality tests for the HS output variable can
be seen in Table 5.5. These are calculated using the grangertest function in R (Equation 3).The
light green cells correspond to values where it is concluded with 95% probability that the input
variables Granger cause the output variable. Similarly, the dark green cells signify the same
conclusion with a 99% probability.

A causality test for KEM DE Vibration and KEM NDE Vibration outputs are performed. The
outcomes of these tests can be seen in Table 5.3 an Table 5.4, respectively.

Table 5.3: Causality test -KEM DE Vibration

Input variable \ p-value PP=1 (= 5hr) PP=15 (= 3days) PP=30 (= 6days

OuterBearingTempNDE 7.27e-29 2.27e-16 1.98e-18
OuterBearingTempDE 9.98e-34 5.67e-52 1.87e-54
Q1ActionsCounter 3.47e-37 3.17e-35 1.07e-50
FlywheelSpeed 0.00e+00 1.23e-197 3.99e-202
GenDEVibration 0.00e+00 0.00e+00 0.00e+00
GenNDEVibration 1.59e-239 0.00e+00 0.00e+00
KEMNDEVibration 0.00e+00 0.00e+00 0.00e+00
Unit 4.93e-231 1.83e-23 3.46e-13

Table 5.4: Causality test - KEM NDE Vibration

PP=1 (~ 5hr)

PP=15 (= 3days) | PP=30 (= 6days)

Input variable \ p-value

OuterBearingTempNDE 4.39e-26 2.35e-189 7.86e-195
OuterBearingTempDE 5.33e-77 5.42e-130 1.97e-143
Q1ActionsCounter 1.57e-67 4.12e-126 1.58e-142
FlywheelSpeed 9.89e-241 0.00e+00 0.00e+00
GenDEVibration 3.38e-221 0.00e+00 0.00e+00
GenNDEVibration 8.96e-295 0.00e+00 0.00e+00
KEMDEVibration 0.00e+00 0.00e+00 0.00e+00
Unit 1.15e-124 1.27e-16 9.40e-12

It is concluded from the causality checks that for predicting the KEM DE Vibration and KEM NDE
Vibration, all the input variables can be useful. Therefore, no input variables are removed at this
stage of the research.

5.3.2 Normality assumption

The histograms for both output variables, KEM DE Vibration and KEM NDE Vibration, are shown
in Figure 5.7. Initially, the data does not seem to follow a normal distribution. However, two other
distributions are also fitted to assess their suitability. It is then concluded that the normal
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distribution fits the data the best. Therefore, it is concluded that for both models, model DE and
model NDE, the normality assumption is met.
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Figure 5.7: Histogram: KEM DE Vibration and KEM NDE Vibration

5.3.3 Linearity assumption

Scatterplots are developed to evaluate the relation between input and output variables. For visual
evaluation the linear fit between the variables is visualized in the scatterplots. Additionally, a
smooth fit between the variables is added for comparison. The results for both output variables
versus the Outer Bearing Temp NDE input variable are shown in Figure 5.8. The scatterplots for
the remaining input variables can be found in Appendix I.
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Figure 5.8: Scatterplot: OuterBearingTempNDE vs output variables

Looking at the linear and smooth fits from the scatterplots, it can be seen that for the KEM DE and
KEM NDE Vibration, there are visible differences in the fits. Therefore, the linearity assumption
is not met for all data. However, as seen in [30] the nonlinearity for the non-healthy part of the
data set can be exploited in the model. Therefore, scatterplots for evaluating linearity for only
healthy data are developed. Scatterplot between healthy KEM DE and KEM NDE Vibration output
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variables and Outer Bearing Temp NDE input variable can be seen in Figure 5.9. The scatterplots
for the other input variables can be found in Appendix ].

KEMDEVibration KEMNDEVibration

= ] [u] = Lu]

= o]
L [} LI ]
] =i
= =
= 0o
E w« | E @ |
E o E o
=] m
c c
- L
o 5 o5
5 5
5 5
o o o o

o o

g - @ ooomoo g - oo  mmo oo o

I I I I I I I I I I I I I I [
0.00 002 0.04 005 008 010 0412 014 p.00 002 004 008 008 040 042

Linear fit = Smooth fit

Figure 5.9: Scatterplot: OuterBearingTempNDE vs output variables - healthy data

It can be seen from the healthy data scatterplots that the linear fit does fit the data. Therefore, it
is concluded that the linearity check model assumption is met.

5.3.4 Homoscedasticity assumption

Plots of residual versus fitted values of linear regression models between the input and output
variables are made to evaluate the model fit. A good fit has a horizontal (red) line of fit centred
around zero. This signifies no outliers. Residual plots of linear fit between the output variables
and Outer Bearing Temp NDE input variable are presented in Figure 5.10. The residual plots of
other input variables can be found in Appendix K.
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Figure 5.10: Residual plot: OuterBearingTempNDE - output variables
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All scatterplots show an approximately straight line of fit centred around 0. Therefore, it is
concluded for both, model DE and model NDE, that the homoscedasticity assumption is met.

5.3.5 Independence of observation assumption
The correlation values between all
Unit 052 input and output variables are
shown in Figure 5.11. Visualizations

KEMNDEVibration 043 033 _
of correlation heat maps for the
KEMDEVIbration 082 04 01 cor ~ individual models can be found in

GenNDEVibration 043 062 056 -051 o5 Appendix L.

0.0 . . .
GenDEVibration 077 | 0.556 0.59 026 -0.22 e ngh]y correlated input variables
FlywheelSpeed 061 069 053 058 061 -03 ., can be observed within the data
(Figure 5.11). However, before
QuterBearingTempDE 023 006 012 017 035 012 -019 removing the variables from the
OuterBearingTempNDE |0.86 | 0.19 -0.07 -004 016 02 001 -0.11 models, a linear regression model is
P S S S S built. All data is used as training data
& & F & FF TS
= S C N R L g to calculate the VIF values for the
AZ £ Q;\\ Q\\ Q;\\ €\'\ CQO
& i input vari . valu
afi C TS E & input variables. The VIF values for
&) 2 . .
& F & S the different models can be seen in
o .
Figure 5.12.

Figure 5.11: Correlation heatmap all input variables

The cut-off value of the VIF is set to 2.5. As VIF 2 2.5 indicates considerable collinearity [36]. To
achieve this an iterative process of input variable removal is performed. In each iteration a
variable with highest VIF value above 2.5 is removed from the model. The iterations are
performed until model with a maximum VIF value of 2.5 is achieved. The individual iterations for
each model can be found in Appendix M. After performing the iterations, the same selection of
input variables for both models is observed (Figure 5.13). Flywheel Speed is removed as last.

> vif(LMmode1_KEMDEVibration)

QuterBearingTempNDE OuterBearingTempDE FlywheelSpeed GenDEVibration GenNDEVibration
4.643903 4.543176 3.114363 3.401469 4.,584357
KEMNDEVibration unit QlActionsCounter
2.116573 2.416162 1.716243
> vif(LMmodel1_KEMNDEVibration)
QuterBearingTempNDE OuterBearingTempDE Flywheelspeed GenDEVibration GenNDEVibration
4.,800875 4.303222 3.078725 4.046083 4.690348
KEMDEVibration unit QlActionsCounter
1.825895 2.674157 1.723683

Figure 5.12: VIF values all input variables, all models

The selected input variables for the models are therefore: Outer Bearing Temp DE, Gen DE
Vibration, KEM DE Vibration (KEM NDE Vibration model), KEM NDE Vibration (KEM DE Vibration
model), Unit, and Q1 Actions Counter. The final VIF values of the selected input variables are
shown in Figure 5.13. It is observed that all values are below the cut-off point of 2.5.

> vif(LMmode1_KEMDEVibration)

QuterBearingTempDE GenDEVibration KEMNDEVibration Unit QlActionsCounter
1.204380 1.583457 2.031894 1.549685 1.426178

> vif(LMmode1_KEMNDEVibration)

QuterBearingTempDE GenDEVibration KEMDEVibration Unit QlActionsCounter
1.063037 1.470179 1.653942 1.608071 1.454973

Figure 5.13: VIF values with selected input variables only, all models
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A new correlation heatmaps with only the selected
input variables are made. The correlation heatmap
for model DE is shown in Figure 5.14. Correlation Unit 052
heatmap for model NDE can be found in Appendix N.
From both heatmaps, the difference between the
maximum correlation values can be observed. With GenDEVibration 059 026 022
all input variables included in the data the maximum
absolute observed correlation is equal to 0.86 (Figure

KEM DE Vibration

Corr

KEMNDEVibration 043 -033 05

0.0
05

OuterBearingTempDE ~ 0.06 035 012 -0.19 -0

5.11). This suggests a high collinearity between the & & & &

. . . . FOS o o

input variables. Whereas, with only the selection of ara &

input variables included in the data the maximum < @%\‘\ 0@-‘“

absolute observed correlation value is equal to 0.59

(Figure 5.14). This suggests a moderate collinearity Figure 5.14: Correlation heatmap: model DE
between the variables. with selected input variables

Therefore, it can be concluded that the independence of observations assumption is met for both
models when only the selected input variables are included in the models.

5.3.6 Conclusions of model assumption checks

For both models, model DE and model NDE, the model assumptions are met. Therefore, the
predictive model for both output variables can be developed. The models are developed as linear
regression models with KEM DE Vibration and KEM NDE Vibration as output variables.

5.4 Predictive regression-based model

A predictive linear regression model is build using training data and evaluated using testing data.
The testing and training data split is made according to Table 4.2, using a random seed of 123.
First, a basic model for predicting KEM DE and KEM NDE Vibration variable is developed. Once
the model is evaluated and base performance is obtained the model improvement consisting of
different aspects of focus takes place.

Due to lagging of output variables and windowing for feature extraction, the data measurements
count is affected. The new count is presented in Table 5.5.

Table 5.5: Table 5.2: Health states count updated (seed: 123)

Health state  Index #Training #Testing

Healthy 0 373 643 124 602
Degradation 1 1692 548
Failure 2 45 14

The section is organized as follows. In section 5.4.1, additional model KP1 is introduced. This KPI
is focused on the HS prediction. Then in section 5.4.2 a base model for predicting the HS of the
KEM inner bearings is developed. The model is then analysed and improved, focusing of the
following aspects: input variables in section 5.4.3, feature extraction window size in section 5.4.4,
extracted features in section 5.4.5, flywheel speed in section 5.4.6. Next, in section 5.4.7, the
improved model is developed and analysed for selection of prediction period. Afterwards, the
improved model is tuned using hyperparameter tuning in section 5.4.8. Lastly, in section 0, the
PdM policy based on the develop predictive model is developed.
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5.4.1 Over and Under KPI

Model performance KPIs focused on the KEM DE Vibration and KEM NDE Vibration predictions
are presented in section 4.6. In addition, 2 KPIs focused on evaluating the associated HS
prediction are defined. Namely, Over and Under counter KPIs.

For the HS prediction KPIs, the HSs are assigned a numerical value. Healthy HS is defined as 0,
degraded HS as 1, and failure HS as 2. The Over KPI counts how many times a higher state than
the observed one is predicted. And the Under KPI counts how many times a lower state than the
observed one is predicted. The code for calculating the Over and Under KPI is as follows:

if (Xpredicted; > Xobserved;)

{ Counter = "Over"}

else if (Xobserved; > Xpredicted;)
{Counter = "Under"}

Over = sum(Counter = "Over")

Under = sum(Counter = "Under")

Equation 29: Over and under counter

Furthermore, when informative, a percentual evaluation is added to the Over and Under counters.
Where the percentage is calculated as Over or Counter divided by the count of possible over and
under predictions. Therefore for Over, the divisor is count of testing data from the healthy and
degraded HS. And for Under, from the degraded and failure HS. With the set seed of 123 the
divisor for the Over = 124602 + 548 = 125150, and for the Under = 548 +14 = 562 (Table 5.5).

5.4.2 Base predictive statistical model
Predictive model signifies that the output variables are lagged. Ideally, predictions in the research

can be made with lag size of approximately 6 days. This corresponds to alag L = %. Where Np
stands for number of measurements for data set D. The performance of this predictive linear
regression model with PPx6days using all original input variables can be seen in Table 5.6.

Table 5.6: Predictive linear regression model: all input variables

Measure \ ModelDE ModelINDE

R2 0.2889 0.2888
NRMSE 0.6133 0.5664
MAPE 0.3967 0.3466
Over 2 (00.002%) 0 (00.00%)
Under 429 (100.000% 555(100.00%
Measure Joint prediction

Over 2 (00.002%)
Under 562 (100.000%)

5.4.3 Model improvement: input variables

First aspect to focus on in this research when improving a predictive linear regression model, is
evaluating the effect of single input variable on the model. For this, model performance results
for removing a single input variable from the model input are developed. The results for models
with PPx6days can be seen in Table 5.7. Where the following input variables are removed from
the models, A: Outer Bearing Temp NDE, B: Outer Bearing Temp DE, C: Q1 Actions Counter, D:
Flywheel Speed, E: Gen DE Vibration, F: Gen NDE Vibration, G: KEM DE Vibration, H: KEM NDE
Vibration, [: Unit. For the model improvement, the input parameters are removed until no
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removal would result in lowering either the NRMSE KPI or MAPE KPI value, while also lowering
or at least keeping the same value for the other one of these two KPIs.

Table 5.7: Model KPIs: removal of specific input variables

ModelDE -A

R2 0.2878 | 0.2889 | 0.2819 | 0.2545 | 0.2736 | 0.2352 | 0.2860 | 0.2873 | 0.2409
NRMSE 0.6141 | 0.6133 | 0.6160 | 0.6265 | 0.6211 | 0.6377 | 0.6139 | 0.6135 | 0.6362
MAPE 0.4097 | 0.3963 | 0.3769 | 0.3955 | 0.5095 | 0.4509 | 0.4220 | 0.3942 | 0.5642
Over 2 2 1 0 3 3 0 0 3
Under 429 429 429 429 429 429 429 429 429
ModeINDE

R2 0.2859 | 0.2729 | 0.2774 | 0.2828 | 0.2703 | 0.2659 | 0.2788 | 0.2841 | 0.2392
NRMSE 0.5677 | 0.5731 | 0.5710 | 0.6585 | 0.5738 | 0.5754 | 0.5703 | 0.5680 | 0.5867
MAPE 0.3774 | 0.3550 | 0.3409 | 0.3444 | 0.3778 | 0.3839 | 0.3579 | 0.3565 | 0.4208
Over 0 0 0 0 0 0 0 0 0
Under 555 555 555 555 555 555 555 555 555

Moreover, for each combination of removal of an input variable the associated HS is depicted. The
joint Over and Under counter for all combinations can be found in Table 5.8 and Table 5.9,
respectively. The results of the joint Under counter table at this point unfortunately do not show
any difference between the different models and are all equal to 0. Meaning that all the non-
healthy HSs are not predicted as correct non-healthy HSs.

Table 5.8: Joint Over counter: removal of specific input variables

NININININININ(INININ

NINININNININININ(N

AN I I I I

OO |0 |CC|C|C Q|0 |O
WWWwWwwwjwiw|w|w

WWWWWwlw(wiw|w

OO ||| |0 |C(O|O

OO |00 |0 ||| (Oo|O

WWwWwWwjwjwiwlw|w

None 562 562 562 562 562 562 562 562 562 562
-A 562 562 562 562 562 562 562 562 562 562
-B 562 562 562 562 562 562 562 562 562 562
-C 562 562 562 562 562 562 562 562 562 562
-D 562 562 562 562 562 562 562 562 562 562
-E 562 562 562 562 562 562 562 562 562 562
-F 562 562 562 562 562 562 562 562 562 562
-G 562 562 562 562 562 562 562 562 562 562
-H 562 562 562 562 562 562 562 562 562 562
-1 562 562 562 562 562 562 562 562 562 562
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It can be seen from the model KPIs, and joint Over counter that model DE has bigger impact on
the joint HS prediction. The model DE KPIs show less accurate predictions compared to model
NDE (higher NRMSE and MAPE values). Moreover, from the joint Over counter table it can be seen
that the counter is dependent on the input variable removal of model DE, while no differences
based on model NDE input are depicted. Therefore, model DE input variables are addressed first.

The model KPIs suggest that the removal of B: Outer Bearing Temp DE input variable from the
model DE does not have large negative influence on the HS predictions. When comparing the
model KPIs of the model using all input variables, and of the model where Outer Bearing Temp
DE input variable is removed, the R2 has the same value. The same applies to the NRMSE value.
Moreover, the MAPE is lower for the model with removed Outer Bearing Temp DE input variable,
suggesting more accurate predictions. Therefore, Outer Bearing Temp DE is selected as first
input variable to be removed from the model DE.

The removal of further input variables for model DE is evaluated by performing the same KPI
measurements for model DE with already removed Outer Bearing Temp DE input variable. These
results are shown in Table 5.10. By removing any additional input variable from model DE the
NRMSE KPI performs worse. Therefore, no additional input variable is removed from model DE.
The decision process with clearer visualization can be found in Appendix O.

Table 5.10: Model DE: removed B input variable

ModelDE

R2 0.2846 | 0.2819 | 0.2524 | 0.2725| 0.2340 | 0.2848 | 0.2865 | 0.2366
NRMSE 0.6152 | 0.6161 | 0.6279 | 0.6212 | 0.6377 | 0.6145| 0.6140 | 0.6372
MAPE 0.4192 | 0.3760 | 0.4001 | 0.4369 | 0.4535| 0.4737 | 0.3930 | 0.4858
Over 2 1 2 0 3 0 0 2
Under 429 429 429 429 429 429 429 429

Next, the focus is on removal of input variables from model NDE. However, for this model any
removal of an input variable results in worse NRMSE value. Therefore, no input variables are
removed from model NDE. Again, the decision process with clearer visualization can be found in
Appendix O.

The overview of the model KPIs built with selected input variables is shown in Table 5.11. In the
end only one input variable from model DE is removed. Namely, the Outer Bearing Temp DE input

variable is removed. For model DE, no input variable is removed.

Table 5.11: Predictive linear regression model: selected input variables

Selected input variables

All input variables (original model)

Measure ModelDE ModelNDE ModelDE ModeINDE

R2 0.2889 0.2888 0.2889 0.2888
NRMSE 0.6133 0.5664 0.6133 0.5664
MAPE 0.3963 0.3466 0.3967 0.3466
Over 2 (00.002%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.000%) | 555 (100.00%) 429 (100.000%) 555 (100.00%)
Measure Joint prediction Joint prediction

Over 0 (00.00%) 2 (00.002%)
Under 562 (100.00%) 562 (100.000%)




It should be noted that the input variable I: Unit is a very important one. Removal of the Unit input
variable from either model results in the largest MAPE value increase. This means that the
predictions of a given data set are sensitive to the predictions made based on models built on data
from the different data sets. Therefore, in the current situation, to have a better prediction
performance, for a given data set a model should be built only with the data from the given data
set. However, the fact that only 2 out of 6 data sets contain no healthy HSs also influences this
outcome. Therefore, for better HS prediction performance, instead of splitting the prediction
models for each data set, more data should be obtained for model development.

5.4.4 Model analysis: feature extraction window size

The features for the model development are extracted using half a month window size (section
5.2.1). This is based on the feature extraction time when it comes to extracting features from all
data sets with measurements form a half year time period. In this section the effect of using
different window sizes for the feature extraction is analysed. For this, a simple model for data set
6 and 2 is developed. The data sets are selected as they should provide good representation of the
different data sets. Data set 6 is a healthy data set and data set 2 contains all 3 HSs. The data sets
come from units from different customer sites. The model is developed using all extracted
features as input variables. The model KPIs using 1 week, 2 week (a half a month), and 4 week (a
month) window sizes are presented in Table 5.12.

Table 5.12: Statistical model: varied window size for feature extraction

Window size (W)

ModeINDE 1 week YAV 4 weeks
R2 0.5564 0.6312 0.6601
NRMSE 0.4600 0.4149 0.4134
MAPE - - -

Over 0 0 0

Under 11 9 9
ModeINDE 1 week 2 weeks 4 weeks
R2 0.5160 0.5999 0.6293
NRMSE 0.5213 0.4698 0.4701
MAPE - - -

Over 0 0 0

Under 19 17 17

Joint 1 week 2 weeks 4 weeks
Over 0 0 0

Under 19 17 17

The statistical regression-based model results show that an increase in window size improves the
model performance. The model better understands the data (increase in R2) and predicts the
output variable with smaller average error (lower NRMSE). The increase of window size from 1
to 2+ week furthermore decreases the Over and Under counters. Therefore, for the statistical
regression based model, selecting a larger window size (W=4 weeks) than the one used in the
research (W=2 weeks) could improve the model performance. Nevertheless, due to the extraction
time needed to extract features, the 2 week window size for the model development is kept.

5.4.5 Model improvement: extracted features

The model performance of model built using all input variables with addition of extracted
features as input variables is evaluated. All original input variables are included. Therefore, the
model performance is compared to the one obtained in Table 5.6. First, a model with adding all
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extracted features is developed. The results of this model alongside the result of the original
model can be seen in Table 5.13. The results for the model with all added extracted features
performs better for all KPIs except for MAPE. The value of MAPE is too high. Therefore, same
approach as with input variables is applied next, removing the least useful extracted feature from
the model one by one, until all KPIs perform better than the ones of the original model.

Table 5.13: Predictive linear regression model: all extracted features

All extracted features No extracted features (original model)
Measure ModelDE ModelNDE ModelDE ModeINDE
R2 0.3140 0.3344 0.2889 0.2888
NRMSE 0.6015 0.5465 0.6133 0.5664
MAPE 0.4029 0.9263 0.3963 0.3466
Over 0 (00.00%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.00% 555 (100.00% 429 (100.000% 555 (100.00%
Measure Joint prediction Joint prediction
Over 0 (00.00%) 2 (00.002%)
Under 562 (100.00%) 562 (100.000%)

The model DE and model NDE performance KPIs when single extracted feature is removed as an
input variable are presented in Table 5.14 and Table 5.15, respectively. Furthermore, the joint
Over and Under counters for the associated HS prediction are presented in Table 5.16.

Table 5.14: Model DE: addition of specific extracted features

ModelDE -Mean -Std -Peak -Var -RMS -SF |
R2 0.3140 0.3133 0.3140 0.3138 0.3139 0.3117
NRMSE 0.6015 0.6019 0.6015 0.6016 0.6015 0.6024
MAPE 0.3910 0.3873 0.3924 0.4176 0.3965 0.3878
Over 0 0 0 0 0 0
Under 429 429 429 429 429 429
ModelDE -MF ' -E -Crest -Skew -Kurt

R2 0.3140 0.3079 0.3140 0.3119 0.3115

NRMSE 0.6015 0.6043 0.6015 0.6024 0.6025

MAPE 0.3911 0.3997 0.4094 0.4552 0.4047

Over 0 0 0 0 0

Under 429 429 429 429 429

Table 5.15: Model NDE: addition of specific extracted features

ModelNDE -Mean -Std

R? 0.3318 0.3338 0.3311 0.3328 0.3318 0.3321
NRMSE 0.5476 0.5467 0.5480 0.5471 0.5476 0.5473
MAPE 0.5295 0.5074 0.5400 0.7330 0.4697 0.4750
Over 0 0 0 0 0 0
Under 555 555 555 555 555 555
ModeINDE -MF ‘ -E -Crest -Skew -Kurt

R? 0.3344 0.3282 0.3340 0.3318 0.3330

NRMSE 0.5465 0.5494 0.5465 0.5476 0.5471

MAPE 0.7010 0.4582 0.6619 0.4692 0.5352

Over 0 0 0 0 0

Under 555 555 555 555 555
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Table 5.16: Joint Over and Under counter: addition of specific extracted feature

Measure -Mean -Std -Peak -Var -RMS -SF

Over 0 0 0 0 0 0
Under 562 562 562 562 562 562
Measure \ -MF ‘ -E -Crest -Skew -Kurt

Over 0 0 0 0 0

Under 562 562 562 562 562

The results from the different models unfortunately still show the inability to predict the non-
healthy HSs. This is depicted by the individual and joint Under counters being equal to 100% of
the possible under predictions. Therefore, the choice of feature of removal is focused on the model
KPIs and joint Over counters.

The first extracted feature to be removed as input variable from the models is MF. This
decision is made based on the KPI results. When removing MF from both model DE and NDE, the
R2?is the same as before, and the value of NRMSE and MAPE is either the same or lower. Therefore,
no KPI shows worse performance, and some KPIs do show improvement.

To depict whether additional extracted feature should be removed from the models, the same
KPIs are developed for models with already removed MF extracted feature. These results and
removal selection process can be seen in Appendix P. In the end, 4 extracted features are
removed as input variables: MF, Mean, Crest, and Peak. The KPIs of models with these extracted
features removed as input variables, alongside the original models KPIs can be seen in Table 5.17.

Table 5.17: Predictive linear regression model: selected extracted features

Selected extracted features No extracted features (original model)

Measure ModelDE ModelNDE ModelDE ModelNDE

R2 0.3138 0.3285 0.2889 0.2888
NRMSE 0.6016 0.5490 0.6133 0.5664
MAPE 0.3900 0.3403 0.3967 0.3466
Over 0 (00.00%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.000% 555 (100.00% 429 (100.000% 555 (100.00%

Measure Joint prediction Joint prediction
Over 0 (00.00%) 2 (00.002%)
Under 562 (100.00%) 562 (100.000%)

5.4.6 Model improvement: flywheel speed

Another aspect to focus on is the Flywheel Speed input variable. It has been noted for a reason
during the VIF input variable iterative process that Flywheel Speed is the last removed input
variable. The Flywheel Speed has either value of 0, or operates at ~ 4000 rpm. With this huge
difference, the changes in speed during operation might become negligible. Therefore, model
performance for data during time when Flywheel is in operation (FWS>0) and when Flywheel is
not in operation (FWS=0) are evaluated. These results are presented in Table 5.18.
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Table 5.18: Model DE and NDE: flywheel in and not in operation

Measure o
ModelDE  ModeINDE | ModelDE  ModeINDE ModelDE  ModelNDE |
R2 0.1513 0.1540 0.3603 0.4635 0.2889 0.2888
NRMSE 0.5604 0.5083 1.3871 1.1725 0.6133 0.5664
MAPE 0.2918 0.2276 3.0390 0.9913 0.3967 0.3466
Over 0 0 0 1 2 0
(00.00%) | (00.00%) | (00.00%) | (00.005%) | (0.002%) | (00.00%)
Under 429 537 10 18 429 555
(100.00%) | (100.00%) | (100.00%) | (100.000%) | (100.000%) | (100.005)

It can be seen that for FWS>0 the model has low R?, however makes more accurate predictions
compared to the model with no split of FWS. On the other hand, for FWS=0 model, the R2 value is
higher, however the prediction are less accurate. It is therefore proposed to develop a model
where for FWS>0 predictions based on model developed for FWS>0 model are made. And for
FWS=0, predictions based on no split (original) model are developed. The KPIs of the FWS split
model, alongside the original model with no FWS split, are shown in Table 5.17.

Table 5.19: Predictive linear regression model: FWS split

FWS split No FWS spit (original model)

Measure ModelDE ModelNDE ModelDE ModeINDE

R2 0.2907 0.2953 0.2889 0.2888
NRMSE 0.6126 0.5639 0.6133 0.5664
MAPE 0.3946 0.3437 0.3967 0.3466
Over 2 (00.002%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.000%) | 555 (100.00%) 429 (100.000%) 555 (100.00%)
Measure Joint prediction Joint prediction

Over 2 (00.002%) 2 (00.002%)
Under 562 (100.000%) 562 (100.000%)

The KPIs of model with separate model for FWS > 0 and for FWS = 0 measurements outperforms
the original model where no FWS split is made. Where FWS split model uses input data from FWS
> 0 measurements to make predictions for when flywheel is in operation (FWS>0), and data from
all measurements to make predictions for when flywheel is not in operation (FWS=0).

5.4.7 Model analysis: prediction period

Until now the prediction of non-healthy HSs has not been successful. Therefore, the selection of
PP is analysed. The larger the PP, the further into future the predictions are made. The predictions
are then also less accurate. The current selection of PP is approximately equal to 6 days. The
model performance results for PPx6 days, PP~3 days, PPx1 days are shown in Table 5.20.

Table 5.20: Predictive linear regression model: prediction period

ModelDE PPx~6days PPx3 days PPx1day

R2 0.3155 0.3457 0.4277
NRMSE 0.6013 0.5840 0.5433
MAPE 0.3873 0.4470 0.3981
Over 1 (00.0008%) 2 (00.002%) 4 (00.003%)
Under 429 (100.0000%) 434 (100.000%) 379 (100.000%)
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ModeINDE PPx6days PP=x3 days PPx1day

R2 0.3333 0.3569 0.4510
NRMSE 0.5471 0.5448 0.4952
MAPE 0.3368 0.3584 0.3464
Over 0(00.00%) 0 (00.00%) 5 (00.004%)
Under 555 (100.00%) 571 (100.00%) 533 (100.000%)
Joint PPx6days PP=x3 days PPx1da

Over 1 (00.0008%) 2 (00.002%) 6 (00.005%)
Under 562 (100.0000%) 575 (100.00%) 541 (100.000%)

When it comes to the model KPIs, the model with PPx1 day shows the best performance (highest
R?, low NRMSE and MAPE). However, when it comes to actually predicting the HS of the KEM
inner bearings, the model with PP~3 days shows the best results. For the research the PPx6 days
is kept. This is due to the fact that this time period provides enough time for maintenance
planning. However, HPP should consider whether for selected customer sites or components a
shorter PP, PP=3 days, could be suitable for their maintenance planning.

5.4.8 Model improvement: hyperparameter tuning
The Ridge, Lasso, and Elastic net regressions models are developed. The models are developed
using the improved model input variables. Using the standard varied fold size of the k-fold cross-
validation = 10. The model results for the different regression models in comparison to the
improved linear regression model can be seen in Table 5.21.

Table 5.21: Predictive linear regression model: ridge regression

ModelDE Linear Ridge Lasso Elastic net
regression regression regression 0.5 Ridge, 0.5 Lasso

R2 0.3155 0.3107 0.3155 0.3155
NRMSE 0.6013 0.6032 0.6013 0.6013
MAPE 0.3873 0.3933 0.3901 0.3918
Over 1 0 1 1
Under 429 429 429 429
ModelNDE Ridge Lasso Elastic net

R? 0.3333 0.3244 0.3331 0.3330
NRMSE 0.5471 0.5510 0.5473 0.5473
MAPE 0.3368 0.3301 0.3356 0.3357
Over 0 0 0 0
Under 555 555 555 555
Joint Ridge Lasso Elastic net

Over 1 0 1 1
Under 562 562 562 562

Unfortunately, only the MAPE KPI for model NDE is a visible improvement. For the Ridge
regression, also the Over counter reduces. However, in general the different regression models
do not show better model performance. Therefore, ordinary linear regression is selected for the
final predictive model.

5.4.9 Final predictive statistical model
The final predictive statistical model is developed by applying the improvements depicted during
the improvement sections. The overview of the final model development is visualized in Figure



5.15. Moreover, the KPIs of the final model in comparison to the KPIs of the original model can be
seen in Table 5.22.

Table 5.22: Improved predictive linear regression model KPIs

All improvements

Original model

Measure ModelDE ModelNDE ModelDE ModeINDE

R? 0.3155 0.3333 0.2889 0.2888
NRMSE 0.6013 0.5471 0.6133 0.5664
MAPE 0.3873 0.3368 0.3967 0.3466
Over 1 (00.0008%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.0000%) | 555 (100.00%) 429 (100.000%) 555 (100.00%)
Measure Joint prediction Joint prediction

Over 1 (00.0008%) 2 (00.002%)
Under 562 (100.0000%) 562 (100.000%)

ModelDE ModeINDE ModelDEO ModeINDEO

OuterBearingTempNDE
Q1ActionsCounter
FlywheelSpeed
GenDEVibration
GenNDEVibration
KEMDEVibration
KEMNDEVibration

Input variables

Input variables

Unit OuterBearingTempNDE Unit
Sid_DE QuterBearingTempDE Std_NDE
Var_DE Q1ActionsCounter Var_NDE
RMS_DE FlywheelSpeed RMS_NDE
SF_DE GenDEVibration SF_NDE
E_DE GenNDEVibration E_MNDE
Skew_DE KEMDEVibration Skew_NDE
Kurt_DE KEMMDEVibration Kurt_NDE

Input variables

Same as modelDE
for measurements withFWS = 0

Qutput variable

Same as modelDE
for measurements withFWS = 0

Input variables

Same as modelNDE
for measurements withFWS = 0

OQutput variable

Same as modelNDE
for measurements withFWS = 0

Qutput variable

LaggedKEMDEVibration

Qutput variable

LaggedKEMNDEVibration

ModelDE

|

ModelDE

input variables

output variable
KEMDEVibration
prediction

|

ModelDED

output variable

|
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ModelNDE

ModelNDE
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Figure 5.15: Improved predictive linear regression statistical model

It can be concluded that the final model outperforms the original model in all the model KPIs.
However, the joint prediction of the KEM inner bearing HS only improves by predicting 1 less
Over prediction. While all possible Under predictions are still under predicted. Meaning the
model is not able to predict the non-healthy HSs.

5.5 Tree-based data driven model
Unfortunately, the statistical regression based model is not able to make valid HS predictions. A
ML thee-based model is developed in this section. First, using the original input variables, and
second, the improved input variables. The KPIs of these models alongside the KPIs of the
statistical models are presented in Table 5.23.
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Table 5.23: Predictive tree-based ML model

R? ) 0.2889 03155 | 0.7568 0.9534

NRMSE 0.6133 0.6013 0.4078 0.1749
MAPE 0.3967 0.3873 - -
Over 2 (00.002%) 1 (00.0008%) 59 (00.05%) 10 (00.01%)
Under 429 (100.000%) | 429 (100.0000%) 278 (64.80%) 27 (06.29%)
ModeINDE

R2 0.2888 0.3333 0.7485 0.9708
NRMSE 0.5664 0.5471 0.3814 0.1249
MAPE 0.3466 0.3368 - -
Over 0 (00.00%) 0 (00.00%) 195 (00.16%) 43 (00.03%)
Under 555 (100.00%) 555 (100.00%) 218 (39.28%) 21 (03.78%)
Joint

Over 2 (00.002%) 1 (00.0008%) 229 (00.18%) 47 (00.03%)
Under 562 (100.000%) | 562 (100.0000%) 191 (33.99%) 24 (04.27%)

The model performance KPIs for the ML models outperform the results of the statistical models.
The ML models are able to make valid HS predictions. The number of Over predictions has
increased compared to the statistical models. However, the number of Under predictions has
finally decreased. Namely, approximately 95% of the non-healthy HSs are correctly predicted.
While only 0.03% of the healthy or degraded HSs are over predicted. The tree-based model for
model DE for FWS = 0 can be seen in Figure 5.16.
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Figure 5.16: Tree-based model DE for FWS=0

Unfortunately, due to the size of the tree, the tree splits are not readable in the figure. Moreover,
due to the size of the tree, the corresponding tree splits are not analysed in the research. The
visualized model DE, FWS=0 has 346 terminal nodes. The variable importance for each model is
depicted in Figure 5.17.
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Figure 5.17: Tree-based model: variable importance

It can be seen from the variance importance for each model that the extracted features are the
most important input variables. Moreover, for each model, the Outer Bearing Temp DE and Outer
Bearing Temp NDE (for NDE models) input variables are within 3 least important variables. The
Flywheel Speed input variable is more important for the FWS>0 models. Moreover, it can be seen
that the Flywheel Speed input variable is more important for the DE models. These observations
suggest that the statistical model improvements have had a valuable impact on the final HS
predictive model.

To further analyse the data driven tree-based predictive model, the same aspects of analysis as
were applied to the statistical model are evaluated. Namely, in section 5.5.1 the feature extraction
window size is analysed. In section 5.5.2, the prediction period is analysed.

5.5.1 Model analysis: feature extraction window size
The same window size for feature extraction analysis as the one for the statistical model is
performed. Therefore, the analysis is performed for data sets 6 and 2. For window sizes of 1 week,

2 weeks (half a month), and 4 weeks (a month). The model results of these models are shown in
Table 5.24.

Table 5.24: Data driven model: varied window size for feature extraction

Window size (W)

ModeINDE 1 week 2 weeks 4 weeks

R? 0.9737 0.9806 0.9730
NRMSE 0.1418 0.1017 0.1470
MAPE - - -
Over 0 1 4
Under 3 0 4
ModeINDE 1 week 2 weeks 4 weeks

R? 0.9678 0.9775 0.9611
NRMSE 0.1624 0.1238 0.1872
MAPE - - -
Over 5 0 2
Under 2 7 9
Joint 1 week 2 weeks 4 weeks

Over 5 0 5
Under 2 7 7

61



The data driven model results show the best performance for the window size of 2 weeks. The 2
week window size model understands the data the best from the 3 models (highest R2). Moreover,
it shows the lowest average prediction error (lowest NRMSE). Similarly, it shows the best
performance when it comes to the Over and Under counters. Compared to the 4 week window
size model, the Under counter shows the same result. However, the Over counter decreases.
Compared to the 1 week window size model the count of Over and Under counters together is the
same. However, the 2 week window size model shows lower number of Over counter, which is a
more important aspect. This is due to the fact that providing maintenance for components when
they are not in a need for maintenance is not desirable.

5.5.2 Model analysis: prediction period

The same prediction period analysis as the one for the statistical model is performed. Therefore,
the analysis is performed on the fully developed data driven model. Using prediction periods of
approximately 6 days, 3 days, and 1 day. The results from the 3 models are show in Table 5.25.

Table 5.25: Predictive tree based model: prediction period

ModelDE PPx6days PPx3 days PPx1day

R2 0.9534 0.9521 0.9503
NRMSE 0.1749 0.1723 0.1880
MAPE - - -
Over 10 (00.01%) 20 (00.02%) 28 (00.02%)
Under 27 (06.29%) 21 (04.84%) 29 (07.65%)

odeIND PPx~6da PP da PPx1da

R2 0.9708 0.9750 0.9766
NRMSE 0.1249 0.1378 0.1591
MAPE - - -
Over 43 (00.03%) 17 (00.01%) 30 (00.02%)
Under 21 (03.78% 57 (09.98% 34 (06.38%

PPx6days PP=3 days
Over 47 (00.03%) 23 (00.02%) 42 (00.03%)
Under 24 (04.27%) 59 (10.26%) 28 (05.18%)

It can be seen from the results that none of the 3 PP models clearly outperforms the other models.
For easier depiction of performance comparison, for each KPI the best result is shown with a
green cell. The model with PPx1day does not show the best performing KPIs except for one KPI.
For the PPx6 days and PP~ 3 days it cannot be concluded which model performs better. Model
comparison

The statistical predictive model has been compared to the ML predictive model in the previous
section. The KPIs for both models using original and improved input variables are presented in
Table 5.23. The ML model with improved input variables is able to make valid HS predictions.
With overestimating 0.03% of HSs and underestimating 4.27% of the HSs. This model is selected
as the final predictive model used as basis for the PAM policy implementation for HPP’s UPS
system’s KEM inner bearings.
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6 PdM policy

In this section the PdM policy is defined. The PdM policy HS predictions are defined as follows.
Given a selected significance level a, a prediction is final when its lower bound (LB) and upper
bound (UB) predictions result in the same HS prediction. Otherwise, it cannot be concluded with
the given certainty what the HS prediction is. In that case, the lowest HS prediction is selected as
the final prediction. To demonstrate, the HS predictions for a section of testing data, with selected
significance level of a=0.1 (90%PI), are visualized in Figure 6.1.

Tree-based model: HS prediction (90% PI)
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Figure 6.1: PdM policy 90% PI [90300:90500]

The measurements for which the dark grey, grey, and orange colours overlap signify the same HS
prediction for LB, UB, and direct HS prediction. This HS prediction is then the final HS prediction.
The measurements where all 3 of the predictions don’t overlap result in the LB HS prediction
(dark grey colour).

The PdM policy is then defined as follows. When final prediction is a healthy HS, no maintenance
action is taken. When final prediction is a degraded HS, a maintenance plan for KEM inner bearing
repair is made. When final prediction is a failure HS, a maintenance plan for KEM inner bearing
replacement is made.

There is 1 input parameter for the PdM policy, the selection of significance level a. The effect of
the significance level o onto the PdM policy is addresses in section 6.1. Moreover, the split
according to which the different HSs are defined also affects the defined PdM policy. The effect of
application of different HS splits onto the PdM policy is addressed in section 6.2.

6.1 Significance level a

The selection of a is an important input parameter for the PdM policy. With lower significance
level, the certainty of the prediction is higher. However, on the other hand, it results into wider
range of possible values that the prediction coming from a given terminal node can take. In some
cases, it might be that the range of values ranges from healthy to failure HS, therefore, it cannot
be predicted with the given certainty what the HS actually is. There are 346 terminal nodes for
the model DE, FWS=0 of the selected predictive model. Selected section of terminal nodes for
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significance level a=0.1 (90%PI) and a=0.25 (75%PI) are visualized in Figure 6.2 and Figure 6.3,
respectively.

Model DE, FWS=0: 90% PI
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Figure 6.2: Terminal nodes: model DE, FWS=0 (90% PI)

It can be seen from the figures that with a lower prediction certainty the range of values a
prediction can take in each terminal node is narrower. For example, when a prediction results in
terminal node 262, with a significance level a=0.1 the prediction is with a 90% certainty either
healthy or degraded HS. However, with a significance level a=0.25 the prediction is with a 75%

certainty a healthy HS.

This is a trade-off that HPP needs to take into account when implementing a PdM policy for
maintenance planning for their customers.

Model DE, FWS=0: 75% PI
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Figure 6.3: Terminal nodes: model DE, FWS=0 (75% PI)

6.2 HS splits

The split of data into healthy, degraded and failure is defined by the current policies applied at
HPP. The current categorization of HS of the KEM inner bearings at HPP is presented in Table 6.1.
Where A stands for AND operator, V stands for OR operator and the unit of the numerical values
is mm/s. For simplicity, the KEM DE Vibration is referred to as DE and KEM NDE Vibration as

NDE.
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Table 6.1: Health states split

Health state Split (X=9, Y=20

Healthy (DE<X) A(NDE <X)
Degraded [X<DE<Y)A(NDE<Y)]VI(DE<Y)A(X<NDE<Y)]
Failure (Y<DE) V (Y<NDE)

The currently defined HSs are present at HPP already for a long time and are currently a standard
when it comes to monitoring the condition of the KEM inner bearings. Since the bearings are
replaced before actual failure it is difficult to depict whether these HS splits are representative of
the condition of the bearings. However, the effect of defining different HS splits onto the PdM
policy performance can be analysed.

To evaluate the effect of the HS split onto the PdM policy, different splits for the HSs are defined
for the PdM policy and evaluated. The HS split for observed HSs is kept the same. However, the
HS split for the predicted HSs is adjusted. The policy is evaluated using the Over and Under
counter KPI. Where with an Over prediction situation it is predicted that the KEM inner bearing
should be repaired when there is no need for repair or should be replaced when only repair is
needed. On the other hand, with an Under prediction situation it is not predicted that the KEM
inner bearing needs repair when it actually needs repair, or it is not predicted that the bearing
needs replacement when it needs replacement.

The new splits are defined using the same approach, but with new set threshold values X and Y
(Table 6.1). The PdM policy results for different HS splits are presented in Table 6.2. The policies
are implemented using a significance level a=0.1.

Table 6.2: Predictive tree based model: varied HS split

Measure \ X=9,Y=20 X=7,Y=20 X=11,Y=20 X=9,Y=18 X=9,Y=22
Over 1 147 0 1 1
(00.0008%) (00.1175%) (00.0000%) (00.0008%) (00.0008%)
Under 93 25 255 93 87
(16.5480%) (4.4484%) (45.3767%) (16.5480%) (15.4804%)
Good 125070 124992 124909 125070 125076
(99.9249%) (99.8626%) (99.7963%) (99.9249%) (99.9297%)

It can be concluded from the results that increasing the degradation threshold (X) results in less
Over predictions and more Under predictions. Overall, less correct predictions are made.
However, since the number of Over predictions equals 0 this HS split for predictions actually
provides better results for the PAM policy. As this new maintenance policy does not have a
negative effect compared to the current policy. Only a positive effect of correctly predicting
around 55% of the non-healthy HSs.

Furthermore, when it comes to the failure threshold (Y), increasing the threshold results in less
Under predictions. Meaning more non-healthy HSs are correctly predicted.

Therefore, the HS split for predictions with X=11 and Y=22 is selected as the one for the final PAM
policy.
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7 Results

In this section the research results are presented. First, in section 7.1, the PdM policy results
based on tree-based ML predictive model using the improved input variables, and adjusted HS
splits, are presented. Next, in section 7.2, the PdM policy is validated using the last data set (data
set 7), which has not been used before in the research. Lastly, in section 7.3, the evaluation of the
PdM policy and its value for HPP are discussed.

7.1 PdM policy implementation

The PdM policy is implemented using the training data sets and evaluated using the testing data
sets for 70%, 80%, and 90% PI. The overview of Over, Under, and Good counters for the different
Pls can be seen in Table 7.1. The Good counter represents the number of correct maintenance
action predictions.

Table 7.1: PdM policy: testing data set

Measure 70% PI 80% PI 90% PI |
Over 1 (00.0008%) 0 (00.0000%) 0 (00.0000%)
Under 152 (27.0463%) 162 (28.8256%) 255 (45.3737%)
Good 125 011 (99.8778%) | 125002 (99.8706%) | 124 909 (99.7963%)

It can be seen from the results that with lower prediction certainty more non-healthy HS are
predicted. Which is the aim of the PdM policy. However, at some point Over predictions start to
occur. This in a negative side of the proposed PdM policy as with the current maintenance policy
at HPP no necessary maintenance occurs. To evaluate the best PAM policy, the norm and reality
for each Pl is calculated. Using t. = 10, t, = 5,and P = 50 (Equation 1). These results are shown
in Table 7.2.

Table 7.2: PdM policy reality and norm results

PI \ Reality Norm

70% 10*562=5620 10*(152)+5*(562-152+1*50)=3820
80% 10*562=5620 10*(162)+5*(562-162)=3620
90% 10*562=5620 10*(255)+5*%(562-255)=4085

The reality and norm represent the length of unplanned downtime. Therefore, lower number
represents a better result. Therefore, for all Pls, the core problem has been solved as the norms
are lower than the realities.

Further, it can be concluded that for the test data set, the 80% PI shows better PdM policy
performance compared to the 90% PI. The comparison between 70% PI and 80% Pl is dependent
on the penalty P. However, with the strong desire to avoid Over predictions, it is decided to select
a penalty such that the 80% PI show better results when it comes to the norm of the core problem.

Therefore, the overall results for best performing 80% PI PdM policy are visualized in Figure 7.1.
With one zoomed in visualization shown in Figure 7.2. Visualizations for the other Pls can be
found in Appendix Q. The time steps are not in order of time since the testing set consists of
random split of data points.
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Figure 7.1: PdM policy: testing data set (80% PI)

The results show valuable predictions. Where only 28.83% of the non-healthy HSs are not
correctly predicted. Meaning, the model correctly predicts 71.17% of the non-healthy HSs.
Overall, 99.87% of the instances are correctly predicted. And no Over predictions are made.

PdM policy: 80% PI
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Figure 7.2: PdM policy: testing data set (80% PI) [54850,54950]

It can be seen that for each of the instances when the repair maintenance action is proposed, the
observed HS is either degraded or failure HS. Therefore, the PdAM policy does improve the current
maintenance policy at HPP. Since several non-healthy HSs are predicted correctly, approximately
6 days in advance. Moreover, for no instances, it is predicted that a maintenance action for healthy
state, or a replace maintenance action for degraded HS are predicted.

7.2 PdM policy validation

So far, the PdM policy has been evaluated on a testing data set, which has already been included
during the predictive model and subsequent PdM policy development. Therefore, in order to
validate the PdM policy, the validation set is used to evaluate the proposed maintenance actions.
This is done by using the already developed PdM policy, based on an already developed predictive
model.
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The PdM policy predictions for the validation data set with a significance level of a=0.2 are
visualized in Figure 7.3. The time steps are in order of time. Therefore, the figure represents a
time series data for the validation data set.

PdM policy: 80% PI (Validation: data set7)
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Figure 7.3: PdM policy: validation set (80% PI)

It can be seen from the figure that the PdM policy does not provide valuable predictions. For none
of the non-healthy HSs a maintenance action is proposed. Maintenance actions are proposed with
a certain delay. Therefore, it cannot be predicted 6 days in advance that a maintenance action is
needed. The KPIs for the PdM policy for the validation data set are presented in Table 7.3.

Table 7.3: PdM policy: validation set

Measure 70% PI 80% PI 90% PI |
Over 86 (00.1150%) 86 (00.1150%) 86 (00.1150%)
Under 64 (100.0000%) 64 (100.0000%) 64 (100.0000%)
Good 74 673 (99.7995%) | 74 673 (99.7995%) | 74 673 (99.7995%)

Unfortunately, the results support the visualization. None of the non-healthy HSs have a predicted
need for a maintenance action (100% Under). This means that the proposed PdM policy based on
the developed underlying predictive model cannot be validated. It is expected that the main
reason for the inability to validate the PdM policy is the varied step size between PMSMTs. This
aspect directly influences the extracted features, which are significant input variables used for
the development of the underlying predictive model.

7.3 Value of the PdM policy for HPP

For HPP the value of the PdM policy is not monetary. The value of the PdM policy is for providing
better insight for the customers into the HS of the UPS system and its components. For providing
value to the customer, it is important to validate the model such that the model does not provide
false non-healthy HS predictions. When the model does not provide false non-healthy HS
predictions it can only be beneficial. Whenever it correctly predicts a non-healthy HS a given
unplanned downtime period is reduced. To provide a high certainty of correctness of non-healthy
HS prediction, the PdM policy is developed such that for a given certainty prediction, both lower
bound and upper bound of the prediction result in the same HS prediction. Ensuring the customer
does not need to plan maintenance for a maintenance action that would not be necessary.
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8 Conclusion

The trends in industry show that companies are shifting towards implementation of data driven
Al algorithms to guide their maintenance processes. However, implementation of such algorithms
is not always straightforward. The proposed PdM policy in the research is a good basis for a future
development of a PdM policy at HPP. Although the developed predictive model used as a basis for
the proposed PdM policy was not successfully validated, it serves as a good basis for further
development of such predictive model.

The research highlights the importance of development of statistical models. Prior to the
implementation of more advanced, in this case, data driven ML methods, for development of
predictive models. Through the development of the statistical model the effect of individual input
variables onto the model prediction performance was evaluated. In the research it was concluded
to only remove one such input variable due to the decision of not allowing for removal when
decrease in NRMSE KPI was observed.

Moreover, the research provides valuable insights into developing prediction models for
predicting the future HS of components based on vibration data. It was clearly demonstrated that
in order to gain valuable information for developing either statistical or data driven predictive
models using vibration data, feature extraction is a critical aspect.

Another interesting finding was the effect of the flywheel speed on the prediction model
performance. [t was demonstrated that for the instances when flywheel was operational the input
data without instances when flywheel was not operation provided better model results.
Therefore, it was decided to only use data when flywheel was in operation to develop a model for
making predictions for instances when flywheel is in operation. However, it was also later noted
that for the KEM inner bearings on the driving end, the changes in the speed of the flywheel have
a bigger impact on the prediction value. Whereas for the KEM inner bearings on the non-driving
end the difference was not that significant.
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9 Discussion and further work

The PdM policy in the research was not validated. The main aspect to focus on for further
development, which is expected to have a large effect onto the underlying model performance is
step size between PMSMTs. In the research the step size is taken as equal along the 6 month
period of PMSMTs. However, this is far from reality. The adjustment of PMSMTs into ones with
constant equal time steps has not been implemented in the research. The time period for the
research did not allow for such adjustment for all the data used in the research. It is strongly
believed that this adjustment will have a large impact on the performance of the underlying
predictive model, and subsequently also on the proposed PdM policy.

The conclusions of the research open up areas for further work towards developing a suitable
predictive models and PdM policy for predicting the KEM inner bearings at HPP. First, related to
the input variables. The number of input variables affects the number of sensors / measurements
needed to be monitored on the UPS system. Therefore, it is proposed for further work to look into
further removal of the input variables. Similarly, the computation of extracted features affects the
software ability of evaluating the PdM policy. Therefore, it is proposed for future development of
the predictive model to further look into the value of different extracted features. Both of these
future work improvements can result in a less robust underlying predictive model. Moreover,
with regard to the effect of operationality of the flywheel, for the future it is proposed to further
look into the difference between the Model DE and Model NDE.

Furthermore, the PdM policy is implemented based on 6 day prediction period model with a given
certainty. In a future more robust model with different prediction periods could be developed.
Where a maintenance action with prediction period of 6 days is made and either revoked or
further validated with prediction period of 3 days.

Following the proposed future work improvements, the improved PdM policy should be
validated. Following a successful validation, the PdM policy can be implemented in the UPS
software at the customer sites. The PdM policy can be executed using the direct PMSMTSs from the
UPS. The PdM policy can be implemented for any UPS system with adjustments made based on
varied PMSMT name sets. Then the PdM policy proposed maintenance actions can be used to
improve the maintenance service of HPP and reduce the unplanned downtime of the UPS units.
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12 Appendices
Appendix A HMI panel layout of UPC for PP2700

| Failure
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Buzzer off
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Operation

The UPS Unit switches are used to start the UPS unit by selecting ON and stop the UPS unit by
selecting OFF. The NB Load switches put the unit into a UPS mode when UPS is selected. And put
the unit into bypass mode when Bypass is selected. Similarly, the SB Load puts the unit into
automatic mode by selecting Auto and into utility mode by selecting Utility. For P2600 the diesel
and system test switches are located on the service screen tab. Auto puts the unit into automatic
UPS mode, Diesel test stars the diesel test, and System test switch starts the system test on the
UPS unit.
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Appendix B Maintenance activities
Following figures show extract from list of tasks that need to be carried out during the scheduled
maintenance intervals and a list of remarks that are included for some of the maintenance tasks.

3. Kinetic Energy Module
3.1 Check of l'nfu!atian resistar_rce driving X 3)
motor, main rotor and exciter
3.2 Check of air flow restrictions X X
3.3 Inspection of driving motor X
3.4 Inspection of connections X
3.5 Inspection of earthing brush X X
3.6 Inspection brushless exciter X
3.7 Check of running noise X X
3.8 Check of bearing temperature X X
3.9 Replacement of earthing brush X
3.10 Check Re-lubrication system X X
3.11  Replace rotary joint relube system X
3.12  Check inner rotor speed X X
4. Generator
4.1 Check insulation resistance X 3)
4.2 Check air flow restrictions X X
4.3 Inspection of connections X
4.4 Inspection of earthing brush X X
4.5 Replacement of earthing brushes X
4.6 Check running noise X X
4.7 Check bearing temperature X X
4.8 Re-lubrication X X 4
4.9 Check Re-lubrication system X X 6)
4.10  Check Electrical Fan external cooling X X
1) D = check during diesel test; 5 = check during system test
2) Depending on number of running hours
3) Depending on environmental conditions / contact helpdesk if required
4) Re-lubrication intervals may differ from this schedule depending on the
applicable mains frequency and/or type of machines used.
Re-lubrication intervals must always be in accordance with the re-lubrication
plate on the machine
5) Depending on the type of battery
6) Only applicable if re-lubrication system is mounted on the generator
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Appendix C Maintenance logbook

The following figures show the front page and extracts from the logbook for recording the results
of the weekly and monthly checks..

3 HITEC
Power CP 9803-01 A
Protection

Distribution level: 5

Logbook Weekly and Monthly maintenance Power PRO2700

Customer

System

Location

Project number

Unit number :

Unit power rating : NB SB kVA
Voltage : v

Frequency : Hz

This logbook will help you to carry out the "Weekly & monthly Maintenance
Instructions” per PowerPRO2700 unit, in accordance with the "User Guide”
and the "Service Handbook" in an efficient and logical sequence, viz.:

- utility mode
- diesel test
- system test

Please bear in mind that you are working on an unit which is significant to
your company. Therefore, before starting checks and/or maintenance, read
the "User Guide” or the "Service Manual”.

Pay special attention to chapter "Safe and correct use of the diesel UPS
system”.

Attention:

If measured values are not within the range as stated in the "User Guide" or
the "Service Handbook" please contact your local service provider.

References:
CP 9803 Standard Maintenance Schedule PowerPROZ2700 Installations
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Logbook Weekly and

Monthly Maintenance

Single Operation

Utility mode - single Power PRO2700

Unit no.: Year: Week I I I I I
1. Electrical panels

No alarms/messages (Fill-in remarks below if not OK) ok | 1 | 1 1

Utility measurement

Utility voltage W

Utility current A

Utility frequency Hz

ME load measurement

Output voltage W

Qutput current A

Output frequency Hz

ME output load (real) KW

MB output load (reactive) kvar

ME output load (apparent) KVA

5B load measure

ment (if applicable)

5B output load (real) KW

5B output load (a|

pparent) KVA

UPS measurement

Generator voltage v

Generator curren

t A

Logbook Weekly and

Generator frequency Hz

Monthly Maintenance

Diesel test - single Power FRDZ?GP

Unit no.: Year: Month i [ i i i
1. Electrical panels
No alarms/messages (Fill-in remarks below if not OK) ok | i i i i

When not ok, return operation mode to "AUTO" and solve problem first

2. Diesel engine

Lube oil leakage ok
Fuel leakage ok
Coolant leakage ok
Diesel engine speed rpm
Coolant temperature LT {if applicable) C
Coolant temperature HT (if applicable) oC
Lube oil temperature {if applicable) C
Lube oil pressure bar

Single Operation
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Appendix D Failure Codes

The following figures show the overview of the failure codes and sub failure codes. The failure
codes highlighted with green are the ones that also contain failure sub codes.

Part Code Definition

DBA Diesel engine start batteries
DBE Diesel engine bearings
DCO Dresel engine cooling system
DCS Diesel engine control system
DFU Diesel engine fuel supply system
DHE Diesel engine preheating system
DLU Diesel engine prelubrication
DOL Diesel engine oil leak
DOT Diesel engine others
DPR Diesel engine protection
DST Diesel engine start system
FWC type GMM leakage
FWC type GMM transmission
FWC type Stieber leakage
FWC type Stieber transmission
FPR FWC protection / measurement
Transmission flex coupling
Transmission lubrication system
GBE Generator DE bearing
GBN Generator NDE bearing
GER Generator brushes
GOT Generator others
GPR Generator protection / measurement
GSL Generator sliprings
GVO Generator voltage control
GWI Generator windings

IBD IC outer bearing diesel side

IBG IC outer bearing generator side

IBR IC brushes

IEX IC brushless exiter

IIB IC inner bearing

115 IC isolators

10C IC evercurrent avarage

10T IC others

IPR IC protection / measurement

ISL IC sliprings

W1 IC winding
NOF Mothing found/ extra measurement
OMS QM5 problem

RRL Reverse reactive load

RTE Ride through electrical
RTM Ride through mechanical
RTV Room temperature / ventilator
SWI1 Switching fault by Customer/ Hitec
NSA Genset failure general
OTH Others
BMB Battery no-break failure
MTR Maintenance required
FWA General fire warning

Diesel Engine

Generator

Induction Coupling

Non -Pl

Part Code Definition

DIC Dicoan / bus 500
PAP Panels advantys PLC
PBA Panels batteries
PBB Panels bus bar system
PCB Panel Circuit Breakers
PCC Panel choke coil
PFR Panels frequency control unit
POT Panels others
PPH Panels PLC hardware
PPM Panels PLC modem/ manitoring
PPN Panels PLC netwark error
PPR Panels protection devices
PPS Panels PLC software
PRE Panels relays failure
PSP Panel supply power
P55 Panels SCADA system
PTS Panels HMI touch screen
PWI Panels wiring
ETM outer bearing diesel side
ETM outer bearing generator side
ETM brushless exiter
ETM inner bearing
ETM isolators
ETM avercurrent average
ETM aothers
ETM protection / measurement
ETM winding
KBE KEM outer bearing diesel side
KBMN KEM outer bearing generator side
KIB KEM inner bearing
KEX KEM brushless exiter
é KPM KEM Pony Motor
KIS KEM isolatars
KOC KEM overcurrent avarage
KOT KEM others
KPR KEM protection/ measurement
KWI KEM winding
FBE Flywheel Bearing Driven end
E FBN Flywheel Bearing Non-Driven end
FLU Flywheel Lubrication
E" FPM Flywheel protection/ measurement
F5P Flywheel Shear pin

Controls /Panels
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DCO Description DCS Description DST Description
WIRE Loose Wire WIRE Loose Wire WIRE Loose Wire
LEAKP Leakage Piping 212R0Q 212R0Q BATT Starting Batleries
LEAKE Leakage Engine ACT Actuator FUSE Fuse
LEAKR Leakage Radiator 116DE 116DE Regulator VALVE Valve
LOW-P Low Pressure PU Pickup Sensor START M. | Start motor
CNTRL Control/Panels Other Other SENSOR Sensor
SENS Sensor Defect RESET Reset
Cther Other Other Cther
DIc Description FPR Description GPR Description
il Dicon 1 WIRE Loose Wire WIRE Loose Wire
DICc2 Dicom 2 PT100 PT100 Sensor PT100 PT100 Sensor
Press oil press. RESET Reset
KIT Temp. wire kit VIBR Vibration system
RESET Reset FUSE Fuse
Cther Cther Other Cther
GVO Description GWI1 Description IPR Description
WIRE Loose Wire GEN Generator WIRE Loose Wire
SETT Setlings Other Other PT100 PT100 Sensor
FUSE Fuss SPM SPM Unit
AVR AVR RESET Reset
oD Diode Other Cther
RESET Reset
Other Other
PAP Description PCE Description PPH Description
Al Analog Input Module WIRE Loose Wire CPU Processor Module
AOM Analog Ouiput Module CC Closing Coil CPS Power Supply Module
(n]n]] Digital Input Medule oc Opening Coil NOM MNetwork Option Module
DDO Digital Cutput Module UNT Undervoltage Trip DDi Digital Input Medule
NMP2212 | Network Medbus + MAINT Maintenance DDoO Digital Output Module
TIO TIO Module Other Other AMALOG Analog Input module
FOM PDT 3100 Power Distribution o o
Maodule
PT100 PT100 module Other Cther
Other Other
PPN Description PSP Description RTV Description
WIRE Bad Conneclion WIRE Loose Wire AMB Ambient temp high
DEC Decentral Network fault PULS QT PULS QT LOUW Louvre Motor
CEN Central Network fault PULS 5L PULS 5L CNTRL Controller
oIc Dicon network fault. PULS CD PULS CD
EMC Electromagnetic Compliance SCHN PLC Power Supply
SET Setlings POLY Polyamp PSC 240
RS2000 RS2000 or RS4000 SIEM Siemens SITOP DC-USY
RESET Reset MCE Defective MCE
Other Other
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Appendix E Fault overview 2022
The following table shows the complete list of failure codes registered in the fault overview of
2022 for PP3600 and PP2700 UPS systems.

Failure code Count Contribution Cummulative Unit failure count Unit failure contribution
PPN 14 9% 9% 10 |
EPR 12 8% 17% 4
POT 7 5% 21% 1
KOT 7 5% 26% 1
GPR 7 5% 31% 2
OTH 6 4% 34% 1
PCB 6 4% 38% 0
KIB 6 4% 42% 4
PSP 5 3% 45% 2
FCS 5 3% 49% 1
PPH 5 3% 52% 4
EOT 5 3% 55% 1
FPM 5 3% 58% 0
RTV 4 3% 61% 0
KPR 4 3% 64% 3
DLU 4 3% 66% 0
FLU 4 3% 69% 0
PTS 3 2% 71% 0
DCO 3 2% 73% 1
DIC 3 2% 75% 3
DCS 3 2% 77% 3
PFR 3 2% 79% 0
GOT 3 2% 81% 0
PRE 3 2% 82% 0
PWI 2 1% 84% 0
SWI 2 1% 85% 2
DST 2 1% 86% 1
FPR 2 1% 88% 1
PPS 2 1% 89% 0
DBA 2 1% 90% 1
FBE 2 1% 92% 0
KBN 2 1% 93% 2
GVO 1 1% 94% 1
PPR 1 1% 94% 1
DHE 1 1% 95% 0
DOT 1 1% 95% 0
GBE 1 1% 96% 1
FBN 1 1% 97% 0
EBE 1 1% 97% 0
NOF 1 1% 98% 1
KPM 1 1% 99% 1
PPM 1 1% 99% 0
PBB 1 1% 100% 1
43 154 100% 54
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Appendix F Data quality check

The first issue

OuterBearingTempNDE
233100
29210
293102
233103
292104
293105
233106
292107
293108
293109
292110
23311
233112
292112
233114
293115

Just remove

OuterBearingTempNDE
290895
290896
290897
290898
290899
290900
290901
290902
290902
290904
290905
290906
290907
290908
290909
290910

Just remove

4z
4z
45
4z
A5
45
4z
4z
45
4z
A5
45
4z
A5
4z
4z

4z
as
48
A5
as
as
4z
4z
48
45
A5
A5
as
4z
as
48

OuterBearingTempNDE
141950 100
141951 5354
141952 100
141953 100
141954 100
141955 100
141956 5551
141957 22
141958 28
141953 22
141960 22
141961 22
141962 28

First one = 100

Second = 29

Both remove because otherwise not unique, so no value to keep

OuterBearingTempDE
48
48
46
48
46
46
48
48
46
48
46
46
48
46
48
48

OuterBearingTempDE
45
45
48
25
a8
48
45
45
48
25
25
25
48
45
25
48

OuterBearingTempDE

100
100

Q1 ActionsCounter

Ql1ActionsCounter

Q1ActionsCounter

14
14
14
14
14
14

14
14
14
14
14
14
14
14
14

65
65
65
a5
65
65
65
65
-3
65
65
65
65

GenD i

FlywheelSpeed

FlywheelSpeed

=T = R = = R = T = R = T = B = T =B = I =T = R = R =]

o o o 8 oo o0 oo oo

o oo oa o oo

)

o o o o o o

@

0.178915
0.178815
0178315
0.178915
0.178015
0178315
0.178915
0.178815
0.081842
0.081842
0.081842
0.081842
0.081842
0.081842
0.081842

0.081842

GenDEVibration
0.025442
0.028442
0.008442
0.006442
0028442
0.098442
L.oos442
0.025442
0.008442
0.006442
0.006442
0.006442
0028442
0.025442
0.028442

0.008442

GenDEVibration
0.005792
0.005702
0.085793
0.095793
0.095793
0.095793
0.005702
0095793
0.095793
0.095793
0.005792
0.005792

0095793

GenNDEVibration KEMD KEMMND!
0128474 0.115462 0115143
0128474 0.009796 016142
0.130414 0450382 0116143
0128474 1963316 0116143
0.130414 0.103144 0116143
0.130414 0185597 0116143
0138414 20154259766 0116143
0128474 0.057479 016142
0.130414 0.057479 0116143
0128474 0.070700 0116143
0.130414 20447325 0116143
0.130414 0.263487 0116143
0.106301 0263487 0116143
0.106301 0198252 0116143
010830 0314378 0116143
0.106301 0.185555 0115143

GenND KEMDEVil i KEMNDI i
0.173003 0.085102 0.135080
0.173003 0.089512 0.135080
0.173002 0.071307 0.135080
0173003 1426208 0135020
0.173003 0157814 0.135080
0.173003 0157814 0.221602
0173003 0157814 2681.336414
0.173003 0157814 0.081935
0.173002 0.147308 0.081935
0.173002 2245321 0.081025
0173003 0021808 0081835
0173003 0021808 0238461
0.173003 0.081909 0.870838
0.173003 0.081909 0.08772:
0.065241 0.081909 0.08772:
0.069241 0.081902 0.006326

GenND KEMDEVil i KEMMNDEVi i
0.002964 0.08372 0.004522
0.002064 0.0a3720 0.004532
0.092954 0.08372 0.094532
0.082964 0.083729 0.084532
0.082954 0.08372 0.084532
0.082954 0.083720 0.084532
0.002064 0.0a3720 0.004532
0082954 alle= i) 0084532
0082964 0.08372 0.094532
0.092964 0.083720 0.084532
0.002964 0.0a272 0094522
0.002964 0.0a272 0094522
0082954 alle= i) 0084532

tdiff

2303619
2203628
2303628
2303645
32303665
2303668
2303669
2203637
2303690
2303701
32303702
2303719
2303720
3303726
2303733

2303764

tdiff

2277973
2277974
2277977
2377973
2277995
2273000
2273000
2273018
2273000
2372000
2373108
2373143
2273143
2278161
2278163

2273166

2700208
870033.3
870034.9
8700364
870037.9
270068.0
870070.0
870075.0
8T007T6.5
270078.0
a70082.0

8700845
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14191
141942
141942
141944
141945
141946
141947
141948
141343
141950
141952
141953
141954
141955
141957

‘OuterBearingTempNDE

100
100
100
6334
100
100
100
100

P
=)

OuterBearingTempDE

29
28
100
6354
100
100
354
100
00
100
100

49

28
28

Q1ActionsCounter

FlywheelSpeed

o o e o 6 o6 oo oo o0

o o a o

GenDEVibration
0095793
0.095793
0.0es702
0.005703

0.0

3
0.095793
ooasToz
0095793
0095703
0.005703
00es5703
0095793
0.095793

0.0

2

00es5703

GenND

0.092964
0.082954
0.002064
0.092954
0.082964
0.082954
0.0020684
0.092954
0.082964
0.002064
0082954
0.092954
0.0982964
0.002064

0082954

KEMDE

noa3va
0083729
0023729
0023729
0083729
008372
0023720
0033729
0083729
n.oa3v2
0023729
0.03372:
noa3va
n.oa3v2

0023729

KEMMND!

0.084532
0.084532
0.004532
0.084532
0.084532
0.084532
0.084532
0.084532
0.084532
0.094522
0084532
0.084532
0.084532
0.094522

0084532

tdiff
861775.8
8617724
2671260.2
2613711
8613746
8618816
2619057
2610027
a70015.2
870012.3
870033.3
2700349
8700364
870037.9

870070.0
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Appendix G Extracted features
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KEM DE Vibration

Unit2, Window: Half a menth, Feature: VAR
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Skewness
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Kurtosis
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Crest

KEM DE Vibration Unit2, Window: Half a month, Feature: Crest KEM NDE Vibration
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Appendix H Average time step

Data #Original  #Adjusted Kept% Original t diff Adjusted t_diff  Min t_diff

set (min) (min) (min)

1 191 595 32761 17 % 4.67 1373 501.08 1 304.85
2 199 533 48 688 24 % 5.30 1386 789.53 519.83
3 276 981 66 215 24 % 4.59 1761442.43 284.79
4 251 651 59 303 24 % 4.77 1781471.61 58.88
5 367 450 312 581 85 % 3.01 108 774.87 1.50
6 1042 006 47 098 5% 10.00 5867 503.82 0.00
7 1254878 84 703 7 % 10 4925 870.59 10.00
Total | 3584 094 651 349 18 % Mean= 5hours
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Appendix 1 Scatterplots
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Q1 Actions Counter
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Gen DE Vibration
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KEM DE Vibration
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Appendix] Scatterplots - healthy data
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Q1 Actions Counter
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Gen DE Vibration
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KEM DE Vibration
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Appendix K Residual plots

Outer Bearing Temp NDE

Residual plot: OuterBearingTempNDE
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Q1 Actions Counter
Residual plot: Q1ActionsCounter
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Gen DE Vibration
Residual plot: GenDEVibration
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KEM DE Vibration
Residual plot: KEMDEVibration
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Appendix L Correlation heatmaps
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Appendix M VIF iterations
OutputA (KEMDEVibration)

Iteration 0

> vif (LMmode1_KEMDEVibration)
QuterBearingTempNDE OQuterBearingTempDE

4.643903 4.543176
KEMNDEVibration unit
2.116573 2.416162
Iteration 1
> vif(LMmode1_KEMDEVibration)
QuterBearingTempDE FlywheelSpeed
1.251051 2.724204
Unit QlActionsCounter
2.305050 1.690812
Iteration 2
> vif(LMmode1_KEMDEVibration)
OuterBearingTempDE FlywheelSpeed
1.243293 2.628993
QlActionsCounter
1.456001
Final input
> vif(LMmode]_KEMDEVibration)
QuterBearingTempDE GenDEVibration
1.204380 1.583457

FlywheelSpeed
3.114363
QlActionsCounter
1.716243

GenDEVibration
3.343468

GenDEVibration
2.073745

KEMNDEVibration
2.031894

GenDEVibration
3.401469

GenNDEVibration
4.452548

KEMNDEVibration
2.064926

Unit
1.549685

GenNDEVibration
4.584357

KEMNDEVibration
2.101352

Unit
2.172404

QlActionsCounter
1.426178
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OutputB (KEMNDEVibration)

Iteration 0

> vif(LMmode1_KEMNDEVibration)
QuterBearingTempNDE OuterBearingTempDE

4.800875 4.303222
KEMDEVibration unit
1.825895 2.674157

Iteration 1

> vif(LMmode1_KEMNDEVibration)

OuterBearingTempDE FlywheelSpeed
1.117967 2.747081

Unit QlActionsCounter

2.472509 1.693768

Iteration 2

> vif(LMmodel_KEMNDEVibration)

QuterBearingTempDE FlywheelsSpeed

1.117912 2.607276
QlActionsCounter
1.477649

Final input

> vif(LMmodel_KEMNDEVibration)
OuterBearingTempDE GenDEVibration
1.063037 1.470179

FlywheelSpeed
3.078725
QlActionsCounter
1.723683

GenDEVibration
3.839080

GenDEVibration
2.005851

KEMDEVibration
1.653942

GenDEVibration
4.046083

GenNDEVibration
4.602536

KEMDEVibration
1.666945

unit
1.608071

GenNDEVibration
4.690348

KEMDEVibraticon
1.753493

unit
2.236639

QlActionsCounter

1.454973
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Appendix N Correlation heatmaps after VIF
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Appendix O Removal of input variables
Yellow cell: Same value as previous model, Green: Improved value compared to previous model.
The improvement is signified by lower NRMSE or MAPE value.

Original model performance

Measure \ ModelDE ModelNDE

R2 0.2889 0.2888
NRMSE 0.6133 0.5664
MAPE 0.3967 0.3466
Over 2 (00.002%) 0 (00.00%)
Under 429 (100.000%) 555 (100.00%)
Measure Joint prediction

Over 2 (00.002%)
Under 562 (100.000%)

Performance of model DE with removal of input variable

ModelDE -A
R2 0.2878 | 0.2889 | 0.2819 | 0.2545 | 0.2736 | 0.2352 | 0.2860 | 0.2873 | 0.2409
NRMSE 0.6141 | 0.6133 | 0.6160 | 0.6265 | 0.6211 | 0.6377 | 0.6139 | 0.6135 | 0.6362
MAPE 0.4097 | 0.3963 | 0.3769 | 0.3955 | 0.5095 | 0.4509 | 0.4220 | 0.3942 | 0.5642
Over 2 2 1 0 3 3 0 0 3
Under 429 429 429 429 429 429 429 429 429
= Results for -B are the only ones to have every cell yellow or green, therefore B is
removed as input variable
Removed input variable: B All input variables
Measure ModelDE ModeINDE ModelDE ModeINDE
R2 0.2889 0.2888 0.2889 0.2888
NRMSE 0.6133 0.5664 0.6133 0.5664
MAPE 0.3963 0.3466 0.3967 0.3466
Over 2 (00.002%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.000% 555 (100.00% 429 (100.000% 555 (100.00%
Measure Joint prediction Joint prediction
Over 0 (00.00%) 2 (00.002%)
Under 562 (100.00%) 562 (100.000%)

= Improved model, can more improvement be made?

Performance of model with additional removal of input variable

ModelDE -A

R2 0.2846 | 0.2819 | 0.2524 | 0.2725| 0.2340 | 0.2848 | 0.2865 | 0.2366
NRMSE 0.6152 | 0.6161 | 0.6279 | 0.6212 | 0.6377 | 0.6145| 0.6140 | 0.6372
MAPE 0.4192 | 03760 | 0.4001 | 0.4369 | 0.4535| 0.4737 | 0.3930| 0.4858
Over 2 1 2 0 3 0 0 2
Under 429 429 429 429 429 429 429 429
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= No additional input variable is removed from the model. Removal of additional variable
would result in worse NRMSE value. NRMSE is more sensitive to outliers, therefore, it is
more important KPI than MAPE. Therefore, slight improvement in MAPE value is not
good selection when NRMSE shows worse performance.

Original model performance

Measure ModelDE ModeINDE

R2 0.2889 0.2888
NRMSE 0.6133 0.5664
MAPE 0.3967 0.3466
Over 2 (00.002%) 0 (00.00%)
Under 429 (100.000% 555 (100.00%
Measure Joint prediction

Over 2 (00.002%)
Under 562 (100.000%)

Performance of model NDE with removal of input variable

ModeINDE -A

R2 0.2859 | 0.2729 | 0.2774 | 0.2828 | 0.2703 | 0.2659 | 0.2788 | 0.2841 | 0.2392
NRMSE 0.5677 | 0.5731 | 0.5710 | 0.6585 | 0.5738 | 0.5754 | 0.5703 | 0.5680 | 0.5867
MAPE 0.3774 | 0.3550 | 0.3409 | 0.3444 | 0.3778 | 0.3839 | 0.3579 | 0.3565 | 0.4208
Over 0 0 0 0 0 0 0 0 0
Under 555 555 555 555 555 555 555 555 555

=>» In all cases NRMSE is worse, no input variable is removed.
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Appendix P Removal of extracted features
Yellow cell: Same value as previous model (one with extracted features), Green: Improved value
compared to previous model (one with features). KPIs to be improved are highlighted with red.

Original model performance

All extracted features No extracted features (original model)

Measure ModelDE ModelNDE ModelDE ModelNDE

R2 0.3140 0.3344 0.2889 0.2888
NRMSE 0.6015 0.5465 0.6133 0.5664
MAPE 0.4029 0.9263 0.3967 0.3466
Over 0 (00.00%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.00%) | 555 (100.00%) 429 (100.000%) 555 (100.00%)
Measure Joint prediction Joint prediction

Over 0 (00.00%) 2 (00.002%)
Under 562 (100.00%) 562 (100.000%)

=>» Model with features not better in all KPIs, need to remove a feature

Performance of model with additional removal of extracted feature

ModelDE -Mean -Std -Peak -Var -RMS -SF

R2 0.3140 0.3133 0.3140 0.3138 0.3139 0.3117
NRMSE 0.6015 0.6019 0.6015 0.6016 0.6015 0.6024
MAPE 0.3910 0.3873 0.3924 0.4176 0.3965 0.3878
Over 0 0 0 0 0 0
Under 429 429 429 429 429 429
ModelDE -MF ‘ -E -Crest -Skew -Kurt

R2 0.3140 0.3079 0.3140 0.3119 0.3115

NRMSE 0.6015 0.6043 0.6015 0.6024 0.6025

MAPE 0.3911 0.3997 0.4094 0.4552 0.4047

Over 0 0 0 0 0

Under 429 429 429 429 429

ModelNDE -Mean -Std -Peak -Var -RMS -SF \
R2 0.3318 0.3338 0.3311 0.3328 0.3318 0.3321
NRMSE 0.5476 0.5467 0.5480 0.5471 0.5476 0.5473
MAPE 0.5295 0.5074 0.5400 0.7330 0.4697 0.4750
Over 0 0 0 0 0 0
Under 555 555 555 555 555 555
ModelNDE -MF -E -Crest -Skew -Kurt

R2 0.3344 0.3282 0.3340 0.3318 0.3330

NRMSE 0.5465 0.5494 0.5465 0.5476 0.5471

MAPE 0.7010 0.4582 0.6619 0.4692 0.5352

Over 0 0 0 0 0

Under 555 555 555 555 555

=> Results for -MF are the only ones to have every cell yellow or green, for both model DE
and model NDE. Therefore MF is removed as input variable.
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Model performance, removed extracted feature: MF

Removed feature: MF No extracted features (original model)

Measure ModelDE ModelINDE ModelDE ModeINDE

R2 0.3140 0.3344 0.2889 0.2888
NRMSE 0.6015 0.5465 0.6133 0.5664
MAPE 0.3911 0.7010 0.3967 0.3466
Over 0 (00.00%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.000%) | 555 (100.00%) 429 (100.000%) 555 (100.00%)
Measure Joint prediction Joint prediction

Over 0 (00.00%) 2 (00.002%)
Under 562 (100.00%) 562 (100.000%)

=>» Model with features not better in all KPIs, need to remove a feature

Performance of model with additional removal of extracted feature

ModelDE -Mean -Std -Peak -Var -RMS -SF |
R2 0.3140 0.3128 0.3139 0.3134 0.3139 0.3117
NRMSE 0.6015 0.6021 0.6016 0.6019 0.6016 0.6025
MAPE 0.3905 0.3845 0.3891 0.3997 0.3928 0.3929
Over 0 0 0 0 0 0
Under 429 429 429 429 429 429
R2 0.3078 0.3140 0.3114 0.3115

NRMSE 0.6043 0.6015 0.6026 0.6025

MAPE 0.4245 0.3981 0.4022 0.4026

Over 0 0 0 0

Under 429 429 429 429

ModelNDE -Mean -Std -Peak -Var -RMS -SF \

R2 0.3317 0.3338 0.3310 0.3328 0.3318 0.3321
NRMSE 0.5477 0.5467 0.5480 0.5472 0.5476 0.5474
MAPE 0.5959 0.5033 0.8000 0.5224 0.4788 0.4873
Over 0 0 0 0 0 0
Under 555 555 555 555 555 555
ModelNDE -E -Crest -Skew -Kurt

R2 0.3282 0.3335 0.3318 0.3330

NRMSE 0.5494 0.5468 0.5476 0.5471

MAPE 0.4490 0.4835 0.4671 0.5005

Over 0 0 0 0

Under 555 555 555 555

=>» Results for -Mean are the only ones to have every cell yellow or green, for model DE. For
model NDE the amount of yellow and green cells is the maximum observed between the
different model results. Therefore Mean is removed as input variable.
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Removed feature: MF, Mean

No extracted features (original model)

Measure ModelDE ModelNDE ModelDE ModelNDE

R2 0.3140 0.3317 0.2889 0.2888
NRMSE 0.6015 0.5477 0.6133 0.5664
MAPE 0.3905 0.5959 0.3967 0.3466
Over 0 (00.00%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.000% 555 (100.00% 429 (100.000% 555 (100.00%

Measure Joint prediction Joint prediction
Over 0 (00.00%) 2 (00.002%)
Under 562 (100.00%) 562 (100.000%)

=>» Model with features not better in all KPIs, need to remove a feature

Performance of model with additional removal of extracted feature

ModelDE -Std -Peak -Var -RMS |
0.3117 0.3139 0.3134 0.3130 03113

NRMSE 0.6026 0.6016 0.6019 0.6022 0.6026

MAPE 0.3904 0.3895 0.3975 0.4082 0.3894

Over 0 0 0 1 0

Under 429 429 429 429 429

ModelDE -E -Crest -Skew -Kurt

R2 0.3060 0.3140 0.3113 0.3113

NRMSE 0.6051 0.6015 0.6026 0.6026

MAPE 0.3896 0.3909 0.3973 0.4012

Over 0 0 0 0

Under 429 429 429 429

ModeINDE  -Std -Peak -Var -RMS -SF |

Rz 0.3313 0.3300 0.3316 0.3317 0.3242

NRMSE 0.5479 0.5485 0.5477 0.5477 0.5508

MAPE 0.4658 0.3782 0.5403 0.5697 0.7237

Over 0 0 0 0 0

Under 555 555 555 555 555

ModelNDE -E -Crest -Skew -Kurt

R2 0.3234 0.3304 0.3296 0.3313

NRMSE 0.5516 0.5481 0.5486 0.5479

MAPE 0.4263 0.3510 0.4401 0.5708

Over 0 0 0 0

Under 555 555 555 555

= Results for -RMS are the only ones to have every cell yellow or green, for model NDE.
However, the -RMS results for model DE show much worse performance, with only one
yellow cell. Therefore RMS is not selected as next feature for removal. Instead, we focus
on -Std, -Peak, -E, and -Crest. It is decided to remove Crest as next removed additional
feature. This is due to the lowest average decrease in NRMSE value. Therefore Crest is
removed as input variable.
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Removed feature: MF, Mean, Crest

No extracted features (original model)

Measure ModelDE ModelNDE ModelDE ModelNDE

R2 0.3140 0.3304 0.2889 0.2888
NRMSE 0.6015 0.5481 0.6133 0.5664
MAPE 0.3909 0.3510 0.3967 0.3466
Over 0 (00.00%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.000% 555 (100.00% 429 (100.000% 555 (100.00%

Measure Joint prediction Joint prediction
Over 0 (00.00%) 2 (00.002%)
Under 562 (100.00%) 562 (100.000%)

=>» Model with features not better in all KPIs, need to remove a feature

Performance of model with additional removal of extracted feature

ModelDE -Std -Peak -Var -RMS -SF

R2 0.3116 0.3138 0.3134 0.3127 0.3108
NRMSE 0.6027 0.6016 0.6019 0.6023 0.6029
MAPE 0.4060 0.3900 0.3976 0.3992 0.3934
Over 0 0 0 1 0
Under 429 429 429 429 429
R2 0.3057 0.3111 0.3111

NRMSE 0.6053 0.6027 0.6027

MAPE 0.3702 0.3944 0.3987

Over 0 0 0

Under 429 429 429

ModelNDE -Std -Peak -Var -RMS -SF

R2 0.3302 0.3285 0.3303 0.3297 0.3162
NRMSE 0.5482 0.5490 0.5482 0.5484 0.5538
MAPE 0.3610 0.3403 0.3435 0.3401 0.3383
Over 0 0 0 0 0
Under 555 555 555 555 555
ModelNDE -E -Skew -Kurt

R2 0.3223 0.3283 0.3301

NRMSE 0.5521 0.5491 0.5483

MAPE 0.3373 0.3448 0.3437

Over 0 0 0

Under 555 555 555

=>» Model DE already met the better KPIs performance compared to the original model.
Removing Std, Var, RMS or Kurt would result in model DE not anymore having better KPIs
than the original model. Therefore, these are not selected to be removed. The average
value of NRMSE for the other extracted features is then calculated, and the feature
corresponding to the lowest average NRMSE is selected.
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-Peak -SF -E -Skew |
NRMSE DE 0.6016 0.6029 0.6053 0.6027
NRMSE NDE 0.5490 0.5538 0.5521 0.5491
Average 0.5753 0.57835 0.5787 0.5759

= The lowest average NRMSE value corresponds to the Peak feature. Therefore Peak is

removed as input variable.

Removed feature:

MF, Mean, Crest, Peak

No extracted features (original model)

Measure

prediction

Measure ModelDE ModelNDE ModelDE ModelINDE

R2 0.3138 0.3285 0.2889 0.2888
NRMSE 0.6016 0.5490 0.6133 0.5664
MAPE 0.3900 0.3403 0.3967 0.3466
Over 0 (00.00%) 0 (00.00%) 2 (00.002%) 0 (00.00%)
Under 429 (100.000%) | 555 (100.00%) 429 (100.000%) 555 (100.00%)

prediction

Over

0 (00.00%)

2 (00.002%)

Under

562 (100.00%)

562 (100.000%)

=>» Model with features better in all KPIs, no more extracted features are removed.

115




Appendix Q PdM policy plots
70% PI
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