




Abstract

Phospholipid coated microbubbles are widely used as ultrasound contrast agents for both diag-
nostic and therapeutic applications. The dynamics of ultrasound-driven coated microbubbles
have been primarily investigated in unbounded fluids. However, when microbubbles are in the
bloodstream, they are often confined in viscoelastic capillaries. Numerical and few experimental
studies have shown that the viscoelastic confinement affects the resonance response of microbub-
bles. To increase the sensitivity of diagnostic and therapeutic ultrasound in small vessels, we
need to model the relation between bubble response and vessel properties, such as stiffness
and diameter. In this work, we have taken the initial steps towards this model by performing
experimental research, studying methods for signal filtering and developing a 2D numerical
simulation. We have built an experimental setup combining ultrasound imaging and optical
high speed imaging. The acoustic response from nonlinear microbubbles and linear hollow glass
beads inside a capillary phantom has been measured using chirp and narrowband pulses. Using
Pulse Inversion (PI) the fundamental and harmonic responses have been successfully isolated.
We have demonstrated that SVD filtering allows for a quantitative analysis of the frequency
response. However, the relation between the obtained amplitudes after SVD filtering and the
acoustic response from microbubbles and beads is yet to be investigated. Both the beads and
bubbles showed higher harmonics implying that the measurements currently lack the sensitivity to
distinguish the nonlinear microbubble response from nonlinear propagation effects. The numerical
simulation of a microbubble between elastic walls showed microbubble oscillations and wall
displacement driven by the ultrasound. The oscillation amplitude of the microbubble showed
a resonance behaviour, where a decrease in resonance frequency was observed with increasing
ultrasound pressure consistent with literature. No dependence of resonance frequency on wall
stiffness was observed because the microbubble was not sufficiently confined by the walls. In
future research, the effects of nonlinear propagation should be quantified and reduced, the use
of SVD filtering and other filtering methods needs to be further studied and the numerical
simulation should be transitioned to 3D.
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1 Introduction

Ultrasound imaging is one of the most widely used medical imaging techniques, together with Magnetic
Resonance Imaging (MRI) and X-ray computed tomography (CT), because of its cost effectiveness
and safety. Ultrasound imaging involves no harmful radiation unlike CT. Moreover, in contrast to MRI
and CT scanners, ultrasound machines are small portable devices. [1,2] One of the most common and
well-known applications of ultrasound imaging is in obstetrics, where it is used for fetal scanning of
pregnant women. Here, the fetal tissue scatters the ultrasound waves much more than the hypoechoic
amniotic fluid causing the fetus to appear bright in the ultrasound image against a darker background.
Next to fetal scanning, there exist many more applications of medical ultrasound in both diagnostics
and therapeutics. In oncology, for example, ultrasound can be used to detect lesions and for targeted
drug delivery. In cardiology, myocardial perfusion is assessed using ultrasound as well as left ventricular
function. Moreover, ultrasound is used for imaging blood flow characteristics in the vasculature to
detect, for instance, plaques or assess vascular stenosis. [3–5] Blood, however, is a poor ultrasound
scatterer and therefore generates little contrast in ultrasound imaging, which is problematic for flow
imaging. [6]

Ultrasound contrast agents (UCAs), which are injected intravenously, enhance the visibility of blood.
These contrast agents are microbubbles of about 1-10µm in diameter. They are usually filled with
high-molecular-weight gasses, typically perfluorobutane (C4F10) or sulfur hexafluoride (SF6), and
coated by a phospholipid shell. They enhance image contrast in two ways. First, the large difference
between the acoustic impedance of the gas inside the microbubble and the surrounding fluid leads to
the scattering of ultrasound. Second, due to the large compressibility of the gas, the oscillatory driving
pressure of the ultrasound field results in microbubble expansion and contraction. This bubble response
can be compared to a mass-spring system, where the gas represents the spring and the surrounding
fluid represents the mass pushing on the surface of the microbubble. Similar to a mass-spring system,
the microbubble shows resonance behaviour. Therefore, the effective scatter cross section is increased
up to several orders of magnitude with respect to a rigid sphere with the same acoustic impedance
and the same size. Moreover, when driven at resonance, the microbubbles behave non-linearly leading
to the emission of higher harmonics and subharmonics. [6, 7] These higher harmonics can be used to
detect the acoustic response from microbubbles while suppressing the response from linear tissue.

Experimental studies have shown that the resonance behaviour depends on microbubble size, acoustic
driving pressure and shell characteristics. It was indeed shown by Van der Meer et al [8] that larger
microbubbles resonate at lower frequencies than smaller microbubbles. The resonance frequency
of a coated bubble is found to be increased compared to that of an uncoated bubble due to the
stiffness of the shell [6]. Segers et al. [9] have shown that increasing the acoustic driving pressure
reduces the resonance frequency. The resonance of microbubbles in unbounded fluids is well-described
by Rayleigh-Plesset-type equations and the nonlinear effect of the shell can be described by the
Marmottant model [6]. However, when microbubbles are located in viscoelastic capillaries, which have
a diameter down to 10 µm [10], the assumption of an unbounded fluid no longer holds. Numerical
studies have been performed on the effect of soft viscoelastic confinement on the resonance of
microbubbles at low diagnostic pressures. These studies showed that confinement of bubbles in rigid
vessels decreases the natural frequency, while the frequency increases in the case of compliant vessels.
Besides vessel stiffness, the resonance frequency is also predicted to depend on vessel size [10–13].

1



2 Chapter 1 Introduction

Linear and nonlinear bubble scattering thus depends on vessel properties. Understanding the re-
lationship between bubble response and vessel properties can increase the sensitivity of diagnostic
and therapeutic ultrasound in small vessels. Moreover, if the bubble response is linked to vessel
properties, it could potentially be used for characterising vessels and might eventually even be used
for differentiating between diseased capillaries, in for example tumors, and healthy capillaries since
these are mechanically different [14,15]. To this end, however, it is necessary to model the relation
between bubble response and vessel properties, such as stiffness and diameter.

Few experimental studies have been performed on microbubbles confined in capillary tubes, and these
were mainly based on optical high speed imaging [16–18]. Moreover, existing experimental studies
typically use rigid capillaries, and/or high pressures for therapeutic applications. The numerical studies
conducted so far still require experimental validation and do not take into account the effect of the
bubble shell on the resonance behaviour. In other words, the nonlinear response of phospholipid-coated
microbubbles confined in viscoelastic capillaries is still largely unknown.

The aim of this research is to provide a model, using a combination of numerical simulations and
experiments, to relate the microbubble response to vessel properties, i.e. stiffness and diameter. The
numerical simulations will be validated using the experimental results, after which the numerical
simulations can be used to explore a multitude of variables in a controlled environment. This thesis
laid the foundation for this research by performing experimental research, signal filtering and numerical
simulations. For the experimental research, we built a setup combining ultrasound and optical imaging.
We used monodisperse bubbles, which have a narrow resonance frequency distribution owing to their
uniform size. This enhances the ability to observe shifts in resonance frequency caused by vessel
properties. Moreover, the consistent resonance frequency of these bubbles improves the signal-to-
noise ratio (SNR) compared to using polydisperse microbubbles. We investigated different types of
ultrasound waveforms to explore their effectiveness in detecting the microbubble response. Moreover,
we studied the use of pulse inversion to separate the microbubble response from tissue background.
After data acquisition, we investigated the use of singular value decomposition (SVD) filtering in
the data analysis for distinguishing the response of the moving microbubbles and beads from the
static tissue response. Complementary to the experimental study, we developed a first version of a
finite element simulation to numerically study the dynamics of ultrasound-driven coated microbubbles
confined between elastic walls.



2 Background

2.1 Bubble dynamics

The dynamics of a spherical coated bubble surrounded by an infinite, incompressible and Newtonian
fluid and driven by an external ultrasound field are governed by the Rayleigh-Plesset equation [6, 9]:
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In this equation, the time-dependent radius of the bubble is represented by R and the initial bubble
radius is given by R0. dR

dt and d2R
dt2

are the bubble wall velocity and acceleration, respectively. P0 and
PA(t) represent the atmospheric pressure and the acoustic driving pressure,respectively. The liquid
properties are included by the liquid viscosity µl, the density ρl and the speed of sound in the liquid
cl. Moreover, κ represents the polytropic exponent.

The effect of the phospholipid shell on the bubble dynamics is included in the surface tension σ and
in the final pressure term, i.e. 4κs

R2
dR
dt . This pressure term takes into account the viscous energy

dissipation in the microbubble shell, with κs being the shell viscosity, while the surface tension accounts
for the shell elasticity χ.

The presence of the shell results in non-linear behaviour of the bubble. Upon compression, the shell
starts to buckle, while shell rupture occurs upon large expansion of the bubble. This non-linear bubble
dynamics are accounted for by the radial dependency of the surface tension, which is described by the
Marmottant model (Figure 2.1) [19]. The Marmottant model states that the surface tension reduces
to zero below a certain radius due to buckling of the shell. When the bubble expands too much, the
radius will rupture leading to a surface tension equal to the surface tension of the surrounding fluid. In
between the rupture and buckling radius, the surface tension increases with increasing bubble radius.
According to the Marmottant model, the surface tension is thus given by:

σ(R) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if R ≤ Rb

χ(R2

R2
b

− 1) if Rb ≤ R ≤ Rr

σwater if R ≥ Rr.

(2.2)

with Rb and Rr the buckling and rupture radius, respectively. [6, 19]
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4 Chapter 2 Background

Figure 2.1: Surface tension as a function of the bubble radius as described by the Marmottant
model. Buckling or rupture of the shell occurs upon compression or expansion, respectively. In the
intermediate regime the shell behaves elastically. Figure is adapted from [6].

2.2 Harmonic imaging

The harmonic signal generated by the nonlinear microbubbles can be separated from the fundamental
signal using a method called Pulse Inversion (PI). Figure 2.2 shows the principle of the pulse inversion
technique.

Figure 2.2: (a-b) Response of a linear and nonlinear scatterer to the upright pulse. (c-d) Response of
a linear and nonlinear scatterer to the inverted pulse. (e) Fundamental and harmonic signal obtained
after respectively subtracting or adding the response of a linear scatterer to the upright and inverted
pulse. (f) Fundamental and harmonic signal obtained after respectively subtracting or adding the
response of a nonlinear scatterer to the upright and inverted pulse. (g) Fundamental and harmonic
image of the left ventricle filled with contrast agent, obtained from [20].

In PI, two waveforms are successively transmitted with a suitable delay time in between. The second
pulse is the inverted version of the first pulse. For linear scatterers, the echo from the second pulse
(Figure 2.2c) will be the inverse of the echo from the first pulse (Figure 2.2a). In the case of nonlinear
scatterers like microbubbles, however, the echo from the second pulse (Figure 2.2d) will not be the
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exact inverse of the echo from the first pulse (Figure 2.2b). Instead, the nonlinear response to the
upright and inverted pulse will be in phase after scattering. Therefore, by adding the response from
the upright and the inverted pulse, the linear response cancels while the nonlinear response remains,
as can be seen by comparing the purple curves in Figure 2.2e and f. In the frequency domain this
implies that even harmonics are emphasized, while odd harmonics, including the fundamental, are
cancelled. [21, 22] On the other hand, subtracting the response corresponding to the second pulse
from the first pulse, enhances the linear fundamental response with respect to the higher harmonics.
The operations to emphasize either the fundamental (RFfund) or harmonic response (RFharm) are
summarized in the equations below:

RFfund =
e+ − e−

2
, (2.3)

RFharm =
e+ + e−

2
, (2.4)

where e+ and e− represent the echo from the upright and the inverted pulse, respectively. The effect
of using either fundamental or harmonic ultrasound imaging on the ultrasound image can be seen in
Figure 2.2g, which shows a fundamental (top) and harmonic (bottom) image of contrast agent in the
left ventricle. The signal-to-tissue ratio is much better in the harmonic image than in the fundamental
image.

2.3 SVD filtering

To distinguish moving microbubbles from static tissue in ultrasound data, a tool called Singular Value
Decomposition (SVD) can be used. Figure 2.3 shows a schematic of the process of singular value
decomposition and subsequent filtering.

Figure 2.3: Schematic of spatio-temporal rearrangement, singular value decomposition and filtering.
Adapted from [23].
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The acquired ultrasound data is a three-dimensional data set S(z, x, t) with dimensions (nz, nx, nt),
where nz corresponds to the number of samples in the propagation direction of the ultrasound waves,
nx equals the number of transducer elements and nt represents the number of frames. To perform
SVD, this three-dimensional data is rearranged into a two-dimensional space-time matrix M(m,n)
where the number of rows m is equal to nz × nx and the number of columns n is equal to nt. The
SVD of this matrix M(m,n) is written as: [23–25]

M(m,n) = U ⋅∆ ⋅V ∗. (2.5)

Here, U and V are unitary matrices with dimensions (m,m) and (n,n), respectively, and ∗ is
the conjugate transpose . U contains the spatial singular vectors, while V contains the temporal
singular vectors. [23] The diagonal matrix ∆ has dimension (m,n) and contains the singular values λi.
These singular values are sorted in descending order. The higher singular values and singular vectors
correspond to tissue since tissue shows a high spatio-temporal coherence. The moving microbubbles
are described by lower singular values and vectors due to their lower spatio-temporal coherence.

SVD filtering is performed by removing the singular values corresponding to unwanted signal. In this
case, the signal from the moving microbubbles is the desired signal. To remove higher spatial coherent
tissue signal, the higher singular values are set to zero in the diagonal matrix ∆. The filtered signal
Mf can thus be calculated with [24]:

M f = U ⋅∆f ⋅V ∗. (2.6)

where ∆f is the truncated diagonal matrix. After the SVD filtering, the two-dimensional matrix M f

is rearranged back to the dimensions of the original three-dimensional data set resulting in Sf . In
this thesis, SVD filtering was performed on the RF lines received by each of the transducer elements
separately.

2.4 Delay-and-sum image reconstruction curved array

The radio frequency (RF) signals received by the ultrasound transducer can be reconstructed into
an image using Delay-And-Sum (DAS) beamforming. In this method, the round-trip traveltime of
the wavefront from the transducer towards a scatterer and back is estimated. [26] In this research, a
convex array was used for retrieving the ultrasound data. Ultrasound waves were emitted with zero
time-delay between the transducer elements leading to the transmission of slightly diverging waves
due to the convex shape of the transducer. Figure 2.4 shows a schematic of the delay-and-sum method.

The coordinate system is defined with the x-axis being the horizontal axis and the z-axis in the
direction of wave propagation. The origin O of the system is set at the location of the virtual point
source of the transmitted waves. The vertical distance between this origin and the center element of
the transducer is equal to the radius of curvature Rc of the curved array.
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Figure 2.4: Schematic of a convex transducer transmitting ultrasound waves with zero time-delay.
The origin of the waves is depicted by O. The ultrasound waves are scattered by a scatterer at
position (xs,zs) and received by a transducer element at (xel,i,zel,i). dO,s and ds,el represent the
travel distance from origin to scatterer and from scatterer to transducer element i, respectively.

The travel distance for a wavefront from the origin to a scatterer with coordinates (xs,zs) is given by:

dO,s =
√
(zs +Rc)2 + x2s. (2.7)

The distance traveled by the scattered wavefront back to transducer element i is given by:

ds,el =
√
(zel,i − zs)

2 + (xel,i − xs)
2
, (2.8)

where xel,i and zel,i represent the x- and z-coordinate of the center of the ith transducer element.
Combining these travel distances, the two-way traveltime of the waveform can be calculated using the
following equation:

tO,el = dtcorr +
dO,s + ds,el

c
, (2.9)

where c is the speed of sound in the medium and dtcorr is a time correction given by:

dtcorr = dtlens + dtpeak. (2.10)

Here, dtlens corrects for the different travel time through the acoustics lens of the transducer due to
a different speed of sound. dtpeak is the time between the start of the transmitted waveform and the
peak of the waveform. Since most of the scattering occurs when the peak of the transmit waveform
reaches the scatterer, adding this time-to-peak to the total delay time will improve the accuracy of
the image reconstruction. [27]

2.5 Tissue-mimicking materials

For the capillary phantom, a tissue-mimicking material with acoustic properties similar to those of
water and typical soft tissues is needed. Moreover, to enable optical imaging of scatterers inside
the phantom, optical transparency is required. Important acoustic properties are the attenuation
coefficient, speed of sound and acoustic impedance. Attenuation is the phenomenon that the amplitude
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of ultrasound waves decreases during propagation through a material, where a higher attenuation
coefficient is associated with more attenuation. Acoustic impedance is given by Z = ρ ⋅ c, where
ρ is the material density and c the speed of sound. The proportions of reflected and transmitted
ultrasound waves at interfaces depends on the difference in acoustic impedance of the two mediums.
Materials having an acoustic impedance substantially different from that of water will thus strongly
reflect ultrasound waves. [28,29]

We experimented with several tissue-mimicking materials for the small vessel phantom. The first
material studied was a polyacrylamide (PAA) hydrogel. As shown by A.F. Prokop et al. [30], the
acoustic attenuation of PAA is low and the speed of sound and acoustic impedance of PAA are similar
to water due to its high water content. Furthermore, PAA is an optically transparent material and the
stiffness of the hydrogel can be easily varied by changing the concentration ratio between acrylamide
monomer and the crosslinker bisacrylamide. Due to its optical transparency and acoustic properties
similar to those of soft tissues, PAA hydrogel qualified as a good tissue-mimicking material for the
vessel phantoms. However, hydrogel also has its drawbacks. First, one of the main constituents of
PAA is the acrylamide monomer, which is a neurotoxin. Once cured, the polyacrylamide is nontoxic.
Remainders of the monomer, however, can still be present. This toxicity makes the material more
difficult to work with. [30] Furthermore, the hydrogel is not stable over time. When stored in air,
the hydrogel dehydrates resulting in shrinking of the material, while storage in water causes the
polyacrylamide to absorb the water leading to swelling of the gel. Finally, the most important drawback,
when considering the production of small vessel phantoms, is the fragility of the hydrogel. [31] The
pressure needed to create a flow through the small capillaries is too high causing the surrounding
hydrogel to break. Therefore, this material was found not to be suitable for the small vessel phantoms.

Next, we investigated Polydimethylsiloxane (PDMS) as a possible tissue-mimicking material. Due to
its higher mechanical resistance, perfusion of the small capillaries was not a problem. Moreover, it
is optically transparent, relatively stable over time, easily producible and the stiffness can easily be
varied by altering the base-curing agent mixing ratio [32]. The attenuation of ultrasound in PDMS,
however, is much larger than the attenuation in hydrogel (>9.8 dB/cm at 3MHz in PDMS versus
0.21 to 0.41 dB/cm at 3MHz in PAA [30, 33]). Moreover, the speed of sound in PDMS is much
lower than in water (between 1028 and 1119m/s versus 1480m/s [32,33]), while the density is similar
(1030.5 kg/m3 versus 997 kg/m3 [32]), leading to a large difference between the acoustic impedance
of water and PDMS. Therefore, a significant part of the ultrasound is reflected when travelling from
water into the PDMS phantom or backwards making ultrasound signal originating from the bubbles in
the capillary hard to measure.

A material combining the favorable properties of PDMS and PAA is polyvinyl chloride plastisol (PVCP).
PVCP is a commercially available plastic. [34] It is a white liquid substance. Upon heating the white
colour disappears and the liquid becomes transparent. Once the PVCP cools down, it solidifies and
turns into a transparent viscoelastic gel. It is a more resilient material than PAA hydrogel, which
enables perfusion of the capillaries. Moreover, it has an acoustic impedance similar to the impedance of
water and a low acoustic attenuation of 0.50 up to 0.69 dB/cm at 1MHz depending on the hardness
of the material [31,35]. Other advantages are that the material is non-toxic, insoluble in water and
stable over time [31]. Finally, multiple stiffnesses of PVCP are available and the stiffness can further
be tuned using commercially available hardeners and softeners [34]. A drawback is that the PVCP
becomes opaque after prolonged contact with water.



Chapter 2 Background 9

2.6 Simulation framework

To numerically study the dynamics of an ultrasound-driven microbubble confined between elastic
walls, we developed a numerical simulation based on the finite element simulation library CIMLib,
developed at the research institute CEMEF of MINES ParisTech. This library enables the simulation of
complex fluid dynamics in geometries involving both fluid and solid domains. It can model the dynamic
interaction between complex fluid flows and deformable structures. For example, it is employed to simu-
late the interaction between the blood flow dynamics and the arterial wall in intracranial aneurysms [36].

In the following, the mathematical framework of the simulations is first discussed. Next, the methods
for solving the fluid and solid dynamics are described. Thereafter, the variational multiscale (VMS)
method, which is used for stabilization, is introduced. Lastly, the methods for moving the mesh and
coupling the solid and the fluid domain are explained.

2.6.1 Arbitrary Lagrangian-Eulerian framework

Two descriptions of motion are used in continuum mechanics: the Eulerian and Lagrangian description.
When the movement of particles in the flow field is followed, it is called the Lagrangian description.
In the Eulerian description, motion is observed at specific fixed locations. [37, 38] When a Lagrangian
algorithm is used in numerics, the individual nodes of the grid move along with the particles. This yields
an accurate description of, for example, moving interfaces. However, the use of Lagrangian algorithms
for modelling flow is not optimal because of large deformations resulting in frequent remeshing. For
fluid flow, Eulerian algorithms are widely used. In Eulerian algorithms the continuum moves while the
mesh remains fixed, which results in less resolution of details in the flow and a less precise definiton of
interfaces but allows for large deformations. [38,39] In the case of Fluid-Structure Interaction (FSI)
problems, both the deformation of a solid structure, the flow field and the interface between both has
to be modelled. Therefore, a combination of the Lagrangian and Eulerian description is used called
the Arbitrary Lagrangian-Eulerian (ALE), which allows for arbitrary mesh movement. In the context
of FSI, the solid can be described with the Lagrangian approach, while the majority of the fluid is
modelled in a Eulerian way. [38–40] The arbitrary movement of the mesh can be applied to couple
the Lagrangian description of the moving interface to the Eulerian description of the moving fluid.

2.6.2 Fluid dynamics solver

To model the fluid dynamics, the unsteady incompressible Navier-Stokes equations are solved [41]:

ρl (
∂v⃗l
∂t
+ (v⃗l ⃗⋅∇)v⃗l) − ∇⃗ ⋅ σ⃗l = f⃗ , (2.11)

∇⃗ ⋅ v⃗l = 0, (2.12)

where ρ is the density of the fluid, v⃗l represents the velocity, f⃗ is the body force per unit density and
σ⃗l is the stress tensor given by:

σ⃗l = 2µlϵ⃗ − plI. (2.13)

Here, µl and pl represent the dynamic viscosity and pressure, respectively. I is the identity matrix.
The strain rate tensor ϵ is defined as:

ϵ⃗ = 1

2
(∇⃗v⃗l + (∇⃗v⃗l)T ) . (2.14)
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Since we are describing the fluid dynamics in an ALE framework, the convective term in the incom-
pressible Navier-Stokes equation has to be modified to take into account the mesh velocity v⃗m. The
ALE formulation of the Navier-Stokes equation becomes [40]:

ρl (
∂v⃗l
∂t
+ (v⃗l − v⃗m) ⋅ ∇v⃗l) − ∇⃗ ⋅ σ⃗l = f⃗ , (2.15)

∇⃗ ⋅ v⃗l = 0. (2.16)

2.6.3 Hyperelastic solid dynamics solver

The solid dynamics of the elastic walls is modelled in a Lagrangian framework meaning that the mesh
moves along with the solid particles. Therefore, we have to distinguish between two coordinates
systems: the initial and updated solid coordinate system. The material coordinate in the initial and
updated system are X⃗ and x⃗, respectively. The mapping from the original Lagrangian framework to
the updated coordinate system is given by ϕ⃗(X⃗, t) and the displacement of the solid particles can be
written as: u⃗ = x⃗ − X⃗. The deformation gradient and the corresponding Jacobian determinant are
defined as: F⃗ = ∇⃗X ϕ⃗ and J = det(F⃗ ), respectively. [42,43] Using these definitions, the momentum
and continuity equation for the dynamics of the solid are given by [42]:

ρs
∂2u⃗

∂t2
− ∇⃗x ⋅ σ⃗s = 0, (2.17)

ρsJ = ρs0. (2.18)

with σ⃗s the symmetric Cauchy stress tensor, ρs the updated solid density and ρs0 the initial density of
the solid.

The hyperelasticity of the elastic walls is modelled using the model described in [42]. Here, they
consider Neo-Hookean behaviour of the elastic material. Moreover, they decompose both the stress
tensor and the Helmholtz free energy function into its deviatoric and volumetric parts. This yields the
following system of equations to be solved for the hyperelastic solid:

ρs
∂2u⃗

∂t2
− ∇⃗xps − ∇⃗x ⋅ dev[σ⃗s] = 0, (2.19)

∇⃗x ⋅ u⃗ −
1

κ
ps = g, (2.20)

where ps, κ and g represent the solid pressure, bulk modulus and the source term, respectively.
dev[σ⃗s] stands for the deviatoric part of the stress tensor.

2.6.4 Variational multiscale stabilized (VMS) finite element method

A variational multiscale stabilized (VMS) finite element method, as described in [41], is used to solve
both the incompressible Navier-Stokes equation and the solid dynamics equations. In this method, the
solution for the velocity, displacement and pressure fields are decomposed into coarse and fine scale
components. First, the fine scale problems are approximated using the coarse scale residuals. The
fine scale solutions are subsequently substituted into the coarse scale problem leading to an implicit
modelling of the fine scale effects. This yields additional stabilization parameters, which results in an
enhanced stabilization of the solutions. [41–43]
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2.6.5 Mesh movement

In this work, the fluid mesh velocity at the solid boundary is set equal to the solid velocity, as calculated
by the solid solver, following the Lagrangian approach. Far away from the boundary, the fluid can be
described in a Eulerian manner implying no mesh deformation. In the vicinity of the fluid-structure
boundary, an arbitrary mesh movement is applied. The mesh velocity in this region is calculated by
’diffusing’ the mesh velocity at the fluid-structure interface, which is known as Laplace smoothing.
This implies that the mesh movement will decrease as the distance to the boundary increases. The
equation for Laplace smoothing is given by [40]:

∇⃗ ⋅ (γ∇⃗v⃗m) = 0, (2.21)

where v⃗m represents the mesh velocity and γ the mesh diffusion coefficient.

Various expressions can be used for the mesh diffusion coefficient γ. When γ is taken to be constant,
Equation 2.21 reduces to the Laplace equation. However, this can cause mesh distortion since the
mesh deforms mostly near the solid boundary. To overcome this problem, γ can be a function of
the distance from a moving boundary. The diffusion coefficient can, for example, be taken inversely
proportional to either the distance or the distance squared. [40,43] In this work, a constant γ was used
for the first implementation. In the future, this can be improved by implementing a distance-dependent
γ.

2.6.6 Fluid-Structure interaction

The coupling between the fluid and the solid structure is done in a partitioned manner. This implies
that the solid and the fluid equations are solved independently. Subsequently, the following coupling
conditions are applied at the fluid-solid interface [43]:

v⃗l =
∂u⃗

∂t
,

σ⃗l ⋅ n⃗ = σ⃗s ⋅ n⃗,
(2.22)

where n⃗ is the normal vector of the fluid-solid boundary.

These coupling conditions can be applied using either strong or weak coupling. Using strong coupling,
sub-iterations are performed between the fluid and the structure until the conditions in Equation 2.22
are satisfied with a given tolerance before moving to the next timestep. [40,43] In the case of weak
coupling, no sub-iterations are performed. The coupling conditions are imposed once per timestep at
the solid-fluid interface making this coupling formulation less computationally expensive. However,
the coupling conditions are not necessarily satisfied, which might lead to instabilities. [44] In this work,
no unexpected pressure oscillations were witnessed in the fluid domain when using weak coupling.
Therefore, weak coupling was deemed sufficient for the FSI interaction.
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3 Methods

3.1 Monodisperse bubble production

We performed experiments using lipid-coated monodisperse bubbles, which were produced in-house
using a custom-made microfluidic flow-focusing device shown in Figure 3.1a. The device produces
microbubbles by focusing a gas thread between two liquid flows through a narrow aperture. The gas
flow destabilizes causing monodisperse bubbles to be pinched off from the gas thread. After pinch-off
the microbubbles decrease in size by a factor of 2-3 before they reach their final stable size. [45,46]

Figure 3.1: (a) Image of monodisperse microbubble production by flow-focusing device obtained from
Segers et al. [45]. (b) Size distributions of two monodisperse bubble populations measured using a
Coulter counter.

The phospholipids for the microbubble shell are contained in the aqueous phase. Before the microbubble
pinch-off, the phospholipids adsorb onto the gas-liquid interface forming a monolayer. [46] The gas
phase consists of a mixture of C4F10 and CO2. The high solubility of CO2 and low solubility of C4F10
result in an efflux of CO2 out of the bubble leaving a stable microbubble filled with nearly pure C4F10
gas without foam formation. [46, 47] The size of the microbubbles can be tuned by changing the flow
rate and gas pressure. Before performing measurements with the microbubbles, the size distribution
of the monodisperse bubbles was measured using a Coulter counter to determine the mean radius of
the bubbles and to check the monodispersity. The size distributions of the two bubble populations
used in the experiments are shown in Figure 3.1b.

13
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3.2 Experimental setup

We built the experimental setup, as shown in Figure 3.2a, to observe the microbubble dynamics in a
capillary both optically and acoustically.

Figure 3.2: (a) Schematic of experimental setup. (b) Schematic (top) and image (bottom) of
the capillary phantom. The red arrow points towards the location of the capillary. (c) Image of a
microbubble (indicated by the red arrow) inside the capillary phantom obtained using the Shimadzu
high speed camera. (d) Typical RF-line obtained by a single transducer element. (e) Reconstructed
ultrasound image of the capillary phantom. The red dashed box indicates the location of the capillary.

A capillary phantom, shown in Figure 3.2b, was mounted on a 3-axis stage and positioned in a water
tank filled with degassed water. A microscope with a 20x objective (Olympus SLMPlan N20x/0.25) was
connected to either the Shimadzu HPV-X2 high speed camera to record the microbubble oscillations
at 10 million frames/s, or to the Photron NOVA S16 camera to observe the microbubbles at a larger
time scale at 16000 frames/s. Figure 3.2c shows an image of a microbubble inside the capillary
phantom obtained using the high speed camera. The phantom was illuminated from the left by two
light sources: a continuous light source (Schott KL 2500 LED) and a Xenon flash light (Vision Light
Tech A-260 CE 10Hz). A beam splitter directs 50% of the light from each light source towards the
phantom. The Xenon flash light is used during high frame rate measurements. The Xenon Strobe
light emits an intense light flash with a duration of about 10 to 15µs yielding enough light for the
high speed camera to record at 10 million frames/s. Due to the short duration of the light pulse, the
continuous light source was needed to have a live view of the capillary while performing experiments.
The GE C1-6D ultrasound transducer was positioned through an opening at the front side of a water
tank, which was sealed by cling film. The transducer was oriented vertically to ensure a uniform
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acoustic pressure over the entire region of the capillary.

To ensure the Xenon flash light and high speed camera were activated during microbubble oscil-
lations, we created a trigger system. We connected a pulse delay generator (Berkeley Nucleonics
Corporation 577-4C) to the Verasonics hardware system, the high speed camera and the flash light
source, as depicted in Figure 3.2a. Once the ultrasound transducer started transmitting the chosen
ultrasound waveform, the Verasonics sent a trigger to the delay generator. The signal was delayed by
40µs before activating the light source and a delay of 44µs was applied before triggering the cam-
era to record to synchronize the arrival of the ultrasound wave at the capillary with the optical recording.

The GE C1-6D ultrasound transducer was used to both transmit the ultrasound waveforms and receive
the acoustic response. A typical measured RF-line from the capillary phantom is shown in Figure 3.2d.
The peak around 100µs corresponds to the reflection of the ultrasound wave at the back surface of
the capillary phantom. The peak around 75µs is due to the reflection at the front surface of the
PVCP, reflection at the capillary walls and scattering from microbubbles inside the capillary. Image
reconstruction of the received RF data was performed using the delay-and-sum formulas 2.7 to 2.10,
derived in section 2.4. Figure 3.2e shows a reconstructed image denoting the key elements in the
image.

3.3 Characterization of GE C1-6D probe

In this study, we used the GE C1-6D transducer together with the programmable Verasonics Vantage
256 research ultrasound system for both transmitting and receiving ultrasound signals during measure-
ments. The GE C1-6D is a curved array transducer with a center frequency around 3.4MHz and a
bandwidth ranging from around 1 to 6MHz. The probe has 192 transducer elements of which only
the 56 center elements were activated for the measurements, while the remaining outer elements were
inactivated. [48] Several ultrasound waveforms were used in the experiments for studying the bubble
dynamics. A zero-time delay was applied between the transducer elements leading to the emission
of unfocused, slightly diverging plane waves. In order to compensate the measured radio frequency
(RF) signals for the transducer characteristics, the transmit and receive characteristics of the C1-6D
ultrasound transducer were determined.

Transmit characteristics

The transmit characteristics of the different waveforms were determined in a characterization ex-
periment. Figure 3.3a shows a schematic of the characterization setup. The probe was positioned
horizontally through an opening at the front side of a large water tank, which was sealed by cling film.
In the water tank, a fibre optic hydrophone (FP188-13, Precision Acoustics) was placed to measure
the ultrasound pressure at different distances and positions relative to the probe. The translation of
the hydrophone was achieved by attaching it to a 3-axis translational stage. The X, Y and Z-direction
correspond to the axial, lateral and elevational direction, respectively, as depicted in Figure 3.3a. The
hydrophone scanned three different planes to determine the elevation, lateral and axial focus. An
XY-plane of 10 by 20 mm, an YZ-plane of 40 by 10 mm and an XZ plane of 10 by 10 mm were
scanned around the expected focus of the transducer. The step size in the X, Y and Z-direction were
taken to be 0.25 mm. One exception was the smaller step size of 0.125 mm in the X-direction when
scanning the XY-plane. Thirteen different ultrasound pulses were characterized. The first type of
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pulse was a broadband pulse of a single cycle with a frequency of 2MHz. Besides, a down-chirp,
which is a frequency modulated signal with a decreasing frequency over time, was transmitted by
the ultrasound transducer. The chirp frequencies ranged from 6MHz down to 1MHz. Moreover,
11 narrowband pulses with a pulse length of 10 cycles were emitted and characterized using the
hydrophone. These narrowband waveforms had a frequency ranging from 1MHz to 6MHz in steps of
0.5MHz to cover the entire bandwidth of the transducer. The peak amplitude of the waveforms was
set to 4V. To synchronise the hydrophone measurement with the transmit of the ultrasound pulse, the
Verasonics ultrasound system sent a trigger to the picoscope (PicoScope 5000 Series) upon transmit of
the pulse. Each waveform was repeated 50 times and the measured signal was averaged over the repeats.

The pressure amplitudes measured by the hydrophone were corrected for the transmit voltage to obtain
the pressure/voltage. The pressure field obtained for the XZ-plane using the narrowband pulse of 3MHz
is shown in Figure 3.3b. The XY- and YZ-planes are included in Appendix A.1. From this pressure
map, it can be seen that the peak pressure at the elevation and axial focus is between 25 and 30 kPa/V.

We determined the transmit characteristics of the transducer for the chirp and the narrowband pulses,
separately. These were determined based on the 49 pressures measured around the center of the
XZ-plane, depicted by the red square in Figure 3.3b. In case of the chirp, the pressure amplitudes were
averaged and plotted as a function of frequency. Moreover, the pressure amplitudes were corrected
for the voltage tri-state transmitted by the ultrasound transducer to obtain the pressure output per
voltage. The obtained transmit curves, before and after compensating for the transmitted voltage
tri-state, were smoothed resulting in the curves shown in Figure 3.3c and d, respectively. For each
of the narrowband pulses, the mean pressure amplitude was calculated at the transmit frequency of
the pulse. Combining the pressure amplitudes of all pulses and plotting against the corresponding
transmit frequencies resulted in a transmit curve similar to the one obtained for the chirp, as can be
seen in both Figure 3.3c and d.

Receive and transmit-receive characteristics

The transmit-receive (TR) characteristics for a fundamental and harmonic response were determined
using the acoustic response from an alignment phantom, consisting of an electrical wire surrounded
by PVCP. This acoustic response, measured after transmission of a chirp, is shown by the blue curve
in Figure 3.3e. It represents the TR-characteristics for a fundamental response since the wire is a
linear scatterer. We can write this linear acoustic response by a convolution of the transmit and
receive characteristics of the probe. The harmonic response, i.e. the response at twice the transmitted
frequency, is estimated by convolving the transmit characteristics with the receive characteristics at
twice the transmit frequency. These convolutions are summarized in the equations below:

TRfund(f) = T (f) ⋅R(f), (3.1)

TRharm(f) = T (f) ⋅R(2f), (3.2)

where TRfund(f) and TRharm(f) are the transmit-receive characteristics of the fundamental and
harmonic response for a transmit frequency f , respectively. T (f) represent the transmit characteristics
as a function of transmit frequency. R(f) and R(2f) are the receive characteristics at once or twice
the transmit frequency, respectively.
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Figure 3.3: (a) Schematic of setup used for characterizing the GE C1-6D ultrasound probe. (b) The
XZ pressure field measured by the hydrophone for a narrowband pulse of 3MHz transmitted by the
C1-6D probe. (c) Transmit characteristic curve of the C1-6D probe for a chirp and narrowband pulses
as a function of transmit frequency. The transmit of the chirp is not compensated for the voltage
tri-state transmitted by the ultrasound transducer. (d) Transmit characteristic after compensating for
the voltage tri-state. (e) Transmit-receive characteristics for a fundamental response of a chirp and
narrowband pulses. (f) Receive characteristics for the fundamental and harmonic response of a chirp
and narrowband pulses. (g) Transmit-receive characteristics for a harmonic response of a chirp and
narrowband pulses.
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To obtain the TR-characteristics for the narrowband pulses and for harmonic responses, we determined
the receive characteristics. The fundamental receive characteristics were obtained by dividing, in the
Fourier domain, the measured signal from the alignment wire by the transmit characteristics of the
chirp. Figure 3.3f shows the fundamental receive characteristic curve. By multiplying the fundamental
receive with the transmit characteristics of the narrowband pulses, according to Equation 3.1, the
fundamental reference signal for the narrowband pulses was determined. Figure 3.3e shows this
reference signal together with the measured reference response for the chirp. The harmonic response
is at twice the transmit frequency. Therefore, the harmonic receive characteristic as a function of
transmit frequency is shifted to the right and scaled with respect to the fundamental receive, as shown
in Figure 3.3f. Substituting this harmonic receive characteristic and the transmit characteristics into
Equation 3.2, the TR-characteristics for the harmonic response of the chirp and the narrowband pulses
were determined. These are shown in Figure 3.3g.

3.4 Ultrasound waveforms

In the experiments, several types of ultrasound waveforms were transmitted by the GE C1-6D ultrasound
transducer: a broadband imaging pulse of 1 cycle, narrowband imaging pulses of 10 cycles and a
15µs down-chirp. To ensure that both the fundamental frequency and the second harmonic would fall
within the bandwidth of the transducer, the transmit frequencies of the imaging pulses were chosen
to be below 3MHz. The ultrasound frequency of the broadband imaging pulse was chosen to be
2MHz. The narrowband imaging pulses were transmitted at 1.5, 2.0 and 2.5MHz. The frequency
of the down-chirp ranged from 6MHz down to 1MHz to cover the full transducer bandwidth. The
Verasonics Vantage software system simulated the transmitted waveforms. These simulated waveforms
together with the corresponding Fast Fourier Transforms (FFTs) are shown in Figure 3.4.

Figure 3.4: Ultrasound waveforms used in experiments. (Left) Waveforms as simulated by the
Verasonics Vantage software system. (Right) Fast Fourier Transforms corresponding to the waveforms
shown on the left.
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Pulse inversion was used to distinguish the fundamental responses from the harmonic responses. The
time between the transmission of the upright and the inverted waveform was set to 200µs. A smaller
value was not feasible due to the response time of the Verasonics and the two-way traveltime of the
waveforms. Using a flow rate of 100µL/min and a capillary with a diameter of 100µm, this implied
that the microbubbles or beads moved about 0.04mm in between PI acquisitions. Therefore, the
moving particles could be assumed to be stationary. The transmit voltage was set to 9V for the
broadband imaging pulse and 4V in case of the chirp and the narrowband pulses. These voltages
corresponded to a peak pressure of about 100 to 120 kPa, as can be determined from Figure 3.3b.

3.5 Capillary phantom

We used a 3D-printed mold to produce the small capillary phantoms. We inserted needles through
the top and the bottom of the mold. A fishing thread or tungsten wire with the desired diameter
of the capillary was passed through the needles. Next, polyvinyl chloride plastisol (PVCP), obtained
from Bright Baits, was degassed in a vacuum pump for several minutes. Thereafter, it was heated up
in the microwave causing the PVCP to transition from a white milky solution into a transparent liquid.
With the wire in place, we filled the mold with the heated PVCP. After the PVCP had hardened
into a viscoelastic gel, we gently pulled the wire out of the gel to create a hollow capillary with the
desired diameter and a length of about 5 to 10mm. Figure 3.2b shows a schematic and a real image
of the phantom. In the experiments, we used a capillary with a diameter of 100 µm. The capillary
was located in the corner of the mold, 2 mm from the front and right surface of the phantom. The
ultrasound waves thus had to transverse only 2 mm of PVCP to reach the capillary minimising the
amount of ultrasound attenuation. Moreover, since the distance between the right surface and the
capillary was also 2 mm, less light was scattered leading to better optical images. The capillary had a
vertical orientation inside the gel phantom to prevent microbubbles from floating towards the wall
of the capillary during perfusion. Since the steel needles highly reflected the ultrasound waves, we
replaced them by plastic tubing. The tubing was connected to a syringe on a syringe pump (PHD
2000, Harvard Apparatus) to enable flow through the capillary. The flow was directed upwards through
the capillary in accordance with the floating direction of the bubbles and the beads. A magnetic
stirrer was used to keep the microparticles diffused and dissolved in the solution.

3.6 Experimental protocol

First, we aligned the optical and acoustical system using an alignment phantom. Figure 3.3b shows
the importance of this alignment, as the elevation focus spans about 1mm in width. The alignment
phantom was similar to the capillary phantoms, except with an electric wire replacing the capillary.
With the alignment phantom in the water tank, the transducer continuously transmitted and received
short ultrasound pulses at 2MHz with a time of 200ms between each pulse. The received RF-lines
corresponding to the eight center elements were averaged and plotted. We adjusted the relative
position of the wire with respect to the transducer until the measured RF-lines showed a maximum
reflection signal from the wire. This implied that the wire was in the elevation focus of the transducer.
Next, we adjusted the position of the microscope until the wire was in the optical focal region ensuring
that the elevation focus overlapped with the optical focal region.

Once the optical and acoustical focus were aligned, we replaced the alignment phantom by a capillary
phantom. First, the phantom was perfused with deionised, filtered water. A pre-measurement was
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performed with a narrowband imaging pulse to check the saturation of the signal. Again, the average
of the received RF-lines were plotted. The value for the Time Gain Compensation (TGC) was
adjusted until the RF-signal reached its maximum without being saturated. Thereafter, we performed
measurements with either no scatterers, hollow glass beads or monodisperse microbubbles present
inside the capillary. The monodisperse microbubbles had a radius of 2.2µm or 2.9µm. The size
distribution of these microbubbles is given in Figure 3.1b. These scatterers were perfused through the
capillary at a flow rate of 100µl/min. This corresponded to a velocity of 0.2m/s in a capillary with a
diameter of 100 µm. For each type of scatterer, the acoustic response was determined for the several
ultrasound waveforms, discussed in section 3.4. The ultrasound transducer transmitted and received a
sequence of 600 pulses, comprising an upright and inverted pulse, for each ultrasound waveform at a
rate of 10 pulses per second. The RF signals obtained without scatterers and with hollow glass beads
were used as a baseline control and for linear reference, respectively.

3.7 Data Processing

The received ultrasound signals were processed using Matlab. First, pulse inversion was applied to all
signals to separate the fundamental and harmonic response. For the analysis of frequency components
in the measured signals, the Fast Fourier Transform (FFT) was used. Additionally, ultrasound images
were reconstructed from the RF data.

3.7.1 Delay-and-sum ultrasound image reconstruction

Before reconstructing the time signals in the RF data to a 2D image, the Fast Fourier Transform (FFT)
of the RF data was calculated to apply Fourier filtering. Since the negative frequencies in the spectrum
contain the same information as the positive frequencies, the amplitude of the positive frequencies
were doubled, while the negative frequencies were removed. Next, we filtered out frequencies above
10MHz and below 0.5MHz to reduce noise in the images. Subsequently, the inverse Fourier Transform
was used to obtain the filtered RF data. Each column of the filtered RF data contains the time
signal measured by a transducer element. These time signals can be related to a spatial location
using delay-and-sum beamforming based on the two-way travel time of the waveform, as described in
section 2.4. By determining the time signals corresponding to each pixel in the imaging plane, a 2D
image was formed. Subsequently, image demodulation was used to obtain the envelope of the signals.
Finally, the image was converted to a dB scaled image using log compression. In this thesis, the RF
data received when transmitting the broadband pulse was used for image reconstruction since this
waveform yields the best resolution due to its shorter pulse length.

3.7.2 Pulse inversion

To determine the effectiveness of using pulse inversion, the ultrasound signals scattered from an
electrical wire, hollow glass beads and microbubbles were compared. Here, the electrical wire and
beads act as linear scatterers, whereas the microbubbles are nonlinear scatterers. Both an upright and
inverted narrowband pulse at a frequency of 2MHz were transmitted. The RF data obtained from
the pulse inversion (PI) acquisitions were combined. The RF data retrieved from the upright and
inverted waveform were subtracted and summed to split the data into the fundamental and harmonic
responses, respectively, according to Equation 2.3. The measurements for the different scatterers were
performed using the same value for the TGC.
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3.7.3 Frequency analysis

After applying pulse inversion, the frequency spectra of the fundamental and harmonic responses
were obtained. Since we are interested in the signal originating from the location of the capillary or
electrical wire, spatial filtering was applied. The RF data of a single frame was reconstructed into an
image. In the reconstructed image, a region of interest (ROI) around the location of the capillary
or wire was selected. Using the delay-and-sum formulas in section 2.4, the time delays of the signal
originating from the ROI in the image are determined. The rows in the RF data corresponding to
these time delays were selected, while the remaining rows were removed. Thereafter, the frequency
spectrum of the filtered RF data was calculated using the Fast Fourier Transform (FFT). Finally,
the frequency spectra were compensated for the transmit-receive characteristics of the transducer.
This was done by dividing the fundamental and harmonic frequency spectra by the reference response
signals of the transducer, as shown in Figure 3.3e and g.

3.8 Simulation model

3.8.1 Structured and unstructured mesh

Figure 3.5a shows the geometry of the simulation. The inside of the capillary was represented by a
rectangular fluid domain with a length of 1mm and a width of 0.1mm. In the center of the fluid
domain a circular void was created with a radius of 0.002mm simulating a microbubble. The left and
right side of the fluid domain were attached to rectangular elastic solid domains with a thickness of
0.01 mimicking the capillary walls. A zoom-in on the geometry and the mesh used for the simulations
are shown in Figure 3.5b and c. The mesh was generated using the finite element mesh generator
Gmsh version 4.11.1. A combination of an unstructured and structured mesh was used. Structured
meshes were used for the solid and in the region surrounding the microbubble since these regions
have a regular shape. The remainder of the fluid was described with an unstructured mesh, which is
adaptable to any shape. The elements within the elastic walls had a uniform size, while the element
size in the fluid domain increased with the distance from the bubble wall. This resulted in a fine mesh
near the boundary of the bubble and a coarser mesh in the bulk fluid reducing the computational
expense.

3.8.2 Boundary conditions

In order to simulate the dynamics of the microbubble and its shell, the pressure terms on the right-hand
side of the Rayleigh-Plesset equation, as given in Equation 2.1, were set as a boundary condition on
the bubble wall. The pressure term, 4µl

R
dR
dt , corresponding to the energy dissipation due to the liquid

viscosity was omitted since this dissipation was already accounted for when solving the fluid dynamics
of the surrounding liquid. The acoustic driving pressure PA(t) was implemented as a sine wave with
a constant ultrasound pressure amplitude. A list of the parameter values used in the simulation is
given in Appendix A.2.

The bubble-radius-dependent surface tension, as described by the Marmottant model given in Equa-
tion 2.2, was modelled using the following equation:
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σ(R) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if σ ≤ 0
σ0 + χ(R

2

R2
0
− 1) if 0 ≤ σ ≤ σwater

σwater if σ ≥ σwater .

(3.3)

At the inlet and outlet of the fluid domain, we set the pressure boundary condition equal to the
atmospheric pressure. At the interface between the fluid and the elastic walls, we used the no-slip
boundary condition for the velocity together with the coupling conditions given in Equation 2.22.

Figure 3.5: (a) Schematic of the simulation geometry. The fluid-solid (FS) boundary is depicted
by the dark blue lines. (b) Mesh of part of the fluid and solid domain in the simulation. (c) Mesh
zoomed in on the region around the bubble area. (d) Simulation scheme showing the different steps
for a single iteration. The first iteration starts with determining the current radius of the bubble R.

3.8.3 Simulation scheme

Figure 3.5d shows a simulation scheme of the different steps in the simulation.
The first step in the simulation is to determine the current radius of the microbubble. At the start of
the simulation the initial bubble radius is set to 2µm. After one iteration, the bubble radius at each
node on the bubble boundary is calculated using the following equation:

R⃗t = R⃗t−1 + v⃗bw ⋅∆t, (3.4)
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with R⃗t and R⃗t−1 the bubble radius vector at the current and the former timestep, respectively, and ∆t
the timestep. v⃗bw is the mesh velocity vector at the bubble wall, which is obtained from the fluid solver.

The average of R⃗t is calculated and used as the current bubble radius. Subsequently, the radial
velocity of the bubble wall dRt

dt is calculated using a first-order explicit Euler-forward time-integration
scheme:

dRt

dt
= Rt −Rt−1

∆t
, (3.5)

where Rt and Rt−1 are the average bubble radii at the current and the former timestep, respectively.

Next, the pressure terms on the right-hand side of the Rayleigh-Plesset equation (Equation 2.1) are
evaluated and set as a pressure boundary condition at the bubble boundary.

Using this boundary condition to describe the bubble dynamics, the Navier-Stokes equation (Equa-
tion 2.15) is solved by the fluid solver. The fluid stress is computed using Equation 2.13 and transported
to the solid solver according to the second coupling condition in Equation 2.22. Thereafter, the solid
solver solves the system of equations given in Equations 2.19 and 2.20 for the elastic walls yielding
the solid displacement and pressure. The velocity of the solid v⃗s is computed using an Euler-forward
time-integration scheme:

v⃗s =
u⃗t − u⃗t−1

∆t
, (3.6)

with u⃗t and u⃗t−1 the current and the former displacement vector, respectively.

Afterwards, the solid velocity is transported to the fluid domain according to the first coupling
condition in Equation 2.22. The mesh solver then ’diffuses’ the fluid mesh velocity according to
Equation 2.21, with the solid velocity as a boundary condition at the fluid-wall interface and the
bubble wall velocity as a boundary condition at the fluid-bubble interface. Subsequently, the solid
mesh is moved and the fluid mesh coordinates are updated according to this diffused mesh velocity.
This causes both the bubble wall and the elastic wall to move together with their surrounding fluid cells.

After mesh movement of both the solid and fluid mesh, a single iteration has been completed. The
radius and radial velocity of the bubble have been updated. Therefore, we go back to the first step in
the simulation scheme to start the next iteration.

From a single simulation run, the evolution of the bubble radius over time can be extracted and the
maximum amplitude of the radial oscillations can be calculated. By running the simulation for several
ultrasound frequencies and computing the amplitudes of the bubble oscillations, the resonance curve
of the bubble was determined.



24 Chapter 3 Methods



4 Results

4.1 Spectral separation through pulse inversion

As described in section 3.4, pulse inversion (PI) was used to acquire the RF data, allowing for
distinguishing the fundamental response from the harmonic response. Figure 4.1a shows the upright
and inverted RF lines, measured after scattering from an electrical wire. The measured response
of the upright and inverted waveform generated by the beads and the microbubbles in the capillary
phantom are shown in Figure 4.1c and e, respectively. The RF data retrieved from the upright and
inverted waveform were subtracted and summed to split the data into the fundamental and harmonic
responses, respectively. This resulted in the waveforms shown in Figure 4.1b, d and f.

Figure 4.1b shows that the fundamental response from the electrical wire is doubled relative to the
original signal, while the maximum harmonic signal amplitude is only about 3.5% of the fundamental
signal, which is as expected for a linear scatterer. Due to nonlinear propagation, however, the signal
retrieved from the linear scatterer also contains some nonlinearity causing the harmonic response to
not vanish entirely. The linear beads generate a similar response, as shown in Figure 4.1d. The beads’
signal shows some modulation due to interference of the scattered ultrasound waves, which is not
observed for the wire response. The fundamental microbubble response is also doubled with respect
to the upright and inverted RF signals, as can be observed from Figure 4.1f. However, the harmonic
signal has a maximum amplitude around 5.5% of the fundamental RF signal, which is larger than for
the wire and the beads. This increased harmonic response suggests that we measure the nonlinear
response of microbubbles. However, other similar measurements show a lower harmonic response for
the microbubbles than for the beads. The increased harmonic response observed for the microbubbles
is thus most likely caused by nonlinear propagation effects as well.

The Fast Fourier Transform (FFT) of the RF data from the microbubbles and the wire was determined
before and after using pulse inversion. For comparison, the FFT amplitudes were normalized with
respect to the maximum amplitude in the frequency spectrum without applying pulse inversion.
Figure 4.1g shows the obtained frequency spectra when no pulse inversion is applied. Here, peaks
can be observed at the transmit frequency (i.e. 2MHz) and at twice the transmit frequency (i.e.
4MHz). The frequency spectra obtained after subtracting the RF data of the upright and inverted
pulse are given in Figure 4.1h by the orange and yellow curve. In comparison to the frequency content
without applying PI, the peak at twice the transmit frequency has disappeared while the fundamental
frequency peak is still present. On the contrary, the harmonic frequency response is retained, while the
amplitude at the fundamental frequency is reduced by a factor of about 200 after adding the upright
and inverted response. This can be observed from the purple curve and red curves in Figure 4.1f.
A small peak at the fundamental frequency is still present in the harmonic frequency spectrum
because the inverted pulse transmitted by the ultrasound transducer is not the exact inverse of the
upright pulse. Therefore, the linear response from the inverse and upright pulse don’t cancel out entirely.
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Figure 4.1: (a) Wire response to upright pulse and inverted pulse. (b) Fundamental and harmonic
wire response. (c) Beads response to upright pulse and inverted pulse. (d) Fundamental and harmonic
beads response. (e) Microbubble response to upright pulse and inverted pulse. (f) Fundamental and
harmonic microbubble response. (g) Fast Fourier Transform (FFT) of microbubble and wire response
without applying pulse inversion (PI). (h) FFT of fundamental and harmonic microbubble and wire
response. (i) Reconstructed ultrasound images of microbubble scatter without applying PI (left).
Reconstructed image of fundamental (middle) and harmonic (right) microbubble response.



Chapter 4 Results 27

The bottom row in Figure 4.1 shows the reconstructed ultrasound images corresponding to the
measured microbubble response. No PI was applied for the left image. The middle and right image
are reconstructed from the fundamental and harmonic data, respectively. The original reconstructed
image (left) and the image showing the fundamental signal (middle) are very similar. This observation
is as expected since the majority of the detected signal originates from fundamental scattering. The
harmonic image shows signal predominantly originating from the region of the capillary because of the
presence of both moving scatterers and nonlinear microbubbles inside the capillary. In the surrounding
water and polyvinyl chloride plastisol (PVCP), the scatterers are purely linear causing them to be
removed when applying PI. Moreover, it can be observed that the speckle size in the harmonic image is
twice as small as the speckle size in the fundamental image since the harmonic ultrasound wavelength
is half the fundamental wavelength.

4.2 Nonlinear microbubble response in capillary

To investigate whether the nonlinear microbubble response can be measured, the received ultrasound
signals of the microbubbles were compared to the response from linear beads. The frequency spectra
measured after transmission of a chirp and a narrowband pulse at 2MHz are shown in Figure 4.2a to d
for beads and microbubbles with a radius of 2.2µm and 2.9µm. The frequency spectra corresponding
to narrowband pulses with a transmit frequency of 1.5MHz are given in Appendix A.3. The recon-
structed ultrasound images with either microbubbles or beads perfused through the capillary phantom
are shown in Figure 4.2e to h. Figure 4.2e and g show the fundamental images and Figure 4.2f and h
show the harmonic images.

The acoustic frequency response measured for the hollow glass beads and the microbubbles is similar
for both transmitted ultrasound waveforms. In case of the chirp, the maximum difference between the
beads and microbubbles response is 0.9 dB and 2.4 dB for the fundamental and harmonic spectra,
respectively. In the narrowband pulse spectra, the amplitude of the fundamental response generated by
the beads is 7 dB lower while the harmonic response is only about 1 dB smaller than the microbubble
response. This implies that the harmonic response is larger with respect to the fundamental response
for the beads than for the bubbles. Further research is needed to determine the cause of this unexpected
result.

A higher signal intensity is observed for the microbubbles in both the images and the frequency spectra
for the narrowband pulses. This might be due to, for example, the higher effective scatter cross
section of the microbubbles or a higher concentration of microbubbles than beads. The microbubbles
show both a fundamental and harmonic response as expected for a nonlinear scatterer. However, the
beads also show a significant harmonic response. Similarly, the reconstructed images based on the
harmonic RF data show signal originating from the capillary region in case of both the beads and the
microbubbles. Based on this observation, we conclude that the measured harmonic signal likely does
not originate from the nonlinear microbubble response. Instead, the higher harmonic can most likely
be attributed to nonlinear propagation effects. The measurements are, thus, not sensitive enough yet
to distinguish the nonlinear bubble response from other sources of harmonic signal.
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Figure 4.2: (Left) Results based on fundamental RF data. (Right) Results based on harmonic RF
data. (a-b) Frequency spectra showing the response to a down-chirp with a frequency decreasing
from 6MHz down to 1MHz. (c-d) Frequency spectra showing the response to a narrowband pulse
with a transmit frequency of 2MHz. (g-h) Reconstructed images with microbubbles present in the
capillary phantom. (i-j) Reconstructed images with beads present in the capillary phantom.
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4.3 Quantitative frequency analysis after SVD filtering

To distinguish the signal generated by the moving microbubbles and beads from the static tissue,
we studied the use of Singular Value Decomposition (SVD) filtering. To compare the acoustic
response of linear beads and nonlinear microbubbles at different ultrasound frequencies, a quantitative
measurement of the amplitudes of the fundamental and harmonic frequency response is required.
Here, we investigate the effect of SVD filtering on the frequency content of RF Data, measured after
scattering from an electrical wire, hollow glass beads and microbubbles. We perform SVD filtering
with several lower limits for the singular value ranging from 1 to 20 singular values. Here, a lower
limit of 1 implies that no singular values are removed, i.e. no filtering, while a limit of 20 implies
that the first 19 singular values are filtered out. The number of frames recorded determines the
total count of singular values, which was 100 for the wire and 600 for the microbubble and beads
measurements. After applying pulse inversion, the fundamental and harmonic RF data received using
the narrowband pulses was SVD filtered for each singular value lower limit. Subsequently, a region
of interest (ROI) around the depth of the capillary was selected in the filtered RF data. The Fast
Fourier Transform (FFT) was calculated for the RF data inside the selected ROI. Finally, the obtained
frequency spectrum was compensated for the transmit-receive characteristics of the transducer.

The fundamental and harmonic frequency spectra, obtained without applying SVD filtering, are shown
in Figure 4.3d and g, respectively. In the fundamental frequency spectrum a peak is observed at
the transmit frequency of the narrowband pulse (i.e. 2MHz). The FFT of the harmonic response
shows a peak at both once and twice the transmit frequency. The amplitudes of the fundamental
and harmonic peaks were determined and plotted on a dB scale as a function of the chosen singular
value limit, as shown in Figure 4.3a and b. The amplitude of the fundamental response was taken
as the peak amplitude at the transmit frequency in the fundamental frequency spectra, while the
harmonic amplitude was obtained from the peak at twice the transmit frequency in the harmonic
frequency spectra. As the level of SVD filtering increases, more background noise is removed causing
the baseline of the frequency spectra to decrease. To compensate for this, a linear fit was applied to
establish the noise ground level. Subsequently, the baseline values at the fundamental and harmonic
frequencies were determined for each spectrum and subtracted from the corresponding fundamental and
harmonic amplitudes. In Figure 4.3b, the second part of the harmonic response curve for the wire is de-
picted as a dashed line since the harmonic amplitude was barely distinguishable from the noise baseline.

Figure 4.3a and b show that the amplitude of both the fundamental and harmonic response decreases
as the singular value limit increases. The fastest decrease is observed when moving from a singular
value lower limit of 1 to 2, which corresponds to the removal of stationary background signal. After
the removal of around 3 to 4 principal components, the decrease becomes approximately linear on the
dB scale, implying an exponential decrease. The decrease in amplitude of the fundamental response is
similar for the beads and the bubbles, whereas the fundamental response corresponding to the wire
decreases more rapidly. It decreases down to a negligible amplitude of -70 dB at a lower limit of 4
singular values, as expected for a stationary scatterer. Similarly, the harmonic response decreases
faster when using a wire as acoustic scatterer compared to using microbubbles or beads. The harmonic
response of the beads and the microbubbles show a similar trend with a difference in amplitude of a
few dB. A larger difference of about 12 dB is observed when comparing the curves for the 1.5 and
2MHz narrowband pulse. The SVD filter seems to attenuate higher frequencies more rapidly than
lower frequencies. This is also confirmed by the faster decrease in the harmonic signal compared to
the fundamental signal of the wire. This difference could also partially be attributed to an imperfect
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compensation for the transducer characteristics.

Figure 4.3: (a-b) Amplitude of peak at fundamental frequency in spectra (d-f) and harmonic frequency
in spectra (g-i) versus the singular value lower limit. (c) Ratio of harmonic and fundamental amplitude
versus the singular value lower limit. Curves are shown for a wire, beads and microbubbles driven by
narrowband ultrasound waveforms at 1.5 and 2MHz. (d-f) Fundamental frequency response and (g-i)
harmonic frequency response of beads, a wire and microbubbles on a narrowband 2MHz ultrasound
pulse for several levels of SVD filtering.

In addition to studying the absolute amplitudes of the fundamental and harmonic responses, it is
relevant to analyze the ratio between the two. The ratio provides insight into the degree of non-
linearity present in the ultrasound signal, which is essential for studying the nonlinear behaviour of
the microbubbles. The ratio between the harmonic and fundamental amplitude as a function of the
chosen singular value limit for the beads, wire and microbubbles is shown in Figure 4.3c for transmit
frequencies of 1.5 and 2MHz. Figure 4.3c shows that the chosen singular value limit significantly
influences the ratio between the measured harmonic and fundamental response. Up to a singular
value of 3 or 4 the ratio rapidly increases. For singular values above 5 the ratio of the beads and
microbubbles becomes approximately constant although with a slight increase. At this same singular
value limit, the ratio of the wire drops to zero implying that static signal is removed. The ratio
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corresponding to the different transmit frequencies and types of moving acoustic scatterers show a
similar shape. However, the ratio for the beads and the microbubbles show a difference on the order
of 0.02 to 0.1. Furthermore, the ratio increases more by a factor of around 1.5 for a lower transmit
frequency. This is in accordance with the faster decrease in the harmonic amplitude, as observed in
Figure 4.3c.

As the fundamental and harmonic amplitudes show a stable exponential decrease after a certain
singular value limit and the ratio appears to converge, it seems possible to perform a quantitative
analysis of the frequency content after SVD filtering. However, we still need to investigate whether
there exists an accurate relation between the obtained amplitudes and the acoustic response generated
by the microbubbles and the beads. A positive indication is that the remaining amplitudes, after
removal of around 4 principal components, seem to be associated to the moving scatterers since the
static signal of the wire has already been removed at this stage.

To see the effect of the SVD filtering on the shape of the frequency spectra, the frequency spectra
were plotted for three levels of SVD filtering in Figure 4.3d to i. The graphs show the FFT after SVD
filtering with lower limits of 1 (i.e. no SVD filtering), 3 and 11. These lower limits are depicted by
the vertical lines in Figure 4.3c. The lower limit of 3 is in the regime where the ratio still increases,
while the ratio is approximately constant for a lower limit of 11. Figure 4.3d to f correspond to the
fundamental RF spectra and Figure 4.3g to i to the harmonic spectra. The amplitudes were normalized
with respect to the maximum amplitude of the microbubble signal without applying SVD filtering.
From Figure 4.3d to f, we observe that the peak is distorted: it becomes flatter and less distinguishable
from the surrounding signal, when increasing the lower limit. The FFTs of the harmonic response
(Figure 4.3g to i) show a peak at the fundamental frequency, which has not been cancelled out by
applying pulse inversion. This peak becomes larger with respect to the harmonic response in the
spectrum as more singular values are removed.

Beside the influence of SVD filtering on the spectral content of the data, we also studied the influence
on the reconstructed ultrasound images. The fundamental and harmonic RF data was filtered and
reconstructed with 3 and 11 as lower limits for the SVD filtering. The fundamental and harmonic
reconstructed images are shown in Figure 4.4, together with the images reconstructed for unfiltered
data. Figure 4.4a to f show the phantom with the wire, while Figure 4.4g to l show the capillary
phantom perfused with microbubbles. The reconstructed images of the wire show that SVD filtering
reduces the average fundamental signal from above -6 dB to below -55 dB after removing 10 singular
values, while reducing the harmonic signal from approximately -36 dB to below -57 dB. Around the
location of the wire, SVD filtering reduces the average fundamental signal intensity from 16 to -52
dB. The harmonic signal from the wire decreases from -17 dB down to -56 dB. The SVD filtering can
thus filter out signal from static tissue, as was already observed earlier.

The reconstructed images of the capillary phantom (Figure 4.4g to l) show that signal emanating from
the capillary can already be distinguished from the surrounding tissue without applying SVD filtering.
The SVD filtering does not significantly reduce the signal originating from the water and PVCP. The
fundamental signal’s average intensity in the water and PVCP is approximately -55 dB and -40 dB,
respectively, both before and after the application of SVD filtering. Similarly, the difference between
the harmonic signal’s average intensity before and after SVD filtering is less than 2 dB. The signal is
approximately -60 dB in the water and -55 dB in the PVCP. The limited reduction in the water signal
can be attributed to moving impurities in the water. Vibrations induced by pumping fluid through the
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Figure 4.4: (a-c) Reconstructed images of fundamental RF data of the wire phantom for several levels
of SVD filtering. (d-f) Reconstructed images of harmonic RF data of the wire phantom for several
levels of SVD filtering. (g-i) Reconstructed images of fundamental RF data for several levels of SVD
filtering with microbubbles present in the capillary. (j-l) Reconstructed images of harmonic RF data
for several levels of SVD filtering with microbubbles present in the capillary.

capillary might explain the limited removal of signal in the PVCP. These movement and vibrations
result in reduced spatio-temporal coherence inside the water and the PVCP causing the SVD filter to
not filter out the signal. When increasing the lower limit, mainly the signal coming from the region
of the capillary is removed. Around the capillary, the fundamental signal is reduced from -26 dB
to -33 dB, while the harmonic signal reduces by around 3 dB from -37 dB to -40 dB due to SVD
filtering. From these observations we can conclude that SVD filtering does not significantly enhance
the signal-to-background ratio of the signal from the beads or microbubbles with respect to the
surrounding tissue. Since more Fourier filtering was applied before reconstructing the microbubble
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images, no direct comparison can be made with the images of the wire.

4.4 Simulation model

4.4.1 Time step convergence study

To determine which time step size to use for the simulations, we studied the convergence of the time
step size. We ran the simulation with an ultrasound driving frequency of 0.3MHz. Each run, the time
step size was halved with respect to the former step size. The evolution of the bubble radius over
time was extracted from the simulations. The bubble radius versus time is plotted for time step sizes
of 1, 2, 4 and 8 ns in Figure 4.5a. The relative error between the bubble radius at each time step size
with respect to the radius at the smallest step size was calculated using the L2 norm. Subsequently,
the error was normalized to obtain the Root Mean Square Error (RMSE):

RMSE R(∆t) =
¿
ÁÁÀ 1

n

n

∑
i=1

∣R∆t −R∆tref ∣2, (4.1)

where R∆t is the radius for a time step size of ∆t and ∆tref corresponds to the smallest time step
size of 1 ns. n is the number of data points of the simulation. Figure 4.5b shows the errors obtained
for each step size on a logarithmic scale.

(a) (b)

Figure 4.5: (a) Bubble radius over time for several time step sizes. The legend shows the time step
size in µs. (b) Root Mean Square Error (RMSE) of the bubble radius with respect to ∆t = 1ns as a
function of time step size, plotted on a logarithmic scale. The linear fit is shown by the dashed line
and has a slope of 0.9.

Figure 4.5b shows that the error decreases when decreasing the time step size. A linear fit of the errors
gave a slope of approximately 0.9, which suggests a linear convergence of the simulation. However, it
is important to note that this fitting is based on no more than three data points. For a step size of 2
ns the error reduces to 0.7nm, which is around 0.04% of the initial bubble radius. As this error was
considered sufficiently small, a time step size of 2 ns was chosen for the subsequent simulations.
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4.4.2 Bubble oscillation and wall deformation

Figure 4.6a and b show the bubble oscillations and the left wall displacement, observed in the numerical
simulations. The frames were taken at time intervals of 400 ns. From the initial to the final frame,
the bubble shows expansion and the wall moves towards the left, indicating displacement away from
the bubble.

Figure 4.6: (a) Frames of numerical simulation taken at time intervals of 400 ns showing bubble
oscillation and (b) wall movement. (c) Bubble radius over time for an ultrasound driving frequency of
1.4MHz and driving pressures of 20 and 40 kPa. (d) Wall displacement orthogonal and parallel to
the wall over time for an ultrasound driving frequency of 1.4MHz and a driving pressures of 40 kPa.
(e-f) Fast Fourier transform of the curves shown in (c) and (d). In (e) the amplitude is divided by the
acoustic pressure.

The evolution of the bubble radius over time was extracted from the simulation data and plotted
for several ultrasound driving frequencies and pressures. Figure 4.6c shows the bubble radius over
time curves for an ultrasound frequency of 1.4 MHz and pressures of 20 and 40 kPa. Moreover,
the displacement of the wall orthogonal and parallel to the wall surface was determined for an
ultrasound frequency of 1.4 MHz and a pressure of 40 kPa, as shown in Figure 4.6d. For these
simulations, the shear modulus and bulk modulus of the walls were 250 kPa and 962MPa, respectively.

Subsequently, the Fast Fourier transform (FFT) of the oscillating radius and the wall displacement was
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determined. Some transient behaviour can be observed in Figure 4.6c and d before the oscillations
stabilize. Since the ultrasound wave is a continuous wave without an envelope, the ultrasound pressure
experienced by the microbubble is not built up gradually causing this transient in the oscillations. To
minimize the effect of the transient, the FFT was calculated based on the second half of the data,
depicted by the shaded area. Figure 4.6e and f show the corresponding FFTs. The FFTs of the radial
oscillations were divided by the acoustic driving pressure.

Figure 4.6c shows that the oscillation amplitude is lower for a smaller pressure, according to expec-
tations. As shown in Figure 4.6e, the frequency is found to be around 1.4MHz, which corresponds
to the driving frequency. Moreover, the FFTs of the oscillations at different pressures overlap when
compensated for the acoustic driving pressure. The smaller peak, shown in the FFT around 0.66MHz,
is caused by the transient behaviour of the bubble oscillations. Figure 4.6d and f show that the wall
displacement orthogonal to the surface is larger than parallel to the wall surface, as expected. Similar
as for the bubble radius, the wall displacement oscillates at the driving frequency of the ultrasound,
i.e. 1.4MHz.

The maximum amplitude of the bubble radius was determined for the stabilized (shaded) part of the
bubble oscillations for each driving frequency. The maximum amplitude was plotted against the driving
frequency for ultrasound pressures of 20 and 40 kPa. The curves obtained are shown in Figure 4.7.
Moreover, a simulation was run with a higher wall stiffness. To increase the wall stiffness, the shear
modulus was increased from 250 kPa to 250MPa and the bulk modulus was increased from 962MPa
to 962GPa. The curve for a higher wall stiffness is also shown in Figure 4.7.

Figure 4.7: Maximum amplitude of the radial oscillations of the bubble as a function of ultrasound
driving frequency for different ultrasound driving pressures and values for the wall stiffness.

The curves in Figure 4.7 show clear peaks at 0.4 and 0.5MHz for 20 and 40 kPa, respectively. These
peaks are evidence of resonance behaviour as expected from theory. Moreover, we observe that the
resonance frequency decreases with increasing driving pressure and the skewness typical for resonance
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curves of microbubbles is observed [8,9]. The resonance curves for different values of the shear and bulk
modulus overlap, implying that the stiffness of the wall does not effect the resonance behaviour of the
bubble. This can be explained by the fact that the diameter of the capillary (D = 100µm) is relatively
large compared to the size of the microbubble (R = 2µm), resulting in no effective confinement of the
microbubble. Since the numerical simulation is in 2D, the obtained resonance frequencies cannot be
compared to values found in literature. For comparison with theory, the Rayleigh-Plesset equation
should be derived in cylindrical coordinates.



5 Discussion and outlook

The experimental and simulation results are promising for measuring and modelling the confined
microbubble response. However, some improvements are still required.

5.1 Setup and data acquisition

In this study, the optical setup primarily served as a visualization tool during experiments to check
whether acoustic scatterers, i.e. glass beads or microbubbles, were flowing through the capillary.
Few high speed images were captured, which does not exploit the functionality of the setup. In the
upcoming research, the optical high speed imaging setup will be used to record the microbubble
oscillations during ultrasound actuation. This optical data can then serve as validation for the
acoustical measurements.

For the capillary phantom, we used liquid plastisol (PVCP) because of its acoustic properties being
similar to water and its resilience enabling perfusion of the capillaries. However, we still need to
properly characterize the material by measuring the attenuation coefficient, speed of sound and
acoustic impedance. The current phantom contains a single capillary. Another option would be
to create a network of multiple capillaries. This will enhance the signal received from scatterers
inside the capillaries with respect to the background signal. Moreover, having multiple capillaries will
facilitate easier perfusion of the capillaries since the fluid can flow in multiple directions. This also
implies that an obstruction in one of the capillaries will not stop the entire flow. Easier perfusion
is especially important when we start using even smaller capillaries with diameters down to 15 µm.
A disadvantage, however, of multiple capillaries is that the optical setup can only visualize a single
capillary. Furthermore, due to the spread in location of the capillaries, the scatterers inside different
capillaries will experience different ultrasound pressures.

In addition to the chirp and narrowband pulses, a ’broadband’ imaging pulse of 1 cycle with a center
frequency of 2MHz was used in the experiments, as illustrated in Figure 3.4. The RF data acquired
using this short pulse was used for reconstructing the ultrasound images because of its increased
resolution with respect to longer waveforms. However, this measured RF data was not used for
data analysis since the -6 dB bandwidth of the ’broadband’ pulse was only 22% of the transducer
bandwidth, i.e. a bandwidth of 1.6MHz to 2.7MHz, as depicted in Figure 3.4. In future research,
we plan to design a true broadband pulse covering the entire transducer bandwidth. One approach
involves decreasing the duration of the pulse and thereby broadening the bandwidth. A shorter
pulse duration can be implemented by reducing the number of cycles as input for the tri-state signal
generator of the Verasonics system. Furthermore, we plan to design and optimize the tri-state pulser
ourselves for direct input into the Verasonics system. The Verasonics tri-state signal generator yields
ultrasound waveforms showing frequency fluctuations, as can be seen for the chirp in Figure 3.4.
Designing and optimizing the tri-state enables us to improve, for example, the chirp waveform by cre-
ating a uniform output pressure at each frequency and ensuring a frequency output without fluctuations.

To be able to distinguish between the harmonic signal originating from the nonlinear microbubble
response and the nonlinear propagation effects, the amount of nonlinear propagation should be
reduced. Since the amount of nonlinear propagation increases quadratically with increasing ultrasound
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pressure [49], an option is to use focused ultrasound transmission instead of plane waves. In that
case, the ultrasound pressure at the location of the focus can be kept at the same pressure while
reducing the ultrasound pressure in the surrounding tissue. This leads to less nonlinear propagation
effects from propagating through the surrounding water and tissue. Moreover, the distance between
the ultrasound transducer and capillary phantom can be reduced to reduce the travel distance of the
ultrasound waves and thus the amount of nonlinear propagation.

5.2 Signal filtering

After removal of a particular number of singular values in the SVD filtering, a stable exponential
decrease in both the fundamental and harmonic responses was observed, along with the convergence
of the ratio to a specific value. This indicates potential for a quantitative analysis of the frequency
content after SVD filtering. However, we still need to investigate whether a relationship exists between
the values found after SVD filtering and the acoustic response generated by the microbubbles and
the beads. Moreover, we would need to study the frequency dependence of SVD filtering, which
impacts, a priori, the spatio-temporal coherence. We could study these using the numerical simulator
PROTEUS, developed by a collaboration between the UT and TU Delft. PROTEUS is an ultrasound
RF data simulator for microbubbles in the bloodstream. We could apply SVD filtering on RF data
from this simulator and compare the obtained frequency spectrum with the frequency response of
purely microbubbles, i.e. without background signal and applying SVD filtering.

In addition to SVD filtering, we have used a combination of frequency and spatial filtering techniques.
For frequency filtering we have used Pulse Inversion (PI), which was shown to separate the fundamental
and harmonic frequency components quite well. An alternative is to separate the fundamental and
harmonic response using frequency filtering based on the wavelet transform. A wavelet transform filter
filters the data based on the frequency components of the signal, similar to Fourier filtering. Whereas
the Fourier transform decomposes signals into sine waves of specific frequencies, the wavelet transform
decomposes signals into scaled and shifted versions of a short wave, i.e. a wavelet. Therefore, the
wavelet transform yields not only frequency information but also information on the localization of
the signal in time. [50] Hence, we could potentially use the wavelet transform to isolate the desired
frequency, either the fundamental or the harmonic frequency response. Thereafter, we can use spatial
filtering to separate the signal originating from the capillary and the signal emanating from the
surrounding tissue. In this thesis, some spatial filtering was applied by selecting a region of interest
(ROI) around the depth of the capillary in the RF data. However, this filtered RF data still contains
echoes originating from scatterers located at the same depth as the capillary. We could improve the
spatial filtering by filtering directly on the IQ data. The IQ data is obtained after beamforming the
RF data, but before performing demodulation and log compression to get the reconstructed image.
Therefore, the IQ data is a 2D representation of the data but still contains both the amplitude and
the phase information of the received echoes. In the IQ data it is then possible to isolate the signal
specifically originating from the location of the capillary.

5.3 Simulation

In the results of the numerical simulations, an oscillation of the microbubble and elastic walls was
observed at the ultrasound driving frequency. The oscillation amplitude of the microbubble as a
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function of driving frequency showed a skewed resonance curve with the resonance frequency depending
on the ultrasound pressure. These findings are promising since they are in accordance with what is
expected from literature. However, the numerical study still has limitations. First, the resonance
frequency showed no dependence on the wall stiffness due to the diameter of the capillary being
relatively large compared to the microbubble size. To increase the confinement of the microbubble, the
diameter of the capillary in the simulation should be reduced. Second, the numerical simulation models
the capillary walls as a hyperelastic solid. However, capillaries are viscoelastic. Therefore, we could
improve the representation of the capillary wall behaviour by implementing an elasto-viscoplastic model
like the one proposed by Saramito [51]. Moreover, the current implementation of the microbubble
boundary movement does not account for nonspherical oscillations of the microbubble. The pressure
boundary condition at the bubble wall is namely calculated using the average bubble radius. However,
since we already determine the local radius of the bubble, it requires small alterations to change from
a global pressure boundary condition to a local one, thereby allowing for nonspherical oscillations.

While running the simulations with a driving frequency around the resonance frequency, numerical
instability was observed. Therefore, the actual amplitude of the resonance peak might differ from the
amplitude shown in Figure 4.7. The numerical instabilities were caused by nonuniform deformations
of the walls leading to mesh distortion. Using strong coupling instead of weak coupling to couple the
fluid and solid structure could improve the stability, as discussed in chapter 2.

Finally, since the numerical simulation framework is two-dimensional, no quantitative comparison can
be made with experimental findings. Although, the current simulation model is ready for a transition
from 2D to 3D, the simulation has been in 2D up to now to save computational time. The next step
for the numerical simulations is to transition from a two-dimensional to a three-dimensional geometry
to allow for experimental validation of the numerical results.

The goal for the upcoming years is to improve on these limitations and expand the simulations and
experiments to study the effect of tube diameter, vessel stiffness and the location of the microbubble
in the capillary on the microbubble response.
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6 Conclusion

In this thesis, we have taken the first steps towards a model relating the microbubble response to
vessel properties by focusing on three different aspects: experiments, signal filtering and numerical
simulations. In the experimental part, we have built an experimental setup combining ultrasound
imaging and high speed optical imaging. Moreover, we have created a capillary phantom, which could
be perfused with acoustic scatterers. We have found liquid plastisol (PVCP) to be the most suitable
tissue-mimicking material for the capillary phantom due to its acoustic properties being similar to
water and its resilience enabling perfusion of the capillaries. The optical setup could visualize the
scatterers moving through the capillary phantom. Using the acoustical setup, we have measured the
acoustic response from coated microbubbles and hollow glass beads in the capillary phantoms using
chirp and narrowband pulses.

When comparing the acoustic response of the microbubbles and the beads, both scatterers showed
higher harmonics. This implies that the acoustic measurements lack the sensitivity needed to differ-
entiate between higher harmonics generated by the nonlinear microbubble response and harmonic
signal generated by, for example, nonlinear propagation. As we have not yet successfully isolated the
nonlinear microbubble response from the effects of nonlinear propagation, we cannot draw definitive
conclusions regarding the optimal waveform. Nevertheless, the broadband pulse and the chirp offer
an advantage by transmitting all frequencies either simultaneously or within a very brief time span,
thereby minimizing the effects from movement of the scatterers and fluctuations in microbubble or
beads concentration. In contrast, narrowband pulses are influenced by movement and fluctuations,
as they require sweeping over frequencies while adjusting the transducer voltage simultaneously to
maintain a constant pressure output. Obtaining a constant pressure output, however, is unfeasible for
the broadband pulse and complex for the chirp.

Pulse Inversion (PI) is capable of isolating the fundamental and harmonic responses. Furthermore, we
have observed that SVD filtering effectively removed signal from stationary scatterers. No significant
enhancement in the signal-to-background ratio of the capillary phantom images was observed due to
movement of the phantom material. The analysis of the effect of SVD filtering on the spectra content
of the data showed that a quantitative analysis of the frequency response is still possible after applying
SVD filtering. As discussed in chapter 5, further research is needed to investigate the relation be-
tween the obtained amplitudes and the acoustic response generated by the microbubbles and the beads.

In addition to the experiments and data analysis, we have developed a 2D numerical simulation to study
the dynamics of an ultrasound-driven microbubble confined between elastic walls. In the simulation,
we have observed the microbubble oscillations and wall displacement to follow the oscillations of the
ultrasound driving frequency. The microbubble oscillations showed a resonance behaviour. A decrease
in resonance frequency with increasing ultrasound pressure was observed, which is in accordance
with literature. However, no dependence on wall stiffness was observed due to the relatively large
capillary diameter compared to the microbubble size. In order to experimentally validate the obtained
resonance frequencies, the simulation needs to be transitioned from 2D to 3D.
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A Appendix

A.1 Calibration of the C1-6D probe

Figure A.1: (Left) The XY pressure field measured by the hydrophone for a narrowband pulse of
3MHz transmitted by the C1-6D probe. (Right) The YZ pressure field measured by the hydrophone
for a narrowband pulse of 3MHz transmitted by the C1-6D probe.

A.2 Simulation parameters

Table A.1: Parameters used in the numerical simulation.

Physical constant Symbol Value Unit
Fluid dynamic viscosity µf 1e-3 Pas

Fluid density ρf 1e3 kgm−3

Solid density ρs 0.98e3 kgm−3

Atmospheric pressure P0 1e5 Pa

Polytropic exponent κ 1.07
Shell viscosity κs 1e-8 kgs−1

Shell elasticity χ 0.5 kgs−2

Speed of sound cl 1.5e3 ms−1

Initial surface tension σ0 2e-2 kgs−2

Surface tension water σwater 7.2e-2 kgs−2

Shear modulus G 2.5e5 Pa

Inverse bulk modulus 1
K 1.04e-9 Pa−1
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A.3 Acoustic response to narrowband pulse of 1.5 MHz

Figure A.2: (Left) Frequency spectra showing the fundamental response of microbubbles and beads
to a narrowband pulse with a transmit frequency of 1.5MHz. (Right) Frequency spectra showing the
harmonic response of microbubbles and beads to a narrowband pulse with a transmit frequency of
1.5MHz.
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