
Test-Time Adaptation for Skin Lesion Classification
THOMAS BOSTELAAR, University of Twente, The Netherlands

Deep learning models have shown good potential in the skin lesion classifi-
cation task. In the case of a domain shift, where the test data comes from a
different distribution than the training data, deep learning models struggle
to perform. Dermoscopy images are taken under a wide range of different
circumstances, and as a result distribution shifts can exist between different
data sources. In this paper standard deep learning models are combined
with test-time adaptation techniques to adapt to such domain shifts in the
setting of binary skin lesion classification. By using a dataset split based
on visual properties, models are confronted with a domain shift. Several
test-time adaptation techniques are used in an online setup and compared
to the unadapted version of the model. The performance of the models are
analysed and attention maps are used to better understand some of the
performances. Based on the results, it cannot be concluded that test-time
adaptation offer a stable improvement over standard deep learning models.

Additional Key Words and Phrases: Skin Lesion Classification, Test-Time
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1 INTRODUCTION
Skin cancer opposes a serious problem to humankind, withMelanoma
alone accounting for 4% of all new cancer diagnoses in EU-27 coun-
tries in 2020, causing 1.3% of the deaths [1]. Using dermoscopy, also
known as skin surface microscopy, skin lesions can be examined in
greater detail. Deep neural networks have shown to deliver good
results in classifying skin cancer diseases [2] and can be utilised
in computer-aided diagnosis (CAD) to deliver accurate diagnosis.
The drawback of deep learning methods is that they do not gen-
eralize well. Real world data can differ from the training data and
as a result there may be a distribution shift between training and
the test data. Deep learning models tend have performance drops
when confronted with distribution shifts between training and the
test data. Dermoscopic images may have different visual properties
based on the clinic or patient. It is essential that a model generalize
well to these different settings. Additionally, domain adaptation
techniques can be used to adapt a model to new domains. A form
of domain adaptation called test-time adaptation (TTA) is able to
utilize unlabeled test data during test time to make changes to the
underlying model.
In this paper the research will be focused on TTA in a binary classi-
fication setting for the skin lesion classification task. Using TTA the
model is able to leverage additional knowledge during test time. The
aim is to investigate if TTA methods can be applied to a skin lesion
dataset with domains based on the presence of visual artifacts.
Existing research on skin lesion classification often focuses on do-
main adaptation using source data or domain generalization to deal
with domain shifts. In this paper the focus is on TTA a sub-field of
domain adaptation, using only a pretrained model and unlabeled
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test data.
The main objective of this research is summarized in the following
research questions:

• How does test-time adaptation affect the performance of skin
lesion classification on domain-shifted target data?

• What is the effect of test-time adaption on bias in skin lesion
classification?

The first and main research question is addressed by comparing
two base models against their adapted versions using standard clas-
sification metrics. The second research question is answered by
visualizing and comparing the class activation mappings (CAMs) on
a set of samples between the base models and the adapted models.
In the context of the second research question bias is here defined
as a model making incorrect assumptions about the target data. A
model might base its predictions on artifacts present in the image
and not on the skin lesion itself. Using CAM analysis a deeper un-
derstanding is gained of the underlying assumptions of the models
before and after adaptation.
The paper is structured as follows: Relevant research related to this
paper is outlined in the related works section. The methodology
sections provides a detailed description of the experiments carried
out the answer the research questions. The results are reported
and discussed in the result section. The paper is finished with a
conclusion section.

2 RELATED WORK

2.1 Computer vision for skin lesion analysis
The two main tasks in computer vision for skin lesions analysis are
segmentation and classification. Segmentation aims to extract the
region of the skin lesion, classification on the other hand is used to
classify a skin lesion into specific categories.[3] This paper focuses
on a binary classification task distinguishing between benign and
malignant skin lesions. Two subfields that are discussed into further
detail:

• Unsupervised Domain Adaptation (UDA) is a term used for
the adaptation of a model using unlabeled test data, usually
in combination with the labeled source/training data.

• Domain Generalization (DG) aims to train a model to general-
ize well to unseen domains often using multiple domains in
the training set.

2.2 Unsupervised Domain Adaptation
Several works examine the use of UDA methods to improve skin
lesion classification. [4] group images into domains based on meta-
data. An UDA method called Domain Adverserial Neural Network
(DANN) [5] was shown to be effective in this setup. Using the same
methodology a benchmark study was done comparing 8 state-of-the
art UDA methods [6]. All UDA methods showed an improve in per-
formance for most datasets compared to the unadapted model. The
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effectiveness of UDA across different skin lesion datasets was exam-
ined in [7] and shown to be superior to base models for single-source
binary classification.

2.3 Domain Generalization
Classification models may rely on spurious correlations present in
skin lesion datasets. [8] A set of 7 visual artifacts (dark corners, hair,
gel border, ruler, ink markings, gel bubbles and patches) that could
introduce bias are annotated in [9]. Adversarial training using a
method called Learning Not To Learn (LTNL) was used in attempt
to debias models, but the issue was proven too complex. In another
work [10], the same artefacts were used to create the so-called trap
sets. The approach that was taken in this work was a combination
of domain generalization and test-time feature selection. To prevent
models from overfitting to artifacts present in images a domain
generalization approach is taken in [11]. The authors propose an
environment aware prompt vision transformer (EVPT), which uses
domain-specific and cross-domain knowledge to improve domain
generalization.

2.4 Test-time adaptation
Test-time adaptation (TTA) is a type of domain adaptation where a
pretrained model is adapted to unlabeled target data without access
to the source data. The adaptation takes place during test time. The
advantage of TTA over standard unsupervised domain adaptation
(UDA) is that TTA does not need the source data, but only needs the
pretrained model and the unlabeled test data. privacy regulations. A
recent survey on TTA categories TTA methods into three separate
categories[12] . Source-Free Domain Adaptation adapts the model
using the entire dataset, all batches are used before making predic-
tions, Test-Time Batch Adaptation uses one or a few instances, but
the predictions of each batch are independent and Online Test-Time
Adaptation adapts the model batch-by-batch, but can use informa-
tion learned from previous batches.

Test-time template adjuster (T3A) aims to adjust the output layer
of the deep neural network during test-time [13]. The model is split
into the featurizer and the classifier, where the classifier represents
the output layer and the featurizer the rest of the network. T3A
first uses the model to obtain the pseudo labels 𝑦. A support set for
each class is created and filtered on prediction entropy. The final
predictions are made using nearest centroid classification on the
centroids of the support set.
Sharpness-aware and reliable entropy minimization (SAR) lists

multiple scenarios which might negatively impact TTA methods:
mixed distribution shifts, small batch sizes and label distribution
shifts / label imbalance [14] . The paper states that group or layer
norm based layers provide more stable TTA result than batch norm
layers. The reason for this is that it is difficult to estimate BN statis-
tics in a wild/real life setting. Samples with low entropy are removed
to prevent large gradients which can lead to a model collapse. SAM
(Sharpness-Aware Minimization) is used as an optimizer to make
the model go towards a flat entropy surface. [15]
Source-HypOthesis Transfer (SHOT) freezes the classifier mod-

ule and aims to learn the feature extraction module [16]. SHOT
takes the opposite approach of T3A, where the aim is to learn the

classifier module. A self-supervised pseudo-labeling strategy is pro-
posed. SHOT starts by calculating the centroids of the target classes.
A nearest centroid classifier is used based on the cosine distance to
get the pseudolabels for the unlabeled test data. Based on the pseu-
dolabels the target centroids are calculated. The proposed setting
is an offline setting where the model is adapted using the whole
dataset over multiple epochs. T3A provides an adaptation of SHOT
to an online setting,

3 METHODOLOGY

3.1 Dataset
The dataset is supplement by [11] is based on the ISIC 2019 [17]
training dataset. The authors used a classifier to separate the ISIC
dataset into 5 separate domains based on visual properties. The
dataset contains the following domains:

• clean: images containing only a clear skin and the skin lesion
• hair : contains hairs in part of the images
• dark corner : contains the corners of a camera lens
• gel bubble: contains gel bubbles that are applied during der-
moscopy

• ruler : contains either a physical ruler or a ruler from software
in the images.

The dataset distribution is shown table 1. It is clear from the dis-
tribution that the dataset is imbalanced, which is addressed during
preprocessing. Fig. 2 shows samples for each domain in the dataset.
Before training the models, oversampling is applied to the malignant
class which is the minority class. A simple approach is taken by in-
creasing the size of the malignant class threefold. The oversampling
should prevent the model from simply leaning towards the majority
class and predict most samples as benign. To prevent the model
from overfitting on duplicated examples, data augmentation is im-
plemented. Several transformations are applied including flipping,
changing brightness and contrast and blurring. The augmentations
are applied to the entire training dataset. The aim of this research is
not to maximize the performance of the base models, but to ensure
the base models provide stable results oversampling and augmenta-
tion is implemented. Data augmentation may negatively impact the
performance of TTA [18].

Fig. 1. Samples from the 5 categories: Clean, Dark Corner, Gel Bubble, Hair,
Ruler. Top: Benign, Bottom: Malignant
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Category Benign Malignant Total
Clean 2385 411 2796
Dark Corner 1747 604 2351
Gel Bubble 1211 429 1640
Hair 4267 617 4884
Ruler 509 163 672
All 10119 2224 12343

Table 1. Dataset distribution

Fig. 2. TTA Pipeline

3.2 Training models
The objective of the experiments is to simulate a domain shift by
testing the model on a domain that contains data not seen in the
training data and evaluate how TTA affects the model. Since the
TTA methods operate during the testing phase, a separate model is
first trained which acts as a backbone for the test-time adaptation.
For the backbone two different models are selected. The first choice
is a ResNet50 which is a common choice for image classification.
As a second choice the small version of a Data-Efficient Image
Transformer (DeiT) model is used. DeiT models can be trained in
two ways, in the classic way with a linear layer on top of the final
hidden state of CLS token or using a linear layer on both the CLS
token and the distillation token. The average of the predictions can
then be taken. The simple approach is taken by training the model
in the classic way by only placing one linear layer. DeiT III is used
which modifies the training process of the original DeiT [19]. The
pretrained ResNet50 and DeiT models are finetuned for the skin
lesion classification problem. In a setup with limited computional
power available, finetuning is done for only for 10 epochs with
the learning rate set experimentally to 1e-4 and using adam as an
optimizer. Google Colab provides a free GPU and is used to carry
out the experiments.

3.3 Validation Metrics
The evaluation is done on data that is imbalanced. Accuracy in itself
is not a good metric for imbalanced datasets. Recall, precision and
the f1-score provide a better understanding of the classification
performance. The recall, precision and f1-score are reported for the
malignant class. The f1-score and the accuracy are considered as

the main metrics, with recall and precision giving more insights
into the f1-score.

3.4 Implementation Details
A leave-one-out cross validation is done on the five domains to
evaluate the models. The base models are trained on four domains
and evaluated on the domain that is excluded from the training set.
Three different TTA methods are added separately as an extra layer
on top of the baseline which allows for changes during test time. The
TTA methods that are evaluated are SHOT [16], T3A [13] and SAR
[14]. The average values across the five domain obtained using leave-
one-out cross validation are reported with their standard deviations
in table 2. Accuracy, recall, precision and f1-score are reported in
the appendix in tables 3, 4,5 and 6. Class activation mapping (CAM)
techniques can help to obtain a better understanding of the decision
making process deep learning models. Score-CAM [20], a gradient-
free CAM method is used as the CAM method of choice. The TTA
methods are used in an online setup, therefore the model is adapted
for every batch in the dataset. T3A only adapts the linear layer/the
output layer, which makes it not suitable for analysis. SHOT delivers
unstable results. The TTA method that is used for the visualization
is therefore SAR. Because the model is evolving throughout the
dataset, this brings a challenge for analyzing the attention map.
The simple approach is taken of using the adapted model after it
has passed through the entire test set, which should give a good
approximation of an adapted model. The CAM analysis is done by
comparing the base models ResNet50 and DeiT with the adapted
ResNet50 by SAR.
The implementation of SHOT by T3A is used. SAR was added

to the code base as an additional method. During evaluation SHOT
results were unstable, therefore the parameter 𝛽 was run for the
values [0.3,0.6,0.9] with 𝛼 experimentally set to 0.1. A 𝛽 of 0.6 pro-
vided the most stable results and therefore the evaluation of SHOT
is reported using this value. SAR has a parameter used for selecting
samples based on an entropy threshold which is set to the default
value of 0.4 · ln 1000. For T3A the a value of fixed value 5 is used for
the filter-K parameter, which is used to filter support sets based on
entropy.

4 RESULTS

4.1 Results
The summary of the Leave-one-out cross validation (LOOCV) is
reported in Table 2, with the average values reported for each metric.
The full results of the LOOCV for each test domain are displayed in
the appendix in tables 3,4, 5 and 6.
Figure 3 shows the CAM for a set of examples from the gel bubble
and dark corner across the two base models and one adapted model.

4.2 Discussion
The results in Table 2 show that TTA methods do not offer a signifi-
cant improvement to the base models under the chosen classification
metrics. The combination of DeiT and SAR shows small improve-
ment in both accuracy and f1-score. However, the full results in
tables 4,5 and 6 show that the DeiT base model was often unchanged
by SAR, therefore no strong conclusion can be drawn from these
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Table 2. Results obtained by leave-one-out cross validation on 5 domains.
Base models ResNet50 and DeiT-S are compared with their adapted

versions.

Models Accuracy Recall Precision F1
Resnet50 0.821±0.032 0.601±0.096 0.566±0.102 0.577±0.079
+T3A 0.761±0.046 0.728±0.066 0.456±0.099 0.555±0.083
+SAR 0.774±0.037 0.707±0.054 0.484±0.132 0.560±0.094
+SHOT 0.680±0.121 0.283±0.310 0.307±0.070 0.187±0.115
DeiT-S 0.833±0.021 0.659±0.035 0.586±0.097 0.616±0.063
+T3A 0.824±0.014 0.682±0.016 0.564±0.107 0.612±0.067
+SAR 0.834±0.022 0.657±0.038 0.591±0.096 0.618±0.062
+SHOT 0.679±0.045 0.734±0.176 0.357±0.102 0.475±0.120

results. Overall SAR performs best out of the TTA method both on
accuracy and f1-score. T3A results are stable but show a decline
over the baselines. Similar to SAR, T3A shows no big changes when
applied to the DeiT base model, which shows a further investigation
into the hyperparameters might be necessary. SHOT results are very
unstable with often low values for precision and recall. The DeiT
model shows an improvement the ResNet50 model, showing the
potential for transformer-based architectures. As outlined by SAR
architectures using layer normalization are better suited for TTA as
opposed to the usage of batch normalization.[14]
The CAMs for several benign and malignant examples are visualized
in 3. From this limited set of samples no improvement is seen by
SAR. In one case SAR even shifts the attention away from the skin
lesion towards a gel bubble. This example shows SAR can introduce
bias instead of debiasing the model.
The conclusions from the results are that TTA does not positively
impact skin lesion classification in the setup of this paper. Further-
more, based on a limited set of examples, it can be concluded that
TTA fails to remove bias from model and can do the reverse by
introducing bias.
Some of the reasons that can cause TTA to fail are outlined SAR pa-
per, relevant are mixed distributions shifts and imbalanced test data
[14]. The domains in the dataset contain images from other domains
and are not perfectly separated. Although SAR aims to solve some of
these problems, mixed distribution shifts and imbalanced data make
it a difficult setup for TTA methods. The biggest problem might be
outlined by the Score-CAM analysis, TTA can shift the attention
towards artifacts present in the image. The results present evidence
that TTA might not be well suited for the skin lesion classification
problem.

4.3 Future Work
The research in this paper is done in a limited setup combining
TTA methods with skin lesion classification. Only a small subset
consisting of three TTA methods are evaluated. To obtain a better
understanding of how TTA methods perform in this scenario, a
wider range of TTA methods with different approaches should be
evaluated. In the current setup the domains are all taken from the
same dataset. The effects of TTA could be further explored by testing
on out-of-sample data from a different dataset. Since TTA did not
deliver significant improvements, futher research might be better

spent on building robust models using techniques related to domain
generalization.

5 CONCLUSIONS
In this paper test-time adaptation methods are applied to a binary
skin lesion classification problem. After using leave-one-out cross
validation to compare the performance of TTA methods against
base models, no significant increase of performance was found.
Furthermore, the analysis of TTA using CAM visualization show
no improvement over the base model. Compared to benchmark
datasets that TTA methods are tested on, the setup of this research
is a challenging one. Mixed domain shifts with imbalanced label
distributions make it difficult for the models to adapt. Under the
setup of this paper test-time adaptation methods did not provide
any significant improvements to the performance of skin lesion
classification under the chosen metrics. Additionally analysis using
Score-CAM did not show signs of improvement. The evaluation of
both base and adapted models show that TTA might not be well
suited for the skin lesion classification task.

REFERENCES
[1] Ecis, 2020.
[2] Kuprel B. Novoa R. et al. Esteva, A. Dermatologist-level classification of skin

cancer with deep neural networks. Nature, 542:115–118, 2017.
[3] Zahra Mirikharaji, Kumar Abhishek, Alceu Bissoto, Catarina Barata, Sandra Avila,

Eduardo Valle, M. Emre Celebi, and Ghassan Hamarneh. A survey on deep
learning for skin lesion segmentation. Medical Image Analysis, 88:102863, 2023.

[4] Katharina Fogelberg, Sireesha Chamarthi, Roman C. Maron, Julia Niebling, and
Titus J. Brinker. Domain shifts in dermoscopic skin cancer datasets: Evaluation of
essential limitations for clinical translation. New Biotechnology, 76:106–117, 2023.

[5] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-
adversarial training of neural networks, 2016.

[6] Sireesha Chamarthi, Katharina Fogelberg, Roman C. Maron, Titus J. Brinker, and
Julia Niebling. Mitigating the influence of domain shift in skin lesion classification:
A benchmark study of unsupervised domain adaptation methods on dermoscopic
images, 2023.

[7] Janet Wang, Yunbei Zhang, Zhengming Ding, and Jihun Hamm. Can domain
adaptation improve accuracy and fairness of skin lesion classification?, 2023.

[8] Alceu Bissoto,Michel Fornaciali, Eduardo Valle, and Sandra Avila. (de)constructing
bias on skin lesion datasets, 2019.

[9] Alceu Bissoto, Eduardo Valle, and Sandra Avila. Debiasing skin lesion datasets
and models? not so fast, 2020.

[10] Alceu Bissoto, Catarina Barata, Eduardo Valle, and Sandra Avila. Artifact-based
domain generalization of skin lesion models, 2022.

[11] Siyuan Yan, Chi Liu, Zhen Yu, Lie Ju, Dwarikanath Mahapatra, Victoria Mar,
Monika Janda, Peter Soyer, and Zongyuan Ge. Epvt: Environment-aware prompt
vision transformer for domain generalization in skin lesion recognition, 2023.

[12] Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adapta-
tion under distribution shifts, 2023.

[13] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for
model-agnostic domain generalization. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, 2021.

[14] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin
Zhao, and Mingkui Tan. Towards stable test-time adaptation in dynamic wild
world. In Internetional Conference on Learning Representations, 2023.

[15] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-
aware minimization for efficiently improving generalization, 2021.

[16] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the
source data? Source hypothesis transfer for unsupervised domain adaptation.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 6028–6039. PMLR, 13–18 Jul 2020.

[17] Marc Combalia, Noel Codella, Veronica Rotemberg, Cristina Carrera, Stephen
Dusza, David Gutman, Brian Helba, Harald Kittler, Nicholas Kurtansky, Konstanti-
nos Liopyris, Michael Marchetti, Sebastian Podlipnik, Susana Puig, Christoph

4



Test-Time Adaptation for Skin Lesion Classification TScIT 40, 2024, Enschede, The Netherlands

Rinner, Philipp Tschandl, Jochen Weber, Allan Halpern, and Josep Malvehy. Vali-
dation of artificial intelligence prediction models for skin cancer diagnosis using
dermoscopy images: the 2019 international skin imaging collaboration grand
challenge. The Lancet Digital Health, 4:e330–e339, 05 2022.

[18] Hao Zhao, Yuejiang Liu, Alexandre Alahi, and Tao Lin. On pitfalls of test-time
adaptation, 2023.

[19] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit, 2022.
[20] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding,

Piotr Mardziel, and Xia Hu. Score-cam: Score-weighted visual explanations for
convolutional neural networks, 2020.

5



TScIT 40, 2024, Enschede, The Netherlands Thomas Bostelaar

A APPENDIX

Table 3. Accuracy computed using a leave-one-out procedure, with the domain columns representing the domain that was used as a test domain.

Models Clean Gel Bubble Hair Dark Corner Ruler Avg. Stdev
Resnet50 0.869 0.813 0.839 0.810 0.772 0.821 0.032
+T3A 0.819 0.779 0.757 0.771 0.680 0.761 0.046
+SAR 0.792 0.763 0.715 0.774 0.827 0.774 0.037
+SHOT 0.842 0.718 0.743 0.606 0.489 0.680 0.121
DeiT-S 0.86 0.826 0.849 0.831 0.798 0.833 0.021
+T3A 0.836 0.828 0.838 0.822 0.798 0.824 0.014
+SAR 0.864 0.826 0.849 0.832 0.798 0.834 0.022
+SHOT 0.614 0.693 0.737 0.641 0.711 0.679 0.045

Table 4. Recall computed using a leave-one-out procedure, with the domain columns representing the domain that was used as a test domain.

Models Clean Gel Bubble Hair Dark Corner Ruler Avg. Stdev
ResNet50 0.550 0.709 0.488 0.536 0.724 0.601 0.096
+T3A 0.674 0.802 0.681 0.667 0.816 0.728 0.066
+SAR 0.691 0.781 0.76 0.649 0.656 0.707 0.054
+SHOT 0.029 0.044 0.104 0.394 0.844 0.283 0.310
DeiT-S 0.603 0.685 0.645 0.656 0.706 0.659 0.035
+T3A 0.669 0.678 0.671 0.679 0.712 0.682 0.016
+SAR 0.594 0.685 0.645 0.656 0.706 0.657 0.038
+SHOT 0.871 0.772 0.389 0.806 0.834 0.734 0.176

Table 5. Precision computed using a leave-one-out procedure, with the domain columns representing the domain that was used as a test domain.

Models Clean Gel Bubble Hair Dark Corner Ruler Avg. Stdev
ResNet50 0.581 0.652 0.395 0.679 0.522 0.566 0.102
+T3A 0.438 0.57 0.3 0.554 0.418 0.456 0.099
+SAR 0.393 0.548 0.275 0.562 0.641 0.484 0.132
+SHOT 0.316 0.352 0.386 0.302 0.179 0.307 0.070
DeiT-S 0.539 0.693 0.44 0.692 0.567 0.586 0.097
+T3A 0.474 0.7 0.418 0.661 0.566 0.564 0.107
+SAR 0.556 0.693 0.44 0.697 0.567 0.591 0.096
+SHOT 0.261 0.46 0.21 0.405 0.449 0.357 0.102

Table 6. F1-score computed using a leave-one-out procedure, with the domain columns representing the domain that was used as a test domain.

Models Clean Gel Bubble Hair Dark Corner Ruler Avg. Stdev
ResNet50 0.565 0.679 0.437 0.599 0.607 0.577 0.079
+T3A 0.531 0.667 0.417 0.605 0.553 0.555 0.083
+SAR 0.501 0.644 0.404 0.602 0.648 0.560 0.094
+SHOT 0.053 0.079 0.164 0.342 0.295 0.187 0.115
DeiT-S 0.569 0.689 0.523 0.673 0.628 0.616 0.063
+T3A 0.555 0.689 0.515 0.67 0.63 0.612 0.067
+SAR 0.574 0.689 0.523 0.676 0.628 0.618 0.062
+SHOT 0.402 0.576 0.273 0.539 0.584 0.475 0.120
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B SCORE-CAM ANALYSIS

Fig. 3. Score-CAM visualisations for benign and malignant samples from the gel bubble and dark corner domain.
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