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ABSTRACT 

This research presents a methodology that integrates an organizational learning approach for 

developing data-driven decision-making (DDDM) to successfully integrate mutual human and machine 

learning (triple-loop learning). Validated in a non-life insurance case study, the methodology addresses 

the ineffectiveness of an existing DDDM tool due to the lack of human-machine interaction. The 

existing DDDM tool is further developed by triple-loop learning. The case study demonstrates how 

triple-loop learning enables the DDDM tool, consisting of predictive models, to implement human 

decision norms and values, and enables people to gain new insights from working with the DDDM tool. 

The research contributes to design science theory by offering a methodology and guidelines to enable 

triple-loop learning in the development of a predictive model for DDDM in general. Within DDDM, 

triple-loop learning should lead to the alignment of human and machine mental models so that 

decisions made by DDDM align with human norms and goals. 

Keywords: triple-loop learning, organizational learning, human-machine interaction, data-driven 

decision-making, human-in-the-loop, predictive modeling 
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EXECUTIVE SUMMARY 

 

The goal of this research is to add a prediction of the usefulness of re-inspections to the 
prioritization method. 

 

Achmea aims to transform into a data-driven insurer, and this research signifies a significant stride 
toward achieving that goal. 

 

Added value 

 

Add soft information to the re-inspection prioritization method to give the right context and to make 
a distinction between impactful and non-impactful re-inspections. 

 
Create a feedback effect to induct autonomous learning. 

 
Increase the acceptance of the prioritization method among risk experts. 

 

 
 

Results 

 

The most effective algorithm in this study predicts usefulness by utilizing policy data and making 
predictions for the entire portfolio.  

 

A simulation compared this usefulness prediction-included prioritization method with the current 
prioritization method, revealing a 35% improvement in the average usefulness score for the 
prioritized re-inspections for SMEs but no significant improvement for large enterprises. 

 

Recommendations 

 

The recommendation is to implement the re-inspection usefulness predictive model for its potential 
to give context to re-inspections and to introduce autonomous learning within the prioritization 
method. The re-inspection usefulness predictive model results in more impactful assessments and 
improved acceptance of the prioritization method. 

 

Limitations in the data quality result in restrained performance of the usefulness predictive model. 
Improvements through the SKB+ project and the linkage between policy and inspection data are 
necessary. 

 

The usefulness of the re-inspections exhibits an uneven distribution. Consequently, the usefulness 
predictive model struggles to accurately assess the extreme usefulness categories. To mitigate, it is 
crucial to establish a tuned definition of the usefulness of re-inspections and to communicate the 
importance of accurate assessment of the usefulness to risk experts. 

 

Due to the lack of transparency and interpretability in the prioritization method, decision-makers face 
challenges in making adjustments in the prioritization, and it remains unclear to risk experts why 
certain companies are prioritized for re-inspection. Consequently, improvements in transparency 
and interpretability within the prioritization method are deemed necessary. 

 

The usefulness predictive model, trained on data from past re-inspections, fails to consider re-
inspections in sectors that haven't been conducted, potentially leading to an oversight of their actual 
usefulness in the assessment. 

 

The implementation of the usefulness predictive model establishes a feedback loop, 
where: 

 

o the prioritization method prioritizes buildings for re-inspection; 
o risk experts provide feedback by assigning a usefulness score to the re-

inspections; 
o the usefulness predictive model, integrated into the prioritization method, 

autonomously learns itself with the usefulness score. 

 

The feedback loop leads to a prioritization method that is self-learning and self-
improving over time, ultimately resulting in re-inspections that progressively become 
more useful and, consequently, more impactful. 
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1 INTRODUCTION 

As one of Europe’s largest insurers, Achmea offers a comprehensive range of insurance products, 

which are economic protections from identified risks occurring or discovered within a specific period 

(Nissim, 2010). Within Achmea, the Non-Life Business to Business division focuses on non-life 

insurance for companies. Fire insurance is one of the most important products that the Non-Life 

Business to Business division offers to companies. With this insurance, buildings and various 

components on and in buildings are insured. Risk experts from the Risk Expertise Department (re-

)inspect company buildings to assess and analyze risks associated with company buildings. They can 

only re-inspect approximately 200 buildings annually, so strict choices must be made as to which 

buildings to re-inspect or not to cope with limited re-inspection capacity. For that reason, a re-

inspection prioritization method has been developed that prioritizes which companies should be re-

inspected.  

The prioritization method consists of a damage probability model and a damage burden model. The 

damage probability model and the damage burden model respectively predict the probability that 

damage will occur at a company building and what the impact will be if damage occurs. By combining 

the predicted probability and predicted burden of damage, the risk of damage for company buildings 

is predicted, as risk is uncertainty about and severity of the consequences of an activity that is typically 

assessed in terms of their likelihood of occurring and the potential severity of their impact (Aven & 

Renn, 2009). By prioritizing companies based on the predicted risks, this model serves as a data-driven 

decision-making (DDDM) tool. 

Prioritizing and executing re-inspections is an operational procedure that is visualized by a Business 

Process Model in Figure 1. The data scientists trigger the prioritization method to predict the damage 

probability and damage burden and to make a prioritization based on the predictions. The resulting 

list of prioritized companies is forwarded to decision-makers, who are employees of the underwriting 

department, employees of the risk expertise department, and the insurance product manager. They 

make changes to the list where necessary, supplement the list, and authorize the list. The risk experts 

carry out the re-inspections according to the list. Additional details on the operational procedure for 

prioritizing re-inspections are in Appendix A.  

The computation with which the re-inspection prioritization is made (‘Make a prioritization based on 

the predictions’ in Figure 1) differs depending on the scale of the customer’s company. The 

prioritization method for small and medium-sized enterprises (SMEs) is created by multiplying the 

predicted probability and burden of the damage for each company and ranking the companies based 

on this priority score from high to low. The prioritization method for large enterprises is created by 

first ranking the outcomes of the predicted probability of damage and the predicted damage burden 

separately and then taking the inverse of this ranking number for both the predicted probability and 

burden. These two inverse numbers are added together to form a priority score. The priority score for 

large enterprises is then ranked from high to low to form the final prioritization for large enterprises. 

As a result, large enterprises that have a high score in the damage probability model or a damage 

burden model also rank high in the final prioritization method. The process of making the based on the 

predictions is visualized in Figure 2.  
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Figure 1: Business Process Model for selecting re-inspections using the prioritization method 

 
Figure 2: Business process model for the prioritization with the current re-inspection prioritization method, which is a sub-
process of Figure 1 (‘Make a prioritization based on the predictions’). 
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1.1 PROBLEM ANALYSIS 
In several cases, companies receive a high prioritization based on predicted risk but the actual value 

obtained from a risk expert’s re-inspection is minimal. For example, there are cases where a company 

already faces substantial risks that cannot be further mitigated, resulting in a high predicted risk but 

no added value in re-inspecting the company. Moreover, the prioritization method does not consider 

earlier re-inspections, leading to companies being flagged for re-inspection even if they were recently 

inspected and perceived as not useful. This leads to redundant re-inspections. 

The cause of the ineffective prioritization is that there is a lack of interaction between the risk experts 

and the re-inspection prioritization method because the method does not consider feedback and 

information provided by the risk experts. There are multiple consequences. On the one hand, the lack 

of feedback prevents the model from incorporating the experts’ judgment, professional experience, 

and contextual understanding. As a consequence, the model’s prioritization becomes misaligned with 

real-world re-inspection priority norms, meaning that companies are inspected unnecessarily and 

companies are not inspected that should have been inspected. On the other hand, the lack of feedback 

creates a sense of diminished confidence among risk experts, as they are unable to validate or refine 

the model based on their expertise. This lack of confidence hinders the adoption and acceptance of 

the prioritization method. In conclusion, the current (re-)inspection prioritization is inefficient due to 

the lack of interaction between the model and risk experts. 

A potential solution is to develop a model that predicts the usefulness of a re-inspection according to 

risk experts. This predicted usefulness can be incorporated as a factor in the current prioritization 

method, enabling the feedback from risk experts to be integrated into the decision-making process. 

An organizational learning approach is essential to facilitate the interaction between risk experts and 

the model, allowing for the development of DDDM that adopts human norms. Implementing an 

organizational learning approach should lead to a situation in which the usefulness of a re-inspection 

is conceptualized by an interaction between human and machine, risk experts are involved in the 

development of the predictive model, the predictive model will be developed more effectively with 

the risk experts’ knowledge, and the risk experts meanwhile will build trust in the prioritization 

method. 

However, while retrospective research has been conducted on DDDM using an organizational learning 

approach, limited prospective research has been carried out into the development of a DDDM tool 

from an organizational learning approach. Moreover, there is no proven method to develop a DDDM 

tool that successfully enables triple-loop learning: organizational learning realized by an interaction of 

human and machine (Seidel, Berente, Lindberg, Lyytinen, & Nickerson, 2018). Therefore, there is a gap 

in scientific knowledge regarding how to effectively develop a DDDM tool, especially a predictive 

model, by triple-loop learning. 

1.2 PROBLEM STATEMENT 
The current re-inspection prioritization method lacks interaction with risk experts, resulting in 

inefficient prioritization and diminished confidence among experts. There is a need to develop a 

predictive model that incorporates risk experts’ feedback to predict the usefulness of re-inspections. 

Facilitating triple-loop learning is essential, however, there is a lack of scientific knowledge on 

effectively developing a DDDM tool by which triple-loop learning will be achieved. This leads to the 

following main research question:  

How can a model for predicting the usefulness of a re-inspection be developed by triple-loop learning? 
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1.3 OBJECTIVE 
The objective is to develop a model that predicts the usefulness of a company re-inspection and 

incorporates this prediction into the current prioritization method to achieve triple-loop learning. This 

model should be updatable and capable of utilizing newly available data. The prioritization method for 

company re-inspections should consider the predicted probability and impact of damage occurring, as 

well as the predicted usefulness of the inspection. The practical aim is to increase the impact that risk 

experts can make with the prioritized re-inspections and to increase the acceptance of risk experts in 

the prioritization method. The scientific aim is to validate a method that enables triple-loop learning 

in the development of a DDDM tool. 

1.4 OUTLINE OF THE PAPER 
Chapter 2 gives a theoretical framework for predictive models and organizational learning, and 

combines both topics to arrive at a proposed methodology to develop a predictive model from an 

organizational learning perspective to enable triple-loop learning. Chapter 3 represents the research 

methodology for this study. Chapters 4, 5, and 6 contain the results of this research in chronological 

order. Finally, in chapter 7, the findings are discussed, and in chapter 8, conclusions are drawn. 
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2 THEORETICAL FRAMEWORK 

In this chapter, a theoretical framework is outlined to arrive at a method with which a predictive 

model can be developed using an organizational learning approach. To arrive at this method, DDDM 

from an organizational learning perspective is first discussed. The concept of explainable AI is then 

reviewed because this is an important enabler of successful organizational learning. Then, the 

development of a predictive model is discussed. At the end of the theoretical framework, the 

knowledge from the theoretical framework is combined to arrive at the proposed method. The 

theoretical framework is built using a literature search. The literature search methods can be found 

in Appendix B. 

2.1 DATA-DRIVEN DECISION-MAKING FROM AN ORGANIZATIONAL LEARNING APPROACH 
This section explains what a decision is, covers the concept of DDDM and human in the loop, and 

discusses DDDM from an organizational learning approach. 

2.1.1 Data-driven decision-making 

A decision is a choice between two or more alternative courses of action (Hutton & Klein, 1999). 

Making a decision is a process where an individual or a group of individuals assesses various 

possibilities and selects one option to pursue. Individuals with the authority or responsibility to make 

decisions are decision-makers (Eisenhardt & Zbaracki, 1992). Making a decision involves several steps 

(Lunenburg, 2010). First, a goal has to be recognized and a problem in achieving that goal has to be 

identified. Then, relevant information is gathered and analyzed to generate and understand the 

available alternatives to achieve a goal. With this information, the decision-maker can evaluate the 

advantages and disadvantages of each alternative based on certain criteria. This evaluation involves 

considering the feasibility, satisfaction, and impact of the alternatives. The decision is made by 

selecting the alternative that appears to be the most favorable or promising according to the decision 

maker. Once a decision is made, the chosen course of action is implemented and executed. The 

decision-making process is iterative, as the evaluation of the outcomes of decisions and the impact of 

decisions lead to new decisions being made. 

DDDM is the practice of making informed decisions based on the analysis of data rather than 

exclusively on intuition or personal judgement (Brynjolfsson, Hitt, & Kim, 2011). At the core of DDDM 

is the belief that data can provide valuable information, which is considered to be crucial for reducing 

risks, improving outcomes, and optimizing performance (Cech, Spaulding, & Cazier, 2018). 

Improvements in the collection and processing of data will also generate new insights for decision-

making (Brynjolfsson et al., 2011; L. Wu, Hitt, & Lou, 2020). Instead of relying on gut feelings or 

assumptions, decision-makers use data to analyze complex problems in more detail, evaluate potential 

options, and predict scenarios. DDDM extends beyond data analysis by promoting evidence-based 

conclusions and facilitating proactive, informed choices. DDDM is rooted in different subdisciplines, 

such as machine learning (Fu, Xu, Xue, Liu, & Yang, 2021), business intelligence (Chen, Chiang, & Storey, 

2012), and data science (Provost & Fawcett, 2013). Research has shown that DDDM is positively related 

to decision-making quality within organizations (L. Li, Lin, Ouyang, & Luo, 2022). 

The presence of human decision accountability, decision complexity, problem ambiguity, and 

decisional uncertainty often prevents DDDM from resulting in a complete automation of the decision-

making process in which computers replace human decision-making (Jarrahi, 2018). Instead, DDDM 

facilitates an augmentation of the decision-making process, which means that people collaborate 

closely with machines to make a decision (Raisch & Krakowski, 2021). People and machines should 
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combine their complementary strengths, enabling mutual learning and multiplying their capabilities 

(Kokina & Davenport, 2017). This emphasizes the need for human-in-the-loop (HITL), an approach 

where people are directly involved or integrated into a system or process that relies on automated or 

AI technologies (X. Wu et al., 2022). There are multiple reasons or conditions in which direct human 

involvement is needed in automated or AI technologies. Human involvement is needed as people can 

comprehend and interpret contextual information to make informed decisions in the broader context 

(X. Wu et al., 2022), people can provide clear explanations of decisions that ensure transparency 

(Mosqueira-Rey, Hernández-Pereira, Alonso-Ríos, Bobes-Bascarán, & Fernández-Leal, 2023), human 

intelligence and expertise can avoid potential pitfalls and biases that arise from purely algorithmic 

approaches (Mosqueira-Rey et al., 2023), and human feedback leads to refining algorithms, updating 

models, and addressing limitations of DDDM applications (Jarrahi, 2018). Since people and machines 

have to work together and understand each other in DDDM, an organizational learning approach for 

DDDM is important. 

2.1.2 Organizational learning with DDDM 

Organizational learning is the change that occurs as an organization acquires, creates, retains, and 

transfers knowledge (Argote & Miron-Spektor, 2011). Organizational learning consists of single-loop 

learning, double-loop learning, deutero learning, and symbiotic learning (Jarrahi, 2018; Wijnhoven, 

2022). Single-loop learning is the creation of improvements within existing processes or an existing 

framework. Double-loop learning goes beyond single-loop learning by reflecting on the existing 

process or framework and is therefore the creation of innovation. Deutero learning is the creation and 

development of norms, rules, and conditions by which the knowledge-creation processes can be done. 

It can be seen as a process to discover elements necessary for learning, such as the infrastructure 

needed, policies, and the setting of norms and rules of a system. Symbiotic learning is the 

implementation of deutero learning outcomes. 

Within organizational learning, a distinction is made between two types of knowledge convertible into 

each other: tacit knowledge and explicit knowledge (Nonaka, 1994; Wijnhoven, 2022). Tacit knowledge 

is knowledge that is based on an individual’s experiences, skills, insights, and intuitions. It is often 

deeply ingrained in individuals, difficult to express in words, and thus person dependent. Explicit 

knowledge is formalized, communicable knowledge through an explicit representation. Tacit and 

explicit knowledge are continuously transformed and expanded following the SECI (Socialization, 

Externalization, Combination, and Internalization) model given in Figure 3. Tacit knowledge can be 

shared among individuals through direct interaction and experience via socialization. Tacit knowledge 

can also be made person independent by externalizing it via coding and writing, resulting in explicit 

knowledge. Explicit knowledge can be combined, which involves the integration of explicit knowledge 

from various sources. Explicit knowledge can also be transformed and incorporated into an individual’s 

tacit knowledge and integrated with an individual’s own experiences, values, and skills, which is named 

internalization.  

 
Figure 3: SECI (Socialization, Externalization, Combination, and Internalization) model, based on (Nonaka, 1994). The boxes 
with curved angles represent knowledge creation processes, and the boxes with sharp angles represent knowledge stocks. 



13 
 

The implementation of DDDM requires organizations to recognize a novel approach to decision-

making, combining the creation of decisional knowledge through single- or double-loop processes with 

the integration of machine learning (Wijnhoven, 2022). Single- or double-loop learning realized by an 

interaction of human and machine learning is called triple-loop learning (Seidel et al., 2018). In triple-

loop learning, single-loop learning occurs when people and machine collaborate to generate design 

outcomes (Wijnhoven, 2022). Double-loop learning within triple-loop learning involves people 

assessing design alternatives and adjusting input parameters and machine settings based on feedback 

and the machine learning from human feedback to enhance its model and to produce improved 

alternatives. So triple-loop learning assumes that human and machine single-loop and double-loop 

learning may mutually influence each other. Triple-loop learning is driven by the mental models 

present in both machine (the DDDM tool) and human (Seidel et al., 2018). These mental models 

encompass goals, cognitive rules, and reasoning. In triple-loop learning, there is an assumption that 

the mental models of human and machine mutually influence each other, leading to the enhancement 

of their mental models through error correction (single-loop) and the revision of norms (double-loop). 

Deutero learning outcomes can enable triple-loop learning in DDDM by creating elements such as 

motivations, conditions, facilities, infrastructure, and policies to effectively use data science 

techniques in decision-making. 

A DDDM tool can provide valuable knowledge that generates fresh insights for people to internalize, 

resulting in the acquisition of new tacit knowledge and fostering intelligence amplification (Metcalf, 

Askay, & Rosenberg, 2019; Wijnhoven, 2022). Moreover, symbiotic learning can be enabled, meaning 

that machine and human work together and leverage their strengths and capabilities to enhance 

learning outcomes (Jarrahi, 2018). Symbiotic learning overlaps triple-loop and deutero learning, as it 

enables the realization of triple-loop learning by adopting and implementing the deutero learning 

outcomes. 

2.2 PREDICTIVE MODELING 
Predictive modeling is the process of using historical data, statistical algorithms, and (machine 

learning) techniques to make predictions about (future) events or outcomes (Waljee, Higgins, & Singal, 

2014). Predictive modeling has a wide range of applications across industries and attempts to assist 

organizations in gaining insights, making informed decisions, and optimizing their operations for better 

outcomes. These models can be used as a tool to help decision-making, planning, risk assessment, 

resource allocation, and strategic forecasting in various industries (Waljee et al., 2014). Predictive 

models can be divided into prediction models and forecasting models. Prediction models make 

predictions based on historical data, assuming time invariance. They capture patterns and 

relationships between variables. Forecasting models explicitly consider the temporal aspect. They 

analyze time series data, capturing time-dependent patterns and trends to forecast future values. 

Prediction models focus on relationships, while forecasting models incorporate the time dimension for 

accurate predictions. In the remainder of this report, a predictive model refers to a prediction model 

because it is expected that the historical data available does not exhibit significant time-dependent 

patterns or trends. Predictive models can be built using multiple algorithms and techniques. The 

predictive models used in this research are multiple regression, random forests, and neural networks. 

To obtain a theoretical basis for this, a theoretical reflection has been added in Appendix C. This section 

dives into the concept of explainable AI and describes the phases of developing a predictive model. 

For DDDM interpretability and organizational learning, predictive models need to be well explainable. 

Explainability stands out as a primary barrier in the practical implementation of AI (Arrieta et al., 2019). 

Explainability is also significant in the context of organizational learning with DDDM as the lack of 
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explainability may hinder the human internalization process (Wijnhoven, 2022). This barrier arises 

from the inability to understand the reasons by which predictive modeling algorithms perform, which 

is a problem that finds its roots in two different causes (Arrieta et al., 2019). Firstly, a gap between the 

research community and business sectors hinders the seamless integration of machine learning 

models into sectors. Secondly, research predominantly centers on results and performance metrics, a 

focus that may benefit certain disciplines in assisting AI to infer relations beyond human cognitive 

reach. Nevertheless, the focus on accuracy alone is increasingly coming under criticism as it hinders 

users from assessing, understanding, and correcting the system (Nauta et al., 2023). Hence, the 

necessity for explainable machine learning algorithms emerges, aiming to enhance the transparency 

of AI systems and make their outcomes more understandable to people (Nauta et al., 2023).  

Explainable AI (XAI) encompasses a diverse range of explanations, presenting aspects of the reasoning, 

functioning, and behavior of a machine learning model in terms understandable to people (Nauta et 

al., 2023). Decision trees, represented as rooted graphs with conditional statements at each node, 

offer intuitive visualizations of decision pathways. Natural language processing techniques provide a 

textual explanation. Inherently interpretable white-box models, such as a scoring sheet or linear 

regression, offer explanations through the model’s structure and parameters. Representation 

synthesis or representation visualization explains the form of visualizations, such as feature 

visualization, scatter plots, or cluster analysis, to explain a predictive model’s representations. Feature 

importance is a set of non-binary scores to indicate feature relevance. These various methods of XAI 

enable people to gain a deeper understanding of machines, fostering them to learn from a machine. 

Predictive modeling consists of explicit learning steps, which are defining the project objective, 

collecting and preparing data and selecting features, selecting and specifying a model, training and 

validating the model, and model presentation and implementation (Jakeman, Letcher, & Norton, 2006; 

Steyerberg & Vergouwe, 2014; Waljee et al., 2014).  

Before starting with the development of a model, it is key to clearly define the problem that has to be 

solved and the objective that has to be achieved. The problem definition step consists of identifying 

the problem, defining the purposes and the scope, and building domain knowledge that is necessary 

to understand and solve the problem (Jakeman et al., 2006; Steyerberg & Vergouwe, 2014). The 

problem identification results in a problem statement that the predictive model should solve. The 

objective includes specifying what the model will predict. Scope definition is about defining the scope 

and boundaries of the predictive modeling project, taking into account factors such as resource 

availability, time constraints, and technical challenges. Despite challenges that may arise from various 

stakeholder interests, achieving a comprehensive understanding is beneficial for all parties involved, 

aiding in the definition of the problem and exploration of potential solutions (Jakeman et al., 2006). 

The problem and objective definition in the context of organizational learning can be seen as the 

externalization and combination of some knowledge. 

The second step is to conceptualize the functioning of the system that has to be modeled. In this step, 

data, prior knowledge, and assumptions about the relevant processes are defined. Prior knowledge 

includes observational data, structural information, process characteristics, and parameter values with 

uncertainties. The step begins qualitatively by exploring knowledge about processes, available records, 

and instrumentation compatibility, and passes to a quantitative phase where decisions are made 

regarding inclusion, simplification, and neglect of variables, while also assessing their sensitivity 

(Jakeman et al., 2006). This can be seen as externalization and combination to arrive at combined 

explicit knowledge. Conceptual models that can be useful to set up during this phase are for example 

a business process model about the as-is and to-be situation, a causal model to visualize the correlation 

of variables, and a data structure model. Thoroughly examining and understanding business objectives 
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and project goals is essential for effective predictive modeling. This critical phase combines business 

perspective, understanding, and data comprehension, which is needed for alignment between 

modeling efforts and desired outcomes (Lukyanenko, Castellanos, Parsons, Chiarini Tremblay, & 

Storey, 2019). 

A domain analysis increases the chance of successful development of a predictive model (van der 

Spoel, 2016). The type of domain analysis needed depends on the complexity of a domain. A complex 

domain has coordinated human actions, politics, myths, meanings, unstructured nature, partial 

observability, individual goals, probabilistic elements, environmental interactions, and behavioral 

influences (Jackson & Keys, 1984). The domain analysis can be made specific by collecting domain 

knowledge using brainstorming and a field study, which provides hypotheses for making predictions 

and identifies constraints that determine the usability and relevance of predictive models (van der 

Spoel, 2016). 

The next step is to collect and prepare relevant data and select features from this data. This step 

consists of data preparation and feature selection, which are intertwined. The step involves identifying 

and gathering relevant data from various sources, ensuring data quality, and transforming the data 

into a suitable format for model training. Feature selection is crucial in preparing data for machine-

learning problems. The goal of feature selection is to reduce dimensionality and prepare clean, 

understandable data (J. Li et al., 2018). Finally, the categorical and continuous variables of the model 

should be coded in this step. 

Choosing the appropriate predictive model algorithm involves evaluating different models and 

selecting the one that performs best based on a specific evaluation metric, which depends on the 

problem, the available data, and the desired outcome (Waljee et al., 2014). The choice of a model 

structure can be made with prior scientific knowledge, which is not always sufficient, or by trial and 

error among a modest number of possibilities based on the credibility of model behavior (Jakeman et 

al., 2006).  

For the training and validation of the model, the dataset is split into 

two sets: a training set and a validation set. During model training, 

the model learns from the training data by adjusting its parameters 

to capture patterns and relationships. This process involves 

optimization algorithms and aims to minimize the discrepancy 

between predicted and actual values. Once the model is trained, it is 

necessary to validate its performance on unseen data. Model 

validation involves measuring relevant metrics to assess how well 

the model generalizes. Through proper training and validation, 

models can be optimized and assessed for their effectiveness in 

making accurate predictions. 

The final step is to present, introduce, and implement the predictive 

model (Steyerberg & Vergouwe, 2014). Model presentation is 

important to transform the model from a theoretical construct to a 

practical solution by effectively communicating the insights and 

capabilities. Model presentation facilitates understanding among 

stakeholders, enabling informed decision-making and building trust 

in the model’s predictions. Implementation, which often regards the 

integration of the model into existing applications, is also necessary 

to make the model effective. The model presentation can be seen as 

Figure 4: The iterative process of 
predictive model development, inspired 
by (Jakeman et al., 2006), but with 
modifications based on other literature 
input as described in 2.2. 
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newly created explicit knowledge that is combined with existing explicit knowledge, and the 

presentation and implementation together can be seen as enablers for internalization of the newly 

created explicit knowledge.  

The steps above are an iterative learning process (Jakeman et al., 2006). A model is developed based 

on assumptions and available knowledge, and stakeholders may not understand their own needs fully. 

A model is rarely perfect or optimal right from the start. Through iterations, the model can be refined, 

improved, and adapted to better fit the problem domain. In addition, iterations enable developers to 

adapt the model to changing data distributions, refine it based on observed errors or biases, and 

ensure its ongoing relevance and reliability in dynamic real-world scenarios. The described steps 

together can be found in Figure 4. Depending on the cause of the new iteration, the iteration might 

only contain respecifying the model, but it can also mean adjusting the goals and repeating the entire 

process. 

2.3 PREDICTIVE MODEL DEVELOPMENT AS AN ORGANIZATIONAL LEARNING PROCESS 
It has been described above how learning is crucial for predictive modeling. This section describes how 

this learning is organizational by nature in DDDM, and how triple-loop learning can be reached in the 

predictive model development method. Figure 5 shows how predictive modeling learning is added to 

human learning. Figure 5 is a combination of the SECI model given in Figure 3 and the predictive model 

development methodology given in Figure 4. In Figure 5, the solid arrows represent a machine 

development process flow, the broken arrows represent a learning process flow, the blue boxes with 

curved angles represent knowledge creation processes, the blue boxes with sharp angles represent 

knowledge constructs, and the white boxes with sharp angles represent machine learning steps. The 

proposed methodology is an iterative process that can be executed as single- or double-loop learning. 

The proposed methodology contains the following stages of learning, where the numbers of the 

phases correspond to the numbers placed in circles in Figure 5: 

1. Externalization The process in Figure 5 starts as experts in a field provide input on what is 

important to them in the functioning of a predictive model. They externalize their tacit 

knowledge to explicit knowledge and help the predictive model developers with defining the 

objective and conceptualizing the predictive model with their domain knowledge. The 

developers also externalize their tacit knowledge to explicit knowledge by coding. 

2. Combination of human knowledge The explicit knowledge is combined with existing explicit 

knowledge. An example of a combination process is that learning outcomes are combined with 

explicit data knowledge, and based on this combination, knowledge is created about how the 

learning outcomes can be implemented in the machine. A part of the combination of human 

knowledge is the problem and objective definition and the conceptualization of the system as 

described in section 2.2. The problem, objective, and conceptualized system therefore belongs 

to the human mental model. 

3. Machine learning The combined explicit knowledge enables the model to learn. The predictive 

model passes a development iteration as described in section 2.2, and the machine learning 

process starts. Machine learning in this context is not a machine learning algorithm, but the 

process of which the predictive model is learning. 

4. Combination of machine knowledge At the end of the cycle, the predictive model is presented 

and possibly even implemented, which leads to new explicit knowledge. A part of the 

combination of machine knowledge is the presentation and implementation of the predictive 

model as described in section 2.2. This explicit knowledge is combined with other explicit 

knowledge where necessary. This creation of new explicit knowledge and combination with 
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existing explicit knowledge can be seen as a change in the mental model of the machine 

triggered by the human mental model. The explicit knowledge is then internalized, which is 

the starting point of a human learning process. 

5. Internalisation The involved individuals, such as the model developer and the domain experts, 

internalize explicit knowledge into tacit knowledge.  

6. Socialization By interacting with each other and sharing experiences, this tacit knowledge 

undergoes socialization. As a result of internalization and socialization, experiences are gained 

and norms and values are created. Learning outcomes will rise during this process. After 

socialization, the learning outcomes can be externalized. The learning outcomes trigger a 

change in the mental models of human influenced by the machine mental model, and a new 

learning cycle will be initiated.  

Both humans and machines are capable of generating new explicit knowledge throughout this process. 

Within the proposed methodology, they form a constant cycle in which the machine learns from the 

tacit knowledge generated by people, and people learn from the explicit knowledge generated by 

machines. So the proposed methodology represents a continuous learning process. By enabling 

symbiotic learning, or implementing deutero learning outcomes that follow from single- and double-

loop learning processes, a predictive model should be developed that is based on human feedback, 

and thus triple-loop learning should emerge. 

 
Figure 5: Framework to develop predictive model as DDDM tool by triple-loop learning. The solid arrows represent a machine 
development process, the broken arrows represent a learning process, the blue boxes with curved angles represent knowledge 
creation processes, the blue boxes with sharp angles represent knowledge stocks, and the white boxes with sharp angles 
represent machine learning steps. The proposed methodology is based on the theory described in 2.1.2 and 2.2. 

2.4 CONCLUSION THEORETICAL FRAMEWORK 
In conclusion, the theoretical framework reflects contemporary theoretical knowledge about 

organizational learning and predictive modeling. Integrating knowledge about these subjects has led 

to the development of a proposed methodology for creating predictive models as DDDM tool 

through triple-loop learning. This research is built on the proposed methodology.  
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3 RESEARCH DESIGN 

The research design is based on the proposed methodology to develop predictive models as an 

organizational learning process illustrated in Figure 5. Section 3.1 introduces the research questions 

used within this research and provides an overview of the knowledge collected. Section 3.2 delves into 

how human involvement is realized, representing externalization (1) and combination (2) of human 

knowledge before the machine learning phase, and internalization (5) and socialization (6) after the 

machine learning phase of Figure 5. Section 3.3 gives the research design for machine learning (3) and 

the combination of machine-created knowledge with existing knowledge (4) in Figure 5. 

3.1 RESEARCH QUESTIONS 
The main research question is:  

How can a model for predicting the usefulness of a re-inspection be developed by triple-loop learning? 

The main research question consists of two components: the development of a re-inspection 

usefulness predictive model and the implementation of it within the re-inspection prioritization 

method. The main research question will be answered using the proposed methodology in section 2.3. 

When placing the research question in the context of Figure 5, usefulness is a created norm that 

changed the human mental model and thus is the starting point for this research. 

As part of the development, it must be investigated which features can be selected from the data from 

the available data sources and which algorithms are suitable for the requirements and the available 

data. A usefulness predictive model must emerge that is most suitable and can be further developed. 

Following Figure 5, the development is the single-loop and double-loop learning process. This leads to 

the following research question and sub-questions: 

RQ1: What model predicts the usefulness of a re-inspection? 

SQ1.1: What is the usefulness of a re-inspection? 

SQ1.2: Which features can be selected out of the available data sources? 

SQ1.3: What is the optimal algorithm for building the predictive model based on the available 

data? 

Parallel to the development of the model, it must also be implemented. It must be integrated within 

the re-inspection prioritization mode currently in use and it must be implemented within the 

organization in a manner appropriate to the organizational culture. To ensure successful integration 

of the prioritization method within the organization, triple-loop learning must be achieved. Following 

Figure 5, the implementation of the model is about deutero and symbiotic learning. Based on this, the 

following research question and sub-questions are defined: 

RQ2: What is needed to implement and activate the predictive model for re-inspection usefulness within 

the organization? 

SQ2.1: What is an appropriate method for integrating the predictive model for re-inspection 

usefulness into the current re-inspection prioritization method? 

SQ2.2: What is needed to enable stakeholders to utilize the results generated by the predictive 

model? 

Within the organizational learning context, RQ1 pertains to single-loop and double-loop learning, while 

RQ2 focuses on deutero and symbiotic learning. The combined insights from both questions are aimed 
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to enable triple-loop learning of the usefulness predictive model and the prioritization method and 

should answer the main research question.  

To develop a predictive model for the usefulness of re-inspections, the right knowledge has to be 

collected. The knowledge needed to develop a re-inspection usefulness predictive model can be 

divided into four types of knowledge: domain knowledge, data knowledge, procedural knowledge, and 

methodological knowledge. Domain knowledge is about knowledge of the domain and includes the 

definition of the usefulness of a re-inspection and the purpose of the re-inspection usefulness 

predictive model. Data knowledge is about the data that is needed to predict the usefulness. 

Procedural knowledge is about the decision-making process with which re-inspections are prioritized. 

Methodological knowledge involves understanding the methodology used to develop a usefulness 

predictive model from an organizational learning approach. Figure 6 shows a diagram of the knowledge 

that is required, classified by the four types of knowledge. The figure distinguishes between knowledge 

that is gathered already via literature review, knowledge that can be gathered via desk research 

(among others data exploration and the exploration of the technical functioning of current models), 

and knowledge gaps that require human input to externalize and combine tacit knowledge to achieve 

explicit human knowledge. The specific knowledge that is needed is as follows: 

• Domain knowledge To determine the definition of the usefulness of a re-inspection, it must be 

clear what the purpose of re-inspections is and which factors influence this usefulness. 

Clarifying the definition of the usefulness of re-inspections and the advantages and 

disadvantages of the current prioritization method should contribute to settle the purpose of 

the usefulness predictive model. Furthermore, to understand the decision-making process and 

the decision-making norms that the prioritization method should have., knowledge is needed 

about the current process of prioritizing re-inspections and about the advantages and 

disadvantages of the re-inspection prioritization method. 

• Data knowledge As part of feature selection for the re-inspection usefulness predictive model, 

it should be clear what factors influence the usefulness, which data fields needed to predict 

the re-inspection usefulness are available, and how the data is structured. 

• Methodological knowledge Based on methodological knowledge that is collected by combining 

literature findings about predictive modeling and organizational learning, a methodology is 

proposed to develop a predictive model while enabling triple-loop learning. This study in turn 

contributes to new knowledge about how to achieve triple-loop learning in the development 

of predictive models. 
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Figure 6: Diagram of the knowledge needed to develop a re-inspection usefulness predictive model, distinguishing between 
the knowledge already available via literature or desk research, and the knowledge to be gathered by human input. The gray 
ovals represent a type of knowledge, and the ovals filled with a pattern represent a knowledge subject. The solid arrows 
represent dependencies between knowledge subjects, the dashed lines are used to classify the required knowledge into three 
different types. 

3.2 HUMAN INVOLVEMENT 
Human involvement is crucial in this research, as the organizational learning approach emphasizes 

mutual learning between humans and machines. Therefore, it is key to engage individuals and gather 

human knowledge. This knowledge is collected and integrated at two key stages in the research 

process: interviews with people are conducted before the machine learning phase, and evaluations 

with people are conducted after the machine learning phase. 

Interviews are conducted to externalize human tacit knowledge and analyzed to combine the 

externalized knowledge into explicit knowledge. The interviews are semi-structured, with a 

heterogeneous group of participants. The function title of the participants can be found in Table 1. The 

questions that are used for the semi-structured interview and the types of knowledge that are 

gathered per interview participant can be found in Appendix D and a summary of the subjects 

discussed with each interview participant can be found in Table 2. The interview subjects correspond 

with the human input knowledge subjects in Figure 6. The interviews are recorded and transcribed. 

Subsequently, these transcriptions are shared with the participants for their consent to be included in 

the research. Participants are also given the option to redact specific portions of the interview 

transcription if they wish to do so. Ethical permission from the Ethics Committee Computer and 

Information Science of the University of Twente has been granted to perform the interviews1. The 

interviews are analyzed by recording them, transcribing them, and then coding statements according 

to specific topics so that the statements could be grouped on a specific topic. An analysis was then 

made of the different participant perspectives on that topic. Based on the interview analysis, a 

conceptual model is made for the usefulness of re-inspections, and learning lessons are identified that 

 
1 https://www.utwente.nl/en/eemcs/research/ethics/ request number 230519 

https://www.utwente.nl/en/eemcs/research/ethics/
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provide guidelines for the machine learning stage. The conceptual model should clarify the concept of 

the usefulness of re-inspections and which factors influence the usefulness of re-inspections. Based on 

the conceptual model, it should be able to select features in the machine learning phase. 

Table 1: Participants and their function title within Achmea 

Participant number Function title 

P1 Risk expert 
P2 Manager risk expertise department 
P3 Underwriter of business fire insurance 
P4 Manager underwriting department of business fire insurance 
P5 Product manager of business fire insurance 
P6 Data scientist 1 
P7 Data scientist 2 

 

Table 2: Subjects discussed per interview participant 

 Participant number 
Subject P1 P2 P3 P4 P5 P6 P7 

Purpose of re-inspections X X X X X X X 
Definition of the usefulness of a re-inspection X X X X X X X 
Purpose of usefulness predictive model X X   X X X 
Factors influencing the usefulness X X X X X X X 
Available data fields X X   X X X 
Process of prioritizing re-inspections X X X X X X X 
(Dis)advantages of the prioritization method X X X X X X X 

After the machine learning and the combination of the explicit machine knowledge, the usefulness 

predictive model and the prioritization method have been evaluated by different stakeholders. The 

stakeholders involved in the evaluation are P1 to P5 of Table 1, who are the decision-makers and end-

users of the prioritization method. P6 and P7 (data scientists) have not been involved in the evaluation 

because data scientists were closely involved in the development process. The evaluation, like the 

interviews, was analyzed by recording them, transcribing them, and then coding them. An analysis was 

then made based on different perspectives on topics. First of all, the evaluations are intended to 

discuss the methods and results of developing and implementing the usefulness predictive model. 

Stakeholders are involved in how features are selected and how the usefulness predictive models are 

assessed for their performance. The evaluation is also intended to address topics that emerged from 

the interviews as being important for the machine mental model. During the evaluation, these aspects 

are discussed in more detail. Using what-if statements and different scenarios to represent topics, 

topics that may be complicated to comprehend for stakeholders have been made more 

understandable so that the stakeholders are still able to internalize those topics. During the evaluation, 

participants are asked to reflect on topics that are discussed. With this reflection, it is examined how 

the human and the machine mental model change.  

3.3 MACHINE LEARNING 
The development of the re-inspection usefulness predictive model as part of the re-inspection 

prioritization method will be accomplished using the predictive modeling development approach 

following section 2.2 and using different predictive modeling algorithms. Attention is paid to the 

relevant enterprise systems and the data preparation as part of the machine learning, considering that 

the data is sourced from multiple repositories and has not been consolidated before. After the 

completion of the machine learning, the newly created machine knowledge is combined with existing 
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knowledge by performing a simulation of the usefulness predictive model. The simulation provides 

insight into how the usefulness prediction included in the re-inspection prioritization method 

influences the usefulness of prioritized re-inspections. 

Initially, by varying algorithms, different predictive models are created that need to be compared 

based on their technical performance. To compare the predictive models, k-fold cross-validation is 

applied. K-fold cross-validation is a method in which the dataset is divided into k equal parts, or ‘folds’ 

(Berrar, 2019). The model is trained and evaluated k times, each time using a different fold as the test 

set and the remaining folds as the training set. The model performance is averaged over the k 

iterations, providing a reliable estimate of the model’s performance that is less dependent on the 

randomness of the data split. In this case, with little data, cross-validation techniques are needed. Five 

folds have been used in this research. Cross-validation is used to configure the hyperparameters of the 

modeling algorithms—external settings that influence the model’s architecture or learning process—

and test these configurations on the model’s outcomes. In that way, for each type of algorithm, the 

hyperparameters are chosen that perform best on average based on the performance metric. 

The classifier predictive models are validated using the accuracy and the macro-averaged F1 (ma-F1) 

score. The accuracy, depicted in (1), quantifies the overall correctness of predictions and provides a 

general measure of the model’s effectiveness. However, the accuracy is not sufficient for imbalanced 

datasets as accuracy might be high even if the model performs poorly on classes that are 

underrepresented in data. The ma-F1 score is based on the F1 score, which can be calculated per class 

according to (2). The F1 score considers both the precision’s focus on accurate positive predictions 

and the recall’s emphasis on capturing actual positive instances. A high F1 score indicates a model that 

achieves a balance between minimizing false positives and false negatives, making it a valuable metric 

for tasks where achieving precision and recall are equally important. The ma-F1 score uses the F1 score 

that is calculated for each class and then averages these scores according to (3). The ma-F1 score is 

sensitive to the performance of minority classes, providing a more balanced assessment of the model’s 

ability to perform well across all classes. Therefore, the ma-F1 score is particularly useful when there 

is a significant class imbalance. For the technical evaluation of the classifiers, the accuracy and the ma-

F1 score are both considered.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(1) 

𝐹1𝑖 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(2)  

ma– F1 =
1

K
∑ F1i

K

i=1
(3) 

The regressor predictive models are validated using the Mean Squared Error (MSE), a measure of the 

average squared differences between the predicted values and the actual values. For this research, 

MSE is preferred over other metrics such as Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE) because MSE penalizes large errors significantly more than MAE and MAPE 

by squaring the error terms. The formula for calculating the MSE is shown in (4) and involves taking 

the average of the squared differences between predicted and actual values for each data point. A 

lower MSE indicates a better fit of the model to the data, as it signifies smaller deviations between 

predicted and actual values. However, the MSE does not take the imbalance of datasets into account. 

Therefore, the MSE is combined with the ma-F1 score to assess the performance of the regressors.  



23 
 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2𝑛

𝑖=1
(4) 

The simulation is performed using the prioritization method output of 2023, which contains two lists: 

one of prioritized SME and one of large enterprises. The usefulness of a re-inspection was predicted 

for the top 500 prioritized business objects from both lists. The training data encompasses all re-

inspections not included in the priority list. Including the re-inspections from the prioritization list in 

the training set would grant the usefulness predictive model prior knowledge about the usefulness of 

these re-inspections, incorrectly boosting the results. Due to the difference in the train-test split used 

for the simulation and used for the already trained models, the models must be retrained. 

The simulation can be used to calculate the change in the average usefulness score of re-inspections. 

The usefulness score is known because the re-inspections were carried out and assessed on its 

usefulness in 2023. Only the top 100 re-inspections from the priority list were conducted and assessed 

with a usefulness score. This leads to an issue when simulating changes in the top 100 in the priority 

list because re-inspections that were originally outside the top 100 and move to the top 100 do not 

have a known usefulness score. The change in the average usefulness can then not be measured. To 

solve this issue, the change in average usefulness in the top 50 is simulated, leading to newcomers in 

the top 50 that almost all have a usefulness score. 
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4 EXTERNALIZATION AND COMBINATION OF TACIT KNOWLEDGE 

In this chapter, the prioritization method currently in use is examined. The advantages and 

disadvantages of the prioritization method are analyzed based on stakeholder perspectives, and the 

futural requirements of the prioritization method according to stakeholders are outlined. 

Additionally, a definition of the usefulness of re-inspections is formulated by combining perceptions 

from different stakeholders. The overarching objective of this chapter is to externalize human tacit 

knowledge into explicit knowledge and to combine this newly generated explicit knowledge, as 

illustrated in Figure 5. 

4.1 STAKEHOLDER PERSPECTIVE ON THE PRIORITIZATION METHOD 
Initially, 100 companies were selected by the prioritization method to undergo re-inspections as a 

pilot. Of this selection, 30 were excluded because the customer had canceled the policy or because 

the companies had recently been inspected, and 70 were carried out. The data scientists wanted to 

compare the re-inspections selected with the prioritization method with the re-inspections selected 

by expert judgement on their average usefulness and on the damage occuring. However, of the 70 re-

inspections carried out, some had an incomplete usefulness score or were not linkable to the policy 

data, which meant they were eliminated. Ultimately, the data scientists analyzed 35 re-inspections 

selected by the prioritization method. The analysis showed that concerning re-inspecting the 

companies where damages will occur, the re-inspections chosen with the prioritization method were 

slightly better, while concerning the usefulness assessed by the risk expert, the regular inspections 

scored slightly better. However, there was considerable variation in the data and the difference was 

not significant. This was considered good news by the data scientists. P7 (data scientist): “We were 

able to make a prioritization based on data that was no better, but also no worse, than how things had 

gone until then. Moreover, we were able to explain why we went to certain locations, while previously 

this was often based on sentiment only.”  

The fact that the re-inspections are linkable to policy data to a limited extent or that the usefulness 

score is not always filled in is a result of a lack of data standards and leads to limited, not-significant 

results in the evaluation of the DDDM tool, and thus limited learning outcomes. Learning outcomes 

are expected to be greater when data standards are introduced that improve the data quality. 

Therefore, deutero learning found place: data standards have been developed in the meanwhile. 

Symbiotic learning based on this deutero learning outcome occurred to some extent, resulting in the 

usefulness score being filled in for most inspections but the inspection data still hardly being linkable 

to policy data.  

Despite the limited analysis possibilities of the re-inspection prioritization method, stakeholders have 

been able to internalize and socialize their experiences with the DDDM tool, and based on the 

experiences from the pilots, stakeholders have been able to form an idea of the advantages and 

disadvantages of the prioritization method, which are learning outcomes that might have changed the 

human or machine mental model. An advantage stakeholders have observed is that the prioritization 

method is based on data and, as a result, can prioritize based on the entire portfolio. Where expert 

judgment may tend to be influenced by incidents at companies, personal opinions of experts, and 

limited insight into the entire portfolio, the prioritization method can predict where damages can be 

expected based on damages that have occurred in history and help decision-makers make decisions 

about the entire portfolio based on recurring patterns. As a result, the prioritization method 

contributes to the efficient deployment of risk experts by reducing the costs of damage with minimal 

staffing expenses.  



25 
 

In addition, the prioritization method provides new insights into re-inspections that would not be 

available without the prioritization method. P2 (the manager of the risk expertise department) 

emphasizes that although risk experts themselves may have an intuitive sense of the severity of 

damages based on expert judgment, they do not have insights into the actual damage at companies. 

P3 (underwriter) notes that new insights can be obtained and that these insights may not emerge 

based on expert judgment alone. Subsequently, these new insights lead to the identification of 

companies with specific risks in the prioritization method, whereas they might go unnoticed through 

expert judgment because it was unknown that these risks are relevant, as mentioned by P5 (product 

manager) and P7 (data scientist). 

The advantages mentioned by stakeholders are rather hypothetical than confirmed. Stakeholders are 

informed about the advantages and expect the advantages to be realized in practice, yet not all 

advantages have been experienced and confirmed in practice by the stakeholders. However, the 

advantages can be seen as deutero learning outcomes from the stakeholders about how the 

prioritization method should work and thus as norms for the DDDM tool to function in practice. 

The main disadvantage that emerges is that the prioritization method is unable to provide context to 

companies and buildings as experts do. P5 (product manager) describes the assessment of whether a 

company or building should be re-inspected as a human activity that cannot be easily translated into 

data: “It is the knowledge of experts, things they have picked up on the phone with a specific client, 

developments occurring in a particular area, information that is not reflected in the data. Without 

expert knowledge, you will miss things one way or another.” P4 (manager of the underwriting 

department) adds that experts can weigh in a societal context, something that, according to him, does 

not directly come across in the prioritization method: “For example, if we see that we have arson and 

we notice that we are in a period of economic downturn and high unemployment, experts can 

anticipate that this will affect the damage burden. The question is whether this can be extracted from 

data.” P6 (data scientist) also mentions that the prioritization method does assess risks but does not 

distinguish between acceptable and non-acceptable risks. This means that risk experts are sent to 

companies that have a significant but acceptable risk, and as a result, risk experts can do little with 

such re-inspections. It can be inferred that, although the DDDM tool aligns with predetermined norms 

and rules —specifically, re-inspection capacity should be spent on buildings that are most likely to have 

high damage burden — its practical performance is suboptimal, leading to new learning norms and an 

adjustment in the human mental model: the prioritization method should be able to distinguish 

between risks. The realization of this changed norm in the prioritization method is something that the 

usefulness predictive model should do. In that way, the addition of the usefulness predictive model 

leads to a change in the norms in the machine mental model triggered by a change in the norms of the 

human mental model. 

In addition, the prioritization method processes any developments that can be extracted from data 

with a delay, resulting in the prioritization of companies that may no longer require attention or 

unprioritized companies that need high prioritization. Training a predictive model on developments 

requires a significant history of these developments to be included in the data, and that takes time. 

The prioritization method experiences a delay before adapting to new trends. P7 (data scientist) 

provides an example: “Suppose many bakers have suffered damage in recent years, but there is an 

innovation that makes bread ovens safer. Then bakers will still be at the top of the priority list next year 

because historically they have a high risk of damage. [...] On the other hand, the prioritization method 

misses business activities where damages begin to occur, for example, because they are new. In ten 

years, there has been a significant increase, so to speak, in the number of charging stations and 

therefore also an increase in the burden of damage to charging stations. It will take some time before 
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this kind of new damage surfaces. You first need to build a history in the data. But that is exactly what 

you don’t want because you want to be able to predict it in the future and on forehand.” 

Several stakeholders have highlighted that there is a lack of transparency: risk experts are tasked with 

re-inspecting companies based on a prioritization method without a clear understanding of why a 

specific company is chosen. This harms the internalization of the DDDM tool. When risk experts are 

uncertain about the reasons to re-inspect, it hinders their ability to form a well-informed opinion on 

the DDDM tool’s functioning – what aspects work well and what aspects need improvement. The 

absence of a well-informed opinion results in limited symbiotic learning outcomes, hindering the 

potential for triple-loop learning from the DDDM tool among risk experts. To address this, it is crucial 

to enhance transparency in the prioritization method, necessitating the use of XAI. Although 

transparency is good for the internalization and socialization of the DDDM tool, transparency must be 

handled with care as too much transparency can also lead to an unfair decline in confidence in the 

prioritization method in the event of incidental setbacks. 

Another aspect that comes to light is that the quality of data is limited in some cases. Several examples 

were given, such as P7 (data scientist) sharing, “The first time we ran the prioritization method, a 

customer with hundreds of claims in one year was at the top. I thought this must be a large building, 

we should go there. Until I looked at the accompanying policy. It turned out to be a customer who had 

insured many homes that were all listed under one policy, causing that policy to be at the top of our 

prioritization method. However, the risk expert cannot re-inspect all homes during one re-inspection, 

and re-inspecting a single home is far from useful” The lack of data standards for policy data led to 

differences in how data is registered within a policy, influencing the quality of the DDDM tool. The 

underwriter adds that in the event of a damage report, the cause of the damage is not always 

accurately and specifically indicated, which also affects the quality of the prioritization method. 

Different stakeholders mention that the quality of data will increase in the future due to the so-called 

project SKB+. With that project, the policy ontology, currently uneven due to policies originating from 

different brands, is being aligned, and the semantics of data fields are being revised and enhanced. 

More details about this project can be found in Appendix E. 

By using the prioritization method, stakeholders have gained an idea of how it should function in the 

future. Several stakeholders indicate that people should always be able to make adjustments to the 

prioritization. Once the prioritization method has produced a list of buildings to re-inspect, the risk 

expertise department and the underwriting department must be able to determine together whether 

a re-inspection makes sense for a building. This corresponds to the concept of human-in-the-loop. 

According to the stakeholders, insight into the operation of the prioritization method and therefore 

transparency of the prioritization method and the results is crucial to make well-informed choices 

about whether adjustments should be made to the re-inspection list. 

According to stakeholders, a re-inspection usefulness predictive model should integrate soft factors 

and context into the prioritization method to increase the effectiveness of re-inspections. P5 (product 

manager) emphasizes the value of including data entered by risk experts and distinguishing between 

acceptable and unacceptable risks, to enable the model to assess the impact of risk experts. P7 (data 

scientist) provides an example of this: “Suppose bakers always have a lot of damage. At the moment, 

they come to the top of the list every year. But if a risk expert goes there and consistently indicates that 

it is pointless and that the high priority for bakers does not make sense. The usefulness score can 

indicate that the impact of risk experts on the risk is not significant, even though the bakers are at the 

top based on damage risk. This way, a prediction of usefulness can correct for the impact a risk expert 

can make.” P2 (manager of the risk expertise department) adds that customers who have been re-

inspected and approved previously do not need to be reselected in the prioritization. Those learning 
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outcomes emphasize the necessity of incorporating a prediction of re-inspection usefulness to 

introduce soft factors and a feedback loop into the prioritization method. This inclusion facilitates a 

human-machine interaction, where risk experts influence the model by assigning a usefulness score as 

an evaluation of a re-inspection. Moreover, an automatic learning mechanism for the DDDM tool is 

created, enhancing its ability to generate improved alternatives by learning from user input.  

Conclusion 

The stakeholders that are interviewed have gained experiences with the DDDM tool by internalizing 

and socializing. Although internalization was limited due to insufficient transparency, stakeholders did 

achieve new learning outcomes through the process of internalization and socialization. An important 

learning outcome is that the current prioritization method is not sufficiently capable of distinguishing 

between acceptable and non-acceptable risks and of the possible reduction of a risk by a re-inspection. 

Adding a prediction of the usefulness of a re-inspection to the prioritization method can enhance this 

context. This learning outcome serves as a basis for further development of the prioritization method 

and as the starting point for the development of a usefulness predictive model. 

4.2 USEFULNESS OF A RE-INSPECTION 
Usefulness, commonly perceived as the extent to which something improves job performance or 

facilitates task completion (Ma & Liu, 1986), encompasses the functionality needed to fulfill work 

domain objectives, rather than prioritizing ease of use alone (Burns, Vicente, Christoffersen, & Pawlak, 

1997). Usefulness is also defined as the extent to which the content and services offered meet user 

requirements (Buchanan & Salako, 2009). In summary, usefulness denotes the degree to which 

something is helpful, valuable, or advantageous for achieving a specific purpose. Defining the 

usefulness of a re-inspection requires clarity on its purpose and the contributing factors to it before 

developing a predictive model.  

Stakeholders unanimously define the purpose of re-inspections as preventing damage burden. Risk 

experts achieve this by advising customers on damage reduction or by setting prevention requirements 

recorded as claims in clauses. The overarching goal is to minimize damage across the entire insurance 

portfolio and not necessarily at company level. However, stakeholders identify additional benefits that 

can be seen as a goal. Re-inspections offer personalized support, enhancing customer satisfaction and 

leading to a stronger customer relationship. Re-inspections also contribute to the acquisition of new 

tacit knowledge for risk experts by providing risk experts with valuable insights into current risk trends, 

contributing to the improvement of their expertise. 

A re-inspection is initially considered useful if it can reduce the damage burden, however, it is uncertain 

if the damage can be prevented, as damage depends on chance. Nevertheless, risk reduction helps in 

preventing damage. Risk experts preferably focus on the risks over which they can exert the most 

positive influence. They primarily exert influence by mitigating the impact of risks because the chance 

can often be reduced to a limited extent. This impact is measured by the estimated maximum loss 

(EML), representing the estimated extent of possible damage under normal circumstances. Companies 

with a higher EML are more likely to see reductions. The metric is only known for previously inspected 

buildings. In addition, insured interest indirectly indicates the potential extent of damage, with lower 

interest linked to less potential reduction. However, it does not directly reveal a potential reduction in 

the risk of damage, as it also depends on building type; an equal insured interest may mean a different 

risk of damage for an office than for a bakery. Stakeholders therefore emphasize considering insured 

interest in combination with the sector. Both insured interest and sector are recorded in policies and 

are available for all insured buildings. A factor that also influences the risk of damage are ABC risk 

scores, which are categorical scores used by risk experts to indicate the risk severity. According to 
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stakeholders, the risk scores with the highest influence are the risk scores for fire and burglary. Risk 

scores are only known for buildings that have been inspected previously. Furthermore, historical 

damage data is mentioned as a factor for the risk of damage when taken into account in combination 

with the business sector. Stakeholders suggest that if a lot of damage occurs within certain sectors, 

there is a good chance that significant damage reduction is possible within those sectors. However, 

using historical damage data at the building level may be questionable, as recent building damages 

may lead to building replacements meeting high safety standards. 

What, according to the stakeholders, influences the reduction of risk of damage and thus contributes 

to the usefulness of a re-inspection is creating awareness among the customer. Risk experts attempt 

to create awareness with customers through advising about potential damages and the impact of 

those damages on the customer’s business operations to motivate the customer to implement advice. 

When awareness is present, the chances increase that the customer will implement advice or 

preventive measures. Therefore, awareness plays a crucial role in the usefulness of a re-inspection. 

Risk experts use expert judgment to assess a customer’s awareness of specific risks and record this as 

an ABC risk score for each inspection as prevention awareness. Prevention awareness is only recorded 

for previous inspections. Prevention awareness is also represented in the management score because 

a good management score indicates strong prevention awareness within the management. 

Noticing developments at companies also contributes to the usefulness of re-inspections. 

Developments such as unexpected expansions in production activities or structural changes in business 

processes can pose risks that were not yet known and thus increase the damage burden. Noticing these 

developments enables risk experts to identify and anticipate these new risks to manage the risk of 

damage. Stakeholders indicate that factors affecting the relevance of re-inspections are mainly 

determined by changes in business activities or risk scores. The changes are recorded as a Boolean 

value under the data field “change in policy”. The problem, however, is that these changes in business 

activity or risk scores are not known in advance. The developments can only be observed after a re-

inspection has been carried out. In practice, developments are closely monitored by, among others, 

the underwriting department and the risk expertise department, and changes in business activity or 

risks are somewhat known before a re-inspection is carried out. Experts are aware of developments 

but do not record these developments yet in the form of data. 

Additionally, it is useful if a re-inspection is used to check whether previously proposed preventive 

measures have been implemented. This is necessary to monitor whether there are improvements in 

risks. If it turns out that risk improvements have not been implemented, and as a result, the risk is no 

longer considered acceptable, it may be necessary to establish preventive conditions with clauses, 

increase the premium, or even terminate the policy. However, stakeholders indicate that this approach 

feels less useful than advising, encouraging, and motivating the customer. If preventive measures are 

required, these will be included as a clause in the policy. According to stakeholders, the presence of 

these prevention requirement clauses is therefore an attribute that can contribute to the usefulness 

of re-inspections. 

Conclusion 

Using the described definition of and contributing factors to the usefulness, a representation of the 

human mental model is made about the usefulness of a re-inspection using a diagram that indicates 

the factors that have a relation to the usefulness of a re-inspection, which can be found in Figure 7. 

The figure illustrates the factors, indicating the available data that represent each factor and specifying 

whether the data is accessible for all policies or exclusively for those that have undergone re-

inspection. This overview is the basis for the selection of features. A distinction is made between 

factors that contribute to the usefulness of a re-inspection, which are formative indicators, and factors 
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that reflect the usefulness of a re-inspection, which are reflective indicators (Appelman & Sundar, 

2016; Kline, 2016). Based on this mental model and the corresponding data representations, features 

can be selected for the re-inspection usefulness predictive model. Now that the human mental model 

has been made explicit, the machine learning phase following Figure 5 can start. 

 

 
Figure 7: Representation of human mental model about factors that have a relation to the re-inspection usefulness. The blue 
oval boxes represent factors that have a relation to the usefulness of a re-inspection, and the white rectangular boxes are 
data representations of specific factors.   
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5 MACHINE LEARNING  

In this chapter, the data preprocessing of the dataset is addressed and the results of the development 

of the usefulness predictive model and the simulation of it on the usefulness of re-inspections are 

presented. The overarching goal of this chapter is to execute machine learning, as depicted in Figure 

5. Part of machine learning is data exploration, collection, and preparation, necessary to arrive at a 

dataset to develop a usefulness predictive model. The data exploration and preparation can be found 

in Appendix E. The data exploration and preparation shows that a connection must be made between 

policy and inspection data based on the zip code to create a usable data set. This reduces the reliability 

of the dataset and the number of observations. 

5.1 DATA PREPROCESSING 
A predictive model for re-inspection usefulness can be applied at various scales over the data, and 

multiple datasets can be used to train. First, the scale on which a prediction is performed varies. 

Predictions can be conducted on a dataset limited to data points where a prior inspection has taken 

place and inspection data is available (constituting a segment of the complete portfolio), and on a 

dataset covering the entire portfolio, including data points where no inspection data is available. 

Second, the datasets differ in the type of data used for feature selection, involving policy data, 

inspection data, or a combination of both. This leads to the creation of four datasets with which a 

predictive model can be developed: 

1. The first dataset includes only the features originating from inspections, and a usefulness 

prediction can be made exclusively for companies that have undergone inspections. The 

sample size of this dataset is 914. 

2. The second dataset includes features from both policy and inspection data, and a usefulness 

prediction can be made exclusively for companies that have undergone inspections. The 

sample size of this dataset is 484. The reduced sample size in the second dataset compared to 

the first dataset is due to the barrier in merging policy- and inspection data, primarily caused 

by the absence of policy numbers in the inspection dataset. 

3. In the third dataset, only features from the policy are considered, and a usefulness prediction 

can be made for all companies, including companies with buildings that have never undergone 

inspections. The sample size of this dataset is 1049. 

4. The fourth dataset involves features from both policy and inspection data, and a usefulness 

prediction can be made for all companies, including companies with buildings that have never 

undergone inspections. The sample size of this dataset is 1049. However, it is important to 

note that missing values in the inspection features may be encountered because not every 

policy is linked to inspection data. 

The selection of features is guided by factors influencing the effectiveness of re-inspections, identified 

through interviews and depicted in Figure 7. Based on these factors, a data exploration for features 

has taken place, with details provided in Appendix E. The features found and their relationship to the 

factors in Figure 7 are presented in Table 3. The table makes clear that one or more features have been 

identified for all formative factors for the usefulness of re-inspections in Figure 7. However, two 

features, the previously judged usefulness score and time between inspections, were not mentioned 

by stakeholders as factors contributing to usefulness. During the data exploration, these factors were 

found and considered to influence the usefulness score, leading to their inclusion in the selection of 

features. The table therefore shows the relation between the machine mental model and the human 

mental model. 
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Table 3: Features and their relation to the data factors influencing the usefulness in Figure 7 

Feature 
(machine mental model) 

Relation with factor in Figure 7  
(human mental model) 

Previous judged usefulness score - 

Previous EML (estimated maximum loss) Estimated Maximum Loss 

Time between inspections - 

Previous prevention awareness Prevention awareness 

Insured amount Insured interest 

Previous judged management score Management score 

Damage burden last year Damage data 

Sector Sector 

Presence of prevention clause in past year Clauses 

Previous calculated fire risk Risk scores 

Previous calculated management score Management score 

Previous judged burglary risk Risk scores 

Presence of prevention clause in past five years Clauses 

Damage burden last five years Damage data 

Previous change in policy activity Change in policy 
Number of damages last five years Damage data 

Number of damages last year Damage data 

Details about the chosen features, the extent to which they have a value entered in the dataset, their 

respective Pearson correlation coefficient, and their presence in various datasets as elaborated in this 

section are presented in Table 4. Calculations on the correlation and completeness are based on the 

second dataset described in this part as this dataset includes features from both policy and inspection 

data and is therefore the most suitable dataset to calculate the correlation to the usefulness of all 

features. The features that start with Previous are features from the inspection carried out before the 

re-inspection. Further distinctions are made between a judged risk score, influenced by expert 

judgment, and a calculated risk score, derived from technical information and expert evaluation of 

corresponding risks.  

Table 4: Features with corresponding correlation to the usefulness and their presence in the different datasets 

Feature (machine mental model) In dataset 

Name Type Completeness Correlation 1 2 3 4 

Previous judged usefulness score Numeric 15% 0.4321 X X 
 

X 
Previous EML (estimated maximum loss) Numeric 97% 0.1917 X X 

 
X 

Time between inspections Numeric 100% 0.1103 X X 
 

X 
Previous prevention awareness Categorical 98% 0.0924 X X 

 
X 

Insured amount Numeric 100% 0.0890 
 

X X X 
Previous judged management score Categorical 97% 0.0794 X X 

 
X 

Damage burden last year Numeric 100% 0.0758 
 

X X X 
Sector Categorical 98% 0.0446 

 
X X X 

Presence of prevention clause in past year Categorical 100% 0.0384 
 

X X X 
Previous calculated fire risk Categorical 95% 0.0379 X X 

 
X 

Previous calculated management score Categorical 84% 0.0278 X X 
 

X 
Previous judged burglary risk Categorical 97% 0.0236 X X 

 
X 

Presence of prevention clause in past five years Categorical 100% 0.0200 
 

X X X 
Damage burden last five years Numeric 100% 0.0197 

 
X X X 

Previous change in policy activity Categorical 97% 0.0152 X X 
 

X 
Number of damages last five years Numeric 100% 0.0077 

 
X X X 

Number of damages last year Numeric 100% 0.0016 
 

X X X 
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Correlation assumes linear relationships, which have not been proven for the variables in question. 

Consequently, caution should be given when drawing conclusions based on correlation, particularly 

for categorical features. The categorical features have been converted into numerical values 

temporarily to facilitate correlation testing. This makes more sense for some categorical variables than 

for others. For risk and management scores, this conversion is logical because each category 

represents the extent to which a company meets the score. The earlier change in policy activity and 

the presence of prevention clauses can also be logically converted, as they represent a binary (True-

False) value. However, for the sector variable, it is less logical to convert categorical values into 

numerical values. The categories have been transformed into numerical values to facilitate correlation 

testing. 

The preprocessing of data for the predictive model also involves the normalization of numeric input 

features and the encoding of categorical features. Numeric features undergo normalization through z-

score normalization, resulting in these features being scaled to have a mean of 0 and a standard 

deviation of 1 (Kappal, 2019). Normalization prevents larger-scaled features from disproportionately 

influencing the learning process. Simultaneously, categorical input features undergo one-hot 

encoding, a method essential for representing categorical variables in a format suitable for machine 

learning algorithms. One-hot encoding transforms each unique category within a categorical feature 

into a binary column, with ‘1’ indicating the presence of a specific category and ‘0’ indicating its 

absence (Yu, Zhou, Chen, & Lai, 2022). This process allows a predictive model to interpret categorical 

information and handle missing data. These preprocessing steps collectively contribute to a prepared 

input dataset for the training of a predictive model. 

Risk experts input the usefulness score via a slider interface, although they see five categories with 

equal intervals instead of a numerical score. Nonetheless, they can specify the extent to which the 

usefulness falls within one of these categories, which makes the usefulness score a numeric value 

between 0 and 100 that is transferable to a categorical value. A score from 0 to 20 is “Crucial”, a score 

from 21 to 40 is “Very useful”, a score from 41 to 60 is “Useful”, a score from 61 to 80 is “Unnecessary”, 

and a score from 81 to 100 is “Useless”. By transferring the numeric usefulness score to categories, it 

is possible to use both regression and classification algorithms. 

The distribution of the numerical usefulness score in the dataset can be seen in Figure 8 and the 

distribution of the categorical usefulness score in the dataset can be seen in Figure 9. The fourth 

dataset, as outlined, serves as the basis for visualizing this distribution. However, it is noteworthy that 

all datasets have a comparable distribution of usefulness. The distribution shows that the dataset that 

will be used for the usefulness predictive model is imbalanced: a moderately useful re-inspection 

occurs significantly more frequently than a crucial or useless re-inspection. This imbalance poses a 

challenge for training a predictive model that accurately distinguishes between various levels of 

usefulness. To allow a predictive model to distinguish between different categories or scores of 

usefulness and not predict everything as averagely useful, a balanced dataset is needed. To address 

the imbalanced nature of the training dataset, the Synthetic Minority Over-sampling Technique 

(SMOTE) can be employed. SMOTE works by generating synthetic instances of the minority class to 

augment the training dataset, thereby balancing the class distribution (Fernandez, Garcia, Herrera, & 

Chawla, 2018). SMOTE enhances the predictive model’s ability to generalize to minority class patterns, 

ultimately improving the overall performance of the machine learning model in handling imbalanced 

datasets. By applying SMOTE, the class containing the majority of samples, which is the ‘useful’ class, 

remains constant, while classes with fewer samples are filled with synthetic data until they reach the 

same sample size. The impact of applying SMOTE on the usefulness score is shown in Figure 10. 
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Figure 8: Distribution of the numerical re-inspection usefulness score 

 
Figure 9: Distribution of the categorical re-inspection usefulness score 
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Figure 10: Distribution of the numerical re-inspection usefulness score after using SMOTE to balance the dataset 

5.2 MODEL DEVELOPMENT RESULTS 
Re-inspection usefulness predictive models have been trained using various algorithms and the four 

datasets as described in section 5.1. The utilized algorithms include multiple regression, random forest 

regressor, random forest classifier, neural network regressor, and neural network classifier. The model 

has been trained on the five categories as described in section 5.1 and on three categories, where the 

categories “Crucial” and “Very useful” together form the category “Very useful”, the categories 

“Unnecessary” and “Useless” together form the category “Unnecessary”, and the category “useful” 

remains the same. All features described in section 5.1 were incorporated into the training of the 

models. 

The performance of the trained predictive models is visualized using a heatmap, which can be found 

in Table 5. The heatmap shows the relevant performance metrics for each unique combination of 

algorithm, dataset, and number of categories. The heatmap also indicates the algorithm ‘No 

algorithm’, meaning that an average has been taken to predict usefulness, allowing for a comparison 

of how well the algorithms perform about a baseline performance. A complete overview detailing the 

mean and the standard error of each performance metric for every trained model, derived from the 

cross-validation process, is provided in Appendix F.  

In terms of accuracy for classification algorithms and MSE for regression algorithms, none of the 

algorithms surpasses the baseline of taking the average. However, when it comes to the ma-F1 score, 

the algorithms demonstrate considerable improvement. Algorithms using three categories for making 

a prediction outperform those using five categories in terms of the performance metrics. This outcome 

is somewhat expected, as the five-category classification lacks sufficient data for the two extreme 

categories, and it may be harder to distinguish between five categories than to distinguish between 

three categories. The expectation is that by including more data in the extreme categories, the 
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performance difference between the three and five categories will diminish. In such a scenario, it may 

be preferable to opt for a more precise distinction in usefulness based on five categories. It makes 

sense to select algorithms for further development that make predictions based on three categories. 

The differences in performance are less evident when evaluating the combinations of datasets and 

algorithms within three categories. In certain instances, the standard error in model performance that 

originates from cross-validation is even greater than the performance differences between 

combinations of datasets and algorithms, as indicated in Appendix F. The results do not offer a 

compelling rationale for the selection of a specific combination of a dataset and an algorithm because 

of the small differences in performance metrics and because the performance metrics of regression 

algorithms cannot be directly compared with those of classification algorithms. To have diverse types 

of usefulness predictive models to test in the simulation and to allow the models to be internalized by 

stakeholders, it is decided to further develop three usefulness predictive models based on three 

different algorithms and three different datasets to have usefulness predictive model alternatives that 

exhibit notable differences. 

Table 5: The performance of the trained usefulness predictive models using the different algorithms, different category 
configurations, and different datasets. The colors of the heatmap show relative differences between the results within a given 
performance metric. 

  Algorithm Performance metric Dataset 1 Dataset 2 Dataset 3 Dataset 4 

Th
re

e 
ca

te
go

ri
es

 

No algorithm MSE 259.8 248.3 250.4 250.4 
 Accuracy 0.54 0.54 0.53 0.53 

  ma-F1 0.23 0.23 0.23 0.23 

Multiple regression MSE 278.2 316.5 268.0 276.9 

  ma-F1 0.37 0.37 0.37 0.37 

Random forest regressor MSE 267.2 256.5 284.7 273.1 

  ma-F1 0.36 0.31 0.37 0.35 

Random forest classifier Accuracy 0.47 0.48 0.46 0.47 

  ma-F1 0.36 0.35 0.38 0.36 

Neural network regressor MSE 273.3 464.9 379.8 386.3 

  ma-F1 0.34 0.36 0.38 0.36 

Neural network classifier Accuracy 0.37 0.42 0.40 0.43 

  ma-F1 0.32 0.34 0.37 0.39 

Fi
ve

 c
at

eg
o

ri
es

 

No algorithm MSE 259.8 248.3 250.4 250.4 
 Accuracy 0.54 0.54 0.53 0.53 

  ma-F1 0.14 0.14 0.14 0.14 

Multiple regression MSE 385.0 327.2 432.9 562.4 

  ma-F1 0.23 0.22 0.21 0.23 

Random forest regressor MSE 276.3 275.6 284.0 273.1 

  ma-F1 0.20 0.19 0.20 0.21 

Random forest classifier Accuracy 0.46 0.44 0.42 0.46 

  ma-F1 0.23 0.20 0.21 0.21 

Neural network regressor MSE 296.9 484.5 335.8 416.9 

  ma-F1 0.19 0.22 0.23 0.22 

Neural network classifier Accuracy 0.30 0.44 0.33 0.38 

  ma-F1 0.20 0.27 0.22 0.22 
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This choice was made by looking at algorithms that have a relatively high accuracy or MSE in 

combination with a relatively high ma-F1 score. The ma-F1 score is emphasized because only 

evaluating based on accuracy or MSE increases the likelihood of the predictive model being unable to 

differentiate between classes, especially since the moderately useful class is much more frequent in 

the data. Because the performance of classifiers cannot be compared with the performance of 

regressors at this stage, it was decided that at least one model of both types of algorithms should be 

selected. The three chosen alternatives are multiple regression for dataset 3, random forest regressor 

for dataset 1, and random forest classifier for dataset 2, all for three categories.  

The models chosen are optimized using cross-validation within the training set. Within the cross-

validation, the model that produces the best predictions according to the validation set is selected as 

the model, assuming that this combination of training and validation data is best for recognizing 

patterns. The performance of the selected model is then tested with a test dataset, which is held apart 

and thus unseen, providing an unbiased view of the performance. A confusion matrix is presented for 

the three optimized models, illustrating the distribution of predicted usefulness classes relative to the 

actual usefulness classes. This matrix includes detailed calculations for recall, precision, and F1 score 

per usefulness class, as well as accuracy and ma-F1 score for the entire dataset. Additionally, for 

regression algorithms, a scatter plot is included to visually assess the alignment of predicted values 

with actual values. 

The performance results of the usefulness predictive model using multiple regression for dataset 3 can 

be found in Table 6 and Figure 11. The MSE of the multiple regression model is calculated as 246.63, 

indicating a marginal improvement compared to an MSE of 250.37 obtained when taking the average 

of this dataset as a prediction according to Table 5. Despite this modest improvement, the model 

demonstrates the ability to differentiate between various usefulness scores. As illustrated in Figure 11, 

data points are distributed along the diagonal line with a notable spread, signifying the model’s ability 

to distinguish between usefulness values. This observation is consistent with the findings in Table 6, 

where multiple regression achieves a ma-F1 score of 0.40 and an accuracy of 0.50. Multiple regression 

distinguishes between useful and very useful categories with a considerable margin of error but faces 

challenges in differentiating the unnecessary re-inspections, frequently predicting instances from this 

class as useful. This is also reflected in the F1 score of the corresponding classes. The disability to 

differentiate unnecessary re-inspections may result from insufficient data in that category to learn the 

associated patterns. 

Table 7 illustrates the confusion matrix for the optimized random forest classifier applied to dataset 2. 

With an accuracy of 0.49 and a ma-F1 score of 0.40, the performance of the random forest classifier 

on dataset 2 is comparable to multiple regression on dataset 3. In contrast to multiple regression, the 

random forest classifier exhibits lower capability in predicting very useful re-inspections, thereby 

reducing the F1 score for this category. However, it demonstrates moderate improvement in 

distinguishing unnecessary re-inspections, resulting in an increased F1 score for this class, making the 

ma-F1 score comparable to the optimized multiple regression model. 

Table 8 presents the confusion matrix and Figure 12 displays the scatter plot of the optimized random 

forest regressor on dataset 1. The MSE for the optimized random forest regressor on dataset 1 is 

242.22, indicating a modest improvement compared to an MSE of 259.75 obtained using the average 

usefulness of dataset 1 as a prediction. In Figure 12, the model demonstrates some capability in 

aligning predicted values with actual values, although it has a notable margin of error. Notably, the 

test dataset lacks observations with a usefulness score above 80, potentially influencing the MSE 

positively. The confusion matrix in Table 8 highlights the model’s ability to distinguish the classes very 
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useful and useful, but it faces challenges in distinguishing the class unnecessary. As a result, the model 

achieves an average ma-F1 score of 0.42 and an average accuracy of 0.54.  

Table 6: Confusion Matrix for the optimized multiple regression model in combination with dataset 3. Rows correspond to 
actual classes, columns represent predicted classes. The matrix displays precision, recall, and F1-score for each class, along 
with overall accuracy and the ma-F1-score. 

  Predicted   

  Very useful Useful Unneccessary Recall F1-score 

A
ct

u
al

 

Very useful 23 29 4 41% 0.45 

Useful 21 57 6 68% 0.60 

Unnecessary 3 20 3 12% 0.15 

 

Precision 49% 54% 23% 
Accuracy = ma-F1 score = 

 

0.50 0.40 

  
Figure 11: Scatter plot illustrating the comparison between predicted and actual values of the test set using the optimized 
multiple regression model in combination with dataset 3. Each point represents an observation, with the x-axis indicating the 
actual values and the y-axis representing the corresponding predicted values. The proximity of points to the red dotted line 
suggests the accuracy of the model predictions. 
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Table 7: Confusion Matrix for the optimized random forest classifier model in combination with dataset 2. Rows correspond 
to actual classes, columns represent predicted classes. The matrix displays precision, recall, and F1-score for each class, along 
with overall accuracy and the ma-F1-score. 

  Predicted   

  Very useful Useful Unneccessary Recall F1-score 

A
ct

u
al

 

Very useful 6 22 0 0.21 0.29 

Useful 6 28 5 0.72 0.59 

Unnecessary 1 6 3 0.30 0.33 

 

Precision 0.46 0.50 0.38 
Accuracy = ma-F1 score = 

 

0.48 0.41 

 

Table 8: Confusion Matrix for the optimized random forest regression model in combination with dataset 1. Rows correspond 
to actual classes, columns represent predicted classes. The matrix displays precision, recall, and F1-score for each class, along 
with overall accuracy and the ma-F1-score. 

  Predicted   

  Very useful Useful Unneccessary Recall F1-score 

A
ct

u
al

 

Very useful 21 32 0 0.40 0.46 

Useful 16 54 0 0.77 0.62 

Unnecessary 1 17 2 0.10 0.18 

 

Precision 0.55 0.52 1.00 
Accuracy = ma-F1 score = 

 

0.54 0.42 
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Figure 12: Scatter plot illustrating the comparison between predicted and actual values of the test set using the optimized 
random forest regression model in combination with dataset 1. Each point represents an observation, with the x-axis 
indicating the actual values and the y-axis representing the corresponding predicted values. The proximity of points to the red 
dotted line suggests the accuracy of the model predictions. 

5.3 SIMULATION OF USEFULNESS PREDICTION ON PRIORITIZATION METHOD 
Now that there are three optimized usefulness predictive models, a simulation can be made of the 

influence of their incorporation into the prioritization method on the usefulness. The simulation is 

carried out considering usefulness as a factor that should be integrated into the prioritization 

calculation and considering the usefulness as a correction factor that should be applied after the 

companies have been ranked based on damage probability and burden: 

• New prioritization calculation The usefulness prediction is incorporated into the prioritization 

method given in Figure 2. For this purpose, formula (6) is used for the prioritization lists of 

both large enterprises and SMEs. In formula (6), 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑑𝑎𝑚𝑎𝑔𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑏𝑢𝑟𝑑𝑒𝑛 is the 

final ranking for companies according to Figure 2 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑢𝑠𝑒𝑓𝑢𝑙𝑛𝑒𝑠𝑠  is the ranking 

number for companies based on their predicted usefulness. 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑢𝑠𝑒𝑓𝑢𝑙𝑛𝑒𝑠𝑠 for regression 

usefulness predictions are created by ranking the numerical usefulness predictions. Since the 

classified usefulness predictions can adopt one of three fixed classes, these classes cannot be 

ranked. Therefore, 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑢𝑠𝑒𝑓𝑢𝑙𝑛𝑒𝑠𝑠 for classified usefulness predictions is determined by a 

default ranking value assigned to each possible usefulness class, which are 𝑉𝑣𝑢 for the class 

very useful, 𝑉𝑢 for the class useful, and 𝑉𝑢𝑛 for the class unnecessary. After applying formula 

(6) for all companies, a new prioritization has been made for the large enterprises and SMEs 

separately by ranking the Priority score from high to low. 

• Correction on existing prioritization The correction on the existing prioritization method is 

performed by first prioritizing all companies following Figure 2, then applying a correction 

factor for the usefulness of all prioritized companies by adding the correction factor to the 

ranking number, and then re-sort the prioritization lists for large enterprises and SME’s based 

on the corrected ranking number. The correction for regression usefulness predictions is the 
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deviation of the numerically predicted usefulness to the average predicted usefulness 

multiplied by a usefulness coefficient 𝑟. With 𝑟, the influence of the usefulness correction on 

the prioritization can be set. The correction for classified usefulness predictions is made based 

on certain weights belonging to the given classes, 𝑊𝑣𝑢 for the class very useful, 𝑊𝑢 for the class 

useful, and 𝑊𝑢𝑛 for the class unnecessary. 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =
1

𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑢𝑠𝑒𝑓𝑢𝑙𝑛𝑒𝑠𝑠
+

1

𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑑𝑎𝑚𝑎𝑔𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑏𝑢𝑟𝑑𝑒𝑛
 (5) 

Table 9: results of simulation on the change in mean usefulness in the top 50 prioritized buildings after applying the predicted 
usefulness in the prioritization. The simulation is performed for the different optimized usefulness predictive models and using 
different methods to integrate the usefulness prediction. 

   SMEs Large Enterprises 

 

Method to implement  
the predicted usefulness 

Change in 
mean 
usefulness 

t-test (p) 
usefulness 

Change in 
mean 
usefulness 

t-test (p) 
usefulness 

M
u
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 r
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n
 

Calculation, 
classifier 

𝑉𝑣𝑢= 10, 𝑉𝑢= 80, 𝑉𝑢𝑛= 200 0.88 0.21 1.11 0.54 

𝑉𝑣𝑢= 20, 𝑉𝑢= 100, 𝑉𝑢𝑛= 200 0.92 0.35 1.04 0.82 

𝑉𝑣𝑢= 50, 𝑉𝑢= 125, 𝑉𝑢𝑛= 250 0.97 0.74 1.00 0.98 

𝑉𝑣𝑢= 100, 𝑉𝑢= 300, 𝑉𝑢𝑛= 500 0.99 0.89 1.00 0.98 

Calculation, regressor 0.94 0.53 1.11 0.56 

Correction, 
classifier 

𝑊𝑣𝑢= -50, 𝑊𝑢= 0, 𝑊𝑢𝑛= 50 0.97 0.74 1.00 0.98 

𝑊𝑣𝑢= -100, 𝑊𝑢= 0, 𝑊𝑢𝑛= 100 0.97 0.69 1.04 0.82 

𝑊𝑣𝑢= -200, 𝑊𝑢= 0, 𝑊𝑢𝑛= 200 0.98 0.85 1.08 0.71 

𝑊𝑣𝑢= -300, 𝑊𝑢= 0, 𝑊𝑢𝑛= 300 0.89 0.24 1.04 0.85 

Correction, 
regressor 
  

𝑟= 5 0.88 0.16 1.12 0.44 

𝑟= 10 0.74 0.02 1.07 0.67 

𝑟= 20 0.79 0.03 0.98 0.92 
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st
 c
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ss
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ie
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Calculation, 
classifier 

𝑉𝑣𝑢= 10, 𝑉𝑢= 80, 𝑉𝑢𝑛= 200 0.99 0.89 1.21 0.28 

𝑉𝑣𝑢= 20, 𝑉𝑢= 100, 𝑉𝑢𝑛= 200 0.99 0.89 1.18 0.35 

𝑉𝑣𝑢= 50, 𝑉𝑢= 125, 𝑉𝑢𝑛= 250 0.99 0.91 1.02 0.89 

𝑉𝑣𝑢= 100, 𝑉𝑢= 300, 𝑉𝑢𝑛= 500 1.00 1.00 1.02 0.91 

Correction, 
classifier  

𝑊𝑣𝑢 = -50, 𝑊𝑢= 0, 𝑊𝑢𝑛= 50 0.99 0.91 1.02 0.89 

𝑊𝑣𝑢= -100, 𝑊𝑢= 0, 𝑊𝑢𝑛= 100 0.99 0.91 1.18 0.35 

𝑊𝑣𝑢= -200, 𝑊𝑢= 0, 𝑊𝑢𝑛= 200 0.99 0.91 1.18 0.35 

𝑊𝑣𝑢= -300, 𝑊𝑢= 0, 𝑊𝑢𝑛= 300 0.99 0.93 1.21 0.28 

R
an
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eg
re

ss
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Calculation, 
classifier 

𝑉𝑣𝑢= 10, 𝑉𝑢= 80, 𝑉𝑢𝑛= 200 1.01 0.91 1.01 0.96 

𝑉𝑣𝑢= 20, 𝑉𝑢= 100, 𝑉𝑢𝑛= 200 1.01 0.91 1.06 0.76 

𝑉𝑣𝑢= 50, 𝑉𝑢= 125, 𝑉𝑢𝑛= 250 0.99 0.91 0.98 0.93 

𝑉𝑣𝑢= 100, 𝑉𝑢= 300, 𝑉𝑢𝑛= 500 1.00 1.00 1.00 1.00 

Calculation, regressor 1.06 0.50 1.02 0.92 

Correction, 
classifier 

𝑊𝑣𝑢= -50, 𝑊𝑢= 0, 𝑊𝑢𝑛= 50 0.99 0.91 0.98 0.93 

𝑊𝑣𝑢= -100, 𝑊𝑢= 0, 𝑊𝑢𝑛= 100 0.99 0.91 1.06 0.76 

𝑊𝑣𝑢= -200, 𝑊𝑢= 0, 𝑊𝑢𝑛= 200 0.99 0.89 1.06 0.76 

𝑊𝑣𝑢= -300, 𝑊𝑢= 0, 𝑊𝑢𝑛= 300 0.98 0.84 1.03 0.85 

Correction, 
regressor 

𝑟= 5 0.98 0.77 1.11 0.54 

𝑟= 10 0.97 0.70 1.17 0.39 

𝑟= 20 0.98 0.76 0.99 0.97 
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The results of each simulation can be found in Table 9. The change in average usefulness within the 

top 50 prioritized re-inspections for both SMEs and large enterprises is calculated for each combination 

of usefulness predictive model and method used to integrate the predicted usefulness. This calculation 

has been performed to compare the integration of the usefulness score with the original prioritization. 

Additionally, a two-sided t-test has been conducted to determine the significance level and assess if 

the observed changes were statistically significant. In general, the average usefulness score for SMEs 

decreases with the tested prioritization methods in which the usefulness prediction is integrated. This 

implies an increase in the usefulness of re-inspections for SMEs, as a higher re-inspection usefulness 

score corresponds to a lower overall usefulness of a re-inspection. Conversely, the mean usefulness 

score for large enterprises increases, indicating a decrease in the usefulness of re-inspections for large 

enterprises. Considering a significance level of 95% for the two-sided t-test, there is a significant 

difference in the average usefulness score between the simulated top 50 and the top 50 of the current 

prioritization method for the multiple regression algorithm applied as a correction to the existing 

prioritization method based on its numerical prediction of usefulness. At 𝑟 = 10 , the usefulness 

changes by a factor of 0.74, and at 𝑟 = 20, the usefulness changes by a factor of 0.79.  

5.4 CONCLUSION MACHINE LEARNING 
Based on the human mental model, features are selected to initiate the machine learning phase of 

Figure 5. Predictive models are trained and evaluated for their performance across various algorithm 

types and scales of performing the usefulness prediction. Three models are chosen for optimization 

and simulation to assess how they could enhance the usefulness of the inspections prioritized by the 

method. The simulation also considers different manners to implement the usefulness score. The 

simulation results indicate that the multiple regression algorithm, when applied as a correction to 

the existing prioritization method, significantly improves the usefulness of prioritized re-inspections 

for SMEs. Thus, with the usefulness of inspections as the norm, this model emerges as the best-

performing one.  
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6 COMBINATION AND INTERNALIZATION OF EXPLICIT KNOWLEDGE 

In this chapter, the outcomes of the machine learning are presented to the stakeholders, initiating an 

evaluation process. The overarching objective of this chapter is to generate explicit knowledge from 

the machine, combine this knowledge with existing explicit knowledge, and facilitate the 

internalization of explicit knowledge by individuals, as depicted in Figure 5. The stakeholders have been 

asked to reflect on the results and findings of this study. This section describes the reflection on the 

results and findings and covers the factors employed in predicting usefulness, the distribution of 

usefulness, end-user acceptance, and the interpretability of the prioritization method. 

Factors used for making the usefulness prediction  

Based on the interviews with stakeholders, in section 4.1, factors were chosen as features to predict 

usefulness. During the data preprocessing, in section 5.1, it became clear that not every mentioned 

factor was strongly correlated with the usefulness. Therefore, during the evaluation, stakeholders 

were asked to assess whether and why the factors are predicting the usefulness. This section describes 

the most striking findings of the factors used. 

The impact of the number of damages in the past year was found to have a low influence on usefulness. 

According to P5 (product manager) and P2 (manager of the risk expertise department), this makes 

sense on second thought. P5 explains that fire is not a high-frequency risk, while fire risk is a crucial 

aspect of a re-inspection. Additionally, he suggests that it may be useful to re-inspect companies where 

the amount of damages and damage burden have been low in the past year because the damage has 

not occurred there yet, and it could still happen in the future. This means a change in the human 

mental model.  

The low correlation between the presence of a prevention clause and the usefulness of a re-inspection 

is caused by the limited impact a clause has on the actual implementation of preventive measures. P3 

(underwriter): “I have the impression that customers might poorly read their policy, let alone a clause 

stating that a customer must meet preventive measures. If you include preventive measures in a clause, 

they fade into the background and therefore have limited impact. (...) If you want to seriously work on 

prevention, you need direct contact with the customer to emphasize the relevance of prevention. If it’s 

only on the policy, it has a limited effect.” The presence of a prevention clause was first seen by people 

as a possible feature, but upon further consideration, it appears to be an inadequate feature, which is 

a learning outcome that changes the human mental model. 

P1 (risk expert) emphasizes that the usefulness predictive model should not overly rely on the previous 

usefulness: “If a risk expert indicated the last time that it was very useful, I can imagine that in the next 

re-inspection, if everything is resolved, it may not be useful.” A learning outcome suggests that, 

although there is a high correlation between usefulness and previous usefulness, a usefulness 

prediction should primarily rely on other information. This changes the mental model of the machine. 

P1 generally had higher expectations regarding the influence of risk data. The evaluation with the risk 

expert revealed that ABC risks are based on a numerical value ranging from 0 to 100, making the 

numerical value a more precise feature. However, in the development of the predictive model, ABC 

risks were used as features. Based on this, P1 recommends using the numerical scale for the risk scores 

instead of the categorical approach. A learning outcome indicates the need for a change in the data 

used to represent risk scores. This learning outcome influences the machine’s mental model. 

Compared to the usefulness factors according to the human mental model in Figure 7, changes have 

taken place in the human mental model after a learning cycle: prevention clauses and damage data 
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are, on closer inspection, not good predictors of usefulness. Compared to the factors according to the 

original machine mental model, which are visualized in Table 4, differences have also been found after 

a learning cycle: the previous usefulness score is not a desirable predictor and the categorical risk 

scores should be replaced by numerical risk scores. The changes described in the human mental model 

should also lead to changes in the machine mental model. 

Distribution of usefulness   

As indicated in the data preprocessing, section 5.1, the distribution of the usefulness score is unequal. 

The vast majority has been assessed as moderately useful, and as the score becomes more extreme, 

fewer re-inspections are found in the data. Therefore, stakeholders were asked why the score could 

be distributed in such a way. 

The distribution of usefulness across the re-inspections aligns with the expectations of various 

stakeholders. Stakeholders express that they expect the distribution to correspond to reality and that 

they find it reassuring to see this distribution. P4 (manager of the underwriting department) states, “If 

we conclude that we send a risk expert on a mission, and it turns out to have not been useful in many 

cases, then I would be more concerned.” However, P3 (underwriter) notes, “It is unfortunate that there 

are so few non-useful re-inspections because these are inspections we would like to eliminate from the 

prioritization list.” A distribution of usefulness corresponding to reality would represent a learning 

outcome impacting the machine’s mental model: the machine was anticipated to effectively 

differentiate between the extreme usefulness categories, particularly identifying non-useful re-

inspections, which is not possible due to the few available non-useful observations. P3 (underwriter) 

suggests another possible explanation for the fact that usefulness is often rated as average: “I think 

you have to be very confident to say: this is crucial or pointless. I don’t think people are wired to assess 

something extremely on paper or in data, even if they think so.” If that is the case, then a change in the 

human mental model may be needed to promote the effectiveness of the usefulness predictive model, 

namely a more extreme assessment of re-inspections. 

Different stakeholders point out that subjectivity and the lack of a standardized definition of usefulness 

impact the distribution of usefulness. P2 (manager of the risk expertise department) emphasizes, 

“When you deal with 32 different individuals assessing this, one may find something useful while 

another does not at all.” P5 (product manager) adds that usefulness depends on the person assessing 

it, their experience, and the perception with which someone approaches an inspection. P4 (manager 

of the underwriting department) underscores the influence of an aligned definition of usefulness, 

stating, “If we look at the criterion of usefulness, no definition has been provided. It is therefore a 

personal estimate of how useful a re-inspection is. (...) If you have a set of criteria, you can objectively 

assess whether it is useful.” A deutero learning outcome here is that standards are needed in the form 

of assessment criteria for the usefulness of re-inspections to improve the usefulness predictive model’s 

distinctiveness.  

P2 (manager of the risk expertise department) describes a difference between the concepts of 

usefulness and influenceability, explaining that influenceability may potentially be better to consider 

in prioritization: “We can also talk about influenceability: to what extent can the risk expert influence 

the risk during a re-inspection? Imagine arriving at a client and identifying a very high risk, but you 

can’t change anything about it. In that case, the influenceability is zero, but it is still useful. Because if 

you know you have a high-risk situation on record, underwriting can take that into account. Usefulness 

does not necessarily mean that influenceability is high, but when we can exert influence on the risk, 

usefulness will increase significantly. Those are two different concepts. (...) For re-inspections, you may 

need to look more at influenceability.” A learning outcome of this double-loop learning is that a 

refinement in the target that has to be predicted might be needed. 
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Acceptance among the end users   

One of the goals of the usefulness prediction is to incorporate the knowledge and experience of a risk 

expert to enhance the acceptance of and confidence in the prioritization method. To investigate this, 

stakeholders were asked to explain whether they agree with the statement: “Adding a usefulness 

prediction enables a risk expert to leverage their knowledge and experience in future prioritization, 

increasing their acceptance of the prioritization method.” 

P2 (manager of the risk expertise department), P3 (underwriter), and P4 (manager of the underwriting 

department) expect that in the future, when the usefulness predictive model is accurate enough, trust 

in the model and acceptance of the model will increase. They explain that the actual usefulness of re-

inspections rises, and risk experts will experience that there will be fewer pointless re-inspections 

suggested by the model. P1 (risk expert) and P5 (product manager) describe that, while a usefulness 

prediction can increase the acceptance of the prioritization method, there are more dependencies for 

acceptance. According to P5, explainability and transparency about why a re-inspection is prioritized 

by the model are important for model acceptance. The explainability and transparency should promote 

the internalization of the re-inspection method among risk experts. P1 (risk expert) adds that 

understanding the model is crucial, but communication about it is also essential. If risk experts are 

limited in their awareness of the usefulness prediction, this is likely not to increase acceptance, even 

if the average usefulness improves. 

A point that emerged during the evaluations is the consideration of how far one wants to emphasize 

the acceptance of the prioritization method among risk experts. When management indicates that re-

inspections must follow a certain policy, risk experts must accept that policy. While emphasizing 

usefulness might contribute to higher acceptance, the policy will always be decisive. Therefore, the 

focus in development should not be too strongly directed towards maximizing model acceptance 

among risk experts. A learning outcome is a weakening of the norm that the re-inspections given by 

the prioritization methods are not perceived as useful and should be considered as a problem. 

Interpretability 

From the interviews described in section 4.1, it became clear that the prioritization method provides 

limited transparency. Therefore, during the evaluation, attention was dedicated to exploring 

possibilities for interpretation. This was carried out through six visual scenarios within the context of 

the re-inspection prioritization method, which can be found in Appendix G. Stakeholders were asked 

about the type of interpretability desired and how they anticipate that providing different levels of 

transparency would affect the use of the prioritization method in their way of working. The 

stakeholder's reflections on interpretability are combined to create new explicit knowledge in the form 

of a shared vision of how interpretability should be provided in the future. 

The evaluations have outlined a vision for interpretability in the short and long term. In the short term, 

stakeholders assert that the scenario in which the ranking is provided in combination with specific 

predictions will reasonably enhance the interpretability of the prioritization method. This is considered 

the minimum requirement for decision-makers and end users to gain some insight into the 

prioritization made. However, P1 (risk expert) wonders how a particular predicted damage burden or 

damage probability without any further context would be interpreted by end users. “You must explain 

to risk experts how to interpret and apply the predicted numbers. Or you should qualify the numbers, 

for example, by categorizing them from low to high.” With this, the risk expert aims to prevent end 

users from taking a prediction too literally. 

In the long term, stakeholders express a desire to see an addition to the short-term scenario in the 

form of predicted reasons for the predictions made and factors that most influence a specific 
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prediction. According to stakeholders, a predicted reason for why a prediction is made is quickly 

understandable for both decision-makers and end users. P4 (manager of the underwriting department) 

emphasizes that this increased interpretability can resolve the current issue of misunderstanding the 

prioritization list, where decision-makers do not understand why an inspection is on the list, and end 

users do not know what to focus on during a re-inspection. The stakeholders argue that providing the 

factors that have the greatest influence on a specific prediction provides a quantitative description to 

both decision-makers and end users. P5 (product manager) explains: “I think this scenario illustrates 

why it is important for a company to be re-inspected. (…) By identifying the most important factors that 

determine the priority, you provide context for why a company is a high priority”. The predictive models 

within the prioritization method should therefore incorporate feature relevance techniques to provide 

the most important factors in a specific prediction.  

Conclusion 

In this chapter, the results of the machine learning were presented to stakeholders and internalized 

by them. As a result of internalization, learning lessons are observed, prompting adjustments in both 

human and machine mental models. Consequently, this section illustrates how the development of 

DDDM via triple-loop learning, as depicted in Figure 5, generates learning outcomes that influence the 

human and machine mental model.  
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7 DISCUSSION 

7.1 MAIN FINDINGS 
This research addresses the question of how a model for predicting the usefulness of re-inspections 

can be developed and implemented while enabling triple-loop learning. The implementation of the 

usefulness predictive model within the prioritization method should lead to the incorporation of risk 

experts feedback and soft information to acquire more impactful re-inspections, as the current re-

inspection prioritization method lacks efficient prioritization and results in diminished confidence 

among experts. This gives rise to the research question: “How can a model for predicting the usefulness 

of a re-inspection be developed by triple-loop learning?” 

To answer this question, the usefulness of re-inspections first had to be defined. A definition is created 

based on learning outcomes from previous single-loop and double-loop learning: the usefulness of a 

re-inspection is mainly determined by the possible reduction in the risk of damage. However, it appears 

to depend on multiple factors, does not have a standardized definition, and is fairly subjective. By using 

the factors that determine the usefulness of a re-inspection, features were selected to develop the 

model, and multiple modeling algorithms were developed using different compositions of the dataset. 

The next step was to implement the usefulness predictive models for re-inspection usefulness within 

the existing prioritization method to simulate which usefulness predictive model performs best within 

the organization. The simulation indicates that the multiple regression algorithm, when applied as a 

correction to the existing prioritization method, significantly improves the usefulness of prioritized re-

inspections for SMEs. With the usefulness of inspections as norm, this model emerges as the best-

performing one.  

This research demonstrated how triple-loop learning via single- or double-loop learning take place and 

lead to changes in the machine or the human mental model. In this case study, the machine mental 

model has influenced the human mental model via single-loop learning by revealing that features, such 

as damage or clause, have limited impact on usefulness. Additionally, the machine’s mental model has 

influenced the human mental model through a revision of norms via double-loop learning, namely that 

re-inspection influenceability should be considered to predict instead of re-inspection usefulness. The 

human mental model has led to changes in the machine mental model via double-loop learning by 

adding the usefulness prediction to make the re-inspections more useful and impactful. The human 

mental model also changed the machine mental model via single-loop learning, for instance by 

indicating that the risk features used within the usefulness predictive model have a numerical score 

that is more accurate than the ABC risk score, allowing for model improvement. The provided examples 

of single- and double-loop learning, through collaboration between human and machine, can be 

considered as triple-loop learning. The study also shows how triple-loop learning can be integrated 

into the machine functionality. The usefulness predictive model supports a human-machine 

interaction as people can give feedback on the machine outcomes to generate better outcomes in the 

future. This can therefore be seen as an automated form of triple-loop learning via single-loop learning 

because the learning loop is built into the functionality of the prioritization method. 

To implement the usefulness predictive model within the prioritization method and to improve 

collaboration and workflow between individuals and the prioritization method, deutero and symbiotic 

learning are crucial. These learning processes were also observed in this study. For instance, there is a 

necessity for a standardized definition of usefulness score, which is deutero learning, and for effective 

communication to ensure that all risk experts possess this standardized definition as part of their tacit 



47 
 

knowledge, which is symbiotic learning. Additionally, there is a need for interpretability of the tool to 

enable internalization of results, which is also a result of deutero learning. 

7.2 PRACTICAL IMPLICATIONS 
The implementation of soft information and the creation of a feedback loop lead to more useful re-

inspections. A feedback loop is created by implementing the usefulness predictive model: inspections 

currently selected and inaccurately predicted due to performance issues will be used as training data 

next year, enabling the usefulness predictive model to improve itself in a targeted manner where 

errors occur. The feedback loop promotes human-machine interaction and fosters the alignment of 

human and machine mental models. Increased acceptance among the end-users is expected to be 

achieved by enabling them to refine the model based on their tacit knowledge and expertise. However, 

strong communication between decision-makers and end-users is crucial to enhance acceptance. Risk 

experts need to be aware of their influence on the model outcomes, the positive consequences when 

they fill in the score correctly, and the potential negative consequences when the score is left 

incomplete. In other words, symbiotic learning about the feedback loop has yet to occur.  

By incorporating re-inspection usefulness via the usefulness predictive model, the prioritization 

method can take into account feedback from risk experts, and a human-machine interaction is 

enabled. In that way, the prioritization method can indirectly include the norms, values, and 

experiences of the human mental model. While the usefulness predictive model currently exhibits 

limitations in performance due to data quality issues, which may prompt consideration of waiting for 

additional data before implementing it in the prioritization method, the feedback loop triggers a direct 

learning process from the usefulness predictive model’s incorrect predictions. Therefore, the advice is 

to implement the usefulness predictive model instead of waiting to gather more data, despite the 

current limitations in its performance. The implementation of a re-inspection usefulness predictive 

model also leads to the practical integration of triple-loop learning, where human and machine 

enhance each other to improve the decision-making process about which companies have to be re-

inspected. 

7.3 THEORETICAL IMPLICATIONS 
There is currently no established methodology for developing a DDDM tool, especially a predictive 

model, that integrates triple-loop learning. Consequently, DDDM tools often fail to align with human 

decision-making norms and values. This research combines prior studies on organizational learning in 

the context of DDDM with established methodologies for constructing predictive models as DDDM 

tools. It offers a proof-of-concept framework for developing predictive models for DDDM by triple-

loop learning, contributing to the literature on the development of DDDM tools, particularly predictive 

models, through mutual human-machine learning. This research presents a nascent approach to 

develop DDDM tools by considering mutual learning between people and the DDDM tool, resulting in 

the tool adopting human decision-making norms and values. The approach used in this research 

distinguishes from other iterative predictive modeling development methods that place less emphasis 

on the human learning process and do not consider the dynamic nature of human norms and values. 

This research fills the gap in scientific knowledge regarding the methodology with which triple-loop 

learning can be enabled to effectively develop a predictive model as a DDDM tool. The type of 

contribution is therefore an improvement to the Design Science Research (Gregor & Hevner, 2013). 

This has theoretical implications that are listed here.  

First, this research demonstrates how existing methods can be combined to develop a predictive 

model as a DDDM tool with triple-loop learning. Human tacit knowledge about the decision-making 
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topic can be externalized by conducting interviews and can be combined into explicit knowledge by 

analyzing the interview results and combining them with existing knowledge. Machine learning can 

then take place based on the explicit knowledge following existing predictive modeling development 

methodology. Machine learning leads to explicit knowledge, which can be presented to individuals and 

subsequently reflected upon by them, thereby realizing the human-machine learning loop following 

the framework in Figure 5. 

Second, this research illustrates how DDDM development by triple loop learning results in insight into 

the conditions that are necessary for learning, or deutero learning outcomes. Moreover, this research 

shows specific conditions that are generally essential to enable DDDM development by triple-loop 

learning. A DDDM tool must generate interpretable results. Without interpretable outcomes of a 

DDDM tool, users cannot internalize the DDDM tool and form an opinion about how the DDDM tool 

fits with their norms and values. Also, data quality is crucial for triple-loop learning. Limited data quality 

hinders the development of a DDDM tool, thereby impacting machine learning and, consequently, the 

triple-loop learning cycle. Limited data quality is a problem that lies in the intersection of human and 

machine because people generate the data. 

Third, DDDM development through triple loop learning proves to be an effective method for finding 

solutions to issues arising from the interaction between human and machines. In this case study, an 

example of a problem arising from the interaction between human and machine is the unequal 

distribution of usefulness. Triple loop learning led to the learning outcome that there is a need for 

refining, communicating, or even completely revising the definition of the usefulness. The problem 

cannot be resolved through pure data science knowledge. DDDM development via triple-loop learning 

does, however, yield solutions to such problems through the iterative learning process between 

human and machine. This concept extends to numerous domains where challenges that find its roots 

in the interaction between human and machine, for instance data quality issues, cannot be resolved 

through conventional data science but can be tackled through a triple loop learning approach. 

Finally, this research makes clear how human and mental machines change and why and how the 

mental models of humans and machines must be aligned. The human and machine mental models 

undergo transformation as a result of triple loop learning, as evidenced by several examples in this 

research. A shift in the human mental model is a revision of human norms and values, influenced by 

insights generated by a machine or external factors. Conversely, adjustments in the machine's mental 

model primarily occur based on the human mental model, aiming to align with the human mental 

model. When aligned, the machine acts by the norms, values, rules, and policies it should have 

according to people. As the mental model of humans will always continue to evolve and change due 

to external factors (norms and values are dynamic), the organizational learning cycle will have no 

ending point. It may happen that at a certain point, the human and machine mental models are 

aligned, but at a later stage, there may be a disparity without any changes happening in the machine 

mental model. This method takes into account the changing norms and values of humans and should 

triggers the machine to relearn promptly to align with the human mental model.  

7.4 LIMITATIONS AND FUTURE WORK 
The current state of the case study is that the re-inspection usefulness predictive model has not been 

functional in practice. As a result, decision-makers and end-users have not been able to internalize the 

usefulness predictive model into their tacit knowledge, leading to insufficiencies in measuring the 

success of a usefulness predictive model developed by triple-loop learning. Within this case, the 

usefulness predictive model must be implemented for people to gain practical experience with it. 

Subsequently, future work in this case study is needed to identify new learning lessons representing 
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the practical experiences of decision-makers and end users with the usefulness predictive model. A 

further development point could be to improve the interpretability of the results of the prioritization 

method because until now, triple-loop learning has been limited as people are constrained in learning 

from the machine due to a lack of transparency and interpretability in the prioritization method. As a 

result, decision-makers find it challenging to adjust the prioritization, and for the risk experts, who are 

the end-users, it is unclear why they are directed to a specific company for a re-inspection. This has 

led to constraints for decision-makers and end-users in forming an opinion about the prioritization 

method and creating learning outcomes.  

A prediction for three usefulness categories performs better than a prediction based on five categories. 

This is remarkable, considering that the actual usefulness of re-inspection is defined with five 

categories. Research into the distribution of usefulness revealed that there is very little data available 

in the extreme categories of usefulness to learn the pattern that forms the extreme usefulness 

categories as a result of the lack of an aligned definition among all stakeholders, combined with 

subjectivity, the human tendency not to rate something extremely on paper, and the fact that re-

inspections are mostly considered as moderately useful. An aligned definition of the usefulness of re-

inspections is needed. Also, intrinsic motivation needs to be created among stakeholders by 

communicating about how correctly filling in the usefulness score through the feedback loop 

contributes to more useful re-inspections in the future to improve the accuracy of usefulness 

predictions. 

The prioritization method is built using data from buildings that have undergone re-inspections. If 

these re-inspections are deemed useful, they receive high scores in the next prioritization, leading to 

more re-inspections and thus the collection of more data from similar buildings. However, the 

prioritization method does not have insight into the usefulness of re-inspections for buildings from 

sectors that are rarely re-inspected, and as a result, these buildings are not included in the 

prioritization method, even if they could be more beneficial. This creates a biased feedback loop. 

Predictions based on potentially biased historical data can themselves be biased. 

Although the proposed method fills a gap in knowledge about how to effectively develop a predictive 

model as DDDM tool by triple-loop learning, more evidence should be found to demonstrate the 

validity of the method. The method has now been validated as a proof of concept based on one case 

study. To develop a proven design science methodology, the method must be demonstrated in other 

(case) studies to make it more generalizable (Gregor & Hevner, 2013). Therefore, future work is needed 

to acquire further scientific evidence to prove the method. Moreover, the method might not only be 

relevant for the development of predictive models as DDDM tools but also applicable for other kinds 

of DDDM tools and in other domains of information systems design science. Future work can therefore 

also be conducted in the broader application of an organizational learning development method for 

information systems. 
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8 CONCLUSION 

The research question “How can a model for predicting the usefulness of a re-inspection be developed 

by triple-loop learning?” can be answered by declaring that a predictive model can be developed by 

triple-loop learning using the proposed framework in Figure 5. Learning lessons from people using a 

DDDM tool can be utilized to develop a predictive model in such a way that the machine operates by 

the norms, values, rules, and policies as intended by people. In this case study, the multiple regression 

algorithm that is capable of making predictions across the entire portfolio proves to perform best to 

the human norms. The research found out that the usefulness predictive model within the existing re-

inspection prioritization method itself also leads to triple-loop learning as human feedback on the 

prioritization method outcomes leads to an automated learning process to generate better outcomes. 

Ultimately, triple-loop learning leads to the development of a DDDM tool in such a way that the human 

and the machine mental model are aligned with each other.  
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APPENDIX A: CASE BACKGROUND 

Traditional situation  

Before the introduction of the prioritization method (the DDDM tool), decisions on which companies 

should undergo re-inspection were made in two ways: through direct coordination between the 

underwriting department and the risk expertise department, and through the re-inspection policy from 

the Product and Portfolio Management (PPM) department. The selection of companies through direct 

coordination between the underwriting and risk expertise departments applied to a specific group of 

companies. Underwriters and risk experts have knowledge of ongoing developments by delving into 

specific companies and by possibly re-inspecting them. A Business Process Model for the process of 

selecting companies to re-inspect through direct coordination can be found in Figure 13. Here, 

underwriters and risk experts are the decision makers, and the risk expert performs the re-inspection. 

During the re-inspection, risk experts provide the customer with advice on how to mitigate risks. After 

a (re-)inspection, the risk experts report and process their findings in a system called Arena. They also 

fill in an inspection usefulness score. Risk experts can assess the usefulness of the re-inspection by 

selecting one of the five categories: crucial, very useful, useful, unnecessary, and useless. Within a 

category, they can also indicate to what extent the usefulness belongs in that category. This makes 

usefulness a numerical score. 

 
Figure 13: Business Process Model for the process of selecting companies for a re-inspection through direct coordination 

The re-inspection policy from PPM was the second way for determining which companies need to be 

re-inspected and results in a list of buildings that need to be re-inspected. This list was compiled by 

PPM in consultation with knowledge teams based on signals and insights they observe in practice. 

Expert judgment from various knowledge teams contributed in establishing priorities and focal points. 

This list was formed based on the entire portfolio and primarily focuses on trends within clusters of 

policies, such as specific business activities or industries where risks are significant. A Business Process 

Model for the process of prioritizing re-inspections according to the traditional policy from PPM can 

be found in Figure 14. 
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Figure 14: Business Process Model for the process of prioritizing re-inspections according to the traditional policy from PPM 

The re-inspection policy from PPM needed to become data-driven because of the difference between 

the great need for re-inspections and the limited number of available risk experts, leading to operating 

under conditions of limited resources. It was therefore essential to find a better alternative to 

determine where the available expertise of the risk expertise department can achieve the most within 

the portfolio. The goal was to select locations with the highest risk of damage, aiming to intervene 

preventively to avoid damages. The driving force behind this was to anticipate damage and prevent it 

rather than conducting post-damage repair. The assumption here was that re-inspection capacity 

could be best utilized where damages occur because these damages can be prevented by risk experts. 

The prioritization method is initially and currently intended to replace the re-inspection policy from 

PPM and not to replace the coordination between underwriting and risk expertise, hence the focus of 

this case study is on the re-inspection policy process from PPM given in Figure 14.  

Current situation  

The data scientists have developed a method that prioritizes damage based on predicting the damage 

probability and the damage burden. The list of prioritized companies resulting from this prioritization 

method is forwarded to employees of the underwriting department, employees of the risk expertise 

department, and to the product manager. They make changes to the list where necessary, supplement 

the list, and authorize the list. The risk experts carry out the re-inspections according to the list. The 

Business Process Model for the process of selecting re-inspections using the prioritization method can 

be found in Figure 15. Within the business process, the prioritization method is a comprehensive term 

for the damage probability model and a damage burden model, for merging these results into a final 

prioritization, and for formatting a list representing the buildings that should be re-inspected according 

to the prioritization. In the process, the data scientist is responsible for the prioritization method, the 

product manager together with the risk expertise department and acceptance department for making 

decisions about re-inspections, and the risk experts for carrying out the re-inspections. The process of 

forming a new priority list of buildings to re-inspect buildings repeats yearly, with the data scientist 

and the product and risk expertise managers ensuring that the list of re-inspections can be carried out 

at the beginning of a new calendar year, and the risk experts conducting the inspections of buildings 

on the list throughout the calendar year. 
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Figure 15: Business Process Model for the process of selecting re-inspections using the prioritization method 

The computation with which the re-inspection prioritization is made (‘Make a prioritization based on 

the predictions’ in Figure 15) differs depending on the scale of the customer’s company. The 

prioritization method for small and medium-sized enterprises (SMEs) is created by multiplying the 

predicted probability and burden of the damage and ranking this outcome from high to low. The 

prioritization method for large enterprises is created by first ranking the outcomes of the predicted 

probability of damage and the predicted damage burden separately and then taking the inverse of this 

ranking number for both the predicted probability and burden. These two inverse numbers are added 

together and then ranked again from high to low to form the final prioritization for large enterprises. 

As a result, large enterprises that have a high score in the damage probability model or a damage 

burden model also rank high in the final prioritization method. This prioritization method is considered 

the most advantageous because it identifies the companies that submit the largest sum of claims over 

the years. The prioritization method for SMEs and large enterprises is visualized in Figure 16.  

 

 
Figure 16: Visualization of the current re-inspection prioritization method within Achmea  
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Anticipated situation  

To solve the lack of interaction between the model and risk experts in the current (re-)inspection 

prioritization, a usefulness predictive model is developed in this study. Implementing this predictive 

model should lead to a new Business Process Model, which can be found in Figure 17. In contrast to 

the Business Process Model in the current situation, the anticipated situation incorporates a feedback 

loop. In this loop, a usefulness prediction is generated using the usefulness scores provided by risk 

experts, facilitating the processing of feedback and soft information into the prioritization method in 

order to arrive at re-inspections that are more useful. Such a feedback loop not only contributes to the 

improvement of the tool but also provides opportunities for users to gain insights and learn from. 

Moreover, the incorporation of risk experts’ assessments into the prioritization method contributes to 

a sense of user influence. This perception among end users enhances the tool’s acceptance among end 

users and other stakeholders.  

 
Figure 17: Business Process Model for the process of selecting re-inspections where a usefulness prediction is incorporated in 
the re-inspection prioritization method 

APPENDIX B: LITERATURE SEARCH METHODS 

To provide the research with a relevant theoretical framework, literature is collected. An overview of 

the relevant literature topics, the corresponding search terms, and the number of papers that are 

included in the research can be found in Table 10. The literature search is conducted using Scopus, 

FindUT, and Google Scholar. The snowball methodology has also been used, meaning that the 

bibliography in some books or journal articles is used to find other relevant sources. The literature has 

to answer the following questions: 

1. What is usefulness in the context of re-inspections of commercial property? 

2. What predictive modelling algorithms exist and what are their characteristics? 
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3. How can predictive models become more interpretable? 

4. What are the essential steps in the development of predictive models? 

5. How can an organizational learning approach enhance data-driven decision-making? 

At first, a literature review is conducted on insurance inspections and the concept of usefulness to 

investigate whether previous research has been done on this concept, and to arrive at a definition 

based on the state-of-the-art literature of the concept. 

Given that the research involves developing a predictive model, research is conducted into the 

predictive model algorithms used in this research. Special attention is given to the concept Explainable 

AI and to the extent to which the various algorithms are explainable. Explainable AI seems to be 

important in order to make a predictive model understandable for its users. Moreover, research is 

conducted into the different development phases of a predictive model. This is necessary to ensure a 

systematic approach to the model’s development. 

This research attempts to develop a predictive model from an organizational learning approach 

because the research problem is at the intersection of people and computers where both can learn 

from each other and is therefore not exclusively a data science or computer science research problem. 

Therefore, literature search on organizational learning is conducted. The research focuses on data-

driven decision-making for prioritization, so literature will also be examined on this topic. Attention is 

given to the concept of “human in the loop”, which emphasizes the collaborative role of human 

decision-makers in conjunction with data-driven insights. The literature review on organizational 

learning, data-driven decision-making, and the development of a predictive model together should 

contribute to a proposed methodology for creating a predictive model through an organizational 

learning approach that enables triple-loop learning. 

By conducting these literature research methods, the aim is to build a relevant theoretical framework 

for this research about predictive modelling algorithms and methods and about effective application 

of data-driven decision-making within organizations in order to arrive at a method with which a 

predictive model can be developed using an organizational learning approach. 
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Table 10: Literature research topics and corresponding search queries 

Subject Search terms References 

Predictive model 
algorithms 

• regression analysis 

• neural network 

• deep learning 

• decision trees 

• random forests 

(Stulp & Sigaud, 2015) 
(Uyanık & Güler, 2013) (de 
Ville, 2013) (Biau & Scornet, 
2016) (Altman & Krzywinski, 
2017) (Prieto et al., 2016) 
(Shrestha & Mahmood, 
2019) 

Explainable AI • (explainable OR interpretable) AND 
(artificial intelligence OR machine 
learning OR AI) 

(Arrieta et al., 2019) (Nauta 
et al., 2023) (Andrews, 
Diederich, & Tickle, 1995) 
(Lundberg & Lee, 2017) 
(Ribeiro et al., 2016) 

Development 
phases of a 
predictive model 

• development OR development 
phases OR development steps AND 
predictive model OR machine 
learning model 

• feature selection 

(Waljee et al., 2014) 
(Jakeman et al., 2006) 
(Steyerberg & Vergouwe, 
2014) (Lukyanenko et al., 
2019) (Jackson & Keys, 1984) 
(van der Spoel, 2016) (J. Li et 
al., 2018) 

Data-driven 
decision making 

• decision OR decision making OR 
concept decision OR definition 
decision 

• data driven decision making OR data 
decision making 

(Hutton & Klein, 1999) 
(Eisenhardt & Zbaracki, 
1992) (Lunenburg, 2010) 
(Brynjolfsson et al., 2011) (L. 
Wu et al., 2020) (Cech et al., 
2018) (Fu et al., 2021) 
(Provost & Fawcett, 2013) (L. 
Li et al., 2022) (Raisch & 
Krakowski, 2021) (Kokina & 
Davenport, 2017)  

Human in the loop • human in the loop OR human-in-the-
loop 

(X. Wu et al., 2022) 
(Mosqueira-Rey et al., 2023) 
(Jarrahi, 2018) 

Organizational 
Learning 

• organizational learning OR 
organizational knowledge OR 
organizational learning AND triple-
loop learning 

(Jarrahi, 2018) (Argote & 
Miron-Spektor, 2011) 
(Wijnhoven, 2022) (Nonaka, 
1994) (Seidel et al., 2018) 
(Metcalf et al., 2019) 
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APPENDIX C: PREDICTIVE MODELLING ALGORITHMS 

Multiple regression  

Multiple linear regression, in short multiple regression, is a statistical method used to examine the 

linear relationship between two or more independent variables having a relation (Stulp & Sigaud, 2015; 

Uyanık & Güler, 2013). In contrast to simple linear regression, which involves only one independent 

variable, multiple linear regression incorporates several predictors to better model the complexity of 

real-world relationships. The general form of multiple linear regression is represented by equation (6). 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀 (6) 

In equation (6), 

- 𝑌 is the dependent variable, 

- 𝑋1, 𝑋2, …, 𝑋𝑛 are the independent variables, 

- 𝛽0 is the y-intercept and represents the value of 𝑌 when all independent variables are zero. 

- 𝛽1, 𝛽2, …, 𝛽𝑛 are coefficients that represent the change in 𝑌 associated with a change in the 

corresponding independent variable, assuming all other variables remain constant, 

- 𝑋1, 𝑋2, …, 𝑋𝑛 are the independent variables, 

- 𝜀 is the error term, representing factors that affect 𝑌 but that are not accounted for by the 

model. 

The goal in training a multiple linear regression is to estimate the coefficients (𝛽1, 𝛽2, …, 𝛽𝑛) that 

minimize the sum of squared differences between the predicted values and the actual values of the 

dependent variable (Uyanık & Güler, 2013). The assumptions of multiple linear regression include 

linearity, independence of errors, homoscedasticity (constant variance of errors), and normality of 

errors. Additionally, multicollinearity (high correlation between independent variables) can impact the 

reliability of coefficient estimates. In the context of prediction, the multiple regression model 

establishes a linear relationship between the target variable and features by estimating coefficients 

that quantify the strength and direction of these relationships. Multiple regression allows for a more 

nuanced understanding of the impact of multiple factors on the predicted outcome, enabling effective 

predictions in scenarios where various variables contribute to the overall outcome. 

Random forest  

A decision tree is a machine learning algorithm used for both classification and regression tasks. They 

split the data based on different features to create a set of if-else conditions that lead to a prediction 

(de Ville, 2013). Decision trees use a tree-like structure of nodes, where each internal node represent 

a feature or attribute, each branch connects nodes and shows the flow from question to answer, and 

each leaf node represents a final prediction. Decision trees are attractive due to their interpretability 

and ease of visualization. However, they can be prone to overfitting, especially when the tree is deep. 

Random Forests are so-called ensemble learning methods that build multiple decision trees and merge 

their predictions to improve accuracy and reduce overfitting (Biau & Scornet, 2016). The “random” in 

Random Forest comes from the fact that each tree is trained on a random subset of the data, also 

called a bootstrap sample, and at each split, a random subset of features is considered. The predictions 

from the different trees are aggregated to one outcome, which is called bootstrap aggregating.  

Random Forest is well-suited for both classification and regression tasks (Altman & Krzywinski, 2017). 

In classification, the predicted class is determined through a process known as voting. Each tree 

independently predicts the class, and the class with the majority of votes across all trees is assigned as 
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the final prediction. In regression tasks, Random Forest uses averaging. Each tree provides a numeric 

prediction, and the final regression prediction is obtained by averaging these individual predictions.  

Random Forests are less sensitive to overfitting compared to individual decision trees. However, the 

combined output of multiple trees in Random Forests can be challenging to interpret. Identifying and 

understanding the specific decision path or set of rules that lead to a particular prediction in a Random 

Forest is not as straightforward as in a single decision tree. 

Neural Network 

Neural networks are a type of machine learning models inspired by the structure and functioning of 

the human brain: they consist of layers of interconnected neurons that process information in parallel 

(Prieto et al., 2016). The three main types of layers are the input layer, hidden layers, and output layer. 

The input layer receives the initial data, the hidden layers process this data through weighted 

connections, and the output layer produces the final result. A neuron takes multiple inputs, applies 

weights to these inputs, sums them up, and passes the result through an activation function to produce 

an output. Activation functions introduce non-linearity to the model, allowing it to learn complex, non-

linear patterns.  

Weights are parameters associated with the connections between neurons and determine the 

strength of the influence of one neuron on another. Biases are additional parameters in each neuron 

that allow the model to account for variations and to make the model more flexible. In the training 

phase, data is fed through the network in a process known as feedforward. The predicted output is 

then compared to the actual output to calculate the error. This error is then propagated in reverse 

through the network, initiating the adjustment of weights and biases—a process commonly referred 

to as backpropagation. 

In a neural network designed for regression, the output layer typically consists of a single neuron that 

has a linear activation function. In a neural network designed for classification, the output layer usually 

has one neuron per class. In binary classification, the output layer typically uses the sigmoid activation 

function for a probability output between 0 and 1, while in multi-class classification, the softmax 

function is employed to normalize outputs into class probabilities summing to 1, and the class with the 

highest probability is predicted. 

Neural networks with multiple hidden layers are referred to as deep neural networks (Shrestha & 

Mahmood, 2019). Deep learning leverages the power of deep neural networks to learn intricate 

patterns and representations from data. Convolutional neural networks are specialized for processing 

grid-like data, such as images. They use convolutional layers to automatically and adaptively learn 

spatial hierarchies of features. Recurrent neural networks are designed for sequence data, like time 

series or natural language, and can be seen as forecasting algorithms. They have connections that form 

directed cycles, allowing them to maintain a memory of previous inputs. 

Neural networks excel in learning complex patterns and nonlinear relationships in the data. However, 

neural networks operate as black boxes, meaning that their internal process is hard to interpret and 

explain. This lack of transparency can be a crucial limitation in domains such as decision-making.  
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APPENDIX D: INTERVIEW QUESTIONS 

Questions 

1. How are you involved with the re-inspections? Hoe bent u betrokken bij de herinspecties? 

2. When do you consider a re-inspection useful? Wanneer beschouwt u een her-inspectie als 

nuttig? 

3. What factors influence the usefulness of re-inspections? Welke factoren hebben invloed op 

de nuttigheid van her-inspecties? 

4. Suppose we create a predictive model that predicts the usefulness of the re-inspection, what 

functionalities should be considered “must-haves”? Stel dat we een voorspelmodel maken die 

de nuttigheid van de her-inspectie voorspelt, over welke functionaliteiten moet dit 

nuttigheidsmodel beschikken? 

5. How can the usefulness predictive model result in an improvement of (the prioritization 

process of) the re-inspections? Hoe kan het nuttigheidsvoorspelmodel ervoor zorgen dat (het 

prioriteringsproces van) de herinspecties verbeterd wordt? 

6. Are there any specific data from re-inspections that you believe should be documented but 

currently aren’t? How do you think this could be improved? Zijn er gegevens van her-

inspecties waarvan u graag had gezien dat deze vast zouden kunnen worden gelegd, maar 

die op dit moment nog niet worden vastgelegd? Hoe zou dit volgens u verbeterd kunnen 

worden? 

7. What are the advantages of the currently used re-inspection prioritization method compared 

to expert judgment for prioritizing re-inspections? Wat zijn voordelen van het huidige her-

inspectie prioriteringsmodel ten opzichte van expert judgement voor het prioriteren van her-

inspecties? 

8. What are the disadvantages of the currently used re-inspection prioritization method 

compared to expert judgment for prioritizing re-inspections? Wat zijn nadelen van het 

huidige her-inspectie prioriteringsmodel ten opzichte van expert judgement voor het 

prioriteren van her-inspecties? 

9. Where do you expect and hope to be in 5 years when prioritizing re-inspections? Waar 

verwacht en hoopt u te staan over 5 jaar bij het prioriteren van herinspecties? 

Question 

Risk expert 
Manager risk 

expertise 
Underwriter 

Manager 
underwriting 

Data scientist 
Product 
manager 

1 X X X X X X 

2 X X X X X X 

3 X X X X X X 

4 X X   X X 
5     X X 

6 X X   X X 

7 X X X X X X 

8 X X X X X X 

9  X  X X X 
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APPENDIX E: DATA UNDERSTANDING AND PREPARATION 

The data understanding and preparation process is structured as follows: first, research was conducted 

into the relevant enterprise systems; then, descriptions were provided for the relevant databases of 

the enterprise systems; next, an investigation was conducted into the optimal methods for linking the 

datasets to each other; finally, the total data preparation was described and visualized. 

E.1 ENTERPRISE SYSTEMS 
This section discusses the enterprise architecture of the systems used for the re-inspection 

prioritization method. Figure 18 illustrates the architecture model, depicting the interconnection of 

applications and technologies, as well as their utilization within the re-inspection business process. The 

figure is made using the ArchiMate Enterprise Architecture Modeling Language2. The overview is based 

on the current state of the re-inspection prioritization method. Consequently, it serves to give the right 

context to the systems within the organization and as an introduction to the subsequent data 

preparation. 

The business process in Figure 18 starts with the (re)development of the re-inspection prioritization 

method. A data scientist prepares historical policy and its accompanying damage data for buildings. 

Currently, data is only prepared from the Kameleon database, as the prioritization is exclusively 

conducted for Centraal Beheer at present. Subsequently, the data scientist trains the model with the 

prepared historical policy and damage data. The data scientist then runs the prioritization method on 

the current portfolio of policy data for buildings. The model prioritizes based on predicted chances of 

damage and damage cost, creating a list of buildings that need to be re-inspected. After inspection and 

approval of the list from the product manager and the manager of the risk expertise department, risk 

experts carry out the re-inspections from the prioritization list and generate a report through the Arena 

application.  

The figure describes three databases relevant to the re-inspection: the Kameleon database, which 

stores policy data for Centraal Beheer, the BCP database, which stores policy data for Interpolis, and 

the Arena database, where the reports of re-inspections are stored. Only data from the Kameleon 

database has been used for the prioritization method up to now. The link between data from Kameleon 

and data from BCP, and the link between these datasets and Arena, has not been made before. 

However, to calculate usefulness, a link between the data from all databases is needed. Linking policy 

data with Arena is necessary to associate the usefulness score with specific policies, enabling 

predictions based on policies. Linking Kameleon data with BCP data is necessary to expand the policy 

dataset. This is because the linked policy – re-inspection dataset for Centraal Beheer is too small to 

train a predictive model for the usefulness. 

There is a desire within Achmea to consolidate the systems of all business insurance policies from 

various brands into one system: SKB+. In the business insurance chain of Achmea, inefficiency is 

experienced due to differences in the backend between labels, meaning that the same processes have 

to be repeated for different labels instead of doing it all at once. Therefore, the Management Team of 

the Non-Life Companies division has instructed the development of a unified backend for all labels, 

aiming to promote efficiency and thereby reduce workforce costs. This is symbiotic learning, as the 

learning outcome that there is a need for increase in data quality is being implemented. This migration 

is a multi-year project. An essential part of this migration for the prioritization method is data 

integration, specifically the integration of the policy portfolio for Kameleon and BCP. All data from 

 
2 https://pubs.opengroup.org/architecture/archimate3-doc/index.html  

https://pubs.opengroup.org/architecture/archimate3-doc/index.html
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different brands must be migrated to a unified format. The complexity lies in the fact that data from 

different labels have their own semantics, as will become clear in the next chapter. 

Due to the migration to SKB+, many changes are expected for re-inspections and their prioritization in 

the future. Prioritization based on the re-inspection prioritization method will not only occur for 

Centraal Beheer but for all labels in the future. The procedures for re-inspections, which currently vary 

per label, will be standardized through the migration to SKB+. Additionally, with the migration to SKB+, 

data quality is expected to improve, making data preparation for the re-inspection prioritization 

method much easier. However, the SKB+ migration is currently in development, which means a 

provisional solution will need to be found to link the data from Kameleon and BCP to each other and 

to Arena.  
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Figure 18: Architecture of the systems and migration relevant for the re-inspection prioritization method  
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E.2 INITIAL DATABASES 
This section describes the three initial databases that contains data needed to develop a re-inspection 

usefulness predictive model. The Kameleon database encompasses policy and damage data for 

Centraal Beheer’s insured policies, while the BCP database covers the same data for Interpolis’ insured 

policies. Additionally, the Arena database encompasses re-inspection data for all labels within Achmea, 

including Centraal Beheer and Interpolis. 

Database for policy data of Centraal Beheer  

Centraal Beheer’s policy and claims data are recorded via a system called Kameleon and stored in a 

relational database. A simplified overview of the relational database can be found in Figure 19.  

The core of this database is the class Insured object, in which the policy data is stored at the smallest 

level, which is a business object. The contract number represents a contract between Centraal Beheer 

and a policyholder. Within a contract, insurance policies can be issued for various business objects, for 

example for multiple buildings. The object number serves to differentiate between these insured 

business objects. Therefore, a combination of an object number and a contract number constitutes a 

policy.  

The class Insured object contains an object code, which is used to categorize the type of the business 

object that is insured via the class Object type. Additionally, the sector code and sector sequence 

number enable the determination of the business sector to which the insured object belongs via the 

class Sector. Furthermore, the class Insured object contains the address details of the insured object 

and a code for the commercial product, by which the type of company (SME, large business, 

government, healthcare, exploitation, etc.) can be determined. 

The class Insured object is connected to Contract through the combination of the contract number, 

the contract sequence number, and the object number. The class Contract contains the insured 

amount of the object per contract number and insured object. In addition, the class contains a relation 

number. The relation number indicates under which relation or company the contract is insured, as 

multiple contracts may have been concluded per relation. The class also contains a start and an end 

date of the contract and the status of the contract, which indicates whether the contract is still active. 

The dates and contract status are specific to a unique combination of a contract number and a contract 

sequence number. Whenever alterations are made to the contract, a new contract sequence number 

is generated to accurately document these changes in the database. 

In summary, the relation number in this database represents a policy holder. Because a policy holder 

can conclude multiple contracts, a relation number can have multiple contract numbers. Insurance 

policies for one or more business objects are recorded in contracts, meaning that a contract number 

can contain multiple object numbers. Also, due to adjustments or renewals of the contracts, multiple 

contract versions are stored per combination of a contract and an object. These versions are identified 

by the contract sequence number. 

The damage data is stored in the database in the class Damage. Damage is recorded at object level and 

can be linked to the class Insured object through the combination of the contract number and the 

object number. The date of the damage can be used to link damage to a contract sequence number. 

For each damage, further information is known about the damage burden and the cause of damage. 

The cause of damage can be determined using the cause of damage code in the class Cause of damage. 

The clause data is stored in the database in the class Clause, recorded at object level and can also be 

linked to the class Insured object through a combination of the contract number and the object 
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number. The clause name indicates the name of the clause and the date of clause indicates the date 

on which the clause is made active. 

 
Figure 19: Class diagram of storage of policy and claims data from Centraal Beheer (the Kameleon database) 

Database for policy data of Interpolis  

The policy and claims data of Interpolis are registered in a system called BCP and stored in a relational 

database, of which a simplified overview can be found in Figure 20. The database shows similarities 

with the Centraal Beheer policy database. However, there are some key differences between the 

Interpolis policy database and the Centraal Beheer policy database.  

The core class of Interpolis is the Policy class, in which policy data is described at the level of business 

objects. The highest level of policy data in the Interpolis database is the policy itself, which can be 

recognized by the policy number, and the lowest level of policy data is a business object, which can be 

recognized by an object sequence number. The object’s type can be determined by referencing the 

object code within the Object class, while the sector’s type can be identified by the activity code within 

the Activity class. The sector in the Activity class is comparable to the description of sector within the 

Centraal Beheer dataset. Nonetheless, they possess distinct semantics in the category of sector given 

to a business. 

Interpolis’ claims data is described in two classes, with one class containing Interpolis’ claims data up 

to and including 2018 and one class containing claims data from 2019 onwards. Essentially, both 

classes store similar types of data. However, starting from 2019, the product coverage and cause of 

damage are stored within the damage class, whereas up until 2018, these attributes are referenced in 

a distinct class.  
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Figure 20: Class diagram of storage of policy and claims data from Interpolis (the BCP database) 

Difference of registering policy data between Centraal Beheer and Interpolis   

The difference between Centraal Beheer and Interpolis datasets is evident in their distinct ontologies 

devised for insurance policies. The ontologies have not undergone the combination process as shown 

at number four in Figure 5, which results in inconsistencies in the machine’s mental model. Those 

inconsistencies have to be solved during the data preparation. The process of combining the databases 

and finding a sustainable solution for the inconsistencies is currently in progress with the SKB+ 

conversion project. In Centraal Beheer, data is organized with the relation number level at the highest 

level and the policy number at the lowest level, whereas Interpolis operates at the policy number as 

the highest level and object number as the lowest level of data. Additionally, there is a contrast 

between de datasets in how the sector assigned to a company is interpreted semantically. Those 

dissimilarities present no inherent issue, as their ontologies are closely aligned and there is a mapping 

available for the differences in semantics of the business sector. However, it is crucial to be mindful of 

this when integrating these datasets, as they must be linked to Arena in a different manner. 

Database for re-inspections  

The information that a risk expert enters during a re-inspection is processed by the Arena system and 

stored in a database. A simplified class diagram of this database can be found in Figure 21. The classes 

are organized by data categories. The classes each contain information at the level of a re-inspection 

and can be linked together via a re-inspection ID. Although the division into classes suggests that the 

database is relational, the database is a flat file database and the data is categorized according to 

classes.  
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Particularly important for this investigation are the usefulness of a re-inspection, the date on which 

the re-inspection took place and the data with which a re-inspection can be linked to a policy. These 

are represented in the classes Summary and Adress and policy details. 

  
Figure 21: Class diagram of re-inspection data storage (the Arena database) 

E.3 DATA CONNECTION BETWEEN DATABASES 
For the datasets of Centraal Beheer and Interpolis, establishing a one-to-one connection with Arena 

proves challenging, as only the highest level of the insured company is registered within Arena, which 

is either the relation number within Centraal Beheer or the policy number within Interpolis. Not all 

business objects of the insured company are re-inspected, and it remains unclear which objects are re-

inspected and which are not. In some cases, the object code within Arena is entered in a free-text field 

and can be utilized as link to the re-inspected business objects. However, in most cases, the data needs 

to be linked in a different manner. Therefore, this chapter explores how Arena data can be linked with 

data from Centraal Beheer and Interpolis. This linkage is based on the registered business objects when 

available, and otherwise on the relation number or the policy number and the postal code or the 

address. 

Preparation of re-inspection data for Centraal Beheer  

The Arena system records data on re-inspections for the insurance brands Centraal Beheer, Interpolis 

and Avero. The total number of registered re-inspections in Arena is 6710. Initially, the data from Arena 

will be linked to that of Centraal Beheer. The number of re-inspections carried out for Centraal Beheer 

and recorded in Arena is 1011. The usefulness of re-inspections was initially not recorded in Arena, 

which means that the Arena database contains re-inspections that do not contain a usefulness score. 

However, for this study, only those re-inspections are useful for which a usefulness score is available. 
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The number of re-inspections carried out for Centraal Beheer, during which the usefulness was 

recorded, is 420. 

However, not every recorded usefulness score turns out to be useful. Over time, it was found that 

some risk experts did not enter a usefulness score and did not provide an explanation of the usefulness 

of the re-inspection. As a result, the usefulness score in the system was set to 50 by default. Therefore, 

re-inspections with a usefulness score of 50, where no explanation of usefulness was provided, were 

excluded. If the usefulness score is 50, but an explanation of the usefulness of the re-inspections is 

provided, it is assumed that the score of 50 has been entered by the risk expert. The number of re-

inspections with a non-standard usefulness score is 342. A schematic overview of the preparation and 

selection of the Arena data is shown in Figure 22. 

 
Figure 22: Selection of usable re-inspection data for Centraal Beheer policy re-inspections 

Joining re-inspection data to the policy data of Centraal Beheer  

When designing Arena, the technical link between re-inspection data and policy data was not taken 

into account. At the time, there was no need to design Arena in such a way that this data could be 

directly linked to each other. As a result, the Arena database does not have a built-in key to connect 

re-inspection data with Centraal Beheer’s policy data. However, there are open fields in the Arena 

database that in 121 of the 342 cases have been used to record a contract number and object number 

during re-inspections for Centraal Beheer, making a direct join to re-inspected business objects 

possible for those cases. Several alternatives are available for the 221 re-inspections where direct 

joining to the re-inspected business objects is not possible. An overview of the available alternatives 

can be found in Figure 23. 

The first alternative is to join the re-inspection data to the policy data using the relation number. Of 

the 221 re-inspections that have to be joined, only 114 re-inspections can be joined based on a relation 

number. This is because the relation number in Arena is a free field and is not always filled in 

consistently. A disadvantage of joining the data using the relation number is that there are 

considerably more business objects joined to the re-inspection than the business objects that have 

been re-inspected as a relation can have numerous insured business objects. For this reason, joining 
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re-inspection data to the policy data of Centraal Beheer based on the relation number is not a suitable 

solution. 

The second alternative is to connect the re-inspection data to the policy data based on the address. 

This allows 123 of the 244 re-inspections to be joined to a contract. This method guarantees that the 

objects on a contract are located at the re-inspected address. There are also disadvantages to this 

method. First, multiple companies may be confirmed at one address, leading to an incorrect join 

between contracts and a re-inspection. Secondly, the house number is not entered consistently, which 

means that some of the re-inspections cannot be joined to the policy data based on the address. 

Therefore, this alternative is also not the best solution. 

The third alternative is to join the re-inspection data to the policy data by using the relation number in 

combination with the zip code. This joins 111 of the 221 re-inspections to the policy data. The 

advantage is that the re-inspection and the policy have a match in the policy holder and the zip code, 

which means there is a great chance that the business objects have actually been re-inspected. The 

disadvantage is that it is not certain whether a business object belongs to the re-inspected address or 

whether it is located at another address within the same zip code, which reduces the reliability of this 

join.  

The fourth alternative is to join the data from the re-inspections to the policy data by using the contact 

number in combination with the address. 86 re-inspections are joined to the Centraal Beheer policy 

data. An advantage over the other alternatives is that the policyholder and address match, making it 

likely that the insured business properties on that contract have been re-inspected. However, both the 

address and the relation number in Arena are not entered consistently, resulting in a few joinable re-

inspections. 

When joining the re-inspection data of Centraal Beheer to the policy data of Centraal Beheer, it turned 

out that the policy data is correct, but the re-inspection data contains imperfections. This is partly due 

to errors in completing the re-inspection data, but also because the level of re-inspection can vary: a 

re-inspection can take place over business objects from multiple contracts, but a contract can also 

contain business objects from multiple addresses. This can be taken into account in the analysis by 

only joining the business objects within a contract to a re-inspection that are located at the same 

location. Therefore, the alternatives that are joined on relation number and a location are both 

possible alternatives for joining data. Given the data loss resulting from address inconsistencies, the 

alternative of joining based on the relation number and the postal code emerges as the most fitting 

option for establishing connections with data that cannot be directly joined to a specific business 

object. This makes that the total number of joined re-inspections for Centraal Beheer is 232. 
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 Figure 23: The number of joined re-inspections to policy data for different alternatives for Centraal Beheer 

Preparation of re-inspection data for Interpolis  

The sample size of 232 is derived from the data linkage between the arena data and Centraal Beheer 

will be far from sufficient to develop a predictive model. More re-inspections have been carried out 

for Interpolis in recent years than for Centraal Beheer. Therefore, the re-inspection data from Arena 

will also be joined to that of Interpolis to have a greater sample size for the purpose of the training of 

a predictive model. A total of 4601 re-inspections took place for Interpolis, of which 2286 had a 

usefulness score and 1606 had a usable usefulness score. A schematic overview of this can be found in 

Figure 24. 
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Figure 24: Selection of usable re-inspection data for Interpolis policy re-inspections 

Joining re-inspection data to the policy data of Interpolis  

The process of joining the re-inspection data to Interpolis policy data is similar to the process of joining 

the re-inspection data to Interpolis policy data. However, in the case of Interpolis, there is no field in 

which object sequence numbers are filled in, making a direct join impossible. Consequently, all re-

inspection data for Interpolis re-inspections must be linked to Interpolis policy data using alternative 

identifiers. Figure 25 provides an overview of these alternatives. The alternatives are similar to those 

for joining Centraal Beheer re-inspection data to Centraal Beheer policy data. This means that the 

advantages and disadvantages of the alternatives also correspond. The most effective method for 

joining Interpolis re-inspection data to policy data is by utilizing the policy number and postal code, 

resulting in a sample size of 817. 

 
Figure 25: The number of joined re-inspections to policy data for different alternatives for Interpolis 

Sample size of re-inspection data  

By including data from both Centraal Beheer and Interpolis re-inspections in the development of the 
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re-inspection usefulness predictive model, the size of the dataset for training and testing the predictive 

model becomes 1049. 

E.4 DATA PREPARATION 
In Figure 26, the data pipeline is illustrated that is used to extract data from the databases and 

transform it to a dataset that can be used to train the predictive model. Figure 26.a displays the 

preparation of re-inspection data, Figure 26.b demonstrates the preparation of policy, damage, and 

clause data, and Figure 26.c illustrates the final data preparation where different datasets are joined 

together. 

The Arena system records inspection data for the insurance brands Centraal Beheer, Interpolis, and 

Avéro Achmea. Initial inspections are also recorded, so not all recorded inspections are re-inspections. 

The non-re-inspections are filtered out. Initially, the usefulness of re-inspections was not recorded, 

resulting in the database containing re-inspections without a recorded usefulness score. For this study, 

only re-inspections with an available usefulness score are considered useful, and re-inspections 

without a usefulness score are filtered out. Moreover, not all recorded usefulness scores prove to be 

valuable. It was discovered over time that some risk experts did not input a usefulness score or provide 

an explanation for the re-inspection usefulness. Consequently, the system defaulted the usefulness to 

a score of 50. Re-inspections with a usefulness score of 50 and no provided explanation are therefore 

excluded. If a usefulness score is 50 but an explanation is provided, it is assumed to be entered 

consciously by the risk expert. 

The filtered re-inspection data is then categorized into Centraal Beheer and Interpolis re-inspections. 

Centraal Beheer re-inspections are included due to the initial focus on Centraal Beheer in the re-

inspection prioritization pilot phase. Interpolis re-inspections are included to increase the sample size.  

For certain re-inspections conducted by Centraal Beheer, so-called object codes are available for the 

specific objects that underwent re-inspection, meaning that insured objects can be linked to a re-

inspection accurate. This allows for a secure connection between the policy and the re-inspections. 

These object codes are therefore incorporated into the Centraal Beheer re-inspection data where 

applicable. Thereafter, the re-inspections of Centraal Beheer and Interpolis are concatenated. Then, 

for each re-inspection, the closest previous (re-)inspection is sought per re-inspection and, if found, 

merged. This final step concludes the specific data preparation process for re-inspections. 

The policy, damage, and clause data are extracted from the respective policy databases of Centraal 

Beheer and Interpolis. There are differences in sector categorization semantics between Centraal 

Beheer and Interpolis policy data. Therefore, a mapping table is employed to achieve standardization. 

This mapping table is derived from the ongoing SKB+ project and is still in development. Consequently, 

the reliability of data quality within this mapping table is limited. 

The policy data is then joined with the re-inspection data. The specified object numbers are utilized 

for the join whenever possible, and otherwise, a combination of the relationship number for Centraal 

Beheer or policy number for Interpolis and the zip code is used for the join. This is because re-

inspections that pertain to specific relationship numbers or policy numbers are likely to cover a cluster 

of buildings with potentially distinct addresses but the same zip code. However, this cannot be 

determined with certainty, which affects the quality of this data join. Furthermore, the join also 

incorporates the re-inspection date within the policy timeframe, ensuring that the correct historical 

context of the policy is joined to the re-inspection. 
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After the policy – re-inspection join, calculations are made to determine the damage burden, the total 

amount of damages incurred, and the presence of a clause within a specific timeframe until the re-

inspection. These calculations are then merged with the re-inspection and policy data, resulting in a 

comprehensive dataframe containing integrated re-inspection, policy, damage, and clause data.  

Figure 26: Visualization of data pipeline for the collection and preparation of the data  
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APPENDIX F: MODEL DEVELOPMENT RESULTS 

   Accuracy 
Macro-averaged F1-

score Mean Squared Error 

  Algorithm Dataset Mean SE Mean SE Mean SE 

A
n
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e
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Average 1 0.5427   0.2345   259.75   

as prediction 2 0.5372   0.2330   248.28   

 3 0.5300   0.2310   250.37   

  4 0.5300   0.2310   250.37   

Multiple 1 0.5372 0.0174 0.3711 0.0185 278.17 23.66 

regression 2 0.4814 0.0507 0.3733 0.0510 316.49 34.68 

 3 0.5167 0.0100 0.3684 0.0175 268.04 20.87 

  4 0.4919 0.0149 0.3660 0.0177 276.93 53.53 

Random Forest 1 0.5153 0.0280 0.3559 0.0311 267.22 26.60 

regressor 2 0.4898 0.0626 0.3098 0.0426 256.50 10.78 

 3 0.4671 0.0247 0.3749 0.0449 284.71 20.22 

  4 0.4824 0.0153 0.3540 0.0286 273.14 28.52 

Random Forest 1 0.4650 0.0125 0.3552 0.0255     

classifier 2 0.4754 0.0466 0.3475 0.0282     

 3 0.4576 0.0240 0.3830 0.0255     

  4 0.4671 0.0191 0.3597 0.0186     

Neural Network 1 0.5263 0.0338 0.3430 0.0160 273.30 26.83 

regressor 2 0.4547 0.0796 0.3631 0.0674 464.94 139.88 

 3 0.5043 0.0167 0.3800 0.0413 379.75 125.94 

  4 0.4442 0.0133 0.3575 0.0275 386.30 39.19 

Neural Network 1 0.3732 0.0953 0.3212 0.0484     

classifier 2 0.4196 0.0610 0.3428 0.0494     

 3 0.3956 0.0368 0.3680 0.0240     

  4 0.4328 0.0215 0.3852 0.0030     

A
n

al
ys

is
 w

it
h

 f
iv

e
 c

at
e

ro
gi

e
s 

Average 1 0.5427   0.1407   259.75   

as prediction 2 0.5372   0.1389   248.28   

 3 0.5300   0.1386   250.37   

  4 0.5300   0.1386   250.37   

Multiple 1 0.4311 0.0124 0.2318 0.0323 385.03 36.63 

regression 2 0.4421 0.0601 0.2178 0.0306 327.24 42.65 

 3 0.4385 0.0129 0.2149 0.0358 432.93 148.22 

  4 0.4042 0.0317 0.2286 0.0205 562.40 112.20 

Random Forest 1 0.4573 0.0375 0.2000 0.0217 276.34 32.48 

regressor 2 0.4463 0.0361 0.1910 0.0239 275.64 23.32 

 3 0.4423 0.0154 0.1965 0.0079 283.99 23.69 

  4 0.4614 0.0172 0.2123 0.0325 273.14 24.01 

Random Forest 1 0.4551 0.0279 0.2256 0.0226     

classifier 2 0.4381 0.0515 0.1952 0.0449     

 3 0.4233 0.0184 0.2052 0.0075     

  4 0.4576 0.0208 0.2085 0.0310     

Neural Network 1 0.4345 0.0880 0.1873 0.0358 296.93 36.64 

regressor 2 0.4381 0.0332 0.2201 0.0242 484.52 156.71 

 3 0.4747 0.0238 0.2340 0.0173 335.78 55.86 

  4 0.4271 0.0272 0.2210 0.0260 416.90 104.28 

Neural Network 1 0.2998 0.0656 0.1990 0.0250     

classifier 2 0.4445 0.0823 0.2668 0.0721     

 3 0.3327 0.0172 0.2203 0.0054     

  4 0.3775 0.0297 0.2193 0.0175     
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APPENDIX G: INTERPRETABILITY SCENARIOS 

 

 

 

                    

Scenario 1   e kri gt alleen de prioritering te zien

                    

Scenario 2   e kri gt de prioritering en de voorspellingen te zien
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Scenario 3   e kri gt de prioritering, de voorspellingen en de factoren
die aan de voorspelling bi dragen te zien

                    

Scenario     e kri gt de prioritering, de voorspellingen en de berekening
voor de voorspelling te zien
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Scenario     e kri gt de prioritering, de voorspellingen en een
voorspelde reden voor de voorspellingen te zien

                    

Scenario 6   e kri gt de prioritering, de voorspellingen en de factoren
die het meest hebben bi gedragen aan de voorspellingen te zien


