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Abstract

For neural networks, challenges arise when deploying
models in real-world scenarios, as unforeseen changes in
inputs can lead to diminished performance. While data
augmentation is a common remedy to bridge the gap be-
tween training and test data, its efficacy in enhancing the
robustness of computer vision models is not guaranteed.
This paper introduces Auxiliary Fourier-basis Augmenta-
tion (AFA), a novel approach that extends beyond visual
augmentations to address this limitation by focusing on neu-
ral networks.

AFA leverages Fourier-basis additive noise as a com-
plementary technique in the frequency domain, filling the
robustness gap left by conventional visual augmentations.
Our method demonstrates its effectiveness in an adversarial
setting, showcasing its utility in enhancing model robust-
ness. Notably, AFA contributes to reducing the impact of
common corruptions, facilitates out-of-distribution (OOD)
generalisation, and ensures consistent model performance
against increasing perturbations. Importantly, it introduces
a unique capability to minimise frequency shortcuts, further
fortifying the overall resilience of neural network models.

The results affirm that AFA seamlessly integrates with ex-
isting augmentation techniques, providing a comprehensive
enhancement to model performance. This work presents a
valuable contribution to the broader pursuit of robust neu-
ral networks, extending beyond the conventional focus on
computer vision models.

1. Introduction

In real-world deployments, computer vision models com-
monly experience diminished performance owing to unan-
ticipated variations in images. Enhancing the resilience of
computer vision models to out-of-distribution (OOD) data
becomes imperative for ensuring their dependable function-
ality in practical applications. In the realm of enhancing the
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Figure 1. Frequency augmentation with Fourier-basis functions
is complementary to common visual augmentations. They appear
unnatural and can be used as adversarial examples.

robustness and generalization of computer vision models,
various methods have been explored [2, 7, 8, 10, 46, 49, 52].
Data augmentation emerges as a widely adopted strat-
egy due to its user-friendly application and effectiveness
in minimizing the distribution gap between training and
test data [45]. Noteworthy augmentation techniques, in-
cluding AugMix [16], AugMax [42], AutoAugment [3],
TrivialAugment [35], and PRIME [34], have demonstrated
substantial advancements in benchmarks for corruption
and perturbation robustness, as well as out-of-distribution
(OOD) datasets for generalization, such as ImageNet-C,
ImageNet-C̄, ImageNet-3DCC, ImageNet-P, ImageNet-R,
and ImageNet-v2 [14, 15, 19, 33, 37]. These approaches
predominantly concentrate on introducing visual variations
to images through either random or policy-based combina-
tions [3, 16, 17, 27, 28, 31, 32, 35] of visual transformations.
This aims to augment the diversity of training images by
expanding their domain, as illustrated in Fig. 1. Addition-
ally, adversarial-based augmentations address the difficulty
of training samples, albeit at a higher computational cost, as
depicted in Tab. 1 for AugMax.
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Despite being trained with visual augmentations, mod-
els remain susceptible to image variations not accounted for
during training [26] and frequency perturbations [48]. This
vulnerability arises from the predefined frequency charac-
teristics of visual transformations, which fail to guarantee
comprehensive model robustness against noise exhibiting
different frequency characteristics than those encountered
in the training data. This gap in frequency robustness can
be exploited by attackers, leading to potential performance
degradation in operational settings [24].

This raises a question: Is there a complementary aug-
mentation technique that can bridge the gap left by visual
augmentations?

Traditional visual augmentations concurrently impact
various frequency components in images, making explicit
control challenging and potentially missing certain fre-
quency variations present in unforeseen corruptions or real-
world scenarios [38]. In response, we propose a reevalua-
tion of image augmentation by delving into the frequency
domain. Our approach complements visual augmentation
strategies by incorporating Fourier basis functions in an ad-
versarial setting. The exploration of frequency-based aug-
mentations aims to unlock capabilities beyond the reach of
traditional visual augmentations.

Researchers have investigated diverse frequency-based
augmentation techniques to broaden the scope of augmen-
tation capabilities. For instance, studies such as [1, 41, 47]
involve swapping or mixing partial amplitude spectra be-
tween images to enhance phase-reliance for classification.
In another approach, [43] augments images with short-
cut features to reduce their specificity for classification.
AugSVF [39] introduces frequency noise within the Aug-
Mix framework, while [25, 29] adversarially perturb the fre-
quency components of images. It is important to note that
these augmentations, while offering enhanced capabilities,
often come with computational complexity. This complex-
ity arises from intricate augmentation frameworks [39], the
computation of multiple Fourier transforms for training im-
ages and their augmented versions [1, 41, 47], the identifi-
cation of learned frequency shortcuts [43], or the adoption
of adversarial training strategies [25, 29].

This research introduces the concept of Auxiliary
Fourier-basis Augmentation (AFA), employing additive
noise based on Fourier-basis functions to efficiently aug-
ment the frequency spectrum. AFA’s approach stands out
for its effectiveness and computational efficiency compared
to other methods utilizing frequency manipulations [1, 39,
43].

The impact of additive Fourier-basis functions on image
appearance is distinct and orthoginal to conventional aug-
mentations, as illustrated in Fig. 1. These images serve as
representative samples of an adversarial distribution, devi-
ating from those augmented through typical visual trans-

formations. This work expands on the conventional notion
of adversarial augmentation, transcending the generation of
imperceptible noise via gradient back-propagation.

Our proposed training architecture and strategy incorpo-
rate an auxiliary component to address the adversarial dis-
tribution, alongside a main component for the original dis-
tribution, following a similar paradigm to AugMax [42].
Notably, the adversarial distribution created by additive
Fourier-basis is significantly less computationally expen-
sive compared to AugMax and adds minimal additional bur-
den to other visual augmentation methods when used as
complimentary (refer to Tab. 1). This approach yields com-
parable or superior generalisation results while enabling the
training of larger models on more extensive datasets, such
as ImageNet.

1.1. Contributions

In this work, we present two key contributions aimed at
enhancing the robustness of computer vision models in
real-world scenarios. Firstly, we introduce a novel aug-
mentation technique named Auxiliary Fourier-basis Aug-
mentation (AFA). This technique, designed for straightfor-
ward implementation and computational efficiency, proves
to be highly effective in improving model robustness against
common image corruptions. Through a series of exper-
iments, we demonstrate that AFA not only enhances re-
sistance to visual perturbations but also significantly con-
tributes to out-of-distribution (OOD) generalisation. More-
over, AFA showcases a notable capability in maintaining
prediction consistency in the face of various perturbations,
thus addressing a crucial aspect of model reliability in dy-
namic environments.

Secondly, we extend the existing augmentation space
by introducing amplitude- and phase-adjustable frequency
noise, a distinctive feature of AFA. By not limiting this
frequency-based augmentation to be visually palatable, ex-
tending it into the realm of adversarial examples, we suc-
cessfully reduce the augmentation gap associated with com-
mon visual augmentations. This expansion of the augmen-
tation space provides a more comprehensive and comple-
mentary approach to traditional visual augmentations, fur-
ther fortifying the model against unforeseen variations in
input data. The proposed methodology not only improves
the overall robustness of computer vision models but also
sets the stage for a broader exploration of frequency-driven
perspectives and extreme image augmentations in the realm
of data augmentation.

In summary, our contributions encompass the introduc-
tion of AFA as a practical and efficient augmentation tech-
nique, showcasing its effectiveness in bolstering model ro-
bustness against image corruptions, OOD scenarios, and
perturbations. Additionally, we expand the augmentation
space through frequency-based adjustments, revealing a
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APR-SP AFA (ours)
w/o aux.

AFA
(ours) AugMix† AFA

w/ AugMix PRIME AFA
w/ PRIME AugMax

FLOPs ×1 ×1 ×2 ×3 ×2 ×1 ×2 ×8
Memory ×1.02 ×1.02 ×1.62 ×2.66 ×1.83 ×2.50 ×3.06 ×2.35

Table 1. Computational resources of different combinations com-
pared to standard training. Methods with † are reported with JSD.

promising avenue for advancing the field of data augmenta-
tion and reinforcing the resilience of computer vision mod-
els in challenging real-world conditions.

1.2. Thesis Outline

Beginning with an exploration of related works in the field,
detailed in the ”Related Works” section. Here, we delve
into existing literature, frameworks, and methodologies that
form the foundation for our research, including known
mathematical results. Following this, the ”Method” sec-
tion delineates the proposed Auxiliary Fourier-basis Aug-
mentation (AFA) technique and its integration into com-
puter vision models. This section provides a comprehen-
sive understanding of the augmentation process, emphasiz-
ing its straightforward implementation and computational
efficiency. Subsequently, the ”Experiments” section con-
stitutes the empirical validation of our approach, where we
present and analyse results obtained from various scenar-
ios. This section offers insights into the robustness, gener-
alization, and consistency improvements achieved through
AFA, supported by comprehensive experimental evidence.
We also include results on how this method can be used to
reduce bias in privacy-sensitive context. Finally, the thesis
culminates in the ”Conclusion” section, summarizing key
findings, discussing the implications of our contributions,
and suggesting potential avenues for future research in the
realm of frequency-driven perspectives in data augmenta-
tion for computer vision.

2. Background

In this section provides a comprehensive overview of the
foundational research and key concepts that underpin our
study. We initiate our exploration by delving into the
realm of data augmentation, distinguishing between tra-
ditional visual augmentation techniques and the emerg-
ing frontier of Fourier-based augmentation. This demar-
cation sets the stage for understanding the significance of
augmenting in the frequency domain, laying the ground-
work for our proposed technique, Auxiliary Fourier-basis
Augmentation (AFA). Moving beyond augmentation, we
delve into the landscape of Convolutional Neural Networks
(CNNs) and Vision Transformers. This novel machine
learning model offers insights into the potential efficacy of
frequency-driven perspectives in enhancing the capabilities
of vision models. Additionally, we scrutinize the fundamen-

tals of 2D Fourier Basis Functions, recognizing their crucial
role in shaping the frequency spectrum employed in AFA.
As we progress, we explore empirical evidence supporting
the claim that machine learning models exhibit a preference
for learning low frequencies first, a phenomenon founda-
tional to the motivation behind our proposed augmentation
technique. Lastly, we introduce the concept of Dominant
Frequency Maps, a technique pivotal in substantiating our
argument that vision models indeed learn specific frequen-
cies, elucidating the importance of frequency-centric analy-
sis over traditional structural considerations.

2.1. Data Augmentation

Data augmentation includes a set of techniques to increase
data variety, thus reducing the distribution gap between
training and test data. Generalization and robustness per-
formance of models normally benefits from the use of data
augmentation for training [45] or at test-time [20].

Visual Image Augmentation Common image augmenta-
tion techniques include transformations, e.g. cropping, flip-
ping, rotation, among others [45]. Applying the transfor-
mations with fixed configuration lacks flexibility when the
models encounter more variations in the inputs at testing
time. Thus, algorithms were designed to combine transfor-
mations randomly, e.g. AugMix [16], RandAug [4], Triv-
ialAugment [35], MixUp [51], and CutMix [50]. How-
ever, random combinations might not be optimal. In [3],
AutoAugment was proposed, based on using reinforcement
learning to find the best policy on how to combine basic
transformations for augmentation. AugMax [42] instead
combines transformations adversarially, aiming at comple-
menting augmentations based on diversity with others that
favour hardness of training data. PRIME [34] samples
transformations with maximum-entropy distributions. [40]
augments images based on knowledge distilled by a teacher
model. However, these approaches address variations lim-
ited by visually-plausible transformations only.

Frequency-based augmentations. In [48], it was dis-
covered that models trained with visual transformations
might be vulnerable to noise impacting certain parts of
the frequency spectrum (e.g. high-frequency components),
demonstrating that visual augmentations do not completely
guarantee robustness. Complementary augmentation tech-
niques are thus required to fill the augmentation gap left
by visual augmentations. The straightforward approach is
augmentation in the frequency domain. For example, [1]
mixes the amplitude spectrum of images to reduce reliance
on the amplitude part of the spectrum and induce phase-
reliance for classification. [41, 47] swap or mix the ampli-
tude spectrum of images. [43] augments images with short-
cut features to reduce their specificity for classification, mit-
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igating frequency shortcut learning. [39] introduces fre-
quency noise in the AugMix framework. [25, 30] adversar-
ially perturb images in the frequency domain. While these
techniques address what visual augmentations may over-
look, they also have limitations. Most frequency augmenta-
tion methods are based on manipulation of the frequency
components of images. They usually have high compu-
tational requirements to identify frequency shortcuts [43],
implement adversarial training setup [25] or calculate mul-
tiple Fourier transforms of original and augmented im-
ages [1, 41, 43, 47] and do not directly address the sen-
sitivity of models to single-frequency noise. For instance,
the methods based on amplitude mixing/swapping might
result in overfitting to the changed amplitude spectrum if
the datasets are small. The methods targeting the frequency
characteristics of images usually have large computational
requirement, e.g. DFM-X [43] and AdvWavAug [25], to
identify frequency shortcuts or implement adversarial train-
ing setup.

We instead propose to use Fourier-basis functions as ad-
ditive noise in the frequency domain. Our augmentation
technique requires only one extra step during training rather
than multiple pre-processing and expensive computations
during training time as in other methods [1, 41, 43, 47],
and works to complement image-based augmentations. Fur-
thermore, we simplify the adversarial training framework
of AugMax [42], not requiring an optimization process to
maximize the hardness of adversarial augmentation, and
achieving comparable or higher robustness. This allows the
use of adversarial augmentations at larger-scale. We ac-
count for the induced distribution shifts in the frequency
domain via an auxiliary component. The benefit of AFA is
complementary to visual augmentations, and we can incor-
porate them seamlessly to further boost model robustness.

2.2. Model Architectures

Convolutional Neural Networks Convolutional Neural
Networks (CNNs) represent a pivotal advancement in the
field of deep learning, particularly tailored for image clas-
sification tasks. CNNs leverage convolutional layers to au-
tomatically learn hierarchical features from input images,
capturing spatial hierarchies and patterns. One notable ar-
chitecture within the realm of CNNs is the Residual Neu-
ral Network (ResNet). Introduced by [13], ResNets revo-
lutionized deep learning by introducing residual blocks that
allow the network to learn residual functions, making it eas-
ier to train very deep networks. The key innovation lies in
the use of skip connections, or shortcuts, which enable the
network to bypass certain layers . This not only facilitates
the training of deeper networks but also mitigates the van-
ishing gradient problem, leading to improved convergence
and performance. ResNets have demonstrated remarkable
success in various computer vision tasks, including image

recognition and object detection, earning them a prominent
position in the deep learning landscape.

Batch Normalization [18] is a crucial component in the
training of CNNs, including ResNets, and plays a pivotal
role in stabilizing and accelerating the convergence of deep
networks. Batch Normalization operates by normalizing
the input to a layer across mini-batches, reducing internal
covariate shift. This normalization process helps address
issues related to vanishing or exploding gradients during
training, enabling the network to be more robust and con-
verge faster. Furthermore, Batch Normalization acts as a
regularizer, reducing the need for techniques like dropout
and contributing to improved generalization. In the context
of ResNets, Batch Normalization facilitates the training of
very deep networks by providing stable and normalized in-
puts to each layer, which is essential for the effective learn-
ing of hierarchical features.

Vision Transformers Vision Transformers (ViTs) [6]
represent a paradigm shift in computer vision by adopting
a transformer architecture, originally designed for natural
language processing, to directly process image data. ViTs
discard the conventional convolutional layers found in tradi-
tional Convolutional Neural Networks (CNNs) and instead
rely on self-attention mechanisms to capture long-range de-
pendencies within the image . The transformer architecture
in ViTs divides the image into fixed-size patches, linearly
flattens them, and feeds them through self-attention mech-
anisms, allowing for holistic context understanding across
the entire image.

Within the domain of Vision Transformers, the Compact
Convolution Transformer (CCT) is a noteworthy develop-
ment. CCT combines the strengths of convolutional lay-
ers and transformer architectures to create a more efficient
and scalable model. CCT employs a compact convolutional
backbone to process image patches, which are then fed into
a transformer for capturing global context . This hybrid de-
sign retains the advantages of convolutional operations for
local feature extraction while leveraging the transformer’s
ability to capture long-range dependencies.

2.3. 2D Fourier-basis Functions

We utilize Fourier-basis functions in our augmentation strat-
egy as an additive perturbation to the images. They are si-
nusoidal wave functions used as basic components of the
Fourier transform to represent signals and images. A real
Fourier basis function has two parameters, namely a fre-
quency f and direction ω, and is denoted as:

Af,ω(u, v) = R sin(2πf(u cos(ω) + v sin(ω)− ϕ)), (1)

where Af,ω(u, v) represents the amplitude of the wave at
position (u, v). The function involves the sine of a 2D spa-
tial frequency 2πf to produce a planar wave with a spe-
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cific frequency f , and angle ω that indicates the direction
of propagation. R is chosen such that the planar wave has
unit l2-norm. A particular Fourier basis function, charac-
terized by specific frequency (f ) and direction (ω), can be
associated with a Dirac delta function in the spectral do-
main. Therefore, when employed in an additive manner,
as in our augmentation strategy, this Fourier-basis function
facilitates the targeted modification of particular frequency
components of images. ϕ is the phase offset of the direc-
tional wave set to π/4. Examples of Fourier-basis waves
superimposed on images are shown in Fig. 2.

Figure 2. Example of Fourier-basis functions added to natural im-
ages. They appear as gratings that obscure spatial information.

2.4. Spectral Bias of Neural Networks

[36] investigated the properties of ReLU neural networks,
particularly focusing on their learning bias revealed through
Fourier analysis. While neural networks are recognized for
their high expressivity and capability to fit random input-
output mappings with perfect accuracy, the study uncov-
ers a notable learning bias towards low-frequency func-
tions. These low-frequency functions exhibit global vari-
ations without local fluctuations, indicating that deep net-
works prioritize learning simple patterns that generalize
across different data samples. While the paper focussed
on sequential data trained on with MLPs, the same analysis
holds for image dataset and convolutional neural networks
as they can be reduced to the prior case.

Additionally, the paper delves into the role of the data
manifold’s shape in the learning process. Contrary to intu-
ition, the study provides both empirical and theoretical ev-
idence indicating that learning higher frequencies becomes
easier as the manifold complexity increases.

Considering the neural network’s affinity for learning
global variations without local fluctuations, the introduction
of Fourier noise can act as a means to guide the learning
process. Fourier noise introduces controlled variations in
frequency components, influencing how the network prior-
itizes and adapts to different patterns in the dataset. This
augmentation strategy aligns with the notion that over-
parameterized networks often prioritize simpler, globally

varying features. Therefore, the introduction of Fourier
noise may provide a valuable means to explore and exploit
the frequency-dependent learning bias for improved perfor-
mance in terms of robustness, generalisability and consis-
tency of neural networks.

2.5. Frequency Shortcut Learning

In our pursuit of generalisation and robustness, while learn-
ing a general function for complicated data manifolds might
sound advantageous, we quickly run into issues of shortcut
learning [9] where essentially neural networks rely on spu-
rious information rather than deeper semantic information
or task-related cues [44]. The same is true in the Fourier
domain, where [44] show this frequency shortcut learning
phenomenon.

To address the challenges associated with mitigating im-
plicit shortcuts, we draw inspiration from the advancements
in Fourier-based perspectives and the spectral bias paper, in-
troducing Auxiliary Fourier-basis Augmentation (AFA) as a
powerful tool for reshaping the learning dynamics of neural
networks. AFA strategically integrates Fourier-based per-
turbations into the training process, hypothetically allowing
the network to develop a more nuanced understanding of
the frequency domain and mitigating its reliance on super-
ficial statistics or biases by acting as a regularisation shown
in Fig. 10.

Through the application of AFA, we aim to disrupt the
learned frequency shortcuts by introducing controlled varia-
tions in the frequency components of the training data. This
process not only acts as a form of regularization but also
guides the network towards prioritizing more semantically
relevant features, diminishing its inclination to exploit sim-
ple, non-semantic cues.

3. Auxiliary Fourier-basis Augmentation
The Auxiliary Fourier-basis Augmentation (AFA) that we
propose is based on two lines of augmentations, one con-
sidered in-distribution (using visual augmentations) and an-
other considered out-of-distribution or adversarial (using
frequency-based noise) as shown in Fig. 3. We generate the
adversarial augmented images by sampling a Fourier-basis
and a strength parameter per colour channel, and adding
them to the original images. Visually augmented and adver-
sarially augmented training images are then processed us-
ing a main component and an auxiliary component, respec-
tively. Joint optimisation of two cross-entropy functions en-
courages robust and consistent classification, as it promotes
correctness under adversarially augmented images. Details
of the different parts of the method are reported below.
Generation of adversarial augmented images. Ran-
domly sampling augmentations and applying them to im-
ages with random strengths was shown to be sufficient to
outperform more complex strategies [35].
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Figure 3. Schema of the AFA augmentation pipeline. The image x is augmented using AFA, which adds a planar wave per channel c of the
image at a strength value σc sampled from an exponential distribution (eq.2). The AFA augmented image xa is used for training, processed
through the auxiliary component of the parallel batch normalisation layer (for models that use batch normalization to track batch statistics,
e.g. ResNet). Other visual augmentations are applied in parallel, and used for training via the main component of the normalization layer.
Finally, we train via optimizing two cross-entropy losses, one for the main and the other for the auxiliary component.

We follow this design principle in our method to generate
adversarial augmented images with Fourier basis functions,
which allows us to avoid optimization steps to determine
the worst-case combination of augmentations as in Aug-
Max [42]. We produce adversarial augmented images by
adding a different Fourier basis function Af,ω per channel
of the original RGB image. We generate the Fourier basis
functions by sampling f and ω from uniform distributions
as f ∼ U[1,M] and ω ∼ U[0,π], where M is the image size.
The sampling space of all Fourier-basis is denoted as V .
We add the generated Fourier basis functions per channel c
with a weight factor sampled from an exponential distribu-
tion σc ∼ Exp(1/λ), with c ∈ {R,G,B}. The selection
of the exponential distribution for sampling augmentation
magnitude is motivated by the concept of event rate, where
perturbations with larger magnitudes become progressively
less likely, albeit still possible. This is controlled by ad-
justing λ, ensuring a balance between maintaining diversity
in sampled values while minimizing the occurrence of ex-
tremely large augmentation perturbations. In Sec. 4.3, we
show how the parameter λ affects the augmentation results.

The proposed augmentation process results in a 3-
channel image xa = [xa

R, x
a
G, x

a
B ], where:

xa
c = Clamp[0,1](xc + σcAfc,ωc

), c ∈ {R,G,B}. (2)

An example of image xa augmented with additive Fourier-
basis functions is shown in our method schema in Fig. 3.
Auxiliary component for distribution shifts. As shown
in Figs. 2 and 3, the Fourier-basis augmentations result in

images with an unnatural appearance due to substantial fre-
quency perturbations. The presence of planar waves across
the augmented images determines the unnaturalness of im-
age appearance, which can be seen as adversarial attacks on
the images. These augmentations disrupt the learned mean
and variance in batch normalization layers, which are incon-
sistent with the distribution shifts induced by our augmen-
tation and lead to inconsistent activations. This results in a
negative impact on model convergence and generalization
abilities.

We address these issues by deploying architectural com-
ponents in the training, capable of handling distribution
shifts explicitly by tracking statistics and adjusting the loss
function accordingly. Namely, we incorporate auxiliary
components into the model, such as Parallel Batch Normal-
ization layers and an additional cross-entropy term in the
loss function to specifically account for these adversarial
augmented images. These modifications to the model ar-
chitecture and training enhance performance, particularly
in the presence of distribution shifts, contributing to better
generalization, robustness to common corruptions and con-
sistency to time-dependent increasing perturbations. The
introduction of parallel batch normalization layers is moti-
vated by the need to account for distribution shifts induced
by adversarial (Fourier-basis) augmentations, as observed
in [42]. With the parallel batch normalisation, the affine pa-
rameters and statistics of main and auxiliary distributions
are recorded separately. This allows independent learning
of distribution of the visually and adversarially augmented
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images. Without these additional normalization layers, the
model training assumes a single-modal sample distribution,
limiting its ability to differentiate between the main and
the adversarial distribution, thus negatively affecting overall
performance. In Sec. 4.3, we show the result of not employ-
ing the auxiliary components.

It is worth noting that for models that do not employ
batch normalization layers (e.g. CCT that uses layer nor-
malization and does not track statistics), the parallel nor-
malization layers are not needed. However, the extra term
in the loss function (see next paragraph) to generate consis-
tent predictions across distribution shifts serves as a regu-
larization mechanism.
Loss function. We work in the supervised learning setting
with a training dataset D consisting of clean images x with
labels y. We train the model in the main architecture stream
(see Fig. 3) using a cross-entropy loss LCE(ŷ, y), where y is
the ground-truth label and ŷ is the predicted label for images
augmented with a given visual augmentation strategy (e.g.
standard, PRIME, etc.). Under the non-auxiliary setting,
models thus optimise the standard cross entropy loss.

In the auxiliary setting, we add an extra cross-entropy
loss term LCE(y

a, y), which optimise the model to predict
the correct label on adversarial augmented images whose
predicted label is denoted by ya, contributing to robustness
of the model w.r.t. aggressive distribution shifts. We refer
to the combined loss function LACE, taking the average of
the two cross-entropy terms, as the Auxiliary Cross Entropy
(ACE) Loss:

LACE(ŷ, y
a, y) =

1

2
[LCE(ŷ, y) + LCE(y

a, y)] . (3)

It contributes to achieve comparable performance, with
lower training time and complexity, than using the Jensen-
Shannon Divergence (JSD) loss [16, 42]. Our motivation
to not employ the JSD loss is the reduced training time due
to less computational complexity. In our experiments, for
comparison purposes, we also use the JSD loss in the aux-
iliary setting, where training batches are augmented using
AFA and go through auxiliary components. We report re-
sults in Sec. 4.3 (Fig. 6).

3.1. Suitability of Fourier-basis Functions

According to the Fourier Transform theory, any signal can
be represented as the sum of sinusoidal functions (i.e. pla-
nar waves in 2D). Adding such a function to the image space
(with parameters f and ω) corresponds to augmenting the
amplitude of a specific frequency component (f ,ω) in the
2D Fourier transform of the image. Therefore, adding si-
nusoids is the same as augmenting the corresponding fre-
quency and amplitude in the 2D Fourier transform of the
image. As mentioned before neural networks exhibit spec-
tral biases and therefore this makes AFA able to bridge the

gap left by visual augmentations, which are usually carried
out in the spatial domain and might not address well the
spectral bias of models [44]. We use the real part of the
planar waves in the visual domain to 1) avoid explicit com-
putations of Fourier transforms for efficiency, and 2) reduce
amplitude-reliance and encourage phase-reliance of models
for classification, useful to improve generalisation capabil-
ities [1]. While it is possible to explore other shape/pat-
tern functions, they would not possess the same character-
istics of sinusoidal waves according to the Fourier Trans-
form theory, thus undermining the validity and specificity
of frequency-based augmentations.

3.2. Proof of Augmenting Fourier Domain

Lemma 1 (Linearity). Let f , g be functions of a real vari-
able and let F (f) and F (g) be their Fourier transforms.
Then for complex numbers a and b

F (af + bg) = aF (f) + bF (g), (4)

therefore, Fourier transform F is a linear transformation.

Lemma 2 (Fourier Transform of Plane Wave). The Fourier
transform of the planar wave given by the frequency f and
the direction ω, Af,ω has a fourier transform

F (Af,ω) = F (R cos(2πf(u cos(ω) + v sin(ω)))) (5)

=
R

2
(δ(x̂, ŷ) + δ(x̄, ȳ)) , (6)

where, x̂ = x − f cos(ω), ŷ = y − f sin(ω) and x̄ =
x+ f cos(ω), ȳ = y + f sin(ω).

Theorem 1 (AFA Augments the Fourier Domain). Given
an image sample s, an augmentation using AFA produces
as augmentation in the Fourier domain of the image for one
specific frequency and orientation of the wave (f, ω).

Proof. Given image s and the randomly sampled planar
wave using AFA, σAf,ω, dropping the subscript for the
channels for clarity, we have:

F (AFA(s)) = F (s+ σAf,ω)

= F (s) + σF (Af,ω) (7)
(using Lemma 1)

= F (s) +
σR

2
(δ(x̂, ŷ) + δ(x̄, ȳ)) . (8)

(using Lemma 2)

Therefore, we prove augmenting an image s with AFA cor-
responds to augmenting the amplitude of a specific fre-
quency component (f ,ω) in the 2D Fourier transform of the
image.
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4. Experiments and results
We compare AFA with other popular augmentation tech-
niques, evaluating robustness to common corruptions, gen-
eralization abilities and consistency to time-dependent in-
creasing perturbations, on benchmark datasets.

4.1. Experimental Setup

Datasets We trained models on the CIFAR-10 (C10) [21],
CIFAR-100 (C100) [22], TinyImageNet (TIN) [23] and Im-
ageNet (IN) [5] datasets and evaluate them on the corre-
sponding robustness benchmark datasets, namely C10-C,
C100-C, TIN-C, IN-C [15], IN-C̄ [33], and IN-3DCC [19].
For ImageNet-trained models, we further evaluate their
generalisation performance on the IN-v2 [37] and IN-R
datasets [14], and consistency of performance on time-
dependent increasing perturbations on the IN-P dataset [15].

Architectures and training details. We train
ResNet [13] and Compact Convolution Transformers
(CCTs) [12]. We train ResNet-18 and CCT-7/3x1 (32 res-
olution) on C-10, C-100, and only ResNet-18 on TIN. In
the case of ImageNet, we train ResNet-18, ResNet-50 and
CCT-14/7x2 (224 resolution). Under auxiliary setting, we
use the DuBIN variant of ResNet [42]. We always use stan-
dard transforms [13] before other augmentations. Imple-
mentation details and hyperparameter configurations are in
the Appendix A. We release code and models1.

Evaluation metrics. We evaluate the classification accu-
racy on the original test set, which we refer to as stan-
dard accuracy (SA), and the average classification accu-
racy over all corruptions in the robustness benchmarks as
robustness accuracy (RA). This provides direct compari-
son between model performance on original and corruption
benchmark datasets. We also compute the mean corruption
error (mCE) [15] for TIN and IN (for CIFAR there are no
baselines advised) to evaluate the normalized robustness of
models against image corruptions, the mean flip rate (mFR)
and the mean top-5 distance (mT5D) to evaluate the consis-
tency performance of models against increasing perturba-
tions. For the evaluation of generalization performance, we
compute the accuracy on the ImageNet-R and ImageNet-v2
test sets (note that ImageNet-v2 has 3 test sets, and we re-
port the average accuracy on them). More details about the
metrics are in the Appendix B.

4.2. Results

Comparison with AugMax. We first report a direct com-
parison with AugMax [42] in Tab. 5, as AFA addresses the
computational shortcomings of generating adversarial aug-
mentations via PGD iterations, and of using a JSD loss for

1Code and models available at https://ANONYMOUS

alignment of the distribution of original and (adversarially)
augmented images. We use AugMix as main augmentation,
as in AugMax, and ablate on the use of JSD and ACE loss.

We show that AFA achieves comparable (or better) per-
formance than AugMax, despite it being much less compu-
tational intensive. We indeed demonstrate that we can gen-
erate adversarial augmentations by only adding (weighted)
Fourier-basis waves per color channel, not requiring PGD
steps, and can train the models using an extra cross-entropy
instead of the expensive JSD loss. The improvements
granted by our approach are particularly evident in the case
of ImageNet (using ACE), where we gain 1.6% of standard
accuracy and 4.1% of robust accuracy (5.6% mCE) perfor-
mance w.r.t. AugMax. Considering the increased computa-
tional efficiency and the simplicity of adversarial augmenta-
tion method, AFA is a more versatile and effective tool than
AugMax. Hence, in the rest of the paper, we do not report
further results of the AugMax framework, due to its high
computational requirements, which complicate the training
of larger models (e.g. ResNet-50 and CCT).
Robustness, generalization and consistency. In Tab. 3, we
report results achieved by AFA combined with different vi-
sual augmentation methods, AugMix, PRIME, TrivialAug-
ment (TA), to train different architectures (ResNet, CCT).
We evaluate robustness to common corruptions on IN-C,
IN-C̄ and IN-3DCC, OOD generalisation on IN-v2 and IN-
R, and consistency w.r.t. increasing perturbations on IN-P.

AFA generally contributes to a boost of performance
(green colored results in Tab. 3) when combined with dif-
ferent visual augmentation techniques, reducing the robust-
ness and generalization gap for different model architec-
tures. Even compared to another Fourier basis augmen-

- Main Auxiliary SA↑ RA↑ mCE↓

C
10

AugMix† ✗ 95.47 86.48 -
AugMix† AugMax 95.76 90.36 -
AugMix† AFA 95.24 89.96 -
AugMix AFA 95.44 89.81 -

C
10

0

AugMix† ✗ 78.72 61.61 -
AugMix† AugMax 78.69 65.75 -
AugMix† AFA 78.99 65.96 -
AugMix AFA 77.80 66.69 -

T
IN

AugMix† ✗ 64.65 36.30 83.90
AugMix† AugMax 62.21 38.67 80.72
AugMix† AFA 64.34 38.53 80.79
AugMix AFA 62.51 38.67 80.83

IN

AugMix† ✗ 65.2 31.5 87.1
AugMix† AugMax 66.5 36.5 80.6
AugMix† AFA 65.0 36.8 80.4
AugMix AFA 68.1 41.1 75.0

Table 2. Comparison of AFA and AugMax (with AugMix for vi-
sual augmentation [42]), with a ResNet18 backbone. The mark †

indicates the use of the JSD loss, otherwise the ACE loss is used.
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Robustness Generalisation Consistency

IN-C IN-C̄ IN-3DCC IN-R IN-v2 IN-P
Main Aux SA (↑) RA (↑) mCE (↓) RA (↑) mCE (↓) RA (↑) mCE (↓) Acc. (↑) Avg. Acc. (↑) mFP (↓) mT5D (↓)

R
es

N
et

18

- ✗ 68.9 32.9 84.7 34.8 87.0 34.9 84.4 33.1 64.3 72.8 87.0
- AFA 68.2 35.9 81.0 41.7 78.3 37.1 81.7 32.8 63.7 64.2 76.8

AugMix† ✗ 65.2 31.5 87.1 34.6 87.3 32.1 88.3 28.2 59.5 80.2 86.2
AugMix† AFA 65.0 36.8 80.4 40.9 79.3 36.0 83.2 30.6 60.9 60.1 68.5
AugMix AFA 68.1 41.1 75.0 45.2 73.3 38.9 79.4 35.2 63.2 68.5 81.7

PRIME ✗ 66.0 43.6 72.0 42.0 78.1 42.4 75.2 36.9 61.4 54.7 65.3
PRIME AFA 67.2 47.2 67.8 47.3 71.1 43.8 73.5 37.8 63.0 52.3 63.7

TA+ ✗ 68.9 36.9 80.1 35.9 85.6 38.6 79.7 32.6 63.7 68.1 81.4
TA+ AFA 67.8 41.4 74.7 42.9 76.7 41.1 76.5 35.4 62.7 59.9 72.3

R
es

N
et

50

- ✗ 75.6 39.2 76.7 39.9 79.4 41.2 76.1 36.2 70.8 58.0 78.4
APR-SP ✗ 71.9 42.9 72.7 45.9 72.5 39.8 78.4 34.9 67.2 60.2 75.4

- AFA 76.5 46.2 68.0 47.6 69.4 46.2 69.8 38.1 72.0 48.0 67.2

AugMix† ✗ 74.7 43.4 72.0 44.6 73.3 41.9 75.5 33.0 70.0 60.9 72.5
AugMix† AFA 75.6 50.6 62.9 51.8 64.0 47.6 68.3 36.3 71.2 44.5 56.1
AugMix AFA 76.6 49.1 64.7 52.5 62.9 46.3 69.6 41.0 71.8 52.2 72.2

PRIME ✗ 72.1 49.2 64.9 46.4 71.5 47.2 68.8 38.5 67.8 45.4 58.1
PRIME AFA 74.5 53.9 59.2 54.2 61.3 50.2 65.0 40.9 69.8 40.4 54.8

TA+ ✗ 75.9 43.4 71.7 41.8 77.1 44.7 71.6 37.1 70.3 51.9 70.4
TA+ AFA 76.6 50.3 63.1 49.7 66.7 49.6 65.4 40.0 72.2 45.1 64.5

C
C

T

- ✗ 76.4 43.9 70.7 50.3 65.6 43.4 73.2 35.6 71.2 48.3 72.9
- AFA 76.9 51.9 61.0 58.5 55.4 50.7 64.4 39.0 71.9 38.4 61.8

AugMix ✗ 76.1 47.3 66.8 52.2 63.1 45.3 71.0 37.9 70.7 49.3 72.8
AugMix AFA 77.4 56.5 55.6 60.8 52.2 51.8 62.8 41.0 72.5 37.9 59.9

PRIME ✗ 73.6 54.1 58.6 54.5 60.8 50.7 64.4 39.2 68.7 36.1 53.0
PRIME AFA 76.6 58.7 52.8 61.2 52.0 54.5 59.4 43.2 71.9 31.9 51.2

TA+ ✗ 77.1 50.2 63.2 54.1 60.7 49.3 65.8 38.2 72.1 41.8 66.3
TA+ AFA 76.9 56.0 56.0 59.1 54.6 53.1 61.1 41.1 72.1 36.4 58.5

Table 3. Robustness, generalization and consistency results on ImageNet-based benchmarks. Models with † use the JSD loss. Triv-
ialAugment (TA) has overlapping augmentations with IN-C (+), and no other overlaps with other datasets. The green colour indicates an
improvement when the main augmentation is combined with AFA, while red indicates no improvement. Results marked with bold/bold
are the best for a particular architecture.

tation technique APR-SP [1] AFA out performs it on all
benchmarks when trained without any other augmentation
techniques. Also in the case of ResNet50 trained with Aug-
Mix and AFA, we record better overall performance even
after dropping the JSD term in the loss. For the transformer
architecture CCT, training with AFA contributes to an even
stronger improvement in all tests. These results stay consis-
tent for smaller resolution datasets (CIFAR and TIN), as we
report at the end of this section.

Robustness to high-severity corruptions. AFA con-
tributes to a consistent improvement of robustness of mod-
els at increasing corruption severity (example images with
different corruptions are in the supplementary material). We
compute the relative corruption error, namely the difference
between the corruption error of models trained with a vi-
sual augmentation technique only and those trained with
both visual augmentations and AFA, and report it in Fig. 4
for different corruption severity. A positive value indicates
that models trained with the addition of AFA have better ro-
bustness. For higher corruption severity, AFA contributes to
stronger robustness, measured by an increase in the relative

corruption error in Fig. 4. The improvements obtained by
AFA on IN-3DCC are slightly less pronounced than those
on IN-C and IN-C̄. This is attributable to the specific cor-
ruptions in IN-3DCC that concern 3D geometric informa-
tion, and are somewhat more complicated image transfor-
mations. However, AFA contributes to a substantial im-
provement w.r.t. to models trained without it. We thus high-
light that AFA is very beneficial for increasing robustness to
aggressive corruptions of the test images. Details of the re-
sults at different severity are in the supplementary material.

Fourier heatmap: robustness in the frequency spec-
trum. We further evaluate the robustness of models to
perturbations at specific frequencies, using test images per-
turbed with frequency noises according to [48]. We present
the results in the form of Fourier heatmaps, see Fig. 5 for
heatmaps of ResNet18 models (trained on ImageNet), and
the supplementary material for the heatmaps of CCT mod-
els. The intensity of a pixel at location (u, v) in the heatmap
indicates the classification error of a model tested on im-
ages perturbed by Fourier noise at frequency (u, v) in the
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Figure 4. Relative error per corruption severity, computed by subtracting the classification error of models trained with PRIME, Triv-
ialAugment, and AugMix with that of corresponding models trained with PRIME+AFA, TrivialAugment+AFA, and AugMix+AFA.

Baseline PRIME PRIME+AFA TA TA+AFA
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Figure 5. Fourier heatmaps of ResNet18 trained with standard
setup, and PRIME and TrivialAugment, with and without AFA.

frequency spectrum (implementation details are in the sup-
plementary material). ResNet18 trained with standard aug-
mentations setting (baseline) is very sensitive to perturba-
tions at low and middle-high frequency (see Fig. 5), while
those trained with visual augmentations like PRIME and
TrivialAugment (TA) still show vulnerability at low and
middle-high frequency noise. When training models with
AFA, i.e. PRIME+AFA and TA+AFA, the models become
more robust to frequency pertubations, especially at middle-
high frequency. AFA can provide extensive robustness to
frequency perturbations and bridge the robustness gap that
visual augmentation might not cover.

Results on CIFAR and TIN. In Tab. 4, we present the
robustness results on smaller resolution datasets, C10 and
C100. The results on TIN are in the Appendix C.1. There
results are inline with those reported on IN in Tab. 3.

4.3. Ablation

Auxiliary components. We investigate the contribution
and importance of the auxiliary components in improving
model robustness. We trained models with AFA-augmented
images, passing through only the main components or the
auxiliary components. The results in Tab. 5, i.e. lower
RA and higher mCE of models trained with AFA applied

C10-C C100-C
- Main Auxiliary SA↑ RA↑ SA↑ RA↑

R
es

N
et

18
- ✗ 94.15 73.67 78.27 48.30
- AFA 94.69 88.22 77.91 62.53

AugMix† ✗ 95.47 86.48 78.72 61.61
AugMix† AFA 95.24 89.96 78.99 65.96

PRIME ✗ 94.38 89.81 75.49 66.16
PRIME AFA 94.54 90.64 76.16 68.48

C
C

T

- ✗ 95.67 80.45 78.37 54.20
- AFA 95.94 88.13 77.47 61.40

AugMix ✗ 95.10 85.42 75.79 60.83
AugMix AFA 95.93 90.57 77.22 66.18

PRIME ✗ 95.30 90.56 76.65 67.92
PRIME AFA 95.49 91.40 76.50 67.89

C
V

T - ✗ 94.31 77.02 75.53 48.25
- AFA 94.53 87.03 76.96 60.12

V
IT - ✗ 94.46 75.97 74.26 50.88

- AFA 94.58 86.71 75.13 58.25

Table 4. Results for C10-C and C100-C with ResNet18, CCT,
CVT and ViT-Light. Models with † use loss with JSD.

only in the main components, highlight the importance of
AFA auxiliary components. The auxiliary components play
a crucial role in mitigating the impact of aggressive adver-
sarial distribution shifts induced by AFA. By doing so, they
contribute to model ability to learn from the original dis-
tribution, while AFA facilitates learning robustness to dis-
tribution shifts. This is also highlighted in the substantial
decrease in SA for models not employing auxiliary com-
ponents. While model robustness improves under both set-
tings, the performance gain for the auxiliary setting is three
to five percentage points higher across all datasets.
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- Main Auxiliary SA↑ RA↑ mCE↓
C

10
- ✗ 94.15 73.67 -

AFA ✗ 92.36 83.25 -
- AFA 94.69 88.22 -

C
10

0 - ✗ 78.27 48.30 -
AFA ✗ 72.34 58.70 -

- AFA 77.91 62.53 -

T
IN

- ✗ 63.56 25.86 97.34
AFA ✗ 59.04 28.87 93.45

- AFA 62.52 33.35 87.58

IN

- ✗ 68.9 32.9 84.7
AFA ✗ 66.7 33.3 84.4

- AFA 68.2 35.9 81.0

Table 5. Ablation results ResNet18 trained with and without Aux-
iliary Components on C10, C100, TinyImageNet and ImageNet.

ACE vs JSD. As part of our method, we replaced the use
of JSD with ACE which is less computationally burdening.
We thus performed an ablation analysis of the tradeoff of
using JSD. We report results for robustness using mCE and
Robust Accuracy (RA) in Fig. 6, and observe that JSD does
not significantly improve the robustness of our model to
image corruptions, despite it being more computationally
heavy than using ACE. Using JSD also results in slightly
worse robustness on C100. Given the minimal differences,
we opt for the simpler ACE loss for training with the AFA
augmentation pipeline and only using JSD if other tech-
niques (e.g. AugMix) employ them.

Effect of hyperparameter 1/λ. We studied also the con-
tribution of the mean 1/λ of the exponential distribution
that we use to sample the weight factor for the channel-
wise application of the Fourier-basis augmentations. We
provide the results in Fig. 7, and observe that our method
has low sensitivity to the choice of the rate parameter. This
is attributable to the choice of the exponential distribution
that allows larger values to be sampled even if they are less
likely. We indeed observe that larger values of 1/λ, which
result in larger perturbations (in the range of 10 to 15), result
in stronger gains in robustness. At the same time, there is
no clear trend in the standard accuracy on the clean dataset,
with only minimal variations for the larger values, indicat-
ing that the choice of the 1/λ value does not have a specific
influence on the correct functioning of AFA.

5. Discussion
This section discusses on three key aspects of our proposed
method, Auxiliary Fourier-basis Augmentation (AFA).
Firstly, we provide compelling evidence of the adversarial
nature inherent in AFA, highlighting its impact on model
robustness. Secondly, we delve into the strong regulariza-
tion mechanisms of AFA, elucidating its role in enhancing
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Figure 6. Comparison of using objective with and without the JSD
term. All models are ResNet-18 trained with only AFA in the
auxiliary component and no other augmentations. When used with
JSD two batches passed through Auxiliary components and there
was no main augmentation (in total 3 batches, 1 clean and 2 AFA).

87.5

90

92.5

95

m
C

E
↓

(%
)

TIN

0 2 4 6 8 10 12 14

87

87.5

88

88.5

1/λ

R
A
↑

(%
)

C10

61

63

65

94

95

96 SA
↑

(%
)

Figure 7. Trend of the mCE and SA with respect to the rate param-
eter. The models were trained using AFA in the auxiliary setting
and no other augmentations for the main.

model stability and generalization. In the final subsection,
we explore how AFA addresses and mitigates frequency
shortcuts to fortify the resilience of neural network models.

5.1. Evidence of Adversarial Augmentation

Main and auxiliary batch normalisation For the
ResNet architecture, which includes Batch Normalisation
layers, we had replaced the Batch Normalisation layers with
DuBIN layers [42] while operating the Auxiliary setting.
Assuming that there is no difference in the distribution of
images augmented using AFA and a typical visual augmen-
tation technique, there should be no difference in the affine
parameters learnt for each individual batch normalisation
parameter (the main and the auxiliary).

We show in Fig. 8 the Mean Absolute Difference of the
same parameter between the main and the auxiliary compo-
nent of the DuBIN layer at different depths of the model.
We show the results for models trained with ACE loss for
ResNet-50 where AFA is paired with just standard trans-
forms, AugMix, PRIME and Trivial Augment (TA).
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We can see that at earlier depths the parameter differ
largely, which is explained by the difference in distribution
of a visually augmented and AFA augmented image. This
difference converges to a lower value, which is again ex-
plained by the model attempting to extract similar features
from the differently augmented images.

Embedding Space Visualization We compare how di-
verse are the augmentations of AFA are with respect to other
methods. We follow the procedure in [34]. To reiterate the
procedure, we randomly select 3 images from ImageNet,
each one belonging to a different class. For each image, we
generate 100 transformed instances using Standard Trans-
form, Trivial Augment, PRIME, PGD attack with the fol-
lowing parameters: 5 steps, epsilon of 8/255 and alpha of
2/255, and with AFA. Then, we pass the transformed in-
stances of each method through a ResNet-50 pre-trained
on ImageNet using standard transform and training setup,
and extract the features of its embedding space from the
penultimate layer before the dense layer. On the features
extracted for each method, we perform PCA after whiten-
ing and then visualize the projection of the features onto
the first two principal components. We visualize the pro-
jected augmented space in Fig. 9, which demonstrates that
AFA generates which are more akin to an adversarial attack
rather than a standard augmentation. This is clear from a vi-
sual similarity of AFA’s result in Fig. 9e to PGD’s result in
Fig. 9d and dissimilarity to the other Visual Augmentation
techniques.

Finally, we also add in Fig. 9f the embedding space vi-
sualisation for the Auxiliary Trained model with AFA aug-
mentation and standard transform for main, following the
same procedure as above. We see that the model learns
more separable embeddings for images augmented with
AFA using the auxiliary setting, therefore is less sensitive to
Frequency perturbation. The embeddings also retain a large
variance and hardness, therefore showcasing the diversity
of the augmentations of AFA.

5.2. Strong Regularisation Effect

In Fig. 10 we show the norm of the weights of the convo-
lutional kernels for the ResNet50 models trained with and
without AFA at each depth. We see that AFA provides a
strong regularisation effect that is akin to the regularisation
effect of PRIME. Meanwhile, we see that AugMix does not
regularise the weights at all compared to the baseline model
with only the standard transforms. The weights are however
regularised to when AFA is paired with AugMix. Combined
with PRIME, there does not seem to be further regularisa-
tion of the weights.
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Figure 8. Comparison of the mean absolute difference of the learnt
affine parameters for the two batch normalisations in the Dual
Batch Norm Layers of ResNet50-DuBIN architecture at different
depths.

5.3. Frequency Shortcuts

We assessed the effectiveness of our novel method, AFA,
specifically tailored for addressing Frequency Shortcuts.
The evaluation was conducted on a dataset characterized
by binary targets, and we subsequently computed Dominant
Frequency Maps (DFMs) to elucidate the impact of AFA on
model performance.

Through a comparative analysis, we contrasted the
DFMs derived from models trained with AFA against those
trained without it. The results unveiled a compelling trend:
a discernible decrease in the reliance on High Frequency
components in models utilizing AFA as shown in Fig. 11.
We can see that for the standardly trained model, the iden-
tified dominant frequencies are quite broad, ranging from
high frequencies to lower frequencies. However, when the
model is trained with AFA, we see these dominant frequen-

13



−1 0 1

−1

0

1

(a) Standard Transform

−1 0 1

−1

0

1

(b) Trivial Augment

−1 0 1 2

−1

0

1

2

(c) PRIME

0 2

−2

0

2

(d) PGD Attack

−2 0 2

−2

0

2

(e) AFA on Standard

−1 0 1 2

0

2

(f) AFA on Auxiliary Trained
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Figure 10. The norm of the Conv2d Layers for ResNet 50 trained with different augmentation techniques with and without AFA. The plot
highlights the regularisation effect the methods have on the model weights.

cies become more sparse for the examples with the positive
class (left) and the negative class (right) with a profound de-
crease in the positive class. The difference between classes
also imply that models can learn more frequency shortcuts
for a particular class. As explained in [44], these are tied
with textures pertaining specifically to those frequencies.
Therefore, we can conclude a classification relying on more
semantic information has been made. The same effect was

seen in Robustness to Fourier Attacks in Fig. 5.

This reduction implies a heightened robustness to
changes or deletions in these frequencies, indicative of the
method’s efficacy in mitigating the adverse effects of fre-
quency shortcuts. Furthermore, intriguingly, our findings
suggest that models incorporating AFA demonstrate a re-
markable ability to maintain performance even when certain
frequencies are omitted or altered, thereby emphasizing the
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(a) Standardly Trained

(b) Trained with AFA

Figure 11. Comparison of DFMs for a standardly trained model
and model trained with AFA for a binary classification task

significance of our proposed augmentation technique in en-
hancing model resilience and generalization capabilities.

6. Future Work
The exploration of future avenues in our research encom-
passes several intriguing possibilities. Firstly, for semantic
segmentation, further experiments are warranted to validate
our assertion that models now leverage enhanced seman-
tic information. This investigation can offer deeper insights
into the mechanisms through which models process and in-
corporate semantic cues, thereby refining our understanding
of their evolving capabilities in image analysis.

Moreover, the application of our proposed method ex-
tends beyond image-based tasks. The realm of NLP, encom-
passing sequence-based tasks (like generative AI), shares
common challenges with image processing, particularly in
confronting frequency shortcuts. While tokenization in text
presents a distinct challenge for such augmentation, future
work should delve into adapting our framework to these do-
mains, exploring how similar strategies can be employed to
enhance robustness and generalizability in the face of data
corruption.

Furthermore, our current study predominantly provides
an empirical analysis of regularization without delving into
rigorous mathematical proofs. Future investigations could
delve into formalizing the underlying principles, substanti-

ating our findings with mathematical rigour to strengthen
the theoretical foundation of the proposed techniques.

While our proposed method has demonstrated profi-
ciency in overcoming frequency shortcuts and pinpointing
frequency biases, a critical dimension yet to be explored in-
volves the editing of these biases. Specifically, we have not
delved into the feasibility of interventions aimed at mitigat-
ing or eliminating correlations introduced by identified bi-
ases. Future research should investigate strategies for edit-
ing frequency biases, addressing the intriguing challenge of
potentially modifying or removing correlations to enhance
the overall interpretability and fairness of neural networks.

Lastly, an intriguing avenue for future research lies in
the exploration of unsupervised learning scenarios, where
targets are inherently absent. Employing (information-
theoretic) losses within the framework and training setup
we propose could shed light on novel approaches to unsu-
pervised learning, offering valuable insights into the inher-
ent structure and representations learned by models in the
absence of explicit target guidance. These suggested direc-
tions collectively contribute to the ongoing advancement of
our understanding of model behaviour and performance in
diverse domains.

7. Conclusions

We proposed an efficient data augmentation technique
called AFA, which complements existing visual augmenta-
tion techniques by filling the augmentation gap, that they
do not cover in the Fourier domain. AFA perturbs the
frequency components of images and generates adversar-
ial samples. By leveraging Fourier-basis functions and the
auxiliary augmentation setting we demonstrate that AFA al-
lows the models to learn from aggressive/adversarial input
changes. We performed extensive experiments on bench-
mark datasets, and demonstrated that AFA benefits the ro-
bustness of models against common image corruptions, the
consistency of predictions when facing increasing pertur-
bations, and the OOD generalization performance. The
promising results underscore AFA’s potential in fortifying
models against frequency shortcuts as well, offering a valu-
able enhancement to their adaptability and performance sta-
bility. Being complementary to other augmentation tech-
niques, AFA can further boost the robustness of models, es-
pecially against strong corruptions and perturbation, and it
also results in better robustness in the frequency spectrum.
We foresee that investigating the use of Fourier-basis func-
tions on the training process of neural networks would pro-
vide promising improvement to model performance, thus
encouraging their reliability in real scenarios.
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[19] Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir
Zamir. 3d common corruptions and data augmentation,
2022. 2, 9

[20] Ildoo Kim, Younghoon Kim, and Sungwoong Kim. Learning
loss for test-time augmentation. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages
4163–4174. Curran Associates, Inc., 2020. 4

[21] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10
(canadian institute for advanced research). 9

[22] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-
100 (canadian institute for advanced research). 9

[23] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition
challenge. 2015. 9

[24] Xiu-Chuan Li, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu.
F-mixup: Attack cnns from fourier perspective. In 2020 25th
International Conference on Pattern Recognition (ICPR),
pages 541–548, 2021. 3

[25] Chang Liu, Wenzhao Xiang, Yuan He, Hui Xue, Shibao
Zheng, and Hang Su. Improving model generalization by
on-manifold adversarial augmentation in the frequency do-
main, 2023. 3, 5

[26] Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Ren-
zhe Xu, Han Yu, and Peng Cui. Towards out-of-distribution
generalization: A survey, 2023. 3

[27] Siao Liu, Zhaoyu Chen, Yang Liu, Yuzheng Wang, Dingkang
Yang, Zhile Zhao, Ziqing Zhou, Xie Yi, Wei Li, Wen-
qiang Zhang, and Zhongxue Gan. Improving generalization
in visual reinforcement learning via conflict-aware gradient
agreement augmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
23436–23446, October 2023. 2

[28] Yang Liu, Shen Yan, Laura Leal-Taixé, James Hays, and
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A. Implementation Details
Below, we report the training setup in detail. For all meth-
ods, and a particular dataset and architecture, the same
training setup was used unless stated otherwise.

Convolution Neural Networks For CIFAR-100 and Tiny
ImageNet we use the SGD optimiser with an initial learn-
ing rate of 0.2, Nesterov momentum of 0.9 with a batch
size of 128 training for 100 epochs. We use a weight de-
cay of 0.0005 and we do not decay the affine parameters
of normalisation. For CIFAR-10, we follow the same setup
as above, except we train for 200 epochs with a batch size
of 256 and an initial learning rate of 0.1. The learning rate
is decayed with a cosine annealing schedule to 0 which is
stepped step-wise. For all models, we always employ the
standard transformation of random crop with a padding of 4
and random horizontal flip. For ImageNet, we follow [16]
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in that we use SGD optimiser with an initial learning rate of
0.1 and Nesterov momentum of 0.9 and train for 90 epochs.
We use a weight decay of 0.0001 and we do not decay affine
parameters of normalisation. The learning rate decays with
a by a factor of 0.1 every 30 epochs. For all models, we em-
ploy the standard transformation of random resized crop to
image size of 224×224 with bilinear interpolation and ran-
dom horizontal flip, before other augmentations. We choose
to train all models from scratch (no fine-tuning using AFA)
so that we can study the effects of AFA without other un-
derlying factors. Therefore, for fair comparison, we retrain
PRIME from scratch as well using our setup. For models
trained with JSD, we follow [42] for the regularising coef-
ficient, mainly: λ = 10 for CIFAR-10 and Tiny ImageNet,
λ = 1 for CIFAR-100 and λ = 12 for ImageNet.

Compact Convolution Transformer For CIFAR-10/100
and ImageNet we also train a transformer architecture. For
all datasets we use CutMix (alpha=1.0) and MixUp (al-
pha=0.2 for ImageNet and alpha=1.0 for CIFAR-10/100)
with an equal chance of applying one of the two. For
CIFAR-10/100, we follow [11]. We train using the AdamW
optimiser with max learning rate of 0.0006 and weight de-
cay of 0.06, and we do not decay the affine parameters of
the normalisation modules. We train with an effective batch
size of 256, and apply learning rate decay following a cosine
decay with a warm-up period of 10 epochs and the learn-
ing rate scheduler is stepped step-wise. For ImageNet, we
use a max learning rate of 0.0005, effective batch size of
1024 and a weight decay of 0.05. The learning rate decay
follows a cosine annealing schedule with a warm-up of 25
epochs. The same standard transformations as for convolu-
tional neural networks were applied.

B. Evaluation metrics
Mean corruption error (mCE) measures the robustness
of models against image corruptions [15], computed as:

mCE =
1

|C|
∑
c∈C

∑5
s=1 E

f
s,c∑5

s=1 E
baseline
s,c

, (9)

where the sum of classification error E of five severity
s ∈ {1, 2, 3, 4, 5} per corruption c of model f is normalized
by that of a baseline model. The normalized classification
errors of all corruptions C in the dataset are averaged to
obtain mCE. We use AlexNet as baseline in ImageNet ex-
periments and ResNet-18 for Tiny ImageNet. For CIFAR-
10/100 there are no baselines advised so we do not report
the mCE for these datasets.

Mean flip rate (mFR) evaluates the consistency of model
predictions with increasing perturbations [15], computed as

follows:

mFR =
1

|C|
∑
c∈C

FRf
c =

1

|C|
∑
c∈C

FPf
c

FPbaseline
c

, (10)

with

FPf
c =

1

m(n− 1)

m∑
i=1

n∑
j=2

1(f(x
(i)
j ) ̸= f(x

(i)
j−1)). (11)

1(f(x
(i)
j ) ̸= f(x

(i)
j−1)) measures whether the prediction

of the model f on a frame xj is the same as its previous per-
turbed frame in the ith sequence. If the predictions are the
same, 1(f(x(i)

j ) ̸= f(x
(i)
j−1)) equals to zero, and thus the

performance of the model is not affected by the considered
perturbations. FPf

c measures the consistency of predictions
over m perturbed sequences, each with n of frames. For a
sequence corrupted by noise, the predictions are compared
with those of the first frame, as noise is not temporally re-
lated. The mFR is obtained by averaging the normalized
FPf

c by that of a baseline model across all the perturbations
C. The value of mFR is expected to be close to zero for a
robust model.

Mean top-5 distance (mT5D) also measures the consis-
tency of model predictions in terms of increasing pertur-
bations [15]. For a robust model, the top-5 predictions of
frames over a sequence should be relevant to those of the
previous frames in the sequence. The top-5 distance thus
measures the inconsistency of top-5 predictions under con-
secutive perturbations, computed as follows:

T5Df
c =

1

m(n− 1)

m∑
i=1

n∑
j=2

d(τ(xj), τ(xj−1)), (12)

with

d(τ(xj), τ(xj−1)) =

5∑
i=1

max{i,ρ(i)}∑
j=min{i,ρ(i)}+1

1(1 ≤ j−1 ≤ 5),

(13)
where ρ(τ(xj)(k)) = τ(xj−1)(k), τ(xj) is the ranking of
predictions for a perturbed frame xj and τ(xj)(k) indicates
the rank of the prediction being k. If τ(xj) and τ(xj−1)
are the same, then d(τ(xj), τ(xj−1)) = 0. Averaging the
normalized T5D by that of the baseline over all corruptions
obtain mT5D = 1

|C|
∑

c∈C
T5Df

c

T5Dbaseline
c

.

Fourier heatmap evaluates model robustness from a
Fourier perspective [48] exploiting Fourier basis functions
to perturb test images and measuring the classification er-
ror of models. They are constructed as follows. Let Ui,j ∈
Rd1×d2 be a real-valued matrix such that its norm equals
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TIN-C
- Main Auxiliary SA↑ RA↑ mCE↓

R
es

N
et

18

- ✗ 63.56 25.86 97.34
AFA ✗ 59.04 28.87 93.45

- AFA 62.52 33.35 87.58

AugMix ✗ 62.95 36.26 84.05
AugMix AFA 62.51 38.67 80.83
AugMix† ✗ 64.65 36.30 83.90
AugMix† AFA 64.34 38.52 80.79

PRIME ✗ 63.07 39.67 79.42
PRIME AFA 62.48 41.09 77.55
PRIME† ✗ 63.24 41.22 77.44
PRIME† AFA 62.65 43.00 73.11

Table 6. Results for TIN-C with ResNet18. Models with † use loss
with JSD.

Baseline PRIME PRIME+AFA TA TA+AFA

0.0 0.2 0.4 0.6 0.8 1.0

Figure 12. Fourier heatmaps of CCT trained with standard setting,
PRIME, PRIME+AFA, TA and TA+AFA.

to 1. The Fourier transform of Ui,j has only two non-zero
elements located at (i, j) and the corresponding symmet-
ric coordinate with respect to the image center. Given an
image X , a perturbed image with Fourier basis noise can
be generated by X̃i,j = X + rvUi,j , where r is chosen ran-
domly from a uniform distribution ranging from -1 to 1, and
v controls the strength of the added noise. Each channel of
the images is perturbed independently with different r and
v. The model robustness against Fourier basis noise Ui,j is
evaluated by the classification error, and the final outcome
is in a form of heatmap which records the error of the eval-
uated model under different Fourier basis noise. Examples
are in Fig. 12.

C. Supplementary results
C.1. Results on Tiny ImageNet

In Tab. 6 we provide the robustness results on Tiny Ima-
geNet (TIN), which are consistent with those presented on
other datasets. Models trained with AFA show robustness
improvements consistently by significant margin with only
negligible reduction of the clean accuracy. We again see
that JSD improves robustness slightly, and in AugMix it im-
proves clean accuracy greatly.

C.2. Robustness in the frequency spectrum.

The Fourier heatmaps of CCT trained with standard set-
ting, PRIME, PRIME+AFA, TA and TA+AFA are provided

in Fig. 12. Our observations are consistent with those in the
main paper. Also CCT models trained with the contribu-
tion of AFA have better robustness to low and middle-high
frequency corruptions.

C.3. Robustness per corruption severity.

We report the classification error of models tested under
corruptions with different severity levels Fig. 13. The mod-
els trained with AFA have consistently lower error than
their counterpart trained without AFA, showing that AFA
can further boost the robustness of models against common
image corruptions, especially in difficult testing conditions
with high severity. Figures provided by Shunxin Wang,
MSc.

C.4. Robustness to each image corruption.

Furthermore, we show the classification error averaged over
five corruption severity levels per corruption type in Fig. 15.
The error points of model trained with visual augmenta-
tions only, and with further use of AFA are connected by
a line. A downward trend means models trained with AFA
have better robustness performance on specific corruption
types. We observe that, in general, models with AFA have
better corruption robustness than models trained only with
visual augmentations. Significant improvements are espe-
cially evident on noise corruptions (Gaussian noise, impulse
noise, iso noise, plasma noise, shot noise, single frequency
grayscale noise and cocentric sine waves). One exception
is ResNet50 trained with AugMix and AFA, for which the
model trained without AFA performs better except on few
cases. This can be attributed to the less training time (90
epoch vs 180 epochs) than that of ResNet50+AugMix.

Figures provided by Shunxin Wang, MSc.
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Figure 13. Corruption error of ResNet50 and CCT trained with PRIME, PRIME+AFA, TA, TA+AFA, AugMix and AugMix+AFA.
Models trained with AFA (orange points) have lower error at each severity than their counterpart trained with only visual augmentation
(blue points), demonstrating the benefit of AFA to corruption robustness.
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Figure 14. Averaged classification error per corruption of ResNet50s (orange) and CCTs (green). The error points of model trained with
visual augmentations and additionally with AFA are connected. A decreasing line indicates better performance when trained additionally
with AFA (a).
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Figure 15. Averaged classification error per corruption of ResNet50s (orange) and CCTs (green). The error points of model trained with
visual augmentations and additionally with AFA are connected. A decreasing line indicates better performance when models are trained
additionally with AFA (b).
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