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Management summary

Sequence-dependent setup times in a cable manufacturing environment play an important
role in the efficient time planning of production but increase the complexity of models that
determine optimal production quantities and sequences. Heuristics are needed to solve this
type of problem. This thesis uses the solving procedure framework of Laguna (1999) adjusted
to the specifications of the cable manufacturing process at TKF. First, the initial quantities
and sequences are determined. Using this initial solution, the production times are further
optimized. We present an alternative to the last optimization step of the framework of
Laguna. This approach follows a heuristic that can be solved by hand, which improves
setup times. Compared to planners at TKF, the sequence-dependent setup times can be
improved by 30%. Another focus of this thesis is the comparison of two different production
strategies on the machine to be optimized. The strategy called single decks has a higher
output but longer sequence-dependent setup times, the other strategy called double decks
has a lower output but also lower longer sequence-dependent setup times. Both strategies
are optimized with the heuristic and the best option is chosen based on production time
and financial implications.
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1 Introduction

In this chapter I give a broad overview of the topic of the thesis. I will give an introduction
to the company and the production process, explain the methodology used to solve the
problem described, analyze the core problem, explain the key concepts used, measure the
norm and reality, describe a problem-solving approach, describe the intended deliverables
and finally list the research questions and model assumptions resulting from the problem
description.

1.1 Twentsche Kabel Fabriek (TKF) – A brief introduction

TKF is a cable wire producer with headquarters in Haaksbergen. The company has grown
over the years, and multiple plants have been opened worldwide in recent years, due to the
energy transition and the growth of wind energy. The company is still family-owned and
part of the TKH Group, a technology company with a AC1.58 billion market cap.

1.2 Production process outline

My research project is at the beginning of the supply chain, where raw copper wire is
first drawn into smaller diameters and then braided again into flexible cables with thicker
diameters, see figure 1. The first machine, called Groftrek (GT), is the start of every cable
type production and it draws 8mm thick copper wire that gets delivered on 6-ton coils into
smaller wire sizes like 3mm or 2.4mm. The next step in the assembly occurs on machines,
called Middentrek (MT) and Fijntrek (FT), which draw the wire into even smaller sizes
like 1.15mm or 0.3mm. After that, Wikkellijn (WL) braids multiple thin wires into flexible
cables, for 0.3mm FT is also able to do this step. Now, multiple machines are needed for
the assembly but there exists a machine that combines the drawing step of MT, FT, and
the braiding step of WL into one, see figure 1.

Figure 1: Old and new production process outline
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1.3 Background - Investment in a new wire drawing machine

Management has decided to purchase this machine to replace three old machines. The new
machine is faster and reduces costs because it combines two production steps into one. The
old machines are not profitable to other competitors, as the production style and output
do not meet modern standards anymore. This complicates the goal of pursuing the market
leader position. Currently, the process is creating waste in lean terminology (Holloway &
Hall, 1997), it is cheaper to buy from competitors than to produce in-house. An investment
in a faster machine makes it possible to produce all formerly outsourced demand again in-
house, this will reduce costs, and waste, and add value to the process. Being able to produce
everything in-house is better for TKF, as they have less supplier dependability and control
over the quality of products, which has been an issue with some suppliers in the past. Next
to that, the new machine results in an improvement in the workforce and a reduction of
8.5 FTE, the main reason the investment is profitable. Although the investment involves
workforce reductions, this is in line with the CSR goals of TKF. Operators perceive the
current work on the old machines as labor-intensive, unpleasant, and as a waste of their
knowledge and skills, as the work can be done without any diploma. After each drum
is completed, it needs to be changed manually instead of automatically by the machine.
Investing in a new machine leads to more automation with faster production and more
value-adding technical work that operators are trained for.

1.4 Background - The new machine changes the supply chain flow

With the investment in a new machine, the flow of the supply chain will change:

1. There will be one new machine instead of three old drawing machines (MT1, MT2
and FT2). The demand for the three machines is now combined into one.

2. The cable types 3,4,5,6x1.15mm can now be drawn and braided on one machine. This
notation means 1.15mm with three, four, five, or six wires. Before 3mm coils were
drawn into 1.15mm barrels, then on another machine, 1.15mm barrels were braided
into 3,4,5,6x1.15mm. With the arrival of the new machine, the drawing and braiding
step is now done on a single machine.

3. New cable design and sizes: 3x0.4mm, 8x0.4mm, 3x0.5mm, 8x0.5mm, 3x0.6mm and
8x0.6mm wire instead of 3x0.3mm, 8x0.3mm. TKF used to produce 3x0.3mm and
8x0.3mm as input for conductors, this is not the industry standard as thicker cable
sizes like 0.4mm can be also used to produce conductors with cross sections of 10mm²
and larger. This is faster and cheaper to produce.

4. The new cable types also need intermediate storage; this place does not yet exist. The
existing inventory storage needs to be revisited.

5. Shrinking inventory capacity (Assumption: 10%). The new machine will take up more
space than the area of the three old divested machines affecting the inventory storage
which will shrink as more space is needed for the machine. Now it is still unclear how
severe this impact will be, in consultation with the Supply Chain department, the
assumption of a ten percent shrinkage is made.
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1.5 Methodology - Managerial-Problem-Solving Method

For the academic structure of this bachelor assignment, I will use the Managerial Problem
Solving Method (MPSM) from Heerkens and van Winden (2017), see figure 2. Throughout
the project plan, I will refer to this methodology.

Figure 2: MPSM cycle, image taken from Heerkens and van Winden (2017)

1.6 Problem statement and core problems

For this research, several steps need to be executed before the machine is ready to produce
and several core problems are hindering the successful implementation of the machine, see
figure 3. This relates to the first step of the MPSM cycle, see figure 2. To support the
TKF management in understanding the effect of changing to the new machine, this thesis
scientifically investigates the missing production scheduling policy core problem based on
the following task:

”How does the new machine efficiently cluster and sequence orders such that the total
production time is minimized?”

The other core problems are taken care of by other departments within TKF:

• From a Human Resources perspective, it is a problem who to train on the new machine
and whose contracts should not be extended.

• From an R&D perspective, it needs to be determined where to locate the machine.
The issue is that the new machine takes up more space than the area of the three old
machines, the definitive machine location is yet unknown as it cannot just take the
place of the three old machines.

These three issues therefore result in the core problems of the action problem: Successful
implementation of the new machine. By offering a scheduling policy to TKF, a large stake
of the implementation action problem can be solved.

3
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Legend

Core problem

Action problem

Figure 3: Core problems

1.7 Explanation of key concepts

This section explains the variables safety stock, inventory, total production time, demand
and the concepts of operations research, dynamic programming, heuristics, policy and lean
which are needed for a basic understanding of the proposed research:

• Safety stock is needed, because we want to know what the minimum amount of inven-
tory is needed to satisfy demand on time without getting out of stock. This parameter
will be computed using the standard deviation of demand assuming a 95% service level,
the corresponding formula gathered from the book of Chopra (2019, p. 354) is

SafetyStock = Z ∗ σDemand ∗
√
L, (1)

where L is the average lead time, that is the time needed to produce an item, and
σDemand is the standard deviation of demand.

• The inventory level of item x is the current number of items x in stock, where the
maximum inventory level of item x is the maximum amount of items x able to have
in stock.

• The research is rooted in operations research, with Dynamic Programming (DP) and
Heuristics to solve a problem (Winston & Goldberg, 2004). A DP model is a set of
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mathematical equations called constraints with a minimizing or maximizing statement
called an objective function that derives the optimal solution based on the constraints.
Heuristics are a method to easily solve a DP model problem with large computational
times as they do not compute the exact solution but yield a solution that approximates
the optimal solution (Dixon & Silver, 1981). For further explanation see section 2.

• The solution of a heuristic can be called policy, in this case, a scheduling policy. A
scheduling policy can be defined as “a rule that specifies how each period’s decision
is chosen”(Winston & Goldberg, 2004, p.1038). In this case, a period is a production
day with 24 hours where the decision lies in optimally choosing which items and which
quantity of items to produce.

• Another important construct is the company’s production strategy. TKF is a lean-
oriented company (Holloway & Hall, 1997). The inventory is inspired by a Kanban
system (Kiran, 2019) with an assigned space for each item to limit the buildup of
excess inventory with a pulling scheme where the consecutive production takes the
item when needed instead of a pushing scheme where a finished product is placed at
the next machine. So, the principle is to only produce when things are pulled away,
so there is space to produce again. Just in time is used for scheduling in general
for TKF (Kiran, 2019), but in the department the new machine will be installed
this approach is neglected because large batch sizes are more important than small
production quantities, otherwise there are too many machine conversions.

• The new machine has two decks. A deck can be seen as a side of the machine where
each deck/side can produce the items needed. This means that a machine with two
decks can be seen as two single machines combined into one in terms of output.

• Total production time is the sum of production needed to produce the orders, setup
time, and penalties. The objective function aims to find a trade-off between large lot
sizes to work around long setup times (restricted by maximum inventory) and meet
production demand on time with inventory penalties to produce more often.

• Demand will be measured by looking back at historical data starting from 01-01-2022
until the date of collection, which is 22-11-2022.

The goal of this research is not to minimize production cost but to create a scheduling policy
that reduces total production time, see section 1.8.

1.8 Measurement of norm and reality

It is essential to outline the present situation and our starting point to establish objectives
and targets for this bachelor thesis and TKF. By clearly defining the current status, we can
subsequently articulate the anticipated goals and targets to be accomplished.

1.8.1 Reality - unknown lot sizes and unknown scheduling policy

Currently, the machine is purchased but not yet implemented. It can be said that the
machine is not yet integrated into the production process. This problem is related to two
missing items: Newly determined parameters for the DP model and a scheduling policy
derived from solving the DP model through a heuristic. In this case, the missing input
parameters are demand, safety stock, and maximum inventory levels. The reality is that
the previously mentioned parameters are based on old demand and production volume and
have not yet adapted to the new production constraints.
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1.8.2 Norm - optimal lot sizes and scheduling policy

It is expected that a new scheduling policy will be implemented that reduces total pro-
duction time and determines optimal lot sizes which are based on the newly determined
parameters. The quality of this scheduling policy will be measured by comparing the total
production time after using the heuristics with the total production time before using the
heuristic. In consultation with TKF, the goal formulated as stated above is to reduce the
total production time after employing the heuristic compared to using no heuristic with
producing orders based on the nearest due date. The norm is to have parameters and
policy determined optimally, see section 1.7 for definitions. For this research optimality is
reached when the heuristic method is solved. The model must also make assumptions about
shrinking inventory capacity and uncertainty.
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1.9 Problem-solving approach

My framework which can be seen in figure 4 structures the problem-solving approach of
finding a solution for the scheduling policy core problem (see figure 3), it covers the 2nd till
the 7th step of the MPSM from Heerkens and van Winden (2017).

Create two model with
different production

strategies

Determine input parameters required to
establish a scheduling policy that minimizes

total production time and determines
production quantities.

Safety stock levels
need to be determined

Machine conversion
times 

Determine lead time
and standard

deviation of lead time

Maximum inventory levels
need to be determined

Uncertainty

Machine breakdown

Sickness of
employees

New demand and
output volume needs

to be determined

New machine is not
integrated in

production process
optimally

Total production time
can be reduced

Legend

Related to research
questions

Action problem

Produce on two open
decks

Produce on one fixed
deck

Analyse which of the
two has a lower total

production time,
choose the best

Analyse which production
schedule results from this

with the respective lot sizes

Suggest implementation
results to management

Figure 4: Problem solving approach
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To further elaborate on the framework, when input parameters are determined and a suitable
model framework is found, two different production policies are tested. We will analyze
what effect a different strategy has on the total production time and the lot sizes. The two
different production strategies entail the following:

• Produce on one fixed deck: This means that one deck of the machine is fixed on
1.15mm. The other deck produces 0.4mm* and 0.5mm* sizes. This results in a lower
output as either the upper or lower deck is producing in total less meters per hour
output but less conversion times as the conversion from x1.15mm to x0.4mm, x0.5mm
and vice versa does not need to be executed.

• Produce on two open decks: This means that both decks are not fixed to one cable
product. This results in higher output (2x8x0.4mm) but also higher conversion times
as the long conversion from x1.15mm to x0.4mm, x0.5mm and vice versa needs to be
made occasionally.

1.10 Intended deliverables

Related to the problem-solving approach in figure 4 and the outcomes of the systematic
literature review (section 8), the intended deliverables are:

• Input parameters for a mathematical model: Demand, lead time, standard deviation,
safety stock, maximum inventory per cable type, and assumptions about shrinking
capacity and uncertainty.

• DP model with an objective function and constraints.

• Two heuristics for the two production strategies: DP model solved employing a heuris-
tic that reduces total production time and finds out the optimal batch sizes with two
different production strategies.

• Analysis of the test results which one performs better with a computation of total
production time.

1.11 Knowledge problems and research questions

As stated in figure 4, several parameters are needed to determine a mathematical model,
and those are related to the sub-research questions. The main research questions are related
to the performance and design of the mathematical model.

1.11.1 Main research questions

1. Which production policy (1 fixed deck vs 2 open decks) yields a better performance
in terms of the lowest total production time and which batch sizes result from this?

2. Which mathematical heuristic fits the goals to reduce the total production time and
to determine optimal lot sizes in a manufacturing environment? (Related to finding a
correct mathematical framework method)

3. How to minimize the total production time considering the input constraints (from no
policy to approximation of minimal total production time) for the newly purchased
machine? (Related to the correctness of the model equations)

8



1.11.2 Sub research questions

4. What are the safety stock levels needed, considering a 95% service level, based on
demand for wires drawn on the new machine?

5. What is the demand per type of wire on the new machine?

6. What is the maximum possible mix of inventory of wire drawn, assuming a 10%
shrinking inventory capacity, on the new machine (from 100% inventory storage to
90%)

7. How to implement uncertainty in a DP model and heuristic?

1.12 Model assumptions

Specific assumptions can be made regarding the design of the model:

• The machine represents a multi-item production because multiple items are drawn on
the machine. The production is single level as there is one machine involved.

• The inventory per item is bound by a maximum amount of inventory per item.

• The production amount is bound by the machine capacity. The processing time per
item plus the machine conversion times must be larger or equal to the machine capacity.

• Machine conversions depend on what is produced beforehand.

• Batch sizes are an integer number of a predetermined unit (reel 400kg).

• Backorders or backlogging are not possible.

• Overtime is not possible as the machine already runs 24 hours and 5 days per week.
Weekend work is restricted by the company due to economic restrictions.

• No standard inventory costs are incurred per item, but an inventory penalty is incurred
when the inventory level is lower than the safety stock.

• The lot sizes per product need to be determined per period.

• It needs to be investigated how exactly uncertainty can be implemented.
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2 Literature review

In this chapter, I will investigate the literature related to the integration of the theory from
chapter 1. At the end of this chapter, I will compare the papers of Laguna (1999) and Meyr
(2000), with the conclusion, that Laguna (1999) best fits the assumptions.

2.1 Capacitated lot-sizing problems (CLSP)

The scope of this research is to determine the optimal total production time with respective
optimal batch size quantities. The most well-known formula for finding an optimal batch size
is the Economic Order Quantity formula (EOQ) (Bahl, Ritzman, & Gupta, 1986; Maes &
Wassenhove, 1988). To solve more complicated problems with more constraints, lot sizing
models like the Wagner Whitn algorithm or the Silver-Meal heuristic are useful. These
models can be classified as uncapacitated lot-sizing problems, the sum of setup cost and
inventory holding cost are minimized and there is no interdependence between items, lot-
sizing decisions can therefore be made based on a single item (Maes & Wassenhove, 1988).
For the lot-sizing problem of this research, multiple items are produced on a single machine
and the sequence of the items with the respective lot-sizes needs to be determined. This leads
to a classification of lot-sizing models called Capacitated lot-sizing problems (CLSP) (Bahl et
al., 1986; Maes & Wassenhove, 1988; Quadt & Kuhn, 2008). An example is the Dixon-Silver
heuristic (Dixon & Silver, 1981) that determines the lot sizes with limited capacity for the
multi-item and single-level cases. Due to the increase in variables when multi-item problems
are solved, the computational complexity increases. Models in CLSP are NP-hard (Maes
& Wassenhove, 1988), which means that it is extremely difficult to solve the problem in a
reasonable time. Heuristics like Dixon-Silver are a solution to this problem as they do not
compute the exact solution but yield a result that approximates the optimal solution (Dixon
& Silver, 1981). The Dixon-Silver heuristic assumes that setup times are negligible, machine
capacity constraints only concern the run time of items. Other researchers have included
setup cost and/or times in their model that depends on what is produced beforehand leading
to a subcategory of CLSP called Capacitated lot-sizing problems with sequence-dependent
setups (CLSDP).

2.2 Capacitated lot-sizing problems with sequence-dependent se-
tups (CLSDP)

When setup times are non-zero the problem becomes NP-complete, meaning that one cannot
efficiently say if a solution to the problem exists at all. In this case, it is necessary to
employ heuristics that do not ensure an optimal solution, but instead discover a reasonably
satisfactory solution within a reasonable amount of computational time (Quadt & Kuhn,
2008). Another property included in the CLSDP heuristics is setup carry-over, the setup
state of the last item in a period is taken as the starting state in the next period. An item
produced at the end of a period can be produced at the start of the next period without
any setup. Relevant literature is the following (Quadt & Kuhn, 2008):

Selen and Heuts (1990) examines a lot-sizing and scheduling problem in a chemical envi-
ronment, where batch sizes are an integer number of predetermined unit sizes. Therefore,
they developed a heuristic that assumes fixed batch sizes with sequence-dependent setup
cost, carryover is possible. First, a feasible production plan is determined on a lot-for-lot
basis, then lots are shifted to earlier periods if this yields lower costs based on the trade-off
between setup and inventory cost. A numerical example is stated with 15 products over a
10-week planning horizon, where lot sizes and production sequences are computed. Haase
(1996) solves the CLSDP with sequence-dependent setup cost by a backward randomized
regret-based heuristic, backorders and backlogging are not considered. A small sample is
tested on the reliability of the heuristic compared to an exact algorithm. Haase proves that
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the deviation from the optimal result is small and therefore the heuristic yields acceptable
results. Haase and Kimms (2000) introduce a model where sequences are pre-determined,
the branch and bound heuristic chooses one of the following sequences. The heuristic is
scheduling backwards and experiments with 3 products and 15 periods and 10 products and
3 periods are executed. Fleischmann and Meyr (1997) propose a solution approach that
involves Threshold Accepting and utilizes a model with a single machine that establishes a
complete product order, disregarding setup times and back-orders. The method generates
new setup sequences by executing neighborhood operations, such as inserting a setup for a
specific product, exchanging two setups, or deleting one, starting from an infeasible solution.
Each setup sequence is assessed using a heuristic procedure that determines the production
and inventory volumes. The computational tests are conducted using the instances from
(Haase, 1996). Meyr (2000) builds upon the solution approach from Fleischmann and Meyr
(1997) by adding setup times. The solving procedure is also split into two parts. First, Meyr
determines the sequence of items per period, second, he determines the respective lot sizes
per item. Threshold accepting (TA) and simulated annealing (SA) are presented as two
options to solve the local search heuristics. He conducts an experiment with 18 items and 8
periods. Laguna (1999) states a model for a single machine with sequence-dependent setup
times instead of costs. He adds the option to produce overtime. The lot-sizing problem
is divided into sub-problems. The first step consists of solving a DP model to determine
initial quantities and the second step consists of solving a Travelling-Salesman algorithm
to determine initial sequences. The third step again solves a DP model but now with the
sequences and their setup times from the Travelling Salesman Problemincluded. Next, a
tabu search heuristic is employed to further improve the solution. Each solution from the
heuristic is evaluated by using the Traveling Salesman procedure to re-sequence the products
and the DP from the third step to find lot sizes. All models described above either include
sequence-dependent setup cost with (optional) constant setup time or sequence-dependent
setup time with (optional) constant cost. The first model to include sequence-dependent
setup costs and sequence-dependent setup times is from Almada-Lobo, Klabjan, Carrav-
illa, and Oliveira (2007). They constructed a five-step heuristic to efficiently solve a model
with sequence-dependent setup costs and times. More recent papers add more complexity
by including both sequence-dependent setup costs and sequence-dependent setup times like
Almada-Lobo et al. (2007).

2.3 Domain specific literature

For this research model, it is not necessary to include both sequence-dependent setup costs
and times. Setup costs are equal to setup time because the cost for a setup is the time
it takes, therefore we can disregard models like the one from Almada-Lobo et al. (2007).
Furthermore, it is important to note that for this research the capacity is restricted by the
setup time from one item to another and the times the items themselves take in a period.
One can also add this constraint to models that do not include it yet, however often the
heuristic solving the problem statement is not fully suitable as it needs to be adjusted to
consider sequence-dependent setup time. This means that for the sake of simplicity Haase
(1996), Fleischmann and Meyr (1997) and Haase and Kimms (2000) can be disregarded too.
Selen and Heuts (1990) introduce an interesting assumption where batch sizes are an integer
number of a predetermined unit size, this is also the case for this research. The production
unit size is a reel, and the quantity is an integer number of reels. A downside of their model
is that only sequence-dependent setup costs are considered but their notation of lot sizes is
helpful to use in another heuristic model. The two models left are Meyr (2000) and Laguna
(1999). Both are suitable with a few adjustments such as adding the assumption from Selen
and Heuts (1990) with a predetermined unit size. The objective function of Laguna (1999)
does not include sequence-dependent setups, only inventory costs, whereas Meyr’s (2000)
objective function does include them. Laguna (1999) includes them in the second step of the
heuristic where a travelling-salesman problem is solved. Both heuristic solving approaches
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consist of several steps, after having read both papers Meyr’s (2000) approach is more
complicated but might be faster. There is no comparison of computational times possible
as Laguna (1999) does not include them in his paper. Evaluating all these considerations,
Laguna (1999) is a better fit compared to Meyr (2000) for this research because the approach
to solving the problem is better to implement and there is more overlap in the assumptions
made.

2.4 Analysis on the framework of Laguna (1999)

It needs to be investigated and tested if the sequence-dependent setup times can be included
in the objective function of the first step and third step of the solving approach. If not, the
traveling salesman application already optimizes the sequence-dependent setup times such
that the result, in the end, can be assumed approximately optimal. During the execution
of this bachelor’s thesis and when implementing the code of the DP models it needs to
be investigated how to implement uncertainty (Eq.5.7). The option to use overtime is not
needed because the machine already runs 24 hours and 5 days per week. Weekend work is
restricted by the company due to economic reasons.
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3 Mathematical model and Laguna’s solving procedure
of the model

Based on the problem description in chapter 1 and the literature research in chapter 2, I
developed a mathematical model, which can be heuristically solved using the framework of
Laguna (1999). At the end of this chapter, I will present an alternative-solving approach to
the last step of Laguna’s approach.

3.1 Mathematical model

The following mixed integer linear programming is the mathematical representation of the
problem formulated where constraints (5) - (11) are based on Laguna (1999). Laguna also
adds variables for possible overtime in constraints (5) - (7), those are not needed for this
case. Constraint (13) is inspired by Selen and Heuts (1990), as their paper also restricts
quantities to an integer number of predetermined unit sizes. The notation style is based on
the book of Winston and Goldberg (2004).

min

N∑
i=1

T∑
t=1

rixit +

N∑
i=1

N∑
j=1

T∑
t=1

cijqijt +

N∑
i=1

T∑
t=1

piPit, (2)

subject to
Ii,t−1 + xit − dit = Iit ∀i, t. (3)

Pit ≥ Si − Iit ∀i, t. (4)

N∑
i=1

rixit +

N∑
i=1

N∑
j ̸=i

cijqijt ≤ At ∀t. (5)

rixit ≤ At(yi,t−1 +

N∑
j ̸=i

qijt) ∀i, t. (6)

N∑
j ̸=i

rjxjt +At(yi,t−1 + yi,t) ≤ 2At ∀i, t. (7)

yi,t−1 +

N∑
j ̸=i

qjit − yit −
N∑
j ̸=i

qijt = 0 ∀i, t. (8)

N∑
j ̸=i

qijt ≤ 1 ∀i, t. (9)

N∑
j ̸=i

qjit ≤ 1 ∀i, t. (10)

N∑
i=1

yjit = 1 ∀i, t. (11)

Iit ≤ Hi ∀i, t. (12)

Iit, xit, dit, Pit, Hi, Si ∈ Z ∀i, t. (13)

Iit, xit, dit, Pit, Hi, Si, ri, hi, cij , At ≥ 0 ∀i, t. (14)

i, j = [1, .., N ], t = [1, .., T ]. (15)

qijt, yit ∈ [0, 1] ∀i, j, t. (16)
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Ii0 = Si ∀i. (17)

N = Products, T= Days
i, j = Items to produce
Iit = Inventory of item i at the end of period t
xit = Integer number of Haspels i to produce in period t
dit = Demand of item i in period t
Pit = Penalty of item i in period t
Hi = Maximum inventory of item i
Si = Safety stock of item i
ri = Production time per Haspel of item i
pi = Penalty cost per Haspel of item i
cij = Setup time from item i to j
At = Machine capacity per period t
qijt = 1 when a setup from item i to j occurs in t, 0 otherwise
yit = 1 when item i is the last setup of period t, 0 otherwise.

The objective function (2) in this model minimizes the sum of production time, sequence-
dependent setup time, and penalty costs bounded by constraints (3) - (17). The first con-
straint handles the flow of inventory, which is based on the inventory of the previous period
plus the production quantity minus the demand. Constraint (4) handles the inventory
penalty, which is only incurred when inventory is below the safety stock, as Pit ≥ 0. The
penalty is the difference between safety stock and inventory. Production time with related
setup times per period is bound by the machine capacity with constraint (5). Additionally,
constraint (6) regulates that the production of product i in day t is only allowed, if the fa-
cility was set up to produce i at the end of t− 1 or a changeover into i occurs during period
t. Constraint (7) addresses the scenario where the facility produces product i at the end of
t− 1 and is also set up to produce the same product i at the end of month t. In such cases,
we consider product i as the only product manufactured in month t, prohibiting the pro-
duction of any other product during that time and ensuring that each month’s sequence of
jobs does not schedule a product twice (Laguna, 1999, p.128). To balance the changeovers,
constraint (8) regulates that if the facility is set up to produce j at the end of period t− 1,
or a changeover into j occurs during month t, then a changeover from j must occur or the
facility will be set up to produce j at the end of t (Laguna, 1999, p.128). Constraints (9)
and (10) limit the number of setups from product i to any other product j to a maximum
of 1 and vice versa. The binary last setup of period variable yit is restricted by constraint
(11) that only one product can be stored as the last setup in a period. Inventory-wise,
the Inventory of product i in period t is bound by the maximum inventory of product i
in constraint (12). As explained above, quantities are restricted to an integer amount of
predetermined unit sizes in constraint (13). Additionally, all variables must be larger or
equal to zero (constraint (14). Finally, the starting Inventory i is equal to the safety stock
i.
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3.2 Solving Procedure based on Laguna’s framework

The dynamic programming model described in section 3.1 is not possible to solve because it
is too complex, based on Laguna (1999). Thus, a heuristic is needed that approximates the
optimal solution of a dynamic programming model. Laguna (1999) developed a heuristic
that divides the problem into smaller sub-problems. I will use this framework to solve the
problem described throughout chapter 1.

3.2.1 Step 1 - Determine initial production quantities

The first step is to determine initial production quantities per period

min

N∑
i=1

T∑
t=1

rixit +

N∑
i=1

T∑
t=1

hiPit, (18)

subject to
Ii,t−1 + xit − dit = Iit ∀i, t. (19)

Pit ≥ Si − Iit ∀i, t. (20)

N∑
i=1

rixit ≤ At ∀t. (21)

Iit ≤ Hi ∀i, t. (22)

Iit, xit, dit, Pit, Hi, Si ∈ Z ∀i, t. (23)

Iit, xit, dit, Pit, Hi, Si, ri, hi, At ≥ 0 ∀i, t. (24)

i, j = [1, .., N ], t = [1, .., T ]. (25)

Ii0 = Si ∀i. (26)

For this step, the sequence-dependent setup times are not considered to reduce complexity.
The objective function minimizes the sum of production time and penalty cost. Equations
(18) - (26) are solved in AIMMS with CPLEX, a computer program for solving operations
research-type problems.

3.2.2 Step 2 - Determine initial sequences with a TSP

The next step is to use the solution from section 3.2.1 and determine a sequence from
the initial quantities per period with a TSP. This method finds the shortest path between
products to be produced per day by solving matrices which are the element-wise product
of the changeover times between products found in tables 13 and 14 and a matrix of the
production quantities per day, being 1 if the production quantity amount is strictly > 0 and
0 otherwise. The matrices are solved in sequential order starting from t = 1 (Laguna, 1999)
and take into account what the starting setup is, which is the last setup of the day before
Lt−1. This step is programmed and solved in Python 3.12 (see section 9.4 in the appendices)
based on the following equations that define the matrices to be solved per period:

δij = cij if i and j > 0,
δij = 0 if i = j or j = 0,
δ0j = cLt−1,j if j > 0 and t > 1,

where cij is the setup time between i and j from tables 13 and 14 and δi0 is a row of
containing only zeros such that the distance matrix does calculate the time to go back to
the start but stops at the last item. This means that every period has a unique matrix to
be solved.
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3.2.3 Step 3 - Sequence evaluation

After having determined the initial quantities and sequences, the next step is to determine
if the initial solution is feasible by adding the sequence-dependent setup times (Laguna,
1999).

min

N∑
i=1

T∑
t=1

rixit +

T∑
t=1

(Ct + LFt) +

N∑
i=1

T∑
t=1

hiPit, (27)

subject to
Ii,t−1 + xit − dit = Iit ∀i, t. (28)

Pit ≥ Si − Iit ∀i, t. (29)

N∑
i=1

rixit + Lt + Ft ≤ At − Ct ∀t. (30)

Lt−1 + Ft = LFt ∀t|t > 1. (31)

Iit ≤ Hi ∀i, t. (32)

qitxit ≥ xit ∀i, t. (33)

Iit, xit, dit, Pit, Hi, Si ∈ Z ∀i, t. (34)

Iit, xit, dit, Pit, Hi, Si, ri, hi, At ≥ 0 ∀i, t. (35)

i, j = [1, .., N ], t = [1, .., T ], qit = [0, 1]. (36)

F1 = LF1. (37)

Ii0 = Si ∀i. (38)

Here, the objective function (27) also includes the setup times incurred per period. Ct

covers the sum of all setups from the first item to the last item to produce in a sequence
per day gathered from solving the TSP matrices, LFt covers all setups made from the last
item of a period to the first item of the next period. In this DP, the setup time LFt can
be shared by both periods as described in constraint (31), this is helpful for the machine
capacity constraint (30), where setup times Lt and Ft are incurred based on the resting
machine capacity. Furthermore, the setup to the first item on day one is entirely charged to
F1, see constraint (38). Constraint 33 ensures that the production of an item is only set up
if the product has been scheduled in the TSP matrices of step 2. When qit = 1, the product
has been scheduled in the TSP, if not qit = 0.

3.2.4 Step 4 - Coordinating procedure

Laguna’s last and final step is to implement a short-term memory Tabu Search heuristic to
further improve the sequence. Once an initial solution is found, the coordinating procedure
performs schedule changes to search for an improved outcome, which is when the total
production time decreases. In this step one loops over all days and all items, where Pt is
the set of products i to be produced in t and the four possible moves to select from are:

For each i ∈ Pt:
Move M1: Delete product i from the set.
Move M2: If i is not the last product in the set, make it the last product to sequence.

For each i /∈ Pt

Move M3: Add product i to sequence.
Move M4: Make i the last product to produce in the sequence.

For each possible move, the TSP and DP of step 3 are solved again. In contrast to the TSP
matrices of Step 2, in this step the TSP matrices add the setup times to the first item on
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the next day Ft+1 in row 0 such that δi0 = ci,Ft+1
if i > and t < T. Per iteration, the best

move, which is the one with the lowest value found for the total production time of the DP
based on the sequences found from the new TSP matrices, is selected and is denoted as a
move, see the second code listing in the appendices, see 9.4.

3.2.5 Discussion on the Tabu Search of Step 4 and presentation of an alterna-
tive heuristic

The moves Laguna (1999) presents assume certain patterns in the found sequences and
production quantities. Laguna’s DP models have no penalty costs when inventory is below
safety stock, but there are holding costs. This means that building up inventory is prevented
instead of stimulated. In terms of the number of setups of a product, the production of a
product will be set up less often in Laguna’s case to prevent inventory from building up
compared to my case where more setups are enforced to prevent penalty costs. This means
that adding an item that is not part of the sequence already (i /∈ Pt) is not going to
decrease the total production time in a case where the model stimulates setups. Based on
this analysis, I conclude that moves M3 and M4 can be disregarded for the research on this
application.

Furthermore, deleting an item from a sequence (Move M1) only makes sense, when its
production quantity on that day is low, the low production quantity can then be added
to other days with leftover machine capacity. But when the production quantity on a day
is high and Move 1 is selected, the machine capacity and maximum inventory restrict the
model from moving a high production quantity from one to another day.
Move M2 is only of use when there is setup time included in the transition of two days, so
when the Last Itemt−1 ̸= First Itemt. If the setup time between two days is zero, it means
that Last Itemt−1 = First Itemt. In this case the TSP matrices have already found the best
solution possible because the matrices take into account the setup to the first item of a day
and to the first item of the next day.
Based on these considerations, Lagunas Tabu Search with the respective Moves explained
in section 3.2.4 can be adjusted and simplified to the problem of this thesis as follows, see
figure 5:
Applying the reasoning above Moves 3 and 4 are not applicable, Moves 1 and 2 can be
translated into a heuristic which can be solved by hand. The goal of this heuristic is to
further improve the sequences and reduce the setup times. The first step is to use the
results of the initial TSP solution of step 2. We check if there is a setup time incurred
between Last Itemt−1 and First Itemt. If this is the case, both sequences need to be further
investigated for possible improvement. This means that we want to find an item i which is
in both sequences that we can move to Last Itemt−1 and First Itemt such that the setup
time between stages becomes zero, but without changing the First Itemt−1 and Last Itemt.
An example would be to have a sequence At−1 on dayt − 1 with items Ii scheduled in the
order [I1, I2, I4] and a sequence At on the following dayt with items scheduled in the order
[I2, I3, I1]. Here, we can not move I1 because it is the First Itemt−1 and Last Itemt, but we
can move I2 in sequence A to the Last Item such that the setup time between two stages
reduces to zero since then Last Itemt−1 == First Itemt. The optimized sequence At−1

would then be [I1, I4, I2], this improvement relates to Move 2 because we move an item to
be the last item to schedule. If there is no such overlapping item as in this example, we
can not further improve the sequence by solely observing the sequences without the related
production quantities. Therefore, as a next step, we solve the DP of step 3 again.
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Figure 5: Sequence improvement heuristic

After that, we can fur-
ther improve the setup
time by deleting setups
made. As explained
above, deleting setups is
only feasible for smaller
production quantities be-
cause those can be added
to other sequences with-
out colliding with the
maximum machine ca-
pacity and maximum in-
ventory. This means that
we restrict ourselves to
production quantities of
less than 3. If a setup
is deleted, we know that
the setup time will de-
crease because we need
to schedule for one prod-
uct less. But this might
increase inventory penal-
ties, thus we can estab-
lish a rule that we only
delete a setup from a se-
quence if the decrease in
setup time outweighs the
increase in penalties. Us-
ing this, we check for
all production quantities
less than 3 one for one,
if deleting their setup qit
(see constraint 33) re-
sults in a lower feasible solution of the DP of step 3. If this is the case we apply the
change, this improvement step relates to Move M1. For the case of qit = 1 with xit = 0
as production quantity, deleting the setup will always result in a lower feasible solution,
because no penalty costs are incurred when we delete a setup with no production related to
it.
Now we have further optimized the model by deleting setups qit we know, that the setups
scheduled in the TSP matrices are not identical to the leftover qit for which the model is
allowed to start production. This means that we have to solve the TSP matrices again for
all qit = 1 to update the sequences to the latest adjustments. As we have recomputed the
TSP matrices, we need to also repeat the other steps to check for possible improvement.
We can stop the heuristic if we can not delete any items from the sequence anymore such
that the qit scheduled in the TSP matrices are identical to the re-optimization of qit after
all improvement steps.
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4 Data manipulation

The model is now formulated and a solving method is selected, the next step is to gather,
clean and analyze data needed to solve the problem formulated to find lot sizes and produc-
tion sequences. All these steps are needed because the existing data does not specify each
of the products to be manufactured, as the new machine changes the supply chain flow (see
section 1.4). In this chapter, I will determine a dataset for all 9 products to be produced
on the new machine, from which the mean and standard deviation of the dataset follow.

4.1 Data gathering

For this research the data needed is purely secondary and quantitative, the model is based
on two types of data: Demand data and data about machine specifications. The data needs
to be
Demand data is gathered from one database within the ERP system. Data to collect is
historical bookings of wire used, this includes formerly outsourced wire. This database
needs to be filtered on the article code of the desired product and the specific date range.
In this case, the output is a listing of all booked amounts of the specified product during a
given time period. So per production day, multiple bookings can be listed. Per booking the
used amount can highly deviate, as operators do not book amounts systematically but every
once in a while. To get a better overview of the quantity of products booked, the gathered
data is merged to the sum of bookings of a product booked per day. To gather all data
necessary the database needs to be filtered twice, for 1.15 multiwire (3,4,5x1.15mm) and
8x0.3mm. Data about machine specifications entails machine conversion times and machine
speed per cable type and is gathered from the R&D department.

4.2 Data analysis method

Demand data will be gathered from the last year and needs to be plotted to check which
distribution fits the data. This will also clarify if there is seasonality in demand. With
this knowledge, the standard deviation of demand per item can be computed and resulting
from this the safety stock (equation (1) and chapter 5). Lead time per item depends on the
machine specifications data.
The historical demand data utilized in this study is derived from bookings when wire is
used. The weight booked when used depends on the weight booked when produced in the
production step before. The weight when booked is listed in “terugmeldingen” of production
orders, indicating the number of products manufactured. After each finished coil of an order
the associated barcode on the production document is scanned and the weight of the product
is entered in the ERP system by an operator. If the weight of a coil highly deviates from
the prescribed weight of the production document a defect note is added on the document
which needs to be discussed with the team leader. Once all barcodes have been scanned
the production document is handed back to the planner that verifies whether the ERP data
aligns with the prescribed weights on the document. All changes in volume are adjusted
and then booked in the ERP system. If there is an irregularity the planner checks with the
team leader what the reason is.
Thus, the people responsible for a correct data representation of reality are the operators,
the planner, and the team leader consulting in case of irregularities. According to planners,
the most errors that occur are with respect to small deviations in kilos between operators
and the data from the ERP system, those “small errors” are adjusted by planners.
From a content validity viewpoint, the above proves that the “content of the items ade-
quately represents the universe of all relevant items under study.” (Cooper & Schindler,
2004, p.257). Criterion-related validity regards the “Degree to which the predictor is ade-
quate in capturing the relevant aspects of the criterion“ (Cooper & Schindler, 2004, p.257).
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This can be tested by measuring the correlation which is not done for this research. In gen-
eral, validity investigates if the data gathered measures what it aims to measure (Cooper &
Schindler, 2004, p.257). All stakeholders involved in reviewing the data ensure that the data
obtained from this process can be deemed reliable, trustworthy, and an accurate reflection
of the actual production activities. According to Heerkens and van Winden (2017) quality
of research is measured by its validity, where reliability is a subset of. Reliability in this
context is guaranteed by filtering the data within the ERP consistently.
For the data from the R&D department, I must assume that the given data is correct,
justified by the knowledge that their data is linked directly to information from the machine
supplier. Therefore, both types of data, demand, and machine specifications can be deemed
reliable and trustworthy.

4.2.1 1.15 multiwire

Currently for the production of 1.15 multiwire wire the ERP system does not specify which
type of x1.15mm wire is used per order. This means that the data cannot be used immedi-
ately as it first needs to be specified how much of the different types of x1.15mm is used. As
the database also stores for which type of final cable x1.15mm wire is used, it can be traced
back to what the corresponding wire design and combination of different types of x1.15mm
wire per type of final cable is.
The different types of final cables are listed in table 1 and describe the distribution of
threefold, fourfold, and fivefold 1.15mm wire needed per type of final cable, retrieved from
the shaft number. Table 2 shows the sum of types of x1.15mm used per shaft number, from
this distribution one can derive the percentages of types of x1.15mm needed (e.g. 10/12 for
4x1.15mm in a shaft 50 cable). The demand per type of x1.15mm wire can be determined
by multiplying the different percentages with the amount of unspecified x1.15mm wire used.

Demandi = BookedLengthUnspecified ∗ Percentagei (39)

where i is the type of product. Next, the Demandi is computed in meters, but to determine
the number of Haspels needed the corresponding weight to each length(meters) needs to be
computed. Dividing the Demandi in kilograms by the weight that fits on a Haspel yields
the number of Haspels needed, see table 3.

Wire design
Shaft number Number of wires Type of 1.15 used for each Korf (places) in the machine
50 46 4 4 4 4 4 3 4 4 4 4 4 3
25 23 4 4 4 4 4 3
70 67 5 4 5 4 5 4 5 4 5 4 5 4 5 4 4
35 32 4 4 3 4 3 4 3 4 3
95 90 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 1: Basket configuration per shaft

Shaft
number

Sum of
places used

3x1.15 4x1.15 5x1.15
3 4 5

50 12 2 10 0
25 6 1 5 0
70 15 0 8 7
35 9 4 5 0
95 18 0 0 18

Table 2: Sum of types 1.15 per shaft number

Weights
1 km
to kg

Weight
haspel

Km on
haspel

1x1.15 9.265 400 43172.7
3x1.15 27.795 400 14390.9
4x1.15 37.060 400 10793.2
5x1.15 46.326 400 8634.5

Table 3: 1.15 multiwire haspels
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4.2.2 8x0.3mm

With the implementation of the new machine, some production of 3x0.3mm and 8x0.3mm
will change to 3x0.4, 8x0.4, 3x0.5, 8x0.5, 3x0.6 and 8x0.6mm depending on the specifications
of the final cable. Table 4 specifies the transition for the number of wires needed. Every type
of final cable uses a fixed distribution of 3x0.3mm and 8x0.3mm wire, with this knowledge
one can compute the percentage of 3x0.3mm and 8x0.3mm used in a final cable (streng
curs). The booked data 8x0.3mm is given in kilograms but needs to be transformed into
meters. When knowing the length of 8x0.3mm booked, the length of 3x0.3mm is linear
based on the number of wires needed, see equations (40) - (41).

TotalLengthPerOrder = BookedLength8x0.3/Percentage8x0.3 (40)

BookedLength3x0.3 = TotalLengthPerOrder ∗ percentage3x0.3 (41)

NewLengtheightfold = TotalLengthPerOrder ∗ percentageeightfold (42)

Newlengththreefold = Totallengthperorder ∗ percentagethreefold (43)

This means that with the information for which final cable the amount is produced one can
derive the corresponding demand of 3x0.3mm, without having to collect this data from the
ERP system. Following, the total amount of wire used per order of final cable is the sum of
8x0.3, 3x0.3, and 1x0.3mm, or equation (40). Single wire 0.3mm can be disregarded, as the
new machine will not produce this type of wire. The TotalLengthPerOrder is needed to
compute the weights of eightfold and threefold cables used, based on the new percentages
listed in table 4. The new percentage times the TotalLengthPerOrder used yields the new
length of eightfold and threefold Haspels needed, see equations (42) - (43). Based on the
type of final cable the cables have a diameter of either 0.402, 0.502, or 0.602 mm.

Cable design Sum Wires
New
construction

Wire
size

No. new
wires

Old machine New machine Old New
8 3 1 8 3 1 percentage 8x percentage 3x percentage 8x percentage 3x

Streng Curs 23x0,303 100438.8754 23 13x0,402 0,402 13 2 2 1 1 1 2 0.696 0.174 0.615 0.231
Streng Curs 25x0,303 113010.3163 25 14x0,402 0,402 14 3 0 1 1 2 0 0.960 0.000 0.571 0.429
Streng Curs 33x0,303 189283.2834 33 19x0,402 0,402 19 4 0 1 2 1 0 0.970 0.000 0.842 0.158
Streng Curs 41x0,303 196349.1523 41 15x0,502 0,502 15 5 0 1 1 2 1 0.976 0.000 0.533 0.400
Streng Curs 43x0,303 212678.5362 43 16x0,502 0,502 16 5 1 0 2 0 0 0.930 0.047 1.000 0.000
Streng Curs 47x0,303 137237.2774 47 17x0,502 0,502 17 5 2 1 2 0 1 0.851 0.085 0.941 0.000
Streng Curs 48x0,303 297849.5771 48 17x0,502 0,502 17 6 0 0 2 0 1 1.000 0.000 0.941 0.000
Streng Curs 51x0,303 187347.0389 51 18x0,502 0,502 18 6 1 0 2 0 2 0.941 0.039 0.889 0.000
Streng Curs 53x0,303 431348.8178 53 19x0,502 0,502 19 6 1 2 2 1 0 0.906 0.038 0.842 0.158
Streng Curs 62x0,303 429170.4567 62 22x0,502 0,502 22 7 2 0 2 2 0 0.903 0.065 0.727 0.273
Streng Curs 64x0,303 1419.4692 64 23x0,502 0,502 23 8 0 0 2 2 1 1.000 0.000 0.696 0.261
Streng Curs 66x0,303 138251.7035 66 24x0,502 0,502 24 8 1 0 3 0 0 0.970 0.030 1.000 0.000
Streng Curs 67x0,303 253971.7877 67 24x0,502 0,502 24 8 1 0 3 0 0 0.955 0.030 1.000 0.000
Streng Curs 74x0,303 9483.1624 74 19x0,602 0,602 19 9 0 2 2 1 0 0.973 0.000 0.842 0.158
Streng Curs 94x0,303 38820.3774 94 24x0,602 0,602 24 11 2 0 3 0 0 0.936 0.043 1.000 0.000
Streng Curs 104x0,303 4397.1779 104 26x0,602 0,602 26 13 0 0 3 0 2 1.000 0.000 0.923 0.000

Table 4: Cable design

Weights
1 km
to kg

1 kg
to mtr

Weight
haspel

Km on
haspel

8x0.3 5.044 198.250 520 103.1
3x0.3 1.892 528.666 520 274.9
8x0.4 9.102 109.861 510 56.0
3x0.4 3.413 292.964 510 149.4
8x0.5 14.180 70.521 505 35.6
3x0.5 5.318 188.056 505 95.0
8x0.6 20.379 49.071 500 24.5
3x0.6 7.642 130.855 500 65.4

Table 5: Weights 0.3, 0.4, 0.5, 0.6mm

To determine the number of Haspels needed, the
corresponding weight to each NewLength must
be computed. This is done by first converting the
NewLength in kilograms and then as a second
step dividing it by the weight that fits on a haspel,
this yields the number of Haspels needed which
can be seen in table 5.
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4.3 Data cleaning

A constraint to ensure the trustworthiness of data is to have a minimum of 100 data points
(Anderson & Gerbing, 1984). Therefore, the data set ranges from 01-01-2022 till 22-11-2023,
the date on which the data was collected, and thus is longer than the original time span
of one year. The data range is 691 days, but not every day production of cables has taken
place due to factory closings. This leads to a total of 619 possible production days.

4.3.1 1.15 multiwire

For 1.15 multiwire, 11 data points are not possible to integrate into the dataset because
their shaft number is unclear such that no distribution of wire can be found, 3130 data
points are left.

4.3.2 8x0.3mm

90% of booked orders 8x0.3mm correspond to table 4, this means that for 90% of all book-
ings, the new wire design with diameters 0.4, 0.5, and 0.6mm will be implemented. For the
remaining 10%, 0.3mm wire will still be used, these are final cables with a diameter smaller
than 10mm2, where norm restrictions do not allow for thicker wire diameters. 0.3mm wire
will not be produced on the new machine, therefore this data can be disregarded for further
analysis.

4.4 Data analysis

The possible total amount of production days is as said 619 days, for this data set however,
the count of actual production days is 575 days, found by listing all orders in a demand
matrix with products in columns and production days in rows.
With the data collected, filtered, and specified to the demand of products per day, the
goal is to determine parameters like e.g. standard deviation of demand and safety stock.
To determine those parameters, a distribution needs to be found that fits the demand
data per day per product. This step is done in Wolfram Mathematica 13.3 with the
FindDistribution[data, n = 3] function. For every product, this function yields three distri-
butions that best fit the demand data per day. To analyze which of the three distributions
best fits, the data is further analyzed in Excel with the Analysis ToolPak Descriptive
Statistics and Histogram functions. For the histogram, the number of bins and width is
determined by

NumberOfBins ≈
√
n (44)

BinWidth = (Max−Min)/
√
n (45)

where n is the number of observations, so the number of production days of a product,
NumberOfBins is rounded up, Max is the largest observation and Min is the smallest
observation. The Histogram function yields the frequency of data per bin interval, deter-
mined by equation (45) from the smallest to the largest observation. The frequency needs
to be compared with the expected frequency of the three distributions given by Wolfram
Mathematica employing a Chi-Squared test.

4.4.1 Chi-Squared test on the expected frequency for 3x1.15mm

The following data analysis step will be explained for one example: 3x1.15mm wire, and for
the other products the conclusion of the test will be discussed. For 3x1.15mm, the three best-
found distributions in Wolfram Mathematica are: GammaDistribution[1.86374, 3.76955],
WeibullDistribution[1.2871, 7.23766, 0.335283], LogNormalDistribution[1.65789, 0.821158].

22



Those three distributions with corresponding parameters are used to determine the expected
amount of products within the listed bin interval.

CDF1,x = GAMMA.DIST (x, 1.86374, 3.76955, TRUE) ∗ n (46)

CDF2,x = WEIBULL.DIST (x− 0.335283, 1.2871, 7.23766, TRUE) ∗ n (47)

CDF3,x = LOGNORM.DIST (x, 1.65789, 0.821158, TRUE) ∗ n (48)

ExpectedFrequencyx = CDFx − CDFpreviousBin (49)

where CDF = Cumulative Distribution Function and is computed for all x, x = corre-
sponds to the column bin interval in table 6 and n = 547. CDF computes the total
amount of observations expected from 0 until x for all three distributions. To determine the
ExpectedFrequency per bin interval the difference between two consecutive bin intervals is
determined. From equations (44) - (45), NumberOfBins ≈ 24, and BinWidth = 1.5833
follows ranging from 0 to 38, the smallest to the largest observation of Haspels produced on
a day. The next step is to compute the Error between the expected and observed frequency.

Bin interval Frequency CDF Gamma Expected Gamma x - µ CDF Weibull Expected Weibull CDF LogNormal Expected LogNormal Error Gamma Error Weibull Error LogNormal
0.00 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.58 41 46.926 46.926 1.248 54.082 54.082 39.512 39.512 0.748 3.164 0.056
3.17 84 132.053 85.127 2.831 141.285 87.204 147.251 107.739 0.015 0.118 5.231
4.75 100 219.847 87.794 4.415 224.793 83.508 247.058 99.807 1.697 3.257 0.000
6.33 89 297.136 77.289 5.995 297.416 72.622 322.875 75.817 1.775 3.693 2.292
9.50 107 410.190 113.055 9.165 405.910 108.494 418.482 95.607 0.324 0.021 1.358
11.08 44 447.841 37.651 10.748 443.362 37.453 447.821 29.338 1.071 1.145 7.327
12.67 24 475.851 28.010 12.331 471.884 28.522 469.523 21.702 0.574 0.717 0.243
14.25 14 496.366 20.515 13.915 493.212 21.328 485.783 16.261 2.069 2.518 0.314
15.83 10 511.210 14.844 15.498 508.910 15.698 498.121 12.338 1.581 2.068 0.443
17.42 11 521.846 10.637 17.081 520.303 11.393 507.596 9.475 0.012 0.014 0.246
19.00 3 529.408 7.562 18.665 528.467 8.164 514.953 7.357 2.752 3.266 2.581
20.33 2 534.025 4.617 19.998 533.466 4.999 519.902 4.949 1.483 1.799 1.757
20.58 3 534.748 0.724 20.248 534.249 0.783 520.726 0.823 7.162 6.271 5.756
22.17 0 538.499 3.751 21.831 538.302 4.053 525.298 4.572 3.751 4.053 4.572
23.75 4 541.121 2.622 23.415 541.114 2.812 528.952 3.654 0.725 0.502 0.033
25.33 1 542.945 1.825 24.998 543.048 1.933 531.895 2.944 0.373 0.451 1.283
26.92 3 544.211 1.266 26.581 544.365 1.318 534.285 2.389 2.377 2.148 0.156
28.50 0 545.086 0.875 28.165 545.256 0.891 536.238 1.953 0.875 0.891 1.953
30.08 1 545.689 0.603 29.748 545.853 0.597 537.845 1.607 0.261 0.271 0.229
31.67 0 546.104 0.415 31.331 546.251 0.398 539.175 1.330 0.415 0.398 1.330
33.25 3 546.389 0.285 32.915 546.513 0.263 540.283 1.107 25.909 28.508 3.235
34.83 1 546.584 0.195 34.498 546.686 0.173 541.209 0.927 3.327 3.969 0.006
36.42 0 546.717 0.133 36.081 546.799 0.113 541.989 0.779 0.133 0.113 0.779
38.00 2 546.808 0.091 37.665 546.871 0.073 542.647 0.659 40.124 50.927 2.733
More 0 SUM 99.531 120.280 43.915

Chi alpha 0.05 36.415

Table 6: CDF and Chi-Squared test 3x1.15mm

This value is needed for the Chi-Squared test. A Chi-Squared test can be used to determine
whether a distribution is suited to fit a data set. The hypotheses for the Chi-Squared test
are:
h0 = There is not enough proof to reject the distribution
h1 = The distribution can not be used
The test statistic is:

X2 =
∑

((FrequencyObserved − FrequencyExpected)
2/FrequencyExpected) (50)

with alpha = 0.05 and 24 degrees of freedom, the critical value is:

X2
(0.05,24) = CHISQ.INV.RT (0.05, 24) = 36.415 (51)

when X2
(0.05,24) ≥ X2 accept h0, otherwise reject h0

X2
(0.05,24) < X2

LogNormal = 43.914 (52)

The decision, from which distribution to choose from, is made based on the first distribution
for whichX2 is smaller than the critical valueX2

(α,df), assuming that WolframMathematica’s
order of best-found distributions is correct and the Chi-Squared test is a good test statistic
to verify the result from Wolfram Mathematica. The test statistic Error value for the
LogNormal Distribution is the lowest of all distributions but still lies above the rejecting
value, see table 6. Therefore by means of the Chi-Squared test, the distribution must be
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rejected. With a smaller value of 0.007 for alpha the h0 hypothesis can be accepted and
therefore there is not enough proof to reject the LogNormal distribution, as

X2
(0.007,24) = 44.321 ≥ 43.914. (53)

This shows the danger of the test moving with values for alpha: The smaller alpha, the
larger the critical value, thus the more likely it is to accept h0, when in fact h0 should
be rejected. This is a type II error. An academic standard is to use an alpha level of
0.05 to prevent type I and type II errors from happening (Moore, 2009). In this case, a
distribution is needed to continue determining the parameters and therefore the assumption
is made that the LogNormal distribution fits the observed frequency accurately enough.
When comparing the Error values of all distributions given by Wolfram Mathematica, the
LogNormal distribution performs by far the best, see table 6. This can also be observed
when analyzing the visual representations, see figure 6. The other distributions deviate
more from the observations on the right tail of the frequency histogram.

Figure 6: Observed and expected frequencies 3x1.15mm

This means that the LogNormal Distribution can represent product 3x1.15mm with param-
eters [µ = 1.65789, σ = 0.821158]. The mean and variance of this distribution are given
by

mean = exp(µ+ σ2/2) (54)

variance = exp(2µ+ σ2)(exp(σ2)− 1) (55)

standardDeviation =
√
variance (56)

yielding a mean of 7.352, a variance of 56.156, and a standard deviation of 7.493 during
days with production of 3x1.15mm.
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4.4.2 Results of the Chi-Squared test for the other products

The results of the other products are summarized in table 7. A detailed approach to the
computation of the results is listed in the appendices, see 9.4.

Product Distribution Mean Variance Std. Dev.
4x1.15mm LogNormal 31,227.000 1,339.530 366.000
5x1.15mm Weibull 11.73 53.112 7.288
3x0.4mm Exponential 1.134 1.286 1.134
8x0.4mm Exponential 8.328 69.347 8.328
3x0.5mm Exponential 3.169 10.043 3.169
8x0.5mm Weibull 33.034 369.756 19.229

Table 7: Results of the Chi-Squared test

4.5 Limitations of research design

Limitations are that the demand is only based on historical demand. Forecasted future
demand is not available and therefore not implemented. Another limitation is that the
problem cannot be solved optimally as the model is NP-hard (see chapter 2) but is solved
utilizing a heuristic. The accurate representation of reality is limited when implementing
uncertainty in a model that assumes fixed demand instead of stochastic demand. In this
context, uncertainty cannot be solely regarded as a factor to be multiplied with (section
2.4) but is limited to this representation.
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5 Determining the model parameters

In the previous chapter 4, I determined the mean and standard deviation per product. To
further work towards the goal of finding lot sizes and production sequences per day, the
findings from chapter 4 need to be utilized when determining the parameters: Demand,
mean, and standard deviation of the actual production days, time per Haspel, lead time,
safety stock, reorder point, maximum inventory level and machine conversion times. Those
parameters are necessary to solve the dynamic programming model and heuristic (3.2).

5.1 Demand

In chapter 4, I determined the demand per day for all products to produce, this is our first
parameter. Demand is presented in an integer amount of Haspels and can be found the the
appendices, see table 19.

5.2 Mean and standard deviation

The mean and standard deviation of demand per product from chapter 4 are based on the
days during which production occurs. To further determine the parameters needed, the
mean and standard deviation per product of the actual production days, which are 575,
need to be computed.

sample.mean = mean ∗ dProd./575 (57)

where mean is the mean computed in chapter 4 per product and dProd. is the number
of observations per product. The mean only covers the average demand of Haspels during
production days but in reality the production days are spread out over a longer time horizon
(575 days), meaning that there are days with no demand of a product. Those days also
need to be taken into account when e.g. computing the safety stock. The same holds for
the standard deviation.

sample.std.dev. =
√∑

(x− µ)2/(n− 1) (58)

Applied to this situation, where∑
(x−µ)2 = (mean− sample.mean)2 ∗ dProd. + (0− samaple.mean)2 ∗ (n− dProd.) (59)

and x is either 0 or mean, the new values are listed in table 8. As explained in section 9.4,
3x0.6mm and 8x0.6mm do not have a distribution matched and are considered as no safety
stock products, this decision is furthermore justified with a sample mean ≤ 1.

Products
Production
days

Mean on
production days

Sample mean
over total production

Std.dev on
production days

Sample std.dev
total production

3x1.15 547 7.352 6.748 7.494 2.021
4x1.15 555 31.227 29.079 36.600 7.910
5x1.15 104 11.248 1.963 11.248 4.273
3x0,403 139 1.134 0.265 1.134 0.480
8x0,403 139 8.328 1.942 8.328 3.525
3x0,503 191 3.169 1.016 3.169 1.480
8x0,503 368 33.034 20.397 19.229 16.068
3x0,603 6 0.777 0.008 X X
8x0,603 21 20.675 0.728 X X

Table 8: Mean and standard deviation of products

The other option to determine the mean and standard deviation is to let Wolfram Math-
ematica find a distribution over 575 days, thus with 0 values included. In this case, the
FindDistribution function splits the data into multiple intervals with different distribu-
tions found for each interval. 0 is not seen as a standalone interval, the data is not split
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into an interval with only 0 and another interval covering the rest, although this is the case
in reality. Either something is produced or nothing. Another downside is that it is much
more complex to determine the expected frequency per distribution as this is dependent
on the bin intervals and not on the distribution intervals currently. Therefore, it is more
logical to determine a distribution over the observed frequencies (without 0) and then re-
determine the mean and standard deviation by including the no production data and using
the sample.mean and sample.std.dev. formulas.

5.3 Time per Haspel and lead time

The time per Haspel t is given in minutes by

t = (weight/(no.wires ∗ 1/4 ∗ π ∗ diameter2 ∗ 8.92/1000)/speed/60) + ChangeT ime (60)

where the function variables are listed in tables 9 and 10. Time per Haspel is dependent on
the machine speed, which is different for the two production strategies, therefore the time
per Haspel is different for both production strategies.
When knowing the time per Haspel, the lead time lt per product can be determined, also
listed in tables 9 and 10.

lt = t ∗ sample.mean (61)

Products
1 km
to kg

Weight
haspel

Km on
haspel

Speed
m/s

Haspel change
time (min)

No.
Wires

Time per
haspel (min)

Time per
haspel (day)

Sample mean over
total production

Lead Time
(days)

3x1.15 27.795 400 14.391 11 3 3 24.80 0.0172 6.748 0.116
4x1.15 37.060 400 10.793 11 3 4 19.35 0.0134 29.079 0.391
5x1.15 46.326 400 8.635 11 3 5 16.08 0.0112 1.963 0.022
3x0,403 3.413 510 149.412 32 3 3 80.82 0.0561 0.265 0.015
8x0,403 9.102 510 56.029 32 3 8 32.18 0.0223 1.942 0.043
3x0,503 5.318 505 94.968 32 3 3 52.46 0.0364 1.016 0.037
8x0,503 14.180 505 35.613 32 3 8 21.55 0.0150 20.397 0.305
3x0,603 7.642 500 65.427 29 3 3 40.60 0.0282 0.008 X
8x0,603 20.379 500 24.535 29 3 8 17.10 0.0119 0.728 X

Table 9: Time per haspel and lead time on single decks

Products
1 km
to kg

Weight
haspel

Km on
haspel

Speed
m/s

Haspel change
time (min)

No.
Wires

Time per
haspel (min)

Time per
haspel (day)

Sample mean over
total production

Lead Time
(days)

3x1.15 27.795 400 14.391 22 3 3 13.90 0.0097 6.748 0.065
4x1.15 37.060 400 10.793 22 3 4 11.18 0.0078 29.079 0.226
5x1.15 46.326 400 8.635 22 3 5 9.54 0.0066 1.963 0.013
3x0,403 3.413 510 149.412 64 3 3 41.91 0.0291 0.265 0.008
8x0,403 9.102 510 56.029 64 3 8 17.59 0.0122 1.942 0.024
3x0,503 5.318 505 94.968 64 3 3 27.73 0.0193 1.016 0.02
8x0,503 14.180 505 35.613 64 3 8 12.27 0.0085 20.397 0.174
3x0,603 7.642 500 65.427 58 3 3 21.80 0.0151 0.008 X
8x0,603 20.379 500 24.535 58 3 8 10.05 0.0070 0.728 X

Table 10: Time per haspel and lead time on double decks
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5.4 Safety stock, reorder point and maximum inventory level

The next parameters to be determined are safety stock s, reorder point ROP and maximum
inventory level Max.Inv. given by the following formulas

s = Z ∗ sample.std.dev. ∗
√
LT (62)

where Z=1.645 with 95% service level,

ROP = lt ∗ sample.mean+ s (63)

Max.Inv. = ROP + sample.mean−Min.Consumption ∗Min.LeadT ime (64)

which reduces to
Max.Inv. = s+ sample.mean (65)

as we can assume that Min.Consumption * Min.LeadT ime = sample.mean * lt. The
results from these formulas are listed in tables 11 and 12.

Products
Sample mean over
total production

Std.dev on
production days

Sample std.dev
total production

Lead Time
(days)

Safety
stock

Reorder
Point

Maximum
inventory level

Max inventory standardized
multiples of 4 (1 rack)

Safety stock
standardized

3x1.15 6.748 7.494 2.021 0.116 1.13 1.92 7.882 8 2
4x1.15 29.079 36.600 7.910 0.391 8.13 19.50 37.213 40 9
5x1.15 1.963 11.248 4.273 0.022 1.04 1.08 3.003 4 2
3x0,403 0.265 1.134 0.480 0.015 0.10 0.10 0.361 4 1
8x0,403 1.942 8.328 3.525 0.043 1.21 1.29 3.150 4 2
3x0,503 1.016 3.169 1.480 0.037 0.47 0.51 1.484 4 1
8x0,503 20.397 19.229 16.068 0.305 14.60 20.83 34.999 36 15
3x0,603 0.008 X X X X X X 0 0
8x0,603 0.728 X X X X X X 0 0

Table 11: Safety stock, reorder point and maximum inventory level on single decks

Products
Sample mean over
total production

Std.dev on
production days

Sample std.dev
total production

Lead Time
(days)

Safety
stock

Reorder
Point

Maximum
inventory level

Max inventory standardized
multiples of 4 (1 rack)

Safety stock
standardized

3x1.15 6.748 7.494 2.021 0.065 0.85 1.29 7.597 8 1
4x1.15 29.079 36.600 7.910 0.226 6.18 12.74 35.261 36 7
5x1.15 1.963 11.248 4.273 0.013 0.80 0.83 2.764 4 1
3x0,403 0.265 1.134 0.480 0.008 0.07 0.07 0.334 4 1
8x0,403 1.942 8.328 3.525 0.024 0.89 0.94 2.835 4 1
3x0,503 1.016 3.169 1.480 0.02 0.34 0.36 1.356 4 1
8x0,503 20.397 19.229 16.068 0.174 11.02 14.57 31.418 32 12
3x0,603 0.008 X X X X X X 0 0
8x0,603 0.728 X X X X X X 0 0

Table 12: Safety stock, reorder point and maximum inventory level on double decks

The computed values for safety stock and maximum inventory are standardized and rounded
up to integers given in the last two columns of tables 11 and 12. The inventory is stored
in racks of four, therefore the maximum inventory is a multiple of four. In the research
questions, see section 1.11.2, I stated that the inventory capacity will decrease to 90% of its
original capacity. Currently, the sum of inventory for this type of product is 224 Haspels,
90% of this yields of around 201 Haspels. The sum of maximum inventory determined, see
tables 11 and 12, is 100 for single and 80 Haspels for double decks, this lies far below the
new upper bound.
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5.5 Machine conversion times

The machine conversion times are another important parameter listed in tables 13 and 14

3x1.15 4x1.15 5x1.15 3x0,403 8x0,403 3x0,503 8x0,503 3x0,603 8x0,603
3x1.15 0 15 15 30 30 30 30 30 30
4x1.15 15 0 15 30 30 30 30 30 30
5x1.15 15 15 0 30 30 30 30 30 30
3x0,403 15 15 15 0 15 30 30 30 30
8x0,403 15 15 15 15 0 30 30 30 30
3x0,503 15 15 15 30 30 0 15 30 30
8x0,503 15 15 15 30 30 15 0 30 30
3x0,603 15 15 15 30 30 30 30 0 15
8x0,603 15 15 15 30 30 30 30 15 0

Table 13: Changeover time on single decks

3x1.15 4x1.15 5x1.15 3x0,403 8x0,403 3x0,503 8x0,503 3x0,603 8x0,603
3x1.15 0 15 15 180 180 180 180 180 180
4x1.15 15 0 15 180 180 180 180 180 180
5x1.15 15 15 0 180 180 180 180 180 180
3x0,403 45 45 45 0 15 30 30 30 30
8x0,403 45 45 45 15 0 30 30 30 30
3x0,503 45 45 45 30 30 0 15 30 30
8x0,503 45 45 45 30 30 15 0 30 30
3x0,603 45 45 45 30 30 30 30 0 15
8x0,603 45 45 45 30 30 30 30 15 0

Table 14: Changeover time on double decks

5.6 Machine capacity

To only produce a realistic amount of Haspels, there needs to be a restriction on the capacity
of the machine, which is the maximum time the machine can produce on a production day.
At TKF, the production is 24 hours per day, this means that the maximum machine capacity
is 24 · 60 = 1440 minutes.

5.7 Uncertainty

As one of the sub-research questions in section 1.11.2 states, it needs to be investigated
how uncertainty can implemented in the model. There is uncertainty in terms of machine
breakdown and operator’s availability due to sickness see figure 3, to account for this type
of uncertainty one option is to include probabilities for machine breakdown and employee
shortage or to already reduce the machine capacity to e.g. only 95% (Rockafellar, 2001),
but when looking at my data it can be observed that there is a discrepancy between the
observed production days and possible production days. There are 575 production days over
691 possible days such that the percentage of days left is 1 − (575/619) = 7.2%, which are
days where production could be set up in case of irregularities like machine breakdown or
sickness of employees. I assume that this percentage is enough to account for uncertainties
in my model.

5.8 Penalty cost

When the inventory of a product i on a day is below the safety stock of i, a penalty cost is
multiplied with the penalty, see constraint (4) and the objective function (2). This cost is
set at 6 for all i, as this value yields the desired stock levels, preferably above safety stock
when machine capacity allows for it.
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6 Finding a solution

Now the models to solve have been formulated (see section 3.2) and all parameters are
defined (see section 5), we can start the solving procedure. The first step is to determine
initial production quantities, then we determine initial sequences which are evaluated in
the third step, where we recompute the quantities. Finally, the model is further improved
with a heuristic that improves the setup times between days and deletes setups for which
production quantities are low, if possible. After each step, the results are visually presented.
A comparison of the results from steps 3 and 4 with the results from the case if a planner
would schedule the orders is done in chapter 7. The current demand spans over 691 days,
with 575 actual production days. In the end, it is not of importance to find a solution for all
575 production days, to be able to compare the two production strategies with respective
total production times. I assume that the most recent 30 days from the data set are enough,
see table 19 in the appendices. This particular time frame contains a diverse mix of product
demands per day, providing a valid portrayal of the whole dataset.

6.1 Step 1 - Determine initial production quantities per period

To determine the initial quantities, the problem stated in section 3.2.1 is implemented in
AIMMS and solved with CPLEX. For Single Decks, no solution can be found, because of the
machine capacity restriction: Demand for some days is higher than what the machine can
produce plus the maximum inventory, this is the case for product 4x1.15mm. One option
is to increase the maximum inventory, but this leads to overfull inventory on days when
demand is low. The other option applied is to spread out the peaks in demand over two
days when demand exceeds what can be delivered on a day. The spread occurs over the day
of observation and the previous day and the adjusted demand can be found in table 20 in
the appendices. This indeed, yields a solution, see figure 7. For Double Decks, a solution is
found without adjustments needed, see figure 8. It is immediately visible that the demand
on single decks is much more spread out compared to the double decks’ production strategy,
on the one hand, due to the manual spread out of demand but on the other hand mostly
because the production speed is lower (see table 9) such that demand must be produced
beforehand and put on stock to satisfy demand. Another proof for this is that for double
decks the machine is not set up on day-21 as demand can be satisfied without producing on
this day.

Figure 7: Initial quantities on single decks
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Figure 8: Initial quantities on double decks

6.2 Step 2 - Determine initial sequences

In this step, the initial quantities from section 6.1 are used to formulate setup matrices,
explained in section 3.2.2, for the quantities to be produced per day which are solved in
Python 3.12, specifically with a library written in pure Python for solving typical TSPs.
The code loops over all production days and finds the shortest path solution between setups
for all items to be produced on a day. As explained in section 3.2.2, the last setup of a day
is the starting setup of the next day represented in row 0. Column 0 consists of entire zeros
to restrict the TSP from going back to the start but end at the last product to schedule. A
listing of the code can be found in the appendices, see 9.4

(a) Single decks (b) Double decks

Figure 9: Setup times per day after solving the TSP matrices

When analyzing the figures 9a and 9b, it becomes clear that on double decks, the initial
setup time per day is higher compared to single decks represented on the left hand horizontal
axis, even tough the items to schedule represented on the right hand side horizontal axis are
on average slightly lower (3.8 versus 3.467 items) see figure 9.

31



6.3 Step 3 - Sequence evaluation

Having determined the initial sequences, the following step is to solve the DP from section
3.2.3 with the initial quantities and sequences as input. This DP yields new production
quantities per day the machine is set up from the predetermined sequences and is solved
again in AIMMS with CPLEX. For single decks, no solution can be found because the
starting inventory and machine capacity cannot meet the demand at day-01 for 4x1.15.
Therefore, the starting inventory is increased by 6 Haspels to a total 12 such that the
starting inventory and machine capacity can meet demand. As it can be seen in figure 10,
the time needed to produce those 6 Haspels is later on added again to the production time,
which results in producing more than technically possible. The sum of production and setup
time is higher than the machine capacity for day-01, but over the total of 30 days, the sum
of production time and setup time is still below the sum of maximum machine capacity
over 30 days. When applying this case in reality, it would mean that the production would
be delayed by this overtime. The figures 10 and 11 show the total time needed to satisfy
demand, but when looking back at the recursion formula from step 3 in section 3.2.3, also
penalty costs are included. To account for the delay in production caused by the overtime,
another penalty needs to be incurred, which is letting the overtime count double.

Figure 10: Step 3 - Production and setup times per day on single decks

Figure 11: Step 3 - Production and setup times per day on double decks
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For single decks, the time needed to produce orders is 654.93 hours, with inventory penalty
costs of 11.9 hours and 1.94 hours for overtime. The total production time with costs is
668.77 hours. There are no extra overtime costs incurred for double decks. Demand can
still be satisfied without production on day-21. Just the time needed to produce orders is
424.19 hours, with inventory penalty costs of 3.2 hours. The total production time with
costs is 427.39 hours.
When comparing the setups scheduled in the TSP sequences with the output of the DP of
step 3, there are 9 setups for single decks and 11 setups for double decks, for which the
machine is set up, but the production quantity is zero. This indicates that Step 4 is needed
to further improve the sequences by rescheduling and deleting items.

6.4 Step 4 - Sequence improvement

In this last step, I will improve the sequence, by applying the heuristic described in figure
5. For single decks in total, I was able to delete 19 setups for which the production quantity
was < 3 and improve two sequences such that the setup between those two stages became
zero, see figure ??, as there existed a product i in both sequences which could be scheduled
as last and first item of the two respective sequences. The number of iterations of the
heuristic for single decks was three. After this, the setups scheduled in the TSP matrices
were identical to the re-optimization setups. There were no further setups that could be
deleted, for which the solution was feasible. In total for double decks, I was able to delete
28 setups and improve four sequences for the same reasons as for single decks, see figure ??.
Also here, the number of iterations of the heuristic was three. There were no further setups
that could be deleted, for which the solution was feasible.

Figure 12: Setups deleted (Move 1) and sequences rescheduled per iteration(Move 2): SD:
Single Decks, DD: Double Decks
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For single decks, the time needed to schedule orders is 649.83 hours. With inventory penalty
costs of 11.5 hours and 1.94 hours for overtime, the total production time with costs is 661.27
hours. The time needed per day for this strategy can be seen in figure ??.

Figure 13: Step 4 Production and setup times per day on single decks

For double decks, the time needed to just schedule the orders is 403.44 hours. With inventory
penalty costs of 6.95 hours, the total production time with costs is 410.39 hours. The time
needed per day for this strategy can be seen in figure 14.

Figure 14: Step 4 Production and setup times per day on double decks
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7 Experiments and further analysis of results

In this chapter, I will analyze the performance of the heuristic by comparing it to a situation
where a planner would schedule the orders. Here, performance is based on just the time
needed to schedule the orders, the total production time, and setup times. Next, I will
analyze which of the two production strategies performs best time-wise and financially. After
this, I will analyze which implications the results of the best strategy have for standardized
lot sizes.

7.1 Total production time if a planner would schedule the orders

If planners would schedule the orders, their approach would be similar to the first two
steps of the solving approach: They schedule to fulfill demand and to fill up the inventory.
Additionally, they schedule ahead for the next 24 hours, as steps 1 and 2 of the solving
approach do. This leads to overtime, meaning production delays. But their solution is still
feasible as the sum of the production and setup time, which is 655.58 hours for single decks
and 424.19 hours for double decks is still lower than the sum of the maximum machine
capacity which is 30×24 = 720 hours. As more time is needed than available on some days,
the overtime will be seen as a penalty cost and is therefore counted double like the case
in section 6.3. For single decks, this overtime penalty is 14.55 hours and the penalty for
inventory being below safety stock is 10.3 hours, this leads to a total production time with
costs of 680.42 hours. For double decks, the overtime penalty is 7.64 hours and the inventory
penalty is 2.4 hours, therefore the total production time with costs is 434.23 hours.

(a) Single decks (b) Double decks

Figure 15: Production and setup times if planners would schedule the orders
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7.2 Comparison of the planners and heuristic times

Now we have determined the scheduling time for planners and computed near-optimal so-
lutions in chapter 6, we can compare both cases and analyze how the heuristic performs. In
tables 15 and 16 we can see, that the improvement of the last step of the heuristic SP4 is
fairly low when looking at the production and setup time, and the total production time.
This is because the improvement steps do not influence the production time but only setup
time and penalties incurred. No matter how the orders are scheduled, the time needed to
produce the orders remains almost unchanged. The row production time shows, that there
are some discrepancies, those can be traced back to the differences in inventory at the end of
day-30. The models are not forced to end with a specific inventory level such that one model
can produce more or less compared to another if it weighs up against the inventory penalty
or reduced setup time or is related to maximum machine capacity. The percentage of time
needed for the production of orders is approximately 97% for single decks and around 88%
for double decks in the case of the last step, see figures ?? and 14. This means that only 3%
and 12% of time for single and double decks respectively could be optimized. For further
analysis, I will therefore disregard the production time and only look at elements that could
be improved. For both single decks and double decks, the setup time can be decreased
drastically due to sequence optimization and setup deletion by the sequence improvement
heuristic. In the case of penalties, the behavior for single and double decks is different.
In table 15 we can see that for SP3, the penalties are decreased by 44.32%, related to lower
costs incurred for overtime usage. The slight decrease in penalties from SP3 to SP4 is related
to better coordination of setups that leads to lower inventory penalty costs. Combining setup
times and penalties, the total decrease is 32.47%.

Variables (in hours) Planners SP3 Improvement SP4 Improvement
Total production time 680.42 668.77 1.71% 663.26 2.52%
Production and setup time 655.58 655.93 0.10% 649.83 0.88%

Production time 627.58 626.93 0,00% 627.58 0,00%
Setup time 28 28 0.00% 22.25 20.54%

Penalties 24.85 13.83 44.32% 13.43 45.93%
Inventory penalty 10.30 11.90 -15.54% 11.50 -11.65%
Overtime penalty 14.55 1.93 86.70% 1.93 86.70%

Setup time and penalties 52.85 41.83 20.84% 35.68 32.47%

Table 15: Comparison of times on single decks

Variables (in hours) Planners SP3 Improvement SP4 Improvement
Total production time 434.23 427.39 1,58% 410.39 5.49%
Production and setup time 424.19 424.19 0,00% 403.44 4.89%

Production time 359.69 359.69 0,00% 355.94 0,00%
Setup time 64.50 64.50 0,00% 47.50 26.36%

Penalties 10.04 3.20 68.13% 6.95 30.78%
Inventory penalty 2.40 3.20 -33.33% 6.95 -189.58%
Overtime penalty 7.64 0 100% 0 100%

Setup time and penalties 74.54 67.70 9.18% 54.45 26.95%

Table 16: Comparison of times on double decks

For penalties incurred in double decks, we first observed a decrease at SP3 related to no
overtime usage anymore. Then, at SP4, we see an increase in inventory penalties, because
the setup times are decreased and this decrease in setup time outweighs the increase in
penalty costs. The question, of why we do not observe this increase in penalties for single
decks, may arise during the comparison of results. This is simply related to the fact that
setup times for single decks can not be reduced as drastically as for double decks due to
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limited machine capacity which can be seen figure 15a. As the decrease in setup time is less
significant compared to double decks, we do not observe an inventory increase but a slight
decrease. When we combine setup time and penalties for double decks we can observe an
improvement of 26.95%.
In figure 3 and in the research questions, see section 1.11.1, I stated the goal that the total
production time can be optimized. With total production time being defined as the sum of
production time, setup time, and penalties as is done for the objective functions in chapter
3 and the results in chapter 6, the improvement percentages are 2.52% and 5.49% in tables
15 and 16 respectively. But as explained above, the production time can not be optimized,
we just have to meet the demand. So, suppose we disregard the almost constant variable
production time and only take into consideration elements that are to be optimized which
are setup time and penalties. In that case, reduction percentages are 32.47% and 26.95%
for single and double decks respectively. This means, that there is available evidence that
supports the effectiveness of the heuristic in its functioning, as indicated by the improvement
percentages.

7.3 Financial analysis on which production strategy performs best

The final values for setup time and production time can be used to determine the financial
implications of each production strategy. Table 17 denotes the price per minute it costs to
run a machine during production or to set up a machine. The setup cost is also based on
the amount of operators needed to set up the machine. Due to reasons of confidentiality,
the price per minute cost presented is multiplied by a factor only known to people within
the organization. This means that the costs to be discussed are different in reality, but the
implications and advice presented to TKF remain unchanged.

Single decks Double decks
Production Setup Production Setup

Price per min. 1.265 0.486 1.265 1.474
Price * time 794.137 10.824 450.401 70.025
Total price 804.961 520.426

Table 17: Cost price analysis over the demand horizon of 30 days

The setup time price per minute for double decks is more expensive compared to single
decks because more operators are needed to set up the machine. When just looking at the
time needed to schedule the orders, the single decks production strategy seems attractive,
because setup times are lower, and the machine can meet all demand over 30 days. But
when we add the costs related to each production strategy it becomes clear that it is cheaper
to operate on double decks even though more time is needed to setup the machine. The
higher production output and thus lower production cost over 30 days simply outweighs the
extra cost related to more operators needed and longer setups between orders. Summarizing
this financial analysis, we can say that producing on double decks is the cheapest option.

7.4 Standardized lot sizes from the output of SP4

Based on the financial evidence, that producing on double decks is cheaper, we can determine
standardized lot sizes see 18, which is the median of the observed production quantity per
product i.

Product 3x1.15 4x1.15 5x1.15 3x0.4 8x0.4 3x0.5 8x0.5
Median 10 42 5 4 7 6 29

Table 18: Standardized lot sizes over the demand horizon of 30 days
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8 Answers on research questions

Now that we have obtained all the necessary results, we can provide an answer to the
question from section 1.6 by briefly summarizing the findings of the thesis and addressing
each research question.

8.1 Answers on main research questions

1. Which production policy (1 fixed deck vs 2 open decks) yields a better performance
in terms of the lowest total production time and which batch sizes result from this?

Double decks has the lowest total production time and is also cheaper financially
speaking, see figures ?? and 14 and section 7.3. The batch sizes that result from this
can be found in table 18.

2. Which mathematical heuristic fits the goals to reduce the total production time and
to determine optimal lot sizes in a manufacturing environment? (Related to finding a
correct mathematical framework method)

This research is based on the framework of Laguna (1999) and is adjusted to the
specifications of the problem described throughout chapter 1. It reduces setup times
and creates a near-optimal solution, see figures ?? and 14. The goal to reduce to-
tal production time is achieved of which the largest improvement is observed in the
combination of setup times and penalties, see table 16.

3. How to minimize the total production time considering the input constraints (from no
policy to approximation of minimal total production time) for the newly purchased
machine? (Related to the correctness of the model equations)

To minimize total production time, step 4 of the heuristic is the most significant where
we optimize sequences and delete setups such that production gets more clustered and
the setup time and number of setups are reduced, see figure 5 for the theoretical
approach and figures ?? and 14 for the solution.

8.2 Answers on sub-research questions

4. What are the safety stock levels needed, considering a 95% service level, based on
demand for wires drawn on the new machine?

The safety stock levels based on the double decks production strategy can be found in
table 12.

5. What is the demand per type of wire on the new machine?

The demand per type of wire is determined throughout chapter 4 and can be found
in the appendix, see table 19. For single decks the adjusted demand from table 20 is
used.

6. What is the maximum possible mix of inventory of wire drawn, assuming a 10%
shrinking inventory capacity, on the new machine (from 100% inventory storage to
90%)

The maximum inventory determined is 96, see table 12. This is far below the current
inventory size of 201 Haspels.

7. How to implement uncertainty in a dynamic programming model and heuristic?

Uncertainty is implemented in the sense that there are production days with no de-
mand registered that account for days that can not fulfill demand due to machine
breakdown or sickness of employees, see section 5.7 for further explanation.
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9 Conclusion

Based on the results of this bachelor’s thesis, I can give recommendations to TKF and advice
on further research to be executed. Before that, I state the contributions of this thesis on
research and its limitations.

9.1 Contributions to research

My contribution to the research on CLSDPs is the development of a heuristic, see figure 5
that improves setup times and therefore also total production time. This heuristic is specific
to the case, where inventory below safety stock is treated as a penalty instead of the case
where inventory is treated as a holding cost and the objective is to reduce production time.

9.2 Limitations

This thesis considers only historical demand, instead of forecasted demand, see section 4.5
for further explanation. Furthermore, the heuristic makes assumptions on which items to
consider for improvement. This might reduce the set of all improvements that could be
made, such that there might exist a solution that yields a lower total production time.

9.3 Recommendations

My first recommendation for TKF, is to use the double decks production strategy as I have
proven that it is faster and cheaper than single decks to satisfy demand. Furthermore, based
on the double decks strategy, I recommend using the accompanying parameters for safety
stock and maximum inventory to use for the actual inventory management policy. The
new maximum inventory needed is 50% of the size of the current inventory and demand
can still be satisfied, such that the area not needed for inventory anymore can be used for
other projects that need more surface, which was not available beforehand. Based on the
results of the heuristic, I recommend clustering demand to avoid production setups for small
production quantities whenever possible. This improves total production time and reduces
costs. With these points mentioned the machine can be successfully implemented from a
supply chain perspective.

9.4 Further research

Regarding further research, there are a few points that can be investigated. First, it can be
further analyzed how the production schedule would change if demand is not scheduled per
day but per week. This would lead to larger production quantities of a product certainly,
but the specific impact on safety stock, maximum inventory, lead time, and total setup time
needs to be investigated. Second, it can be analyzed if the result of the total production time
changes significantly if Laguna’s Tabu Search heuristic is employed. And if so, how the total
production time is further improved. Third, in the light of automation, the possibilities for
scheduling orders automatically based on the methods from Lagunas paper and my research
can be investigated.
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Appendix I: Background - Purchasing motivation of the
new machine

The core problem before the investment of the new machine, that is outside of the scope
of this research, can be traced back to the issue that the current production steps are not
combined into one, see Figure 16. This leads to inefficient production and a low degree of
automation on the single machines compared to what could be possible as explained above.
My research, however, does not focus on the reasons for the purchase but on developing a
scheduling policy, it has already been purchased. For the sake of completeness, this part is
necessary to understand my research on integrating the machine into the production process.

Figure 16: Purchasing motivation
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Appendix II: Computation of results from the Chi-squared
test

For 4x1.15mm the output by Wolfram Mathematica is: FrechetDistribution [5.66711,
74.3673, -54.3665], GammaDistribution [2.20892, 13.7142], LogNormalDistribution
[3.16782, 0.739563]. The number of observations is n = 555. The Frechet distribution can
not be plotted in excel, therefore the test is only performed for the Gamma and LogNormal
distribution (figure 17b). From the Chi-Squared test (figure 17a), it follows, that the h0

hypothesis must be rejected when alpha is 0.05 for both distributions. For a value of 0.01
for alpha, the h0 hypothesis can be accepted for the LogNormal distribution.

X2
(0.01,24) = 42.980 ≥ X2 = 42.255 (66)

Based on the same assumption as for 3x1.15mm (4.4.1), the LogNormal distribution can
represent product 4x1.15mm with parameters [µ = 3.16782, σ = 0.739563]. With equations
(54) - (56) for the LogNormal distribution, the mean of 4x1.15mm is 31.227, the variance is
1339.530, and the standard deviation is 36.600.

(a) Chi-Squared test (b) Observed and expected frequencies

Figure 17: Distributions for 4x1.15mm
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For 5x1.15mm the output byWolframMathematica is: WeibullDistribution[0.93422, 10.7001,
0.689546], LogNormalDistribution[2.0028, 1.01037], GammaDistribution[1.22971, 9.53361].
The number of observations is n = 104 and the first distribution given by Wolfram Mathe-
matica is the Weibull distribution. Here, for a value of 0.05 for alpha, the h0 hypothesis can
be accepted (figure 18). This means that the Weibull distribution can be used to represent
product 5x1.15mm with parameters [α = 0.93422, β = 10.7001, µ = 0.689546]. The mean
and variance of this distribution are given by

mean = µ+ βΓ(1 + 1/α) (67)

variance = β2[Γ(1 + 2/α)− Γ(1 + 1/α)2] (68)

where the mean is 11.73, the variance is 53.112, and the standard deviation is 7.288 ((56)).

(a) Chi-Squared test (b) Observed and expected frequencies

Figure 18: Distributions for 5x1.15mm

For 3x0.4mm the output by Wolfram Mathematica is: ExponentialDistribution[0.881691],
GammaDistribution[0.986955, 1.14918],WeibullDistribution[0.999077, 1.13375]. The num-
ber of observations is n = 139 and the first distribution given by Wolfram Mathematica is
the Exponential distribution. Here, for a value of 0.05 for alpha, the h0 hypothesis can
be accepted (figure 19). This means that the Exponential distribution can be used to rep-
resent product 3x0.4mm with parameter [λ = 0.881691]. The mean and variance of this
distribution are given by

mean = 1/λ (69)

variance = 1/λ2 (70)

where the mean is 1.134, the variance is 1.286, and the standard deviation is 1.134 ((56)).

(a) Chi-Squared test (b) Observed and expected frequencies

Figure 19: Distributions for 3x0.4mm
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For 8x0.4mm the output by Wolfram Mathematica is: ExponentialDistribution[0.120084],
WeibullDistribution[1.03609, 8.43979], GammaDistribution[1.01026, 8.24293]. The num-
ber of observations is n = 139 and the first distribution given by Wolfram Mathematica is
the Exponential distribution. Here, for a value of 0.05 for alpha, the h0 hypothesis can be
accepted (figure 20). This means that the Exponential distribution can be used to represent
product 8x0.4mm with parameter [λ = 0.120]. With equations (69), (70), and (56) for the
Exponential distribution, the mean of 8x0.4mm is 8.328, the variance is 69.347, and the
standard deviation is 8.328.

(a) Chi-Squared test (b) Observed and expected frequencies

Figure 20: Distributions for 8x0.4mm

For 3x0.5mm the output by Wolfram Mathematica is: ExponentialDistribution[0.31555],
GammaDistribution[0.890536, 3.55861],WeibullDistribution[0.942782, 3.08925]. The num-
ber of observations is n = 191 and the first distribution given by Wolfram Mathematica is
the Exponential distribution. Here, for a value of 0.05 for alpha, the h0 hypothesis can be
accepted (figure 21). This means that the Exponential distribution can be used to represent
product 3x0.5mm with parameter [λ = 0.316]. With equations (69), (70), and (56) for the
Exponential distribution, the mean of 3x0.5mm is 3.169, the variance is 10.043, and the
standard deviation is 3.169.

(a) Chi-Squared test (b) Observed and expected frequencies

Figure 21: Distributions for 3x0.5mm
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For 8x0.5mm the output byWolframMathematica is: WeibullDistribution[1.18395, 34.9943],
HalfNormalDistribution[0.0299915], GammaDistribution[1.2684, 26.0889]. The number
of observations is n = 368 and the first distribution given by Wolfram Mathematica is the
Weibull distribution. Here, for a value of 0.05 for alpha, the h0 hypothesis can be accepted
(figure 22). This means that the Weibull distribution can be used to represent product
8x0.5mm with parameter [α = 1.18395, β = 34.9943]. With equations (67), (68), and (56)
for the Weibull distribution, the mean of 8x0.5mm is 33.034, the variance is 369.756, and
the standard deviation is 19.229.

(a) Chi-Squared test (b) Observed and expected frequencies

Figure 22: Distributions for 8x0.5mm

For 3x0.6mm the number of observations is n = 6, and for 8x0.6mm the number of observa-
tions is n = 21. These are below the boundary of 100 data points to be able to confidently
plot a distribution over the observed frequency (Anderson & Gerbing, 1984). But as the days
of production (number of observations) are minimal compared to the other products, there
is no need to determine parameters like the safety stock, thus no distribution is needed for
those two products. Demand of the two products will be handled as make to order (MTO),
this is a term used by TKF to specify that the quantity of production must never exceed
the demand for a production day, no inventory is allowed for this product.
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Appendix III: Demand

Date 1.15x3 1.15x4 1.15x5 0.4x3 0.4x8 0.5x3 0.5x8
10/18/2023 8 52 0 1 5 0 41
10/19/2023 7 29 0 1 4 0 17
10/20/2023 4 14 0 0 0 0 0
10/23/2023 13 88 0 0 0 0 0
10/24/2023 5 35 0 0 0 0 0
10/25/2023 9 47 0 1 1 0 21
10/26/2023 10 25 0 1 3 0 9
10/27/2023 1 15 14 1 4 0 0
10/29/2023 3 41 24 0 0 0 0
10/30/2023 2 21 5 1 1 0 6
10/31/2023 12 21 0 0 0 0 30
11/1/2023 6 41 0 0 0 2 43
11/2/2023 6 37 0 0 0 5 22
11/3/2023 12 32 11 0 0 2 18
11/5/2023 17 77 3 0 0 0 0
11/6/2023 5 18 2 0 0 4 26
11/7/2023 8 21 2 0 0 1 9
11/8/2023 15 24 0 0 0 2 34
11/9/2023 4 22 3 0 0 0 33
11/10/2023 7 48 0 0 0 0 25
11/11/2023 1 7 0 0 0 0 0
11/12/2023 6 46 4 0 0 0 0
11/13/2023 1 7 0 0 0 0 16
11/14/2023 5 33 0 1 9 0 8
11/15/2023 6 37 0 1 1 0 0
11/16/2023 6 40 3 0 0 0 12
11/17/2023 2 11 0 0 0 0 0
11/20/2023 19 134 11 0 0 0 0
11/21/2023 2 17 3 0 0 0 24
11/22/2023 3 18 0 0 0 0 20

Table 19: Demand over 30 days
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Date 1.15x3 1.15x4 1.15x5 0.4x3 0.4x8 0.5x3 0.5x8
10/18/2023 8 52 0 1 5 0 21
10/19/2023 7 29 0 1 4 0 27
10/20/2023 4 58 0 0 0 0 10
10/23/2023 13 44 0 0 0 0 0
10/24/2023 5 35 0 0 0 0 0
10/25/2023 9 47 0 1 1 0 21
10/26/2023 10 25 0 1 3 0 9
10/27/2023 1 15 14 1 4 0 0
10/29/2023 3 41 24 0 0 0 0
10/30/2023 2 21 5 1 1 0 6
10/31/2023 12 21 0 0 0 0 30
11/1/2023 6 41 0 0 0 2 43
11/2/2023 6 37 0 0 0 5 22
11/3/2023 12 32 11 0 0 2 18
11/5/2023 17 77 3 0 0 0 0
11/6/2023 5 18 2 0 0 4 26
11/7/2023 8 21 2 0 0 1 9
11/8/2023 15 24 0 0 0 2 34
11/9/2023 4 22 3 0 0 0 33
11/10/2023 7 48 0 0 0 0 25
11/11/2023 1 7 0 0 0 0 0
11/12/2023 6 46 4 0 0 0 0
11/13/2023 1 7 0 0 0 0 16
11/14/2023 5 33 0 1 9 0 8
11/15/2023 6 37 0 1 1 0 0
11/16/2023 6 40 3 0 0 0 12
11/17/2023 2 78 0 0 0 0 0
11/20/2023 19 67 11 0 0 0 0
11/21/2023 2 17 3 0 0 0 24
11/22/2023 3 18 0 0 0 0 20

Table 20: Adjusted demand for single decks over 30 days
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Appendix IV: Python code for step 2 and 4 of the solving
procedure

The following two listings are the code used to solve the TSP matrices. The first listing is
used for step 2 and the second for step 4 of the solving procedure, including the setup to
the first item of the next day.

1 # Determine the Initial Sequence

2 import pandas as pd

3 import numpy as np

4 from pandas import DataFrame

5 from python_tsp.exact import solve_tsp_dynamic_programming

6

7 # df_InitialQuantitiesDay1 = pd.read_excel(r"C:\ Users\Micha\PycharmProjects\

Thesis_TSP\InitialQuantities.xlsx", usecols ="B")

8 # df_InitialQuantities = pd.read_excel(r"C:\ Users\Micha\PycharmProjects\

Thesis_TSP\InitialQuantities.xlsx", usecols ="C:AE")

9

10 df_InitialQuantitiesDay1 = pd.read_excel(r"C:\Users\Micha\PycharmProjects\

Thesis_TSP\SP3 quantities.xlsx", usecols="B")

11 df_InitialQuantities = pd.read_excel(r"C:\Users\Micha\PycharmProjects\

Thesis_TSP\SP3 quantities.xlsx", usecols="C:AE")

12 df_ChangeoverSingleDeck = pd.read_excel(r"C:\Users\Micha\PycharmProjects\

Thesis_TSP\ChangeoverMatrix.xlsx",

13 index_col=0, usecols="A:H", nrows =7)

14

15 df_InitialQuantitiesDay1[df_InitialQuantitiesDay1 > 0] = 1

16 df_InitialQuantities[df_InitialQuantities > 0] = 1

17

18 # Initialize an empy list to store sequences

19 data_sequences = []

20

21 # zero arrays for later use

22 rowJ = np.arange (8) * 0

23 rowX = np.arange (7) * 0

24

25 # sequence dependent matrix

26 changeover_matrix = np.array(df_ChangeoverSingleDeck)

27

28 # setup matrix where row 0 is used for the index of product k

29 Setup_matrix = np.array(df_ChangeoverSingleDeck)

30 Setup_matrix = np.append(rowX.reshape(1, 7), Setup_matrix , axis =0)

31

32 print("The changeover times are:")

33 print(changeover_matrix)

34 print("The setup times are:")

35 print(Setup_matrix)

36

37 print("This is the TSP per production day")

38

39 # determine the sequence for day 1

40 for coll in df_InitialQuantitiesDay1:

41 Day1 = np.asarray(df_InitialQuantitiesDay1[coll])

42 QuantitiesDay1_Matrix = np.multiply.outer(Day1 , Day1)

43 TSP_Day1 = np.multiply(QuantitiesDay1_Matrix , changeover_matrix)

44

45 # delete all zero rows and columns

46 TSP_Day1 = TSP_Day1 [~np.all(TSP_Day1 == 0, axis =1)]

47 TSP_Day1 = TSP_Day1[:, ~np.all(TSP_Day1 == 0, axis =0)]

48 # no turning back to starting state

49 TSP_Day1[:, 0] = 0

50

51 # Keep track of item indices (index +1) to sequence

52 TrackVar1 = np.arange(1, len(Day1) + 1) * Day1

53 TrackVar1 = TrackVar1[TrackVar1 != 0]

54
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55 # solve TSP day 1

56 permutation , distance = solve_tsp_dynamic_programming(TSP_Day1)

57 SequenceDay1 = solve_tsp_dynamic_programming(TSP_Day1)[-2]

58 SequenceDay1 = np.array([i + 1 for i in SequenceDay1 ])

59 LastItem = SequenceDay1 [-1]

60 FirstDistance = TSP_Day1[0, 0]

61 Distance = solve_tsp_dynamic_programming(TSP_Day1)[-1]

62 DistanceWithoutFirstItem = Distance - FirstDistance

63

64 # ensure correct representation of sequence

65 Indices1 = np.append(TrackVar1.reshape(1, len(TrackVar1)), SequenceDay1.

reshape(1, len(SequenceDay1)), axis =0)

66 for i in range(len(Indices1 [0])):

67 Indices1[1, i] = Indices1[0, Indices1[1, i] - 1]

68 SequenceDay1 = Indices1[1, :]

69 LastItem = SequenceDay1 [-1]

70 FirstItem = SequenceDay1 [0]

71 sequences_string = "[" + ", ".join(map(str , SequenceDay1)) + "]"

72 output_string = "(" + sequences_string + ", " + str(Distance) + ")"

73

74 print(coll , "TSP matrix")

75 print(TSP_Day1)

76 print(coll , "Items to sequence:", TrackVar1)

77 print(coll , "Solution:", output_string)

78 print(coll , "Last item:", LastItem)

79

80 # store data

81 data_sequences.append ({’Days’: coll , ’Sequence ’: sequences_string , "

Distance": Distance ,

82 "Last Item": LastItem , "First Item": FirstItem ,

83 "First Distance": FirstDistance , "Distance without

First Item": DistanceWithoutFirstItem })

84

85 # determine sequences for days 2-30

86 for col in df_InitialQuantities:

87 # create a matrix from the initial quantities

88 vectorA = np.array(df_InitialQuantities[col])

89 InitialQuantities_Matrix = np.multiply.outer(vectorA , vectorA)

90

91 # compute the matrix product of the quantities matrix and the changeover

matrix

92 TSP_per_Day = np.multiply(InitialQuantities_Matrix , changeover_matrix)

93

94 # enter last Item of t-1 sequence into row 0 as setup state

95 SequenceLastItem = np.multiply(Setup_matrix[LastItem , :], vectorA)

96 TSP_per_Day_K = np.append(SequenceLastItem.reshape(1, 7), TSP_per_Day ,

axis =0)

97 # add a 0 values column at column index 0 for an open TSP , it is not

required to go back to the origin

98 TSP_per_Day_KJ = np.append(rowJ.reshape(8, 1), TSP_per_Day_K , axis =1)

99

100 # Find columns where all values are zero and delete , starting from the

second column

101 zero_columns_starting_from_second = np.all(TSP_per_Day_KJ [:, 1:] == 0,

axis =0)

102 TSP_per_Day_KJ = TSP_per_Day_KJ [:, ~np.concatenate (([ False],

zero_columns_starting_from_second))]

103

104 # Find columns where all values are zero and delete , starting from the

second column

105 if TSP_per_Day_KJ.shape [1] > 2:

106 TSP_per_Day_KJ = TSP_per_Day_KJ [~np.all(TSP_per_Day_KJ == 0, axis =1)]

107 else:

108 vector0 = np.arange (2) * 0

109 TSP_per_Day_KJ = np.append(TSP_per_Day_KJ [:2, :], vector0.reshape(2,

1), axis =1)

110
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111 print(col , "TSP matrix")

112 print(TSP_per_Day_KJ)

113

114 # Keep track of item indices (index +1) to sequence

115 TrackVar = np.arange(len(vectorA) + 1) * np.insert(vectorA , 0, 1)

116 # Identify non -zero and delete zero elements starting from the second

element

117 non_zero_indices = np.nonzero(TrackVar [1:]) [0] + 1

118 TrackVar = np.concatenate (([ TrackVar [0]], TrackVar[non_zero_indices ]))

119 print(col , "Items to sequence:", TrackVar)

120

121 # solve TSP

122 permutation , distance = solve_tsp_dynamic_programming(TSP_per_Day_KJ)

123 Sequence = solve_tsp_dynamic_programming(TSP_per_Day_KJ)[-2]

124 Sequence = np.array(Sequence)

125 LastItem = Sequence [-1]

126 Distance = solve_tsp_dynamic_programming(TSP_per_Day_KJ)[-1]

127 FirstDistance = TSP_per_Day_KJ [0, Sequence [1]]

128 DistanceWithoutFirstItem = Distance - FirstDistance

129

130 # When LastItem equals 0, there is no transition into another state.

131 # So there is no changeover happening as the machine is already setup

132 # from the previous state for the one product to be made.

133 # Take the index from the one product scheduled as LastItem

134 if LastItem == 0:

135 # we need an extra 0 to account for the setup state as new index 0

136 IndexDummy = np.append ([0], vectorA)

137 LastItem = np.where(IndexDummy == 1)[0]. tolist ()[0]

138 Sequence = TrackVar

139 else:

140 # Sequence solution is based on the indices of manipulated TSP matrix

after row , column deletion

141 # Determine original indices of matrix before deletion , to get

correct sequences

142 Indices = np.append(TrackVar.reshape(1, len(TrackVar)), Sequence.

reshape(1, len(Sequence)), axis =0)

143 for i in range(len(Indices [1])):

144 Indices[1, i] = Indices[0, Indices[1, i]]

145 Sequence = Indices[1, :]

146 LastItem = Sequence [-1]

147

148 FirstItem = Sequence [1]

149 sequences_string = "[" + ", ".join(map(str , Sequence)) + "]"

150 output_string = "(" + sequences_string + ", " + str(Distance) + ")"

151

152 print(col , "Solution:", output_string)

153 print(col , "Last item:", LastItem)

154

155 data_sequences.append ({’Days’: col , ’Sequence ’: sequences_string , "

Distance": Distance ,

156 "Last Item": LastItem , "First Item": FirstItem ,

157 "First Distance": FirstDistance , "Distance without

First Item": DistanceWithoutFirstItem })

158

159 # save initial quantities in excel

160 df = pd.DataFrame(data_sequences)

161 df = df.set_index(df.columns [0], drop=True)

162 df_transposed = df.T

163 df_transposed.to_excel(r"C:\Users\Micha\PycharmProjects\Thesis_TSP\SP3

sequences.xlsx")

49



This is the second listing of the code:

1 import pandas as pd

2 import numpy as np

3 from pandas import DataFrame

4 from python_tsp.exact import solve_tsp_dynamic_programming

5

6 # df_InitialQuantities = pd.read_excel(r"C:\ Users\Micha\PycharmProjects\

Thesis_TSP\InitialQuantities.xlsx", sheet_name =" Sheet1", usecols ="B:AE")

7 df_InitialQuantities = pd.read_excel(r"C:\Users\Micha\PycharmProjects\

Thesis_TSP\SP3 quantities.xlsx",

8 sheet_name="Sheet1", usecols="B:AE")

9 df_ChangeoverSingleDeck = pd.read_excel(r"C:\Users\Micha\PycharmProjects\

Thesis_TSP\ChangeoverMatrix.xlsx", index_col=0,

10 usecols="A:H", nrows =7)

11 # df_FirstItem = pd.read_excel(r"C:\Users\Micha\PycharmProjects\Thesis_TSP\

Initial Sequences Single Decks.xlsx", index_col=0, skiprows =[1, 2, 3, 5,

6])

12 df_FirstItem = pd.read_excel(r"C:\Users\Micha\PycharmProjects\Thesis_TSP\SP3

sequences.xlsx",

13 index_col=0, skiprows =[1, 2, 3, 5, 6])

14 df_InitialQuantities[df_InitialQuantities > 0] = 1

15 print(df_FirstItem)

16 # zero arrays for later use

17 rowJ = np.arange (8) * 0

18 rowX = np.arange (7) * 0

19

20 # Initialize an empy list to store sequences

21 data_sequences = []

22 LastItem = 0

23

24 # sequence dependent matrix

25 changeover_matrix = np.array(df_ChangeoverSingleDeck)

26

27 # setup matrix where row 0 is used for the index of product k

28 Setup_matrix = np.array(df_ChangeoverSingleDeck)

29 Setup_matrix = np.append(rowX.reshape(1, 7), Setup_matrix , axis =0)

30

31 print("The changeover times are:")

32 print(changeover_matrix)

33 print("The setup times are:")

34 print(Setup_matrix)

35

36 print("This is the TSP per production day")

37

38 # determine sequences for days 1-30

39 columns = df_InitialQuantities.columns

40 for i, col in enumerate(columns):

41 # create a matrix from the initial quantities

42 vectorA = np.array(df_InitialQuantities[col])

43 InitialQuantities_Matrix = np.multiply.outer(vectorA , vectorA)

44

45 # compute the matrix product of the quantities matrix and the changeover

matrix

46 TSP_per_Day = np.multiply(InitialQuantities_Matrix , changeover_matrix)

47

48 if col == "day -01":

49 # add a row 0, with only zeros

50 TSP_per_Day_K = np.append(rowX.reshape(1, 7), TSP_per_Day , axis =0)

51 print(col , "we are inside the if statement")

52 else:

53 # enter last Item of t-1 sequence into row 0 as setup state

54 SequenceLastItem = np.multiply(Setup_matrix[LastItem , :], vectorA)

55 TSP_per_Day_K = np.append(SequenceLastItem.reshape(1, 7), TSP_per_Day

, axis =0)

56

57 # add transition times to First Item t+1 in col 0

58 if i < len(columns) - 1:
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59 next_col = columns[i + 1]

60 NextFirstItem = np.array(df_FirstItem[next_col ])

61 VectorNextFirstItem = np.array(Setup_matrix [:, NextFirstItem - 1])

62 TSP_per_Day_KJ = np.append(VectorNextFirstItem.reshape(8, 1),

TSP_per_Day_K , axis =1)

63 print(col , "Next First Item", NextFirstItem)

64 else:

65 # if it is the last day there is no setup to the next day , col 0 = 0

66 TSP_per_Day_KJ = np.append(rowJ.reshape(8, 1), TSP_per_Day_K , axis =1)

67

68 # Find columns where all values are zero and delete , starting from the

second column

69 zero_columns_starting_from_second = np.all(TSP_per_Day_KJ [:, 1:] == 0,

axis =0)

70 TSP_per_Day_KJ = TSP_per_Day_KJ [:, ~np.concatenate (([ False],

zero_columns_starting_from_second))]

71 # Find rows where all values are zero and delete , excluding row 0 and col

0

72 if TSP_per_Day_KJ.shape [1] > 2:

73 zero_rows_starting_from_second = np.any(TSP_per_Day_KJ [1:, 1:] != 0,

axis =1)

74 TSP_per_Day_KJ = np.vstack ([ TSP_per_Day_KJ [0, :], TSP_per_Day_KJ [1:][

zero_rows_starting_from_second ]])

75 else:

76 vector0 = np.arange (2) * 0

77 TSP_per_Day_KJ = np.append(TSP_per_Day_KJ [:2, :], vector0.reshape(2,

1), axis =1)

78 print(col , "TSP matrix")

79 print(TSP_per_Day_KJ)

80

81 # Keep track of item indices (index +1) to sequence

82 TrackVar = np.arange(len(vectorA) + 1) * np.insert(vectorA , 0, 1)

83 # Identify non -zero and delete zero elements starting from the second

element

84 non_zero_indices = np.nonzero(TrackVar [1:]) [0] + 1

85 TrackVar = np.concatenate (([ TrackVar [0]], TrackVar[non_zero_indices ]))

86 print(col , "Items to sequence:", TrackVar)

87

88 # solve TSP

89 permutation , distance = solve_tsp_dynamic_programming(TSP_per_Day_KJ)

90 Sequence = solve_tsp_dynamic_programming(TSP_per_Day_KJ)[-2]

91 Sequence = np.array(Sequence)

92 LastItem = Sequence [-1]

93 Distance = solve_tsp_dynamic_programming(TSP_per_Day_KJ)[-1]

94 LastDistance = TSP_per_Day_KJ[LastItem , 0]

95 FirstDistance = TSP_per_Day_KJ [0, Sequence [1]]

96 DistanceWithoutSetups = Distance - LastDistance - FirstDistance

97 # When LastItem equals 0, there is no transition into another state.

98 # So there is no changeover happening as the machine is already setup

99 # from the previous state for the one product to be made.

100 # Take the index from the one product scheduled as LastItem

101 if LastItem == 0:

102 # we need an extra 0 to account for the setup state as new index 0

103 IndexDummy = np.append ([0], vectorA)

104 LastItem = np.where(IndexDummy == 1)[0]. tolist ()[0]

105 Sequence = TrackVar

106 else:

107 # Sequence solution is based on the indices of manipulated TSP matrix

after row , column deletion

108 # Determine original indices of matrix before deletion , to get

correct sequences

109 Indices = np.append(TrackVar.reshape(1, len(TrackVar)), Sequence.

reshape(1, len(Sequence)), axis =0)

110 for x in range(len(Indices [1])):

111 Indices[1, x] = Indices[0, Indices[1, x]]

112 Sequence = Indices[1, :]

113 LastItem = Sequence [-1]
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114

115 FirstItem = Sequence [1]

116 sequences_string = "[" + ", ".join(map(str , Sequence)) + "]"

117 output_string = "(" + sequences_string + ", " + str(Distance) + ")"

118

119 print(col , "Solution:", output_string)

120 print(col , "Last item:", LastItem)

121

122 data_sequences.append ({’Days’: col , ’Sequence ’: sequences_string , "

Distance": Distance ,

123 "Last Item": LastItem , "First Item": FirstItem , "

First Distance": FirstDistance ,

124 "LastDistance": LastDistance , "Distance without

setups": DistanceWithoutSetups })

125

126 # save initial quantities in excel

127 df = pd.DataFrame(data_sequences)

128 df = df.set_index(df.columns [0], drop=True)

129 df.to_excel(r"C:\Users\Micha\PycharmProjects\Thesis_TSP\Sequences Single

Decks.xlsx")
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