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Abstract
The business landscape has experienced a change in marketing ideologies, where the conventional
goods-dominant logic has been replaced by service-dominant logic (SDL). This thesis addresses
the need for proactive customer service in the evolving business landscape for enhancing SDL.
The thesis utilizes a case study of a Computer Numerical Control (CNC) machine manufac-
turer to illustrate how proactive customer service could enhance SDL by minimizing machine
downtime. The findings reveal that predictive maintenance facilitates proactive addressing of
potential malfunctions. This thesis contributes to the theory by demonstrating how proactive
customer service, driven by predictive modeling on customer-generated real-time data, enhances
SDL. This emphasizes service as the primary value and leverages operant resources to enhance
customer production output, contributing to competitive advantage. Moreover, customers need
to provide data in order to act proactively, highlighting their role as co-creators of value. Ad-
ditionally, proactive service engages in delivering value propositions, builds relationships, and
acknowledges the subjective nature of value perception among customers, aligning with several
foundational premises of SDL. This thesis contributes to the practice by emphasizing the im-
portance of cloud-based storage capabilities in enhancing SDL.
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1 Introduction

1.1 Background/Phenomenon
The business landscape has witnessed a shift in marketing ideologies, the traditional goods-
dominant logic is replaced by service-dominant logic (SDL) (Vargo & Lusch, 2004). Economic
transactions were traditionally centred around the exchange of tangible goods. However, Vargo
and Lusch (2004) introduced a perspective that uses SDL, wherein goods are viewed as mech-
anisms for delivering services (Vargo & Lusch, 2017). An example of SDL is the use of mobile
devices where dedicated mobile phone applications maintain communication with their cus-
tomers, leading to brand equity, a driving force for improved business performance and sales
for a firm (Tran et al., 2021). The era of the Internet of Things (IoT) is aligned with SDL
by making use of real-time data. This data can then be used to create system dynamics and
allow organizations to adapt to specific information (Vargo & Lusch, 2017). Furthermore, in a
study by Lehrer et al. (2018), it is illustrated that big data analytics can serve as organizational
resources for service provision (Lehrer, 2018). Service provision has been traditionally reactive,
but by gathering and analysing customer-generated data, organizations can provide customer
support and provide service when it is needed or even in advance (Lehrer et al., 2018).

This study is motivated by the practical case of a company. This company wishes to remain
anonymous. The company is a CNC machine manufacturer that serves customers around the
globe, their service provision is currently reactive. The customer calls the organization to report
a malfunction or in case the machine does not function properly as the customer desires. The
company can solve 90% of the problems remotely, the remaining problems require on-site service.
Delays may occur due to unclear causes of malfunctions or unavailability of necessary parts. The
company recognizes the limitations of the current reactive service approach and aspires a tran-
sition towards SDL-based proactive customer service. With this approach, the company aims to
improve its capacity to anticipate service requirements and deliver timely solutions. The strate-
gic shift towards proactive customer service aligns with the goal of the company to offer more
efficient and customer-centric services. This indicates that the company wants to emphasize
delivering services instead of solely delivering machines. In order to implement such strategies,
the data should be properly collected. According to Lee (2014), not all production systems are
ready to manage big data due to the lack of smart analytical tools. These technologies enable
the prediction of product performance and the autonomous management and optimization of
product service needs (Lee et al., 2014).

This transition marks a shift from the company to a proactive approach to customer service,
focused on anticipating service and resolving issues in a timely manner, which are in line with
more efficient and customer-centric service delivery. Raub and Liao (2012) introduce the concept
of proactive customer service. Proactive customer service is defined as a self-starting, long-term-
oriented, and forward-thinking approach to service delivery. In this study, the researchers found
a significant relationship between aggregated proactive customer service performance and cus-
tomer satisfaction (Raub & Liao, 2012). Another study by Shin et al. (2017), demonstrates that
proactive customer service has a positive relationship with customer patronage behaviour (Shin,
2017). Customers who experience proactive interaction for service score higher for customer
patronage behaviour than customers who do not receive this. Customer patronage behaviour
refers to the consistent and repeated purchasing choices made by individuals towards a particular
business or brand over time (Philippe & N’Goala, 2010). By using customer-generated data, or-
ganizations can deliver customer-specific solutions in a timely manner. This is supported by Dey
et al. (2015), who describe a government agency, named the District Department of Colombia,
which has migrated to networked assets, facilitating real-time monitoring of their operational
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status and enabling proactive identification and response to problems before customers become
aware of them (Dey et al., 2015). By using customer-generated data, the company can embrace
SDL by acting proactively and delivering more efficient and customer-centered service.

1.2 Research gap
The literature addresses proactive maintenance strategies and the importance of real-time data
utilization facilitated by IoT, but there exists a gap in understanding how proactive customer
service can be achieved by utilizing machine data within the framework of SDL. According to
Swanson (2001), a proactive maintenance strategy is needed to provide proactive customer ser-
vice, this concept involves predictive and preventive maintenance to avoid equipment failures
(Swanson, 2001). By monitoring the status of machines and analyzing causes and effects, the
frequency of preventive maintenance and equipment conditions can be monitored (Zonta et al.,
2020). Zonta et al. (2020) defines preventive maintenance as scheduled maintenance, which is
performed based on fixed schedules at specific times. Contrarily, predictive maintenance uses
data and knowledge to report failures and prevent downtime. Predictive maintenance allows
for predicting trends, behaviour patterns, and correlations using statistical or machine learning
models to anticipate upcoming failures. This improves the decision-making process for mainte-
nance activities and minimizes downtime (Zonta et al., 2020). Predictive maintenance reduces
costs, minimizes downtime, and enhances productivity and quality (Zonta et al., 2020). To use
or implement predictive strategies, a substantial amount of data is necessary. A new era of big
data is emerging (Chen et al., 2012), this underscores the importance of further studying the phe-
nomenon that data allows real-time data capture of actor-centric behaviour using sensor-based
content through data analytics (Vargo & Lusch, 2017). Leveraging machine data for predictive
maintenance, as mentioned by Chen et al. (2012) and Zonta et al. (2020), presents an oppor-
tunity to bridge this gap and explore the integration of proactive customer service within the
SDL framework.

In conclusion, the research of Polo Peña et al. (2014), reveals that ICT capabilities are re-
quirements of value co-creation for the service industry within the SDL framework, as they en-
able active participation by customers in the value co-creation process (Polo Peña et al., 2014).
However, while Polo Peña et al. (2014) highlight the significance of firms in developing ICT
capabilities for value co-creation, it is urgent for organizations to leverage customer-generated
real-time data to enhance proactive customer service. Moreover, Vargo and Lusch (2015) indi-
cate that cooperative and coordinated behaviour between actors in a developed service ecosystem
leads to a more comprehensive representation of markets (Vargo & Lusch, 2015). By collabora-
tion in service ecosystems, the service delivery to the customer becomes more reliable (Agarwal
& Selen, 2009). This underscores the importance of enhancing proactive customer service. The
implication of proactive customer service is that customers who receive proactive customer ser-
vice would have a higher customer patronage behaviour level than customers that are receiving
reactive service (Shin et al., 2017).

1.3 Purpose of the study
The company delivers its steel processing machines to customers worldwide. Core aspects that
are central to the company are automation, optimization of output, and customer service. The
company provides various machines capable of performing various operations. Service contracts
are included with these machines, which are part of the company’s business strategy. In the
current situation, the customer service of the company responds when a customer reports a mal-
function. This strategy may be suboptimal since it could lead to a negative relationship with
a customer. For example, in case of a service failure, a malfunction occurs from the company’s
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machine that is running at a customer, the company’s reaction to addressing the issue could
either lead the customer to switch to a rival company or help in restoring customer satisfaction.
Service recovery, as described by Maxham (2001), is the process attempt of an organization to
rectify a service delivery failure (Maxham, 2001). Hart (1990) mentions that a good recovery
from a failure generates more goodwill compared to a situation where no issues arise (Hart et
al., 1990). Smith et al. (1999) note that is it needed to train customer service employees to
recognize service failures to reduce their effects on customer satisfaction (Smith et al., 1999).
These statements illustrate the importance of proactive customer service for the company’s op-
erations. Newman et al. (2019) mention that monitoring machine health can facilitate early
corrective measures, leading to higher service level performance (Newman et al., 2019). This
aligns with the thesis’s purpose of exploring proactive customer service for enhancing SDL. In
the literature, there is no systematic description of how SDL can be realized through proactive
customer service. Therefore, the following research question is drawn: “How can machine data
be used to enhance the realization of service-dominant logic? ”. Firstly, this research centers on
addressing sub-questions such as which machine data is suitable for utilizing predictive models,
which models are suitable for predicting machine failures, and how can the company utilize
predictive models to enhance SDL through proactive customer service.

It is relevant for the company to explore how data-driven customer service can be realized
and what challenges and benefits are involved. The customer service department of the com-
pany would like to know which available machine data they can use to set up proactive customer
service to embrace an SDL. According to Uhlmann et al. (2008), the feed axes of CNC machines
are the most mechanically stressed components due to high process forces and their operation in
a rough production environment (Uhlmann et al., 2008). Currently, it is unclear for the company
which machine data is useful for predicting malfunctions. Organizations have much data, stored
in many files and databases (Power, 2014). Therefore, there must be defined which machine
data could be used for predictive modeling to prevent future malfunctions.

This thesis is of relevance for the company because it focuses on developing proactive service
support for their CNC machines by using machine data. Improving machine output for their
customers may lead to an increase in the company’s competitive advantage (Vargo & Lusch,
2008). This thesis contributes to knowledge about the possibilities of machine data and how
this is used to establish proactive customer service and thus apply an SDL perspective.

This thesis contains practical relevance for organizations that want to embrace SDL. The paper
emphasizes the importance of proactive customer service and the use of data analytics. By
analyzing customer-generated data, organizations can deliver services proactively and enhance
an SDL perspective. Other businesses can learn from this business case and adapt their strategy
accordingly. This thesis is also relevant for organizations that would like to apply predictive
models to innovate their customer service, which could result in an improvement in customer
experience.

1.4 Outline of the study
This study starts with a literature review related to SDL, proactive customer service, high
reliability, and proactive maintenance strategy. Subsequently, the methodology chapter mentions
the study design and the data collection, that is used to answer the previously mentioned research
questions. After the methodology chapter, the results of the research are shown. The research
ends with a global discussion and conclusion based on the literature review and results.
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2 Theory

This chapter is a literature review of the different concepts. This chapter reasons that an SDL
perspective can be realized through proactive customer service and it posits that proactive
customer service is realized through high reliability and proactive maintenance strategy. Firstly,
SDL is described. Additionally, the concept of proactive customer service is elaborated. After
this, the relationship between SDL and proactive customer service is explained. In the last
section of the chapter, a framework for SDL through a proactive maintenance strategy and high
reliability is proposed. This framework contains the scope of the thesis.

2.1 Service-dominant logic

The SDL framework, introduced by Vargo and Lusch (2004), offers a marketing perspective that
shifts the focus of goods-dominant logic to a view where service is seen as the primary basis
of exchange. In SDL, goods are seen as mechanisms to deliver services (Vargo & Lusch, 2017).
Vargo and Lusch (2008) outline ten foundational premises (FP) of SDL, which are described
below (Vargo & Lusch, 2008).

FP1: Service is the fundamental basis of exchange.
FP1 underscores the idea that value is derived from knowledge and skills, as the basis of all
exchange. Exchange revolves around the application of operant resources, possessed by organi-
zations. Service provision is the core drive of value creation in economic exchanges.

FP2: Indirect exchange masks the fundamental basis of exchange.
FP2 argues that because services involve a mix of goods, money, and institutions, it is not al-
ways clear that the exchange is based on services. It highlights the complex nature of service
exchanges. Traditional economic perspectives focus on tangible goods and transactions, but this
overlooks the essential role of service for value creation.

FP3: Goods are a distribution mechanism for service provision.
This premise mentions that goods (both durable and non-durable) are needed to distribute ser-
vices. Value is derived through the use of the goods. It highlights the interdependence between
goods and services, wherein goods are acting as pathways for the delivery of services.

FP4: Operant resources (knowledge and skills) are the fundamental source of competitive ad-
vantage.
FP4 suggests that gaining competitive advantage lies in the effective use of an organization’s
operant resources. Operant resources, which encompass knowledge and skills, create a compet-
itive advantage through continuous learning, skill development, and knowledge management.

FP5: All economies are service economies.
This statement mentions that services always have been part of economies, but the recognition
that services become more noticeable due to specialization and outsourcing. It emphasizes that
value is in any economic exchange rooted in the delivery of services and experiences to customers.

FP6: The customer is always a co-creator of value.
The customer plays an active role in co-creating value through interacting with the service
provider, co-creation is enabled by collaboration. The value is not solely created by the provider
but by engagements between service providers and customers. This FP focuses on customer-
centricity by understanding customer needs in the value-creation process.
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FP7: The enterprise cannot deliver value, but only value propositions.
FP7 suggests that an enterprise can offer its resources to create value, but value cannot be cre-
ated by the enterprise independently; instead, it is generated through interactive collaboration
with customers. The service provider can only propose value propositions. Customers need to
actively participate in creating value through interactions and feedback.

FP8: A service-centered view is inherently customer-oriented and relational.
This statement suggests that a service-centered perspective is focused on customers and rela-
tions. This has come about because services are defined by the benefits determined by customers
and created together with customers. By building strong customer relationships, organizations
foster mutual understanding thereby enhancing the co-creation of value.

FP9: All social and economic actors are resource integrators.
FP9 argues that all parties involved in social and economic activities participate in combining
resources. A setting for creating value is networks, where actors with different resources collab-
orate to create value. By those networks, innovations, efficiency, and collective value creation
within ecosystems are enabled.

FP10: Value is always uniquely and phenomenologically determined by the beneficiary.
FP10 mentions that the perception of value is individual and subjective. This means that value
is unique for each individual. It underscores the importance of understanding and responding to
the differences in customer needs to address individual shortcomings and preferences effectively.

The ten foundational premises, created by Vargo and Lusch (2008), highlight the key prin-
ciples of SDL. Building upon these principles, Lusch et al. (2010) mention that “self-adjusting”
occurs when actors sense and respond to their continued market relevance and viability. This
helps to overcome the cognitive gap among the actors (Lusch et al., 2010). Through these basic
principles and the concept of self-adaptation, proactive service emerges as a solution to enhance
market relevance and facilitate more effective value co-creation. If actors act proactively, the
cognitive gaps will be bridged and value co-creation in the market environment will be enhanced.

By embracing an SDL perspective, the company must recognize that providing CNC machines
as mechanisms is essential to delivering service and that the customer plays a crucial role in
generating value. Currently, the company wants to bridge the gaps among market actors and
improve value co-creation. By proactive initiatives of the company, downtime for customers’
machines will be prevented, thereby aligning with SDL. By integrating SDL into the company,
stronger customer relations will be built, value co-creation will be enhanced, and competitive
advantages will be gained.

2.2 Proactive customer service

Proactive customer service is needed to enhance SDL. Shin et al. (2017) define proactive inter-
action as organizations voluntarily contacting the customer. Reactive interaction, on the other
hand, occurs only when the customer seeks assistance or reports a problem to the organization.
This section mentions that proactive customer service is enabled by high reliability and a proac-
tive maintenance strategy to enhance SDL. By implementing proactive interaction, organizations
proactively anticipate future events by learning from mistakes, predicting potential disruptions,
and taking preventive measures to alter future outcomes. The service provider achieves this by
anticipating possible issues customers may encounter and offering assistance before the problem
arises. Reactive interaction solely focuses on responding to customer complaints and requests
for help. Proactive interaction ensures faster service and quicker problem resolution (Shin et
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al., 2017). Delana (2021) discusses the availability of future customer-service needs information
through remote monitoring systems and data analytics (Delana et al., 2021).

2.2.1 Reliability

This proactive approach is crucial in today’s complex organizational landscape, wherein relia-
bility is dominant (Weick, 1987; Busby & Iszatt-White, 2014). Weick (1987) argues that orga-
nizations and technologies have experienced a rise in complexity. Accidents can result in further
unforeseen consequences due to misunderstood interventions (Weick, 1987). These accidents
involve issues of reliability, i.e., operating systems are not consistently working effectively and
safely. Organizations prioritizing reliability over efficiency often encounter distinct challenges in
learning and comprehension (Weick, 1987). These unique problems arise due to the increased
complexity of the organization’s operations and technologies. Busby and Iszatt-White (2014)
say that reliability is fundamental for organizing because it ensures consistent, dependable, and
predictable functioning of organizational systems and processes. Reliability is something that
is produced by an organization. It is an important competency enabled by organizations, as
reliable entities can depend on others and become able to be dependent upon others (Busby &
Iszatt-White, 2014). High reliability is enabled by the collaboration between actors, knowledge
of the employee, supportiveness of the organizational culture, and employee motivation (Agarwal
& Selen, 2009; Wijnhoven et al., 2012; Weick, 1987).

Collaboration
Collaboration is crucial in highly reliable systems. Agarwal and Selen (2009) highlight the neces-
sity for managers to acknowledge the importance of collaboration in service innovation to ensure
the timely delivery and reliability of service offerings (Agarwal & Selen, 2009). By collaboration
between customer and supplier, the supplier can deliver targeted, and faster service when and
how the customer needs it. Lusch and Nambisan (2015) say service innovation emphasizes inno-
vation as a collaborative process that occurs in an actor-to-actor network (Lusch & Nambisan,
2015). Through collaboration between the company and its customers, the reason why malfunc-
tions occur becomes clear. Subsequently, both organizations can discuss suitable solutions to
prevent the malfunction for the next time. This can be confirmed by Chaurasia et al. (2020),
this paper says that organizations need to expand their view beyond existing resources. Shared
value for open innovation requires active collaboration between organizational partners to cre-
ate value in a problem-solving context (Chaurasia et al., 2020). Success in business ecosystems
requires collaboration to leverage a firm’s resources and capabilities (Zahra & Nambisan, 2012).

Knowledge employee
Weick (1987) suggest that accidents arise from the inability of individuals operating and oversee-
ing complex systems to adequately perceive and foresee the issues these systems may generate.
This is called “requisite variety” because the variety in the systems exceeds the variety in the
people who must control it. If individuals lack the necessary variety to engage with the system
effectively, they may overlook crucial information, leading to incomplete diagnoses and short-
sighted solutions that can magnify rather than alleviate the problem (Weick, 1987). Wijnhoven
et al. (2012) explore that, next to motivations, knowledge underlies behavioural repertoires.
Organizational wealth can be realized through the application of specialized knowledge and
skills, where resources and goods play a secondary role (Wijnhoven et al., 2012). Wijnhoven
et al. (2012) describe that knowledge can be divided into four categories: propositional, expe-
riential, performative, and epistemological. Propositional knowledge encompasses meaningful
information regarding a subject that has been communicated or conveyed to an individual. Ex-
periential knowledge is having a personal understanding, feeling, or belief about a phenomenon.
Performative knowledge goes one step further than experience, like knowing how to ride a bike.
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Epistemological knowledge consists of a deeper understanding of why something is as it is (Wi-
jnhoven et al., 2012).

Supportiveness of organizational culture
Culture is relevant in high-reliable organizations because making meaning is an issue for culture
(Weick, 1987). The goal of high-reliable organizations is to achieve centralization and decen-
tralization. Individuals must leverage insights gained from past experiences of operators and
capitalize on trial-and-error methodologies to accomplish benefits. Individuals require a well-
defined hierarchy of authority when an error is happening to deal with the error (Weick, 1987).
According to Schein (1990), organizational culture is defined as: “a pattern of basic assump-
tions, invented, discovered, or developed by a given group, as it learns to cope with its problems
of external adaption and internal integration, that has worked well enough to be considered valid
and therefore is to be taught to new members as the correct way to perceive, think, and feel in
relation to those problems.” (Schein, 1990).

Schein (1990) divides organizational culture into three levels, observable artifacts, values, and
basic underlying assumptions. Observable artifacts encompass a wide array of elements in-
cluding physical layout, dress code, interpersonal communication styles, ambiance, and other
phenomena. Values are beliefs, aspirations, and values that an organization claims to follow.
For example, the value of issue selling is defined by Parker and Collins (2010) as making others
and leaders aware of particular issues (Parker & Collins, 2010). According to Crant (2000), is-
sue selling is explicitly addressed through proactive behaviours (Crant, 2000). Basic underlying
assumptions are often taken for granted. It contains underlying, unconscious beliefs, values, and
norms that guide the behaviour and decision-making in the group of the organization (Schein,
1990).

To achieve high reliability for the company, it is necessary that the organizational culture ensures
that employees are encouraged and empowered to perform service proactively. Employees are
more likely to anticipate proactive behaviour when the organizational culture supports them.
This reduces the perceived risks associated with taking initiative.

Employee motivation
Wijnhoven et al. (2012) say that the handling of unanticipated threats to high reliability is
enabled by the appropriate behaviour of employees (Wijnhoven et al., 2012). This means that
effective responses to unforeseen threats in high-reliability contexts rely on the appropriate ac-
tions of employees. An individual’s motivation has an influence on effective incident handling.
Motivation helps people decide what to do and affects how they behave. Weick & Sutcliffe (2007)
express that the motivations of anticipation and containment facilitate effective management of
unforeseen events, ensuring high reliability within organizations (Weick & Sutcliffe, 2007). Wi-
jnhoven et al. (2012) describe that in highly reliable organizations, characterized by consistent
and effective operations, individual motivation can be divided into two categories: anticipation
and containment. Anticipative motivation focuses on prevention, paying attention to weak sig-
nals for problems. Furthermore, It assists the organization in identifying failures, predicting the
consequences of failure, and halting the progression of undesirable effects. Containment moti-
vation focuses on managing the undesirable effects post-failure and aims to enhance the ability
to recover from such failures. An example of containment motivation is limiting the damage of
a failure (Wijnhoven et al., 2012).
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2.2.2 Proactive maintenance strategy

In order to enable proactive customer service, next to reliability, a proactive maintenance strat-
egy is needed. Swanson (2001) says a proactive maintenance strategy involves predictive and
preventive maintenance to avoid equipment failures. By monitoring the status of machines
and analyzing causes and effects, proactive maintenance determines the frequency of preventive
measures and identifies the equipment conditions suitable for predictive maintenance (Swanson,
2001). Zonta et al. (2020) distinguish preventive maintenance as scheduled maintenance, which
is performed based on fixed schedules at specific times. Predictive maintenance uses data and
knowledge to report failures and prevent downtime. Predictive maintenance allows for predict-
ing trends, behaviour patterns, and correlations using statistical or machine learning models
to anticipate upcoming failures. This improves the decision-making process for maintenance
activities and minimizes downtime. Predictive maintenance reduces maintenance costs, and
downtime, and improves productivity and quality (Zonta et al., 2020).

According to Mason and Mitroff (1973), empirical inquiry systems help to collect, store, and
analyze data for problem identification (Mason & Mitroff, 1973). Wijnhoven (2023) mention
that data analytics aims at creating useful input towards effective decision-making (Wijnhoven,
2023). Predictive analytics is based on historical and current data to predict future outcomes
(Gandomi & Haider, 2015). By analysing machine data, proactive measures can be taken to
recognize potential future malfunctions and prevent them in a timely manner.

2.3 SDL and proactive customer service
This section elaborates on the relationship between SDL and proactive customer service. This
is done by the foundational premises of SDL, proposed by Vargo and Lusch (2008). Several
principles of SDL, see below, can be enhanced through the development and implementation of
proactive customer service.

FP1: Service is the fundamental basis of exchange.
By monitoring machine data, proactive service could be delivered to the customer in case a po-
tential malfunction arises. The service is anticipated to the customers’ needs and give valuable
assistance to the customer so the machine will not get to a standstill.

FP4: Operant resources are the fundamental source of competitive advantage.
By the use of predictive maintenance, proactive service leverages the operant resources of the
organization to gain a competitive advantage. The efficient use of knowledge, i.e. the predictive
models, improves competitive advantage because of machine malfunction prevention.

FP6: The customer is always a co-creator of value.
Acting proactively toward the customer is needed to collaboratively communicate with customers
to address potential solutions before issues can arise. Customers participate in the creation of
value by providing input to ensure the optimal functioning of their machine.

FP7: The enterprise cannot deliver value, but only value propositions.
Proactive service aligns with the SDL perspective that the organization only can deliver value
propositions. The company can engage customers proactively with the use of prediction models,
suggesting adjusting machine settings to prevent machine downtime. By collaboration between
the customer and the company, the value of the solution is higher.

FP8: A service-centered view is inherently customer-oriented and relational.
Proactive service is customer-oriented and relational. By actively contacting customers in case
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a malfunction could arise, solutions need to be provided. With proactive service, the company
embraces a service-centered view that prioritizes customer relationships.

FP10: Value is always uniquely and phenomenologically determined by the beneficiary.
Proactive service can be adjusted differently for the company’s customers, i.e. some customers
would take more risk in preventing the malfunctions than customers. By tailoring solutions based
on the predictive models, organizations acknowledge that customers perceive value differently
from each other.

2.4 Framework for SDL
A causal model, that presents how SDL can be realized through proactive customer service, is
shown in Figure 1. Eventually, by providing proactive service, the distance between an organi-
zation and its customers becomes smaller, which aligns with the SDL perspective.

Proactive customer service is enabled by high reliability. This consists of the collaboration
between actors, available knowledge of the employee, level of supportiveness of the organiza-
tional culture, and the motivation of the employee. Proactive customer service is also enabled
by proactive maintenance strategy. A proactive maintenance strategy consists of preventive
maintenance and predictive maintenance. Predictive maintenance is enabled by making use of
machine data and knowledge that can be used to analyze machine data.

In the following parts of this thesis, the research will not be focused on the entire model. See
for the scope of the thesis Figure 1. As a first step, to gain insights into the applicability of
developing proactive customer service for the company’s CNC machines, there will be focused
on how predictive maintenance can be enabled by using machine data and knowledge. The first
study focuses on which machine data can be used for predictive maintenance. Study 2 focuses
on which model is the most suitable for predicting malfunctions. The third study focuses on the
deployment of the predictive model to enhance SDL through proactive customer service.
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Figure 1: Framework for high reliability and proactive maintenance strategy for
enhancing service-dominant logic. This model illustrates the relationships among machine
data, knowledge, and organizational factors influencing the service strategy within a highly re-
liable framework. The pathway shows how using machine data and certain knowledge leads to
predictive maintenance. Combined with preventive maintenance, this leads to a proactive main-
tenance strategy. Collaboration, knowledge of employees, supportiveness of the organizational
culture, and motivational aspects lead to high reliability. Proactive customer service encom-
passes high reliability and a proactive maintenance strategy. A service-dominant logic approach
can be enhanced through proactive customer support. The red dashed box shows the scope of this
thesis.
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3 Methodology

In the following chapter of this thesis, the study design, the research approach, and the data
analysis method are described. The first section of the methodology chapter contains a section
that describes the study design and why this study design was selected. Furthermore, the
research approach is elaborated. Additionally, the data collection methods are mentioned, which
are used for this research. Finally, the data analysis of the different studies is described.

3.1 Study design
This study aims to investigate the utilization of machine data and knowledge to predict machine
failures, enabling proactive customer service from an SDL perspective. The data is collected by
making use of a case study. A case study provides the opportunity for a detailed analysis of
complex issues within their real-life context (Crowe et al., 2011). This case study is conducted
at a CNC machine manufacturer. This company produces different machines that can process
different pieces of metal, for instance, tubes, plates, and H-profiles. The organization wishes
to collect and analyze data that can be used to improve customer service. The case study is
limited to only one machine, MACHINE X. Currently, there are 104 of these machines distributed
worldwide. First, it is necessary to investigate which machine data may be relevant to monitor
and implement in a model for predicting machine failures. Subsequently, relevant machine data
will be checked for availability. Additionally, a model to predict machine failure will be built on
the relevant data. Finally, the thesis illustrates what the deployment of predictive models will
look like.

3.2 Research approach
In this master thesis, a mixed-method approach is used. A mixed-method approach is an intellec-
tual and practical synthesis that makes use of quantitative and qualitative research (Johnson et
al., 2007). Mixed methods research can offer potentially insightful findings that a single method
may not be able to provide (Venkatesh et al., 2013). According to Johnson (2007), there are three
types of mixed-method research: qualitative-dominant, equal status, and quantitative-dominant.
In qualitative-dominant mixed-method research, researchers emphasize the significance of in-
corporating quantitative data and methodologies alongside qualitative research. Quantitative-
dominant mixed-method research emphasizes the significance of incorporating qualitative data
and methodologies alongside quantitative research. The equal-status mixed-method research
lies between qualitative-dominant research and quantitative research methods (Johnson et al.,
2007). This research uses the equal-status mixed-method because the thesis first looks at which
machine data is relevant to predict failures. This will be done using qualitative data. Subse-
quently, the study investigates whether the machine data is obtainable and constructs predictive
models using quantitative data.

In this research, a sequential exploratory research strategy is used. This means that quali-
tative data were collected and analyzed, followed by a phase of quantitative data collection and
analysis. This research design proves to be exceptionally useful for researchers who are devel-
oping a new instrument, i.e., a predictive model (Creswell, 2009). The main research question
is: “How can machine data be used to enhance the realization of service-dominant logic? ”. The
research begins with Study 1, as in this case, involving explorative interviews with the company’s
experts regarding malfunctions of MACHINE X. The results of these interviews are expected to
uncover the causes of the machine malfunctions and to determine the relevant machine data that
should be used in the model. Subsequently, Study 2 is conducted in which quantitative data is
gathered concerning the identified causes of these malfunctions. Study 2 shows which predictive
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models are suitable for prediction malfunctions of MACHINE X. Finally, Study 3 indicates how
predictive models could be deployed to deliver proactive service and how this could be realized
in the company to enhance SDL.

3.3 Data collection

3.3.1 Study 1: Context models

Semi-structured interviews are conducted to gather data for the initial phase of the research,
aiming to identify the machine elements most influential in causing malfunctions. Digital data
can be massive (Power, 2014), and it may take a considerable amount of time to incorporate
all the machine data into a predictive model. Therefore, through exploratory interviews with
customer service department employees and other relevant employees, the relevant variables of
MACHINE X will be taken into account. The interviews will answer the first question of which
machine data can be utilized to develop proactive customer service. Five participants were
included in the research’s interviews. Three of the respondents are employed in the customer
service department, one in the quality department, and one in the research and development
department. The interviews are being conducted in Dutch. Therefore, individuals can commu-
nicate their thoughts more clearly in their native language than when they speak in a second
or third language (Kashiha & Chan, 2015). The interview guide which is used can be found in
Appendix A. The sub-question that is answered in Study 1 is: “Which machine data is suitable
for utilizing predictive models?”.

3.3.2 Study 2: Predictive modeling

When the results of the interviews are available, several important elements are selected. Even-
tually, fictional data will be used to create a predictive model, based on the assumptions of
the experts of the company. Fictional data is used since the company does not have machine
logs of the operational values of these components. Currently, the program that displays live
sensor data does not collect and store this data. Certain variables that affect failure for the
company are known by the experts at the company. These variables have nominal, minimum,
and maximum values. The predictive model consists of synthetic data, this synthetic data is
generated by Rstudio.

The sub-question that is answered in Study 2 is: “Which predictive models are suitable for
predicting machine malfunctions?”. The second sub-question is answered by understanding and
analyzing the synthetic data. Then, from the literature, it can be seen which predictive models
are suitable to work with the characteristics of the data. Subsequently, the predictive models
can be created.

3.3.3 Study 3: Deployment

The predictive models are created and the model with the best performance is selected in Study
2. Study 3 will focus on the deployment of the predictive model. The deployment study can
be split up into several sections: data acquisition, validation of data model, utilizing predictive
models for proactive customer service, the potential impact of proactive customer service, and
proactive customer service within SDL. This study uses internal documentation of the case
company, synthetic data, and relevant literature. The sub-question that is answered in this
study is: “How can the company utilize predictive models to enhance SDL through proactive
customer service?”.
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3.4 Analysis
Study 1 is concerned with conducting semi-structured interviews to identify machine elements
that lead to failures in the context of the company. By using exploratory interviews with dif-
ferent employees from different departments, relevant variables of MACHINE X are identified.
Through interviews, it is possible to get a comprehensive understanding of the topic. The ben-
efit of using interviews as data collection is that they can generate a broader understanding of
the topic in question (Gioia et al., 2013). These interviews will reveal dependent variables that
are leading to malfunctions of critical components and independent variables that influence the
dependent variables. The interviews are analyzed using the Gioia method (Gioia et al., 2013).
By employing this approach, the research achieves greater qualitative precision, facilitating the
conduct of inductive research. Several experts from the company are interviewed to answer the
first sub-question. This knowledge is collected and organized in a way that systems can under-
stand it, this process is called knowledge engineering (Sebastiani, 2002).

Study 2 uses the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodol-
ogy, utilizing its structured framework for comprehensive data mining (Chapman et al., 2000).
This method is the de-facto standard process in data mining projects (Schröer et al., 2021).
The paper of Overgoor et al. (2019) illustrates how the CRISP-DM framework could develop
Artificial Intelligence (AI) solutions for marketing problems (Overgoor et al., 2019). According
to Chapman et al. (2000), the CRISP-DM methodology uses sets of tasks that are described
at four levels of abstraction: phase, generic task, specialized tasks, and process instance). The
CRISP-DM framework consists of business understanding, data understanding, data prepara-
tion, modeling, evaluation, and deployment (Chapman et al., 2000). By selecting key variables
from the interview results of Study 1, it is possible to create a predictive model with synthetic
data. To improve the transparency of the thesis, the script that is used to create the predictive
models can be found in Appendix B. The performance of the models is tested using the Root
Mean Squared error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared. Fi-
nally, it was examined which model scored best on these metrics and is the most suitable model
for predicting machine malfunctions.

The final study of this thesis, Study 3, focuses on the deployment phase of the CRISP-DM
method for the predictive model. This phase contains several sections, such as the data acqui-
sition, validation of the data model, potential impact of proactive customer service, utilizing
predictive models for proactive customer service, and proactive customer service within the SDL
perspective. Through internal documentation of the company, synthetic data, and relevant lit-
erature, the last sub-question is answered. The analysis of this section illustrates the practical
implementation of the predictive model to improve SDL through proactive customer service. The
data acquisition section mentions different theories and how the company needs to apply those
theories in order to deploy predictive models in the organization. The validation of the data
model section highlights the importance of reviewing predictive models based on real data. The
utilizing predictive models for the customer service section makes use of simulation, the script
of this simulation can be found in Appendix C. This simulation illustrates how the customer
service of the company should act in case critical thresholds are exceeded. This section makes
also use of relevant literature in order to implement predictive modeling and keep the model
relevant. Subsequently, the potential benefits of implementing proactive customer service for the
company section mentions what the benefits are of proactive customer service by an analysis of
the company’s internal documentation of customer downtime regarding MACHINE X. Finally,
the section on proactive customer service within the SDL perspective mentions how the company
enhances SDL by implementing proactive customer service which aligns with several foundation
premises.
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4 Results

This section of the thesis presents the findings from five exploratory interviews, each lasting
between 25 and 45 minutes, along with the developed predictive models designed to assist
organizations in establishing proactive customer service. The aggregate dimension (3rd-order
theme) is in this case the components that are leading to a malfunction of MACHINE X. The
2nd-order themes, all explained in the paragraph below, are the causes of the malfunction
regarding the components. The 1st order concepts are variables that influence the cause of a
malfunction and thus have an influence on a malfunction related to MACHINE X. The second
part of this chapter focuses on the creation and selection of the predictive model. The second
paragraph is structured using the different phases of the CRISP-DM method. This chapter ends
with illustrating the deployment of the predictive model in the company.

4.1 Study 1: Context models
The goal of this section of the paper is to capture and formalize human expertise. By applying
knowledge engineering, expert knowledge is collected and organized in a way that systems can
understand it (Sebastiani, 2002). The sub-question that is answered in this section is: Which
machine data is suitable for utilizing predictive models? The aggregate dimensions of the com-
ponents that are leading to a malfunction of MACHINE X are displayed below in Table 1. The
drill unit, which is the drilling component of MACHINE X, is mentioned in all five interviews
as a critical component that leads to malfunctions of MACHINE X. The paper of Uhlmann et
al. (2008) aligns with the business case that the feeding axes of the CNC machines are the most
mechanically stressed components (Uhlmann et al., 2008). The measuring wheel is mentioned
three times in the interviews, and malfunctions regarding the sensors are mentioned in two in-
terviews. EtherCAT and hydraulic unit problems are mentioned in two interviews. Lastly, the
malfunctions regarding to drive wheels are mentioned in only one interview.

Table 1: Frequency table for mentioned components that lead to malfunctions This
table summarizes the components that are associated with errors on MACHINE X. The table
displays how often the interviewees mentioned the component.

Component Frequency
Drill unit 5
Measuring wheel 3
Sensors 2
Hydraulic unit 2
EtherCAT 2
Drive wheels 1

In Figure 2 below are the aggregate dimensions shown that are leading to malfunctions. This
figure shows the 2nd-order themes displayed what the cause is of the malfunction regarding the
component. If there is no cause in the model shown of an error regarding a component, inter-
viewees did not know what the cause of the error regarding the component is. The first-order
themes are explained in the subparagraphs below and not included in this model to improve
clarity.



19/58

Figure 2: Causal model malfunctions. An overview of the second-order themes, named as
causes, and the aggregate dimensions, named as components, which ultimately lead to a machine
malfunction. The cause of a too high temperature of the oil in the hydraulic unit results in a
malfunction. The drill unit, operating on the S-axis, Z-axis, and Y-axis, faces issues when there
is excessive temperature on the S-axis. Excessive torque leads to malfunctions on the S-axis and
Z-axis, and a lack of maintenance leads to errors on the Y-axis. The ambient environment has
an influence on the working of the sensors of MACHINE X. A too-high temperature in the cabin
leads to EtherCAT errors. Drive wheels and measurement wheels are associated with errors,
although the specific causes of these errors are unclear.

4.1.1 Drill unit

MACHINE X contains three drill units, these are the drill heads of the machine. These compo-
nents are in direct contact with the manufactured product. All interviewees mentioned that the
drill unit is the most mechanically stressed component. Respondent 1 emphasizes that there are
problems with the drill units on MACHINE X. Respondent 5 reacts to the question of which
factor could prevent malfunctions in case predictive maintenance is possible.
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Respondent 1: “I know of several issues regarding MACHINE X, one of them being
that the drill spindles often break.”

Respondent 5: “The drill spindle is the primary factor leading to a malfunction
and could have been prevented if prediction were possible.”

The cause of the errors is currently unclear. The company is currently starting with logging
service notifications. It is unclear what the main cause is of malfunctions that were reported
by clients. Respondent 2 deliberates that the cause of the crash of the drill unit is not clear.
Respondent 1 talks about why the cause is not known and the need for reports for problem
identification.

Respondent 2: “The drill unit is a component; it is a motor and spindle combined.
The bearings are located at the front of the head. It is suspected that the bearing
system poses a problem. We have now replaced the bearing system. It is now a
matter of waiting to see how this performs in the field. In 75% of the cases with the
unit, the issue is with the bearing system. The cause is a crash for which we cannot
detect the reason.”

Respondent 1: “I know that the bearings and the bearing system are an issue about
the drill unit, but why the bearing system fails, I do not know. This is just what I
hear in passing. Ideally, you would want to support this with reports; these reports
could indicate that, for example, out of 30 reports regarding the unit, 25 were related
to the bearing system.”

The drill unit has to deal with the Z-axis, Y-axis, and the S-axis. The Z-axis is the movement
that moves the drill to the material and back. The S-axis is the movement of the drill inside,
this is the motion that makes the drill spin. The Y-axis is the movement of the drill to get to the
desired position. The interviews revealed that the movement on the Z-axis and the S-axis mainly
leads to malfunctions because they have to deal with heavier forces. Respondent 3 highlights
how the S-axis and the Z-axis are more stressed than the Y-axis.

Respondent 3: “Mechanical components are the most stressed components, which
is no different than with MACHINE X. I think that the Z-axis is in the drilling
direction. The S-axis in the drill spindle; rotates itself. These (axes) receive the
first impact with milling and clashes. Positioning, of course, as well; that is built
up with logging, and this usually goes well.”

Causes Y-axis

The drill moves between the Y-axis to be in the correct position. The interviews revealed that
maintenance has an impact on the health of the Y-axis. In case MACHINE X is lagging on the
appropriate maintenance on the Y-axis, the drill unit will run stiffer on the Y-axis which could
lead to malfunctions. Respondent 3 describes maintenance issues with customers.

Respondent 3: “The most important factor is machine maintenance [..] The me-
chanical parts just need more maintenance. A spindle that constantly moves up and
down or a bearing that does almost nothing, is a difference. In this the spindles are
important, the Z-axis, Y-axis, and S-axis are important in MACHINE X.”

Causes S-axis

The S-axis is the movement around the axis that goes into the material. Interviews showed
that malfunctions are happening due to a too-high temperature and/or torque. The intervie-
wees highlighted that this can be used to predict malfunctions. Several variables influence the
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phenomenon, that there is too high torque and/or temperature reached, according to the inter-
viewees. Respondent 3 talks about the relevancy of torque and temperature to say something
about the health of the unit.

Respondent 3: “Yes, then you will, as with a spindle (Z-axis, S-axis), have to read
out the torque. You provide a certain nominal torque, indicating how new the spindle
is [. . . ] If the temperature gets too high of the spindle, it triggers a self-shutdown.
It stops itself. There is already some protection built in, but by then, it’s already
too late. In the Netherlands, we bring a spare drilling spindle, but abroad, you can
easily be down for a week. That’s data, and you can work with that.”

Variables that influence causes S-axis

The Revolutions Per Minute (RPM) is included as a variable because that the drill rotates in
the material. Respondent 1 highlights the variable of RPM on temperature and torque.

Respondent 1: “We have a spindle run-in procedure when it comes from the factory.
This is a half-hour program, gradually increasing from low to high speeds. The higher
the speed, the more heat is generated, and the more torque is required.”

Sometimes there are errors regarding the spindle of the drill unit. How longer the spindle runs,
stiffer the spindle will run. Respondent 5 mentions that the spindle run time has an impact on
the temperature and torque.

Respondent 5: “If the temperature is high has to do with the production time of a
spindle. There is a difference in whether a spindle runs for 200 hours per year or
20,000 hours per year. If you take that time into account. Some customers are
maybe running 30 minutes in a day and are having no trouble regarding the drill
unit, if the spindle runs for a long time it needs more torque due to wear and tear.”

The effectiveness of the running time could influence the health of the drill unit. How high
the effectiveness of the running time will be, leads to more required torque, and this leads to a
higher temperature of the drill unit.

Respondent 1: “Maybe there are customers who drill, but out of the 24 hours, they
are only drilling for 30 minutes. A percentage will come out, indicating how much %
of the time he is actually drilling. Customers who do have problems have a number
that is 5 times higher than customers who do not have problems.”

The amount of force that is needed to process the material influences the torque that is required.
How much more force is used in the production process, how more torque is required. Due to
the large force, the temperature will be higher. Respondent 1 questions the influence of force
and the type of drill on the torque.

Respondent 1: “Perhaps all drilling units break down for all customers who have
high forces.”

The type of lubricate that is used by the customer has also an effect on the temperature and
torque of the spindle. The amount of lubricate applied in machining processes affects the temper-
ature and torque of the S-axis. Respondent 5 talks about the difference between the company’s
used lubricate and others.

Respondent 5: “The type of lubricate for the drill and the quantity of lubricate used
has an impact on the lifespan of the bearing. There are many different types of
grease. Often, customers economize on lubricating. If they have a choice between
a pot of 15 euros or 10 euros, customers often choose the 10-euro lubricate. This
results in a loss of quality. Alternatively, if there is not enough grease used, the drill
will run stiffer which leads to a higher torque and temperature.”
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Maintenance influences the temperature and torque of the S-axis. If the maintenance status of
the machine regarding the S-axis is not sufficient, the machine will run less smoothly generate
more heat, and require more torque to work properly. This is mentioned by respondent 3 earlier
in this section.

Respondent 2 mentioned how the ambient temperature influences the temperature of the spin-
dle on the S-axis. How hotter the outside temperature is, how hotter the temperature is on the
S-axis. When the ambient temperature is high, according to respondent 2, the spindle functions
with more torque.

Respondent 2: “How it’s made here is the best environment. The machine is cali-
brated here, and it is exactly right as it should be. If it gets warmer, you have to
deal with the fact that the spindles, lubricated with grease, will run faster”.

The text above mentions several independent variables that affect the temperature and torque.
The independent variables are divided into two groups, operational values and ambient values.
The independent variables consist of the RPM, spindle run time, productivity of running time,
force, and pulse drill lubricate are variables related to operational values. The environmental
values include maintenance, type of lubrication, and ambient temperature. In Figure 3 below,
the variables are displayed that influence the torque and the temperature of the S-axis.

Figure 3: Causal model S-axis. An overview of the independent variables influencing the
dependent variables that lead to malfunctions on the S-axis of the drill unit. The independent
variables consist of operational values and environmental factors. The dependent variables in-
clude the torque and temperature of the spindle. Operational values contain Rotations Per Minute
(RPM), spindle run time, spindle productivity, the force the unit deals with, and the pulse of
drill lubrication. Environmental values contain ambient temperature, type of used lubrication,
and maintenance.

Causes Z-axis

The Z-axis has to deal with the movement of the drill towards the material. A too-high torque
on the Z-axis will lead to malfunctions regarding MACHINE X. The interviews only highlighted
the importance of torque regarding the Z-axis.

Variables that influence causes Z-axis

Almost all variables that influence the S-axis’s torque and temperature, have an influence on the
torque of the Z-axis. Only the variable RPM does not affect the torque of the Z-axis because
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the RPM is a variable that rotates around the S-axis and this is the movement that the S-axis
makes. In Figure 4 below, the variables are displayed that influence the torque of the Z-axis.

Figure 4: Causal model Z-axis. An overview of the independent variables influencing the
dependent variable that lead to malfunctions on the Z-axis of the drill unit. The independent
variables consist of operational values and environmental factors. The dependent variable that
leads to errors is the torque. Operational values contain spindle run time, spindle productivity,
the force the unit deals with, and the pulse of drill lubrication. Environmental values contain
ambient temperature, type of used lubrication, and maintenance.

4.1.2 Measuring wheel

Because of malfunctions regarding the measuring wheel, the product has measurement devia-
tion. The interviews revealed that the measuring wheels are responsible for this malfunction.
Respondent 1 reveals the cause of the error. Respondent 3 covers the consequences of the er-
ror. The respondents of the interviews did not mention variables that impact the health of the
measuring wheel.

Respondent 1: “[. . . ] With the dimensional deviation, we sometimes encounter is-
sues where the measuring wheel rises.”

Respondent 3: “Especially with measuring deviation, it’s not explainable what a
measuring wheel does. For example, if you have a tube, it turns out that when tubes
are made, you have a different deviation than with profiles, H-profiles, and IPEs.
They are quite unreliable.”

4.1.3 EtherCAT

Ethernet for Control Automation Technology (EtherCAT) is a communication tool for auto-
mated systems. EtherCAT enables communication between devices and machines in a manufac-
turing or control system. The temperature of the cabin where the EtherCAT components are
has an influence on the health of the components. Problems regarding EtherCAT are difficult
to find. Respondent 4 talks about what EtherCAT is and what the role of temperature is on
EtherCAT malfunctions. Respondent 2 shares the same intuition that temperature plays a role
in malfunctions regarding to EtherCAT.
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Respondent 4: “You have a system, let’s say a PC. It has a program in it; EtherCAT
is essentially the operating system, the PLC, which communicates with blocks in the
machine, the input card, and the output card. So, you need to investigate what is
the cause of this malfunction. Is the block defective, or is it the communication? Is
there a cable that needs to be plugged in and out every time, so to speak? You have to
see it as the PLC communicating with the machine. Malfunctions regarding Ether-
CAT are difficult to find [..] Temperature can, in some cases, play a role, especially
with an EtherCAT issue. If you are in warm areas and your system lacks air condi-
tioning, it may occur that you experience EtherCAT malfunctions in certain cases.
However, to my knowledge, we currently have good feedback that systems in warm
countries are all equipped with air conditioning. I hesitate to provide a definitive an-
swer as external factors, including temperature, may have an impact in some cases."

Respondent 2: “Heat is something to deal with because electrical components can
fail due to a malfunction with the fan; generally, we then encounter EtherCAT is-
sues.”

4.1.4 Hydraulic unit

The hydraulic unit has the function of delivering hydraulic energy, so the CNC machine can
execute different movements. Respondent 1 deliberates on the importance of the hydraulic unit
for MACHINE X.

Respondent 1: “If, for example, a hydraulic unit fails, the machine cannot operate
anymore.”

Respondent 2 revealed that pressure and pumping frequency have an influence on the tempera-
ture of the oil in the hydraulic unit. If the pressure falls, the unit needs to pump more frequently
to generate pressure. How more often the unit is pumping, how higher the temperature will be.
A high temperature will lead to a malfunction in the hydraulic unit.

Respondent 2: “And regarding hydraulics, I’m thinking if you have certain compo-
nents, valves, or cylinders. It emits a certain pressure, and when that pressure is
mainly reached in the horizontal and vertical cylinders, you essentially switch off,
but the pressure remains on the components. However, if that pressure drops, then,
for example, after a few seconds, it starts pumping again. If this happens very fre-
quently, more than usual, you notice that there is more frequent pumping. If we say
that it’s okay to pump again after 20 times, that’s fine, but if you have to pump
more and more frequently, you generate more heat in the hydraulic system. This
can lead to pump failure or other malfunctions. It’s also not good for the hydraulic
oil if it gets warm very often. Could you determine if you have to pump more and
more frequently, what is the problem, and in which part or clamp is the problem?.”

Respondent 1 talks about how the ambient environment and the capacity of the tank influence
the temperature of the hydraulic unit. When the ambient temperature of the unit is high, it
would be more difficult for the unit to cool down. If the capacity of the tank of the hydraulic
unit is high, it would take the unit more time to reach a high temperature. But how bigger the
tank, how longer the cooldown period will take.

Respondent 1: “I see it as the engine block of a car. If it’s stationary at 50 degrees,
it stays at 50 degrees. If you place it outside at -20 degrees, the car cools down much
faster [. . . ] The capacity of the unit’s tank also plays a role; if the tank is large, it
will take longer to reach a high temperature. However, the drawback is that it cools
down less quickly at a high temperature.”
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In Figure 5 below the variables are displayed that influence the oil temperature of the hydraulic
unit.

Figure 5: Causal model hydraulic unit. An overview of the independent variables influ-
encing the dependent variable that lead to malfunctions on the hydraulic unit. The independent
variables consist of operational values and environmental factors. The dependent variable that
leads to errors is the temperature of the oil. Operational values contain the amount of pressure
applied and the pumping frequency. Environmental values contain ambient temperature and the
capacity of the oil tank.

4.1.5 Sensors

There a many sensors present in MACHINE X, and those sensors carry out different functional-
ities. Currently, it is not clear at the company which sensors are causing the most malfunctions.
Respondent 4 talks about that it is not clear what the critical sensors are. Respondent 5 men-
tions the different influences of the ambient environment. The interviews showed that sensors
are sensitive components in a machine. That is why the ambient environment has an influence
on the status of sensors.

Respondent 4: “But I don’t have insight into which sensors often malfunction in re-
lation to MACHINE X. We should examine each system to determine which sensors
are affected at the moment. Our system is not set up to extract that information
easily; each case would need to be reviewed individually.”

Respondent 5: “I think humidity, lubrication, exposure to the outdoors, those kinds
of things affect sensors. This varies by customer. Some machines are in the desert
with 40 degrees Celsius, and some with -30 degrees Celsius.”

4.1.6 Drive wheels

The drive wheels take care of the positioning of the beams in the machine. If these do not
work, it is not possible to move the beam through the machine. Only respondent 3 mentions
the context of such an error for MACHINE X but could not mention which values influence this
phenomenon.

Respondent 3: “There are also issues with the drive wheels; this is that heavy beams
do not come into position [. . . ] In MACHINE X, there is a speed connection in it
that can simply loosen. This causes the beam not to come into the correct position,
leading to oscillation.”
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4.1.7 Conclusion interviews

The interviews show that the drill unit, measuring wheels, EtherCAT, hydraulic unit, sensors,
and drive wheels lead to failures of MACHINE X. What the causes are for failures of the
driving wheels and measuring wheel are unclear. The ambient environment affects failures with
respect to the sensors. The ambient temperature of the cabin affects the health of EtherCAT
components. The pressure and frequency of pumps affect the health of the hydraulic pump, as
well as environmental factors such as ambient temperature and tank capacity. The drill unit is
the drill head of MACHINE X. MACHINE X contains three of these drill heads. The drill unit
deals with the S-axis, Z-axis, and Y-axis. The Y-axis ensures that the drill head is positioned
correctly. Faults regarding the Y-axis are only affected by maintenance. The S-axis is the
rotary movement around the axis. Faults of the S-axis come from excessive temperature and
torque. Operational values that affect temperature and torque are the RPM, spindle run time,
productivity of running time, force, and pulse of the lubrication of the drill. Environmental
factors such as the ambient temperature, and the type of lubricate that is used for the drill and
maintenance influence the torque and temperature of the S-axis. For failures with respect to the
Z-axis, only excessive torque value would play a role. The Z-axis has to do with the movement
of the drill head towards the material. On this, the same variables have a role as with the S-axis.
Only RPM has no influence on disturbances here with respect to the Z-axis because RPM is the
speed of movement of the S-axis.

4.2 Study 2: Prediction temperature drill unit
Predictive models of the S-axis of the drill unit will be created regarding the excessive temper-
ature. All interviewees mentioned the drill unit as a critical factor for a malfunction regarding
MACHINE X. Due to the complexity of creating predictive models and the unnecessary need
for all models to understand the execution of proactive service, only the model concerning the
temperature of the S-axis was chosen to be created. This section elaborates on how fictitious
machine data and knowledge can enable predictive maintenance. The development of the pre-
dictive model is done by the CRISP-DM method. The outline of this section aligns with the
different phases of the CRISP-DM method. See Figure 6 for the CRISP-DM model, which is
adopted from Chapman et al. (2000).

Figure 6: An overview of the CRISP-DM methodology adapted from Chapman
(2000). The CRISP-DM methodology revolves around data. The figure shows the iterative
process of creating data mining solutions. The methodology comprises business understanding,
data understanding, data preparation, modeling, evaluation, and deployment.
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In order to answer the main question of the thesis, this paragraph will focus on understanding
the data in order to create predictive models. By understanding the characteristics of the
data, the literature can help to provide suitable models for the specific problem, i.e. predicting
the temperature of the spindle. By using relevant metrics, the models can be evaluated on
performance. Ultimately, the model with the best performance should be used for predictive
modeling, which answers the second sub-question of this thesis.

4.2.1 Business understanding

The business understanding phase of the CRISP-DM model outlines the objectives to be accom-
plished through data analysis within a particular business setting. The outcome of this process
is utilized to establish the objectives of the data analysis, while simultaneously assessing the
context of the data mining situation (Chapman et al., 2000). In the company’s current situa-
tion, no machine data is present because the machine lacks sensors that capture relevant data.
For this reason, synthetic data was used for the variables given by the interviewees that affect
the excessive temperature of the drill unit regarding the S-axis. The synthetic data is based on
the assumption that the interviews reflect the real-world scenario. The synthetic data was gen-
erated in RStudio, displaying values for variables that fall within the minimum and maximum
ranges. This is done to make the simulation resemble a real-world scenario. To make the models
more predictive, a relationship between variables and temperature is intentionally created. How-
ever, in real-life situations, this does not always apply and should be tested to confirm its validity.

The overall goal is to simulate the previously found variables from the interviews when they
lead to excessive temperature with respect to the drill unit of the S-axis, so that timely action
can be taken to prevent the failure. If the customer service department has a tool that can
intervene with regard to breakdowns, SDL can be achieved by the company through proactive
customer service. The goal of this simulation is to illustrate how predictive maintenance could
be realized for proactive customer service.

4.2.2 Data understanding

The data understanding phase of the CRISP-DM method deals with reviewing available data,
collecting data, identifying relationships, and assessing the quality of the data (Schnell et al.,
2019). Predicting failure is only delineated by the temperature of the drill unit on the S-axis.
In the company’s case it is stated that when the temperature reaches 100 degrees Celsius, the
machine will break down. The interviews revealed that RPM, spindle run time, the produc-
tivity of running time, force, pulse drill lubricate, ambient temperature, type of lubricate, and
maintenance affect the temperature of the spindle on the S-axis. A minimum, a maximum, and
a nominal value were given for the variables, these were retrieved internally from the company.
See Table 2 for the variables and their values. For certain values, "NA" is displayed. This means
that this value is not applicable. This occurs when the value lacks a nominal value, as it falls
between the minimum and maximum values based on the operation. For the maximum pulse
drill lubricate a value of “NA” is displayed. This is because the nominal value is a standard
setting and other values could only differ a bit from the nominal value.

RStudio is used to generate the data, see Appendix B for the script. According to those in-
terviewed, all variables are positively related to temperature, only the pulse of drill lubricate is
negatively related to the temperature of the spindle.
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Table 2: Characteristics of variables. This table provides an overview of the variables that
are related to a malfunction of the drill unit on the S-axis. Each variable is presented with
its description, minimal, maximal, and nominal values. In case “NA” is displayed, it denotes
that the value is not applicable. This situation arises when a variable lacks a nominal value.
Additionally, the maximum value of pulse drill lubricate is the value “NA” given. This is because
the nominal value is a standard setting, and variations from this value are limited.

Variable Description Min Max Nom
Temperature Degrees of Celsius (°C) -10 100 NA
RPM Revolutions Per Minute 0 4,500 NA
Spindle run time Active operation duration (days) 0 2,190 NA
Productivity of running time Percentage of productivity 0 19 2.34
Force Force (kN) 0 15 13
Pulse drill lubricate Lubricate amount (ml per minute) 0 NA 0.75
Ambient temperature Outdoor temperature (in degrees Celsius (°C)) -10 55 18
Type of lubricate drill Prescribed grease type (0: yes, 1: no) 0 1 0
Maintenance Time since last maintenance (days) 0 365 NA

4.2.3 Data preparation

The subsequent stage is the data preparation phase, wherein data is chosen, cleansed, generated,
integrated, and formatted to obtain actionable data (Schnell et al., 2019). In this research, there
will be make use of synthetic data due to the unavailability of the machine data. An assumption
in traditional machine learning methodologies is to split the data up into training data and test
data (Weiss et al., 2016). In this study, the train data contains 80% and the test data contains
20% of the data.

The values of the independent variables are generated using minimum and maximum values.
A random formula was formulated to correlate the independent variables with the temperature
variable. This was done because otherwise, the synthetic predictive models have no power. An
error variable has also been added, of which the mean is 0 and the distribution of this variable
is normal.

4.2.4 Modeling

To simulate the temperature of the drill unit on the S-axis, several predictive modeling tech-
niques are used. In this thesis, linear regression, support vector regression (SVR), decision tree,
random forest, and a gradient boosting model are used to predict the temperature. These models
are elaborated in this subsection of the thesis. Afterward, the models are tested using test data.
In the evaluation phase, each model’s predicted values are plotted against the actual values to
identify outliers. Additionally, it is examined how to determine which independent variable(s)
significantly influences the dependent variable.

Linear regression
Linear regression is a statistical method that plots the dependent variable against several in-
dependent variables (Casson & Farmer, 2014). Linear regression has the assumption that the
relationship between the variables is linear. The model produces an optimal line that mini-
mizes the disparity between the observed and predicted values (Casson & Farmer, 2014). The
formula below was used to predict the temperature. The formula presupposes a linear correla-
tion between the independent variables and the dependent variable. In the case of a non-linear
relationship, the model will have lower predictive accuracy (Sohil et al., 2022).
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Temperature = β0+β1RPM+β2Spindle Run Time+β3Productivity of Running Time+β4Force+

β5Pulse Lubrication Drill+β6Ambient Temperature+β7Type of Lubricant+β8Maintenance+ϵ

Support vector regression
The model takes into account the relationships of the independent variables among each other.
Support vector machine (SVM) creates the line that separates a set of entities on essential char-
acteristics (Wijnhoven, 2023). Support vector regression is a highly effective method for solving
non-linear problems, SVM applies the kernel function, which maps the input space into more
dimensional features using non-linear mapping (Ahmad et al., 2018). SVM focuses on solving
classification tasks, while SVR is designed to address regression problems. A difference between
linear regression and SVR is that SVR is less sensitive to outliers because it takes into account
a margin of error.

Decision tree
A decision tree is a machine-learning technique in which a tree is constructed by utilizing split-
ting criteria with nodes. The model illustrates how particular decisions and their consequences
unfold through specific sequences. The root of the tree is situated at the top, where the original
data is located. The tree grows to the first node, where the most informative variable is identi-
fied. The informativeness of a variable is determined by the Gini index, a value indicating the
strength of regression or classification variables. The algorithm iteratively repeats this process
with additional attributes in the model (Gokgoz & Subasi, 2015).

Random forest
Random forest is a machine learning method that employs numerous decision trees as an ensem-
ble in training and merges them to get a prediction (Lee et al., 2019). Random Forest makes
use of bootstrap aggregating or bagging, a technique where multiple subsets of the original data
are created by random sampling with replacement (Wijnhoven, 2023). A random forest cre-
ates multiple trees to determine the most popular class (Breiman, 2001). In the construction of
individual trees, random forest incorporates feature randomization by considering a random sub-
set of features at each node for making the split, thereby enhancing the diversity among the trees.

Gradient boosting
Gradient boosting is a method for estimating functions that are approached from a numeri-
cal optimization perspective within function space, as opposed to parameter space (Friedman,
2001). This implies that the model examines the overall shape of the function and enhances
it, rather than concentrating on adjusting specific parameters. By minimizing errors in predic-
tions, the function becomes more adept at recognizing patterns in the data. Through successive
iterations, this method improves its performance. Key characteristics of gradient boosting are
its competitiveness, high robustness, and interpretability when applied to regression and classi-
fication problems.

The above-mentioned quantitative models are compared with each other by making use of the
Root Mean Squared Error (RMSE), the Mean Absolute Percentage Error (MAPE), and the
R-squared. RMSE is a standard quality measure of the predictive ability of regression models
and can usually be used to compare the performance of different predictive models (Cao et al.,
2015). The MAPE metric quantifies the average absolute percentage difference between pre-
dicted and actual values (Wang et al., 2009). The R-squared metric measures the proportion of
variance in the predicted variable that can be explained by the independent variables, ranging
from 0 (no fit) to 1 (perfect fit) (Windmeijer & Cameron, 1997). See Table 3 below for the
scores of the different metrics of each model. The RMSE value indicates the average magnitude
of differences between the actual and predicted temperature values. An RMSE value of 1 means
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that on average, based on the train data, the model is 1 degree Celsius away from the actual
temperature in the test data. This means that how closer the RMSE is to 0, how better the
model fits. A MAPE value of 5% means that the predictions have an average error of 5% in
relation to the actual value. A R-squared value of 0.9 means that 90% of the variance in the
dependent variable, for instance, the temperature is explained by the independent variables in
the model.

Table 3: Metrics values of the predictive models. The table presents the Root Mean
Square Error (RMSE) scores, the Mean Absolute Percentage Error (MAPE), and the R-squared
of the five predictive models: linear regression, support vector regression, decision tree, random
forest, and gradient boosting. Linear regression has the best performance based on the metrics.

Prediction model RMSE MAPE R-squared
Linear regression 1.5°C 4.1% 0.997
Support vector regression 2.0°C 5.1% 0.995
Decision tree 8.9°C 31.3% 0.899
Random forest 2.4°C 7.9% 0.992
Gradient boosting 1.8°C 5.1% 0.996

4.2.5 Evaluation

If we plot the predicted temperature of every model on the actual temperature, we get Figure
7. In the current situation, using synthetic data, it can be seen that a linear model gives the
most accurate predictions. However, in a real situation, it may be that this model would be
worse compared to the other models. The figure also shows that the decision tree has the lowest
correct predictive power. The eight stripes in the plot represent the leaf nodes in the decision
tree, it can be seen that the values vary greatly.
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Figure 7: Predicted temperature plotted against actual temperature per model.
The figure contains five graphs that display the performance of linear regression, support vector
regression, decision tree, random forest, and gradient boosting. The performance is shown by
plotting the predicted temperature against the actual temperature. The linear model shows less
noise, which means that this model can better predict the temperature of the test data. The de-
cision tree shows the most variation in the model.

Because of the best performance by the metrics, the research will continue focusing on the
linear model. In this case, to achieve predictive maintenance, it would be useful to know which
variable has the most influence on temperature. This can be achieved by standardizing the
variables in linear regression (Casson & Farmer, 2014). For this reason, the variables were stan-
dardized, and a linear model was created again based on the training data. See Table 4 below
for the results of this standardized model.

Table 4: Standardized regression output. The table presents the results of the standardized
linear model. It illustrates the relationship between the independent variables and temperature.
This table serves as a reference for comprehending the impact of individual predictors on the
temperature in the linear model.

Variable Estimate Std. Error t value Pr(> |t|)
(Intercept) 3.118e-17 8.518e-04 0.000 1.000
RPM 9.368e-01 8.528e-04 1098.529 < 2e− 16
spindle_run_time 2.755e-01 8.532e-04 322.849 < 2e− 16
productivity_of_runningtime 1.765e-04 8.528e-04 0.207 0.836
force 7.962e-02 8.529e-04 93.352 < 2e− 16
pulse_drill_lubricate 3.693e-04 8.521e-04 0.433 0.665
ambient_temperature 1.374e-01 8.525e-04 161.111 < 2e− 16
lubricate_drill_type 4.433e-03 8.530e-04 5.197 2.12e− 07
maintenance 3.820e-02 8.525e-04 44.806 < 2e− 16

From this table, it can be seen that RPM, with a standardized value of 0.94, has the greatest
influence on temperature. Spindle run time, with a standardized value of 0.28, is the second
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largest influence on temperature.

To apply the model to working machines in the field, a critical threshold could be set, for
example, 90 degrees Celsius. If a spindle has reached this temperature, a pop-up can be dis-
played with the values of the variables. Proactive service can be applied by inspecting the values
of the variables. For example, if the RPM relative to the variables is high, customer service can
inform the customer of these values. If the temperature is high due to the high value of the
spindle run time, customer service can reach out to the customer to make an appointment to
put a new spindle in the machine which will prevent the machine from malfunctioning due to
excessive temperature.

4.3 Study 3: Deployment
This section focuses on the deployment of the predictive model for the company. The sub-
question that is answered in this section is: How can the company utilize predictive models to
enhance SDL through proactive customer service? This section highlights the importance of
acquiring the necessary data, validating the data model, and demonstrating, by simulation, the
use of the predictive modeling for proactive customer service, exploring the potential impact
of proactive customer service, and reviewing how SDL is achieved by the company through
proactive customer service.

4.3.1 Data acquisition

Mason & Mitroff distinguish five inquiry systems; empirical inquiry systems, rational inquiry
systems, Kantian inquiry systems, Hegelian inquiry systems, and pragmatic inquiry systems
(Mason & Mitroff, 1973). These systems help with executing smart industry projects. To imple-
ment a working predictive model for the company, the first thing needed is to develop empirical
inquiry systems further. Through these systems, it is available to collect, store, and analyze data
for problem identification (Mason & Mitroff, 1973). Currently, not all relevant variables are vis-
ible in PROGRAM X, the control system of the CNC machines at the company. Berndtsson et
al. (2020) mention that the difficulty accessing relevant data is a barrier for an organization to
become data-driven (Berndtsson et al., 2020).

Currently, the company cannot implement proactive customer service due to the reason that
not all relevant variables, to create predictive models, are captured by sensors. PROGRAM X
is already linked with the cloud, but the machine lacks sensors, which are needed to capture the
values of relevant variables for creating predictive models. In the current situation, the cloud is
used to provide dashboards to customers wherein production logs are displayed. By capturing
data of all relevant variables by sensors, it would be possible to create predictive models based on
real live data. There is a need to install sensors for collecting relevant machine data and further
develop PROGRAM X to store additional data in the cloud for use in predictive modeling to
anticipate machine malfunctions.

4.3.2 Validation data model

If the data is available to predict spindle temperature, it is necessary that the results of the
interviews are validated. In this thesis, synthetic data was used in which the dependent variable
was determined by the independent variables with a small error rate included. If the data is
accessible in the cloud, there can be seen if there is a linear relationship between the variables.
If there is, a predictive model can be built using linear regression. SVR could be used when the
relationships are not linear and it can handle high-dimensional data. SVR takes into account
non-linear relationships using the kernel function (Ahmad et al., 2018). The model is suitable
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for managing a margin of error. Decision tree models provide a transparent and interpretable
representation of the decision-making process. This is done by the hierarchical structure guided
by the splitting criteria (Gokgoz & Subasi, 2015). Random forest is effective when there are
small variations and noise in the training data. Overfitting, which focuses too much on details
and noise in training data, is reduced by using multiple decision trees in random forest (Lee et
al., 2019). Gradient boosting operates in function space instead of adjusting specific parameters
individually, which fosters better pattern recognition (Friedman, 2001).

4.3.3 Utilizing predictive models for proactive customer service

By collecting machine data and using certain knowledge, predictive maintenance can be achieved.
To provide proactive service, a proactive maintenance strategy consisting of predictive mainte-
nance and preventive maintenance is needed. In addition to having proactive customer service,
high reliability is needed within the organization. This is necessary because when a model issues
a notification to monitor the machine, the company should collaborate with the customer, the
customer service employee must be motivated, have sufficient knowledge, and be supported by
the organization to do something with this notification.

This section illustrates how organizations can leverage a predictive model. In this case, there
will be make use of the developed linear model. This model has shown that RPM and spindle
run time are the most influential factors affecting temperature. To demonstrate the use of such
a model, a dataset is created representing a fictional machine located at a customer’s site. The
script that created this dataset can be found in Appendix C. All independent variables remain
at their nominal value, except for RPM and spindle run time, which increase incrementally. This
will result in an increase in the temperature of the spindle, which can be seen in Figure 8. The
predicted temperature by the model can be seen as a digital twin, a replication of the genuine
product, process, or system (Singh et al., 2021). It can be used to simulate and analyze the
behaviour of a real-world counterpart. The linear model is a tool that predicts and understands
the actual temperature of the spindle. To test and develop the simulation, the model should be
initially evaluated in a virtual environment before being implemented in real-world situations
(Christiano et al., 2016).

For practical reasons, a critical threshold is set at 90 degrees Celsius. The ideal threshold
needs to be determined by further testing. It is crucial to establish a critical threshold wherein
the customer service can timely intervene to prevent a failure. By collecting, storing, and dis-
playing live machine data in a dashboard, such as Power BI or Salesforce, the linear model can
predict the temperature. If the predicted value exceeds the critical threshold, a warning value
is triggered, drawing the attention of the customer service department. The customer service
department can contact the customer to reduce the temperature below the critical threshold, if
necessary by making a service appointment with the customer.
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Figure 8: Simulation of spindle temperature. This fictive figure shows how the tem-
perature (blue) reacts to an increase in RPM and spindle run time. It can be seen that the
spindle hits the critical threshold (yellow dashed) on day 691 and hits a breakdown (red dashed)
on day 730.

The linear model could be applied in a real-world context. The figure, displayed above, shows
temperature changes by an increase in the RPM and spindle run time while all other variables
remain constant. The spindle runs at day 365, which means that the spindle runs one year in the
machine. This value is increasing daily with one. RPM starts at zero and increases daily with
12, this will eventually reach the maximum speed of 4500. The model predicts that the critical
threshold of 90 degrees Celsius will be reached at day 691 and 100 degrees Celsius, which results
in breakdown, will happen at day 730. Warnings can pop up in a dashboard which shows when
the critical threshold is reached. An employee in customer service can identify, by using the
most influential variables, the primary cause of critical temperature. Additionally, the employee
could arrange a service appointment by collaborating with the customer if the problem cannot
be solved remotely, to prevent the malfunction from occurring.

In the company, the data needed for the predictive model is not available through PROGRAM
X, a self-developed program of the company used to operate the CNC machine. This program
does not contain all relevant data to predict malfunctions. If it did, this data could be stored in
the cloud to generate predictive models, for example, a model predicting spindle temperature.
Dashboards such as PowerBI or Salesforce can display live data, on which a predictive model can
provide insights. When the value exceeds a threshold, it can be reported to customer service,
which can take appropriate actions by collaborating with the customer. This process is used for
customers when the likelihood of a malfunction is realistic. See Figure 9 for an illustration of
how this could look for the company.
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Figure 9: Data acquisition plan to deliver proactive customer service. This figure
is self-made by the author. In this figure, the machine generates data, which is captured by sen-
sors and displayed in PROGRAM X. This data can then be stored in the cloud. Once the data
is accessible in the cloud, a predictive model can be developed. This predictive model can utilize
live machine data from the cloud to predict variables such as the temperature of the spindle.
The data can be visualized in a dashboard, which triggers a notification to the customer service
department when the temperature reaches a critical threshold. Subsequently, by collaboration be-
tween the customer service department and customers, malfunctions can be prevented.

Seidel et al. (2019) introduce the concept of triple-loop learning. To continually improve the
model, triple-loop learning should be employed. Triple-loop learning enables a deeper under-
standing of the problem domain and promotes adaptability in modeling strategies. The iterative
approach of triple-loop learning contributes to the development of more robust models, which
are capable of capturing complex data relationships in dynamic environments (Seidel et al.,
2019). Triple-loop learning offers a framework for the company to continue improvement and
adaptation in the context of predicting the temperature of the spindle. With triple-loop learn-
ing the problem domain is more understandable. The company can get more insights into the
underlying factors that influence the temperature of the spindle and adjust its approach accord-
ingly. Additionally, when the company uses historical data to refine the model over time, the
company may encounter challenges or opportunities. Because of this phenomenon, the model
will remain effective and relevant in dynamic environments. Because of that triple-loop learning
is an iterative process, the model becomes more robust. The predictive model is adapted to
new data and insights and because of this, it becomes more capable of understanding complex
data relationships and can more accurately calculate spindle temperature. This iterative process
contributes that the model will predict reliably and more effectively in real-world scenarios. See
Figure 10 below for the triple-loop model for the company.
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Figure 10: Triple-loop learning model adapted from Seidel et al. (2019). Triple-loop
learning model adapted from Seidel et al. (2019). This figure shows a framework for the com-
pany for continuous improvement and adaptation in predictive models. With triple-loop learning,
the company gains a deeper understanding of the problem domain and can adjust its approach.
Adjusting the predictive model over time, enabled by this iterative process, ensures the model’s
effectiveness in dynamic environments. The model becomes more capable of understanding com-
plex relationships and can therefore predict more accurately.

This model can work by interaction between the company with the customer. The customer
receives the result and provides feedback to the company and the predictive model. To achieve
SDL, interacting with the customer is important to generate value by co-creation (Vargo and
Lusch, 2008). Using this feedback, the company gets a more comprehensive view of what the
customer needs. Also, based on the feedback, the predictive model can be adjusted, i.e. in-
cluding more relevant variables. The feedback allows the customer service department and the
predictive model to provide a more targeted service in the future which is more in line with
customer needs.

4.3.4 Potential impact proactive customer service

Based on the company’s documentation there are currently 104 MACHINE X’s in use by cus-
tomers worldwide. Throughout the year 2023, over 20 drill units were either repaired or replaced.
The extent of production downtime caused by drill unit failures for the company’s customers
remains unclear. In 2023, the company received 518 reports from customers indicating that
MACHINE X could not sustain normal production. In this case, normal production means that
the machine is functioning properly as the customer would desire. The cumulative downtime for
all customers due to MACHINE X issues in 2023 amounted to 12,403 days. This implies that,
on average, for each customer report, it takes 24 days from fault notification to resolution for
a return to normal production. By combining machine data and knowledge, such as predictive
models, predictive maintenance can be enabled, which in turn can enable proactive service when
coupled with high reliability (Zonta et al., 2020; Swanson, 2001). If all failures of MACHINE X
can be predicted, it may result in an increase in the normal production time of the machines.
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4.3.5 Proactive customer service within the SDL perspective

To implement proactive customer service within the SDL perspective, the company shall take
several steps to advance the service delivery in alignment with the FPs of SDL as outlined by
Vargo and Lusch (2008).

FP1: Service is the fundamental basis of exchange.
By monitoring machine data, proactive service could be delivered to the customer in case the
temperature has reached the critical threshold, i.e. spindle temperature. The service is antici-
pated to the customers’ needs and give valuable assistance to the customer so the machine will
not get to a standstill. To achieve proactive service, the company needs to retrieve all relevant
variables for predictive modeling by adding sensors to their machines. These sensors should
display the data in PROGRAM X and PROGRAM X should store this data in the cloud. Pre-
dictive models can be made by this cloud data and added to dashboards, that are used by the
customer service of the company. In case a machine has reached a critical threshold, the com-
pany and the customer collaborate to adjust the machine to prevent downtime. If the sensors
collect all relevant data, the company has the ability to deliver value through knowledge and
skills.

FP4: Operant resources are the fundamental source of competitive advantage.
By the use of predictive maintenance, proactive service leverages the operant resources of the
organization to gain a competitive advantage. The efficient use of knowledge, i.e. the pre-
dictive models, improves competitive advantage because of machine malfunction prevention.
Through triple-loop learning continuous improvement and adaption of the predictive models
can be achieved. This continuously improves the company’s knowledge and skills. As these
operant resources are improved, the competitive advantage will also become stronger.

FP6: The customer is always a co-creator of value.
Acting proactively toward the customer is needed to collaboratively communicate with customers
and by customers to address potential solutions before issues can arise. Customers participate
in the creation of value by providing input to ensure the optimal functioning of their machine,
i.e. making machine data available for analysis by the company. Collaboration between the cus-
tomer and the company can be realized through interaction when a critical threshold is reached.
After this, the company reports this to the customer and the customer provides more informa-
tion regarding the problem, i.e. the customer indicates that they produce a product containing
a hard type of steel resulting in a higher RPM need of the machine. If the customer does not
give this information, the value of the service provided by the company will be lower than if the
information is available. Together, the organizations can look at a suitable solution to prevent
machine downtime.

FP7: The enterprise cannot deliver value, but only value propositions.
Proactive service aligns with the SDL perspective that the organization only can deliver value
propositions. The company can engage customers proactively with the use of prediction mod-
els, suggesting adjusting values of the variables to prevent machine downtime. This is achieved
through the use of dashboards, i.e. Salesforce or PowerBI. When a critical threshold is reached,
the dashboard gives a trigger warning to customer service. After this, the customer service
employee, can view the predictive model and select the most relevant independent variables
that explain the dependent variable. For example, if the spindle run time contains a high value
compared with the other variables, the company can report this to the customer to make an
appointment to replace this spindle to avoid machine failure. It is up to the customer whether
they accept this service.
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FP8: A service-centered view is inherently customer-oriented and relational.
Proactive service is customer-oriented and relational. By actively contacting customers in case
a critical threshold is reached, solutions can be provided. With proactive service, the company
embraces a service-centered view that prioritizes customer relationships. This service-centered
approach prioritizes customer relationships to address potential solutions before issues arise.
Leveraging the customer as a co-creator of value is done by collaboration. Collaboration takes
place between the customer and the company as the dashboards give a trigger warning when
the machine has reached a critical threshold. The company then contacts the customer, after
which the customer provides more information, to find a suitable solution. These interactions
build a stronger relationship between the company and its customers.

FP10: Value is always uniquely and phenomenologically determined by the beneficiary.
Proactive service acknowledges that the perception of value differs among customers. Therefore
solutions to meet the different customer needs differ among the company’s customers. By acting
proactively, customization of the service can take place for each customer. This can be done by
for example adjusting risk tolerance and specific operational requirements. By customizing the
trigger warning in the dashboards for each customer specific, proactive service can be delivered
tailored to the customer’s needs. This approach highlights the value-oriented perspective of
proactive service in SDL, which ultimately could enhance customer patronage behaviour.
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5 Discussion

This section provides an answer to the research question and illustrates the theoretical and
practical implications of the research. Subsequently, the limitations of this study and suggestions
for further research are discussed. Finally, the thesis ends with the conclusion.

5.1 Main findings
The purpose of this thesis is to show how proactive customer service can be realized using
predictive models that are based on machine data and certain knowlegde. The corresponding
research question of this thesis is: “How can machine data be used to enhance the realization of
service-dominant logic? ”.

The first sub-question that was studied is: “Which machine data is suitable for utilizing predictive
models?”. This question was answered by conducting interviews with experts at the company.
The interviews revealed that the drill unit, measuring wheel, EtherCAT components, hydraulic
unit, sensors, and drive wheels led to failures concerning MACHINE X. The drill unit, consisting
of the S-axis, Z-axis, and Y-axis, fails due to excessive temperature on the S-axis. Also, this
component fails due to excessive torque on the Z-axis and S-axis, and lack of maintenance leads
to malfunctions of the Y-axis. The hydraulic unit fails due to excessive oil temperature. The sen-
sors of MACHINE X fail due to ambient environmental factors. Finally, EtherCAT failures are
caused by excessive temperature in the cabin where these components are located. The causes
of the failures, concerning the drive wheels and measuring wheels, are unclear to the interviewees.

Variables that influence the torque and temperature of the S-axis are the RPM, the time that the
spindle runs, the productivity of the spindle, the amount of force applied, the lubrication pulse
of the drill, ambient temperature, type of used lubricate, and a lack of maintenance. Wherein
the lubrication pulse of the drill is negatively associated with the temperature and torque of the
S-axis. The same variables influence the torque of the drill unit on the Z-axis, only the variable
RPM is left out. Variables that influence the temperature of the hydraulic unit are the pressure
the unit needs to apply, the pumping frequency, the oil capacity of the tank, and the ambient
temperature.

The second sub-question that was studied is: “Which predictive models are suitable for pre-
dicting machine malfunctions?”. If the relevant variables of malfunctions are clear, data can
be retrieved by sensors. In this data, it is necessary to test whether the independent variables
influence the values of the dependent variable. When a predictive model has been created, such
as linear regression, support vector regression, decision tree, random forest, or gradient boosting,
it can be examined which independent variables hold the greatest influence. When a dependent
value has a high value, it can be determined what causes the issue. Customer service employees
could use this for problem identification and proactively approach the customer. In the synthetic
data, a linear regression model can make better predictions than the other developed models.
In reality, there may be a non-linear relationship between the variables. In such a case, it is
appropriate to switch to another model with higher predictive power. This can be determined
more precisely when actual data becomes available.

The third sub-question is: “How can the company utilize predictive models to enhance SDL
through proactive customer service?”. This research demonstrates how proactive customer ser-
vice can be achieved through predictive maintenance. In order to enable predictive maintenance,
empirical inquiry systems are needed to collect, store, and analyze data for problem identifica-
tion (Mason & Mitroff, 1973). The company should deploy sensors to capture relevant data of
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variables to use predictive modeling to enhance SDL. In case when the data is available from
the sensors, the company should deploy the predictive model with the best accuracy to predict
malfunctions. To utilize the predictive model, a critical threshold needs to be determined. When
the value exceeds this threshold, the customer service employee needs to collaborate with the
customer to prevent machine downtime. By employing triple-loop learning, the model’s effec-
tiveness will be ensured in dynamic environments. Resulting that the model stays relevant as
time continues.

In the company’s case, when all malfunctions regarding MACHINE X can be predicted, it could
potentially lead to a reduction of 12,403 days of non-normal production time for customers who
own this machine based on the data from 2023. Proactive customer service enhances SDL by
recognizing service as the basis for exchange, utilizing operant resources, recognizing that cus-
tomers need to actively collaborate in the value-creation process, delivering value propositions,
prioritizing customer relationships, and recognizing the subjective perception of value.

5.2 Theoretical implications
This thesis contributes to the literature of SDL highlighting the importance of selectively uti-
lizing machine data to predict machine failures and deliver proactive customer service, by using
customer-generated real-time data in predictive models. This research builds upon the research
of Vargo and Lusch (2017) proclaiming that big data can allow real-time data capture of cus-
tomer behaviour using sensor-based content and employing data analytics techniques (Vargo &
Lusch, 2017).

Additionally, this thesis contributes that proactive customer service affects service recovery.
The ability to anticipate and address potential malfunctions is contributing to service failure
recovery. By employing predictive models, organizations can identify malfunctions proactively,
minimizing negative consequences for their customers. This thesis highlights the impact of proac-
tive customer service in minimizing service recovery and so fostering better customer patronage
behaviour.

Finally, this thesis contributes to the theoretical perspective that SDL can be enhanced through
proactive customer service. Organizations that are looking to move from reactive service to
proactive service to their customers are shifting from a goods-dominant logic to an SDL perspec-
tive. The thesis applies proactive customer service, by having the ability to predict malfunctions.
This advances several foundational premises of SDL. This section elaborates on how proactive
customer service enhances several foundational premises of the SDL framework (Vargo, 2008).
If organizations act proactively to provide service when needed, the organization sees providing
service as the primary value, which aligns with FP1 that service is the fundamental basis of ex-
change. Additionally, proactive service leverages operant resources to address customers’ needs
by utilizing machine data and knowledge. The utilization of data and knowledge contributes to
SDL by delivering additional services when necessary to reduce customers’ machine downtime.
This is contributing to FP4 by gaining a competitive advantage by effectively utilizing operant
resources. Further, proactive customer service has to deal with engaging customers to address
potential issues. This contributes to FP6 because customers need to actively collaborate in the
value-creation process to co-create value with the organization. Additionally, the company can
only deliver value propositions. However, in case the company uses predictive models they can
deliver more targeted service to serve customer needs, which is contributing to FP7. Further-
more, with proactive service, relationships between organizations and their customers will be
built and customer needs will be addressed. This aligns with the service-centered view explained
in FP8. Finally, proactive service recognizes that the perception of value is subjective and can
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be interpreted differently among customers. By distinguishing values of critical thresholds per
customer, as the customer may desire, organizations can provide client-specific customer service.
By addressing individual needs proactively, organizations acknowledge the subjective concept of
value. Therefore, proactive customer service is contributing to FP10. See Table 5 below for a
clear overview of the current state of SDL and the proposed changes.

Table 5: The current state of SDL and proposed changes. The table presents several
aspects of SDL with their current state and proposed changes to enhance SDL.

Aspect of Service-
dominant logic (SDL)

Current state Proposed change

Foundation of exchange Service is the fundamental
basis of exchange.

Provide proactive ser-
vice based on customer-
generated real-time data to
address customer needs in
time.

Utilization of resources Operant resources are a
source of competitive ad-
vantage.

Utilize machine data and
knowledge to reduce cus-
tomer downtime and gain
competitive advantages.

Customer collaboration Customers need to actively
collaborate in the value-
creation process.

Contact customers to ad-
dress potential issues when
critical thresholds are ex-
ceeded.

Deliver value propositions Organizations can only de-
liver value propositions.

Use predictive models to
provide targeted value
propositions based on cus-
tomer needs.

Customer relationships Building relationships with
customers through service
delivery.

Provide proactive customer
service to build stronger re-
lationships.

Perception of value Recognizing the subjective
perception of value among
customers.

Address individual cus-
tomer needs proactively
and customize critical
thresholds based on cus-
tomer needs.

5.3 Practical implications
This research contributes to the practical implication that customer-generated data can be used
to provide proactive customer support. Rust and Huang (2014) concluded that improvements
in Information Technology (IT) lead to a better organizational ability to establish stronger re-
lationships with its customers. This trend will become more pronounced as time goes on. This
thesis can confirm this as improvements are being made in terms of storing data and analyzing
IT in order to provide proactive service and build stronger relationships developed between the
company and its customers (Rust & Huang, 2014). To realize this, organizations need to have
the ability to collect, store, and analyze data to use it for projects (Mason & Mitroff, 1973).
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This thesis emphasizes the importance of managing big data to streamline product prediction for
optimizing product service requirements (Lee, 2014). To retrieve machine data from customers,
predictive models could monitor the variables of the machines. If certain variables indicate
a possible issue, the predictive model could send a notification to customer service to moni-
tor the machine. If the customer service employee collaborates with the customer, is correctly
motivated, possesses sufficient knowledge, and is supported by the organizational culture, the
employee could successfully deliver service to the customer to prevent malfunctions.

Additionally, this thesis contains the practical contribution to select relevant variables for pre-
dicting machine malfunctions in order to deploy sensors to retrieve relevant data. To implement
proactive customer service and therefore embrace the SDL perspective, there is a need for ma-
chine data to create predictive models. Therefore, sensors should be placed and PROGRAM X
should be modified in order to display all relevant data. Afterward, the company should redo
the analysis to find the best predictive model on real data.

5.4 Limitations and further research
A limitation of this thesis is that it is not possible to confirm whether the indicated variables
truly affect the failures. Qualitative data on why several components cause failures is collected
using interviews in Study 1. The research is intended to focus on the failures that have the most
impact on the downtime of customers. The interviews were conducted with experts of the com-
pany because it is unclear which failures generate the most downtime of MACHINE X. When the
data of the variables is available, it is possible to find and test the relations between the variables.

Another limitation of this thesis is the use of synthetic data to create predictive models. In
Study 2 and Study 3 is data required to create predictive models or create a simulation. In
those studies, it was necessary to use synthetic data since real data was unavailable due to the
lack of the capability of PROGRAM X to collect and store necessary data to predict malfunc-
tions. To create synthetic data, minimum, maximum, and nominal values were estimated based
on knowledge that was available within the organization. It may be that the synthetic data
differs from real data since it could be that real relationships are not linear. Therefore, it may
be that the created models may respond differently to real data. In future studies, the models
need to be reevaluated and the model with the best accuracy should be employed.

Finally, the thesis made use of a case study, limiting the generalizability of the findings to
the broader population. The applicability of the results beyond the specific context of the com-
pany may be constrained. The findings may not directly translate to other contexts. However,
the underlying principles and methodology provide insights for organizations facing similar chal-
lenges.

Future research could explore how data can enhance the other foundational premises (FP2,
FP3, FP5, FP9) of SDL. Also, future research could entail how needed data can be identified
and stored to perform analyzes. If there is no sufficient data storage in the cloud of the smart
products, the status of these products can not be monitored and the data cannot be used in
predictive modeling. Consequently, proactive customer service cannot be implemented. The
company should execute further research on which variables are relevant to predict malfunctions
and how this data could be captured by sensors, and displayed in PROGRAM X to enhance
SDL.
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5.5 Conclusion
In this section, the main research question: “How can machine data be used to enhance the
realization of service-dominant logic?", is addressed through three sub-questions. The first sub-
question focuses on which machine data is suitable for utilizing predictive models. Interviews
have shown key machine components that are leading to machine failures, emphasizing the
variables temperature and torque. This insight provides an understanding of the relevant data
for predictive modeling. The second study focuses on which predictive models are suitable for
predicting machine malfunctions. This study explored relevant predictive methods, i.e. lin-
ear regression in order to predict malfunctions. This showed that it is important to select the
model based on data characteristics and real-time dynamics. The last sub-question addresses
the question of how the company can utilize predictive models to enhance SDL through proac-
tive customer service. This thesis demonstrates how proactive customer service is enabled by
predictive maintenance and enhances SDL. By employing sensors, collecting relevant data, and
using predictive models, the company can predict malfunctions, determine critical thresholds,
and collaborate with the customer to prevent malfunctions. Finally, the iterative process of
triple-loop learning guarantees ongoing refinement of the predictive model and alignment with
SDL.
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Appendix A: Interview guide
General information

• Welcome the interview participant.
• The purpose of the interview is to gain insight into the most relevant malfunctions, based on
machine components, that occur with MACHINE X, see ethical consent form.
• The answers you provide are strictly confidential and will only be used for this research.

1. Can you briefly describe yourself and your role?
2. What are the main goals and expectations of customers regarding the MACHINE X?

Maintenance and downtime

3. What are your tasks related to MACHINE X?
a. Where do you spend the most time on these tasks?

4. Are there components/modules that require longer maintenance time than others?
a. Why do these components have longer maintenance times?
b. Can you provide specific cases?

5. Which components require more frequent maintenance than others?
a. Why do these components require more frequent maintenance than others?
b. Can you provide specific cases?

Frequency of failures

6. What are the most common failures reported by customers regarding MACHINE X?
a. What is the cause of these failures?
b. What are the consequences of these failures?
c. How could these failures have been resolved early before they occurred?
d. Which operational values and/or environmental factors play a role in these failures?
e. Is there live machine data available that is relevant to these failures?

Maintenance time for failures

7. What are the failures that require the longest maintenance time for MACHINE X?
a. What is the cause of these failures?
b. Do these occur regularly?
c. What are the consequences of these failures?
d. How could these failures have been resolved early before they occurred?
e. Is there live machine data available that is relevant to these failures?
f. Which operational values and/or environmental factors play a role in these failures?

Impact of failures

8. Which failures of MACHINE X have the greatest impact on downtime?
a. Where are these failures occurring?
b. Which modules/components are associated with these failures?
c. Which operational values and/or environmental factors influence these failures?
d. Can you elaborate on specific cases?
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Operational values/environmental factors

9. Which operational values and/or environmental factors is MACHINE X depended on?
a. Why is MACHINE X dependent on these values/factors?
b. Which components and/or modules can cause failures due to these values/factors?
c. How do these factors/values affect the modules/components?
d. How could these failures have been prevented?

Literature questions

10. According to literature, the feed axis of CNC machines are the most stressed mechanical
parts; how does this apply to MACHINE X?
11. How could machine data and certain knowledge achieve predictive maintenance?

Conclusion

12. Of all the components/problems we have discussed, what do you consider the most important
factor leading to a malfunction of MACHINE X that could have been prevented if prediction is
possible?
13. What data could be used to predict these failures?
14. Which data is missing to predict failures?
15. Can you list three aspects that could be improved on MACHINE X that are relevant to this
research?

a. Can you further elaborate on these points?
16. Have I forgotten to ask anything about this topic?

The answers you have provided will be treated confidentially.
Thank you for your time.
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Appendix B: Coding script of predictive modeling
library(tidyverse)
library(randomForest)
library(randomForestExplainer)
library(brms)
library(tibble)
library(dplyr)
library(e1071)
library(gbm)
library(rpart)
library(randomForestSRC)

# Set seed for reproducibility
set.seed(123)

# Number of observations in the dataset
n <- 5000

# Generate random data within specified ranges
RPM <- sample(seq(0, 4500, 1), n, replace = TRUE)
spindle_run_time <- sample(seq(0, 2190, 1), n, replace = TRUE)
productivity_of_runningtime <- runif(n, 0, 19)
force <- runif(n, 0, 15)
pulse_drill_lubricate <- rnorm(n, mean = 0.75, sd = 0.1)
ambient_temperature <- sample(seq(-10, 55, 1), n, replace = TRUE)
lubricate_drill_type <- sample(0:1, n, replace = TRUE)
maintenance <- sample(seq(0, 365, 1), n, replace = TRUE)

# Create the dataset
dataset <- tibble(

RPM = RPM,
spindle_run_time = spindle_run_time,
productivity_of_runningtime = productivity_of_runningtime,
force = force,
pulse_drill_lubricate = pulse_drill_lubricate,
ambient_temperature = ambient_temperature,
lubricate_drill_type = lubricate_drill_type,
maintenance = maintenance

)

# Create variable temperature with coeficients
intercept <- -10
coefs <- c(0.02, 0.012, 0.003, 0.5, 0.1, 0.2, 0.2, 0.01)

# Apply errors
errors <- rnorm(n, mean = 0, sd = 1.5)

# Create associations
temperature <- intercept +

coefs[1] * RPM +
coefs[2] * spindle_run_time +
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coefs[3] * productivity_of_runningtime +
coefs[4] * force -
coefs[5] * pulse_drill_lubricate +
coefs[6] * ambient_temperature +
coefs[7] * lubricate_drill_type +
coefs[8] * maintenance + errors

# Add temperature in dataset
dataset <- mutate(dataset, temperature = temperature)
dataset <- mutate(dataset, temperature = pmax(temperature, -10))

# Summary
summary(dataset)

# Split the dataset into training- and testdata
split_index <- round(0.8 * nrow(dataset))
train_data <- dataset[1:split_index, ]
test_data <- dataset[(split_index + 1):nrow(dataset), ]

# Linear model
lm_model <- lm(temperature ~ ., data = train_data)

predictions_linearmodel <- predict(lm_model, newdata = test_data)

# Summary of linear model
summary(lm_model)

# Metrics linear model
performance_linearmodel <- sqrt(mean((test_data$temperature - predictions_linearmodel)^2))
cat("Root Mean Squared Error for Linear Model on test data:", performance_linearmodel, "\n")
r_squaredLM <- summary(lm_model)$r.squared
cat("R-squared for Linear Model:", r_squaredLM, "\n")

# MAPE function
mape <- function(actual, predicted) {

mean(abs((actual - predicted) / actual)) * 100
}

mape_linear <- mape(test_data$temperature, predictions_linearmodel)
cat("Mean Absolute Percentage Error (MAPE) for Linear Model:", mape_linear, "%\n")

# Save model
saveRDS(lm_model, "lineair_model.rds")

# Linear model zscore
zscore_dataset <- as.data.frame(scale(train_data))
Zscoremodel_lm <- lm(temperature ~ ., data = zscore_dataset)
summary(Zscoremodel_lm)

# Random forest model
rf_model <- randomForest(temperature ~ ., data = train_data, mtry = 5)
predictions_RF <- predict(rf_model, newdata = test_data)
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# Metrics random forest
performance_RF <- sqrt(mean((test_data$temperature - predictions_RF)^2))
cat("Root Mean Squared Error for Random Forest Model on test data:", performance_RF, "\n")
r_squared_rf <- cor(predictions_RF, test_data$temperature)^2
cat("R-squared for Random Forest Model:", r_squared_rf, "\n")
mape_rf <- mape(test_data$temperature, predictions_RF)
cat("Mean Absolute Percentage Error (MAPE) for Random Forest Model:", mape_rf, "%\n")

varImpPlot(rf_model)
importance(rf_model)
normalized_importance <- importance(rf_model) / sum(importance(rf_model))

# Support vector regression model
svr_model <- svm(temperature ~ ., data = train_data, kernel = "radial", cost = 3,
epsilon = 0.05)

predictions_SVR <- predict(svr_model, newdata = test_data)

# Metrics support vector regression
performance_SVR <- sqrt(mean((test_data$temperature - predictions_SVR)^2))
cat("Root Mean Squared Error for SVR Model on test data:", performance_SVR, "\n")
r_squared_svr <- cor(predictions_SVR, test_data$temperature)^2
cat("R-squared for SVR Model:", r_squared_svr, "\n")
mape_svr <- mape(test_data$temperature, predictions_SVR)
cat("Mean Absolute Percentage Error (MAPE) for SVR Model:", mape_svr, "%\n")

# Gradient boosting model
formula <- temperature ~ RPM + spindle_run_time + productivity_of_runningtime +

force + pulse_drill_lubricate + ambient_temperature +
lubricate_drill_type + maintenance

gbm_model <- gbm(formula, data = train_data, distribution = "gaussian",
n.trees = 1000, interaction.depth = 4)

predictions_GB <- predict(gbm_model, newdata = test_data,
n.trees = 1000)

# Metrics gradient boosting
rmse_GB <- sqrt(mean((predictions_GB - test_data$temperature)^2))
print(paste("Root Mean Squared Error (RMSE):", rmse_GB))
r_squared_GB <- cor(predictions_GB, test_data$temperature)^2
print(paste("R-squared for Gradient Boosting Model:", r_squared_GB))
mape_gb <- mape(test_data$temperature, predictions_GB)
cat("Mean Absolute Percentage Error (MAPE) for Gradient Boosting Model:", mape_gb, "%\n")

# Summary
summary(gbm_model)

# Decision tree model
tree_model <- rpart(

formula = temperature ~ RPM + spindle_run_time + productivity_of_runningtime + force +



55/58

pulse_drill_lubricate + ambient_temperature + lubricate_drill_type + maintenance,
data = train_data,
maxdepth = 10)

plot(tree_model)
text(tree_model, cex = 0.8)

predictions_tree <- predict(tree_model, test_data)

# Metrics decision tree
rmse_tree <- sqrt(mean((predictions_tree - test_data$temperature)^2))
print(paste("Root Mean Squared Error (Decision Tree):", rmse_tree))
variance_target <- var(test_data$temperature)
r_squared_tree <- 1 - (rmse_tree^2 / variance_target)
print(paste("R-squared for Decision Tree Model:", r_squared_tree))
mape_tree <- mape(test_data$temperature, predictions_tree)
cat("Mean Absolute Percentage Error (MAPE) for Decision Tree Model:", mape_tree, "%\n")

# Visualisation
# Get the range of temperature values
temperature_range <- range(test_data$temperature,

predictions_linearmodel,
predictions_SVR,
predictions_tree,
predictions_RF,
predictions_GB)

# Set up a 1-row, 5-column layout for the plots
par(mfrow = c(1, 5))

# Scatterplot for Linear model
plot(test_data$temperature, predictions_linearmodel, main = "Linear model",

xlab = "Actual Temperature", ylab = "Predicted Temperature", col = "blue",
xlim = temperature_range, ylim = temperature_range)

# Scatterplot for SVR model
plot(test_data$temperature, predictions_SVR, main = "SVR model",

xlab = "Actual Temperature", ylab = "Predicted Temperature", col = "red",
xlim = temperature_range, ylim = temperature_range)

# Scatterplot for Decision tree model
plot(test_data$temperature, predictions_tree, main = "Decision tree model",

xlab = "Actual Temperature", ylab = "Predicted Temperature", col = "green",
xlim = temperature_range, ylim = temperature_range)

# Scatterplot for Random forest model
plot(test_data$temperature, predictions_RF, main = "Random forest model",

xlab = "Actual Temperature", ylab = "Predicted Temperature", col = "yellow",
xlim = temperature_range, ylim = temperature_range)
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# Scatterplot for Gradient boosting
plot(test_data$temperature, predictions_GB, main = "Gradient boosting",

xlab = "Actual Temperature", ylab = "Predicted Temperature", col = "purple",
xlim = temperature_range, ylim = temperature_range)
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Appendix C: Coding script of simulation linear model
library(tidyverse)
library(randomForest)
library(randomForestExplainer)
library(brms)
library(tibble)
library(dplyr)
library(e1071)
library(gbm)
library(rpart)
library(ggplot2)

# Getting model
lm_model <- readRDS("lineair_model.rds")

# Create variables
days <- 0:365
spindle_run_time <- 365:730
RPM <- 12 * (days)
productivity_of_runningtime <- rep(2.34, length(days))
force <- rep(13, length(days))
pulse_drill_lubricate <- rep(0.75, length(days))
ambient_temperature <- rep(18, length(days))
lubricate_drill_type <- rep(0, length(days))
maintenance <- 0:365

# Getting model
lm_model <- readRDS("lineair_model.rds")

# Dataset machine at customer
MACHINE_X_at_customer <- data.frame(

spindle_run_time = spindle_run_time,
RPM = RPM,
productivity_of_runningtime = productivity_of_runningtime,
force = force,
pulse_drill_lubricate = pulse_drill_lubricate,
ambient_temperature = ambient_temperature,
type_of_lubricate = lubricate_drill_type,
maintenance = maintenance)

# Predict temperature
MACHINE_X_at_customer$predicted_temperature <- predict(lm_model, newdata =
MACHINE_X_at_customer)
MACHINE_X_at_customer$predicted_temperature <- round(predict(lm_model, newdata =
MACHINE_X_at_customer), 1)

# Create plot
ggplot(MACHINE_X_at_customer, aes(x = spindle_run_time, y = predicted_temperature)) +

geom_line(color = "blue", linewidth = 1.5) +
geom_hline(yintercept = 90, linetype = "dashed", color = "yellow",
linewidth = 1.2) + # critical threshold Y = 80
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geom_hline(yintercept = 100, linetype = "dashed", color = "red",
linewidth = 1.2) + # malfunction Y = 100

labs(title = "Predicted temperature by increase in RPM and spindle run time",
x = "time (days)",
y = "predicted_temperature") +

theme_minimal()
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