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Summary 

Stork IMM, a manufacturer of plastic injection molding machines, wants to use data-driven 

maintenance to investigate the load on machines and to predict component failures. Current 

failures result in significant financial losses and downtime. Through the integration of data-driven 

maintenance, Stork IMM can minimize operational downtime and reduce warranty costs, thereby 

elevating client satisfaction levels and strengthening the organization's competitive edge. 

However, Stork IMM is struggling with implementing data-driven maintenance and is not alone; 

implementing data-driven maintenance is a known hurdle for small and medium-sized enterprises 

(SMEs). In this project, we implement data-driven maintenance in Stork IMM, focusing on the 

implementation process to learn how to improve it for SMEs. The study's central question is: How 

to implement and leverage data-driven maintenance in SME Stork IMM? 

Other studies conducted with a traditional design research method fail at a certain phase, try 

overambitious changes in company processes, or remain with a few cases. Action research is 

applied as a research method to prevent these issues and gain unique insights. With action 

research, we can directly apply techniques or concepts, gather feedback, and improve. In the 

experimental part of the research, three data-driven maintenance use cases are implemented in 

separate research cycles.  

During the implementation process, several hurdles for Stork IMM came to light. Bottlenecks were 

often related to the lack of system capabilities or skills required for data-driven applications, such 

as IT/OT convergence, organizational factors, and data completeness, consistency, and 

availability. Despite these hurdles, we implemented data-driven maintenance and were able to 

utilize the descriptive and diagnostic results valuably. Through data-driven analyses, we have 

diagnosed the degradation pattern of tie bars. The failure of the critical tie bar appears to be visible 

a million cycles before failure, and these three months provide enough time to deliver a new part. 

We have also reduced the load on specific frames so that the cracks do not tear further and the 

frames do not collapse until the new frames arrive. Finally, we demonstrated how productivity can 

be increased with downtime information. 

The project uses technical frameworks demonstrating data-driven maintenance at different 

ambition levels. Implementation frameworks are used and evaluated, showing that they can be 

best improved by determining, in the preparatory phase, both the business needs and the final 

form that the maintenance technique addresses. Data-driven maintenance has been successfully 

applied by implementing the technology in a modular manner. By adopting a modular approach, 

we could progressively enhance the complexity of techniques and system capabilities. This 

allowed us to gradually develop the necessary skills and IT functionalities to achieve our required 

ambition level. The Agile and Modular Implementation Roadmap has been created to transfer this 

method and the coherence between different frameworks to future implementers. The roadmap 

combines the most important frameworks according to this research. The parallel visualization 

helps to understand the connection between technical and IT steps. Improvements to the 

frameworks and the modular and cyclical properties that ensure successful implementation have 

been incorporated into the roadmap. 

 

 

 



 

  III 

Abbreviations 

AI Artificial Intelligence 

APL Rear clamping platen (achterplaat) 

BI Business Intelligence 

CRISP-DM Cross-Industry Standard Process for Data Mining 

EMA Exponential Moving Average 

FEA Finite Element Analysis 

FMECA Failure Mode Effect and Criticality Analysis 

FTA Fault Tree Analysis 

IMM Injection Molding Machine 

IoT Internet of Things 

IT Information Technology 

KPI Key Performance Indicator 

LSP Moveable clamping platen (losse spanplaat) 

MES Manufacturing Execution System 

MTBF Mean Time Between Failure 

NLP Natural Language Processing 

OEE Overall Equipment Effectiveness 

OEM Original Equipment Manufacturer 

OT Operation Technology 

PDM Product Data Management 

RUL Remaining Useful Lifetime 

TTF Time to Failure 

VSP Fixed clamping platen (vaste spanplaat) 
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1. Introduction 

1.1. Initiation of the assignment 

Production companies rely on their injection molding machines. One case in this study concerns a 

machine that makes ice trays at a rapid pace 24 hours a day to meet the demand of the upcoming 

summer but is in danger of collapsing due to cracks in the frames. The machine is on a different 

continent than Stork IMM and new frames have a lead and transport time of almost a year. Data-

driven maintenance must help condense the frames up to replacement. The failure of this asset 

carries significant financial consequences, highlighting the importance of data-driven maintenance 

to meet today's high reliability standards (Tiddens, 2018). Any time a machine experiences a 

breakdown, it causes frustration for the manufacturer and poses a risk of generating negative 

perceptions about the brand in the competitive market. It's crucial to prevent such occurrences to 

maintain a positive reputation and standing in the industry. 

Stork IMM and its clients could have already realized substantial cost savings by implementing 

data-driven maintenance, like the production, transport, and machine overhaul as in the previous 

paragraph. In addition, expensive rapid air transport of an 8-meter-long, 2000-kilogram tie bar 

could have been avoided if the condition of these tie bars without a spare part had been known. 

Preventable costs underscore the pressing need to get up to speed as quickly as possible. Data-

driven diagnoses and forecasts result in cost savings and increased customer satisfaction through 

less downtime. 

Data-driven and predictive maintenance are much-discussed topics in industry and academia. 

Advancements in technology, especially in the world of the Internet of Things (IoT) and Artificial 

Intelligence (AI), have made predictive maintenance very relevant nowadays (Sensorfy B.V., 

2023). Because we see new IT solutions all around us, the potential of these IT techniques is 

continuously demonstrated, which leads to new projects. In this project, we focus on data-driven 

maintenance. Compared to predictive maintenance, the goal of data-driven maintenance is not 

only to predict and optimize the maintenance time, but also to improve asset performance and 

provide diagnoses. However, this is not yet being utilized because the data-driven facilities still 

need to be developed.  

1.2. Stork IMM 

Stork IMM (Injection Molding Machines) manufactures high-speed injection molding machines, 

mainly for thin-walled plastic products. There are several manufacturers of injection molding 

machines in Europe. There are competitors of Stork IMM in Europe with significantly larger sales. 

Compared to these competitors, Stork IMM distinguishes itself in high quality, flexibility, and the 

possibility of specific customer options. There are also other European competitors with 

comparable sales. To these customers, Stork wants to distinguish itself in high quality, production 

speed, and reliability.  

All office and manufacturing operations are based at the Stork IMM headquarters in Hengelo. Stork 

IMM's core activities are selling new machines, providing service for machines in usage, and 

overhauling used machines. The engineering department includes order work, product 
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management, and research and development. The service department provides service 

worldwide, with a significant part in Europe. 

An organizational chart is shown in Figure 1 to illustrate the roles of the involved departments. The 

use cases in this project are quality problems for which a structural solution is developed. For this 

reason, the assignment is carried out in the engineering department, not the service department. 

In this project, the mechanical and software sub-departments of engineering are mainly involved. 

The graduation student is responsible for developing the technical content and algorithms, while 

the software department handles the integration of logging software and IoT systems into the 

machines and servers. The designated customer relationship sales employee handles customer 

meetings, contacts, and proposals. 

 

Figure 1, Involved organizational departments 

Stork IMM has about 110 employees, making it a medium-sized company (European Commission, 

2023). These employees include every position, among engineering, procurement, sales, service, 

finance, revision, machining, assembly, and service technicians. Because of Stork IMM's extensive 

technical know-how and strong collaboration with clients, the company also contributes 

significantly to various developments. It fits in with the Dutch highly technical culture, in which Stork 

IMM, a small company, takes a leadership role in pioneering new functions and high-tech 

developments. 

1.3. Practical and theoretical relevance 

Stork IMM’s machines produce 24 hours per day plastic parts in production plants. Extraordinary 

high loads on components all over the machine cause all kinds of defects. The machine has 

standard wear parts, parts with fatigue defects, and special events such as blasts or abuse that 

lead to overload. The different types of defects occur regularly in unknown patterns. For 

manufacturers, unplanned downtime is costly due to material costs, service costs, and especially 

missed production time. Due to the wide variety of parts that can fail, it is unrealistic for production 

companies to have all spare parts in stock. Even Stork IMM, as OEM (original equipment 

manufacturer), does not have all potential spare parts in stock. As a result, reactive maintenance 

combined with long lead times can result in extended downtime. Long downtime is costly for 

manufacturing companies and leads to lower customer satisfaction. Monitoring reliability can 

ensure higher customer satisfaction through uptime, proactive service, and lower maintenance 

costs. Moreover, reliability is one of the most crucial performance indicators of injection molding 

Involved departments Stork IMM

Service Engineering

Software Mechanical Electrical Order

Sales and
customer 

relationship
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machines. Therefore, Stork IMM can distinguish itself from its competition by offering data-driven 

maintenance. 

IT solutions such as IoT, big data, AI, and machine learning are game changers for data-driven 

maintenance, making it a very active research topic (Krishna Durbhaka & Selvaraj, 2021). 

However, the new, technically complex systems make implementation difficult for SMEs 

(Mainnovation, 2018; Matt et al., 2020; Van Eijk, 2023). Implementing data-driven maintenance is 

difficult for SMEs (Small and Medium-sized Enterprises) because of extra challenges in the 

company’s IT infrastructure, limited resources such as personnel and budget, and a lack of 

experience with the complex technology (Matt et al., 2020). The company's uncertainty regarding 

the initial steps and the strategy for effective implementation of data-driven maintenance initiates 

this project. Researching implementing data-driven maintenance in SMEs and making it more 

tangible can greatly contribute to bridging the gap between theoretical knowledge and practical 

implementation. 

The costs and benefits of data-driven maintenance are often not explicitly defined or evaluated, 

making it hard to define a solid business case (Tiddens et al., 2015). Current literature hardly 

highlights interim results and possibilities with the data received from monitoring processes. These 

interim and side results can be essential for SMEs that want to get as much value as possible from 

the required investment. Better reflection on the implementation and interim results is practically 

and theoretically important for the future of data-driven maintenance in SMEs. 

1.4. Research questions 

The previous part of the introduction discussed the initiation, background, and relevance of the 

problem. Research objectives and questions can be formulated based on this problem. 

Research objective 

The objective of the research is to implement data-driven maintenance in Stork IMM. Several cases 

in the injection molding machine have great potential for data-driven maintenance. Both Stork IMM 

and its customers can benefit from the technique. However, data-driven maintenance has not yet 

been implemented due to various obstacles, a general problem for SMEs. There is an academic 

interest in improving the implementation of data-driven maintenance in SMEs, thus narrowing the 

gap between theory and practice. SMEs struggle with complex IT systems and require skills in 

different aspects. The literature review examines all factors surrounding this problem to reinforce 

the research gap. In summary, the research goal is to implement and leverage data-driven 

maintenance in Stork IMM machines and improve the accessibility of data-driven maintenance for 

SMEs. 

Research questions 

Stork IMM faces challenges implementing data-driven applications and data-driven maintenance 

on injection molding machines. Using this valuable opportunity of applying data-driven 

maintenance in Stork IMM and learning from the implementation process, the research question 

with sub-questions are: 

How to implement and leverage data-driven maintenance in SME Stork IMM? 
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1. How can data-driven analysis techniques be used to monitor the condition of Stork IMM 

injection molding machine components? 

2. How can data-driven maintenance be used to increase the reliability of Stork IMM 

machines? 

3. What organizational needs and requirements should be considered to implement data-

driven maintenance effectively in Stork IMM's specific operational environment? 

1.5. Thesis outline 

The research starts by establishing a theoretical framework around the subject. This literature 

review discusses condition-based maintenance, predictive maintenance, and implementing data-

driven maintenance. The literature review will already give a good impression of the first two 

research questions. Subsequently, the core of the research is shaped by defining the research 

methodology. Chapter 4 discusses the preliminary steps for the data-driven maintenance use 

cases. In this chapter the injection molding machine is analyzed and the IT system is designed. 

Chapter 5 describes use cases where data-driven maintenance is implemented. These use cases 

are the core of the research and should provide valuable insights into data-driven maintenance 

and the implementation process in Stork IMM. We assess the tools outlined in the most recent 

literature and identify shortcomings of Stork IMM that arise during implementation. Experiencing 

this implementation is the input for answering the last research questions. This is evaluated and 

interpreted in the discussion in Chapter 6. With the findings interpreted in the discussion, the Agile 

and Modular Implementation Framework is presented, with the best frameworks and methods 

according to this research that are useful for future implementers. 
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2. Literature review 

The literature review serves as a theoretical framework for the current state of knowledge about 

maintenance strategies, predictive maintenance, and the implementation of data-driven 

maintenance strategies. 

2.1. From data to condition-based maintenance 

Condition-based maintenance is a maintenance policy. This paragraph explains the development 

of condition-based maintenance, why it has become interesting, and its relation to Industry 4.0. 

Condition-based maintenance 

Maintenance is often crucial in asset management. As described by NEN-EN 13306:2019, 

maintenance is a combination of all technical, administrative, and managerial actions during the 

life cycle of an item intended to retain it in, or restore it to, a state in which it can perform the 

required function (NEN-EN, 2019). In injection molding machines, losing precision due to a worn 

part can be approached as a function loss, initiating maintenance. Maintenance policies can be 

categorized into two strategies: corrective and preventive maintenance (Tinga, 2010). Corrective 

maintenance, also frequently referred to as reactive maintenance, is commonly dismissed as an 

undesirable option that leads to significant downtime and costs. However, this perception is 

somewhat unjustified, as it can be the most cost-effective strategy in many cases. If monitoring is 

infeasible or spare parts have relatively low costs, reactive maintenance is the most suitable 

strategy. 

Preventive maintenance replaces parts before they cause unplanned downtime. Preventive 

maintenance increases the reliability of assets and the operation level of firms (Tiddens, 2018). 

However, when using time or usage-based preventive maintenance schedules, components are 

only partially utilized, downtime for replacement is too long, and too many labor hours are spent 

(Tinga, 2010). Condition-based maintenance is a more proactive preventive maintenance policy. 

The preventive interval is optimized by considering the condition of the component. There are 

several ways to determine the condition. Ideally, the condition of the part is measured directly. 

However, in practice, measuring the condition is often much more complicated than, for example, 

a load. Figure 2 shows approaches to iterate the condition. 

 
Figure 2, Category distinction of maintenance strategies (Tiddens, 2018) 

The condition of parts can be determined differently, as shown in Figure 2. The chosen strategy 

depends on the technical knowledge about the failure mode, the feasibility of measuring the 

condition, and data availability (Tiddens, 2018). Methods to assess the condition of components 
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are discussed in more detail later in this chapter. More maintenance strategies exist than are 

presented in this literature review. For example, opportunistic maintenance occurs regularly in 

practice, where the machine's downtime is used to replace other parts. A typical opportunistic 

maintenance example is that the car's water pump is often replaced when the timing belt has 

reached its defined useful life. 

The role of industry 4.0 

Industry 4.0 is a collective term of technological concepts for smart solutions, such as Cyber-

Physical Systems, IoT, Data Mining, and Big Data (Wang, 2016). These digital techniques combine 

sensors with systems that review and determine the condition. So Industry 4.0 enables IT-based 

communication between machines and services (Wang, 2016). Smart products or systems have 

monitoring, optimizing, and self-diagnosing capabilities to enhance the development of condition-

based maintenance (Tiddens, 2018). An IoT infrastructure facilitates data science appliances. A 

typical data science process for predictive maintenance is shown in Figure 3. 

 
Figure 3, A typical data science approach (Sajid et al., 2021) 

CRISP-DM stands for Cross-Industry Standard Process for Data Mining and is a widely used and 

successful data mining model. The CRISP-DM model helps practitioners across the industry to 

make complex data mining projects successful and effective (Chapman et al., 2000). The model 

is shown in Figure 4 and is self-explanatory for people with some data science knowledge. 

 
Figure 4, CRISP-DM (Cross-industry standard process for data mining) (Chapman et al., 2000) 
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Selecting suitable components  

The best-known methodologies to identify critical components and failure modes in a system are 

a fault tree analysis (FTA) and a failure mode, effect, and criticality analysis (FMECA) (Tinga, 

2012). An FTA is a top-down approach, where a system is divided into smaller sub-levels to identify 

possible faults. An FMECA is a bottom-up approach where separate failure modes are more 

thoroughly analyzed. The role of these methods is shown in Figure 5. In the process guidelines, 

the incoming pointed arrow for manufacturers is an approach where the manufacturer, in this case 

Stork IMM, can make a difference.   

 

(a) 

 

(b) 

Figure 5, (a) failure analysis process, and (b) process guidelines (Tinga, 2012) 

A funnel approach is proposed by (Tiddens, 2018) to select suitable candidates for data-driven 

maintenance. The funnel process has three steps: criticality classification, showstopper 

identification, and focused feasibility. The criticality classification filters components with a low 

frequency of failure and significant consequences (Tiddens, 2018). In the second step, 

showstoppers are identified by assessing the technical, economic, and organizational feasibility of 

the case. The last step, a focused feasibility study, investigates the data-driven maintenance 

processes in detail for the cases. The specific steps are described in the following chapter. 
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2.2. Predictive maintenance 

Predictive maintenance, as the name says, predicts maintenance. A key distinction from condition-

based maintenance is that maintenance actions are predicted rather than looking at the asset 

condition. Predictive maintenance is defined by NEN-EN 13306:2019 as condition-based 

maintenance carried out following a forecast derived from repeated analysis or known 

characteristics and evaluation of the significant parameters of the degradation of the item (NEN-

EN, 2019). This paragraph compares different predictive maintenance frameworks. 

The core of predictive maintenance 

Predictive maintenance is an advanced maintenance strategy where data-driven analytics are 

used to maximize the service life of equipment (Wang, 2016). A forecast or decision is concluded 

from the measured conditions or loads. Typical concepts that are an outcome of such a forecast 

in predictive maintenance are remaining useful life (RUL), time to failure (TTF), and mean time 

between failure (MTBF). The result often has a particular uncertainty because these are predicted 

values. As defined by NEN-EN 13306, the prediction is based on a statistical failure distribution or 

a physical degradation model (NEN-EN, 2019).  

Asset data is vital to perform either statistical or degradation predictive prognostics. Figure 6 

illustrates progressive steps in increasing accuracy to monitor the condition from usage to condition 

of components. The usage-to-load and load-to-life relation are noted by numbers 1 and 2, 

respectively. These relations hold great importance, as they can only be established if the physical 

background of the loads and failure mechanisms are understood (Tinga, 2010). 

 

                                          (a) 

 

                                  (b) 

Figure 6, (a) iteration to remaining life, (b) types of prognostic approaches (Tinga, 2010) 

Directly assessing the condition of components minimizes remaining uncertainty. However, 

gathering data in earlier stages necessitates more models, potentially reducing accuracy (Tinga, 

2010). 

Data-driven maintenance frameworks 

An overview of six different data-driven maintenance frameworks is made by Van Eijk (2023) and 

shown in Figure 7. All frameworks are approximately similar in the sequential phases: critical failure 

mode selection, identification of degradable mechanisms, data acquisition, data analysis, 

evaluation, and decision-making. Perhaps the prognostic activity was better placed in the 

evaluation phase, under the interpretation of evaluation on the analyzed data. Even though there 
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are similarities in the individual action points during each phase, differences are also visible. Each 

framework has a different focus or uses other techniques. In the coming sections, two frameworks 

are examined. The methods and techniques in these frameworks cover most of the ideas of all 

frameworks. 

 

Figure 7, Data-driven maintenance frameworks (Van Eijk, 2023), frameworks from (Cachada et al., 2018; 
Mesarosova et al., 2022; Spendla et al., 2017; Tiddens, 2018; Tiddens et al., 2020; Tinga, 2012). 

Primavera predictive maintenance framework 

A generic predictive maintenance process model is introduced by the research group PrimaVera, 

shown in Figure 8. PrimaVera's goal in the presented model is to provide a generic, effective, and 

efficient framework that supports asset management by predictive maintenance (Ton et al., 2020). 

After the figure, we discuss the actions and steps in more detail. 

 

Figure 8, PimaVera generic predictive maintenance process model (Ton et al., 2020) 

Incorporating data-driven workflows in companies is difficult (Tiddens et al., 2015). For each 

specific case, companies struggle to determine the sensors, sensing strategy, the required amount 

of data, data accuracy, and data type (Tiddens et al., 2015). In addition, advanced IT techniques 

such as AI and machine learning require large amounts of high-quality data. However, in reality, 

data tends to be messy, incomplete, unaligned, inaccessible, and inconsistent. (Ton et al., 2020). 

The ownership and structure of data are often missing (Ton et al., 2020).  
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Acquired data from sensors need processing to make the data useful. Data cleaning, transforming, 

and feature extraction are required to acquire information from the data. Data science uses data 

mining to turn raw data into useful information (Sajid et al., 2021). This data process is necessary 

to perform regression-based techniques and statistical calculations. Figure 3 shows a typical data 

processing structure for data-driven maintenance. 

In the prognostics phase, algorithms are created to predict future failures. This step involves 

measuring relevant performance indicators, such as remaining useful life and reliability (Ton et al., 

2020). A statistical approach to predictive maintenance needs an extensive and complete set of 

information, including data sets where failure arises. From unusual failures, obtaining varying sets 

of failures that form a basis for machine learning identifications can cost much time. As a result, 

the statistical approach is often combined with domain knowledge and physics-based prognostics 

(Tinga, 2010). An estimated lifetime or reliability is the conclusion from predictive prognostics to 

optimize the maintenance moment.  

Data-driven maintenance techniques framework 

The maintenance techniques framework from Tiddens (2018) is presented in Figure 9. The four 

required elements for data-driven maintenance decision-making are indicated by letters A through 

D. Progressive steps in accuracy and complexity in steps B, C, and D from left to right have the 

same ideology as the steps in Figure 6. A technology push or a decision pull initiates the start of a 

project. In a decision pull, data-driven maintenance is used to achieve a requested goal. In a 

technology push, data-driven maintenance technology is used to demonstrate a use case. The 

second phase involves monitoring and collecting data.  

 

Figure 9, Maintenance techniques framework (Tiddens, 2018) 
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The choice of maintenance technique depends on the knowledge about the failure modes and the 

data gathering method from step B. Phase C is comparable to the information and prognostics 

phases in PrimaVera's framework in Figure 8. The maintenance techniques are explained with the 

same list signs as used in Figure 9 in the following summary: 

I. Experience-based maintenance depends on historical knowledge of the functioning of the 

machine. This technique is commonly used in Stork IMM. Experienced staff know from 

experience which solutions do and do not work in situations with a specific context. They 

assess the loads, variables, and the average performance of parts.  

II. Referring to the definition of predictive maintenance, a prediction can be derived from 

repeated analysis, forming reliability statistics (NEN-EN, 2019).  

III. Stressor-driven predictions utilize historical data with stressor information, including factors 

like temperature, force, or speed. These supplementary elements consider diversities in 

the environment and operations, resulting in estimations concerning the projected 

durability of an average system in a specific context (Tiddens, 2018). 

IV. Degradation-based maintenance combines measured data with the physics of a failure 

(Tiddens, 2018). For example, measuring the wear depth of a brake pad can form a 

degradation pattern, from which the remaining lifetime can be extrapolated. 

V. Model-based predictions embrace two types of approaches that can be employed to 

estimate the expected remaining lifetime of a specific system under specified conditions 

(Tiddens, 2018): 

a. In a physics-based model, the prognostic parameter is determined by employing a 

physical model of the degradation mechanism that utilizes direct sensing of the 

loads or usage governing the critical failure mechanisms of individual components 

(Tiddens et al., 2023). 

b. In a data-based model, measured data is used to update the degradation pattern 

depending on the measured load or condition. Algorithms aim to derive patterns, 

relations, and anomalies by comparing them to historical data (Tiddens, 2018). 

The major difference in the models presented is how a prognosis is made. The technique's 

complexity and accuracy increase with each step of the above-presented list. For example, steps 

4 and 5 differ because step 4 only uses a degradation model, but step 5 also includes boundary 

conditions to adjust the degradation rate. Selecting distinct techniques relies on the feasibility of 

acquiring measurements related to the condition or load and the extent of available knowledge 

about historical or statistical data. The outcome of the models can support the last step in deciding 

to carry out the maintenance. The maintenance models are mapped in Figure 10 against the 

required data types and resulting levels. 
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Figure 10, Mapped maintenance approaches to ambition levels and data types (Tiddens, 2018) 

Data-driven maintenance for OEMs 

Adding data-driven maintenance techniques prevents maintenance, while maintenance is an 

important source of income for Stork IMM. It also makes the machine more expensive in the 

already highly competitive market. Machine downtime is a problem for manufacturers, not directly 

for the OEMs. The reasons why OEMs offer data-driven maintenance can vary. Examples found 

in the literature (Ingemarsdotter et al., 2021; Sensorfy B.V., 2023): 

- Increase service to customers from a distance  

- Competitive advantage for OEMs 

- Make machine ready for data-based appliances 

- Increase customer satisfaction by increasing uptime 

- Warranty contract 

The form depends greatly on how the technical application is sold. A well-known example from the 

aircraft industry is using engines paid per hour, thus changing the product from purchase to 

service. Use cases performed by (Ingemarsdotter et al., 2021) show companies that sell uptime 

contracts, cloud applications for seeing analyses, and services based on connectivity. The form to 

sell is market and asset specific. 

Predicting 

In theoretical literature studies, RUL prognostics are made using AI algoritmes that use deep 

Gaussian processes and neural networks with Monte Carlo dropout (Mitici et al., 2023). These 

approaches are not yet widely seen in practical applications and because of the significant 

statistical dependence, lots of learning data is required. Statistical probability distributions mostly 

seen in literature to describe a degradation pattern are a generic gamma process, a Wiener 

process, or a non-homogenious Poisson process (Mitici et al., 2023). An example of RUL 
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prognostics using a probability distribution is shown in Figure 11, where a degradation threshold 

is compared to the usage. By extrapolating the degradation pattern, a probability of failure of the 

component over time can be calculated. 

 

Figure 11, RUL prognostics example (Lee et al., 2022) 

2.3. Implementing data-driven maintenance 

In the previous section, we saw what data-driven and predictive maintenance entails. In this 

section, we look at the skills required to implement data-driven maintenance successfully. 

Maturity models 

Maturity models from academia and industry (Mainnovation, 2018; Van de Kerkhof, 2020), shown 

in Appendix B, identified vital company capabilities for data-driven maintenance. Vital capabilities 

are technological, IT, and organizational factors. The maturity is assessed from no maturity to 

world-class maturity on specific sub-level capabilities. Using the maturity models, companies can 

relatively quickly know where to invest for the next step to get closer to data-driven maintenance. 

The models are based on the idea that all defined criteria must be around at least a certain maturity 

to achieve a certain level. However, maturity models must be assessed by staff with knowledge of 

the subject. This knowledge is also required to perform the connection between the points. The 

maturity models indicate points to focus on, not specific tasks or instructions to gain maturity. 

Maintenance techniques 

As presented in section C of Figure 9, several maintenance techniques require different types of 

data monitoring, knowledge of the asset, and technological skills. The selection of the maintenance 

technique is primarily influenced by a feasible data monitoring method and the knowledge of the 

physics of the failure. High expectations on the availability of the assets stimulate the labor-

intensive development of advanced maintenance techniques. The effectiveness of a maintenance 

technique depends on the practical implementation of made choices, the criticality, and the type of 

asset (Tiddens et al., 2020). 

The first underlying challenge identified by (Tiddens, 2018) is that it is difficult to distinguish 

between the available approaches. An unclear method results in an ineffective application of 

available tools and an insufficient understanding of the weaknesses and uncertainties of the model. 

The second identified challenge is often a mismatch between the ambition level and the required 
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data (Tiddens, 2018). Logically, the expectations created by the demonstrated possibilities with 

the technology are too high for the limited data that can be monitored of acceptable quality. A third 

challenge is the difficulty of showing the added value of a maintenance approach (Tiddens, 2018). 

This may be due, for example, to the residual uncertainty in the model that outweighs the high 

development costs. 

Essential skills 

Fundamental essentials to implement data-driven maintenance are already categorized by the 

maturity models in technological, IT, and organizational factors (Mainnovation, 2018; Van de 

Kerkhof, 2020). The implementation study of (Van Eijk, 2023) also identified three pillars for a 

successful implementation of data-driven maintenance: human factors and organization factors, 

operation technology implementation, and information technology implementation. All essentials 

describe the same goals summarized in technological, IT, and organizational implementation.  

Proactive maintenance transformation framework 

The result of designing a practical framework for SMEs by (Van Eijk, 2023) resulted in The 

Proactive Maintenance Transformation Framework as presented in Figure 12. The framework 

results from an extensive literature review and is adjusted by reviewing the effectiveness of 

performing a case study. The framework distinguishes itself by parallelly combining technical, IT, 

and organizational domains (Van Eijk, 2023). 

 

Figure 12, The Proactive Maintenance Transformation Framework for SMEs (Van Eijk, 2023) 

Special attention has been given to implementing human factors and organizational change into 

different steps in the implementation process. Human factors, change management, and 

stakeholder input are crucial for implementing predictive maintenance (Van Eijk, 2023). Evaluation 

of all phases must prevent continuing a demonstration disregarding poor results (Van Eijk, 2023). 

A major underlying message is that barriers are often against change instead of against the 

implementation of data-driven maintenance (Van Eijk, 2023). 
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Business case 

Data-driven maintenance requires up-front investments in sensors, the IoT infrastructure, and the 

development of analyses. Adding sensors and monitoring software increases the initial cost of the 

machine, making the machine less attractive for the customer price-wise. Additionally, part of the 

OEM's profit comes from selling spare parts, service contracts, and asset checks, so developing 

smart sensors needs a different approach (Sensorfy B.V., 2023). Some studies show the success 

of data-driven maintenance. For example, an industrial average from independent surveys by the 

United States Department of Energy shows a 10 times return on investment, a 30% reduction in 

maintenance costs, a 75% elimination of breakdowns, a 45% reduction in downtime, and a 25% 

increase in production (Sullivan et al., 2010). The benefits of data-driven maintenance are reduced 

maintenance costs, reduced capital expenditure, improved safety/reduced risk, reduced 

operational costs, increased equipment effectiveness, fewer spare parts, lower warranty costs, 

and reduced energy costs (Sullivan et al., 2010). Costs and revenues are very context-dependent 

and, therefore, difficult to quantify. 

Privacy, security, ownership 

Machine data is gathered, sent to the OEM via an IoT network, and stored in a database. 

Organizations are concerned about the security of all IoT parts and the privacy of their production 

data (Sensorfy B.V., 2023). Data sharing between the asset user and OEM can be defined in a 

legal agreement, end-user agreement, or terms and conditions between the OEM and the client. 

Stork IMM can use asset data to improve the product, monitor performance, or troubleshoot. In our 

case, there is mutual consent on data sharing for data-driven maintenance, so the machine data 

is obtained with permission from the client. As seen in the last decade, improving data sharing 

conditions and setting data governance requirements are necessary to continue the rapid data 

transformation (Data Governance Act, 2022). As said, a European regulation 2022/868 has been 

created, facing the challenge of numerous new appliances. In this project's scope, there is mutual 

consent on data sharing. 

It is important to address the vulnerability associated with trade secrecy. A data-driven 

maintenance provider can easily derive practical knowledge of the client’s activities from data flows 

(Druetta, 2018). From the service provider's standpoint, it can be argued that a deeper 

understanding of the client’s processes can improve the service value (Druetta, 2018). However, 

it can also be understood from a client's point of view that processing data in the wrong hands can 

jeopardize their ‘secret ingredients’ in production processes. 
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3. Research Methodology 

The objective is to assess the current implementation process of data-driven maintenance in 

relation to existing frameworks and academic tools. This chapter investigates action research as 

a potential research methodology and designs the project methodology. 

3.1. Action research 

Action research can be suitable for gaining different insights than conventional techniques. To 

conclude this, knowledge is first gathered about action research. 

What is action research? 

Development and implementation operations can run smoothly in companies, although 

implementation projects often do not succeed. Research on the failure rates of change initiatives 

in organizations shows high numbers, up to 93% (Decker et al., 2012). A trend is signaled toward 

more integrative research in operation management and suggested selecting different research 

methodologies (Coughlan & Coghlan, 2002). 

For operation managers and academia, action research is a research method that focuses on 

action points and the execution of a project while at the same time building scientific knowledge 

(Coughlan & Coghlan, 2002). By the agile structure of action research, replanning and adaption 

from initial thoughts during the project improves the result. Summarizing a series of publications, 

(Coughlan & Coghlan, 2002) identified the main characteristics of action research: 

- Research in action, rather than research about action 

- Participative 

- Concurrent with action 

- A sequence of events and an approach to problem-solving 

In action research, the researcher participates in a local environment to solve a local problem 

(Leedy & Ormrod, 2015). Conclusions from action research can be globalized and related to other 

research. Solving a problem and contributing to science are the two objectives of action research 

(Gummesson, 2000). The agile nature of action research allows rapid reflections and adjustments 

for the next cycle. Creating actions in iterative cycles is optimal for creating value in dynamic 

engineering companies (Humbeck et al., 2020). 

By its nature, descriptive research is popular. (Coughlan & Coghlan, 2002) compare descriptive 

research as positivist science with action research. Positivist science methods generate universal 

knowledge and validate their findings on logic, measurements, and prediction consistency 

compared to experimental action research (Coughlan & Coghlan, 2002). While conducting the 

study in action, the researcher must often take a helicopter view and reflect on how the action fits 

into the research and hypothesis. 

Action research requirements 

Every research methodology has certain conditions to be carried out. This section discusses some 

of the conditions mentioned in reflections from other studies. Firstly, action research requires 
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change. The dynamics of an organization during the project is the knowledge that illustrates the 

necessity for change and the desired outcome (Coughlan & Coghlan, 2002). In other words, 

difficulties and obstacles are found best if the organization is willing to change. 

The project must be suitable for the iterative cycles of action research. In this project, executing 

different failure modes can count as the iterative cycles. The project participants need to 

understand the methodology and the proactive mindset because of the differing research structure. 

Action research for this project 

Action research is interesting because it can reveal different insights that are not commonly found 

in traditional research methods. This approach adds a new perspective to the literature on 

implementing data-driven maintenance in SMEs. Action research is appropriate if the research 

aims to describe a series of events over time in a group or organization, with particular attention to 

how and why the action improves a process or aspects in a system (Coughlan & Coghlan, 2002). 

So, action research is an appropriate method to investigate the implementation process of data-

driven maintenance.  

The research questions of this study aim to structurally implement data-driven maintenance and 

discover hurdles for Stork IMM through implementation. The best way to find out is to experience 

an implementation process. Compared to design research, action research has the additional 

advantage of its cyclical characteristic. By applying data-driven maintenance we can learn from 

implementing not just once, but adjust things over cycles and learn again whether it helps. 

We can implement a use case in each research cycle to fulfill the iterative cycles. The project is 

an implementation project that focuses on changing/adding processes in the company. The project 

is conducted in real-time and a sustainable infrastructure is being sought. All criteria that make 

action research a proper fit as a research methodology.  

However, there are also disadvantages of action research. Action research is known as a time-

consuming process. Implementing processes can take much time and depend on multiple 

stakeholders. The time allocation is managed by executing three use cases and defining them so 

that this is feasible within the available time. The time pressure is also known among the 

stakeholders. Informing stakeholders of this research method helps in the success of action 

research (Coughlan & Coghlan, 2002). A conservative attitude of the company can also cause 

resistance to change. In this case, it is important to identify why this resistance to change occurs, 

this may be a generic problem for SMEs.  

3.2. Research design 

In conclusion, action research is a promising method for this research. We can further design the 

specific research steps for the research questions formulated in the introduction. 

Framing the issue 

The issue that needs to be developed in this project falls within the maintenance framework of 

(Tiddens, 2018) from Figure 9. The difference with the loop presented by PrimaVera (Ton et al., 

2020) is the missing link with the asset management plan. This step has not yet been defined 

because Stork IMM does not maintain the assets or offer a sales model in which predictive 
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maintenance is included. The loop is completed by recommending a maintenance action to the 

customer. 

Before we can start implementing data-driven maintenance, preparatory steps must first be taken. 

The Proactive Maintenance Transformation Framework from (Van Eijk, 2023) is a recently 

developed framework to help SMEs implement maintenance techniques based on extensive 

literature review. The preparatory steps of this framework do fit this project and provides an 

interesting opportunity to test these preparatory steps. After the first four phases of the framework, 

phase 5 is ideal for the action research cycles. Three use cases can be conducted to test the 

framework, ensuring adherence to the action research method. The framework has not yet been 

thoroughly tested and the real-time implementation in SMEs still shows a lack of examples. The 

project activities to fulfill the objective of this study are shown in Figure 13. 

 

Figure 13, Structure of the executive part of the research 

Action research cycles 

The action research cycles defined by (Coughlan & Coghlan, 2002) and assigned for the use cases 

in this project are shown in Figure 14. The assigned monitoring action for all implementation steps 

in each cycle reflects the progress of the process. This monitoring should evaluate and improve 

the effectiveness and functionality of each step for the next cycle.  

 

Figure 14, action research cycles for each use case, created based on (Coughlan & Coghlan, 2002) 

All cycles comprise six steps: gathering, feedback, analyzing, planning, implementing, and 

evaluating the data. The meta-step monitoring focuses on the academic contribution (Coughlan & 

Coghlan, 2002).  

Data gathering is the starting step once the use case has been determined. The data-gathering 

step corresponds to phase B of the presented framework in Figure 9. Before the data can be 

collected, the use case must be thoroughly understood to monitor the correct data. Since the 

approach is degradation-based, a deep understanding of the failure mechanics is required, as 

Preparatory phases Proactive
Maintenenace Transformation
Framework (Van Eijk, 2023) 

Three action research cycles for a 
use case each
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concluded in the literature review. Next to the hard data from sensors, soft data is collected by the 

researcher participating in the company during the implementation process (Coughlan & Coghlan, 

2002). The softness of data in the implementation processes is due to the researcher's 

interpretation. 

Data feedback reflects on the usability of the data for the analysis. Data science projects are prone 

to incompleteness or suffering from quality (Sajid et al., 2021). Data analysis is the following step, 

where the data is used to answer the underlying question and goal of the analysis. It is important 

to judge the effectiveness of the data collaboratively to include the organization's knowledge and 

ensure the proper action steps in the next step (Coughlan & Coghlan, 2002). 

Action planning is the step where the actions are planned and changes are initiated. Actions to 

implement the technology are cooperatively determined from input from the previous steps. Types 

of questions to ask during this phase relate to what needs to be changed, where it needs to be 

changed, whose support is required, and what resistance is expected (Coughlan & Coghlan, 2002). 

In this project, we are implementing data-driven maintenance. (Van Eijk, 2023) concluded that 

there are three main factors in implementing data-driven maintenance: IT, OT, and organizational 

factors. These categories can structure the implementation actions. 

After the implementation step, the result is evaluated. The outcomes of the planned actions are 

reviewed and the subsequent action cycle must profit from the experience of the previous cycle 

(Coughlan & Coghlan, 2002). The meta-step monitoring is applied to all steps to ensure the method 

is followed correctly and to monitor the effectiveness of all steps. Ideally, everyone participating in 

the project monitors how the steps are conducted and which assumptions are made (Coughlan & 

Coghlan, 2002). Reflecting on the events aims to conduct the research more effectively. Reflection 

contributes to an academic outcome that holds universal learning value. 

Participants 

The project is a student's graduation project in an academic setting. Compared to other 

participants, the student (the participating researcher) has a substantial fraction of the contribution 

to the project. The participating roles are described in the next section. 

Student – The student is the project leader and main contributor. Apart from the specifically defined 

tasks of the other participants, the student is responsible for all other activities. 

Software engineer – Although the student mainly conducts data science tasks, the participating 

software engineer implements the monitoring software and other applications in the current 

machine software. This participant's experience with the sensors is also valuable in effectively 

monitoring the right data. The role of the software engineer is crucial for the execution, design, and 

implementation of the required software in the machine. 

Mechanical supervisor – The mechanical supervisor advises, checks, and helps the student in the 

correct mechanical interpretation and execution.  

Operational supervisor – The operational supervisor monitors the implementation improvements, 

guides the company's interests, and helps the student relate academic conclusions to the company 

goals. 

Academic supervisor – The academic supervisor advises on the research progressions and helps 

relate findings to other research areas. The experience of the academic supervisor also helps to 
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focus on the suitable activities towards the interesting conclusions compared to the current state 

of the literature. 

3.3. Research quality 

The previous paragraph discussed how data analysis steps are incorporated into the action 

research cycle. In this paragraph, the essence of the analysis and areas in which conclusions are 

sought are described to ensure the quality of the research.  

Data validity 

The research has two different outputs. In addition to the technical result, we are also interested 

in the implementation process. Because a data-driven maintenance cycle is conducted in each 

cycle, the ability of the data to answer the technical goal is evaluated in every cycle. It is important 

to conduct the monitoring meta-step to gather sufficient information on the implementation 

questions with this goal in mind. 

To maintain validity, action researchers must consciously and purposefully carry out the action 

research cycles, test their assumptions, and subject them to public testing (Coughlan & Coghlan, 

2002). The main threat to the validity of action research is the lack of impartiality on the part of the 

researcher (Coughlan & Coghlan, 2002). This threat and excessive company influence in steering 

the project can jeopardize the research's neutrality. 

Knowing that validity is especially in danger in experimental design research projects (Leedy & 

Ormrod, 2015), measures can be drawn beforehand. The technical validity is discussed with 

multiple in-company experienced personnel to optimize the combination of theoretical correctness 

and experience in the failure modes. The implementation process is frequently evaluated with 

internal and external supervisors.  

The validity of the analysis can be enhanced by common strategies such as testing a real-life 

setting, providing other samples, and replication in another context (Leedy & Ormrod, 2015). In 

this research, solutions can be tested with data sets of different machines of different sizes 

performing other cycles. Qualitative conclusions can be evaluated by analyzing outliers or 

contractionary results, providing a detailed description, acknowledging personal biases, or 

feedback from others (Leedy & Ormrod, 2015). 

Execution of the research method 

Activities and conditions of action research were discussed earlier in the chapter. In this research 

it is important to adhere to the structure of action research in order to arrive at conclusions with a 

methodology that is trackable. In addition to adhering to the research steps, it is important to 

complete all steps in an acceptable time frame to be able to conduct three research cycles. 

The steps of action research defined by (Coughlan & Coghlan, 2002) are designed in such a way 

that during the steps you focus on the implementation, evaluate the content, and monitor the 

process. In this study, the quality of the research is assured by diligently following the action 

research steps so that these properties are guaranteed. 
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To learn and test different lessons it is important to perform three cycles. The learning curve effect 

is evident in iterative tasks, where actions become progressively easier with repetition. The 

learning curve effect means that as you repeat tasks, not only do you figure out what works best, 

but also successful actions become easier each time you do them again. 

Limitations 

Due to the flexibility of action research in the implementation process, the generalizability is limited 

and the research is hard to replicate (Cohen et al., 2017). Generic knowledge can be created by 

comparing research findings with the frameworks from the literature review.  

Another risk for action research is research biases of the research group, such as selection bias, 

social desirability bias, or other cognitive biases (George, 2023). It is the researcher’s responsibility 

not to let biases limit the research. Taking sufficient feedback from specialists in the research 

provides the most valuable and innovative results. 

Wrapping up 

Action research fits the objective of our research questions. Action research can lead to different 

conclusions about implementing data-driven maintenance compared to conventional research 

methods. The research method also fits the purpose of this project well. The disadvantages and 

limitations of action research have been investigated, and various measures should be taken to 

prevent the research from becoming invalid. The most important measures are sufficient feedback 

and input from varying experts and stakeholders. The action research cycles presented in Figure 

14 ensure robust research and are followed in chapter 5. 
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4. Preliminary steps for data-driven maintenance 

Preliminary steps for implementing data-driven maintenance in Stork IMM are presented in this 

chapter. The injection molding machine is introduced and a preliminary IT analysis is conducted. 

These steps correspond to phases 1, 2, and 4 of the Proactive Maintenance Transformation 

Framework (Van Eijk, 2023). 

4.1. The injection molding machine 

The injection molding machine is super exciting due to its many dynamic aspects and decades of 

development by many engineers. Many components on the machine perform at their maximum 

capacity and many technologically impressive solutions are incorporated into these components. 

This paragraph introduces the injection molding machine for data-driven maintenance. 

General working principle 

The injection molding machine makes plastic products. A mold is placed in the machine and often 

a robot is used to eject the products. The machine receives granules in its hopper and melts the 

granules through friction and heat in the screw, which is driven by the dosing motor. Once the 

plastic has melted in the screw, the plastic is injected with a pressure of up to 2000 bar into thin-

walled molds. The hydraulic injection cylinder takes its pressure from the hydraulic accumulators 

and fastly translates the screw to inject the shot. Several components mentioned in this paragraph 

are indicated in Figure 15. All control components of the machine, like the hydraulic pump, filters, 

and electrical components, are incorporated into the injection frame.  

The mold is opened and closed on the left side of the machine in the picture, the closing unit. The 

mold is attached between the moveable and fixed clamping platens. The electric drive drives the 

moveable clamping platen via the transmission system with a variable transmission ratio. The 

electric drive consists of an electric motor and gearbox that drives the crosshead. During injection, 

the mold must be held closed with an exceptionally high force to keep the high-pressure plastic 

within the mold. The clamping force is applied by stretching the tie bars and locking the 

transmission system. 

The entire process takes place in cycle times of less than 3 seconds. The cycle time mainly 

depends on the cooling time and weight of the product. Processes in the machine generate very 

high loads on the components in many places. 
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1. Clamp motor 

2. Clamp gearbox 

3. Back platen 

4. Crosshead 

5. Toggle system 

6. Closing frame 

7. Moveable platen 

8. Tie bars 

9. Fixed platen 

10. Screw and barrel 

11. Hydraulic accumulators 

12. Hopper 

 

13. Injection frame 

14. Dosing motor 

15. Injection cylinder 

16. Dosing gearbox 

Figure 15, The injection molding machine 

Maintenance of the injection molding machine 

Stork IMM helps customers with their service department to keep machines running. There are 

standard periodic service orders, which mainly involve changing filters, greases, and oils. More 

extensive periodic maintenance occurs less often but is necessary if machine functionalities are 

compromised due to wearing parts. All parts that move relatively to each other wear. The most 

common wear parts are pivots in the lever system, guides for the movable and rear clamping 

plates, and other linear guides and bearings. 

The machine has many potential parts that can fail. What fails depends mainly on usage, the 

accuracy of the control, and the machining tolerances. In addition to standard wear parts, failures 

arise due to overloads, incorrect use, or external effects. An example of this is sudden power 

outages in some countries where Stork IMM machines are running. Customers in these areas 

regularly experience sudden power outages, leaving the machine uncontrolled at high speeds. 

In addition to expected wear parts, there are also less common maintenance parts. These parts 

do not usually fail. If they do fail, there is often something in the system that causes the failure. 

External factors include control errors in the software, deviations in the construction, or excessive 

dimensional errors. Failure of less common parts can cause much downtime due to the longer lead 

times. Customers with many machines or customers in remote locations often have spare parts to 

cover such defects. This spare parts set contains tie bars, hydraulic valves, or electrical control 

cards. Not all parts can be kept in stock in this way. Many parts can cost tens of thousands of 

euros, making spare parts sets too expensive. 

Suitable components for predictive maintenance 

Components that are easy to replace and relatively cheap are the most suitable for reactive 

maintenance, while critical parts in complex systems are more suitable for predictive maintenance 

(Tinga, 2010). The boundary between the two maintenance strategies is a bit vague. It mainly 

depends on the ability to monitor the failure mode and a cost-benefit analysis of implementing a 

data-based technology. We must prevent all failures that lead to more extended machine 
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downtime. Therefore, it is essential to ensure that costly parts with long lead times do not fail. 

These parts are most suitable for predictive maintenance because the profits are the greatest.  

There are currently many sensors on the machine to control the machine. The machine's controls 

contain functionality to read these sensors every millisecond. Whether we can use these existing 

sensors to measure the conditions and loads on parts remains to be seen. 

In this research, the use cases are provided by active failure cases. These quality-related 

development projects in Stork IMM are very current, which helps the implementation process. 

4.2. IT system 

The IT system must provide the facilities to enable data traffic between the sensors and the 

analysis software to perform the intended data-driven maintenance functions. The IT system is 

crucial for data-driven maintenance. This paragraph discusses the necessary IT functionalities. 

IoT platform 

Data-driven maintenance is not new and is a hot topic in many industries, which is why many 

companies respond to practical demands. Microsoft Azure, Amazon AWS, and Google Cloud 

Monitoring provide IT infrastructures. Such large companies offer these functionalities in 

combination with their cloud-based data storage. 

There are also open-source IoT platforms. Open-source IoT platforms have the advantage of 

having a lower entry-level by not paying immediately. Such platforms only charge subscription fees 

for certain data traffic or storage, making it a good opportunity to break ground on the project and 

demonstrate its profitability. We performed a test with open-source IoT platform Thingsboard. 

However, the platform turned out to be more complex than previously estimated. This was mainly 

due to the specific structure of the communication in the platform and, therefore, tricky problem-

solving. The fixed template of the platform also limited the freedom of manipulations and 

visualizations. 

In consultation with the software department of Stork IMM, we have set up our own IoT 

infrastructure. This infrastructure sends the loggings from the machine to the database via an 

internet connection. The database runs on a Stork IMM server itself. The steps between the sensor 

and the final form are shown in Figure 16. The steps are sorted into steps that take place on the 

machine, steps that take place on and between databases, and steps for the analysis. 
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Figure 16, IT infrastructure from sensor to interface 

Cloud-based database 

An IoT infrastructure has been set up to demonstrate how a cloud-based database works with an 

external service provider, as shown in Figure 17. It is only a demonstration because the University 

of Twente facilitates the database storage. The SQL database is used with PostgreSQL database 

management software. Database administrator phpPgAdmin is also used to store and display the 

data in a user-friendly manner. 

 

Figure 17, IT infrastructure for cloud database 

Visualization 

Various systems have been considered to visualize the analyzed data. The desire is to use a 

visualization program where the underlying code is not immediately visible. Real-time dashboards 

and business intelligence (BI) tools have been considered. With various tests of real-time 

dashboards, the limitation in editing freedom quickly arose. The input data must be in a particular 

format, with little freedom in visualizations and dashboard layout. 

Because the editing requirements for visualizing the use cases are high, the decision was to 

employ a business intelligence tool, such as Power BI or Tableau, to visualize the analyses. All 

the visualized data is preprocessed using Python to ensure independence from the visualization 

tool. The business intelligence tool is less real-time but can be updated automatically with the most 

recent data. The visualization can then be used in, for example, a dashboard, a report, or an email. 
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5. Case results 

This chapter implements three use cases in the company and machines. For the implementation 

process, we follow the action research activities as described by (Coughlan & Coghlan, 2002) and 

shown in Figure 14. 

5.1. Cycle 1: Tie-bars 

Recall the action research steps in Figure 18. After the introduction of this use case, every action 

research step is presented as a sub-section in this paragraph. The meta-monitoring observations 

from all steps are combined and shown at the tail of this paragraph.  

 

Figure 18, Action research cycle steps 

The tie bars of an injection molding machine are crucial in building up a sufficient force to keep the 

mold closed during injection. The closing force is built up by pressing the mold halves against each 

other and stretching the tie bars. The four solid steel bars with a diameter of up to 200 millimeters 

stretch a few millimeters. These bars are stretched each cycle, making the tie bars known for 

fatigue failure. Tie bar breakage is a known weakness of injection molding machines and can 

interrupt production if a spare tie bar is not in stock. This scenario is not unthinkable because the 

price of a single bar can run into tens of thousands of euros. Breaking the tie bars can cause a 

loss of profits due to unplanned extended downtime. Stork IMM cannot yet predict the breaking of 

tie bars. 

  

Figure 19, tie bar failures 

Step 1: Data Gathering 

There are several tricks in designing the tie bars to distribute the force per pitch as best as possible. 

This significantly reduces the risk of breakage on a single pitch. Perfectly distributing the tension 

over each pitch is practically impossible. The very close machining tolerances and effects of 
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machining methods cause a deviation between the theoretical design and the practical impact. In 

the company's experience, there is no way to pinpoint which variables can better predict tie bar 

breakage. Tie bars sometimes last for decades in critical situations, while other tie rods collapse 

after four years. 

 

Figure 20, load case of the tie bars 

This report examines tie bars with a closing force of 11.000 kN. Four bars collectively generate a 

tensile force of 11.000 kN. Figure 21 (a) shows the result of a finite element analysis (FEA). It can 

be seen that a peak stress appears where the tensile force flows into the thread of the tie bar to 

transfer the force to the nut. Figure 21 (b) shows the peak stress per pitch. 

 

(a) 

 

(b) 

Figure 21, Tie bar peak stresses 

The tie bars contain strain sensors that can measure the tensile force by the strain in the bar. In 

many machines, all four bars have a strain sensor. The force is calculated using the diameter of 

the bar in the measurement cross-section. 

There are two interesting moments in a cycle to measure the force. The first moment is after 

locking. This is the built-up closing force for the injection process. The second is during the injection 

process. The high injection pressure causes the mold to breathe and the closing force to gain. So, 

four data points are stored twice per cycle. 

Step 2: Data Feedback 

At Stork IMM, it is known that a short cycle time with a high load accelerates fatigue failure. This 

makes sense because the amplitude and frequency of the load are increased, both of which are 

detrimental to fatigue failure. The available sensor can measure both this frequency and load. 

However, it is known from experience that the fatigue duration can vary greatly, even for 

comparable situations. This difference is due to dimensional deviations at the nano level and 



Case results, Cycle 1: Tie-bars 

  32 

material discontinuities, neither of which are acutely measurable. Due to these deviations, it is not 

possible to create a generic S-N curve (a curve to set out the stress to the number of cycles). 

The tricks used to distribute the stress theoretically are challenging to realize. As a result, the 

practical effectiveness of these measures varies. This inconsistency leads to a greater standard 

deviation in the statistical probability distribution. With these expensive components, such a large 

standard deviation is unacceptable. It can only be used as a guideline for advice on the quantity of 

spare parts. Additional information about the loads or conditions must be incorporated for a more 

accurate forecast. 

An alarm is set if one of the four rods exceeds a specific deviation. However, this deviation is set 

relatively large to prevent false positives. For example, notifications can be given if the force in one 

of the rods is higher due to a non-flat mold. If the tie bar exceeds the set deviation, the tie bar is 

often already broken. 

Step 3: Data Analysis 

With current knowledge of the failure, there are two possible degradation models. The first is a 

fatigue model with the influence of variables. The second is pattern recognition of a reduction in 

closing force in a tie bar that is starting to fatigue. 

Variables influencing the faster degradation of the tie bar include straightness of the load, rotation 

of the tie rod during life, pitch accuracy, material continuity, and overloads. Most of these are very 

difficult to measure using sensors. The influence on the standard deviation is also unknown. If the 

probability distribution has to be designed, it is essential to register the measurable variables 

properly. However, a reliable probability distribution requires much data on breaking tie bars per 

machine size. There are not enough failures within construction improvements to establish a 

reliable probability distribution. 

The second concept for a degradation model assumes that the tie bar that breaks carries less 

force than the other bars. The four tie bars stretch parallel to each other. The total elongation of 

the tie bars is equal due to the construction. If one of the tie bars starts to crack, it becomes less 

stiff than the other bars. Because this tie bar strains more, the other three tie bars carry a higher 

share of the total force. This connection was not digitally observed because only an upper and 

lower limit of the total force per rod was considered. This type of degradation model does not 

prevent the breakage, but it can indicate at an early stage that a spare tie bar must be ordered to 

prevent downtime.  

While implementing a data science monitoring project, it is essential to consider what message the 

data should convey. In this case, the monitored data should answer the following questions: 

• How many overloads have there been? 

• How are the tie bars loaded? 

• Is there a degradation pattern visible? 

The analysis algorithms in Python must extract information from the monitored sensors to answer 

these questions. For each question, consideration has been given to how it can be analyzed, which 

analysis parameters should be created for this, and whether additional action is required, such as 

registering overloads so that they can be easily found. All the code algorithms for data 

manipulations are shown in Appendix D. 
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Step 4: Action Planning 

The necessary actions to operationalize this use case involve reducing maturity gaps in specific 

areas. The action points required can be classified into three main categories: organizational 

changes, operational technology, and information technology. These three categories emerged in 

the literature review as the primary implementation categories for data-driven maintenance. The 

actions for implementing the tie bar use case are: 

• Operational technology 

o Analyzing load and failure mode 

o Tracing and analyzing historical data 

o Design monitoring method 

o Develop prognostics 

• Information technology 

o Develop monitoring software 

o Develop data infrastructure from machine to database to analysis algorithms 

o Automating monitoring and prognostics 

• Organizational 

o Involve and information stream customer 

o substantiation of required software workforce 

o Communicate operation and use case possibilities 

The loads and failures mode must be well understood in operation technology actions to monitor, 

visualize, and predict correctly. Since 2020, some new machines have included machine logging 

some parameters. Hopefully, historical usage data consists of a case with a failure of a tie bar. 

This data can be analyzed to see in advance whether the failure behavior is reflected in the data, 

whether the hypothesis is true, and to test pattern recognition.  

On the IT side, the right software must be developed for the machines within the target group. 

Logging of some parameters has occurred since 2020, but this data is not immediately available 

for analysis. The data needs to be accessible by the analysis algorithms and consideration must 

be given to how these steps can be carried out automatically on machines of interest. We are also 

going to test the IoT network by transferring data from the machine to the Stork IMM database and 

further to the analysis dataset. 

At an organizational level, things need to change to make implementing this use case successful. 

It is important to involve the customer in the development to make the result usable and 

understandable for the customer. Enough support must also be created at an organizational level 

for the required workforce in the software department. The result must also be communicated to 

different stakeholders in the company to demonstrate the possibilities and results of the first case. 

Step 5: Implementation 

Most of the steps that have been drafted as actions have been implemented. However, there are 

also some problems discussed in this section. Logging of some parameters has been implemented 

in new machines since 2020. There is only one machine with this logging software, the correct 

sensors, and a tie bar fracture. This is the only dataset with historical data of the failure. Several 

problems occurred during the actions to obtain the data from the machine. Due to an incorrect 

version of remote assistance on the machine, we were limited in accessing the machine. The 

machine was located in eastern Poland, too far from the OEM to arrive on site quickly. After several 

attempts with client employees, a Stork IMM employee went to the client. It was noted that this 
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machine has recently received a new control unit. The old control unit on which the data is stored 

is missing. This time-consuming process typifies the difficulty of data completeness and 

consistency. Now the failure behavior remains a hypothesis. 

Monitoring the tie bars on existing machines in the field is the most interesting. A project is 

organized for a customer suffering from breaking tie bars in South Africa. This case is interesting 

because of the long shipping time between Stork IMM in the Netherlands and the customer in 

South Africa. The outdated software needs to be modified to start monitoring these machines. All 

IT action steps from the previous section are carried out. Unfortunately, the software update was 

not successful on the machine. Various errors and crashes damage the machine. After two full 

days of repairing, the old software is restored, and the machine is repaired to get it back into 

production. The event confirms the difficulty of adapting existing ‘old’ machines to implement new 

data-driven maintenance software, especially remotely. 

Political and strategic questions slow down processes. For example, obtaining data on damage 

cases can give the customer thought that the maintenance costs incurred on relatively new 

machines are defects for which the OEM is responsible. The customer is also reluctant to share 

data to ensure that the OEM cannot discover that defects occur due to incorrect usage. However, 

this problem becomes less severe if both parties can agree on the purpose of using the data. 

Step 6: Evaluation 

The load that creates the failure mode is reliably monitored and displayed. The actions on the 

technical operations side have ensured that this case was monitored successfully. The IoT 

infrastructure shown in Figure 16, has made it possible to use the machine's sensor data for 

visualization. The data is updated daily. Updating the databases, analyses, and visualizations is 

automated at the touch of a button. It is easy also to automate the intervention of pressing the 

button by having it performed daily at a particular time. 

Monitoring has been worked out in Power BI, shown in Figure 22. The dashboard can be used by 

customers and Stork IMM engineers to assess how the machine is running. The amount of 

overloads is displayed. There are relatively few observations compared to the recorded cycles, so 

the ranges may need to be redefined. 

While developing the use case, there was no historical data of tie bar failure. The hypothesis is 

that one tie bar takes less force compared to the other three. Tachometers that show a percentage 

deviation compared to the other three were chosen to visualize this behavior. The use of colors 

has added information about how to interpret the value. This is necessary to convey to someone 

with less background information, such as the customer, how the values should be interpreted. 

Towards the end of the project, a tie bar whose sensors were being monitored broke. The breaking 

of the tie bar confirms the hypothesis. Figure 23 shows that 3 months in advance, over one million 

cycles, the breaking tie bar starts a downward trend in force: a crack appaired and it starts to 

degradate. The tachometers are also in red and many overloads have been measured. All 

functions of the dashboard show red flags. The next step is to investigate the differences in the 

gradient of the degradation trend and what the determining variables of this trend are. 

To investigate the failure behavior over time, it is also valuable to show the load on the tie rods 

over a number of cycles. This relationship can be used to observe how the tie bars are loaded and 

whether a visual pattern can be seen. This is a good check on the automated calculation because 
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employee’s intelligence can be added here. Visualizing the pattern is easy by interactively scrolling 

the range of number of cycles. 

 

Figure 22, monitoring dashboard tie bars 

 

Figure 23, dashboard of a failing tie bar 

Meta-monitoring conclusions 

The meta-monitoring of each step takes place continuously during the research. The interpretation 

of observations is discussed in detail in the discussion chapter. This section discusses 
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observations that can be learned from the next action research cycle. After all, the goal of this 

method is to ensure continuous learning and make implementation more effective each cycle. 

After communicating the implementation plan, resulting from the preparatory steps of the Proactive 

Maintenance Transformation Framework, the first steps of collaboration between the software and 

mechanical department went more smoothly than expected. The IoT infrastructure was quickly 

created by combining current solutions and adding a few new functions. This process goes so 

smoothly that there is some confusion: until now the mechanical department wanted but they found 

the software inadequate, and the software department did not develop because there is no 

mechanical demand. The reversal of collaboration hints at the presence of departmental silos, 

which is evaluated in the discussion under organizational improvements. Good communication 

about the necessary requirements has quickly resulted in an IoT infrastructure. Communicating 

the implementation plan with content and objectives provided good direction and indication for both 

departments, this way of communicating is effective, also for the upcoming use cases.  

While working on the project, several tie bars broke in a factory in South Africa. From Stork IMM 

in the Netherlands, sending spare parts by shipping is time-consuming and expensive via air 

transport. The situation became so critical that production in South Africa came to a standstill or 

threatened to come to a standstill on several machines. Predicting tie bar breakage can prevent 

this situation by responding early by sending spare parts in time or adjusting the production speed 

to extend the service life as necessary. Due to the situation's seriousness and the project's 

potential, the implementation process accelerated. Orders arose to supplement missing software 

and hardware, and time allocation became a priority. So, by carrying out a critical case where 

monitoring can add value, the implementation process is accelerated due to the high priority of the 

implementers. 

Most of the time in the implementation phase is spent on the IT side. Many issues are recognisable 

as IT/OT convergence challenges. Creating software, waiting until we can implement it with the 

right employees, and solving problems took much time. The software department was very busy 

during the implementation, with understaffing for various reasons, prioritizing other critical work. A 

key takeaway is to properly plan and communicate the required work of all team members in 

advance. 

Monitoring older machines is the most interesting, these machines have been running for sufficient 

cycles to be vulnerable to fatigue effects. A remote update of a machine in South Africa 

unfortunately failed. New software in the old machine caused a frequency controller defect, 

demonstrating legacy system update issues. Obtaining historical data on a failure mode took much 

time due to the problems described. The inaccessibility problems teach us not to depend on a 

single data source. The same can be concluded about the implementation problems of the new 

software on the old machines. Ultimately, the implementation was successful, but it is beneficial to 

approach the case to be tested on any machine during the project's duration. 

5.2. Cycle 2: Frame load 

After the introduction of the use case, all steps of our action research process from Figure 24 are 

covered in separate sub-sections. The paragraph ends with the meta-monitoring observations of 

all steps. 
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Figure 24, Action research cycle steps 

Cracks in the frames of injection molding machines in Australia initiate the following use case, 

shown in Figure 25. Several cases of cracked frames have arisen in the history of Stork IMM. 

Therefore, the frame can be a vulnerable part in specific cases. Certain situations cause frames to 

crack. In these situations the frames are subject to higher loads in certain places. An example is 

when the frames are glued to the floor. This extra fixture changes the force pattern in the frame. 

  

Figure 25, Cracks in the frames 

Step 1: Data Gathering 

In this specific use case, holes have been made in the closing foundation at a place where the 

internal stresses have to pass during an overload. This overload is caused by occasional hard 

braking for, for example, an emergency stop or incorrect operation. The fixed tension plate, shown 

in Figure 26a, is the only part to transfer this shear force from the drive to the frame. Figure 26b 

shows the peak stresses where the cracks occur with a FEA calculation.  

 

(a) 

 

(b) 

Figure 26, Closing unit frame (a), FEA of load around hole (b) 
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Some of the machines at risk of this failure are in poor condition and are being replaced. Some 

frames only have minor cracks or none at all. Monitoring the condition of these last frames is very 

valuable. Doing this can prevent further cracking and save a lot of maintenance costs and 

downtime.  

The internal stress, which is the load in the material causing the cracks, repeats itself every cycle. 

However, overload situations, such as emergency stops or incorrect manual operation, can 

significantly elevate this stress. An acceleration of the LSP causes the load. This LSP is driven by 

the crosshead via the transmission system. The transmission system has a varying transmission 

ratio over the entire crosshead path. The drive directly controls the crosshead. The reaction force 

of the drive is transmitted via the APL and the tie bars to the fixed clamping plate, which ultimately 

transfers it to the frame. An accurate position sensor on the crosshead and knowledge of the 

transmission allow us to monitor the acceleration of the drive and the LSP. We can also monitor 

the force of the drive with the pressure sensors in the hydraulic drive cylinder. 

Step 2: Data Feedback 

A possible solution for monitoring the condition of the cracks is to place strain sensors around the 

cracks. This makes it possible to monitor whether the internal tension in the material decreases in 

proportion to the load on the machine. If the load around a crack decreases, it can be assumed 

that the crack has ruptured further. The disadvantage of this method is the complex comparison 

and it only tells something about a specific point around a single crack. The method is also 

expensive, vulnerable, and not yet proven. 

Using existing sensors to determine the forces on the frame is a faster method. These forces also 

say more about the load on the entire frame than the condition at one specific point. When 

determining frame load, the LSP's acceleration and the drive cylinder's force are the two best 

indicators of the force on the frame. The driving force is determined by measuring the pressures 

on both sides of the piston and multiplying by the area of both sides. The acceleration of the LSP 

is calculated from the position sensor of the crosshead. The non-constant transmission ratio 

calculates the position of the LSP. The acceleration can be determined by differentiating twice over 

time. Because sensor data is not continuous but discrete, noise is unavoidable. The data is usable 

through filters in each intermediate step. In the experiment shown in Appendix C, an exponential 

moving average (EMA) filter was used in each intermediate step. With this type of filtering, the 

data's amplitude is preserved as much as possible. 

Both sensors are read every millisecond in the cycle. With a cycle time of, for example, 8 seconds, 

it is self-evident that storing 8000 data points per sensor is not feasible. The challenge is to collect 

sufficient information with as little data as possible. Two options have been devised for this 

problem. The first option stores the minimum and maximum values during opening and closing in 

predetermined crosshead zones. The second option stores the maximum and minimum values 

with the corresponding crosshead positions when opening and closing. To determine which 

method generates the most valuable data, testing revealed that while the first option yields more 

data, the same conclusions can be drawn from the second option with fewer parameters logged 

per cycle. 

Logging is only done in automatic production mode and during special events. A preliminary 

analysis concluded that an overload can occur in manual operation if incorrect operation is 

performed. The machine can be closed and opened manually by a control button. A safety 

standard stipulates that the machine must stop within a certain distance after releasing the button. 

Suppose the operator has not adjusted the operating speed and releases the button before the 
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end of the movement. In that case, an emergency stop can be performed when the levers adopt 

an unfavorable gear ratio between the drive and the clamping plate. This malicious event should 

be logged to monitor if the frame is being overloaded. For this reason, the logging software must 

be adjusted to log in manual mode. 

Step 3: Data Analysis 

An interesting discussion arose between several engineers about the sensors used. The force of 

the drive cylinder and the acceleration of the LSP are indirect measurements. This does not show 

the specific force on the frame. The variable gear ratio also makes interpretation of the data more 

difficult. Recalling that logging aims to map the force on the frame, we have concluded that with 

these two data sources, all foreseeable possible scenarios are monitored. An emergency stop will 

be seen as a pressure peak in the drive cylinder. A too-aggressive cycle is reflected in the 

acceleration of the clamping plate. 

However, we now only monitor the highest and lowest accelerations and forces during opening 

and closing. If an outlier is monitored, we have no information about the cycle other than the 

measured position of the outlier. It is also unknown whether this is the only high outlier or if there 

are several high outliers in the cycle. It is also possible that a more harmful outlier is hidden by a 

measurement error or other recorded value. 

Step 4: Action Planning 

The action points arise from the experience and lessons of the previous use case combined with 

the work that still needs to be done to implement this use case. The action points are divided into 

the 3 categories required for data-driven maintenance: 

• Operation technology 

o Load and failure mode analysis 

o Test saving the right data 

• Information technology 

o Designing monitoring software 

o Analysis algorithms data 

o Visualization of data 

• Organizational 

o Creating substantiating workforce dedication software department 

o Creating implementation plan 

o Communicate working and possibilities 

What we want to measure in the closing drive is a complex event. An overload can have different 

causes and can be measured on different sensors. Other limit values also apply at any time in the 

cycle. The measured sensor values must be carefully analyzed and we must ask ourselves 

whether the measured data clearly reflects the harmful load. 

The overload only happens for a fraction of a second and we cannot store too much data. The 

data-gathering method must be carefully considered, developed, and tested. In addition, the 

measured data must be visualized. This use case requires much work from the software 

department to create software for machines that monitor and send the data. This software must 

also be installed on the machines under interest. 
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Step 5: Implementation 

The implementation is most effective with a concrete and relevant project, as experienced in the 

previous use case. This use case concerns machines in Australia. An action plan has been created 

within this project with a concrete assignment for the software department. However, understaffing 

in the software department has caused delays in the implementation process. The software 

department handles many jobs for the service department, where machines stand still in the field 

and wait for the required software. These jobs were automatically given priority due to the high 

pressure from the customer. After the software for this project was created, it could not be 

implemented immediately due to the risk of required readjustments on the machine and not having 

access to the staff who can solve this issue. 

Furthermore, during the implementation process, it turned out that the interpretation of the data 

was complicated. Unlike the previous use case, meters with a green, orange, and red color scale 

could not be used. The scatter plots in Figure 27 show what is happening, but a lot of domain 

knowledge is required to interpret them correctly. Analyzing overloads becomes easier by 

specifically displaying overloads with the cycle before and after the overload. The dashboard is 

more of a tool for specialists. An image with the position to display the sensors has also been 

added to speed up the interpretation. 

Step 6: Evaluation 

Despite the complex event, a brainstorming session with engineers from different disciplines led 

to the development of suitable sensors to monitor the event. Developing software that provides as 

much information as possible with as few data points per cycle has been achieved by storing the 

maximum and minimum force and acceleration with the corresponding crosshead position for each 

back-and-forth movement. This method provides information about the maximum load and 

acceleration at a certain point with 16 data points per cycle. 

In addition to the overload amounts, the visualization shows the distribution of the maximum and 

minimum forces and accelerations with associated positions. An engineer can assess how the 

machine is performing. To make it easier to analyze the overloads, cycles before and after the 

overload cycle are shown. This way, some context is provided to the event, speeding up the 

analysis process. The dashboard is shown in Figure 27. 
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Figure 27, Dashboard frame load 

Meta-monitoring conclusions 

The previous and this use case concern maintenance cases where reliability is increased. 

However, these cases also depend on the failure of a product to be proven. Proving reliability-

related maintenance cases can therefore take more time. It would help if we could quickly 

demonstrate value to show the profits of the investments. For the following use case, it would be 

good to look at machine optimization with data such as productivity improvement or energy 

consumption manager. 

In interim discussions, management expressed interest in showing visualizations. Displaying 

visualizations helps keep management and team members on board and quickly share and expand 

the potential of the technology. 

This use case does not include a forecast. The dashboard purely shows the load on the frame. 

However, this functionality was very well received. In the past, such damage cases were often 

attributed to machine malfunctioning. With this monitoring software, the suspicions can be 

confirmed by extracting much information about the context from the data.  

While carrying out this case, the technical content sometimes became quite complex. Unlike the 

first use case, the load on the frame is not directly measurable in the second use case. In the 

implementation process, this led to discussions about correctness, the use of sensors, and 

uncertainty about the technical content. This difficulty is also the reason why the dashboard is hard 

to interpret. This has been improved by adding images and more context about outliers. After 

several brainstorming sessions with different departments, several points often came back to two 

things: Make it easy for the customer to use and use the technology for immediate improvements. 

This feedback again points to using the technology to optimize the machine. 

Despite the planning and specification of the activity as a learning lesson from the first use case, 

the IT activities were again an inhibiting factor. New required software, understaffing in the software 

department, other projects with higher priorities, and waiting time for customer actions are a few 
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causes. Ultimately, through various tests, software was developed that provides as much 

information as possible about the magnificence and location of the highest loads with a low amount 

of data points per cycle.  

5.3. Cycle 3: Machine optimization 

In the previous use cases, the value is best seen when something fails. To quickly demonstrate 

the system's value, there is a desire to conduct a use case that utilizes monitored data to improve 

machine performance. Recall the action research steps, presented as sub-sectoins in this 

paragraph: 

 

Figure 28, Action research cycle steps 

Step 1: Data Gathering: Energy usage 

Energy usage is a hot topic. At Stork IMM, customers also want to minimize energy usage. In this 

way, customers reduce running costs and thus the total life cycle costs of the machine. With high 

fluctuating energy prices, the injection molding machine's energy use is an important KPI. 

A good application would be to help the customer estimate and reduce energy consumption. If we 

monitor energy consumption and calculate it theoretically based on the setting parameters, we can 

compare the calculation with the measured values. In this comparison, we can even apply AI to 

identify the deviations of the calculations on different data sets and thus make the calculation very 

accurate. The result of this use case is that a theoretical simulator has been created with which 

we can accurately predict energy consumption. We can use this simulator to achieve the lowest 

possible energy consumption within the customer's limits, such as a specific time for production. It 

also has great value for Stork IMM. If we know the energy consumption per drive, we can also see 

where we can improve energy consumption. 

Collecting data with the current monitoring solution is not efficient. We currently collect the selected 

parameters every cycle. Significant amounts of data is created if we monitor the setting parameters 

and energy consumption every cycle. This is also unnecessary because the machine produces 

virtually identical data cycle after cycle. A suitable solution is daily logging, which logs data from a 

single or average cycle. Unfortunately, we have estimated that the amount of labor for this new 

software functionality is not feasible within the scope of this project. 

Step 1: Data Gathering: Machine productivity 

Feedback has repeatedly emerged that customers may have a greater need to prevent downtime 

than complicated software solutions such as these. Hence, the idea arose to monitor productivity 

and downtime to monitor the machine's productivity.  

There is much potential in the data already monitored up to this case. All kinds of information can 

be extracted from this data. KPIs such as the number of products, cycles, uptime, downtime, scrap 
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rate, failure causes, and OEE (overall equipment effectiveness) are interesting for displaying 

productivity. We can use the current loggings for these parameters. Currently, the start time and 

product counter are logged for each cycle. Alarms are also logged. Combining these two loggings 

can provide information for the previously mentioned KPIs. 

Step 2: Data Feedback 

Extracting data from the available data requires several calculations and assumptions through the 

indirect measurement of KPIs. This accuracy can be greatly improved by implementing the daily 

software logging functionality as proposed in the previous section. A daily log can contain 

parameters that draw more accurate conclusions. However, the available data can serve as a 

demonstration and provide quite a few interesting conclusions.  

Step 3: Data Analysis 

From the standard logging files, the number of rows can be related to the number of cycles, the 

number of products can be read, and the cycle time can be iterated by the start time of each cycle. 

The cycle time can be calculated by calculating the time between cycles. At times, the machine 

remains stationary for longer periods between cycles, so only cycle times under 40 seconds are 

included in the average. Otherwise, it is not considered a cycle. 

All machine alarms are logged in a separate file. However, automatically analyzing the machine 

status based on these loggings proved difficult. The inconsistency and incompleteness are both 

very significant. This is caused by the status not always displayed depending on the type of alarm 

and by displaying multiple alarms during some standstills. Various samples also have compatibility 

problems between the cycle and alarm logging files. Due to the inconsistency, incompleteness, 

and compatibility issues, combining the current alarm and cycle loggings for an automated analysis 

algorithm is impossible. 

The alarm logs can be adjusted to monitor the number of failures per alarm. Alarms that do not 

cause failure, alarms that say something about continuing production, and alarms that follow the 

same cycle as a previous alarm have been filtered out. 

Step 4: Action Planning 

No new logging software is being developed for this use case. However, it is necessary to 

investigate what information can be reliably extracted from the current data. Because this use case 

serves as a demonstration, no customer is involved in the implementation and organizational 

actions are limited. The action points are: 

• Operation technology 

o Determine productivity KPIs 

o Convert data to operational context 

• Information technology 

o Design analysis algorithms 

o Develop dashboard 

• Organizational 

o Communicate results and possibilities 
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Step 5: Implementation 

Apart from the already known limitations of being unable to link the cycle with alarm loggings and 

the inconsistency and incompleteness problems, developing the case was relatively 

straightforward. Thanks to prior experience in communicating between Python and PowerBI from 

previous use cases, as well as experience in integrating separate analyses into the algorithm, 

incorporating this use case was performed relatively quickly. The information from this use case is 

well-known in the industry, resulting in a more straightforward interpretation. The data and 

dashboard also require less manipulation to facilitate interpretation. 

Step 6: Evaluation 

KPIs have been calculated from the available data about the amount of production numbers and 

time per day. Information about the number of stops for a specific alarm has also been extracted. 

A functionality that would be a good addition is linking the number of daily stops and the associated 

downtime per error, which can be achieved with the daily logging function. The KPIs in percentages 

are estimated with assumptions, but they can also be improved by implementing time-counting 

parameters in the daily logs. The productivity dashboard can be seen in Figure 29. 

 

Figure 29, productivity dashboard 

It is valuable, for example, to monitor the amount of downtime per cause of downtime. The logging 

software must be adjusted for these KPIs. Developing a daily logging functionality is the most 

accurate rather than making the current alarm and cycle logging complete and consistent. 

Maintaining time counters in the software per alarm or machine company is straightforward. This 

makes the result more reliable and new interesting conclusions can be drawn that directly helps 

the customer to reduce downtime. 

Meta-monitoring conclusions 

While exploring the use case for simulating energy use, brainstorming took place with various 

departments. Interesting input and feedback emerged during these sessions. This functionality 
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was seen as a step towards a self-adjusting machine that can remove much of the complex 

understanding of the process from the customer. 

Questions about how this solution can be sold to the customer arose. Ultimately, the industry is all 

about developing solutions that can be sold to generate revenue. Discussions arise as to whether 

these functionalities are sold as separate systems or applications or whether it is a condition for 

selling machines in the future. For example, the latter can be seen in the automotive world, where 

functionalities like adaptive cruise control or lane assist are necessary for cars to compete on the 

market. 

The third use case contains an optimization of the machine with the same IT infrastructure as the 

previous use cases. Optimizing the machine has faster feedback in value to show the potential of 

the techniques. The productivity improvement is also very recognizable for users, making it easier 

to apply and learn from. This case was quickly realized using the current IoT infrastructure and 

data from already monitored data. The case demonstration quickly found new applications by 

decision pulls instead of a technology push, such as recognizing machine power outages. 

While demonstrating this new functionality, new applications quickly emerged. The same analysis 

has been used to analyze whether there have been machine power outages. 
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6. Discussion and Implications 

The discussion aims to interpret the study results, relate them to the research question, place them 

among other studies, and point out limitations (Leedy & Ormrod, 2015). To do this, the findings are 

interpreted. With the interpretation of the findings, a framework is constructed to help future 

implementers with the lessons learned in this implementation process. The chapter ends with 

implications, a reflections on the research method, limitations, and suggestions for further 

research.  

6.1. Interpretation of findings 

Instead of a chronological order of events as presented in the experiments part, conclusions in this 

section are grouped by topic. These topics describe themes that give us insight into the research 

questions. 

Condition monitoring 

The literature review focused on condition-based maintenance, industry 4.0, and data science to 

investigate how data-driven analysis techniques can be used to monitor the condition of 

components from the injection molding machine. The approach to determining the condition is 

divided into measured or calculated conditions (Tiddens, 2018). The condition can be measured 

by directly monitoring the condition or structural health, or a physical model or data analytics can 

calculate the condition. The models can approximate the condition, but (Tinga, 2010) indicates that 

measuring the condition, load, or use has incremental steps of residual uncertainty in the analysis. 

In the first use case, the load could be measured directly. In the second use case, this was iterated 

from other sensors. The additional calculation model to visualize the load introduces uncertainty 

due to the indirect measurement. The required calculation models have been demonstrated by 

(Tinga, 2010) and shown earlier in this report in Figure 6. Measuring the load or condition directly, 

if feasible, is beneficial for reducing uncertainty and work time. 

The study did not perform an FTA or FMECA to identify components in the injection molding 

machine that could cause critical downtime. For the use cases in this research, well-known quality 

problems on specific parts were used. This guarantees that the use cases are relevant. Not having 

to perform an FTA or FMECA to find critical components indicates that the need for data-driven 

maintenance is indeed there. 

Predictive maintenance 

Monitoring the condition is a first step, but to improve reliability, this condition must be used to 

make a forecast. The most ideal outcome of a prognosis is remaining useful life (RUL) or time to 

failure (TTF). The prediction is based on a statistical failure distribution or a physical degradation 

model (NEN-EN, 2019). The first use case resulted in monitoring the load on the tie bars. The load 

that causes the failure mechanism can be measured reliably and accurately. The dashboard has 

been adapted to the expected degradation pattern and is easily interpretable using color scales. 

The failure mode of the tie bar breakage is a decrease in strength in one of the four bars. (Tiddens, 

2018) indicates the necessity of historical data for making a prognosis earlier in Figure 10, we 

experienced the same. There is a clear hypothesis about the relegation pattern, but a prediction 

was not possible because the time frame of the degredation was not known. Ultimately, we 
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succeeded in diagnosing this degradation pattern. Multiple diagnoses are now needed to 

understand the differences in the gradient of the degradation trend and what the determining 

variables of this trend are.  

The reliability of Stork IMM machines can be improved by using conclusions from data-driven 

maintenance techniques for maintenance decisions. In this project, we showed that usage, load, 

and condition monitoring can support maintenance decisions to improve reliability. In the second 

use case, the result was not a forecast but a load visualization. Despite missing the prognosis step, 

the result was received as very useful. Visualizing the load avoids suspicions in discussions and 

helps to understand and control the root cause of the degradation. This indicates that with data-

driven maintenance, the result does not always have to include a forecast to be valuable. For a 

company, it is important to determine the required ambition level of the data-driven maintenance 

technique. The Maintenance Techniques Framework (Tiddens, 2018) distinguishes decisions 

between detecting, diagnosing, and prognosing.  

Implementation tools 

Several data-driven maintenance frameworks were shown in the literature review. The methods 

generally follow the same steps but differ in specific focus points. The corresponding steps are: 

Critical failure mode selection, identifying degradable mechanisms, data acquisition, data analysis, 

evaluation, and decision-making. If one seeks guidance on implementing data-driven 

maintenance, one promptly encounters what is commonly called maturity models. With these 

maturity models, maturity can be assessed on key capabilities, divided into technological, IT, and 

organizational factors. The models are based on the idea that all defined criteria must be around 

at least a certain maturity to achieve a certain data-driven maintenance level. Examples of maturity 

models from (Kerkhof, 2020; Mainnovation, 2018) are shown in Appendix B. How it is presented 

already suggests that a prerequisite for data-driven maintenance is specialized skills across 

various domains, especially technical, IT, and organizational aspects. 

An implementation framework was designed by (Van Eijk, 2023) based on a thorough literature 

review of many data-driven maintenance frameworks and known challenges. The framework has 

the following steps: Preliminary analysis, building a business case, creating and communicating 

strategy, enabling IT implementation, and implementing data-driven maintenance. Instead of 

directly implementing data-driven maintenance, the framework focuses more on the IT basis, 

project management, and organizational changes. These basic steps are crucial for SMEs before 

data-driven maintenance can be implemented.  

IT/OT convergence 

The IT system must provide the facilities to make sensor loggings available for analysis. Because 

the storage of the data and its analysis do not take place at the location of the injection molding 

machine, an IoT infrastructure has been designed. We looked at using commercial solutions for 

the IoT infrastructure, such as Microsoft Azure or AWS. However, these programs' specific 

structure and communication led to compatibility problems with the Stork IMM machine software. 

Other functionalities quickly require add-on packages, and there is also a financial hurdle due to 

the monthly subscription fee, delaying the project's profitability. Because third-party platforms often 

use a specific format and are behind a monthly payment barrier, we have created an IoT 

infrastructure running on Stork IMM servers that is well-compatible with the machine control 

software.  
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A trial with an open-source platform demonstrated a lack of freedom in manipulations and 

visualizations. The open-source test encountered challenges with the more complex-than-

expected communication infrastructure, causing time-consuming and frustrating processes due to 

its initially perceived simplicity. Limited understanding of the communication structure and the 

communication code being hidden from the user made problem-solving harder. 

With both the commercial and open-source variants, it turned out to be very difficult to integrate 

the company's OT processes with the IT infrastructure of the programs. Many applications and 

systems have been developed within Stork IMM, each fulfilling a function. Switching to a new 

system, such as a PDM system, is very intensive with the limited capacity and required functions. 

The subsequent challenges, such as connectivity and data collection, are only future challenges. 

The IT/OT convergence is incredibly complex with existing systems. 

Another IT/OT convergence issue occurred during an unsuccessful software update in an old 

machine. Implementing new software functionalities on old hardware caused follow-up issues in 

this case. When updating legacy systems, problems are created by the technology, architecture, 

and functionality of the application (Yokogawa, 2020). 

Data completeness, consistency, and availability 

Sorting out data was often very time-consuming with regularly disappointing conclusions. Problems 

with completeness, consistency, and availability were common in existing data from the machines, 

which are typical data science challenges (Sajid et al., 2021). 

It also became clear that asking for historical data is unusual. Several challenges arose when trying 

to get historical data for the use cases. This shows that software on machines at various customer 

locations was not yet designed to retrieve historical data. For example, data has been deleted, 

machine software is unsuitable for remote access, and there were problems with connectivity. 

It is good to build up data from the machines. The loggings require little storage memory at 350 kB 

per day, logging 141 columns per cycle. The last use case demonstrated how much additional 

information value can be extracted from data as long as the data is there. The data we monitor is 

minimal, exemplified by Formula 1, where one Formula 1 car produces 1,5 terabytes over a race 

(Shapiro, 2023). Another example arises from a Boeing 787, monitoring 1000 parameters 

continuously leading to 20 terabytes per engine per flight hour (Badea et al., 2018). 

Interdisciplinary collaboration 

data-driven maintenance requires modern skills from different areas of expertise. Missing 

professional employees like specialists and data scientists is a common risk in implementing data-

driven maintenance (Mesarosova et al., 2022). The technical content is complex, and the required 

IT facilities are modern. Implementing data-driven maintenance at Stork IMM requires mechanical, 

process, and software engineering cooperation. So far, it has not been successful because the 

mechanical engineers do not find the software goal-achieving and usable. In contrast, the software 

engineers did not continue the development of the system because there was no expressed 

mechanical need from the engineers. It's a textbook example of organizational silos, which results 

in a lack of cooperation that reduces the potential of the project (Yokogawa, 2020). Cross-

disciplinary actions are not easy to implement. Defining tasks and waiting for each other in the 

meantime makes collaboration difficult. The agile approach of this research can be a good example 

for organizing the project management of these projects. 
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Creating value 

Before a data-driven maintenance use case creates value, it depends on the occurrence of an 

event and how valuable the output information is to make a decision. The downtime that can be 

prevented is precious, but the time between the implementation project and the occurrence of the 

value return can be long. During the tie bar fracture project, the use case became very relevant for 

a customer in South Africa due to the shortage of spare tie bars. When sending new spare parts, 

there was discussion about sending some of the new parts by plane to be on the safe side, which 

is, however, more expensive than sea shipping. If the use case had been further developed and it 

was possible to monitor these machines, air transport costs could have been avoided. In this 

situation, the cost savings can be quantified. 

An optimization case was carried out for the third use case to achieve faster returns from the 

application. Directly optimizing the machines is a recognizable cost-saving for producers. It also 

brings the Stork IMM’s optimizing knowledge into the machine, allowing the manufacturer to use 

this knowledge to get more out of the machine. This is a competitive advantage, like a fuel 

consumption monitor or lane assist in cars. 

Criticality of use case 

External factors can determine the criticality of a project. This defines how much priority the work 

has for the personnel and the progression of implementation. This can make a big difference, 

especially for SMEs with limited capacity. For example, with the problem of breaking tie bars, the 

use case became very topical. Implementation gained momentum because development tasks 

were given priority. So, finding relevant use cases is very important. 

Conversely, implementation can also be postponed. During the second use case, the occupancy 

in the software department was reduced due to standard staff absences in companies due to 

illness or vacation. Critical projects, such as machines at a standstill, were automatically prioritized. 

Other organizational factors 

In addition to the conclusions in the previous paragraphs, which can also be placed under 

organizational factors, there are other organizational and policy aspects to evaluate. For example, 

it sometimes proved sensitive to involve the customer in obtaining data to discover failures. We 

did not want to give the impression that we were afraid of a failure. However, maintaining high 

machine availability is in the OEM and the production company's best interest. Therefore, finding 

common ground on the data’s purpose is a practical solution. 

There were also times when we depended on customer actions. For example, we depended on 

updating or changing settings on the machine. This dependency brought intercontinental remote 

challenges and complex planning. 

The third use case was conducted much faster than the first two because it could use the current 

IoT infrastructure, analysis algorithms, and other systems. Therefore, The high setup costs only 

occur initially and when new functionality is needed. In addition, it was good to communicate results 

and possibilities with leaders from different departments occasionally. Not only to justify spent labor 

hours and steering the application, but also because it provided new ideas and cases for the 

project. 
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Artificial intelligence 

Artificial intelligence is used a lot these days due to the demonstration of its application by natural 

language processing (NLP) applications such as ChatGPT. AI can also show its value in predictive 

maintenance. An obvious example is that AI can recognize failures based on training datasets of 

failures and regular cycles. A requirement is that there are sufficient training datasets. So we have 

to wait for several failures until an AI algorithm can be trained to predict for example tie-bar failures. 

The word AI also fell in the energy monitoring use case. By comparing the energy use of cycles 

with the calculation, AI can find patterns in deviations in the calculation. In this way, Stork IMM 

simulators can be optimized. This is a step towards a self-adjusting machine, like an autopilot for 

operating the injection molding machine. 

6.2. Agile and Modular Implementation Roadmap 

We managed to implement data-driven maintenance in the SME Stork IMM. To transfer our most 

important findings, this section presents a roadmap/framework with the message we would like to 

give future implementers of the data-driven maintenance technology. The roadmap contains the 

most representative and knowledge-transferring frameworks according to the implementation 

process of this research. The roadmap also shows the relation between frameworks and adds 

action points for improvement that emerged from this research. To not reinvent the wheel and not 

add another new framework to the list, a selection of the many frameworks from other researchers 

is used to guide the reader through the current state of the theory. An important conclusion is that 

the frameworks all have an individual message and focus but pursue the same goal.  

One reason this project's implementation of data-driven maintenance was successful is the action 

research research method. The research method allowed the technology to be implemented in an 

agile setting. This also made it possible to improve complexity, capability, and automation in 

subsequent cycles. In literature, agile work is linked to providing flexibility, exploiting technology, 

and facilitating change-oriented behaviors (Cimini et al., 2024). The roadmap has a cyclical 

property to modularly increase the skills, abilities, and complexity in the cycles. References to use 

here are maturity frameworks. These frameworks indicate the skills required at a certain ambition 

level. This step can be seen as the loop in the simplified view of the roadmap in Figure 30 as 

increasing skills and capabilities. The other steps are explained after the figure.  
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Figure 30, Simplified version of the roadmap 

The preparatory steps are mainly used from The Proactive Transformation Framework of (Van 

Eijk, 2023). This framework has been compiled based on extensive literature research and the 

needs of SMEs. In this study, the preparatory steps of this framework were conducted and served 

as a good basis. Doing a proper literature review of the techniques for implementing data-driven 

maintenance is essential. The preparatory steps should also facilitate an IT infrastructure that suits 

the company and enables data monitoring and analysis for the first application cycle. The 

framework is partly focused on the organizational side of changes. From the start, this research 

did not aim to change business processes directly but to develop a tool that is increasingly used 

to fulfill a business need. The improvements to these preparatory steps have been implemented 

by adding steps that look at the business needs that the tool highlights and determine the final 

form. 

In applying cases, there is a clear relationship between IT and technical steps. Frameworks on 

both aspects go through the same process in similar steps. This roadmap lays out various 

frameworks parallel to see the expected steps in the IT and technical fields. Placing them side by 

side shows the relationship between the frameworks and facilitates ease of use by providing more 

context in fewer frameworks. The general steps can be seen in Figure 30, and the specific steps 

of selected frameworks can be seen in Figure 31. The frameworks are reused as a guide through 

the existing theory. 

The Maintenance Techniques Framework (Tiddens, 2018) is used for the technical steps. This 

framework shows techniques in different ambition levels per phase, which fits with the agile and 

modular improvements between cycles of this roadmap. The framework provides a concise context 

to the steps, ensuring that expectations and content are conveyed to the user. In addition, the 

relationship between usage, load, and condition (Tinga, 2010) is shown in the monitoring step. The 

required models and resulting accuracy are messages that contribute well to this step, as 

concluded in the second use case of this project. 

The CRISP-DM model is used as a basis for the IT steps, with the more specified 'predictive 

maintenance for data scientists' (Sajid et al., 2021) steps next to it. The horizontal alignment 

between all frameworks shows the connection and similarities. 
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Figure 31, Roadmap agile and modular implementation data-driven maintenance 
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6.3. Implications 

This section presents implications for Stork IMM, practical implications for other SMEs, and 

theoretical implications related to the literature view. 

Stork IMM management implications 

How can the data-driven maintenance application be further developed for Stork IMM, and how 

can this application play an essential role soon? To achieve this, the tool must effectively meet the 

business needs of Stork IMM's customers or itself. The final form must also be usable for 

customers. The business needs realized with a data-driven maintenance tool are minimizing 

downtime due to failures, minimizing production costs, and increasing production speed. The tool 

is most interesting to customers if it indicates failures early, can extend a failure until spare parts 

arrive, or provides direct suggestions on machine settings to improve operational properties. For 

Stork IMM, information about the use of machines can be logged with the data-driven maintenance 

tool. This information plays a major role in discussions in quality projects, developing functions, 

and developing structural improvements. 

Many manufacturing companies have a manufacturing execution system (MES). So developing an 

application or dashboard to manage all machine activities exceeds its purpose. A customer would 

rather integrate data-driven conclusions into his MES of supply chain system. What would be best 

for Stork IMM is to develop simple applications that incorporate Stork IMM's knowledge about the 

machine. This information is unique and interesting for the customer. A tool can be realized in 

simple apps or integrated into the control system. This way, the customer does not have to deal 

with another dashboard to interpret, but using the data-driven suggestions is attractive and 

rewarding. 

Practical implications 

Industrial agile working is recognized as a good strategy in various companies that place 

themselves in higher maturity levels (Cimini et al., 2024). The findings in this research are 

comparable. We conclude that working agilely and modularly increases the success of 

implementing high-maturity, complex techniques. Modular implementation has led to several 

advantages: 

• It is not an impossibly large project/hurdle, growing gradually 

• Less dependent on advanced IoT/IT in the beginning 

• Smaller steps promoting multidisciplinary collaboration 

• Become more aware of the basic needs/skills required 

• Being able to work towards goals in an adaptive manner 

• Faster results, demonstrations, and value 

In this research, the action research mindset led to the agile approach. Tailoring the modular steps 

to the company's current position is achievable by considering implementation frameworks, 

technology diagrams, maturity models, and the necessary IT infrastructure. As shown in the 

roadmap in Figure 31, this implementation process can be a good guide for SMEs. 

For SMEs, it is good to start logging data. Logged data and information are the basis for developing 

data-driven applications. The lack of logged data can severely limit the progress and depth of 

conclusions. 
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Theoretical implications 

Many technical obstacles in this project have already emerged in the literature review. Conducting 

this study agrees with many conclusions from other studies. For example, the loss of accuracy of 

a forecast due to more calculation models, which happened in the second use case, has been 

schematically mapped by (Tinga, 2010) in Figure 6. In addition, the forecast was unsuccessful in 

the first use case due to the remaining uncertainty that can be answered with historical data. This 

data is missing due to the discussed data consistency and availability problems. (Tiddens, 2018) 

has expressed the need for multiple data sources for our ambition level, as shown in Figure 10. 

Furthermore, the steps to get where we are now can often be found in the existing frameworks. 

Looking at Primavera, for example, these exact steps have been taken to achieve data-driven 

maintenance. A challenge for an implementer is to consider all available written information. 

Reading for knowledge involves delving into various sources, each contributing unique insights to 

the literature review. The gap between theory and practice in applying data-driven maintenance 

makes it challenging to choose a suitable maintenance approach, identify appropriate 

components, and evaluate the required investments (Tiddens, 2018). The roadmap presented in 

Figure 31 helps implementers oversee and structure information for implementing data-driven 

maintenance. 

Most existing frameworks mainly contain the technical steps required to implement data-driven 

maintenance. An exception, for example, is the CRISP-DM model, which indicates the importance 

of business understanding. In addition, (Van Eijk, 2023) draws attention to change management 

within often stiff companies. In contrast to Van Eijk’s framework, which primarily aims to transform 

work processes to facilitate data-driven maintenance, this research integrates applications in 

parallel to existing processes. As OEM, data-driven maintenance is an extra service that can be 

provided. In the application within this company, it seems better to develop a tool that relieves the 

customer of a problem so that the tool is automatically used more. 

A data-driven maintenance tool must address a business need and be embraced by personnel to 

generate value. This underscores a straightforward yet crucial finding: figuring out business needs 

and envisioning the final outcome early on is beneficial. In addition to Van Eijk's framework, it 

would be good to determine the end user’s business needs and the form for the end user in the 

first phases of the framework. If the tool effectively fulfills a business need, it pays to use it more 

automatically. The end form must also be selected in the initial phases to develop the application. 

The final form could, for example, be an integration into the machine control system, a simple app, 

a dashboard, or a periodic email. The improvements in the framework have been included in the 

roadmap in Figure 31. 

6.4. Action Research 

In carrying out our research, action research provided a unique mindset. It helped us get to work 

proactive and perform activities gradually better. By doing this we achieved faster results compared 

to standard research, and this helped us adjust the project. Adjustment was necessary because 

we gradually discovered where the data-driven maintenance technique was valuable. It also 

helped to make certain things easier to try without the risk of it being the wrong technique. For 
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example, we tried different things for the IoT infrastructure and experienced what it was like. As 

opposed to pre-determining what seems best, this turned out to be effective. 

The learning lessons during the execution of the different cycles were sometimes not fully 

expressed. There were learning lessons such as demonstrating value with the dashboard and 

adding a productivity use case that emerged clearly. However, in basic activities like data handling, 

the learning curve is also steep. Knowledge about effective methods and programs gets 

automatically integrated into subsequent research cycles. 

In this study, the second cycle has already started before the first cycle has been completed. It is 

logical that this happens due to waiting times and new emerging cases. In this study it was not a 

problem because the experience of the individual steps of the first cycle was used in the second 

cycle. 

It was a challenge to concretely divide the work according to the specific action research steps. In 

the first cycle it takes time to properly understand the content and function of the steps. The line 

was sometimes thin between activities of steps. The line is also thin between reflecting on the 

content of the case and processes to realize the case. This was a very big challenge while reporting 

the study. 

Action research has definitely resulted in changes. Use cases have been implemented and we 

have learned from these steps in the implementation process. The aim of this research was to 

learn from these first steps. If a study seeks conclusions deeper into the technology, action 

research can be an obstructive method because preparatory problems can take quite a lot of time. 

In this project, the action research method has led to the correct attitude, so its characteristic has 

been included in the Agile and Modular Implementation Roadmap. 

6.5. Limitations 

The research was implemented in one company. The focus and conclusions arose in this specific 

context. However, similar conclusions have been found in theory from implementation at other 

companies. Despite the generalization by comparison to other research conclusions, there may be 

slight tunnel vision or biases mixed in the conclusions. 

Due to understaffing in the software department and time/benefit consideration with other projects, 

developing a new logging functionality for the third use case was not feasible in the projected 

amount of time. Although the third use case certainly shows the potential of using the same logging 

infrastructure for machine optimization, there is much potential for improvement. This conclusion 

also characterizes a common problem for SMEs, where limited personnel has to make the trade-

off between projects. 

Unfortunately, carrying out a forecast was unsuccessful due to missing historical data. The 

historical data that initially seemed available is missing due to data availability and consistency 

issues. The resulting logging system now monitors failures so that this reference data is built up. 

Due to the absence of this data, the result is not a prediction or prediction algorithm but a 

degradation visualization. 
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6.6. Further research 

More profound research can be done to assist in creating work packages for modular 

implementation. Improving the roadmap from Figure 31 would help implementers oversee crucial 

information and messages from various researchers. How can companies gradually improve and 

how can the necessary information to tailor the implementation actions to the company's specific 

context be made understandable? The same applies to the literature on data-driven maintenance 

techniques. Much research has been done on condition monitoring and predictive maintenance. 

Overseeing the amount of information is a challenge. However, it has become apparent that the 

message can be essential in many pieces of research. Take, for example, the required data for a 

certain ambition level defined by (Tiddens, 2018), a detail that comes back as crucial in the end. 
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7. Conclusion 

This project successfully implemented data-driven maintenance in SME Stork IMM. By applying 

action research as a research structure, the technique was implemented agilely and we were able 

to observe and improve the implementation process. The individual research questions are 

addressed in separate paragraphs.  

How can data-driven analysis techniques be used to monitor the condition of Stork IMM 

injection molding machine components? 

Data must be analyzed to apply data-driven maintenance techniques, typically involving a CRISP-

DM data mining analysis. This framework helps with complex data mining issues and data science 

challenges such as data completeness, consistency, and availability. The analysis can be 

performed on edge, i.e., at the injection molding machine or at Stork IMM, the OEM. This 

connection is provided by an IoT infrastructure, realized in this project by Stork IMM itself for the 

best compatibility with the assets. Analyzing the sensor data with the necessary algorithms can 

result in a measured or calculated condition. The use cases have confirmed that the highest 

accuracy is achieved when the condition or governing load is measured directly. A condition in 

itself is often challenging to display, but the use cases have shown that displaying the load on a 

system and a degradation pattern can already achieve the requested objective. 

How can data-driven maintenance be used to increase the reliability of Stork IMM 

machines? 

In the application of data-driven maintenance, it is important to determine the intended ambition 

level. One must wonder whether a high ambition level is technically and economically feasible and 

what information is needed to decide on a maintenance action. With increasing complexity, 

possible outcomes can be descriptive, diagnostic, predictive, and prescriptive conclusions. This 

project has shown that descriptive and diagnostic results can be valuable in assessing a situation. 

These should be the first goals for the implementation of data-driven maintenance. Based on 

accumulated experience with this data, predictive and prescriptive conclusions can be the next 

step. To illustrate this, the tie-bar fracture has been diagnosed once with our monitoring analysis, 

but we still need to prove whether this pattern always has the same properties to make it fully 

predictable. From now on, experience is being built to recognize and predict this pattern in the 

logged data. 

What organizational needs and requirements should be considered to implement data-

driven maintenance effectively in Stork IMM's specific operational environment? 

A gap is recognized between theory and practice in data-driven maintenance strategies. Several 

data-driven maintenance frameworks have been created to fill this gap, mainly focused on the 

technical steps. There are many frameworks and studies, each with a specific message. It is 

difficult for an implementer to oversee the amount of theory and consider every message. The 

Data-Driven Maintenance Techniques Framework (Tiddens, 2018) provides the best information 

about the technical application compared to the results of this research by incorporating different 

methods with increasing ambition levels in every step from start to result. The Proactive 

Maintenance Transformation Framework from (Van Eijk, 2023) highlights the preparatory steps for 

the IT system focussed on SMEs. Based on the feedback in this project, a good addition to this 

framework would be to determine the end user's business needs and the end user's final form in 

the preparatory phase. The Agile and Modular Implementation Roadmap includes the preparatory 
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steps with improvements and the link between the technical and IT frameworks. The roadmap was 

created from a combination of the most valuable frameworks in this research. The roadmap should 

help future implementers use a practical approach to implementing data-driven maintenance. 

This project was successful by modularly implementing data-driven maintenance. The agile 

properties of the action research methodology initiated this approach. By implementing data-driven 

maintenance modularly, awareness of the required skills in different areas could be built up, results 

and value were produced faster, the final form could be adjusted during the project, and it promoted 

interdisciplinary collaboration. An organization must understand the basic needs and skills to 

implement the technical frameworks. Maturity frameworks can help assess the current levels of 

skills on required capabilities. The Agile and Modular Implementation Roadmap has added a 

cyclical step to improve the capabilities, complexity, and automation in cycles. Ultimately, the 

project showed that most of the time was spent developing new functionalities on the IT or technical 

side. New use cases that use the same infrastructure and algorithms are more straightforward to 

add. Finally, the value created with the system must fulfill a business need and correspond to the 

intended ambition level to be used in daily activities. 

Wrapping up: How to implement and leverage data-driven maintenance in SME Stork IMM? 

Implementing and utilizing data-based information for maintenance decisions did previously not 

take off at Stork IMM, a problem recognized generically in SMEs. We applied data-based 

maintenance at Stork IMM through iterative action research cycles using literature on the 

technology, technical frameworks, and implementation frameworks. Several hurdles have 

emerged during the implementation process, with many realizations about the lack of skills and 

system capabilities typical of an SME. We concluded that if data-driven maintenance can fulfill a 

business need for an SME, it can be implemented effectively by implementing the frameworks and 

techniques in a modular manner. This approach enables the gradual development of complexity 

and required skills for the desired ambition level, leading agilely to valuable results. 
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Appendix A. Usage of AI tools 

With the increasing potential of AI tools, a declaration of the use of AI has been added to this appendix, 

as recommended by the University of Twente. 

During the preparation of this work the author used ChatGPT in order to translate and improve the required 

to program functionalities in the programming language Python. After using this tool/service, the author 

reviewed and edited the content as needed and takes full responsibility for the content of the work. 

Furthermore, Mendeley is used as a reference manager, and Grammarly is used as a spelling checker 

assistant. 
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Appendix B. Maturity models 

Maturity model from (Van de Kerkhof, 2020): 
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Maturity model from (Mainnovation, 2018): 
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Appendix C. Monitoring frame load 

The frameload is monitored using indirect sensors. This appendix gives more context to the data mining 

difficulties of a single cycle. 

Measures cylinder pressures (first graph), and drive force (second graph): 

 

𝐹𝑐 =  
𝜋

4
∗ (𝑝𝑝 ∗ 𝑑𝑝

2 − 𝑝𝑟 ∗ (𝑑𝑝
2 − 𝑑𝑟

2))           
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Transmission system for LSP position algorithm: 

 

Sensors and analysis to measure forces as a result of LSP acceleration: 

Measured crosshead position, calculated velocity, 

acceleration and jerk 

 

Calculated LSP position with transmission ratio, 

calculated velocity, acceleration and jerk 
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Appendix D. Code algorithms 

Function 1: saving data from Stork DB to analysis DB 

 

 



 

  68 

Function 2: Data cleaning and data mining 
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Function 3: Data analysis 
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