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Abstract
This research project, titled "Leveraging Machine Learning and Geo-Analytics in Automatic

Valuation Models to advance Real Estate Valuation" has the primary objective of improving

existing approaches to property valuation. Traditional Automatic Valuation Model (AVM)

methodology often falls short in capturing factors readily accessible to human appraisers.

The methodology falls short in considering the properties surrounding environment. The

limited incorporation of environmental considerations in current AVM is attributed to a

combination of insufficient data availability and incomplete modeling approaches.

To address these limitations, we propose extending the current AVM methodology by

utilizing data sourced from a digital twin of the Cyprus real estate market. This digital twin

offers a comprehensive representation of both physical and environmental aspects of

properties, enabling the incorporation of information about properties’ surroundings. By

leveraging this extensive dataset, the project aims to develop a machine learning-based

AVM that improves upon existing state-of-the-art models.

The key focus of this research is to create a predictive model for property prices that benefits

from a more comprehensive set of features, particularly those related to the property's

environment. The research aims to bridge part of the gap between traditional AVMs and

human appraisal by capturing the environmental factors contributing to property valuation.

The model aims to provide a more accurate prediction of property prices, addressing the

limitations of existing models and enhancing the quality of decision-making for the

stakeholders in real estate, especially individual buyers and sellers.

The methodology involves the integration of machine learning techniques to analyze the rich

dataset obtained partially from the digital twin. The model's performance will be evaluated

against existing state-of-the-art AVM, through a target performance baseline on the metrics

MAE, MAPE, RMSE, R², Adjusted R², PRD and COD. Through this research, we hope to

contribute to the AVM development methodology by showing the potential of incorporating

environmental factors. The outcomes of this research may have implications for

decision-makers, buyers, sellers, investors, and financial institutions, seeking more robust

and precise property valuations in the real estate market.
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Chapter 1 - Introduction

Introduction to the project

The valuation of real estate is a complex task, requiring appraisers to consider multiple

factors such as a property’s physical condition, its location, market conditions and previous

sales of comparable properties. Appraisal is commonly performed by professionals assisted

by computer tools, who use their built knowledge and judgment to weigh these mentioned

and other factors to arrive at a final value estimation. There are several factors that pertain to

a properties value outside of the boundary of the property, some of which can be observed

through the use of satellite imagery.

Accurate real estate valuation is crucial to multiple parties. First and foremost, individual

buyers and sellers need precise information about the real estate they are interested in

buying or selling, to make informed, fair and financially sound transactions. Real estate

investors and businesses are similarly concerned in the value of real estate relevant to their

operations. Property financing needs to have accurate valuations to ensure that potential

loans are sustainable and are appropriate for the real estate in question. Insurance and risk

management firms are interested in the value, to ensure that the real estate is properly

compensated in the case of damage. The legal system is further interested in valuations in

forms of e.g. legal disputes about property ownership. Lastly, the government is highly

interested in accurate valuations, especially to apply appropriate taxation.

As stated, the outlined and further parties have an essential interest in reliable real

estate valuation, as it guides their decision making. The more accurate and precise these

valuations are, the better their decision making is going to be.

In the context of this project, the primary ethical motivation is to showcase a path towards

enabling individual buyers and sellers to access accurate information about their property's

value. As real estate valuation and the tools to perform it are currently expensive, this group

is financially disadvantaged in their accessibility of accurate valuations. A cost-effective and

decently performing automatic valuation model (AVM) could work towards leveling the

playing field for this financially disadvantaged group.
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Problem statement

For the graduation project “Using Artificial Intelligence in Real Estate: Can we improve

automatic valuation models of properties?”, the challenge will be to improve upon the

existing automatic valuation models approach towards valuation. Traditional AVM

methodology does not fully capture some of the factors that would be accessible to a human

appraiser. The surrounding environment of a property has influence on its value, but current

AVM methodology largely does not incorporate these environmental factors, likely due to a

combination of a lack of available information and incomplete modelling approaches.

By utilizing data retrieved from a digital twin of the Cyprus real estate market, the

current methodology could be extended. This digital twin encompasses a detailed

representation of the physical and environmental aspects of properties, enabling the

incorporation of more information about the surroundings of a property. Through this access

to a rich and wide range of data, the task for this project is to create a machine learning AVM

predicting prices with more complete information than existing state-of-the-art models, with

the goal of making better predictions.

Research questions

The previous section on the problem statement motivates the research objectives of this

project. To achieve the stated goal, the following research question has been developed:

How can current automatic valuation models perform by incorporating machine learning

methods trained on rich Geo-analytical real estate data?

To answer this main question, multiple sub-questions have been posed to refine the area of

research. Answering these sub-questions will be the refined research goal:

What are the significant external features, observable through satellite imagery,

that influence property values?

How can these features be effectively incorporated into machine learning models

to enhance AVM accuracy?

How does the developed machine learning AVM compare in performance

to state-of-the-art AVMs?
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Chapter 2 - Background Research

Chapter Introduction - Background reseach

To improve upon the current state-of-the-art automatic valuation models, first one needs to

understand how real estate appraisals work and how AVM play part in this appraisal

process. Furthermore, the strengths and potential flaws of current AVM need to be

investigated to find areas of improvement. In this chapter, through a literature review, the

potential of utilizing machine learning and geospatial data in AVM will be explored.

First, the function of AVM is briefly discussed. Secondly, human appraisal, traditional

AVM techniques and machine learning AVM techniques are generally compared. Thirdly, the

performance achievable by human real estate appraisers is investigated. Next, hedonic price

models, a form of traditional AVM methodology, is discussed in greater detail. Afterwards,

previous research outcomes on a closely related project will be shortly showcased. Finally,

the software projects providing the geospatial data later used in this research project are

outlined.

The goal of this chapter is to gain an understanding on AVM methodology, how machine

learning can be applied in this context and finally explain how geospatial data could be

valuable in the creation of a machine learning AVM.

Automatic valuation models

Automatic valuation models are used in real estate appraisals to easily compare the value of

multiple similar estate properties at the same point in time. [1]. They are software tools that

use real estate data from databases to calculate different points of value for real estate

analyses. [1]. According to Renigier-Biłozor et al. [1], they can be used for an individual

residential mortgage portfolio, capital requirements, securitization, loss given default, loan

portfolio trading, quality control, investment advice, litigations, etc.

AVM use multiple data points to estimate the value of a property, such as the

property location, square footage, number of bedrooms and bathrooms, age and condition of

the property and the historical selling prices of similar properties in the area. AVM have the

ability to reduce appraisal cost and increase prediction accuracy in comparison to human

appraisals [2].
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Appraisal techniques: Manual appraisal, traditional AVM and machine learning AVM.

Hilgers [2] in his thesis describes the difference between manual appraisal value and selling

price on average being approximately 13 percent. While manual appraisals have the benefit

of oftentimes visiting the property in person, they are influenced by previous appraisals, have

a lagging bias as they rely on historical value and can introduce human errors. [2].

AVM can reduce these human appraiser biases and provide more reliable estimates,

even if some on-site information is largely inaccessible to them [2]. Currently, appraisals are

oftentimes done through a combination of AVM usage and manual appraisals to reach a final

valuation.

There are multiple traditional methods that are used in AVM, such as the Comparable Sales

Method (CSM), the Hedonic Price Model (HPM) as well as the Spatial-Temporal Model

Extension (ST). More recent methods include machine learning techniques, such as using

Artificial Neural Networks (ANN), Decision Trees, Random Forest (RF) and Gradient

Boosting (GBT). Hilgers [2] elaborates upon these methods and their benefits and limitations

as well as evaluating their usefulness.

Hilgers recommends utilizing an extended Hedonic Price Model incorporating

spatial-temporal information as a baseline regression model. [2]. He notes that machine

learning techniques find mixed results but generally outperform the traditional methodology.

While offering more accurate results, machine learning method results suffer from being

harder to interpret, explain and test. Hilgers moves on to create an AVM using a combination

of traditional and machine learning techniques.

Human level performance in real estate appraisal

Investigating Human-level performance in real estate appraisal is not a simple task. First of

all, with current AVM technology being widely adopted, appraisals are rarely done by

humans alone. Most people involved in appraisal, whether for their own commercial gain or

for example governments trying to appraise for tax reasons, nowadays utilize AVM models to

at the very least aid them in their appraisal. Appraisals done by humans alone are in our

modern computerized world largely a thing of the past and the focus of research is to create

better models and algorithms to perform this appraisal.

The second issue one runs into is the difficulty to directly compare humans to AVMs.

The benefit of using AVM’s is that they are able to value many heterogeneous properties at

reasonable performance levels in a short amount of time. Humans have the ability to visit a

human levelcertain property, inspect it in person and narrow their scope to a specific region
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of the country. They can build experience in a specific neighborhood over time and

specialize on property types. These aspects are not easily possible to achieve through

AVM’s, even with sophisticated machine learning algorithms.

To get an indication of human level performance, one can look at older studies where

human level performance in appraisal was more clearly measured. It's important to note that

these studies are somewhat dated, and the landscape has evolved with improved access to

property data, such that human performance today could be improved. Cannon and Cole in

their research presented in 2011 [3] investigated the accuracy of real estate appraisals prior

to the sale occuring based on property sales from the NCREIF National Property Index in the

time period from 1984 to 2010. They found that on average, commercial real estate

appraisals were more than 12% above or below the subsequent selling price that took place

two quarters following the appraisal. In a portfolio context, where individual appraisal errors

could be reduced, they still found an average discrepancy between appraisal and selling

price of 4% to 5%. They further state that appraisals lag the market conditions, where

properties were undervalued in “hot markets” and overvalued in “cold markets”. [3] There are

further aspects that influence these error rates, depending on who performs the appraisal

and for whom it is performed. Some appraisers are incentivized to over- or undervalue a

certain property, based on their clients. AVM’s in theory should not run into this bias. Internal

and external appraisals for a company managing a real estate portfolio will likely also result

in different error rates.

Still, we can see their study as an indication of human level performance that a newly

developed machine learning AVM should try to surpass.

Hedonic Price Models & Recommended Parameters

The traditional approach to Automated Valuation Models is as previously mentioned the

utilization of Hedonic Price Models. They are created on the basis of hedonic price theory,

which assumes that an object or goods value is influenced by its individual characteristics.

Each characteristic has its own influence on the accepted price and thus value of an object.

Hedonic price theory assumes that the goods are heterogeneous and thus don’t have an

uniform value. The goods value arises from its several partial beneficial characteristics.

In the context of AVMs, the goods are various heterogeneous properties and their

unique characteristics are the properties attributes. Here, Hedonic Price Models try to

understand the impact of specific characteristics on the price of a property, then filter out the

individual preferences of buyers and sellers by averaging the contribution of a single

characteristic over the market price to generalize the contribution of a single attribute to the

price. Finally, when the average contribution of each characteristic to the market price is
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found, property market prices can be simulated based on the several characteristics a

property has.

These hedonic price models work on the basis of regression. There are thus two

major aspects needed to create a well performing hedonic price model. The specific

regression formula forming the hedonic price model and the parameters that make up this

formula. The formula itself differs in each model and is found through iteratively improving

the formula and tuning the input parameters until the model performs well. More

interestingly, the most relevant parameters should be identified, as they can also serve as

the parameters or data input in different models besides the Hedonic Price Model.

Metzner & Kindt [4] in 2018 performed research aiming to identify relevant parameters for

hedonic property valuation for residential properties through literature research. They have

compiled a list of parameters and identified how frequently they have been mentioned in the

literature they have found. More frequently mentioned parameters from their research could

prove to be useful as input data points, for the to-be-developed machine-learning based

AVM in this project.

As their research identifies 407 different mentioned parameters in the literature, they

summarize the 10 most frequently mentioned parameters. These include the following in

descending order in frequency ranking:

- Year of construction / building age (47 times)

- Building size (39 times)

- Lot size (32 times)

- Garage (number of garages) (28 times)

- Number of bathrooms (28 times)

- District / part of town (21 times)

- Number of bedrooms (19 times)

- Type of residence – single family detached house (19 times)

- City centre / CBD (16 times)

- State of repair / condition (16 times)

Besides these listed frequently mentioned parameters, there are several other frequently

mentioned parameters as well as groups of parameters that should be considered in the

creation of a model. Once the data available for this bachelor project is examined, the

complete list should be revisited to identify other important parameters that could be

considered.
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Previous work on related project

Previous work by Wishal M Sri Rangan in his bachelor thesis “Creating accurate valuation

models for real estate properties” [5] aimed to improve the precision of machine learning

based valuation models by incorporating additional real estate contextual information. In his

research, he found machine learning models to offer more precise property valuations than

traditional methods, if provided with appropriate data. He further evaluated different machine

learning methods to select the best performing one to use on a Cyprus real estate property

dataset. From evaluating four ML models, Random Forest, Gradient-Boosted Tree, Adaptive

Boosting and Rotation Forest , Adaptive Boosting was found to be the best performing

model. For future work he recommends to incorporate socioeconomic data, optimize the

choice of machine learning model, improve the usage of the available data as well as

exploring more sophisticated machine learning techniques such as deep learning models. [5]

CYENS SuPerWorld Research Group Gaea & SuPerWorld Geo-API

To be able to incorporate data and functionality from Gaea and the SuPerWorld Geo-API in a

later stage in the development of a machine learning AVM, first these two projects need to

be described. This is done to examine what their capabilities are and how the data they

provide can be incorporated into the AVM.

Gaea

According to the CYENS SuPerWorld Research Group website [6], Gaea is an AI-powered

interactive online tool that offers geo-analytical services. It uses the SuPerWorld Geo-API

v2.0 to provide information on the Cyprus real estate market. It further provides information

on environmental risks and climatic change. It allows users to compare locations and

observe trends and patters in the physical environment and geospatial real estate market.

In regards to the data it could provide for the to-be-developed AVM, it can detect

features that might influence property valuation, such as the detection of “swimming pools,

vegetation, and burnt areas nearby the property, as well as land use change, building quality,

subsidence, landslides, wildfires, flooding, earthquakes, slope and aspect, geology,

precipitation, elevation, land use, proximity to roads, sea, blue-flag beaches, amenities,

electricity network, building area, and Natura 2000.” [6].

According to the Website article, this can be used to comprehensively assess a

property’s suitability and potential risks.

If a significant correlation between some of these property factors and the property

value can be observed, they should be able to assists in generating more accurate
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valuations by an AVM. A machine learning based AVM could be able to find correlations

between multiple of these factors to reach more accurate valuation conclusions that might

not be possible to make by traditional AVM methodology.

Jamil et al. in their conference paper GAEA - A Country-Scale Geospatial Environmental

Modelling Tool: Towards a Digital Twin for Real Estate [7] describe Gaea in more detail.

Section 4.4 in the paper describes an overview of the environmental services it provides.

Depending on the type of real estate, all service categories could likely play a role in

property pricing. Geomorphological characteristics would certainly play a role in possible

construction or agricultural land use. Climate monitoring would likely especially play a role in

agricultural use. Proximity, such as to Infrastructure or Amenities would likely play a role in

all types of property. Geohazards might be a slightly overlooked category in traditional

property valuation, depending on the type of geohazard and the previous impact certain

geohazards have had on the property market. Land cover monitoring factors likely would

also play a role in affecting pricing, but could perhaps be harder to be directly affecting price

of an individual property. It could provide insights of how the land use will evolve and might

moreso affect certain markets, especially commercial or agricultural real estate.

At this point, these factors could certainly influence the price of a property, but it is yet

unclear how they do and if the influence is significant enough to improve predictions through

an AVM. At a later stage of development of the actual AVM, these questions will hopefully be

resolved.

SuPerWorld Geo-API

As Gaea makes use of the SuPerWorld Geo-API, its capabilities should also be examined.

On the SuPerWorld website [8], the Geo-API is described. The API seems to have had a

previous 1.0 version, which was made for a collaboration with WIRE FS, a real estate asset

management and advisory firm. It seems that WIRE FS has moved on to develop an AVM

themselves.

Version 2.0, according to the SuPerWorld website article [8], has improved

capabilities in their services, as well as enabling point and polygon selections to retrieve data

from the cyprus map. The services have been described in the previous sections as the

Geo-API’s main purpose appears to be the backend and data provider for the Gaea tool.
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Chapter 3 - Related work

State-of-the-art AVM performance metrics

As AVMs have become more and more frequently used in real estate appraisal, the AVM

providers are incentivized to keep the inner workings of their AVM technology secret. With a

plethora of AVMs available, providers are not incentivized to disclose their model or their

exact performance metrics, as they could get driven out of the market by competitors with

better performing models. There is also no clear standardization on AVM performance

metrics, making it difficult for users to compare different models performance [10]. Ecker et

al. in their exposition on AVM performance metrics first describe the fundamental

components of AVMs as the following:

1. A database of recent property sales including location, property characteristics,

selling price and date.

2. A dataset of properties and their characteristics, regardless of recently sold or not

3. A theoretical property valuation model that defines the relationship between the value

of a property and some or all of its characteristics

4. An algorithm or statistical method that fits the theoretical valuation model

The AVM then can look up the characteristics of a property from the dataset and apply the

valuation model to find a valuation or valuation range as well as its performance metrics. [10]

According to Ecker et al., unfortunately these performance metrics are not “universally

defined, nor consistently calculated.” They further more state that AVM precision metrics

often don’t meet widely accepted scientific standards. This makes it difficult for users to

compare different models even when valuating the same property. [10]

Ecker et al. go on to compile a table (Figure 1) of AVM performance metric thresholds

suggested in the literature.
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Figure 1: AVM performance metric thresholds suggested in the literature. [10]

This table can serve as a further target metric threshold for the project. In the paper, each

metric from the table is further described and recommendations are made on what further

assumptions and checks should be made to properly apply the respective metric.

In their conclusion, they urge AVM developers to especially report the following metrics:

- Mean and median percentage sales error (along with a detailed description of the

data of the properties used to produce these metrics)

- Use and report the common definitions for the metrics outlined in the table, especially

the FSD and confidence score

- AVM vendors should allow clients to specify their desired confidence level when

reporting high/low values or be transparent to the client and inform them about the

default FSD’s industry range of 68.26%.

Steurer et al. in their research titled “Metrics for evaluating the performance of machine

learning based automated valuation models.” [9] collected AVM metrics and showcased how

the choice of metrics can influence the perceived level of AVM performance. This was

showcased on 5 different models varying in their predictive methodology. These 5 models

were then first evaluated with commonly utilized performance metrics, afterwards evaluated
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with their recommended performance metrics. They go on to further recommend this list of

seven performance metrics that according to them adequately evaluate AVM performance.

The following two figures (Figure 2 & Figure 3) showcase the used metrics and the

performance of the tested models. Figure 2 shows the performance with commonly used

metrics from the literature, Figure 3 shows the performance with their recommended metrics

from their research.

Figure 2: Model performance rankings based on metrics from the AVM literature. [9]

Figure 3: Predictive performance of methods M1-M5 (Short List). [9]

State-of-the-Art AVM comparison

To get an even clearer picture of what reasonably achievable performance of the

to-be-developed AVM for this project would look like, a table of state-of-the-art research was

compiled. The table compares multiple research projects utilizing regression and machine

learning techniques to create AVM.

As each research project has different access to data and amount of data, model

methodology, computational capability and project timeframe, performance metrics and

scores on those metrics, the table overview should largely serve as a showcase of the

state-of-the-art research and create an outlook for the reader on what could be achieved

within this research project.
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The main focus of this this table consists of these following entry categories:

Firstly, the used property features in these related works are listed. This list of features can

then be used in the development stage as suggested features that could potentially find

application in the to be created models, depending on their availability in the data used for

the project.

Secondly, the amount of data is described. It would be unreasonable to directly

compare the performance of the to-be-developed ML AVM to models that have access to

substantially more data. As the timeframe of this project is quite limited, the amount of data

that can be organized, cleaned and finally used will be limited as well. Still, the target of this

project will be to achieve comparable results.

Thirdly, and perhaps most importantly, the metrics used to evaluate the found related

works are listed. In combination with the literature research on appropriate AVM metrics,

they give insight in which statistical metrics are needed to evaluate the performance and

thus the success of the to-be-developed ML AVM. Besides simply listing the metrics these

related works used, the scores on those metrics are listed as well. As all these related works

have different specific objectives as their research purpose, even their achieved scores

cannot serve as a one to one target for my project, but they serve as an indication of what

scores might be reasonably achievable.

Lastly, the type of developed AVM model is listed. Several of the studies compiled in

the table compared multiple machine learning models performance or compared the

performance of a ML AVM to a simpler regression AVM. By observing which types of ML

models tend to perform best and considering the feasibility of developing that type of

machine learning model within the projects timeframe, the choice of initial models for this

project is made.

Besides these most important entry categories listed within the table, further details such as

the name of the study, the property types within the respective AVM, the location of the

properties used in the study and the data collection period are listed.

The discussed table can be accessed through the following link:

https://docs.google.com/spreadsheets/d/1vroqZWEXG6q3mvkO5tVoEVExnfbpC1TxQjrU1a_

IOUo/edit?usp=sharing
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Related work research - Preliminary conclusions

The preliminary conclusions of this related work research section focus on the type of

machine learning models that can be used in the development of this project, the metrics

and levels of performance suitable for evaluating the AVMs performance and thus the

projects success and a table of potentially useful property parameters to be included in the

models. These are the fundamental “ingredients” needed for the next phases in the project.

Recommended types of machine learning models:

From the literature and the state-of-the-art research it appears that Random Forest machine

learning models consistently achieve good or the best performance within the context of

machine learning AVM studies. A variant of a Random Forest model should thus definitely

be tested in an initial performance comparison once the data is organized and cleaned.

Secondly, some form of Gradient Boosting model should be initially tested, as there

are many different types of specific Gradient Boosting models available and as they

achieved varied levels of performance, as seen from the state-of-the-art research.

Furthermore, Wishal M Sri Rangan in the previous work related to this project achieved his

best results with an AdaBoost model, it could be further considered to initially test multiple

types of Gradient Boosting models.

Thirdly, all state-of-the-art research developed some form of baseline regression

model. It would be wise to do the same, as it could hint towards a reasonable baseline of

performance possible with the available data, it could potentially assist in terms of

explainability and serve as a sanity check of the usage of the included property features.

Metrics performance baseline:

Human level performance found through the literature research suggests that the

discrepancy between appraised price and subsequent selling price is at around 12%. Even if

it is not directly comparable to a statistical metric for AVM, this Human level performance

could reasonably be compared to the MAPE metric for AVM evaluation. It could be

interpreted as a significant success for the project if a MAPE score below 12% for the best

performing to-be-developed machine learning AVM in this project could be achieved.

From the literature research on appropriate AVM metrics and from the state-of-the-art AVM

comparison table these following metrics were identified. Some metrics suggested in the

AVM performance metrics literature were not clearly enough defined or not used by the

identified state-of-the-art researchers, thus a comparison in performance at the end of this

project would be difficult. Some metrics such as MAE and RSME were deemed important by
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both the literature and the state-of-the-art research, but as they are dependent on the prices

of the input properties for the models as well as the used currency of their respective market,

a direct comparison cannot be made. Still, they seem to be valuable to report as they still

indicate the level of performance directly related to the prediction prices.

The following list of metrics has been compiled to be used to evaluate the performance of

the to-be-developed AVM:

- MAE (Mean absolute error)
- MAPE (Mean absolute percentage error)
- RSME (Root mean square error)
- R² (Coefficient of determination)
- Adjusted R²
- PRD (Price-related differential)
- Coefficient of dispersion (COD)

From the compiled table on state-of-the-art research described in the previous subsection

“State-of-the-Art AVM comparison”, in combination with the results of Wishal M Sri Rangans

previous work in his project titled “Creating accurate valuation models for real estate

properties”, a further table on performance levels of comparable models to the ones chosen

for this project was created, which can be seen in Figure 4 below. As each related work uses

different metrics to evaluate their performance, it is incomplete for some of the metrics

categories, such as PRD or COD. The purpose of this table is to outline the performance

achieved of comparable machine learning models to the ones chosen for this project on the

basis of the metrics deemed to be appropriate for this project.

Figure 4: Table “Performance levels of comparable models on chosen metrics”.

The table in combination with the background research in the subsection “State-of-the-Art

AVM performance metrics” serves to develop the target baseline for the performance of the

models developed in this project. The specific target scores for each identified metric will be

stated in the following chapter.
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Potentially useful property parameters:

From the literature research on hedonic price models [4] and two papers from the

state-of-the-art research table [11], [12], the following table in Figure 5 of potentially useful

property parameters or features was compiled. The table is not ordered in importance of its

parameters. It is sorted such that several broader categories can be identified. Its purpose is

to assess the potential usefulness of the features and parameters in the data available for

the project.

Figure 5: Table “Property parameters identified from literature & state-of-the-art research”
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Figure 5 (continued): Table “Property parameters identified from literature & state-of-the-art
research”
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Overall, as seen in Figure 5, some broader categories of features could be identified:

Identified feature categories:

- Geography of the property
- Proximity to Infrastructure / Amenities
- Transport access
- Information on the district
- Information on the entire building
- Information the individual (sub)property
- Amenity charges
- Age / condition of the property
- Property permits / regulation
- “Luxury” on-property amenities

There are likely to be more categories and countlessly more parameters which could be

utilized in the development of the ML AVM for this project, especially if agricultural and

commercial properties are considered besides residential ones. Overall, the approach the

selected state-of-the-art research took was to start out with an extensive list of potential

property features and reduce them down according to their statistical relation to the

predicted price of the model. The state-of-the-art research also indicated that different

features appear to be of different importance depending on the location, thus a clear

selection of the to-be-used parameters should not yet be made at this step.

Closing remarks on Chapter 3 - Related Work

The insights gained through the preliminary conclusions drawn from the related work

research were adapted to the timeframe and scope of the project throughout the following

stages in this report, which follows the timeline of the projects work.

For example, some of the metrics scores achieved by the researchers found in the

“State-of-the-art research” table was deemed inappropriate as a comparison to the metrics

scores reached with this project. The comparison to some of their models results was

deemed inappropriate, as the researchers were able to use more sophisticated machine

learning and data transformation techniques to extend upon their machine learning models.

Still, the preliminary conclusions hopefully serve as a foundation for the next steps in the

project.
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Chapter 4 - Ideation & Concept

The aim of the ideation process for this graduation project was to identify the project needs

and desired outcomes. Furthermore, its goal was to establish the necessary steps needed in

development of the machine learning AVM.

As much of these needs and desired outcomes were identified through the literature

and state-of-the-art background research, this chapter largely serves to showcase the

step-by-step plan for development and to state the target performance baseline drawn from

the literature research and the related work research.

Design process

The usual graduation projects within the Creative Technology study aim to follow the steps

outlined in “A Design Process for Creative Technology” by A. Mader and W. Eggink [13].

Projects following this design process first start with a divergent phase, where different ideas

for solutions are explored, and later diverge to reduce the explored ideas to a single solution.

While moving from divergence to convergence, reflection is taken in between major stages,

such that earlier choices can be revisited and no strict stepwise order needs to be followed.

Instead of taking one large divergent and one large convergent step, several rounds of

divergence and convergence are taken, such that incomplete knowledge at each stage can

be supplemented later on.

More concretely, the Creative Technology design process outlined is split into three phases

and a evaluation step:

Ideation, Specification, Realisation and finally the Evaluation phase. Each phase requires

recurrent divergence and convergence and if new insights are drawn in a later phase, earlier

phases can be revisited. The following Figure 6 more clearly illustrates the stages as a

diagram.
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Figure 6: The Creative Technology Design Process (from [13] A. Mader and W. Eggink: “A

Design Process for Creative Technology”, 2014)

In the context of this project, the general stages are largely followed, with a few

considerations specific to the development of machine learning models.

For the ideation stage, the general concept of creating several machine learning AVM

was mostly guided by the literature and state of the art research. As the AVM model will be a

piece of machine learning software with the goal of returning accurate price predictions on

the basis of suitable input data, visual low fidelity prototypes such as commonly prepared

paper prototypes or sketches did not seem appropriate in conveying much of the design.

Instead, the literature research led to the decisions of which data could be useful in a

machine learning AVM, what specific machine learning algorithms could be successfully

used and what metrics and performance levels on those metrics would be appropriate to

evaluate the model. Furthermore, time in this phase was spent on following two
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practice-oriented online courses. The first course clarified the important steps in machine

learning development, while the second course showcased different regression machine

learning models and the python programming needed to create these regression models.

The first objective in the ideation phase for this project then is to create a plan for the

necessary steps in developing the specific machine learning models in the context of this

project.

In the context of machine learning development, the specification stage and the

realisation stage blend into each other. The selected machine learning models will be

iteratively trained, tested and evaluated and gradually the amount of data, specific model

choice and the hyperparameters will be tuned to reach a better and better performing model.

Towards the end of development, the focus will be on improving the best performing

candidate model and trying to optimize the final performance of it.

Lastly, the project will still conclude with a final evaluation and reflection on the development

of the models, specifically focussing of the best performing model.

Approach

As described in the design process section, the development stages will follow the learned

steps from the followed online course on machine learning development.

A flowchart of these steps is show in the following Figure 7:

Figure 7: The ML project lifecycle (from Coursera course: Introduction to machine learning in

production, Andrew Ng)

In this approach section, the steps in Figure 7 are briefly explained and the considerations

specific to the projects development are outlined. Similarly to the Creative Technology

design process, machine learning development is recursive and earlier stages have to be

revisited to improve upon the machine learning models performance. Additional data can be

incorporated, machine learning model choice can be adapted and hyperparameters for these
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machine learning models will need to be tuned and through recurring error analysis new

areas of improvement will be identified.

Scoping Stage

Scoping according to the followed course involves the following aspects: First, the project

needs to be clearly defined. One needs to determine the data inputs that should lead to a

desired machine learning output. The key needed resources and timeline of the

development need to be worked out, as well as the key metrics for success of the project.

Furthermore, multiple possible solutions should be identified and diligence on the feasibility

and value of these solutions should be done. Lastly, some ethical considerations about the

social value for the project should be made.

Data Stage

In the data stage, one needs to think about which data could be useful as inputs to reach the

target output of the machine learning model. The data stage is split into two substages:

In the first substage, considerations need to be made which specific data features

could lead to the desired target output. Furthermore, the amout of data needed should be

defined. Lastly, considerations about improving the dataset can already be made such that

augmenting or supplementing the data is eased. A good dataset should cover all important

input cases, should be consistently defined and labelled, should be timely to the real world

and lastly the amount of data should be appropriately sized to the projects need.

In the second substage, the real dataset will be dealt with and improved. The data

might first need to be organized and cleaned and be converted and perhaps scaled such

that is correctly interpretable by a machine learning model. For example, categorical data

should be converted to numerical values or represented through one-hot encoding such that

the ML model can utilize it approrpiately. Importantly, not too much time should be spent on

creating the perfect dataset, rather one should start with initial tests with the different

identified machine learning models. Data provenance and data lineage should also start to

be documented such that error analysis in the later stages is facilitated. Lastly, a training /

testing split of the data should be done such that the data is balanced and representative of

the projects real world context, especially with smaller datasets.

Modeling Stage

The modeling stage is again split into two substages:

First, the several concrete machine learning models need to be selected and trained.

An initial performance test should be done to select the most promising models with
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overfitting the model on a smaller set of training data. Hyperparameters need to be tuned,

compute resources appropriately selected and the outputs should be logged. Furthermore,

each version should be logged such that rollback can occur. Throughout the modeling stage,

more data can be supplemented and gradually the amount of input data can be increased,

while not increasing the amount of input data by 10x at each step.

In the second substage, error analysis is performed. Critically, data should be tagged

to find areas in the input data on which the model underperforms. Different versions of the

models can then be compared to identify in which data categories improvement occurs

between model versions. To conduct successful error analysis experiments, experiment

tracking should occur, such that the results can be replicated. The version of the model, the

dataset, the set of hyperparameters and the prediction results should be documented for this

to be successful. After each test, it is important to prioritize what errors should be improved

for the greatest overall increase in model performance and to see how far off the models are

from reaching the target performance metrics.

Deployment stage

As this project is a research project and not a real world application, such as a machine

learning program for flaw detection through image recognition in a factories production line,

the deployment stage in this graduation project is omitted.

Deployment would constitute adapting the machine learning model to the real world

scenario outside of the training dataset and iteratively improve it. Furthermore it would mean

a constant monitoring and maintaining of the model such that if the input data no longer

matches the initial data used in development, the model would still be able to perform.

Instead, in the context of this research project, a final error analysis and evaluation on the

identified performance metrics will be performed on the best performing machine learning

model to conclude with the project.

These four stages conclude the development process for machine learning models that is

followed in the context of this research project. Further practical aspects need to be

considered in each stage, they will be documented in the later sections of this paper.
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Performance baseline

This section states the target performance baseline for the models developed in this project.

How these metrics were derived is described in detail in ‘Chapter 3 - Related work’,

subsection ‘Metrics performance baseline’. Here, the respective scores for each metric are

set as a target performance baseline. This baseline is taken as the performance goal for the

project. Some of the metrics target scores are set at a relatively high level, as they were

partially concluded from literature about suggested metrics for professional market AVM.

In the following, each metrics is restated, its formula is shown and the target score is

derived:

MAE (Mean absolute error)

(1)𝑀𝐴𝐸 =  1
𝑛

𝑖 = 1

𝑛

∑  𝑦
𝑖

− 𝑥
𝑖
 | |

Where is the number of predictions, is the predicted property value and is the actual property value.𝑛 𝑦 𝑥

MAE measures the average absolute difference between the predicted property values and

the actual property values.

As the resulting score for MAE depends on the individual models’ used data, it can

not directly be used to compare the project's models to the state-of-the-art models’ results.

The results depend on the range of property prices and the used currency. Thus, the main

goal for this metric was to iteratively lower the MAE score throughout development and end

with a MAE score that was as low as possible.

To make some direct comparison possible, it was further deemed appropriate to

compare this project's MAE score for each resulting model to the previous work of Wishal M

Sri Rangan best models’ MAE score, as his project was utilizing a dataset of cyprus real

estates with likely similar price ranges and the same currency as used in this project. His

best performing model reached a MAE of approx. 36898 €, thus the eventual target score for

this metric was set to a MAE of less than 36898 €.

MAPE (Mean absolute percentage error)

(2)𝑀𝐴𝑃𝐸 =  1
𝑛

𝑖 = 1

𝑛

∑  
𝑥

𝑖
 − 𝑦

𝑖

𝑥
𝑖

 |||
|||

Where is the number of predictions, is the predicted property value and is the actual property value.𝑛 𝑦 𝑥
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MAPE measures the prediction accuracy of the model. The downside of utilizing MAPE as a

metric is that close-to-zero property values lead to a rapid increase in the resulting MAPE

score. Still, at this stage of the project, it was decided that it could be utilized to evaluate the

project's models, as the literature suggested its usage.

The literature on related work indicated great model performance at a MAPE score of

less than 10% and acceptable performance at a MAPE score of less than 15% for

commercial AVM.

The related state-of-the-art works models deemed comparable to this projects

models reached MAPE scores between 56.7% and 19.4%, as can be seen in Figure 4: Table

“Performance levels of comparable models on chosen metrics” in ‘Chapter 3 - Related work’

subsection ‘Metrics performance baseline’.

Human level performance appraisal error was deemed approximately comparable to

MAPE. Human level performance appraisal error was indicated at around 12%, as stated in

‘Chapter 2 - Background Research’ subsection ‘Human level performance in real estate

appraisal’.

From these candidate MAPE baselines, it was decided that a MAPE score of less than 20%

would be the project’s target score, as it seemed like an appropriate compromise between

the suggested scores from the literature on related work and range of scores the

state-of-the-art related models.

RMSE (Root mean squared error)

(3)𝑅𝑀𝑆𝐸 =  1
𝑛

𝑖 = 1

𝑛

∑ ( 𝑥
𝑖

− 𝑦
𝑖
)2

Where is the number of predictions, is the predicted property value and is the actual property value.𝑛 𝑦 𝑥

RMSE measures the average difference between predicted values and the actual values. It

provides an estimate on the models accuracy. Similar to MAE, RMSE depends on the

individual models’ used data, so again it can not directly be used to compare the project's

models to the state-of-the-art models’ results. Thus again, the main goal for this metric was

to iteratively lower the RMSE score throughout development and end with a RMSE score

that was as low as possible.

Again, to make some direct comparison possible, it was deemed appropriate to

compare this project's RMSE score for each resulting model to the previous work of Wishal

M Sri Rangan best models’ RMSE score, with the same reasoning as explained above in

subsection MAE. His best performing model reached a RMSE of approx. 61173 €, thus the

eventual target score for this metric was set to a RMSE of less than 61173 €.
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R² (Coefficient of determination)

(4)𝑅2 =  1 −  𝑖 = 1

𝑛

∑ ( 𝑥
𝑖
 − 𝑦

𝑖
 )

𝑖 = 1

𝑛

∑ ( 𝑥
𝑖
 − 𝑥 )

Where is the number of predictions, is the predicted property value, is the mean actual property value and𝑛 𝑦 𝑥 𝑥
is the actual property value.

R² or the coefficient of determination is a statistical measure assessing the proportion of

variance in the dependent variable (in this case the actual property value) that can be

explained by the independent variables in the model (in this case the included property

features). It basically explain how well the model fits the data.

The state-of-the-art models’ achieved R² scores ranging from 30% (for a less

performant regression model) to 85.8%. Wishal M Sri Rangan models’ achieved R² scores

ranging from 57.56% to 77.71%.

Eventually, a R² score greater than 75% was set as the target baseline score, which was on

the relatively optimistic side.

Adjusted R²

(5)𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 =  1 −  ( 1 − 𝑅2 ) ( 𝑁 − 1 )
𝑁 − 𝑝 − 1

Where is as calculated above, is the size of the test sample and is the number of predictive independent𝑅2 𝑁 𝑝
variables.

Adjusted R² is a modified version of R², accounting for the number of predictive independent

variables in the model. It adjusts R² to penalize the inclusion of further predictive

independent variables that do not contribute significantly to explaining the variance in the

dependent variable of the model.

The state-of-the art model’s achieved Adjusted R² scores ranging from 30% (again

for a less performant regression model) to 85.8%.

Similarly to R² above, an Adjusted R² score greater than 75% was set as the target baseline

score, which was similarly on the relatively optimistic side.

32



PRD (Price-related differential)

(6)𝑃𝑅𝐷 =  𝑀𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 / 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜

Where (Mean ratio):

(6.1)𝑀𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 =  1
𝑛

𝑖 = 1

𝑛

∑
𝑦

𝑖

𝑥
𝑖

And where (Weighted mean ratio):

(6.2)𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 =  𝑖 = 1

𝑛

∑ 𝑦
𝑖
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∑ 𝑥
𝑖

Where is the number of predictions, is the predicted property value and is the actual property value. (For𝑛 𝑦 𝑥
both equations 6.1 and 6.2)

PRD or the price-related differential is an AVM-specific metric that measures the uniformity in

the appraisal of low value and high value properties in the total assessments. A PRD greater

than 1 indicates that higher value properties are under-appraised relative to lower value

properties. On the other side, a PRD smaller than 1 indicates that higher value properties

are over-appraised relative to lower value properties. [14]

The literature on related work stated that PRD should lie between 0.98 and 1.03 to

indicate a good level of uniformity in the assessment of low and high value properties for

commercial AVM.

Thus, the range from 0.98 to 1.03 for the PRD was set as the target score for this metric.

Coefficient of dispersion (COD)

(7)𝐶𝑂𝐷 =  ( 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 / 𝑀𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 ) *  100

Where (Median ratio):

(7.1)𝑀𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 =  𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑦
𝑥  𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

And where (Average absolute deviation):

(7.2)𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  𝑖 = 1

𝑛

∑   ( 
𝑦

𝑖

𝑥
𝑖
 ) − 𝑀𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 |||

|||
𝑛

Where is the number of predictions, is the predicted property value and is the actual property value. (For𝑛 𝑦 𝑥
both equations 7.1 and 7.2)
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COD or the coefficient of dispersion is another AVM-specific metric that measures the

uniformity of appraisals of the model. It specifically measures how far on average each

properties ratio of the predicted value over the actual value is away from the median ratio.

Simply, it is the average percentage deviation from the median ratio. [14]

The literature on related work states that COD should lie between 5 to 20 for

residential properties for commercial AVM. As the to-be-used data did not solely include

residential properties, a clear target COD could not be determined on the basis of literature.

Still, the chosen target score for COD was set as less than 20 for this metric.

Target performance baseline table

The prior considerations resulted in the following Table 1 as the target baseline for each of

the identified metrics:

MAE MAPE RMSE R² Adj. R² PRD COD

< 36898 € < 20% < 61173 € > 75% > 75% 0.98 to 1.03 < 20

Table 1: Target performance baseline table

This table concludes the target baseline for each metric, against which the models

developed for the project should be evaluated. This should be done in consideration of the

data used and will be done in later sections of this report.

Model choices

Finally, this section briefly states the actually chosen types of machine learning models for

the projects realization. Due to the time constraints and scope of the project, just three

relatively simple machine learning approaches were finally elected.

The three chosen models to be developed for this project are a multiple linear

regression model, a random forest regression model and a gradient boosting model.

Elaboration on these model choices can be found in ‘Chapter 3 - Related work’ subsection

‘Recommended types of machine learning models’.

This concludes the ideation and concept phase of the project, next is the actual realization.
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Chapter 5 - Realization

This chapter finally describes the process of realizing the development of the three chosen

machine learning AVM models.

First, to be able to create the models, the data stage of the project is recounted, including

the data definition and the data preprocessing, resulting with a list of feature categories,

which will be the independent variables used by the models to predict the property values.

Second, the actual model development is highlighted. This includes describing the

implementation of them in python, as well as fine-tuning the models and input data to

increase their performance.

Finally, the evaluation procedure of the models is described. The actual evaluation results

are then showcased in the following ‘Chapter 6 - Evaluation’.

Data collection

The initial dataset used in this project was provided by the project supervisor Andreas

Kamilaris. It contains information about real estate properties in Cyprus, in the form of an

excel spreadsheet. The columns in the dataset contain a mixture of features (predictor

variables or independent variables) stemming from the public registry as well as geospatial

features provided through Gaea. The initially used response variable (dependent variable),

to be later predicted by the models, was the estimated selling price of the property,

estimated by the public registry.

This dataset was later extended:

First, to get an improved response variable, the actual selling price of each property

was incorporated into the dataset, replacing the estimated selling price as the response

variable. The estimated selling price column was only further used to spot potential flaws

within the selling price column in the data cleaning phase.

Secondly, the dataset was extended to include the property type of each property as

an additional independent variable. Initially, it was suspected that creating a model for the

most frequent types of property could lead to improved predictions, but as the dataset did

not consistently categorize the property types, this idea was later abandoned. This issue will

be further discussed ‘Chapter 7 - Discussion’.

This finally resulted in a dataset with all potential property features included to be used as

independent variables, as well as the selling price as the response variable that was to be

predicted by the models.
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Data preprocessing

The resulting dataset from the data collection stage needs to be cleaned and organized

before it can be effectively used to train the selected machine learning models. This

pre-processing process is described step-by-step in this section. The initial dataset

contained 96 columns and 23675 rows of properties.

Initial feature selection

Through a data review with the project supervisor Andreas Kamilaris, an initial selection of

features was made. Some of the columns in the initial dataset were deemed irrelevant or of

low value for prediction. Other columns were duplicates, entirely empty or only contained the

unit for the adjacent column. These columns were removed from the data.

Removal of rows with formatting errors or large amounts of missing data

Some rows were found to have formatting errors, specifically information about nearby

amenities ‘overflowed’ into the next column. As there was a low number of rows where this

error occurred (21 properties), these rows were removed from the dataset. Further, some

rows (24 properties) had missing data in at least half of the initial columns, they were also

removed from the dataset.

Removal of columns with largely empty cells

Several columns contained a majority of empty cells. In some cases, this occurred as the

column had a direct relationship to the previous adjacent column. In that case, these

columns were kept in the dataset.

In other cases, a column had no apparent relationship to any other columns and was empty

for the majority of cells. These columns were removed from the dataset, as imputing the

missing values would have likely led to large errors in imputation.

Refined feature selection

Through a second discussion with the supervisor Andreas Kamilaris, it was concluded that

some feature columns provided through Gaea likely had low relevance in predicting the

property prices, as the properly market was unlikely to consider these factors in the pricing of

properties. These columns contained a risk score evaluated through Gaea about different

types of natural disasters that could occur in an area, as well as the distance of the property

to that natural disaster risk area. These columns were thus removed from the dataset.
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Secondly, some of the public registry information was deemed as perfectly

multicollinear with other columns. This concerned feature columns containing ID’s assigned

by the land registry. To the models, some of these ID’s translate indirectly to grant

information about which properties are in the same municipality, district, etc. As some of the

ID’s would provide the same information to the models, their columns were also removed

from the dataset.

Imputation of empty cells

Some of the columns still contained empty cells at this stage of preprocessing. As the

chosen baseline regression model cannot handle null value entries, these empty cells had to

be imputed. Filling empty cells with the median value (for numerical variables) or the most

frequent value (for categorical variables) was chosen as the imputation strategy. For some

columns, imputing with this strategy would be unwise, for example for the column

representing the angle of orientation of the property. In this example, taking the median

orientation angle would distort the information contained in the column. In those cases,

where a clear imputation strategy could not be identified, a filler value was used to indicate

missing values to the models.

Imputation of cells with impossible values

Some columns contained values deemed impossible to occur in the real world. For example

negative building heights or abnormally large building heights of 9999 meters were identified.

These cells were then imputed in similar fashion as done with the empty cells.

Appending of property type & selling price

As mentioned in the section data collection, the property type and selling price of the

properties were appended to the original dataset. In the process of the entire data stage, this

was done at this step of preprocessing. The columns were retrieved from a secondary, larger

excel spreadsheet provided by the supervisor Andreas Kamilaris. This larger spreadsheet

contained all the properties from the initial dataset, as well as further properties. The new

two columns were merged with the initial dataset by matching on the ‘subPropertyID’ column

between the spreadsheets. This column contained unique identifiers for each property, and

was thus ideal for the merging process.
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Deleting rows with 0€ selling price

Some of the rows in the response variable ‘selling price’ contained 0€ selling prices. This

leads to errors in some of the metrics, especially MAPE, as its calculation requires a division

by the dependent variable. Dividing by 0 would lead to MAPE not being able to be

calculated, thus properties with a selling price of 0 were removed from the dataset.

Further preprocessing steps

After the aforementioned preprocessing steps were completed, the resulting dataset

contained columns of 30 independent variables and 1 dependent variable. It further

contained 23675 rows of properties. Further preprocessing steps were performed within the

three programmed machine learning models, as each model required slightly different steps

to be able to utilize the data.

Outlier removal via IQR with multiplier 3

To reduce the influence of the properties with extremely large selling prices on the model

training, these “outliers” in selling price are removed from the dataset. This was done

programmatically, as it was deemed easier to perform through python than through excel.

The Inter-Quartile Range (IQR) is used to remove properties with outlier selling

prices. The properties in the dataset with prices higher than the upper bound or lower than

the lower bound are removed from the ‘selling price’ column. In practice, the lower bound

was not crossed, thus only properties with selling prices exceeding the upper bound were

removed. Equation 8.1 below showcases how the Inter-Quartile Range is calculated.

(8.1)𝐼𝑄𝑅 =   𝑄
3
 −  𝑄

1

Where is the upper quartile (the top 25%) of property prices and is the lower quartile (the bottom 25%) of𝑄
3

𝑄
1

property prices.

Equations 8.2 and 8.3 below showcase how the lower bound (8.2) and the upper bound (8.3)

are calculated.

(8.2)𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 <  𝑄
1
 −  3 * 𝐼𝑄𝑅

(8.3)𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 >  𝑄
3
 +  3 * 𝐼𝑄𝑅

Where is the upper quartile (the top 25%) of property prices, is the lower quartile (the bottom 25%) of𝑄
3

𝑄
1

property prices, and is as calculated in Equation 8.1𝐼𝑄𝑅
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The following code snippet in Figure 8 showcases the outlier removal in the project code:

Figure 8: Code snippet “Outlier removal on selling price column via IQR with multiplier 3

Method ‘.quantile()’, as seen in line 57 and 58 in Figure 8, is a pandas library method for

finding sample quantiles in pandas dataframes. [15]

A multiplier of 3 was chosen for the IQR outlier removal, as the selling prices were

not normally distributed. Normally, the multiplier is set to 1.5 for IQR outlier detection for

normal distributions. The multiplier of 3 was selected through iterative testing of the model

and was deemed to be a relatively conservative value for the outlier removal on

non-normally distributed selling prices.

The outlier removal resulted in the removal of 957 rows of properties, leaving the dataset

with 22718 rows of properties from the previous 23675 rows of properties.

Label encoding of categorical variables

To make the values in the categorical independent variables from the dataset interpretable

by the machine learning models, label encoding was performed on the categorical variables.

Label encoding converts categorical labels such as text or strings into numerical values

representing each category uniquely through an integer value. It was especially done for the

multiple linear regression model, as this model requires the input features to be numerical,

but it was also applied in the other models for consistency.

In the project, it was performed with the method ‘LabelEncoder()’ from the

sklearn.preprocessing library for python.

39



One-Hot-Encoding of categorical variables

For the multiple linear regression model, the categorical variables further needed to be

One-Hot-Encoded. Categorical variables representation through unique numerical values is

not enough for the categorical variables to be correctly interpreted by the multiple linear

regression model.

One-Hot-Encoding creates a binary vector for each unique category in a categorical variable

column. The length of the binary vector is equal to the number of unique categories in the

original categorical variable. The binary vector is filled with value 0 except for the position

corresponding to the category of the original variable, which is assigned a value of 1. In

simpler terms, One-Hot-Encoding creates a binary table for each categorical variable

representing belonging (value 1) or not (value 0) to each category.

This technique is applied, so that the multiple linear regression model doesn’t falsely

interpret the numerical representation of categorical variables, obtained through label

encoding, as having a meaningful magnitude and avoids introducing an ordinal relationship

between categories. Basically, it strips the numerical representation of the categorical

variable of falsely being interpreted of having a numerical meaning, which could be falsely

interpreted by the model.

In the code for the multiple linear regression model, it was implemented via the

‘OneHotEncoder()’ method from the sklearn.preprocessing library for python. Lastly, to avoid

the dummy variable trap, one column created through One-Hot-Encoding was dropped for

each categorical variable.

40



Multicollinearity

Finally, to check for multicollinearity between the independent variables, a correlation matrix

was generated. One column ‘QuarterID’ was found to have a correlation coefficient of 1, thus

it was removed from the dataset.

The following Figure 9 showcases the correlation matrix for the XGBoost regression model

between the features finally used in all model types, with all multicollinear columns with

correlation coefficients of 1 removed. Unfortunately, the bottom labels are slightly cut off, as

the python output only provided the image in a format scaled to the screen. They are

identical to the labels on the left-hand side and should thus still be interpretable.

Figure 9: Correlation matrix on the example of the XGBoost regression model

The correlation matrix was generated by utilizing a combination of methods from several

libraries.

The method ‘.corr()’ from the pandas library was used to create the correlation matrix,

initially for the continuous numerical variables [15]. The method ‘pointbyserialr()’ from the

scipy.stats library was used used to transform the categorical variables such that they could

be appended to the correlation matrix [16]. The method ‘.heatmap()’ from the seaborn library

was used to color-code the correlation matrix according to the correlation coefficient ranges

[17]. Finally, the library matplotlib.pyplot was used to display the correlation matrix [18].
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Resulting features

The steps taken in the data preprocessing stage resulted in 28 independent variables and 1

dependent variable, the ‘selling price’, across the models. The following list of resulting

features in Figure 10 showcases the independent variables with a small explanation on what

they represent.

Figure 10: List of resulting independent variables used across all model types

This concludes the data preprocessing stage, next the implementation of the models in

python is elaborated upon.

Specific model selection

As stated at the end of ‘Chapter 4 - Ideation & Concept’ in section ‘Model choices’, the three

selected models to be implemented in the project are a multiple linear regression model, a

random forest regression model and a gradient boosting regression model.

Here, the specific selection of model is described.
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Multiple linear regression model

Multiple linear regression is a statistical method used in machine learning to model the

relationship between multiple independent variables and a single dependent variable. In the

case of the project, it is fit using ordinary least squares, to find the optimal values for the

regression coefficients used for each independent variable.

In the project, it serves as the baseline model for experimentation and as a sanity check

granting insights into the relationships between the multiple variables in the used dataset.

The multiple linear regression model was implemented through the use of the python library

‘sklearn.linear_model’. The regressor was created using the method ‘LinearRegression()’

from the library. [19]

Random Forest regression model

Random Forest regression is an ensemble learning method used in machine learning for

regression tasks. It extends the Random Forest algorithm, which is normally used for

classification tasks. For regression tasks, the algorithm is adapted to predict continuous

numeric values rather than discrete classes. The algorithm builds multiple decision trees

during training and aggregates their individual predictions to a more accurate final prediction.

It utilizes random sampling to train each tree, also known as bagging, to reduce

overfitting and increase generalization performance over the entire dataset. Furthermore, at

each split of a decision tree, the algorithm randomly selects a subset of features. The

randomness introduced in both steps helps decorrelate the individual trees, making the final

aggregate prediction more resistant to overfitting and decreasing its variance, thus achieving

better performance on unseen data. [21]

The Random Forest regression model was implemented through the use of the python

library ‘sklearn.ensemble’. The regressor was created using the method

‘RandomForestRegressor()’ from the library. [20]
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Gradient Boosting regression model

Similarly to Random Forest regression, Gradient Boosting regression is an ensemble

learning method used in machine learning regression tasks. The algorithm builds a series of

weak learners, in our case again decision trees during training. It differs from the tree

building in Random Forest by building the trees sequentially, with each new tree aiming to

reduce the error of the ensemble of the previous trees. In regression, it aims to minimize the

residual error between the predicted values and the actual target values.

In the project, a specific version of Gradient Boosting regression was utilized, namely

XGBoost. It was chosen for its popularity stemming from its efficiency, scalability and

performance. XGBoost further employs regularization techniques to control model

complexity and prevent overfitting. During the testing process, the training speeds of the

various iterations on the XGBoost model were considerably faster than the training of the

iterations of the Random Forest models. [22]

The XGBoost regression model was implemented through the use of the python library

‘xgboost’. The regressor was created using the method ‘XGBoostRegressor()’ from the

library. [23]

Hyperparameter optimization

The Random Forest regression model and the XGBoost regression model both have a set of

hyperparameters, that can be tuned to significantly improve the models performance.

Hyperparameter tuning aims to find the best set of hyperparameters for the model.

Hyperparameters are external configuration parameters that are not learned from the

training data, they are configured before the training process.

The hyperparameter optimization strategy chosen for the project is randomized search.

Randomized search randomly samples a specified number of hyperparameter combinations

from a predefined range of hyperparameter values for each of the hyperparameters chosen

for the optimization.

It is implemented for both the Random Forest regression model and XGBoost

regression model through the use of the python library ‘sklearn.model_selection’. The

method ‘RandomizedSearchCV()’ from the library was used to perform the randomized

search to optimize the hyperparameters. The attribute ‘.best_params_’ from the method

‘RandomizedSearchCV()’ stores the best found combination of hyperparameters, which can

then be used as the hyperparameters for the model fitting.

44



As both the implementation of the Random Forest regression model from sklearn and the

XGBoost regression model from xgboost automatically try to select good hyperparameters

for training, both models were each respectively once trained with automatic hyperparameter

tuning and once trained with randomized search hyperparameter tuning.

The resulting performance of both models respectively with automatic

hyperparameter optimization and randomized search hyperparameter optimization is

evaluated via the identified metrics in ‘Chapter 6 - Evaluation’ subsection ‘Hyperparameter

optimization results’.

The following Figure 11 showcases the hyperparameters selected for optimization of the

Random Forest regression model and the XGBoost regression model.

Figure 11: Table of hyperparameters selected for optimization for Random Forest regression

model & XGBoost regression model

Evaluation implementation

To be able to evaluate the different models performance, the selected metrics for evaluation

had to be implemented in the python code for each model. The formulae for each of the

metrics is stated previously in ‘Chapter 4 - Ideation & Concept’ section ‘Performance

baseline’.

The implementation of the metrics MAE, MAPE, RMSE and R² could be directly done by

utilizing functions from the ‘sklearn.metrics()’ method from the sklearn library [24].

- For the calculation of MAE, function ‘metrics.mean_absolute_error()’ was used.

- For the calculation of MAPE, function ‘metrics.mean_absolute_percentage_error()’

was used.

- For the calculation of RMSE, function ‘metrics.mean_squared_error()’ was used,

setting function parameter ‘squared’ to False to retrieve the RMSE instead of the

MSE.

- For the calculation of R², function ‘metrics.r2_score()’ was used.
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The metric Adjusted R² needed some further simple calculations to be implemented.

- To calculate Adjusted R², function ‘metrics.r2_score()’ was used in further calculation

according to the formula for Adjusted R², as specified in Equation (5) found in

‘Chapter 4 - Ideation & Concept’, section ‘Performance baseline’, subsection

‘Adjusted R²’

The metrics PRD and COD are AVM-specific metrics, thus there was no python

implementation found for them.

To calculate PRD:

- First, the mean ratio was calculated through simple for-loops, as specified in

Equation (6.1) found in ‘Chapter 4 - Ideation & Concept’, section ‘Performance

baseline’, subsection ‘PRD’.

- Secondly, the weighted mean ratio was calculated, as specified in Equation (6.2)

found in ‘Chapter 4 - Ideation & Concept’, section ‘Performance baseline’, subsection

‘PRD’.

- Finally, the PRD was calculated by dividing the mean ratio by the weighted mean

ratio, as specified in Equation (6) found in ‘Chapter 4 - Ideation & Concept’, section

‘Performance baseline’, subsection ‘PRD’.

To calculate COD:

- First, the median ratio was calculated through a simple for-loop, as specified in

Equation (7.1) found in ‘Chapter 4 - Ideation & Concept’, section ‘Performance

baseline’, subsection ‘COD’.

- Secondly, the average absolute deviation was calculated through a simple for-loop

and a divison, as specified in Equation (7.2) found in ‘Chapter 4 - Ideation &

Concept’, section ‘Performance baseline’, subsection ‘COD’.

- Finally, the COD was calculated by dividing the average absolute deviation by the

median ratio, multiplying the result by 100, as specified in Equation (7) found in

‘Chapter 4 - Ideation & Concept’, section ‘Performance baseline’, subsection ‘COD’.

These implementations of the metrics were then used to evaluate the trained models

performance. Throughout development, the metrics were utilized to evaluate the progression
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of iterative improvement of the implementation, by tracking the results for each iteration.

When certain ideas in development led to worse performance over the metrics, the ideas

were revised. If they led to overall improvement over the metrics, they were kept and the

results for each metrics for that iteration were noted in a comment section of the code.

The results of the final evaluation after multiple iterations of model improvements are

showcased in the following ‘Chapter 6 - Evaluation’

Testing methodology

To test the performance of a machine learning model, commonly the available dataset is split

into a training dataset and a testing dataset. The training dataset is used to train the model

of choice, the testing dataset is used to evaluate the performance of the trained model on

data previously not seen by the model during the training stage. This section describes how

this testing was initially implemented through a simple train-test-split of the data. In a later

stage of development, the methodology was improved by implementing k-Fold cross

validation instead of a simple train-test-split of the data.

Train-test-split

As mentioned, initially the models were tested by implementing a simple train-test-split. This

involves splitting the entire dataset available to the models into two subsets, a training set

and a testing set. The typically larger training set is used to train the model, and the typically

smaller testing set is used for evaluating the models performance on data it has never seen

before.

In the project, the dataset was randomly partitioned into a 80% training set and a 20%

testing set, a common ratio for train-test-splits appropriate for the relatively large amount of

rows in the dataset.

This could directly be achieved in the python code by using the method ‘train_test_split()’

from the ‘sklearn.model_selection’ library [25]. The parameter ‘test_size’ was set to 0.2,

equalling 20% for the testing set. The parameter ‘random_state’ was set to the value 0 to

achieve a reproducible output across multiple function calls and implementation iterations.
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k-Fold cross validation

There are several downsides to utilizing the previously described train-test-split

methodology.

First, the performance evaluation on the metrics can be sensitive to how the data is

randomly split. A different random split can lead to different metrics results, especially for

smaller datasets.

Secondly, in our implementation of the train-test-split, only 80% of the entire dataset

is used for training. This utilization of the available training data is suboptimal.

Thirdly, there is a potential to over- or underfitting on patterns or noise in the training

dataset, which might make the model not as generalizable for unseen data.

Fourthly, the randomness in splitting the data may lead to biased testing results,

especially if patterns in the entire dataset are not represented in either the training set or

testing set.

To overcome these limitations, the testing methodology was improved in the final stages of

the realization. The methodology was changed to k-Fold cross validation.

k-Fold cross validation is a resampling technique used in machine learning to assess

performance and generalization ability of a model. The general idea is to split the entire

dataset into k subsets, called folds. The model is then trained k times, each time using k-1

folds for training and the remaining fold for testing. in each iteration, the model uses a

different fold as the testing set. At the end of this procedure, the testing results on the

metrics for each iteration are averaged.

In the project, k-Fold cross validation was implemented in the following fashion:

1. The rows in the dataset were first shuffled, to eliminate patterns from the ordering of

the dataset.

2. Secondly, the dataset was sectioned into k-Folds, with k set equal to 5, a common

value for k-Fold cross validation.

3. Thirdly, the above described procedure was applied, resulting in 5 iterations of model

training and testing.

4. Finally, the resulting metrics results for each iteration were averaged.

This concludes the k-Fold cross validation testing methodology, and with it ‘Chapter 5 -

Realization’. The results of the final evaluation are discussed in the following chapter.

48



Chapter 6 - Evaluation

This chapter serves to showcase the results of the three models in their respective final

iteration. The goal here is to identify the model with the best performance on the identified

metrics. Furthermore, the impact of incorporating the geospatial features in the models,

retrieved through Gaea, is evaluated. Next, the feature importance overall is evaluated.

Afterwards, the impact of the implemented hyperparameter optimization on model

performance for the Random Forest regression model and the XGBoost regression model is

evaluated. Finally, the best performing model is compared to the target metric baseline, to

evaluate wether the set goal of improving upon the state-of-the-art is met or not.

Metrics evaluation

Metrics scores without Gaea features

This subsection showcases the performance for the developed models on the selected

metrics, without including the geospatial features retrieved through Gaea. Firstly, the results

of the initial train-test-split testing methodology is shown in Figure 12, secondly the results of

the improved k-Folds cross validation testing methodology is shown in Figure 13.

The highlighted yellow cells in the Figures are the best achieved results per metric for the

respective testing methodology.

Figure 12: Table “Testing results without Gaea features, train-test-split testing methodology”

Figure 13: Table “Testing results without Gaea features, k-Fold cross validation testing

methodology”

As can be seen by observing the highlighted yellow cells in both Figure 12 and Figure 13,

there is no one model that consistently performs best across all metrics.
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For the first results on the metrics of testing of the models without Gaea features with the

initial train-test-split testing methodology, seen in Figure 12, the model determined to have

the best performance is the XGBoost model with Hyperparameters selected by randomized

search. It slightly outperformed the other models in the most amount of metrics, achieving

the best results in the metrics MAE, RMSE, R² and Adjusted R². It came in second place in

performance in the metric MAPE, third place in performance in the metric PRD and third

place in performance in the metric COD. The exact scores for each metric are not

specifically stated here, as they can be seen in Figure 12 and as there are overall still better

performing models yet to come.

For the second results on the metrics of testing of the models without Gaea features

with the improved k-Fold cross validation testing methodology, seen in Figure 13, the model

determined to have the best performance is the Random Forest model with

Hyperparameters selected by randomized search. It slightly outperformed the other models

in the most amount of metrics, achieving the best results in the metrics MAE, RMSE, R² and

Adjusted R². It came in second place in performance in the metric MAPE, third place in

performance in the metric PRD and third place in performance in the metric COD. The exact

scores for each metric are again not specifically stated here, as they can be seen in Figure

13 and as there are overall still better performing models yet to come.

Comparing the two testing methodologies for the models without Gaea features, the k-Fold

cross validation testing methodology showed consistently slightly improved performance

across the metrics MAE, RMSE, R² and Adjusted R², across all model types. On the other

hand, the k-Fold cross validation testing methodology showed a drop in performance in the

metrics MAPE, PRD and COD. The likely reason for this drop in performance will be

discussed in the following ‘Chapter 7 - Discussion’.

As the k-Fold cross validation methodology is a more robust testing methodology, its results

more accurately reflect the models performance across the entire dataset. The limitations of

the initial train-test-split methodology are described in more detail in ‘Chapter 5 - Realization’

section ‘Testing methodology’ subsection ‘k-Folds cross validation’. Thus, when comparing

the results at the end to the set target performance baseline, only the k-Folds cross

validation results will be analyzed.
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Metrics scores with Gaea Features

This subsection showcases the performance for the developed models on the selected

metrics, including the geospatial features retrieved through Gaea. Firstly, the results of the

initial train-test-split testing methodology is shown in Figure 14, secondly the results of the

improved k-Folds cross validation testing methodology is shown in Figure 15.

Again, the highlighted yellow cells in the Figures are the best achieved results per metric for

the respective testing methodology.

Figure 14: Table “Testing results with Gaea features, train-test-split testing methodology”

Figure 15: Table “Testing results with Gaea features, k-Fold cross validation testing
methodology”

For the first results on the metrics of testing of the models with Gaea features with the initial

train-test-split testing methodology, seen in Figure 14, the model determined to have the

best performance is the Random Forest model with Hyperparameters selected by

randomized search. It slightly outperformed the other models in the most amount of metrics,

achieving the best results in the metrics MAE, RMSE, R² and Adjusted R². It came in second

place in performance in the metric MAPE, third place in performance in the metric PRD and

second place in performance in the metric COD.

For the second results on the metrics of testing of the models with Gaea features

with the improved k-Fold cross validation testing methodology, seen in Figure 15, the model

determined to have the best performance is again the Random Forest model with

Hyperparameters selected by randomized search. It slightly outperformed the other models

in the most amount of metrics, achieving the best results in the metrics MAE, RMSE, R² and

Adjusted R². It came in second place in performance in the metric MAPE, third place in

performance in the metric PRD and second place in performance in the metric COD.

Comparing the two testing methodologies for the models with Gaea features, the k-Fold

cross validation testing methodology showed a very slightly improved performance across
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the metrics MAE, RMSE, R² and Adjusted R², for the best performant model from each

testing methology. On the other hand, the k-Fold cross validation testing methodology

showed a significant drop in performance in the metrics MAPE, PRD and COD, when

comparing the respective best performing models from the two testing methodologies. The

likely reason for this drop in performance will be discussed in the following ‘Chapter 7 -

Discussion’.

Evaluation of the inclusion of Gaea features

In this section it is evaluated whether the inclusion of the geospatial features, retrieved

through Gaea, in the dataset used to train the models was overall effective. For this, the best

performing model from the testing results without Gaea features is directly compared to the

best performing model from the testing results with Gaea features, both utilizing the k-Fold

cross validation testing methodology. Figure 16 below shows the metrics results for the two

best performing models using the k-Folds cross validation testing methodology, once

including the Gaea features, once without including the Gaea features. Once more, the

highlighted yellow cells in the Figure are the better result between the two best performing

models using k-Folds cross validation as the testing methodology.

Figure 16: Table “Comparison of best performing model testing results with Gaea features
against best performing model testing results without Gaea features testing, k-Fold cross
validation testing methodology”.

As can be seen seen in Figure 16, the score for metric MAE for the Random Forest model

with Hyperparameters selected by randomized search including the Gaea features is

approximately 31607€. The score for metric MAE for the XGBoost model with

Hyperparameters selected by randomized search without including the Gaea features is

approximately 34400€. As a lower MAE score indicates a better result on the metric, the best

model including the Gaea features outperformed the best model without the Gaea features

on metric MAE.

The score for metric RMSE for the Random Forest model including the Gaea

features is approximately 55624€, the score for metric RMSE for the XGBoost model without

including the Gaea features is approximately 58744€. As a lower RMSE score indicates a

better result on the metric, the best model including the Gaea features outperformed the best

model without the Gaea features on metric RMSE.
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The score for metric R² for the Random Forest model including the Gaea features is

approximately 69.597%, the score for metric R² for the XGBoost model without including the

Gaea features is approximately 66.101%. As a higher R² percentage indicates a better result

on the metric, the best model including the Gaea features outperformed the best model

without the Gaea features on metric R².

The score for metric Adjusted R² for the Random Forest model including the Gaea

features is approximately 69.560%, the score for metric Adjusted R² for the XGBoost model

without including the Gaea features is approximately 66.094%. As a higher Adjusted R²

percentage indicates a better result on the metric, the best model including the Gaea

features outperformed the best model without the Gaea features on metric Adjusted R².

The score for metric MAPE for the Random Forest model including the Gaea

features is 10.3078, which translates to 1030.78%, the score for metric MAPE for the

XGBoost model without including the Gaea features is 7.4968, which translates to 749.78%.

As a lower MAPE score indicates a better result on the metric, the best model including the

Gaea features underperformed compared to the best model without the Gaea features on

metric MAPE.

The score for metric PRD for the Random Forest model including the Gaea features

is 55.606, the score for metric PRD for the XGBoost model without including the Gaea

features is 40.261. As a PRD score close to 1 indicates a better result on the metric, the best

model including the Gaea features underperformed compared to the best model without the

Gaea features on metric PRD.

The score for metric COD for the Random Forest model including the Gaea features

is 925.514, the score for metric COD for the XGBoost model without including the Gaea

features is 680.677. As a lower COD score indicates a better result on the metric, the best

model including the Gaea features underperformed compared to the best model without the

Gaea features on metric COD.

The results are mixed and it is not immediately clear, whether incorporating the Gaea

features led to overall improved results. To get a better understanding on which approach

resulted in better performance, the Table 1 target performance baseline table, found in

‘Chapter 4 - Ideation & Concept’, section ‘Performance baseline’ subsection ‘Target

performance baseline table’ should be referred to. Table 1 is once more shown below for

easier reference:

MAE MAPE RMSE R² Adj. R² PRD COD

< 36898 € < 20% < 61173 € > 75% > 75% 0.98 to 1.03 < 20

Table 1: Target performance baseline table
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As can be seen in Table 1 above, the target baseline score for MAE was a MAE score of

less than 36898€. Both best performing models shown in Figure 16 achieved the target of

outperforming the baseline, as their scores are both lower than the target score.

The target baseline score for RMSE was a RMSE score of less than 61173€. Both

best performing models shown in Figure 16 achieved the target of outperforming the

baseline, as their scores are both lower than the target score.

The target baseline score for R² was a R² percentage score of more than 75%. Both

best performing models shown in Figure 16 slightly miss the target. As the target for this

metric was set at a relatively high percentage, the scores for both models still indicate

relatively decent performance, especially the Random Forest model including the Gaea

features, with a R² score of approximately 69.597%.

The target baseline score for Adjusted R² was an Adjusted R² percentage score of

more than 75%. Both best performing models shown in Figure 16 slightly miss the target.

Again, as the target for this metric was set at a relatively high percentage, the scores for

both models still indicate relatively decent performance, especially the Random Forest

model including the Gaea features, with an Adjusted R² score of approximately 69.560%.

The target baseline score for MAPE was a MAPE score of less than 0.2, which

translates to 20%. Both best performing models shown in Figure 16 miss the target by a

wide margin. The MAPE score for the Random Forest model including the Gaea features is

10.3078, which translates to 1030.78%. The MAPE score for the XGBoost model without the

Gaea features is 7.4968, which translates to 749.78%. As both models miss the target by

such a wide margin, the reached scores are not a good indication of which model performed

better on this metric. This especially will become clear in the next ‘Chapter 7 - Discussion’,

where probable reason for the low scores on the MAPE metric are discussed.

The target baseline score for PRD was a PRD score in the range of 0.98 to 1.03.

Both best performing models shown in Figure 16 miss the target by a wide margin. The PRD

score for the Random Forest model including the Gaea features is 55.606. The PRD score

for the XGBoost model without the Gaea features is 40.261. Again, as both models miss the

target by such a wide margin, the reached scores are not a good indication of which model

performed better on this metric. This especially will become clear in the next ‘Chapter 7 -

Discussion’, where probable reason for the low scores on the PRD metric are discussed.

The target baseline score for COD was a COD score of less than 20. Both best

performing models shown in Figure 16 miss the target by a wide margin. The COD score for

the Random Forest model including the Gaea features is 925.514. The PRD score for the

XGBoost model without the Gaea features is 680.677. Again, as both models miss the target

by such a wide margin, the reached scores are not a good indication of which model
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performed better on this metric. This especially will become clear in the next ‘Chapter 7 -

Discussion’, where probable reason for the low scores on the COD metric are discussed.

Overall, from this comparison to the Target performance baseline, it can be concluded that

there are still some flaws in prediction capability of the models, seen by the scores reached

for metrics MAPE, PRD and COD in comparison to the target scores for these metrics.

Still, the Random Forest model including the Gaea features outperformed the XGBoost

model not including the Gaea features on all the other metrics MAE, RMSE, R² and Adjusted

R². As these two models were the respectively both best performing models with the testing

methodology k-Folds cross validation, it can be concluded that the overall best performing

model is likely to be the Random Forest model with its Hyperparameters selected through

the randomized search, evaluated on the improved testing methodology of k-Folds cross

validation. This indicates that the inclusion of the geospatial features retrieved through Gaea

is beneficial for better model performance. This gives the first evidence towards answering

the second sub-question of the main research question, which was the following:

How can these features be effectively incorporated into machine learning models

to enhance AVM accuracy?

Feature importance

The first sub-question of the main research question was the following:

What are the significant external features, observable through satellite imagery,

that influence property values?

This question is answered by evaluating the feature importance. The feature importance is

drawn upon the basis of the previously identified overall best performing model, the Random

Forest model with its Hyperparameters selected through the randomized search, evaluated

on the improved testing methodology of k-Folds cross validation. A feature importance chart

can be used to explain which features have greater importance in contributing to the

predictive performance of the model.

The feature importance was largely consistent across the k-Folds of testing. Thus, the

following Figure 17 only depicts the feature importance for one of the k-Folds. The objective

in this section is to observe the larger trends in feature importance, not the specific ranking

of importance of each individual feature, as this slightly varied across the k-Folds.
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Figure 17: Bar chart “Feature importance of Random Forest model with randomized search
Hyperparameter optimization, k-Folds cross validation testing methodology, fold k = 3”.

From all the available Gaea features used as independent variables in the dataset, the

following 6 were of categorical type:

‘Has Swimming Pool’; ‘Burned Area Score’; ‘Geo Suitability Zone’; ‘Geology Soil Texture’;

‘Natura Region’; ‘Nearest Road Type’.

The other 8 available Gaea features used as independent variables in the dataset were of

continuous numerical type:

Aspect’; ‘Slope’; ‘Geology Soil Depth’ ; ‘Elevation’; ‘Distance to Sea’; ‘Electric Grid Distance’;

‘Nearest Road Distance’; ‘Blue Flag Beach Distance’.

By observing the Gaea features ranking in the feature importance bar chart in Figure 17, it

can be seen that the continuous numerical independent variables retrieved from Gaea

tended to play a more significant role in feature importance than the categorical independent

variables retrieved from Gaea.
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From all the other available features used as independent variables in the dataset, the

following 7 were of categorical type:

‘MunicipalityId’; ‘MunicipalityCode’; ‘DistrictId’; ‘prCode’; ‘PrCatCode’; ‘PrZoneRank’;

‘Property Type’.

The other 7 available features used as independent variables in the dataset were of

continuous numerical type:

‘PrStoreyNoQty’; ‘PrHeightMSR’; ‘PrDensityRateQty’; ‘PrCoverageRate’; ‘PrAffectedExtent’;

‘PrTotalExtent’; ‘Parcel Area’.

By observing the feature ranking in the feature importance bar chart in Figure 17 for the

non-Gaea features, the continuous numerical features tended to rank a bit higher than the

categorical features, with the clear exception of the categorical feature ‘MunicipalityCode’.

As the feature ‘MunicipalityCode’ grants the models insights into what municipality a

property belongs to, and as the reasoning behind property pricing is potentially consistent

within a single municipality, it makes sense that this feature can be of great value for

predictions. This feature at the same time has the potential to grant information to the model

about a properties location and its surrounding properties, potentially allowing the models to

find patterns to improve predictions.

Overall, it can still be concluded that the continuous numerical features overall tended to

play a larger role in feature importance than the categorical features, except for the

categorical features that granted insight into a properties location or relative location towards

other properties. It would thus be interesting to incorporate more continuous numerical

features into future models.

To answer the sub-research question, the 5 most significant external features, observable

through satellite imagery were the following Gaea features (ordered by feature importance):

‘Blue Flag Beach Distance’, ‘Elevation’, ‘Distance to Sea’, ‘Electric Grid Distance’ and

‘Nearest Road Distance’.

The 5 most significant non-Gaea features were the following (ordered by feature

importance):

‘MunicipalityCode’, ‘PrHeightMSR’, ‘PrTotalExtent’, ‘PrCoverageRate’ and ‘PrAffectedExtent’;

They could potentially be observed through satellite imagery, but a direct and accurate data

source such as the public registry would most likely provide more accurate data.
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Hyperparameter optimization results

Finally, the success of the Hyperparameter optimization strategy is evaluated.

From the metrics testing results with the k-Folds cross validation testing methodology for the

models containing Gaea features, as seen in Figure 15 from the previous subsection

‘Metrics scores with Gaea features’, it can be concluded that the models using the

randomized search hyperparameter optimization strategy outperformed their respective

counterparts with automatically selected hyperparameters. The randomized search

hyperparameter optimization strategy is described in more detail in ‘Chapter 5 - Realization’

section ‘Hyperparameter optimization’.

As the results for the models with randomized search hyperparameter optimization

only slightly improved from their respective counterparts with automatically selected

hyperparamters, one can conclude that further improvements in the hyperparameter

optimization strategy could likely be made. Further potential approaches are described in

‘Chapter 8 - Future work’

Figure 18 shows the hyperparameters for each of the k-Folds found through the randomized

search hyperparameter optimization for the Random Forest model including Gaea features

using k-Folds cross validation as the testing methodology (best overall performing model):

Figure 18: Python comment “Identified hyperparameters per k-fold found through
randomized search hyperparameter optimization for Random Forest model including Gaea
features”

Secondly, for completeness, Figure 19 shows the hyperparameters for each of the k-Folds

found through the randomized search hyperparameter optimization for the XGBoost model

including Gaea features using k-Folds cross validation as the testing methodology:

Figure 19: Python comment “Identified hyperparameters per k-fold found through
randomized search hyperparameter optimization for XGBoost model including Gaea
features”
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Chapter 7 - Discussion

This chapter serves to discuss the potential reasons for why the target performance baseline

was only partially met by the best performing model across the specified metrics. It also

serves as the basis for the potential areas of improvement that are discussed in the following

‘Chapter 8 - Future work’.

Discussion of results

To facilitate the discussion of results, the target performance baseline table as well as the

metrics results for the identified best performing model are shown once more below in Table

1 and Figure 20 respectively:

MAE MAPE RMSE R² Adj. R² PRD COD

< 36898 € < 20% < 61173 € > 75% > 75% 0.98 to 1.03 < 20

Table 1: Target performance baseline table

Figure 20: Table “Best performing model testing results with Gaea features with k-Fold cross
validation testing methodology”

In Figure 20, the model metrics scores that outperformed the set baseline score are color

coded in green, the model metrics scores that slightly underperformed the set baseline score

are color coded in yellow and finally the model metrics scores that missed the set baseline

score by a wide margin are color coded in red.

As previously touched upon in ‘Chapter 6 - Evaluation’ section ‘Metrics evaluation’, the

models overall, and here specifically the identified best performing model missed the set

target metrics by a wide margin on the metrics MAPE, PRD and COD.

The likely reason for this stems from a combination of the following factors:

The wide price-range of actual sale prices in the dataset used and the inclusion of properties

with very low sale prices.

To see why these two factors influence the 3 stated metrics results, one should look at the

formulae for each metric, as stated in ‘Chapter 4 - Ideation & Concept’, section ‘Performance

baseline’.
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Discussion of MAPE

To illustrate the the point made in this subsection, the Formula (2) for the MAPE metric is

restated:

(2)𝑀𝐴𝑃𝐸 =  1
𝑛

𝑖 = 1

𝑛

∑  
𝑥

𝑖
 − 𝑦

𝑖

𝑥
𝑖

 |||
|||

Where is the number of predictions, is the predicted property value and is the actual property value.𝑛 𝑦 𝑥

As can be see seen from Formula (2), within the absolute value bracket, the denominator is

the actual property value of property in the dataset, which in the case of the used dataset𝑛

is the dependent variable ‘property price’ we are trying to predict with the models.

When the denominator approaches 0, the absolute percentage error for that individual

property becomes very large. As the absolute value of the difference between the predicted

property value (in our case the predicted property price) and the actual property value (in𝑦 𝑥

our case the actual property price) is usually larger than itself for small property values ,𝑥 𝑥

this leads to the absolute value of the entire fraction becoming very large.
𝑥

𝑖
−𝑦

𝑖

𝑥
𝑖

Normally, this does not necessarily lead to problems, but as the provided dataset included a

lot of properties with a very low sale price, the resulting calculated MAPE score increases

significantly by these cases occurring relatively frequently in the face of the entire dataset.

The wide price-range of the properties in the dataset also play a role here, as all selected

models will likely make predictions overpricing the lowest-priced properties, as the models

are trained on the entire price-range.

Thus, due to the combination of very low-priced properties (e.g. 1€) in the dataset as well as

the large price-range of the property prices in the dataset, the evaluation of the models on

MAPE led to results missing the target MAPE score by a wide margin.

Discussion of PRD

Again, to illustrate the the point made in this subsection, the Formula (6) for the PRD metric,

the Formula (6.1) for the Mean ratio and Formula (6.2) for the Weighted mean ratio are

restated:

(6)𝑃𝑅𝐷 =  𝑀𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 / 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜

Where (Mean ratio):

(6.1)𝑀𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 =  1
𝑛

𝑖 = 1

𝑛

∑
𝑦

𝑖

𝑥
𝑖
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And where (Weighted mean ratio):

(6.2)𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 =  𝑖 = 1

𝑛

∑ 𝑦
𝑖

𝑖 = 1

𝑛

∑ 𝑥
𝑖

Where is the number of predictions, is the predicted property value and is the actual property value. (For𝑛 𝑦 𝑥
both equations 6.1 and 6.2)

Similarly as in the case of MAPE, PRD is indirectly influenced by especially the low-priced

properties in the dataset. As can be seen from Formula (6.1) for the mean ratio, it divides by

the property value (in our case the actual property price). Again, when the property value𝑥 𝑥

is near 0 for multiple properties, the mean ratio increases dramatically, as these very

low-price properties are commonly at least slightly overpriced by the selected models, as

they are fitted on the entire price-range contained in the dataset. The weighted mean ratio

seen in Formula (6.2) does not run into this issue as much, as the sum of predicted property

values divided by the sum of actual property values is still relatively good, as the average𝑦 𝑥

prediction quality outperforms the prediction quality for low-price properties. Thus, by

dividing a high mean ratio by a relatively lower weighted mean ratio in Formula (6) for the

PRD, the evaluation of the models on PRD again led to results missing the target PRD score

by a wide margin.

Discussion of COD

Once more, to illustrate the the point made in this subsection, the Formula (7) for the COD

metric, the Formula (7.1) for the Median ratio and the Formula (7.2) for the Average absolute

deviation are restated:

(7)𝐶𝑂𝐷 =  ( 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 / 𝑀𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 ) *  100

Where (Median ratio):

(7.1)𝑀𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 =  𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑦
𝑥  𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

And where (Average absolute deviation):

(7.2)𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  𝑖 = 1

𝑛

∑   ( 
𝑦

𝑖

𝑥
𝑖
 ) − 𝑀𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑡𝑖𝑜 |||

|||
𝑛

Where is the number of predictions, is the predicted property value and is the actual property value. (For𝑛 𝑦 𝑥
both equations 7.1 and 7.2)
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Again, similarly to the cases of MAPE and PRD, the very low-priced properties in the dataset

are causing the COD score to increase dramatically. The explanation here solely on the

basis of the Formulae (7), (7.1) and (7.2) is unfortunately not perfectly possible, as the

median of as calculated in the Formula (7.1) for the Median ratio depends on the used𝑦
𝑥

dataset. What can be stated here is that the median ratio should increase when lots of

mispricings occur, which especially happens when the property value (in our case the𝑥

property price) becomes small. The resulting average absolute deviation increases by a

larger factor, as now individual low-priced properties influence the average. This can be seen

from the numerator in the Average absolute deviaton Formula (7.2), as bracket (
𝑦

𝑖

𝑥
𝑖
)

increases dramatically when is very low, moreso than the Median ratio increases. Thus,𝑥

the inclusion of very low-priced properties in the dataset once more lead to worse results of

the evaluation of the models on metric COD, leading to results missing the target COD score

by a wide margin.
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Discussion of remaining metrics and results

Even if it was shown above, that the wide price-range of property prices in the used dataset

in combination with the inclusion of several very low-price properties influenced the metrics

MAPE, PRD and COD, the other targets were largely met.

As elaborated previously, the metrics R² and Adjusted R² were set at a relatively high

baseline score level, missing them by approximately 5% for the best model can still be seen

as relatively successful. The metric baseline target scores set for MAE and RMSE were both

outperformed, thus overall the performance of the best developed model, with achieved

metrics scores found in Figure 20, is still evaluated as relatively successful. As the reasons

for the poor performance levels achieved for MAPE, PRD and COD were likely identified, the

overall performance is still satisfactory.

With this, we can attempt to answer the final sub-question of the main research question,

which is restated here:

How does the developed machine learning AVM compare in performance

to state-of-the-art AVMs?

The best performing model and with it the best performing machine learning AVM

developed, in the case of the project a Random Forest regression model including

geospatial Gaea features with the testing methodology of k-Folds cross validation, is overall

comparable in performance to the identified state-of-the-art AVM models. It outperformed the

target baseline, derived from the state-of-the-art, on the metrics MAE and RMSE, missed the

target baseline scores by approximately 5% on the metrics R² and Adjusted R² and missed

the target baseline scores for the metrics MAPE, PRD and COV by a wide margin.

The likely reasons for why the best performing model did not outperform the set target

baseline scores on the metrics MAPE, PRD and COV have been elaborated upon. The

following ‘Chapter 8 - Future work’ discusses strategies to improve the model methodology

and dataset, to address the likely identified reasons for underperformance on those metrics.
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Chapter 8 - Future Work

This chapter first discusses potential approaches on how to deal with the identified issues of

the evaluation of the models on the metrics MAPE, PRD and COD. It briefly further

showcases two ideas that were experimented upon to further improve the developed

models, but were not finalized due to the time-frame limitations of this project. Afterwards, it

gives avenues of future work that could be pursued to further extend the methodology used

to develop the models realized in this project.

Potential approaches to improve metrics evaluation on MAPE, PRD and COD

As stated in the previous chapter, the wide price-range of properties included in the dataset

used by the models developed in this project, as well as the inclusion of very low-priced

properties led to underperformance on the metrics MAPE, PRD and COD. Two potential

approaches have been ideated, that could improve the performance of the developed

models.

First, one could set a lower bound on property prices included in the dataset. If properties

priced below e.g. 100€ are not considered in the model, the performance on the metrics

MAPE, PRD and COD likely already improves. This strategy is only appropriate if the lower

bound on property prices included in the dataset does not exclude a significant fraction of

the overall properties from the dataset. Still, this strategy necessarily eliminates a fraction of

the ground truth and it might impact performance on unseen data. It can also likely only be

effectively applied if unseen data evaluated by the models does not include properties with

actual sale prices below the lower bound.

A second approach could be to split the price range up into a subset of the entire price

range, e.g. low selling price properties, medium selling price properties and high selling price

properties. This could be done by an initial model estimating the sale price and assigning a

the estimated price range the property falls into. Further models could then be trained on the

specified narrower price ranges, potentially leading to better results. By having a narrower

price range for the model to train upon, the models make overall smaller absolute errors in

their predictions and the predictions are closer in absolute value to the real prices. For this

strategy to effectively work, it is likely that a larger dataset is required.

The categorization in the case of the project could potentially have been achieved by looking

at a column initially included in the data. The public registry provided an estimated selling

price, and categorization could have potentially been done on the basis of this column.
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Besides these two mentioned ideas, are likely further more advanced techniques of outlier

detection and model methodology that could also assist in dealing with the identified issue.

Model development per property type

One of the ideas, pursued in the final stages of development, was to train the models solely

on the two most frequent types of property, which could be identified through the column

property type appended to the original dataset. Usually, AVM are developed for a single type

of property, most frequently residential properties. Oftentimes, they further are specialized on

residential houses or apartments.

The two most frequent property classification categories were ‘Plot’ with 7084 rows and

‘Field’ with 16344 rows out of a total of the initial 23675 rows contained in the dataset. ‘Plot’

and ‘Field’ combined accounted for 23428 out of 23675 rows, thus representing the vast

majority of property types.

Unfortunately, the classification of property type done by the public registry was not very

detailed, it is likely that the classification was made for the purpose of the sale transaction.

It did not fully capture what exactly the property contained, as many of the ‘Fields’ or ‘Plots’

contained some sort of buildings, such as houses or apartments, which was evident from

other columns such as the ‘PrHeightMSR’ column, which represents the building height.

Thus, the idea of developing models specialized on the property type was abandoned. If the

dataset could be extended with more accurate property type classification, this could likely

still lead to improvements in performance of the models.

Inclusion of nearby amenities

A second idea that was pursued in the final stages of development was to incorporate a

column from the original dataset called ‘Nearby amenities’. It contained information about a

large number of categories of nearby amenities, such as hospitals, airports, cafes, schools,

malls etc. It further contained the distance from each property to each amenity related to the

property. In theory, this nearby amenity data would likely had a impact on the actual price of

properties. Unfortunately, categorization of amenities was imprecise, leading to many

amenities with similar but distinct categorization. An example of this would be all various

types of nearby restaurants, each categorized as e.g. ‘Lebanese restaurant’ or ‘Indian

restaurant’. Furthermore, many amenities had categories that only applied to that specific

amenity. Thirdly, many amenities had multiple categories assigned to them at once, making

a clear categorization extremely difficult.

Besides the issue of categorization, the formatting of the data was stored in a complicated

JSON-like structure. This meant that a lot of programming time first had to be spent to
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properly reassign each amenity to the corresponding property, but this was eventually

achieved. Only at that point the described issues associated with the categorization became

apparent.

In the time frame of the project, a re-assignment to a simplified categorization was

attempted, but likely had some flaws in its re-categorization. To properly re-categorize each

amenity, one would have needed to look at each amenity with the help of services such as

google maps, to see which simplified categorization would be most appropriate.

Finally, the last issue that became apparent was that the majority of properties contained in

the initial dataset had no amenities associated with them. It is likely that in actuality there

would be nearby amenities present, but they were not contained in the dataset. Imputing

nearby amenities appeared impossible and would lead to a large distortion of the real world

data. The simplified recategorization was as an experiment appended to the dataset used by

the models, but the results worsened, as the re-categorization and large amount of missing

data likely did not help the models in making predictions.

Thus, finally, the idea was also abandoned.

It is likely that accurate information on nearby amenities with a relatively simple

categorization and fewer categories could have improved the models. If one has access to

more complete data on more precisely categorized nearby amenities, it could likely be

implemented in a future machine learning AVM.

This concludes the two approaches, that were experimented with in the final stages of the

project. They could still be promising ideas, but were not feasible to be implemented with the

given data and the limited timeframe of the project. Lastly, some more general future work

recommendations are made.

General future work recommendations

First of all, it would likely be a good idea to incorporate a larger dataset into the model

development process. Specifically, a larger and more specific range of property types could

likely improve the models developed in this project.

Secondly, more numerical continuous features of any kind could be utilized by the

models, as they showed the biggest feature importance. Categories of features that could be

utilized are further described in ‘Chapter 3 - Related work’ section ‘Related work research -

Preliminary conclusions’ subsection ‘Potentially useful property parameters’.

Further parameters on the real estate market and financial conditions could likely be

effectively used. A indication of the transaction date, to adjust the sale prices for inflation
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could also assist in prediction quality. Finally, data on the historical transactions that occurred

could potentially further improve the models predictions, if appropriately implemented.

The imputation methodology utilized could further be improved. Strategies such as

K-NN could be tried as a starting point, but there are many imputation methods that could be

tried.

The used methodology of randomized search could be extended by utilizing grid

search in combination with it. In that case, randomized search could narrow down the

parameters to be then used as the starting point for the grid search.

Finally, more sophisticated machine learning approaches could be tried. A clear

recommendation is not made here, further background research should be done to identify

the most promising models.

67



Chapter 9 - Conclusion

The graduation project, "Leveraging Machine Learning and Geo-Analytics in Automatic

Valuation Models to advance Real Estate Valuation" aims to enhance existing AVM

methodology. Traditional AVM methodology often omits incorporating the properties

surrounding environment. By leveraging data from a digital twin of the Cyprus real estate

market, this project aimed to extend current methodologies. The main goal was to create a

machine learning AVM that predicts property prices more accurately than the state-of-the-art

by incorporating comprehensive information about the surroundings, retrieved through

satellite data, improving upon existing state-of-the-art models.

The research aimed to first identify the significant external features observable

through satellite imagery, then tried to effectively incorporate them into three different

machine learning AVM and finally aimed to compare the best performing model to the

state-of-the-art.

The three developed machine learning models are a multiple linear regression

model, serving as a baseline model, a Random Forest regression model and a version of a

Gradient Boosting Regression model, specifically XGBoost, implemented in python.

Results from the best performing model indicated mixed levels of success,

outperforming the target baseline, derived from the state-of-the-art research, in the metrics

MAE and RMSE, slightly underperforming the target baseline on the metrics R² and Adjusted

R² and finally significantly underperforming the set target baseline on the metrics MAPE,

PRD and COD. The reasons behind the missed level of performance compared to the set

target baseline in the metrics MAPE, PRD and COD are likely related to the utilized dataset,

as very low-priced properties in combination with the wide price range across the entire

dataset interfered with these metrics specifically.

The developed machine learning model achieving the overall best performance is the

Random Forest regression model including the external features observable through satellite

imagery, with hyperparameter optimization through the use of randomized search.

Overall, the best models’ performance is still evaluated as relatively successful,

recommendations are made to address the issues that created the underperformance in the

metrics MAPE, PRD and COD.

Hopefully, the developed model methodology can be further improved through the suggested

future research avenues, as it has the potential to enable individual property buyers and

sellers access to relatively accurate Real estate valuations, which can currently commonly

only be obtained through the purchase of expensive professional AVM models or the

services they provide.
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