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Management summary

The production facility of HTM Aerotec produces high precision parts for the aerospace- and defence industry.
HTM Aerotec has grown over the years, however, the production processes of the 5-axis milling machines with
pallet handling system struggle to keep up with the entire supply chain’s throughput. Most of the orders at
HTM are produced on these machines. Over the last year, the machines operated for an average of 105 hours
per week. In theory, these machines should be able to run 24/7 as they can run unmanned due to their pallet
handling system. Currently, there is a lack of a sophisticated planning approach for the 5-axis milling machines.
This leads to being unable to consistently produce more than 105 hours per week and gives a lack of insights
into what factors contribute to good machine utilisation. Therefore, the main research question is stated as
follows:

"How can an optimised scheduling strategy be developed to consistently achieve the goal of
reaching more than 105 production hours per week for the 5-axis milling machines?"

A context analysis identified the scheduling problem. We found that the performance of the machines is very
variable, but averages out to around 105 hours of production per week on average over the last year for both
machines. The machines do not have a program roughly 25%. of the time, meaning that there is room for
improvement. The machines can switch between machining tasks with ease because they have an automated
pallet handling system and a pallet storage area. The loading and unloading of the pallets with products requires
operator intervention. Operators are available for 40 hours per week with additional short visits during the
weekend. Several constraints further complicate the scheduling process. The two machines studied have a limit
on pallet availability, having 40 and 24 pallets available for machines 538 and 539 respectively. Before products
of an order can be produced the setup for this order needs to be performed. Besides, certain orders necessitate
dedicated fixtures, which are limited and some are not compatible with all pallets. For each order, the products
have different characteristics. Products of orders differ in constraints such as the number of products that fit
on a pallet, processing time (manned or unmanned), number of production steps on the machine, and release
dates. All these factors make it hard for the operator to schedule the products such that production hours
are maximised. The scheduling problem consists of deciding when to perform setup for an order, when to
load/unload the pallets, sequencing of pallets in the machine, and which pallets to load with what product. The
aim is to make a schedule which ensures a high utilisation level of the machines, whilst keeping tardiness low.

The literature review classified the problem as a single-machine scheduling problem with family setups, multi-
fixturing pallets, (periodical) resource constraints with product-specific characteristics and constraints. Based
on related scheduling research, we identified solution approaches. The problem can be solved in an exact way,
which is feasible for small problem instances, or heuristics can be used. With the heuristics, first an initial
schedule is generated, which is iteratively improved by the improvement operators in an improvement heuristics
with a chosen neighbourhood structure.

The scheduling problem has been modelled in a mathematical model formulation to increase problem under-
standing. The scheduling problem is not solved exactly due to its NP-hardness and the industry size problems
that are used as input. Three different dispatching rules have been deployed for generating the initial solu-
tion, being EDD, Multi-Factor, and Random. Two improvement heuristics have been implemented, namely
Simulated Annealing and Tabu Search. Besides two neighbourhood structures are used (random and variable
neighbourhood). This results in a total of 12 different solution approaches that we test for our scheduling
problem.

The best solution approach is to use EDD as the dispatching rule for generating the initial solution and improve
the initial solution using TS with random operation selection. The EDD dispatching rule gives the best trade-
off between makespan and tardiness. Due to the complexity of the scheduling problem, the algorithm is not
capable of overcoming the worse solutions of the other initial solutions generated by the other dispatching rules
in a reasonable time span. A sensitivity analysis has been performed on various factors. Operator availability
is studied to assist in determining the feasibility and impact of making changes to operator shift times. The
currently installed number of pallets is studied to determine whether the number of pallets for the machines is
a bottleneck for achieving more production hours. Similarly, it is determined whether the number of dedicated
fixtures is a bottleneck, or perhaps it would be beneficial to make some extra. From the sensitivity analysis,
the following can be concluded:

• Visiting twice in the weekend is necessary, if this is not possible, visiting on Sunday is slightly preferred.
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The system performance already drops by roughly 10% for machine 538 and roughly 30% for machine 539
if an operator only visits one day in the weekend.

• Visiting at a later time in the weekend improves the system performance significantly. Visiting at 16.00-
17.30 instead of 10.00-11.30 improved the system performance of the 538 by roughly three percent and
the 539 by roughly six percent.

• Reducing or increasing the operator availability hours during the week significantly impacts system per-
formance. This makes it undesirable to work fewer hours given the current situation.

• Reducing the number of pallets gives a bigger decrease in objective value than increasing the number of
pallets increases the objective value. However, having four more pallets for both of the machine would
have increased the system performance already by five percent.

• The effect of dedicated fixtures availability depends on the mix of products that is produced on the
machine. In this case, increasing the availability of dedicated fixtures for the 538 has much less impact
than for the 539. This has to do with the fact that the 539 produces more products for which only a
limited amount of fixtures is available.

• Increasing robustness of the schedule significantly reduces system performances, however increases the
probability of system feasibility. Ten percent schedule robustness increases the objective value by roughly
10 and 15% respectively for the 538 and 539. When increasing the robustness to 20%, the objective value
increases by 20% and 40% for the machines.

At last, we compared the algorithmic performance of a schedule of one full month with observed real-world
performance in a month. Machine status over a month was tracked, from which we can determine the number
of production hours reached. This approach was adopted to ensure a more fair comparison of performance.
At the start of the month analysed, it was denoted which products need to be produced in the next months.
In this way, the algorithm had access to similar products as the operators. By selecting a set of orders for
the algorithm that closely resembles those produced during the observed month, we enhance the value of the
performance comparison. The real-world performance was highly above average, compared to performance over
the last years. The algorithmic performance still managed to provide better results than the observed real-world
performance. The algorithm managed to achieve 7.01% more production hours for machine 538 (138.19 versus
129.14) and 5.71% more production hours for machine 539 (149.68 versus 141.60) in the base case. Table 0.1
shows the utilisation levels that were reached per day of the week for both the observed performance and the
performance reached by the algorithm.

Table 0.1: Machine status per day of the week observed in a month in reality and achieved by the scheduling
algorithm for machines 538 & 539

Day Real-world 538 Algorithm 538 Real-world 539 Algorithm 539
Monday 58.24 61.89 66.38 71.61
Tuesday 76.52 87.97 81.68 90.83

Wednesday 83.12 90.43 88.64 92.65
Thursday 81.90 93.33 89.20 94.11

Friday 75.78 96.41 90.83 91.41
Saturday 76.58 93.66 83.98 95.99
Sunday 69.93 48.80 72.25 81.25

The main difference in performance is the number of hours reached on Saturday for both machines. The
algorithm for machine 538 managed to reach 17% more hours on Saturday. Besides, the algorithm gets a very
high utilisation level during the weekdays. The main limitation for the algorithm for machine 538 is currently
the number of hours it can reach on Sunday and therefore also going into Monday. The current weekend visit
length is too short for maintaining high utilisation levels.

Running the model has been made accessible for company employees by generating an executable file. An
executable file has been made, with which the employees for the company can run the model, based on the
input they provide in the accompanying Excel file. A tutorial has been made for the company on how to set the
model up and retrieve the output. The output of the model is converted to provide usable information. Insights
can be obtained on a higher level, such as when to start producing the first product of an order, the expected
lead time of the order, and expected tardiness. More detailed insights can be extracted from the model output,
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including the sequencing of products for production on the machine, the ideal timing for loading each product,
and the pallet allocation for product placement.

Based on the conducted research, several recommendations and directions for further research have been iden-
tified. The following are most noteworthy:

• Operator availability heavily constrains the performance of the machines, therefore it is not recommended
to shorten operator shifts or reduce the number of weekend visits.

• Have operators visit later on the day when coming in at the weekend as this balances the duration of
operator non-availability better.

• Use the model to gain more insights into the feasibility of due dates on the schedule list, lead time of
orders, and to identify the bottleneck orders.

• Improve the detail of the schedule list and current machine status.

• Perform research on how this model can be extended to include dynamic rescheduling. Including dynamic
rescheduling can make the model operationally deployable. If the operators use the schedule that the
algorithm generates, it will be possible to evaluate the model’s practical usefulness in achieving more
production hours. For this to work, live machine status needs to be linked to the scheduling model.

• Expand the capabilities of the model to identify optimal visit times for operators, both during the week
and at the weekend.
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Reader’s guide

To enhance the reader’s understanding and provide navigation through this thesis, we shortly introduce the
chapters.

Chapter 1: Introduction

This research is introduced in this chapter. First, a company description is given, followed by an introduction
to the problem that the company is facing. The action- and core problem are identified and the research design
is provided.

Chapter 2: Context analysis

A context analysis of the scheduling problem at hand at HTM Aerotec is done. The machine functionality is
explained and the performance of the machines is given. After, factors that affect planning are identified.

Chapter 3: Literature review

Provides the literature review. A taxonomy of the scheduling problem is done and the problem is classified.
Closely related papers are compared based on problem characteristics and solution approaches. At last, possible
solution approaches are discussed.

Chapter 4: Solution design

A more technical in-depth problem description is given. Assumptions and simplifications for modeling the prob-
lem are discussed. A mathematical model formulation is provided. Various solution approaches are introduced,
showcasing diverse constructive and improvement heuristics.

Chapter 5: Results analysis

The experimental design of the research is given to analyse the performance of the model. The best solution
approach per problem instance is selected. Problem instances for the machines are first solved under normal
circumstances. After, sensitivity analysis with input parameters is done to assess their impact on the system’s
performance. At last, the algorithmic performance is compared with the real-world performance over a month.

Chapter 6: Implementation

The implementation steps needed and how this model can be used at HTM Aerotec are discussed. The need
for implementation is addressed, followed by how the outcome of the model can be evaluated.

Chapter 7: Conclusion & recommendations

Summarises the findings of the research conducted at HTM Aerotec. The main research question is answered
and recommendations to the company are given. Limitations, points for future research, and the contribution
of the research are discussed.
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1 INTRODUCTION

1 Introduction

This report describes the Master’s graduation assignment performed for the Master Industrial Engineering
& Management at the University of Twente. In this chapter, an introduction is provided to the research
undertaken at HTM Aerotec. Section 1.1 introduces the reader to the company and provides relevant background
information on HTM Aerotec. Next, in Section 1.2 the problem definition is given and the core problem is
addressed. Finally, the research design is given in Section 1.3.

1.1 Company description

This thesis is carried out for HTM Aerotec, located in Hengelo (Overijssel). HTM Aerotec is a subsidiary
of the HTM Technologies Group (formerly known as PM Group), founded in 1966 (PM-Group, 2022). HTM
Technologies specialises in the design, development, and production of high-precision bearings, positioning
systems, mechatronic systems, as well as aerospace and military components and modules, serving both civilian
and government applications. HTM Technologies consists of five sister companies including HTM Aerotec, HTM
Precision Sheet Metal, HTM Industrial Partner, HTM Precision and recently HTM UMI. See Figure 1.1 for the
geographical overview of the HTM companies.

Figure 1.1: Geographical overview of the five HTM companies

The HTM Aerotec facility is specialised in advanced aerospace and defence module integration. HTM Aerotec
is a first-tier world class supplier in high precision parts and mechatronical integrated modules. HTM Aerotec
delivers unique products, technical assets with exacting standards, and detailed administration and documenta-
tion (proven with the AS 9100D Standard). The parts that HTM Aerotec produces vary heavily due to specific
requirements set by customers. The parts manufactured vary in size, ranging from just a few millimeters to
large fuel tanks designed for massive aircrafts. Figure 1.2 shows three examples of parts that are produced
within the facility.
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1.2 Problem identification 1 INTRODUCTION

Figure 1.2: Examples of parts produced by HTM Aerotec

1.2 Problem identification

HTM Aerotec has experienced significant growth over the past decade. However, within the current operational
landscape, specific machines in the production process are operating at maximum capacity, some even planned
to full capacity for more than a year. This bottleneck presents a significant challenge to HTM Aerotec’s potential
for further growth.

1.2.1 Action problem

Anything or any situation that is not how you want it to be is an action problem (Heerkens and van Winden,
2017). Significant investments were made in 5-axis unmanned milling machines a few years ago. This resulted
in improved performance for HTM Aerotec. Subsequently, newly emerging bottlenecks within the internal chain
were systematically resolved, leading to increased throughput. However, the production processes of the 5-axis
milling machines struggle to keep up with the entire internal supply chain’s throughput. The daily experience
is that the scheduling of the 5-axis machines constantly needs to be adjusted because the requested capacity to
meet delivery deadlines cannot be achieved. HTM aims to further grow in throughput and business results in
the future. The majority of orders at HTM are produced on the 5-axis machines. In Figure 1.3 the number of
production hours per week of two of the 5-axis machines over the years are shown.

Figure 1.3: Production hours per week over last 2.5 years for machines 538 & 539

Both machines operate for around 95 hours per week on average over the last 2.5 years. However, for both
machines an almost identical rising trend line can be seen. What stands out as well, is the large variability of
average production hours. In some weeks over 130 hours per week is reached, whilst in others they barely get
70. Over the last year, both machines operated for an average of 105 hours per week, despite there being 168
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hours available in a week. In theory, the machines should be able to run 24/7 as they can do "manned" and
"unmanned" operations if the ratio between available operations allows for it. "Manned" operations refer to
the loading and unloading of pallets that operators have to do at the machines. The machines are capable of
producing "unmanned" by using pallet change systems. A pallet change system moves a pallet with a product
on it to the machine and can remove it once it is done. This way no human intervention is needed if the pallets
are loaded with products. The machines are currently scheduled to full capacity up to one year in advance.
This can be done since roughly 80% of the orders at HTM Aerotec are forecast-driven or known well in advance.
Time is essence on these 5-axis machines, given that the machines already operate at the current full capacity
24/7. The action problem at hand is therefore defined as:

"HTM Aerotec is currently unable to consistently utilize more than 105 hours per week on the
5-axis milling machines, despite there being 168 hours available in a week"

1.2.2 Problem cluster and selection of core problem

Several factors contribute to the inability to consistently produce an average of more than 105 hours per week.
These problems are identified and Figure 1.4 shows the causal relationships towards the observed problem in a
problem cluster. A problem cluster is used to map all problems along with their connections. It serves to bring
order to the problem context and helps to identify the core problem (Heerkens and van Winden, 2017). A more
detailed quantitative analysis of these factors is provided in Chapter 2 within the context analysis.

Figure 1.4: Problem cluster

As can be seen in the problem cluster in Figure 1.4, some problems do not have a direct (known) cause themselves
and can be considered core problems:

• FAI certificate progress for a machine is time consuming: In the industry, HTM Aerotec is in, a
First Article Inspection (FAI) is a requirement for most customers. This is needed to verify that a new
or modified production step is meeting the specifications detailed in the drawings. Usually, a product
has only one FAI and can only be produced on the set of machines that have been indicated in this FAI.
However, when the 5-axis milling machine that is in the FAI for a product is fully planned, a partial FAI
is needed to be able to produce it on another 5-axis milling machine. This partial FAI certificate progress
is quite time consuming and can leave some capacity of the machine unused.

• Machine malfunctions at night or weekend: The machines sometimes malfunction at night or
during the weekend interrupting unmanned operations and causing significant production time losses.
The production has no employees present during these times and the machines give no notifications about
the malfunctions. This means that if an employee loads the machine at 10 am on Saturday and the
machine malfunctions at 10:10 am, no one will know until an employee comes back on Sunday at 10 am
to load all the machines again.

• Waiting on tools or materials: The tooling centre indicates that tooling and material unavailability
are affecting the number of production hours on the machines. The inventory of tool holders is limited due
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to their high cost. The tooling centre indicates that this affects which orders can be put on the machine.
From interviews with the machine operators and the production planner, we conclude that this waiting
time is not of significant concern to be a problem. This is due to operators ordering the required tools well
in advance at the tooling department and work instructions only arrive at the machine when the required
tools are available. Furthermore, the tool magazine allows for loading and unloading while the machine
is still running.

• No exact insights in processing times of products on 5-axis milling machines: For most pro-
duction steps, the hours per product are booked. For the 5-axis milling machines, this is not done as
accurately, since it is hard to manually keep track of which products were worked on at which time. For
each product there is a prediction for the processing time, however, it is unsure how accurate this predic-
tion is. If large quantities of a product have to be produced, a deviation in processing time can have a
significant impact on the planning. The machine has detailed log data on all operations done, therefore
obtaining more insights into the processing times is achievable.

• Lack of sophisticated planning approach for the 5-axis milling machines: The production planner
periodically creates a list of orders per machine and their respective due dates. The list of orders consists of
a prediction of processing time on the machine and setup times. This list is made based on the Computer
Planned Orders (CPO) in their Enterprise Resource Planning (ERP) system. For the planner, it is
currently not possible to see which mix of orders can lead to being able to produce more hours "unmanned".
With the mix of orders, we mean how orders are processed together and/or in what sequence. The machine
operators receive a list per machine and they can decide the order they do the list in themselves, as long as
they finish an order before the due date in the list. Because of the complexity of this scheduling problem
(a large number of variables and constraints involved), it is expected that the scheduling decisions are not
perfect, leading to sub-optimal planning.

As can be seen in Figure 1.4, the last core problem, "Lack of sophisticated planning approach for the 5-axis
milling machines," was chosen. The current method lacks sophistication in considering maximised unmanned
production hours, particularly given the complexity of the scheduling problem. This core problem was prioritised
over the others because:

• The "FAI certificate process for a machine is time-consuming" problem primarily affects specific instances
rather than the overall scheduling strategy. At the time a FAI certificate process is performed for a
product, other products can be produced on the machines.

• "Machine malfunctions at night or weekend" disrupt operations but may be mitigated through main-
tenance protocols rather than strategic planning adjustments. This is not in the scope of this research,
however, could be an interesting topic for future research.

• "Tools or material unavailability" highlights a problem indicated by a single person from the tooling centre.
The waiting time caused by this problem is not considered to be of significant concern. Operators order
the required tools well in advance, and work instructions only arrive at the machine when the required
tools are available.

• The "No exact insights into processing times of products on 5-axis milling machines" challenge, while
important, primarily concerns accuracy rather than the strategic approach to scheduling. Additionally,
the processing times are generally believed to be accurate on average.

The chosen core problem presents significant potential for enhancing scheduling efficiency and increasing pro-
duction hours on the 5-axis milling machines, particularly due to its low-cost implementation. The challenge in
scheduling the jobs of this order lies in the resource constraints. There is a limited availability of the resources:
pallets, fixtures, and availability of the operators. Besides, each job has different characteristics for how long
the "manned" operations like product clamping take compared to the "unmanned" operations like the machine
run time take. To conclude, the following problem is selected as the core problem of the research:

"Lack of sophisticated planning approach for the 5-axis milling machines"
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1.3 Research plan

The goal of the research is to find out what factors contribute to the current 5-axis machine utilisation and how
planning can improve this utilisation level. The current way of planning leads to sub-optimal planning due to
determining the production order on gut feeling and not using a sophisticated approach. The planner currently
does not exactly know what factors contribute to making a good planning that can increase the number of
production hours on the 5-axis milling machines. The difficulty in this case lies in the resource constraints and
the variety of characteristics of each product that is produced. The main research question is therefore stated
as follows:

"How can an optimised scheduling strategy be developed to consistently achieve the goal of more
than 105 production hours per week for the 5-axis milling machines?"

1.3.1 Research sub questions

To answer the main research question, research sub-questions are defined:

1. What is the current situation at HTM Aerotec?

(a) What does the internal supply chain look like and how do the 5-axis milling machines fit in this
internal supply chain?

(b) How do the 5-axis milling machines work, what are their limitations and how do they perform?
(c) What does the current production planning procedure for the 5-axis milling machines look like?
(d) What should be taken into account when making the production planning?

Chapter 2 answers question 1 and aims to get an insight into the current situation at HTM Aerotec. To
answer the main research question first a context analysis needs to be done, where we get an insight into
the current production process and how the machines fit in this production process. Then a more in-
depth analysis of the limitations and production hours of the machines needs to be done to find room for
improvement. Then the current production planning process needs to be analysed to better understand
the context. Finally, we need to find out what resource constraints are product-specific constraints are
present at HTM Aerotec.

2. What models are presented in the literature for constructing a production schedule and
what optimisation heuristics are available for optimising a production schedule?

(a) What scheduling problems are available in literature and how can we classify the scheduling problem
at HTM Aerotec?

(b) What models and methods within the literature are available for constructing a production schedule?
(c) What solution approaches can be used to solve the scheduling problem at HTM Aerotec?

A literature study is performed to find relevant models and methods for constructing a production schedule.
Models and methods can be combined and modified to fit the situation at HTM Aerotec. Afterwards,
optimisation heuristics are studied and a decision needs to be made for a heuristics that fits this situation.
An optimisation heuristic is needed as the machine scheduling problem at hand is NP-hard, which Chapter
3 elaborates further upon. The literature study concludes with a summary of the findings and a framework
for the rest of the research.

3. How can the production schedule of the 5-axis milling machines at HTM Aerotec be mod-
elled?

(a) What input data is required?
(b) What are modelling assumptions and simplifications?
(c) What does the mathematical model formulation look like?
(d) How can we construct a feasible schedule and improve it using heuristics?

Following the literature study, Chapter 4 delves into the problem formulation, outlining the necessary
input data, outlining the model’s assumptions and simplifications, and providing insight into the structure
and formulation of the mathematical model. Additionally, strategies for constructing an initial feasible
schedule and improving it through heuristic methods are explored.
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4. What experiments can be done with the model to investigate the performance?

(a) What problem instances do we use to test the model?

(b) What does the experimental design look like?

(c) How is the model performing and what is the best solution approach?

(d) What is the influence of the model’s input parameters on its performance outcomes?

(e) How do the actual production hours achieved by machines in a given month compare to the calculated
production hours generated by the scheduling model?

In Chapter 5, an in-depth analysis of the model’s performance is presented. Problem instances are defined
and the experimental design is presented. For each problem instance, the best solution approach is determ-
ined. Sensitivity analysis is conducted on the model’s parameters to assess their impact on performance.
These experiments aim to provide valuable insights to HTM Aerotec regarding the machine environment.
At last, a comparison of the model’s performance against the actual performance of the machine is done.

5. How can HTM Aerotec use the model?

(a) What data sources and input is required?

(b) How can the new method be implemented at HTM Aerotec?

This chapter examines how HTM Aerotec can use the model in practice. The required data sources and
input are addressed. The chapter also explores how the new approach can be implemented at HTM
Aerotec, providing how to model can be used easily by the employees.

6. What conclusions and recommendations can be made to HTM Aerotec?

(a) What are the main conclusions?

(b) What are the main recommendations?

(c) What are the limitations of the research and what needs further research?

(d) What are the practical and theoretical contributions?

To conclude the research, conclusions based on the research are drawn and recommendations are made
to HTM Aerotec in Chapter 7. The limitations of the research are discussed and directions for future
research are given. At last, the theoretical and practical contribution of the research is addressed,

1.3.2 Scope

The research will be limited to the 5-axis milling machines. The company has a lot more machines, but focusing
on these machines has the most impact on the throughput of the production.

Furthermore, it should be noted that only the 5-axis milling machines with a pallet handling system are con-
sidered for this research. This selective approach is driven by the fact that the machines without a pallet
handling system are not capable of running "unmanned". For the 5-axis milling machine without a pallet hand-
ling system, the improvement potential is much lower. They can only produce when an employee is present,
meaning that a human can intervene when something goes wrong. In this way, not a lot of time is wasted.
Besides, more accurate data is available on two of the 5-axis milling machines, namely the 538 and the 539, so
we only take these two into account.

The processes that happen before or after producing on the 5-axis milling machines are not in the scope of the
research.
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2 Context analysis

This chapter provides a context analysis about the current situation at HTM Aerotec. The first research sub
question is answered in this chapter:

What is the current situation at HTM Aerotec?

For the rest of the report, machines refer to the 5-axis milling machines unless explicitly mentioned. Section
2.1 explains the internal supply chain and the role of the machines in this internal supply chain. Next, Section
2.2 explains how the machines work, what their limiting factors are and the performance of the machines in the
past. Section 2.3 describes the current production planning process in more detail. Lastly, Section 2.4 presents
the factors that influence the planning procedure.

2.1 Internal supply chain

As Section 1.1 described, HTM Aerotec produces parts that vary heavily based on specific requirements set by
customers. Customers send product design drawings of the product that they wish to have manufactured, after
which HTM Aerotec starts producing. A policy where firms start working only after an order has been placed is
referred to as make-to-order (MTO) (Chen et al., 2009). Every order follows roughly the same internal supply
chain within HTM Aerotec, starting with a customer request and ending with the shipment to the customer.
The most important customers place orders for up to three years ahead. Figure 2.1 shows a simplified version
of the internal supply chain.

Figure 2.1: Simplified version of internal supply chain

This research focuses on the production planning and production phases, with an emphasis on the 5-axis milling
machines. The production planning process is discussed in further detail in Section 2.3. The production phase
itself consists of multiple phases, there are over 30 potential production steps for each product. Since there is
a large variety of products, the individual production routing for each product is different. Figure 2.2 shows
the production routes of two different products. These two are chosen to highlight the variety the production
routing can have.

Figure 2.2: Examples of production routing

For new orders, the employees of work preparation (production engineers) determine the routing. This routing is
based on the requirements set by the customer. The main driver for deciding the routing is the experience of the
production engineer. Based on instances where products were rejected or accepted in the past, the production
engineer is capable of determining the required route. There is no systematic approach for determining the
routing of the products. For the first product of a new order, an FAI is done to ensure that the first manufactured
part meets the design specifications and regulatory requirements. In the FAI process, the product route and
the corresponding machines are documented.

A significant part of the orders HTM gets are recurring. The routes for recurring orders are already documented
in the FAIs of these products. A partial FAI is required if there is a mutation in the manufacturing process,
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such as the routing, machines used, tooling, materials, etc. A product can have multiple FAI certificates and a
FAI certificate expires if the manufacturing process documented in the FAI for the product is not used for more
than two years.

2.2 The 5-axis milling machines

HTM Aerotec has five 5-axis milling machines available. As Table 2.1 shows, four of these machines are capable
of running unmanned production, as they have an automated pallet handling system. In this subsection, we
first go over the machines and describe how they work, what they can do, and what their practical limitations
are. Next, a performance analysis is done on two of the machines (538 & 539). Only machines 538 & 539 have
accurate data available, so these machines are the scope of the research.

Table 2.1: 5-axis machines available

Machine ID Type Model Automation possible?
532 CNC Milling 5-axis Hermle C42 No
533 CNC Milling 5-axis Hermle C42 Yes, pallet handling system
535 CNC Turn-Mill GROB G550T Yes, pallet handling system
538 CNC Milling 5-axis Hermle C32 Yes, pallet handling system
539 CNC Milling 5-axis Hermle C32 Yes, pallet handling system

2.2.1 Machines capabilities and functionality

The Hermle machines work similarly. Each machine has a pallet storage area. The handling system can get a
pallet with a product on it from the storage and place it in the machine. After the machine is done processing
the item, the handling system can get the product from the machine and place it back in the storage room.
Machine 533 has a robot arm as a handling system, but works similarly. In this way, the entire setup is capable
of producing unmanned as long as there are pallets with products available to work on. Figure 2.3 shows an
example layout of the machine setup.

Figure 2.3: Pallet storage (left) and machine layout (right)

Although each Hermle machine works roughly in the same way, the machine specifications differ. Each machine
is equipped with different options on for example how many pallets fit in the pallet storage. Table 2.2 shows
some of the specifications/limitations for the Hermle machines. The number of pallets that fit in the machine is
a big limitation. The 539 has 14 fewer pallets available than the 538. If all pallets in both machines are loaded
with 1 product that has a processing time of 15 minutes, the 539 loses 240 minutes of production hours more
than the 538. The pallets that are in the 538 are smaller and generally products with a smaller processing time
are placed on it.

The GROB machine works a bit differently, compared to the Hermle machines. This is a 5-axis turn-mill
machine with a pallet handling system. As the name suggests, mill-turn techniques combine the functionalities
of a mill and a lathe. Tool rotation and workpiece rotation are used to machine parts without having to switch
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Table 2.2: Machine characteristics

Machine (ID) Pallets Tools Movement X (mm) Movement Y (mm) Movement (Z)
Hermle C32 (538) 38 299 650 650 500
Hermle C32 (539) 24 299 650 650 500

machines. This machine has its own set of specifications/limitations, however, this machine will not be part of
the research as the data available on this machine is limited.

Both the GROB and Hermle machines are capable of doing operations unmanned and some things need to
be done with the help of a machine operator. The unmanned activities refer to the times when a machine is
processing a product where no human supervision is required and with the help of the pallet handling system
new products can be placed in the machine. Other activities do require human intervention. Clamping the
products using fixtures on the pallets and the loading and unloading of the products need to be done by an
operator. Tools from the tool magazine need to be switched by the operators. Some products require extra
attention when they are on the machine, for example, if it is the first time the product is made or there is an
increased probability of failure with a certain product. The information on the predicted amount of manned
and unmanned hours that need to be done for each product is available in the ERP system.

If we zoom in on the pallets that are seen in Figure 2.3, we can see what these pallets look like exactly. A pallet
is a small flat surface, on which a product and/or fixture can be placed. In Figure 2.4 an empty pallet and a
pallet with a product loaded on it can be seen. A product and/or fixture with a product can be assembled onto
the pallets due to the holes that are in the pallet. The pallets provide a stable and adaptable surface. They are
designed to be easily interchangeable.

Figure 2.4: Pallet explanation

How the pallets are loaded, differs per product. The operators receive folders with work instructions on how the
product(s) need to be placed on the pallets. Each product needs to be clamped on a fixture, which is assembled
onto the pallet. Most products require a general fixture, which is readily available. In some cases, products
require a dedicated fixture, of which a very limited amount is available. This is due to the fact that these
dedicated fixtures can be very expensive, making it generally not worthwhile to make extra dedicated fixtures
as only a few dozen of a specific product are made. There is a massive variety of dedicated fixtures, as they are
custom-made for a specific product. The amount of products that can be placed on a single pallet also differs
per product and fixture type. Besides, a limited number of "towers" are available on which multiple products
can be placed. These towers fit on a single pallet.

2.2.2 Performance analysis

In the action problem, we stated that production hours on the machines were on average 105 hours per week,
which is lower than desired. Figure 1.3 showed the average production hours per week over the last 2.5 years.
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In this section, a more in-depth performance analysis is done to find out more about the lost production hours.
In this subsection, we now refer to the percentage of time a machine is doing something. For example, when a
machine is producing 105 hours per week, this is 62.5% of the hours in the week. The performance analysis is
done on machines 538 and 539 as for these machines accurate data is available.

The status the machines have at each moment is tracked. In this way, the performance of the machines of the
last years can be analysed. Table 2.3 shows the percentage of the time a machine is in a certain status. The
data on the average status of the machines per month for the last 2.5 years is collected. The table shows the
average status over the last 2.5 years and the last year. The column "Active" is the percentage of time the
machine is producing a product. The column "No program" is the percentage of time the machine does not
have a program of products to produce. This part indicates the improvement potential of the problem. The
column "Other" is for things like maintenance, cleaning, etc. The other columns are self-explanatory. In the
last year, the performance was better if you compare it to the last 2.5 years. The machines spend more time
producing products and less time having no program or "other" activities. There is an increase in emergency
stops, which is a direct consequence of more production hours for the machines.

Table 2.3: Machine status (%)

Machine Active Pallet change Interrupted Emergency stop No program Other
Last 2.5 years

538 54,94 (%) 1,81 4,84 2,08 27,23 9,11
539 55,73 0,71 3,72 1,57 29,85 8,43

Last year
538 62,28 2,16 4,50 3,40 23,13 4,52
539 61,47 0,64 3,53 2,13 25,91 6,31

As Table 2.3 displays, the machines are currently producing just over 60 percent of the time. Over the last year,
both machines did not have a program 25 percent of the time. This means that there is significant room for
improvement to be made with better planning. To find out more about this, we dive deeper into the performance
of the machines. For Table 2.4, the day-to-day performance of the machines over the last 2 months was analysed.
The range of 2 months is chosen because from this period the day-specific data is available. What is interesting
is that both machines are significantly less active during the weekend compared to during the week. In the last
2 months, the 538 was producing 73.68% of the time during the week and 35.90% during the weekend. For
the 539 this was 72.42% and 60.11% respectively. For the 538 the low performance is due to having 6 Sundays
in the last 2 months where zero hours of production were done. For the 539 this was the case on 3 Sundays.
Mondays perform worse than other weekdays, due to the operators spending a lot of time unloading the pallets
that were loaded for the weekend and loading them again with new products. Besides, the percentage of the
time the machines are in the "No program" status is higher than desired. Even during the week, this is around
20% for both machines. This means that almost five hours per day during the working week the machines do
not have a program to work on. This can happen when all products on the pallets have been processed and
these products do not have long cycle times.

There is even more in-depth data for the machines. The status per hour for the last week (168 hours) is in the
machine report. Although the last week is not representative of the average performance of the machines, it
gives important insights into how the unmanned production has been throughout the nights and weekend over
the last week. It can also help find what the causes of machine downtime are on an operational level. Figure
2.5 shows the average performance of the machines, as well as the difference in performance during the last
week and the last weekend. We can see that on average, both machines performed really well in the last week
and had one of the best weeks of the year. Machine 538 reached 130 hours of production and 539 got 150(!)
hours. For reference, the machines got an average of 93 and 101 hours per week respectively the month before
that. This shows that there is a lot of variability in this process. What we can also conclude from the graph
is that the moment an employee comes to load the pallets at the weekend is really important. Machine 538
came to a standstill at 11 pm on Friday and someone came at around 3 pm on Saturday. Similarly, machine
538 was out of work before 1 pm on Sunday and was loaded again at 4 pm. At the moment the employees do
not have insights into the machine status, which helps choose a moment to load the machines at the weekend.
This results in a significant production loss.
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Table 2.4: Machine status per day of the week (%)

Day Active Pallet change Interrupted Emergency stop No program Other
Machine 538

Monday 65,01 (%) 4,46 0,08 0,00 28,96 1,50
Tuesday 77,45 1,61 2,63 0,00 17,03 1,28
Wednesday 77,41 1,85 5,02 0,08 15,40 0,24
Thursday 69,08 1,44 5,37 0,00 23,54 0,57
Friday 79,47 1,73 5,62 0,00 12,77 0,41
Saturday 50,33 0,99 10,59 0,00 36,36 1,73
Sunday 21,47 1,91 5,21 0,00 71,92 0,01

Machine 539
Monday 60,53 0,76 3,34 2,72 32,17 0,48
Tuesday 74,98 0,82 0,14 0,39 23,59 0,08
Wednesday 74,30 0,84 1,48 3,20 20,01 0,17
Thursday 71,98 0,72 1,33 3,37 21,25 1,35
Friday 80,30 0,97 0,60 2,88 14,61 0,64
Saturday 83,88 0,54 0,75 0,00 13,09 1,74
Sunday 36,33 0,21 10,00 4,90 48,48 0,08

Figure 2.5: Performance of the 538 and 539 over a week

2.3 Production planning

In this subsection, the production planning process is discussed. This is done by first explaining how the
production planner makes a more tactical planning and afterwards, the operational planning process of the
production department is described.

2.3.1 Production planner

Within HTM-Aerotec the production planner is responsible for scheduling the orders for the production as well
as managing and improving the operational planning. The goal is to have a production schedule that guarantees
on-time delivery, keeps a high machine utilisation, controls WIP, has acceptable inventory costs and keeps the
cash flow into account.

The planner uses data from the ERP system (Glovia G2). Order quantity, routing, required outsourcing,
machine labour setup and run times are provided by sales, production engineers and the CAD/CAM department.
The ERP system provides a minimum amount of a product that needs to be produced. This is helpful since this
reduces total setup time and setup costs. The planner then chooses an amount above that still ensures a good
cash flow position. This is not done very precisely, but more roughly based on the current cash flow position.
Based on this information and some fixed information like the current expected machine capacities and internal
transport times, the production planner can perform a Capable To Promise (CTP) check. This CTP check can
be performed using the Glovia G2 add-on Factory Planning. The CTP check is used to calculate an expected
delivery date, which sales needs to accept or decline an incoming order.
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The planner has access to various planning algorithms within Factory Planning for generating a production
schedule; however, these algorithms are not used when creating the schedule lists. Presently, the Factory
Planning add-on serves the purpose of providing an estimate of the available machine capacity over time. It
functions as an indicator, though it’s worth noting that the information derived from the Planning add-on lacks
precision. This is attributed to the inability to incorporate certain company-specific details, such as outsourcing,
into the system. Therefore, Factory Planning is not used when creating the schedule lists. The planner looks
at the Computer Planned Orders (CPOs) and Work Orders (WOs) in the ERP system. The schedule list is
arranged chronologically, with orders sorted according to their respective due dates, making sure that the most
urgent items are taken care of first. The final schedule is manually fine-tuned using Excel. The finished schedule
is then sent to the production department every two to four weeks. Each machine has an individual schedule
containing information on the required quantity, due date, etc. Table 2.5 shows a small example of what
information is in such a production "schedule" list. The team leaders receive these lists from the production
planner. The planner plans with a capacity of 120 hours per week, which includes the setup time. The main
responsibility of the planner is to ensure that each machine adheres to the deadlines as indicated in the schedule
list.

Table 2.5: Small example of schedule list

Start Date End Date WO Quantity Item Open hours Setup (hrs) Run time (min)
28-9-2023 29-9-2023 12345 50 123456789 10 2 9,6
5-10-2023 5-10-2023 54321 5 987654321 8 1,5 78

2.3.2 Production department

Once the schedule lists are sent to the production department, it first gets to the production manager. The
production manager oversees the entire production process. The production manager can make changes in the
order of the schedule list. Rearranging the list and grouping related materials or products helps to reduce
setup times and ensure better use of machinery and materials. To maximize unmanned production hours, the
production manager occasionally strategically shifts products with long cycle times back a week. In reality,
shifting around and changing the orders does not happen continuously. Once every one or two weeks some
changes may be made to the order of the schedule list together with operators and planners. The production
manager can then choose which orders of the schedule list are given to the machine operators. Work instructions
are only given to the machine operators if the required tools and fixtures are available.

The machine operators receive folders with detailed work instructions. The instructions include information on
how to position the materials in the machine, which CNC program to use, how it needs to be clamped, etc.
Usually, the operators have a few folders with orders to work on at their machines. Assumed is that the tools
needed are always available and require minimal changeover time. The operators choose which order they will
work on. They try to schedule the orders they have efficiently by having a good mix of products (long cycle
times) on the machine at the end of the day and for the weekend. This is hard sometimes when there are
priority orders with products that have short cycle times. The operators also base the planning on when they
can come back at the weekend to load more products on the pallets.

2.4 Resource and production constraints

In this section, we cover the constraints to be considered. We discuss the resource constraints and product-
specific constraints separately to provide a comprehensive understanding of each aspect.

2.4.1 Resource constraints

Resource constraints refer to the limited availability of resources and play a critical role in making a schedule.
The resource constraints that are considered in this research are the following:

• Operator availability is the first resource constraint that has to be considered in the scheduling of
jobs. Operators are available during working hours and usually load the pallets for one hour on both
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days of the weekend. Because product loading and unloading on the pallets are manned operated, the
system must be scheduled such that at the beginning of the night shift all pallets are loaded with parts
to be machined. From that moment on production can go on unattended until all these parts have
been processed. Therefore, parts are to be processed during a night shift preferably those requiring long
processing times. Figure 2.6 shows an example of the hours the operator is available during a normal
week. The moment an operator comes in the weekend is not consistent. The aim is somewhere in the
middle of the day, however this depends on the operator’s plans. They usually stay for 1.5 hours. It is
also a possibility that an operator only comes on one of the days or does not visit at the weekend at all.

Figure 2.6: Example of operator availability in a normal week

• Pallets are available in a limited amount. As Table 2.2 in Section 2.2 shows, machine 538 has 40 pallets
available and machine 539 has 24 pallets available.

• Fixtures are available in a limited amount. Each product needs to be clamped onto a fixture, which is
assembled on the pallets. Some products use general fixtures, however, some products require dedicated
fixtures. Since these dedicated fixtures are very expensive and generally are only required for one type of
product, there is usually only one fixture of each type available.

2.4.2 Product-specific factors

Other than the resource constraints, the products also have some characteristics and constraints that need to
be taken into account when making the schedule:

• No routing flexibility is allowed for the products. Each product has a predetermined route and is
assigned to be produced on specific machines. This comes from the FAI certificate process. The products
can not change to another machine.

• Dedicated fixtures are required for some products. The products can only be mounted on a pallet if
there is a dedicated fixture available.

• Multi-fixturing of products can be done on some pallets. Some towers are available, which allow for
the mounting of multiple products on a pallet. And some products are small and multiple of them can be
assembled onto fixtures.

• Processing and setup times differ per product. Some products require relatively more manned opera-
tions than others. These are usually the products with low processing times, but how the products need
to be mounted on the pallets can make a difference in setup and labour times as well.
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• Release- and Due dates are assigned to each work order. All products of the work order need to be
finished before the internal due date. Some products can only commence production once the necessary
materials have been received or after the completion of the preceding route step. Consequently, the release
date for work orders corresponds to the arrival of the required materials.

• Number of required production steps on a machine differs per product. For some orders, the products
require multiple production steps on the same machine. For example, if a product has 4 production steps
on the same machine then for each step, the product needs to be unloaded and positioned differently.
It can be positioned on the same pallet, with the same fixture or each operation can require a different
dedicated fixture. This is all recorded in the work instructions.

2.5 Conclusion

This chapter offers a comprehensive overview of the current situation at HTM Aerotec and answers the research
question: What is the current situation at HTM Aerotec? Insights into the internal supply chain, machine
performance and capabilities, production planning procedures and resource and production constraints are
obtained.

We have identified that each product follows a unique production routing, often documented in the First Article
Inspection (FAI) certificate, which remains relatively unchanged for recurring products. The significance of the
5-axis milling machines within the production process was highlighted, with a specific focus on machines 538
and 539.

Moreover, we discussed the limitations and capabilities of these machines, revealing a variable performance that
averages to around 105 hours of production per week for both machines over the past year. Notably, 25 percent
of the time the machines remain idle, suggesting potential for improvement in utilisation.

Insights into the current production planning process are provided, outlining the procedures followed by the
production planner and the subsequent handling by the production department. Finally, we identified key
factors that must be considered when developing production plans. This can be split up in resource constraints
and product-specific characteristics and constraints.

Moving forward, a literature study needs to be performed to classify and approach the planning problem more
effectively, to enhance scheduling efficiency and maximize production output.
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3 Literature review

Within this chapter, we provide a literature review. This chapter forms the theoretical framework of the research
and answers the second research question:

What models are presented in the literature for constructing a production schedule and what optimisation heur-
istics are available for optimising a production schedule?

Section 3.1 identifies the production environment of HTM and recognises our problem as a scheduling problem.
Section 3.2 provides a taxonomy of the scheduling problem and discusses the solution approaches of closely
related papers. Finally, Section 3.3 elaborates on the solution approaches that can be used.

3.1 Production environments

In order to successfully compete, operations in a firm need to be strategically aligned to the market require-
ments. Companies are incorporating the Customer Order Decoupling Point (CODP) as an important input
to the strategic design of manufacturing operations as well as supply chains (Olhager, 2010). The CODP is
defined as the point in the value chain of products, where the product is linked to a specific customer order.
Different production environments relate to different positions of the CODP. Olhager (2010) make a distinction
between four different types of manufacturing environments: make-to-stock, assemble-to-order, make-to-order
and engineer-to-order. Make-to-stock is a strategy used to match inventory with anticipated customer de-
mand. Engineer-to-order companies deliver products that are tailored to fit the customer’s unique environment.
Make-to-order refers to companies that produce bespoke and customized products to particular customer spe-
cifications, where production takes place after the customer order has been received (Saniuk and Waszkowski,
2016). Assemble-to-order is seen as a mix of the previous two. Figure 3.1 depicts the CODP for the four
different manufacturing environments.

Figure 3.1: Different CODP’s (Sharman, 1984)

The production environment at HTM Aerotec can be seen as make-to-order (MTO). The production takes place
after a customer order has been placed. Therefore, research in the literature review is mostly on MTO production
environments. Figure 3.2 shows a hierarchical framework. The framework distinguishes three processes/levels,
namely, the order-selection level, the manufacturing-planning level and the operations-scheduling level.

This research is placed in the offline operational level of resource capacity planning, namely in scheduling. The
goal of the assignment is to find on an operational level what factors contribute to making a good planning. The
planning problem at hand has several resource constraints and product-specific characteristics and constraints.
The scheduling problem serves as a feasibility check and can identify in more detail what can lead to more
production hours. In the next section, definitions of scheduling are given and a taxonomy of the problem at
hand is made.
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Figure 3.2: Hierarchical framework (Hans et al., 2007)

3.2 Taxonomy

This section provides a taxonomy of the scheduling problem at HTM Aerotec. The taxonomy brings order
to the diverse landscape of scheduling research and can help translate our problem into a problem more well-
known in the literature. First, some scheduling definitions are provided. Afterwards, the scheduling problem at
hand is classified. Furthermore, solution approaches suitable to the scheduling problem are identified from the
literature.

3.2.1 Scheduling

Scheduling is a decision-making process that deals with the allocation of resources to tasks over a given time
period to optimise on one or more objectives (Pinedo, 2016). In our case, the machines are the resources and the
tasks are the products on the pallets that need to be processed. According to Pinedo (2016) and Safarzadeh and
Niaki (2019) scheduling problems are classified into some well-known categories regarding machine environment:

Single machine: All jobs need to be produced on a single machine. The single machine environment is simple
and provides some basics that apply to more complicated machine environments.

Parallel machines: Involves multiple resources to process a single operation on the jobs. This problem is
conventionally organised into three types identical, uniform and unrelated:

• Identical : All machines are similar and have the same characteristics.

• Uniform: Each machine has processing speed for all jobs

• Unrelated: No predefined rule for the processing times of the jobs on the machines

Flow shop: Each job has to undergo a series of operations. Often, jobs have the same order. Machines are
then assumed to be set up in series and the environment is referred to as a flow shop. Flexible flow shop is a
variant of the flow shop. This is a combination of flow shop and parallel machines. A job has to be processed
at each stage (of the series), any machine will do.

Job shop: In a job shop the routes are fixed, but not necessarily the same for each job. Flexible job shop is
a generalisation of the job shop and the parallel machine environments. Each stage in the series has a bank of
parallel machines and at each stage, a job needs to be produced on one of the machines.

Open shop: Each job needs to be processed on each of the machines. No restrictions regarding the routing
through the machine environment.

Other classification categories in which we classify the scheduling problem are the following: objective function,
machine constraints and job characteristics. These are discussed in the next subsection.
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3.2.2 Classification of scheduling problem

The scheduling problem is classified to obtain a problem more well-known in the literature. Regarding the
machine environment, our scheduling problem belongs to the single-machine class. This is because jobs can
only be processed on one machine as they are restricted by FAI certificates. We have a similar machine setup as
described by Shin et al. (2019), who call it a single-machine Flexible Machining Cell (FMC). The pallet storage
and pallet handling system at the machine makes it an FMC and the parts in the FMC can only be produced
on a single machine.

Regarding the objective value, the main objective of this research is to increase the production hours per
week for the 5-axis milling machines. For a fixed number of jobs (schedule list), the total machining time is
fixed and a reduction in the makespan can only increase the utilisation percentage (Baskar and Xavior, 2014).
Therefore makespan reduction is the primary objective of this research. The secondary objective of this research
is tardiness, which is about the lateness of orders. In principle, the goal is to obtain zero tardiness. However, if
this is unavoidable, the tardiness should be minimised.

Regarding the machine characteristics, we have a continuous 24/7 machine availability with fixed capacity and
different resource constraints. We have resource constraints on pallets in the pallet storage at the machines.
Besides, there are resource constraints on operator availability and moulds/fixtures.

The jobs in our case all have a fixed predetermined processing time. The same holds for the setup time for each
production order and the extra labour time required by an operator for each job. A setup for a production order
needs to be completed before a product can be processed and this setup can only be done when an operator
is available. This is called a family setup. Pallets also need to be loaded and unloaded, which can also only
be done when an operator is available. Switching between families (orders) takes more time than switching
between jobs of the same family (order), if the setup of the family that is being switched to has not yet been
performed (Wemmerlov, 1992). Besides, each order has a due date and some of them have release times. Jobs
can only be processed when their required fixture is available. In certain orders, products must undergo multiple
production steps using the same machine. If a product entails multiple production steps, each step can only
commence once the preceding step has been successfully executed (except for the first step).

Some other elements require some extra explanation. Production uncertainty is one of the most important issues
regarding scheduling problems (Wojakowski and Warzolek, 2014). In real-world scheduling, it is necessary to find
a schedule that is insensitive or robust to production disruptions such as machine failures, absence of workers,
etc. Real-time events can be classified into two categories, namely resource-related like machine breakdowns
and job-related like job cancellation (Ouelhadj and Petrovic, 2009). The problem of scheduling in the presence
of real-time information, named Dynamic Scheduling, is of great importance for the successful implementation
of real-world scheduling systems. According to Wojakowski and Warzolek (2014) and Ouelhadj and Petrovic
(2009) there are generally three types of approaches used in a dynamic scheduling process under uncertainty:

• In the reactive scheduling approach knowledge of possible production disruptions is not taken into
account when assigning jobs to resources. No firm schedule is generated in advance and decisions made
to rebuild and select the next jobs have a local nature and are based on dispatching rules.

• The predictive-reactive scheduling revises schedules in response to real-time events. The new schedule
can deviate significantly from the original schedule.

• The robust pro-active scheduling approach focuses on building predictive schedules, which satisfy
performance requirements predictably in a dynamic environment.

Besides modelling the uncertainty, a decision must be made on the planning horizon. A finite horizon means the
end of the schedule is set and optimisation is done until the end of that horizon. Infinite horizon means optimising
the schedules into infinity, using all known information. A short planning horizon means less computational
burden but also less predictive power about the future, while a long horizon may be computationally unfeasible
and contain too much inaccurate information (Zhang et al., 2003). A rolling horizon can be used as well. During
each planning time frame, optimisation for a predetermined horizon in the immediate future is done and the
plan is executed accordingly until the subsequent planning time frame is reached. Then, we devise a new plan
based on the next horizon with the new information obtained from the first horizon. In this research, a finite
planning horizon is used. In this finite planning horizon, a given set of orders needs to be completed.
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Another modelling decision to be made is representation of time, which can be either discrete or continuous.
Typically, time is presented with real numbers for continuous and discrete event models, and integer numbers
for what is defined as discrete-time models. Continuous time is used for representing discrete event systems
since signals can be created at non-regular time instants. Discrete-time offers advantages of continuous time
simplifying simulator development, since modification happens at every time step, avoiding the use of complex
data structures to efficiently manage asynchronous event (Barros, 2016).

In conclusion, our problem is a single-machine scheduling problem with family setups, multi-fixturing pallets,
(periodical) resource constraints with product-specific characteristics and constraints.

3.2.3 Related scheduling research

Extensive research on single-machine scheduling has been performed, covering a wide range of situation-specific
aspects. Some examples of these are the articles of Zheng and Jin (2019), Rapine et al. (2012), Chen et al.
(2013), Figielska (2009), de Athayde Prata et al. (2021). The differences in these researches are mainly on
objective, resource constraints, job characteristics and stochasticity. The most common objective is makespan,
which is also the objective of our problem.

Every characteristic of our problem appears in the literature. The operator non-availability is discussed in the
articles of Rapine et al. (2012) and Chen et al. (2013), where Dang et al. (2023) considers a similar unsupervised
shift where manned operations can not take place. Other resource constraints are discussed in the articles of
Figielska (2009) and Wu and Cheng (2016). The dissertation from Zeestraten (1989) and the article of Shin et al.
(2019) do include resource constraints from pallets, fixtures and operator non-availability. The job characteristics
for setup times, due dates and release times are described in the paper by de Weerdt et al. (2021). Furthermore,
each article has its solution approach for solving the problem, with de Athayde Prata et al. (2021) comparing the
performance of different solution approaches in a single-machine scheduling environment with periodic resources.
To the best of our knowledge, the paper of Shin et al. (2019) comes closest in terms of machine characteristics
and the paper of Dang et al. (2023) comes closest in terms of operator (non-) availability scheduling constraints.

Although no exactly similar problem is found, the articles reviewed can serve as a source of inspiration for
both the formulation of the problem constraints and the development of a solution approach. The solution
approach chosen in the literature varies quite heavily. Table 3.1 shows the solution approaches that were used
in scheduling problems that are close to our paper. All of the papers make use of heuristics to find solutions
to larger problem instances. Half of the papers solve the model exactly to assess the performance of the
heuristic. Furthermore, 6 out of the 10 papers provide a Mixed Integer (Linear) Programming (MI(L)P) model
of the problem. Providing an MI(L)P model for a scheduling problem serves as a foundation for theoretical
understanding, algorithm development, and performance evaluation. It offers an optimal solution benchmark
against which heuristic methods can be compared and provides a structured framework for addressing complex
scheduling challenges. The table shows a variety of solution approaches. Notably, certain methods, such as
simulated annealing and tabu search, have demonstrated repeated success across multiple papers. In the next
section, which is on solution approaches, we go over some of the information that is provided by closely related
papers on different solution approaches.

3.3 Solution approaches

In this section, we identify suitable solution approaches for the scheduling problem at hand. We identify and
assess methodologies that have been used in comparable problems in the literature (see Table 3.1), while also
introducing some new literature. For solving these types of machine scheduling problems, two methods are
used: exact and heuristic. Given the complexity of finding optimal solutions to large optimisation problems,
heuristics are used to find a suitable solution in reasonable computational time (Martinelli et al., 2022). Our
problem consists of instances of over 1000 jobs. Therefore, exact approaches are likely not suitable. This is
proven by de Athayde Prata et al. (2021) who found that a single-machine scheduling problem with periodical
resource constraints is NP-hard, which our problem is an extension of. Even though our problem is NP-
hard, we still discuss the exact solution approach. Formulating a model for solving the problem exactly, can
increase understanding of the problem. The remainder of the section discusses two categories of heuristics,
namely construction heuristics and improvement heuristics. Afterwards, relevant neighbourhood operators are
discussed.
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Table 3.1: Related research solution approaches
A

rt
ic

le
S
ch

ed
u
li
n
g

p
ro

b
le

m
S
im

il
ar

it
y

E
xa

ct
H

eu
ri

st
ic

S
iz

e
C

om
m

en
t

T
h
is

w
or

k
Si

ng
le

m
ac

hi
ne

,(
pe

ri
od

ic
al

)
re

-
so

ur
ce

an
d

pr
od

uc
t

co
ns

tr
ai

nt
s,

fa
m

ily
se

tu
ps

,
du

e-
an

d
re

le
as

e
da

te
s

D
is

pa
tc

hi
ng

ru
le

s
fo

r
co

n-
st

ru
ct

iv
e,

SA
an

d
T

S
ex

te
n-

de
d

w
it

h
va

ri
ab

le
ne

ig
hb

ou
r-

ho
od

fo
r

im
pr

ov
em

en
t

he
ur

-
is

ti
cs

≤
1
8
0
0

P
ro

bl
em

si
ze

la
rg

er
th

an
si

m
ila

r
pa

pe
rs

in
lit

er
at

ur
e

(D
an

g
et

al
.,

20
23

)
P
ar

al
le

l
m

ac
hi

ne
s,

un
su

pe
r-

vi
se

d
sc

he
du

lin
g

U
ns

up
er

vi
se

d
sc

he
du

lin
g

M
IL

P
P

ra
ct

it
io

ne
r

he
ur

is
ti

c
an

d
ge

-
ne

ti
c

al
go

ri
th

m
≤

12
01

M
IL

P
un

ab
le

to
so

lv
e
n
≥

2
5
,g

e-
ne

ti
c

al
go

ri
th

m
ro

ug
hl

y
20

%
be

t-
te

r
th

an
pr

ac
ti

ti
on

er
he

ur
is

ti
c

(M
ar

ti
ne

lli
et

al
.,

20
22

)
Si

ng
le

m
ac

hi
ne

in
M

T
O

:
a

sy
s-

te
m

at
ic

re
vi

ew
Si

ng
le

m
ac

hi
ne

M
IL

P,
P
ol

y,
B

ra
nd

-
A

nd
-

B
ou

nd

G
en

et
ic

al
go

ri
th

m
,
si

m
ul

at
ed

an
ne

al
in

g,
ta

bu
se

ar
ch

et
c.

-
M

os
t

po
pu

la
r

m
et

ah
eu

ri
st

ic
s:

G
en

et
ic

A
lg

or
it

hm
(G

A
),

Si
m

u-
la

te
d

an
ne

al
in

g
(S

A
)

an
d

T
ab

u
se

ar
ch

(T
S)

(d
e

A
th

ay
de

P
ra

ta
et

al
.,

20
21

)
Si

ng
le

m
ac

hi
ne

,
pe

ri
od

ic
al

re
-

so
ur

ce
co

ns
tr

ai
nt

s
Si

ng
le

m
ac

hi
ne

w
it

h
pe

ri
od

ic
al

re
-

so
ur

ce
co

ns
tr

ai
nt

s

M
IP

,
M

IL
P

T
hr

ee
-s

ta
ge

co
ns

tr
uc

ti
ve

,s
iz

e
re

du
ct

io
n

al
go

ri
th

m
an

d
si

m
-

ul
at

ed
an

ne
al

in
g

≤
30

0
T

hr
ee

-s
ta

ge
co

ns
tr

uc
ti

ve
he

ur
-

is
ti

c
(a

gg
re

ga
ti

on
,

se
qu

en
ci

ng
an

d
al

lo
ca

ti
on

)
(L

ee
et

al
.,

20
20

)
O

pe
ra

ti
on

sc
he

du
lin

g
fo

r
fle

x-
ib

le
m

an
uf

ac
tu

ri
ng

sy
st

em
s

w
it

h
m

ul
ti

-fi
xt

ur
in

g
pa

lle
ts

M
ul

ti
-fi

xt
ur

in
g

pa
l-

le
ts

T
hr

ee
-s

ta
ge

:
in

pu
t-

se
qu

en
ci

ng
,

pa
lle

t
ro

ut
in

g
an

d
pa

lle
t

se
qu

en
ci

ng

-
D

is
pa

tc
hi

ng
ru

le
s

us
ed

fo
r

ea
ch

ph
as

e,
no

lo
ca

ls
ea

rc
h

ap
pl

ie
d

(S
hi

n
et

al
.,

20
19

)
Si

ng
le

m
ac

hi
ne

,
fle

xi
bl

e
m

a-
ch

in
in

g
ce

ll
w

it
h

m
ul

ti
-fi

xt
ur

in
g

pa
lle

ts

Si
ng

le
m

ac
hi

ne
,

F
M

C
w

it
h

m
ul

ti
-

fix
tu

ri
ng

pa
lle

ts

T
w

o-
st

ag
e

al
go

ri
th

m
,

ea
ch

st
ag

e
co

ns
tr

uc
ti

ve
an

d
th

en
si

m
pl

e
lo

ca
ls

ea
rc

h

≤
30

0
D

is
pa

tc
hi

ng
ru

le
s

us
ed

fo
r

co
n-

st
ru

ct
in

g
so

lu
ti

on
s

(H
er

r
an

d
G

oe
l,

20
16

)
Si

ng
le

m
ac

hi
ne

,
fa

m
ily

se
tu

ps
an

d
re

so
ur

ce
co

ns
tr

ai
nt

s
fa

m
ily

se
tu

ps
an

d
re

so
ur

ce
co

n-
st

ra
in

ts

M
IP

It
er

at
ed

lo
ca

ls
ea

rc
h

≤
50

E
xa

ct
ad

vi
se

d
fo

r
sm

al
lp

ro
bl

em
in

st
an

ce
s

(C
he

n
et

al
.,

20
13

)
Si

ng
le

m
ac

hi
ne

w
it

h
op

er
at

or
no

n-
av

ai
la

bi
lit

y
(O

N
A

)
Si

ng
le

m
ac

hi
ne

,
op

er
at

or
no

n-
av

ai
la

bi
lit

y

A
lg

or
it

hm
ba

se
d

on
M

od
ifi

ed
Sh

or
te

st
P

ro
ce

ss
in

g
T

im
e

≤
50

O
pe

ra
to

r
no

n-
av

ai
la

bi
lit

y
m

or
e

di
ffi

cu
lt

th
an

m
ac

hi
ne

no
n-

av
ai

la
bi

lit
y

(R
ap

in
e

et
al

.,
20

12
)

Si
ng

le
m

ac
hi

ne
,

sm
al

l
op

er
at

or
no

n-
av

ai
la

bi
lit

y
(O

N
A

)
Si

ng
le

m
ac

hi
ne

,
op

er
at

or
no

n-
av

ai
la

bi
lit

y

P
ol

yn
om

ia
l

al
go

ri
th

m
(s

in
gl

e
O

N
A

),
Li

st
sc

he
du

lin
g

(s
m

al
l

O
N

A
’s

)

-

(S
hi

n
et

al
.,

20
02

)
Si

ng
le

m
ac

hi
ne

,
w

it
h

du
e

da
te

s
an

d
re

le
as

e
ti

m
es

,s
eq

ue
nc

e
de

-
pe

nd
en

cy

Si
ng

le
m

ac
hi

ne
,

du
e-

an
d

re
le

as
e

da
te

s
an

d
se

qu
en

ce
de

pe
nd

en
cy

T
ab

u
se

ar
ch

,
ro

lli
ng

ho
ri

zo
n

pr
oc

ed
ur

e
≤

10
0

T
ab

u
se

ar
ch

ob
ta

in
ed

m
uc

h
be

t-
te

r
re

su
lt

s
th

an
ro

lli
ng

ho
ri

zo
n

pr
oc

ed
ur

e

(T
an

et
al

.,
20

00
)

Si
ng

le
pr

oc
es

so
r,

m
in

im
iz

in
g

ta
rd

in
es

s
w

it
h

se
qu

en
ce

-
de

pe
nd

en
t

se
tu

p
ti

m
es

Si
ng

le
m

ac
hi

ne
,

se
-

qu
en

ce
de

pe
nd

en
cy

B
ra

nd
-

A
nd

-
B

ou
nd

Si
m

ul
at

ed
an

ne
al

in
g,

ge
ne

ti
c

al
go

ri
th

m
an

d
pa

ir
w

is
e

in
te

r-
ch

an
ge

≤
45

B
ra

nc
h-

A
nd

-B
ou

nd
fo

r
sm

al
le

r
pr

ob
le

m
s,

si
m

ul
at

ed
an

ne
al

in
g

an
d

pa
ir

w
is

e
pr

ov
id

e
go

od
re

s-
ul

ts
fo

r
la

rg
er

in
st

an
ce

s

19



3.3 Solution approaches 3 LITERATURE REVIEW

3.3.1 Exact

An exact solution approach refers to a method or algorithm designed to solve a problem with complete accuracy,
providing an optimal solution that adheres to the problem’s constraints. Exact solutions can be found through
exhaustive search techniques, such as linear programming, brand-and-bound algorithms, etc. As Martinelli
et al. (2022) posed, exact solutions may not be ideal to solve large problem instances, due to high computational
time. However, solving small instances of your problem exactly and comparing them to heuristic approaches
can indicate the performance of the heuristic(s). From the papers in Table 3.1, five of them solved the model
exactly. The MI(L)P approach was predominantly utilized, accounting for four out of five instances where an
exact solution method was employed. In this approach, an MI(L)P model is formulated and then solved using
a solver. The second most common exact approach in Table 3.1 is Branch-And-Bound. The Branch-And-
Bound method involves partitioning the extensive solution space into disjoint partitions, enabling the search
for feasible solutions within each partition. Additionally, efforts can be made to eliminate partial partitions by
comparing lower and upper bounds, facilitating a more efficient exploration process. The last exact solution
approach that can be seen in the table is Polynomial. A polynomial exact solving approach utilises algorithms
with polynomial-time complexity, meaning they solve problems in a number of steps bounded by a polynomial
function of the input size. As can be noted from the "Comment" column in Table 3.1, often an exact approach is
advised for smaller problem instances. To capture what smaller problem instances are, Table 3.2 is constructed.
It is noteworthy that exact approaches are predominantly applicable to smaller problem sizes, with only the
study by de Athayde Prata et al. (2021) addressing significantly larger problem instances.

Table 3.2: Problem size limit of exact approaches

Paper Exact approach used Problem size limit (n ≤ ...)
(Dang et al., 2023) MILP 25

(de Athayde Prata et al., 2021) MIP, MILP 300
(Herr and Goel, 2016) MIP 15

(Tan et al., 2000) Branch-And-Bound 45

3.3.2 Constructive heuristics

A constructive heuristic is a systematic approach that commences with an empty solution and incrementally
adds one element at a time until a complete solution has been formed. This can be different ways. A dispatching
rule can be used to determine the sequence of the job(s) to be scheduled, as detailed by (Sörensen et al., 2018).
Notably, these dispatching rules are fast, due to their low computational complexity. Most papers in Table 3.1
use dispatching rules for generating an initial solution, with examples of exceptions being Herr and Goel (2016)
and Tan et al. (2000). Moreover, it’s worth noting that there are many different types of dispatching rules for
constructive heuristics, offering numerous strategies for building solutions efficiently. A few examples of this as
given by Ruiz (2015) and Pinedo (2016) are in Table 3.3:

Table 3.3: Dispatching rules

Rule Definition Objective
SIRO Service In Random Order Ease of implementation
ERD Earliest Release Date Variance in throughput times
EDD Earliest Due Date Maximum lateness
MS Minimum Slack Maximum lateness
SPT Shortest Processing Time Sum of completion times, WIP
WSPT Weighted Shorted Processing Time Weighted sum completion times, WIP
LPT Longest Processing Time Load balancing for parallel machines
SPT-LPT Combination SPT and LPT Efficiency and maximum lateness
LNS Largest Number of Successors Makespan
SST Shortest Setup Time Makespan and throughput
LFJ Least Flexible Job Makespan and throughput
LAPT Longest Average Processing Time Load balancing for parallel machines
SQ Shortest Queue Reduce waiting time
SQNO Shortest Queue at Next Operation Machine idleness

Next to the sequencing of the jobs, we address job allocation on the machine, inspired by the paper of
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de Athayde Prata et al. (2021). This allocation is guided by criteria associated with the bin packing prob-
lem. The bin packing policies employed in this context are outlined as follows:

• First fit (FF): Insert a job where possible, considering the resource constraints

• Best fit (BF): Insert the job in the best possible position, considering the resource constraints. The best
possible fit results in the best objective value

The paper of de Athayde Prata et al. (2021) illustrates the bin packing policies, as well as what happens if
no bin packing policy is used. This can be seen in Figure 3.3. While the terms ’best fit’ and ’first fit’ are
typically linked with bin packing policies, in the context of our scheduling challenge, these terms can take on
a comparable role in characterizing allocation strategies for the assignment of jobs to pallets on a machine. In
this context, ’best fit’ and ’first fit’ refer to methods to determine the pallet to allocate the job.

Figure 3.3: Bin packaging policies (de Athayde Prata et al., 2021)

The choice of constructive algorithm depends on the nature of the problems and the objective to be achieved. In
most real-world problems, sorting the jobs based on one parameter may not yield acceptable schedules. For these
problems a combination of dispatching rules may be used, called composite rules. The constructive heuristic
provides a starting point for improvement heuristics, of which two relevant to our problem are discussed in the
next section.

3.3.3 Improvement heuristics

Improvement heuristics aim to find a better solution from a starting solution in an iterative manner. Neigh-
borhood operators (see Section 3.3.4) are used to get a neighbour solution. Improvement heuristics handle and
accept neighbour solutions differently. A general optimisation algorithm will often either stop at a local op-
timum or converge to a local optimum. A local optimum is a point in the problem space where no neighbouring
options offer an improvement, and a global optimum is a point where no other feasible solution has a better
objective value (Rader, 2010). Metaheuristics balance intensification and diversification to overcome being stuck
in a local optimum. Diversification is the exploration of much of the feasible region, whereas intensification
focuses on a small area for the best solutions. In this section, two of the commonly applied metaheuristics for
different types of single-machine scheduling problems are discussed: simulated annealing (SA) and tabu search
(Martinelli et al., 2022). These metaheuristics have demonstrated repeated success in papers by Shin et al.
(2002), de Athayde Prata et al. (2021), Tan et al. (2000) and Martinelli et al. (2022).

Simulated annealing is one of the older metaheuristic approaches introduced by Kirkpatrick (1983). The idea
of SA is that it starts with diversification and ends with intensification. In this way, the algorithm can escape
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local optima by allowing moves that worsen the objective function. Algorithm 1 shows a general simulated
annealing framework. A neighbour solution is always accepted if it is better than the current solution and set
as the best solution if it is better than the best solution so far. If the neighbour solution is worse than the
current solution, the solution is still accepted with a certain probability. The acceptance probability depends
on the difference between the solution and the neighbour solution and the current temperature. As the current
temperature becomes lower, the acceptance probability becomes lower as well, resulting in intensification. The
cooling scheme of the SA consists of the following elements: Starting Temperature, Length of Markov Chains,
Decrease rule for Temperature (alpha), and a stopping criterion. A cooling scheme needs to be determined
where first an acceptance ratio close to 1 is obtained and the trade-off between computational time and ob-
jective value is reasonable. Besides, the neighbourhood structure needs to be decided for generating neighbour
solutions. Simulated annealing is a very good option for solving our problem as manipulating the search space
of the problem is straightforward, and it has fewer controlling parameters compared to the majority of existing
algorithms in the literature (Amir Mohammad Fathollahi-Fard, 2019).

Algorithm 1: Simulated Annealing (Minimisation problem)
1 Temp ← StartTemp;
2 Solution ← ConstructInitialSolution;
3 BestSolution ← Solution;
4 while not stopping criteria do
5 for m← 1 to MarkovChainLength do
6 NeighbourSolutionValue ← FindNeighbourSolution (Solution);
7 if NeighbourSolutionValue < SolutionValue then
8 if NeighbourSolutionValue < BestValue then
9 BestSolution ← NeighbourSolution;

10 Solution ← NeighbourSolution;

11 else
12 if RandomNumber ≤ exp

(
SolutionValue−NeighbourSolutionValue

Temp

)
then

13 Solution ← NeighbourSolution;

14 Temp ← alpha · Temp;

15 Result ← BestSolution;

Tabu search (TS) moves out of local optima through a deterministic approach, whereas SA uses a probabilistic
approach (Rader, 2010). Information from previous iterations guides current and future moves. Based on an
initial solution, the neighbour solutions are evaluated. In TS neighbour solutions are kept in a tabu list and
ineligible for consideration for a set amount of time (Rader, 2010). This restricts the available neighbourhood
and prevents cycling back to recently visited solutions. The tabu tenure dictates the size of the list and the
length of memory to use. In each iteration, the best non tabu solution from the neighbourhood is chosen, until
some termination condition is met. Algorithm 2 shows the TS algorithm.

Algorithm 2: Tabu Search
1 TabuList ← ();
2 Solution ← ConstructInitialSolution;
3 CurrentBest ← Solution;
4 while not stopping criteria do
5 Neighbourhood ← GenerateNeighbourhood(Solution, TabuList);
6 BestNeighbour ← ChooseBestNeighbour(Neighbourhood, TabuList);
7 Solution ← BestNeighbour;
8 if Solution < CurrentBest then
9 CurrentBest ← Solution;

10 if Length(TabuList) ≥ TabuListLength then
11 RemoveOldestElement(TabuList);

12 AddElement(Solution, TabuList);

13 Result ← CurrentBest;
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3.3.4 Neighbourhood operators and variable neighbourhoods

In the context of single-machine scheduling improvement heuristics, neighbourhood operators are used to explore
nearby solutions by making small modifications to the current schedule. The result of this modification is a
neighbour solution. There are different types of neighbourhood operators and this section highlights the most
important ones for the single-machine scheduling problem. The most common neighbourhood operators are
swap, move and inversion. These operators, swap two positions randomly, move a job to another position, and
a subset within the sequence is inverted (see Figure 3.4). The operators can be modified slightly by for example
swapping pairwise or by swapping jobs based on their characteristics.

Figure 3.4: Swap (top), move (middle) and inversion (bottom) operators (Eiben and Smith, 2015)

In the case where family setups are present, some additional operators may be useful. The paper of Herr
and Goel (2016) discusses four interesting family (batch) neighbourhood operators. The first is a family move
operator, which selects a family and inserts it in another position in the sequence. Second, the family swap
operator changes the position of two families. Third, the family combine operator combines batches of the same
family and chooses a reinsertion point. The final operator breaks families into two parts and inserts both parts
in a new position in the sequence. Figure 3.5 illustratively shows these operators.

There are several strategies for selecting neighbourhood operators in improvement heuristics. The most straight-
forward approach is random selection. However, more sophisticated strategies aim to strike a balance between
intensification and diversification, leading to superior results, as demonstrated in studies such as Naderi et al.
(2009).

Naderi et al. (2009) write that an effective strategy involves finding a compromise between intensification and
diversification. This compromise can be achieved in different ways. For instance, one approach is to conduct
an intensive search within the current solution space using small operators, and then transition to a different
solution space by employing larger operators, which are also intensively explored. Alternatively, a different
strategy involves diversifying the search initially using larger operators to explore various solution spaces. In a
later stage of the improvement heuristic, the focus shifts to intensification within a promising solution space.

Variable Neighborhood Search (VNS), as explained by Mohamed Abdel-Bassat (2018), can provide a way to
balance intensification and diversification in optimization. The foundations of VNS are built on the fact that
a local optimum in one neighbourhood might not hold for all neighbourhoods, whereas the global optimum is
the local optimum regarding all possible neighbourhoods, and local optima are frequently relatively close to
each other. Based on these principles, VNS offers a dynamic approach to optimization by alternating between
randomly and systematically exploring neighbourhoods according to predetermined conditions.

Lalla-Ruiz et al. (2020) assessed the strategy of systematically exploring neighbourhoods, stemming from VNS,
for SA. The strategy is referred to as variable neighbourhood (VN). The neighbourhood structure is changed
depending on the success of finding better solutions. For the problem in the research conducted by Lalla-Ruiz
et al. (2020), extending SA with VN exhibits a better performance compared to the standard SA. Besides, the
paper by Behnamian (2013) showed that VN can also be combined with TS and provide a better performance
compared to the standard TS.
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Figure 3.5: Examples of family (batch) operators (Herr and Goel, 2016)

3.4 Conclusion

This chapter provides the literature review on the scheduling problem at hand and answers the research ques-
tion: What models are presented in the literature for constructing a production schedule and what optimisation
heuristics are available for optimising a production schedule? The production environment of HTM Aerotec
can be identified as MTO. Production takes place after a customer places an order. The research is placed at
the operational level of resource capacity planning. Scheduling definitions are presented and a taxonomy of
the scheduling problem at hand is done. The scheduling problem is a single-machine scheduling problem with
family setup, multi-fixturing pallets, (periodic) resource constraints, and product-specific characteristics and
constraints.

Based on the classification we identify that every characteristic of our problem appears in the literature. Single-
machine scheduling problems in literature cover only a small variety of (periodical) resource constraints and/or
product-specific characteristics and constraints. No exactly similar problem was found. Related research gives
a source of information for both the formulation of the problem constraints and the development of a solution
approach.

Two different types of solution approaches were identified: exact and heuristic. Exact methods, like MI(L)P and
Branch-And-Bound, are used for finding optimal solutions and are computationally expensive for larger problem
instances. Constructive heuristics construct an initial solution, which can be constructed using dispatching rules
(see Table 3.3) like EDD and with different job allocation strategies (see Figure 3.3). An improvement heuristic
can iteratively improve the initial solution by finding and evaluating neighbour solutions that are found using
neighbour operators. The selection of neighbour operators can be random or based on a strategy in which
diversification and intensification are balanced. Based on related research, we propose to use SA and TS as
improvement heuristics. A variety of combinations can be used for the solution approach. The best solution
approach can be determined based on the experiments done after modelling the scheduling problem.
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4 Solution design

This chapter gives the outline of the model and solution approaches that can be used to solve the scheduling
problem. By doing this, the third research question is answered:

How can the production schedule of the 5-axis milling machines at HTM Aerotec be modelled?

In Section 4.1 we describe what data we require and the data transformation that is needed. All assumptions
and simplifications that were made are given in Section 4.2. Section 4.3 presents the problem statement. Section
4.4 explains how the constructive heuristic works. Section 4.5 provides the improvement heuristics that are used,
whereas Section 4.6 summarises all solution approach alternatives.

4.1 Input data transformation

The main input for the model is the schedule list that is sent to production periodically. There is still some
crucial planning information missing from this schedule list. The schedule list lacks details regarding the labour
time required per product, the quantity of fixtures available for a production order, the number of products
fit on a pallet for each production order and the number of operations required for each product within a
production order. This information is (inefficiently) taken from an information system called Teamcenter. The
rest of the information can be obtained from the ERP system Glovia G2. The schedule list consists of multiple
orders. For each production order an order quantity, setup, run time, release date, due date is given. The setup
time refers to the setup that needs to be done for the family (the order) and labour time refers to some manned
operations like loading and unloading the pallets. All information related to time in Table 4.1 is in minutes.

Table 4.1: Example order input

Order Qty. Steps Setup Machine Labour Release date Due date Fixtures Multi
1 70 1 120 10,50 4,20 0 7 (days) 100 10
2 50 1 120 13 5 0 9 1 4
3 .. .. .. .. .. .. .. .. ..

In order to make solving the problem a bit easier, we transform the production order input data. As we can
see in Table 4.1, each production order has a required production quantity and some can be placed in multiples
on pallets. For the first order 10 products fit on a pallet and 70 need to be made in total. This means that
7 pallets need to be loaded for this order. For the second order 12.5 pallets can be loaded, meaning that that
12 pallets need to be loaded with 4 products on them and one with 2 products. Run time is multiplied by the
amount of products that are placed on a pallet. The setup time and labour time remain the same and setup
needs to be once for a product family. This transformation changes the order input to a list of jobs that need
to be done. Furthermore, if a production order requires multiple production steps, this is also split up in the
job list. This can be seen in Table 4.2. This transformation makes our input data more similar to scheduling
problems in literature.

Table 4.2: Example job list

Order Job # Products Operation Run time Labour time Release date Due date Fixtures
1 1 10 1 105 4,20 0 7 100
1 2 10 1 105 4,20 0 7 100
1 3 etc. .. .. .. .. .. ..

4.2 Assumptions & simplifications

This section discusses the assumptions and simplifications that we make during the modelling approach. The
following assumptions and simplifications are made.

• All input data is deterministic. This means that the setup time, run time and labour time for each product
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are fixed. For this, the data that is available in ERP is assumed to be correct. In reality, this may slightly
deviate.

• Materials and tools are available for production orders without a release date. Materials and tools are
assumed to always be available when production orders do not have a release date and for production
orders with a release date, these become available from the moment they are released.

• Operators are available during working hours and fixed moments at the weekend. In reality, employees
may leave due to sickness or for other reasons. Besides, the weekend availability is inconsistent in reality.

• The machine is empty at the start of the time horizon. No pallets in the machine are loaded with products
at the start.

• Machine breakdowns are not considered in the model, which happens occasionally in reality.

• Dedicated fixtures are unique for each item, so they are not shared between items.

• Production orders can be set up in advance as long as the number of dedicated pallets does not surpass
the available pallet capacity.

• The planning starts on a Monday at 7.00 am.

• There is no moving time between different operations of the same job. If an operation is completed, labour
can immediately start for the next one, provided there is a subsequent operation.

4.3 Problem statement

4.3.1 Problem description

This research considers a single machine scheduling problem with family setups, multi-fixturing pallets, (peri-
odical) resource constraints and product-specific characteristics and constraints. The objectives considered are
the minimisation of the makespan, denoted as Cmax, and the average tardiness. The makespan is equal to the
completion time of the last job. Tardiness for a job occurs if it is completed later than the due date. Each
machine has a set of production orders PO. These production orders have been split up into a set of jobs
J . Each job consists of a sequence of nj operations. The number of operations required for a job differs per
production order. For some production orders only one operation is required, for others, it can be more. For
the machine a set of pallets P is available. Each operation Oij for operation i of job j can be processed on the
machine for a given uninterrupted machine processing time MPij . Each operation belongs to a setup family fij .
A setup time of an order, SUij , needs to be completed before the jobs and operations of this production order
can be processed. A setup is needed when the tools and fixtures of a production order are not at the machine
yet. The setup time is separate from its corresponding processing time, meaning that the setup of a setup
family can occur whenever possible. The set of operations is to be processed by a single machine, which can
only process one operation at a time. These orders need to be scheduled over an infinite time horizon. Besides,
each operation is characterised by a labour processing time LPij , associated setup family Fij and amount of
dedicated fixtures available DFij . Jobs have a due date Dj and release date Rj . For jobs requiring multiple
operations, an operation can only be performed if the preceding step has been completed. Manned operations
like SUij and LPij are only allowed when an operator is available. An operation can be placed on a pallet if
the dedicated fixture is placed on the pallet at the moment and the preceding operation on this pallet has been
processed. The problem consists of deciding:

• When to perform the setup of each setup family

• When to do manned operations for each job

• The sequence in which jobs are processed on the machine

• Starting time of each job

• How to schedule the jobs on the pallets

When making those decisions, there are constraints to consider. For constructing the schedule the following
should be taken into account:
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• A job can only be processed after its labour time and the setup of the production order it belongs to has
been performed

• Labour time on a pallet can be performed after the previous product has been processed on the same
pallet

• Labour and setup time can only occur when an operator is available and these cannot overlap

• Labour and setup time can overlap with machine processing time

• Machine processing time can occur when an operator is not available

• Jobs that involve multiple operations are to be executed following the sequence of route steps. For a
product to advance to the subsequent step, it must first be loaded onto a pallet and processed by the
machine

• Jobs can only be assigned to pallets that have their dedicated fixture assembled on it at that point in time

• A pallet changeover time (labour time) occurs between the processing of jobs

• Jobs can only be scheduled after they are released

• The number of pallets used may not exceed the amount of pallets available for the machine

4.3.2 Scheduling sets, parameters & variables

The following sets are defined.

Set Description
PO Set of production orders, indexed by o, o = {1, . . . , |PO|}
I Set of all jobs, indexed by j, j = {1, . . . , |J |}
nj Set of all operations required for job j, indexed by i, i = {1, . . . , |nj |}
E Set of all operations
P Set of all pallets, indexed by p, p = {1, . . . , |P |}

The following parameters are defined.

Parameter Description
OBWeek Operator begin time during the week
OEWeek Operator end time during the week
OBWeekend Operator begin time during the weekend
OEWeekend Operator end time during the weekend
MPij Machine processing time for operation Oij

SUij Setup time for operation Oij

LPij Labour processing time for operation Oij

Dj Due time of job j
Rj Release time of job j
PalletT ime Time it takes for the machine to change a pallet
M Big M
Fij Setup family of operation Oij

DFij Dedicated fixtures for operation Oij

The following variables are defined.
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Variable Description
Xijp Binary variable on whether operation Oij is loaded on pallet p
Yiji′j′ Binary variable on whether operation Oij is scheduled before Oi′j′

Ziji′j′p Binary variable on whether an operation Oij is scheduled before Oi′j′ on pallet p
SSij Start setup time of operation Oij

ESij End setup time of operation Oij

SLij Start labour time of operation Oij

ELij End labour time of operation Oij

SPij Start processing time of operation Oij

Cij Completion time of operation Oij

Tij Tardiness of operation Oij

4.3.3 Scheduling mathematical model formulation

In this subsection, the model formulation is given. The objective function and constraints of the model are
given. The model is a combination of the models by Herr and Goel (2016), Dang et al. (2023) and Low et al.
(2006) extended with some elements specific to this research.

Min w ∗ Cmax + (1− w) ∗ ( 1

|E|
∗
∑
j∈J

∑
i∈nj

max(0, Cij −Dj)) (1)

The objective is twofold. The first is about the makespan of the schedule and the second part calculates the
average tardiness. The first part is multiplied by a weight w and the second part by (1 − w). This weighting
allows for adjusting the importance of tardiness relative to the makespan. The specific value for w is currently
unknown and will be determined through experimentation.

∑
p∈P

Xijp = 1 ∀i, j, p (2)

∑
i∈J\{j}

Yiji′j′ = 1 ∀Oij , Oi′j′ ∈ E : Oij ̸= Oi′j′ (3)

Ziji′j′p + Zi′j′ijp = Xijp ∗Xi′j′p ∀p ∈ P, ∀Oij , Oi′j′ ∈ E : Oij ̸= Oi′j′ (4)

Constraint (2) ensures that each job is scheduled on one of the pallets. Constraint (3) ensures that each job
is preceded by another job on the machine. Constraint (4) models the precedence constraints on a pallet.
Constraints (3) and (4) are taken from Low et al. (2006). Constraint (4) is non-linear in the form it is stated
above. To linearise this constraint, the following needs to be done. First, an auxiliary binary variable Wiji′j′p

needs to be introduced to represent the product Xijp ∗Xi′j′p. The following linear constraints need to be added:

Wiji′j′p ≥ Xijp ∗Xi′j′p − 1 ∀p ∈ P, ∀Oij , Oi′j′ ∈ E : Oij ̸= Oi′j′ (4.1)

Wiji′j′p ≤ Xijp ∀p ∈ P, ∀Oij , Oi′j′ ∈ E : Oij ̸= Oi′j′ (4.2)

Wiji′j′p ≤ Xi′j′p ∀p ∈ P, ∀Oij , Oi′j′ ∈ E : Oij ̸= Oi′j′ (4.3)

Constraints (4.1-4.3) ensure that constraint (4) becomes linear if the auxiliary variable Wiji′j′p is introduced.

ESij = SSij + SUij ∀i, j (5)

SLij ≥ ESij ∀i, j (6)
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ESij = ESi′j′ ∀i, j : Fij = Fi′j′ (7)

ELij = SLij + LPij ∀i, j (8)

SPij ≥ ELij ∀i, j (9)

Cij = SPij +MPij ∀i, j (10)

This set of constraints sets the setup times, labour time and completion times. Constraint (5) sets the end of
the setup time based on the start of the setup time. Constraint (6) indicates labour for an operation can only
be fulfilled when the setup has been completed. Constraint (7) ensures that each operation of a setup family
has the same setup times. Constraint (8) sets the end of labour times, where constraint (9) ensures processing
happens after labour time for an operation has taken place. Constraint (10) sets the completion time of a job,
based on when it has started processing.

Ci′j′ ≥ Cij +MPi′j′ + PalletT ime− (1− Yiji′j′) ∗M ∀Oij , Oi′j′ ∈ E : Oij ̸= Oi′j′ (11)

SLi′j′ ≥ Cij − (1− Ziji′j′p) ∗M ∀i, Oij , Oi′j′ ∈ E : Oij ̸= Oi′j′ (12)

Cij ≤ SL(i+1)j ∀j, i = 1, . . . , (nj − 1), nj > 1 (13)

SLi′j′ ≥ ELi,j ∀Oij , Oi′j′ ∈ E : Oij ̸= Oi′j′ (14)

Cmax ≥ Cij ∀i, j (15)

Cij ≤ Dj + Tij ∀i, j (16)

∑
p∈P

Xijp ≤ DFij ∀i, j (17)

SSij ≥ Rj ∀i, j (18)

Constraint (11) makes sure machining time does not overlap between different operations (Herr and Goel, 2016).
Constraint (12) says that labour on a pallet can only start after the product on that pallet has been processed.
Constraint (13) ensures the precedence relations between operations of the same job. Constraint (14) ensures
no overlap between labour times. Constraint (15) sets the makespan, whereas Constraint (16) sets the tardiness
for each operation. Constraint (17) restricts the amount of pallets on which an operation can be placed to the
number of dedicated fixtures available. Constraint (18) ensures that setup can only take place after the release
time.

OBWeek ≤ SLij mod 24 ≤ OEWeek − LPij ∀i, j :
⌊
SLij

24
mod 7

⌋
< 5 (19)
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OBWeekend ≤ SLij mod 24 ≤ OEWeekend− LPij ∀i, j :
⌊
SLij

24
mod 7

⌋
> 5 (20)

OBWeek ≤ SSij mod 24 ≤ OEWeek − SUij ∀i, j (21)

⌊
SSij

24
mod 7

⌋
< 5 ∀i, j (22)

Constraints (19)-(22) ensure that operator availability is respected. Constraint (19) makes sure labour time is
between operator start and end times on weekdays and constraint (20) does that for the weekend. Constraint
(21) ensures setup times respect operator availability and constraint (22) restricts setups from being done at
the weekend.

Yiji′j′ , Ziji′j′p, Xijp ∈ 0, 1 ∀i, j, p (23-25)

SSij , ESij , SLij , ELij , SPij , Cij , Tij ≥ 0 ∀i, j (26-32)

Constraints (23)-(32) are the sign constraints of the model.

4.4 Constructive heuristic

Due to the model’s complexity and computational expense, we propose heuristics and metaheuristics to effi-
ciently solve larger instances, such as those encountered at HTM Aerotec. Especially for problem instances of
our size (see Table 5.2) the literature Table 3.1 shows that MILP is not a feasible method for solving. Subsection
4.4 describes the constructive heuristic and subsection 4.5 describes the improvement heuristic. In this section
we first go over how an initial sequence of jobs is made, followed by how we convert an initial sequence to a
feasible schedule. At last, we describe how we choose an initial solution and how we deal with the randomness
that is introduced in the initial sequence of jobs.

4.4.1 Initial sequence of jobs

The first step of the constructive heuristic is to determine an initial sequence of the jobs to schedule. In Section
3.3 we identified some dispatching rules that can determine the starting sequence for the scheduling problem.
Whilst we identified some dispatching rules in the literature review, we are not restricted to only using rules
found in the literature review. Dispatching rules, tailored to the unique characteristics of the scheduling problem
at hand, have more potential. This allows for leveraging domain knowledge and insights obtained during the
context analysis. In our model, the following dispatching rules are implemented:

• EDD: In this dispatching rule the due dates are multiplied by a random factor, resulting in a score per
job. The job list is then sorted (ascending) based on this score. Combining randomness with EDD can
allow a schedule to balance the urgency of meeting due dates with a randomness factor. This prevents
strict adherence to due dates that might lead to sub-optimal schedules, whilst still giving some priority
to due dates. The random factor it is multiplied by is chosen based on what provides the best results on
average. This results in the following priority formula:

job[’Score’] = job[’Due date’]× random.randint(5,15) (33)

• Multi-factor priority: This is a composite rule, meaning that it is a combination of dispatching rules.
For this rule, we make a combination between the due date, amount of fixtures available, and the total
hours for all items of the production order. For these factors, we first determine a score per job. This is a
normalised score best on the minimum and maximum values of all jobs for this factor. The best receives
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a score of 0 and the worst receives a score of 1. The scores are multiplied by a random factor, resulting
in a score per job. The list is then sorted (ascending) based on this score.

job[’Score’] = (job[’Due date score’] + job[’Total hours score’] + job[’Fixtures score’])

× random.randint(5,15)
(34)

• Random: In this dispatching rule the job list is randomly shuffled. This dispatching rule is unlikely to
provide good initial results as due dates are neglected, resulting in high tardiness. A random initial starting
solution can help escape local optima, resulting in better solutions after the improvement heuristics.

In the first two dispatching rules we introduce randomness. Introducing randomness plays a crucial role in
generating better initial solutions in our case. To showcase this, we provide for a small problem instance what
the effect of randomness is. In Figure 4.1, the EDD dispatching rule without randomness is implemented on
the left and EDD with some randomness is implemented on the right. The solution that includes randomness
is finished much earlier, as setups are done earlier on and pallets are utilised more efficiently. This is the reason
for introducing a random element to the dispatching rules. How we deal with this randomness for choosing an
initial solution for the improvement heuristics can be seen in Section 4.5.1.

Figure 4.1: Example of EDD (left) and EDD with some randomness (right)

4.4.2 Constructing a feasible schedule

The second phase of the constructive heuristic constructs a feasible initial schedule. The data input for this is
the job list, sequenced with a certain dispatching rule. The second phase consists of choosing a job allocation
strategy. Based on Figure 3.3 we identified job allocation strategies like first fit (FF) and best fit (BF). Although
we are not dealing with a bin packing problem, we can still use these policies in a similar way for allocating jobs
to pallets. In our case, FF is not likely a good strategy as some pallets will be loaded much more frequently
(the lower ones), which is why we will use the BF strategy. BF chooses the best pallet and best position in the
schedule of this pallet. In short, BF results in the lowest makespan value of all available eligible pallets.

The constructive heuristic in Algorithm 3 presents the scheduling heuristic designed to efficiently manage a list
of unscheduled jobs on the machine on a high level. The algorithm operates iteratively as long as unscheduled
jobs are remaining. Within each iteration, a job is assigned to a pallet and the start and finish times of labour
and machine processing times for the job are determined. If a job is the first of an order, a setup is scheduled
and pallets are assigned to dedicated fixtures of that order. If a job belongs to an order with multiple operations,
all operations of this job are scheduled consecutively.
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Algorithm 3: Constructive scheduling Heuristic
// Initialise empty scheduling list
Data: List of unscheduled jobs, information about each job

1 while unscheduled jobs exist do
2 for jobs in unscheduled jobs do
3 for r ← 1 to RouteSteps(job) do
4 Select the first job from unscheduled jobs from the same production order with operation r;
5 Determine available pallets for this job and if setup is still required ;
6 Determine earliest available feasible pallet p from available pallets ;
7 Determine when to load and when to produce the job on p and feasibility;
8 Update schedule ;
9 Remove the scheduled job from the list of unscheduled jobs;

Result: Feasible schedule for machine

4.5 Improvement heuristics

4.5.1 Choosing an initial solution

The first step of the improvement heuristic involves selecting an initial solution. We introduced randomness for
determining the initial sequence as this improves the planning quality in our case. However, constructing an
initial solution only once may lead to a bad initial schedule due to randomness. In such instances, a substantial
number of iterations within the improvement heuristic might be necessary to rectify the schedule stemming
from the initial randomness. To prevent this, a similar technique as showcased by Tan et al. (2000) is used. Tan
et al. (2000) generate an initial population P0 of N solutions and choose the solution with the best objective
value from the initial population as the initial solution for the metaheuristic. In Chapter 5, an experiment is
done to determine the number N of solutions generated for the initial population from which the initial solution
is chosen.

4.5.2 Neighbourhood operators and neighbourhood structure strategy

This subsection elaborates upon the neighbourhood operators we consider for our problem. The neighbourhood
operators are used to find neighbour schedules, which possibly improve the schedule. We select the following
neighborhood operators based on Section 3.3.4:

• N1: Swap two jobs in the sequence

• N2: Move job to different position in the sequence

• N3: Perform multiple moves of jobs in the sequence

• N4: Move all jobs in a production order to a different position

Operators N1-N4 are ordered based on the amount of changes they can make to a schedule. N1 and N2 are
smaller operators. N1 swaps two different jobs in the sequence, whereas N2 moves a single job to a new position
in the sequence. N3 and N4 are larger operators as they change the sequence a bit more. N3 performs multiple
(in our case 3) moves of a job in the sequence. N4 moves the position of every job of a production order to
another location in the sequence. The N3 and N4 operators result in significantly different neighbour solutions
compared to N1 and N2.

We consider different strategies to select neighbour operators. The first strategy randomly selects any of the
operators with equal probability. The second strategy is more about balancing intensification and diversifica-
tion. Results show that improvement heuristics yield superior results if the neighbourhood operators strike a
compromise between intensification and diversification (Naderi et al., 2009). To achieve this, we use the neigh-
bourhood structure as explained by Lalla-Ruiz et al. (2020). For using this neighbourhood structure, called
variable neighbourhood (VN), we need to have operators in increasing order in terms of how many changes
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to the current schedule can be made. This is already the case for N1-N4 presented earlier. Algorithm 4 and
Algorithm 5 show how the VN switches between operators.

4.5.3 Simulated annealing

The first improvement heuristic is the simulated annealing (SA) heuristic we identified in Section 3.3.3. SA is a
metaheuristic, meaning that it can escape local optima (Rader, 2010). SA always accepts a neighbour solution
if it is better than the current solution and if it is better than the current best solution, this is stored. If the
neighbour solution is worse, the solution is still accepted based on the difference between the objective value
and the progression of the heuristic, often denoted by the temperature. The heuristic stops when the stopping
temperature is reached. The heuristic returns the best-found solution. Appendix B describes the tuning process
of the SA parameters. Algorithm 4 shows the SA algorithm. Lines (1-4) initialize the input for the SA. Line (2)
is Algorithm 3. Lines (7-10) update the choice of an operator based on whether operators are selected randomly
or VN is used. Line (11) generates a neighbour, based on a chosen operator. For doing this, again part of
Algorithm 3 is used, with a certain input sequence. Lines (13-19) update the current solution, operator in case
of VN and possibly the best solution. Lines (21-24) update the operator in the case of VN and possibly the
solution with the probability as given in line (23).

Algorithm 4: Simulated Annealing (Minimisation problem)
Data: StartTemp, Alpha, MarkovChainLength, joblist, VN

1 Temp ← StartTemp;
2 Solution ← ConstructInitialSolution(joblist);
3 BestSolution ← Solution;
4 VNCount ← 1;
5 while Temp ≤ StopTemp do
6 for m← 1 to MarkovChainLength do
7 if VN then
8 k← VNCount;

9 else
10 k← random.randint(1, 4);

11 NeighbourSolution ← FindNeighbourSolution (Solution, Nk);
12 NeighbourSolutionValue ← CalculateObjective (NeighbourSolution);
13 if NeighbourSolutionValue < SolutionValue then
14 VNCount ← 1;
15 if NeighbourSolutionValue < BestValue then
16 BestSolution ← NeighbourSolution;
17 BestValue ← NeighbourSolutionValue;

18 Solution ← NeighbourSolution;
19 SolutionValue ← NeighbourSolutionValue;

20 else
21 if VNCount ≤ 4 then
22 VNCount += 1;

23 if RandomNumber ≤ exp
(

SolutionValue−NeighbourSolutionValue
Temp

)
then

24 Solution ← NeighbourSolution;

25 Temp ← Alpha · Temp;

26 Result ← BestSolution;

4.5.4 Tabu search

The second and last improvement heuristic that is implemented is a TS. This can be helpful to avoid going back
to a similar solution, especially when not randomly selecting jobs or batches for the neighbourhood operators. In
the TS algorithm, neighbour solutions are kept in a tabu list. These solutions are ineligible for consideration for
a set amount of time, called the tabu tenure (Rader, 2010). In this case, we keep the entire solution in the tabu
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list. In Appendix B, the parameter tuning process is described. Two parameters are tuned, namely the tabu list
length and number of iterations. The TS can be seen in Algorithm 5. Lines (1-4) initialize the input for the TS.
Similar to the SA Algorithm, lines (6-9) decide which neighbourhood operator is used to create a neighbour,
based on if the strategy is random or VN. Line (10) finds a neighbour solution, but differently than for the SA.
We do not generate an entire neighbourhood, as is more standard practice in TS, due to computational time.
Instead, we try to identify a promising single neighbourhood, by looking at the current performance of jobs.
Jobs that have high tardiness or are currently at the end of the makespan have a higher chance of being moved.
Another example is that in a swap, a job with high tardiness is swapped with a job with high earliness. In this
way, we do not generate an entire neighbourhood, but still quickly identify a promising neighbour. Line (12)
checks whether the neighbour solution is not already in the Tabu list. Line (13) checks whether the neighbour
solution is better. If this is true, lines (14-19) update the operator of VN in the case of VN, solution and tabu
list. If the neighbour solution is not better, we also update the operator of VN in lines (21-22).

Algorithm 5: Tabu search
// Initialise empty scheduling list, max iterations, tabu list size
Data: List of unscheduled jobs, Maxiter, TabuListSize, VN

1 Solution ← ConstructInitialSolution;
2 BestSolution ← Solution;
3 VNCount ← 1;
4 iter ← 0;
5 while iter ≤ Maxiter do
6 if VN then
7 k← VNCount;

8 else
9 k← random.randint(1, 4);

10 NeighbourSolution ← FindNeighbourSolution (Solution);
11 NeighbourSolutionValue ← CalculateObjective (NeighbourSolution);
12 if NeighbourSolution not in TabuList then
13 if NeighbourSolutionValue < SolutionValue then
14 VNCount ← 1;
15 Solution ← NeighbourSolution;
16 SolutionValue ← NeighbourSolutionValue;
17 TabuList += NeighbourSolution;
18 if len(TabuList) ≥ TabuListSize then
19 Remove the first solution from tabu list;

20 else
21 if VNCount ≤ 4 then
22 VNCount += 1;

23 iter += 1;

24 Result ← Solution;
25

4.6 Solution approach alternatives

In Section 4.4 and Section 4.5 different ways to do a constructive heuristic and improvement heuristics have been
provided. In this section, we highlight all the different solution approach alternatives that will be assessed. We
discussed three different initial job sequencing dispatching rules: EDD, Multi-factor and Random. Afterwards,
we decided on two different neighbourhood strategies: one is completely random, and one uses the variable
neighbourhood principle from VNS. Finally, two different improvement heuristics are implemented: SA and TS.
From these options, we can make 12 different solution approaches. These 12 different solution approaches can
be seen in Table 4.3. In the next chapter, we decide on the best solution approach per machine, by making a
trade-off between solution quality and running time.
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Table 4.3: Solution approach alternatives

Approach Initial sequence Improvement heuristic Neighbourhood strategy
1 EDD SA Random
2 EDD TS Random
3 EDD SA Variable neighbourhood
4 EDD TS Variable neighbourhood
5 Multi-factor SA Random
6 Multi-factor TS Random
7 Multi-factor SA Variable neighbourhood
8 Multi-factor TS Variable neighbourhood
9 Random SA Random
10 Random TS Random
11 Random SA Variable neighbourhood
12 Random TS Variable neighbourhood

4.7 Conclusion

This chapter outlines the solution design for solving the scheduling problem at hand and answers the research
question: How can the production schedule of the 5-axis milling machines at HTM Aerotec be modelled? To
ensure comprehensive input data, we identified the necessary information and filled gaps in the current schedule
list using data from TeamCenter and the ERP system (Glovia G2). A data transformation was implemented
to align our input data more closely with scheduling problems found in the existing literature. All modelling
assumptions and simplifications are provided. A concise problem statement of the problem is made and all sets,
parameters and variables of the problem have been identified. After, the mathematical model was made using
these sets, parameters and variables.

Heuristics are provided to ensure a good solution to the problem in less computational time. Three dispatch-
ing rules were proposed for generating an initial sequence. The constructive heuristic transforms a sequence
into a feasible production schedule. Two distinct neighbourhood strategies were devised, each employing four
operators. The first strategy randomly selects operators, which in turn select random jobs during the entire
optimisation. The second strategy uses a variable neighbourhood strategy based on whether the neighbour solu-
tion improved the current solution. Two different improvement heuristics are described. The first improvement
heuristic is SA, and the second improvement heuristic is TS. This means that we have a total of 12 different
heuristic solution approaches, which are evaluated in the next chapter to find out what the best solution ap-
proach for this problem is. The list of solution approaches can be seen in Table 4.3. Figure A.1 shows an
overview of the general solution approach we take. In the next chapter, we find out which dispatching rule, in
combination with a neighbourhood strategy and improvement heuristic works best for our problem.
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5 Experimental analysis

This chapter presents the experimental analysis of the research. The goal is to find the best-performing solution
approach from Table 4.3 and afterwards conduct sensitivity analyses with the best solution approach. The
fourth research question is answered:

What experiments can be done with the model to investigate the performance?

We start the chapter by providing the problem instances that we are going to solve and the running time
required for constructing a single schedule in Section 5.1. We define the experimental design in Section 5.2.
Initial population size and improvement heuristics parameters are tuned in Section 5.3. We provide the outcome
of all solution approaches in the base case and determine the best solution approach in Section 5.4. With the
best solution approach, we do a sensitivity analysis on various input factors in Section 5.5. The algorithmic
performance is compared with the real-world performance over a month in Section 5.6.

5.1 Problem instances

This section provides a summary of the problem instances, extracted from company data. As explained in
Section 4.1, we make use of the schedule list which is made periodically by the production planner. The
aggregate information for the problem instances can be seen in Table 5.1. Three problem instances have been
created for both machines 538 and 539. Each instance comprises orders that need to be completed within one
month, two months, or three months, respectively, for each machine.

Table 5.1: Aggregate information problem instances

Instance Machine Pallets Orders Quantity
per order

Orders
with due
date

Order
release
dates

Order
setups
needed

538-1 538 40 7 48.57 7 0 1
538-2 538 40 16 64.44 16 1 4
538-3 538 40 27 52.63 27 4 8
539-1 539 24 17 54.70 17 0 1
539-2 539 24 32 52.50 32 0 4
539-3 539 24 44 56.67 44 0 10

After converting the schedule list into a job list (see Section 4.1), we obtain a list of jobs and operations to
perform for the machines. In Table 5.2, the machine-specific job information is shown. For the columns in which
averages are shown, we also denote the standard deviation between brackets. Besides, the times for setup, run
time and labour time are indicated in hours. The run time and labour time averages and standard deviation
are for operations. Each operation needs to be scheduled on the machine and therefore has an associated run
time and labour time.

Table 5.2: Result of converting the schedule list to a list of all operations, including their characteristics

Instance Machine Total
jobs

Production
hours

Operations
per job

Total Op-
erations

Setup
(order)

Run
time

Labour
time

538-1 538 300 457.02 2.03 610 1.65
(0.48)

0.75
(0.62)

0.21
(0.11)

538-2 538 887 983.93 1.50 1330 1.80
(0.77)

0.74
(0.57)

0.16
(0.13)

538-3 538 1260 1306.85 1.33 1680 1.78
(0.72)

0.77
(0.59)

0.18
(0.20)

539-1 539 480 670.42 1.24 595 2.15
(0.95)

1.13
(1.26)

0.19
(0.13)

539-2 539 854 1227.09 1.25 1067 1.90
(0.85)

1.15
(1.25)

0.17
(0.13)

539-3 539 1055 2058.80 1.42 1498 1.83
(0.77)

1.37
(1.39)

0.19
(0.15)
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In Table 5.2 the information on the operations that need to be completed at HTM Aerotec can be seen. What
we can conclude is that 538 typically processes smaller jobs and therefore requires more manned interventions
to produce the same amount of production hours. This is why 538 has more pallets available, such that more
pallets can be loaded with products to increase the production time. The workload on the 539 is a lot higher.
Tardiness is guaranteed for machine 539, as 2058.80 hours need to be finished in 12 weeks. This requires 171.56
hours production hours per week on average for the machines, which is impossible.

Table 5.3 and Table 5.4 provide more insights into the number of operations required and fixtures available for
a production order, whereas Table 5.5 depicts the number of products that fit on a pallet for the operations for
both problem instances. These three things constrain the model in different ways. The higher the number of
operations required, the more constrained the model is. Each operation corresponds to a production step. If a
product has multiple production steps then it needs to be unloaded and positioned differently after each step.
The number of fixtures gives a restriction on the amount of pallets a product can be placed on. If only one
fixture is available for an order, products of this order can only be placed on the one pallet where this fixture is
placed. At last, the fewer number of products fit on a pallet, the more constrained the model is. Less manned
interventions are needed if more products fit on a pallet.

Table 5.3: Number of operations required (%)

Inst. Machine 1 2 3 4
538-1 538 42.9 42.9 0 14.2
538-2 538 63.6 31.3 0 6.1
538-3 538 74.1 22.2 0 3.7
539-1 539 76.5 23.5 0 0
539-2 539 75.0 25.0 0 0
539-3 539 73.8 26.2 0 0

Table 5.4: Number of fixtures available per oper-
ation (%)

Inst. Machine 1 2 3 ∞
538-1 538 38.46 0 0 61.54
538-2 538 33.3 8.3 0 58.4
538-3 538 27.8 5.6 0 66.6
539-1 539 45.0 10.0 0 45.0
539-2 539 37.50 15.0 0 47.5
539-3 539 39.6 15.1 0 45.3

Table 5.5: Number of products fitting on a pallet (%)

Inst. Machine 1 2 3 4 5 6 7 8 9 10
538-1 538 100 0 0 0 0 0 0 0 0 0
538-2 538 92.0 4.0 0 4.0 0 0 0 0 0 0
538-3 538 86.1 11.1 0 2.8 0 0 0 0 0 0
539-1 539 60.0 10.0 5.0 15.0 0 0 0 10.0 0 3.6
539-2 539 61.5 7.7 0 23.1 0 0 0 5.2 0 2.5
539-3 539 52.7 10.9 1.8 23.6 0 0 0 3.6 0 3.6

The final piece of information that is needed for the problem instances is the operator availability hours. The
operator availability hours are the same for both machines. These can be seen in Table 5.6.

Table 5.6: Operator availability hours

Days Start End
Monday-Friday 7.00 16.00
Saturday-Sunday 10.00 11.30

Heuristics are used to solve the larger problem instances, such as those encountered at HTM Aerotec, in a
relatively low running time. Investigating the runtime of these heuristics is therefore interesting. In Figure
5.1, we illustrate the correlation between constructing a single feasible schedule’s runtime and the number
of operations to schedule. This denotes the time required to formulate a single feasible schedule based on a
provided input sequence, which is equal to one iteration in the improvement heuristic. Our observation reveals
an almost linear increase in runtime as the number of operations rises. For each iteration in the improvement
heuristic, a feasible schedule needs to be made. Despite using heuristics, the runtime for calculating a feasible
schedule based on a sequence is quite a lot, especially considering the number of operations outlined in Table
5.2.
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Figure 5.1: Run time versus number of operations for both machines for creating one feasible schedule (one
iteration)

5.2 Experimental design

In this section, we define experiments to find algorithmic results of the solution approaches and to find out what
the effect of real-world input parameters is on the system performance with the best solution approach.

Table 5.7: Overview of experiments with the goal of each experiment

Number Experiment Goal
1 Initialisation and Parameter tun-

ing
Find weights of the objective function (Appendix B). De-
termine the number N of solutions to add to initial popu-
lation size P0, to mitigate risk of randomness and improve
objective value. At last, the parameters for the improve-
ment heuristics need to be found. The parameter tuning
is needed to perform the rest of the experiments. In-depth
explanation can be found in Appendix B

2 Analyse the performance of con-
structive heuristics

Find out which constructive heuristic performs the best in
terms of makespan and tardiness for all problem instances

3 Analyse all solution approaches Find out which combination of constructive heuristic and
improvement heuristic works best and choose the best ini-
tial constructive heuristic

4 Compare algorithmic perform-
ances over problem instances

Find out the generalizability of solution approaches, and
scalability. From this, we choose the best solution approach
for all problem instances.

5 Sensitivity analysis on operator
availability

To find out what the influence of operator availability is on
system performance. Analysis is done on availability dur-
ing the week, as well as on availability during the weekend.
This experiment aims to assist HTM Aerotec in determin-
ing the feasibility and impact of changing operator visiting
times

6 Sensitivity analysis on pallets
available

To find out what the influence of the available number of
pallets is on system performance. This experiment iden-
tifies whether the initial investment for pallets is good, or
extra investment may be necessary to enhance performance

7 Sensitivity analysis on dedicated
fixtures available

To find out what the influence of available fixtures is on
system performance. With this experiment, it can be de-
termined whether it is worthwhile to produce extra dedic-
ated fixtures

8 Sensitivity analysis on schedule
robustness

To find out the effect of making a schedule robust on system
performance. This is done to simulate machine failure.

9 Algorithmic versus real-world
performance

Find out if scheduling algorithm provides better results
than observed in reality
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5.3 Initialisation and parameter tuning

5.3.1 Initial population size

The constructive heuristic performs better when an element of randomness is introduced, as explained in Section
4.4. A similar method as showcased by Tan et al. (2000) is used, where we make an initial population P0 of N
solutions. In this section, we determine the value for N that leads to a good trade-off between population size
and average and standard deviation of the best objective value of a population. For determining the population
size, we experiment with population sizes of 1, 5, 10 until 60 with steps of 5. The population size of 1 is used
as a benchmark against which we compare the performance of other population sizes. Five runs are performed
with each population size and the average best objective value and standard deviation are noted. The results
are depicted in Figure 5.2.

Figure 5.2: Initial population size versus change in average best objective value over 5 runs compared to
population size of 1

What we can conclude from Figure 5.2, is that the initial population size makes a significant difference in the
objective value. Beyond an initial population size N of 35, no consistent improvements are observed for both
problem instances. In addition to having a good average best objective value, it is imperative to maintain a low
average standard deviation of the best objective value to mitigate the risk of an unfavourable initial schedule.
Figure 5.3 shows the average standard deviation of all problem instances versus the initial population size. From
this, we can conclude that the average standard deviation does not decrease significantly after N of 30. Based
on the information about the average best objective value and average standard deviation of the best objective
value over 5 runs, choosing an N of 35 seems to be sufficient.

Figure 5.3: Average standard deviation of all best objective values of all problem instances versus initial popu-
lation size
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5.3.2 Improvement heuristics parameter tuning

The improvement heuristics work better if their parameters are tuned to fit the problem. Appendix B includes
a more detailed analysis of the parameter tuning, this subsection is a brief explanation. First, the parameters of
SA are tuned. The first step in tuning parameters for SA is to determine the starting temperature. We obtain
this by solving problem instances 538-3 and 539-3 with the multi-factor dispatching rule and random operator
selection. A temperature of 100 was used as a start for this experiment with Markov Chain Length of 100 and
alpha of 0.8. For each temperature, the acceptance ratio is stored at the end of the Markov Chain length. This
indicates the number of worse neighbours accepted, by the number of worse neighbours proposed. This is shown
in Figure 5.4.

Figure 5.4: Acceptance ratio versus temperature level

Based on Figure 5.4, a starting temperature of 15 is chosen for both machines. A higher initial temperature
can result in significantly worse solutions at the start, which can take a lot of iterations to overcome, taking
excessively high computational times. Next experiments with stopping temperature, Markov Chain length and
decrease factor alpha are performed for problem instance 539-3. For stopping temperature we consider the
values 2.5, 5 and 7.5. For Markov chain length we consider 5, 10, 15. For the decrease factor alpha, we consider
0.9, 0.925 and 0.9. Figure 5.5 shows the average objective value versus the average run time over 5 runs for
each of the 27 experiments.

Figure 5.5: Average objective versus average runtime over 5 runs for 27 experiments for SA tuning

Based on Figure 5.5, experiment 12 is chosen as this experiment results in a good trade-off between objective
value and run-time. This results in the following SA cooling scheme: start temperature of 15, stop temperature
of 5, Markov Chain length of 15 and decrease factor of 0.9.

For the TS, the maximum number of iterations and maximum tabu list size need to be tuned. For the number
of iterations, we consider the values 50, 75, 100, 125 and 150. For tabu list size, we consider the values 5, 10
and 15. Similar to the SA tuning, Figure 5.6 shows the average objective value versus the average run time over
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5 runs for each of the 15 experiments.

Figure 5.6: Average objective versus average runtime over 5 runs for 15 experiments for TS tuning

Based on Figure 5.6, we choose experiment 11, due to the good trade-off between objective value and run time.
This means that for TS we use a maximum of 125 iterations and tabu list size of 10.

5.4 Algorithmic results

This section provides the results of solving the problem instances using the different solution approaches. The
performance of the constructive heuristic with different dispatching rules is presented, without applying the
improvement heuristics. After, the results of the improvement heuristics are obtained and the best solution
approach for each problem instance is selected. For determining the objective value, a weight of 0.1 is used for
w in Equation 1. The argumentation for choosing this weight can be found in Appendix B. Besides, the same
random number seed is used for all experiments.

5.4.1 Initial solution heuristics results

Table 5.8 provides the average results over 5 runs of creating the initial solution with the three different
dispatching rules for all problem instances. The EDD dispatching rule provides the best objective value for all
problem instances. This has mainly got to do with the average tardiness achieved, as this is far lower than the
other two dispatching rules for both problem instances. The multi-factor dispatching rule is for both problem
instances the second best in terms of objective value. The random dispatching rule is good at achieving a low
makespan, however does that whilst getting a high average tardiness.

A box plot has been made to provide a comprehensive overview of the quality of the initial solutions generated
by the different dispatching rules. This box plot can be seen in Figure 5.7. The box plot shows that the EDD
dispatching rule is by far the superior dispatching rule for generating the initial solution. It has a narrower spread
of data points and a lower median value, highlighting the effectiveness of using EDD. In the next subsection,
it is determined whether EDD still outperforms the other dispatching rules after applying the improvement
heuristics.
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Table 5.8: Initial solution results

Machine Dispatching rule Objective Makespan Avg. Tardiness Run time Util.

538-1
EDD 66.75 571.28 10.69 138.24 0.80
Multi-Factor 118.48 573.80 67.89 139.40 0.80
Random 128.62 544.07 82.46 141.21 0.84

538-2
EDD 123.08 1157.57 8.14 340.16 0.85
Multi-Factor 218.47 1214.73 107.77 336.21 0.81
Random 237.16 1157.57 134.89 342.05 0.85

538-3
EDD 159.77 1519.59 8.68 469.20 0.86
Multi-Factor 283.59 1610.80 136.13 467.89 0.81
Random 307.85 1547.26 170.14 470.21 0.85

539-1
EDD 92.40 761.84 18.02 135.25 0.87
Multi-Factor 154.84 758.84 87.73 138.29 0.88
Random 159.09 753.28 93.07 137.78 0.89

539-2
EDD 193.21 1394.42 59.74 269.50 0.88
Multi-Factor 323.77 1378.75 206.55 270.09 0.89
Random 332.66 1363.43 218.13 267.78 0.90

539-3
EDD 343.72 2339.55 121.96 423.50 0.88
Multi-Factor 575.99 2299.55 384.49 424.01 0.89
Random 591.80 2250.62 407.49 423.67 0.91

Figure 5.7: Initial solution objective value over 5 runs over all problem instances for the different dispatching
rules

5.4.2 Improvement heuristics results

This subsection presents the results of the improvement heuristics. The following parameters were used for SA:
starting temperature of 15, stop temperature of 5, alpha of 0.9 and Markov chain length of 15. Besides, we used
max iterations of 125 for the TS and a tabu list size of 10. The performance of each of the 12 solution approaches
is collected for all problem instances. A box plot has been made to provide a comprehensive overview of the
solution approaches in Figure 5.8.

From Figure 5.8, it is hard to conclude what the superior solution approach is. What can be concluded is that
all solution approaches where the EDD dispatching rule is used are performing the best. The algorithms are not
capable of overcoming (too) bad initial solutions. The run time for creating the initial solution, doing the SA
and doing TS can be seen in Table 5.9. There is not a significant difference in run time between using random
operator selection or VN. The SA algorithm takes longer, which is logical given that it allows hill-climbing
moves at the start, which takes more iterations to overcome.

Table 5.9: Solution approach average run time (s) per problem instance

Instance Number of operations Initial solution SA TS
538-1 610 139 715 513
538-2 1330 339 1699 1218
538-3 1680 469 2253 1615
539-1 595 137 706 555
539-2 1067 268 1354 1063
539-3 1498 424 2023 1588
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Figure 5.8: Improvement heuristics objective value over 5 runs over all problem instances for the solution
approaches

To test which solution approach is the best, we will compare the performance of the four different solution
approaches together with the EDD dispatching rule for all problem instances. From this, we can find which
algorithm performs the best on average. For each algorithm, we note the minimum, maximum and average over
5 runs. This can be seen in Table 5.10.

Table 5.10: Algorithmic Performances with EDD dispatching rule

Inst. SA-Random SA-VN TS-Random TS-VN
Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg.

538-1 63.12 66.01 64.33 63.34 66.49 65.23 61.12 63.34 62.77 61.89 64.89 63.47
538-2 120.21 123.08 122.80 120.89 122.45 121.78 119.10 122.10 120.60 120.13 121.98 120.60
538-3 153.11 154.78 153.99 152.89 157.89 154.89 149.12 154.38 152.22 149.89 156.10 152.45
539-1 87.12 92.31 89.78 88.61 92.40 90.21 87.30 90.12 88.92 90.34 91.89 91.01
539-2 188.07 192.34 190.22 187.92 193.21 191.22 185.45 189.69 188.43 185.99 190.46 188.53
539-3 336.56 342.11 338.29 335.88 340.73 337.89 325.67 334.98 329.97 328.12 335.52 331.22
Avg 158.03 161.77 159.90 158.26 162.20 160.20 154.63 159.10 157.15 156.06 160.14 158.04

As we can see in Table 5.10, TS with random operator selection performs the best for all instances. For some
instances other solution approaches come very close, but TS with random operator selection outperforms the
others for every instance. In Figure 5.9 the average percentage improvement in percentage change can be seen
graphically.

Figure 5.9: Average improvement per approach per problem instance

In conclusion, we can say that the constructive heuristic with EDD is superior for all problem instances. This
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is mostly due to the fact that this is the only dispatching rule that manages to keep tardiness low. Other
dispatching rules are capable of reaching lower makespan, meaning that utilisation is higher. However, since
tardiness is an important matter, EDD is by far the best dispatching rule for the constructive heuristic. For all
problem instances, we found that TS with random operator selection performed the best after doing improvement
heuristics.

5.5 Sensitivity analysis

This section presents the sensitivity analysis. The sensitivity analysis provides more insights and will help
understand the outcomes of the base case. The base case represents the scenario as it exists in reality. We go
over the effect of operator availability, availability of dedicated fixtures, pallet availability, and robustness of the
schedule. For each sensitivity analysis, we provide the difference in objective value compared to the base case,
called the gap. In addition to recording the ’gap,’ we also indicate the utilisation level in the table, denoted by
’Util’.

5.5.1 Operator availability

The impact of operator availability is analysed in different ways. As we saw in Figure 2.6 in Chapter 2, operators
are available for 40 hours per week and for two times 1.5 hours at the weekend. Pallets can only be loaded
when an operator is available, so the impact of operator availability is interesting to research. The sensitivity
analysis explores various aspects of operator availability, including the frequency of weekend visits, the timing,
and duration of weekend visits, as well as the duration of weekday visits.

The first sensitivity analysis is on operator availability at the weekend. We test the frequency of coming at the
weekend ranging from 2 (base case, Saturday and Sunday) to 0. This experiment aims to assist HTM Aerotec
in determining the feasibility and impact of reducing or eliminating operator visits on weekends. When the
visiting frequency is set to 1, we differentiate between visits occurring exclusively on Saturday or Sunday. In
Table 5.11 the results of changing the operator visiting frequency at the weekend can be seen.

Table 5.11: Effect of operator visiting frequency in the weekend

2 (Base) 1 (Saturday) 1 (Sunday) 0
Instance Obj Util Obj Util Gap Obj Util Gap Obj Util Gap
538-1 62.77 0.82 65.23 0.81 3.92% 65.48 0.81 4.32% 74.39 0.76 18.51%
538-2 120.60 0.87 126.86 0.83 5.19% 125.78 0.83 4.30% 133.89 0.81 11.02%
538-3 152.22 0.88 168.18 0.82 10.48% 167.12 0.83 9.79% 189.45 0.78 24.46%
539-1 88.92 0.88 112.42 0.82 26.43% 111.48 0.82 25.37% 129.67 0.73 45.82%
539-2 188.43 0.90 240.34 0.82 27.55% 238.57 0.82 26.61% 283.12 0.74 50.25%
539-3 329.97 0.90 450.12 0.82 36.41% 449.89 0.82 36.24% 487.12 0.75 47.63%

Figure 5.10: Effect visiting frequency at the weekend

44



5.5 Sensitivity analysis 5 EXPERIMENTAL ANALYSIS

From Table 5.11 and Figure 5.10 we can see that the number of visits at the weekend is very important, especially
for machine 539. Based on this information, a visiting frequency of two is necessary for both machines. And
in the case only one visit is possible, Sunday is on average preferred for a single visit at the weekend. For the
bigger problem instances, the effect of visiting less is more apparent than for the smaller problem instances.

Besides the frequency of visiting at the weekend, we also do some sensitivity analysis on the time of visiting at
the weekend. In this sensitivity analysis, an operator visits on both days at the weekend. The objective of this
experiment is to determine whether the current visiting time is good and to explore the potential of alternative
visiting times. For this we try three new settings, one is three hours earlier than the base case and the others
are three and six hours later than the base case.

Table 5.12: Effect of operator visiting time at the weekend

7.00-8.30 10.00-11.30 (Base) 13.00-14.30 16.00-17.30
Instance Obj Util Gap Obj Util Obj Util Gap Obj Util Gap
538-1 63.57 0.81 1.27% 62.77 0.82 60.77 0.83 -3.19% 60.20 0.83 -4.09%
538-2 119.78 0.87 -0.68% 120.60 0.87 119.29 0.87 -1.10% 118.13 0.88 -2.05%
538-3 154.12 0.87 1.25% 152.22 0.88 149.45 0.89 -1.82% 148.89 0.90 -2.19%
539-1 89.02 0.88 0.11% 88.92 0.88 84.58 0.89 -4.88% 82.58 0.90 -7.13%
539-1 191.43 0.89 1.59% 188.43 0.90 180.23 0.92 -4.35% 180.40 0.91 -4.26%
539-1 326.78 0.90 -0.97% 329.97 0.90 323.28 0.91 -2.03% 320.18 0.92 -2.97%

Figure 5.11: Effect of different weekend visiting time versus base case

From Table 5.12 and Figure 5.11 we can conclude that the current time of visiting at the weekend is not a good
time. Visiting later on in the day gives much better results. This can be explained by the fact that the duration
of operator non-availability is then better balanced. The most favourable time for visiting appears to be at the
end of the afternoon.

The last experiment on operator availability at the weekend is on visiting length. The short visiting time at the
weekend can be a bottleneck for the algorithm and in the real world. That is why we do a sensitivity analysis
with three longer visiting lengths at the weekend, with steps of half an hour.

Table 5.13: Effect visiting length in the weekend

Base 10.00-12.00 10.00-12.30 10.00-13.00
Instance Obj Util Obj Util Gap Obj Util Gap Obj Util Gap
538-1 62.77 0.82 60.56 0.83 -3.52% 58.48 0.84 -6.83% 56.89 0.85 -9.37%
538-2 120.60 0.87 118.78 0.87 -1.51% 115.89 0.89 -3.91% 112.34 0.91 -6.85%
538-3 152.22 0.88 149.23 0.89 -1.96% 146.79 0.91 -3.57% 144.68 0.92 -4.95%
539-1 88.92 0.88 83.45 0.90 -6.15% 81.89 0.91 -7.91% 80.02 0.92 -10.00%
539-2 188.43 0.90 186.23 0.90 -1.17% 181.49 0.91 -3.68% 178.24 0.92 -5.41%
539-3 329.97 0.90 326.88 0.91 -0.94% 324.01 0.91 -1.81% 316.48 0.92 -4.09%

As can be seen in Table 5.13 and Figure 5.12, the length of visiting at the weekend heavily constrains the
model. For both machines, this has a similar effect. Being present at the weekend for 1.5 hours longer than
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Figure 5.12: Effect of visiting longer at the weekend

usual already results in a decrease of roughly 9% and 6% on the objective value in the model for machines 538
and 539 respectively.

The last sensitivity analysis for operator availability is working hours during the week. For this, we see what
happens if we increase or decrease the amount of hours available during the week. This experiment can help
HTM Aerotec determine whether the current shift lengths are good, or alternatives are superior. The results
can be seen in Table 5.14 and Figure 5.13.

Table 5.14: Effect of operator visiting time during the week

6.30-16.30 7.00-16.00 (Base) 7.30-15.30 8.00-15.00
Instance Obj Util Gap Obj Util Obj Util Gap Obj Util Gap
538-1 61.01 0.83 -2.80% 62.77 0.82 68.89 0.80 9.75% 75.12 0.78 19.68%
538-2 118.89 0.88 -1.42% 120.60 0.87 124.01 0.85 2.83% 130.78 0.83 8.44%
538-3 149.02 0.90 -2.10% 152.22 0.88 158.89 0.86 4.38% 167.68 0.85 10.16%
539-1 86.56 0.90 -2.65% 88.92 0.88 92.33 0.86 3.83% 96.56 0.83 8.59%
539-2 186.78 0.90 -0.87% 188.43 0.90 200.30 0.87 6.30% 206.34 0.83 9.50%
539-3 324.56 0.91 -1.64% 329.97 0.90 333.40 0.88 1.04% 349.12 0.86 5.80%

Figure 5.13: Effect of the different week visiting times versus base case

From Table 5.14 and Figure 5.13 we can conclude that it is not desirable to have the operators frequent fewer
hours during the week. Therefore, it is not recommended to shorten the work days of the machine operators.
Shortening the work days by up to two hours can reduce the performance of the machines by 8% (machine 539)
to 14% (machine 538).

The sensitivity analyses on operator availability effectively show the effect of different aspects of operator avail-
ability on system performance. Cutting back on weekend visits has a negative effect on performance. Likewise,
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rescheduling weekend visits emphasizes how crucial it is to go later in the day for better results. Additionally,
the analysis of weekday visiting hours highlights the negative consequences of reducing operators’ workdays,
emphasizing the necessity of preserving sufficient weekday coverage to prevent performance degradation. In
summary, operator availability significantly influences system performance. While cutting back on availability
hours is not beneficial in the current state at HTM Aerotec, adjusting visiting times, especially during weekends,
has the potential for performance improvement.

5.5.2 Pallet capacity

In this subsection, the effect of the pallet capacity is tested. Based on this subsection we can determine whether
the current installed pallet storage capacity is good, or an investment may be needed to enhance throughput.
Currently, the 538 has 40 pallets and the 539 has 24 pallets. Furthermore, experimenting with the number
of pallets available to the machines offers valuable insights into the role of pallet availability on the system’s
performance. Based on this sensitivity analysis, it can be determined whether the number of pallets the machines
have available is a bottleneck in achieving more production hours per week.

Table 5.15: Effect of pallet capacity

-4 -2 Base +2 +4
Inst Obj Util Gap Obj Util Gap Obj Util Obj Util Gap Obj Util Gap
538-1 66.56 0.80 6.04% 64.56 0.81 2.85% 62.77 0.82 61.01 0.82 -2.80% 60.58 0.83 -3.49%
538-2 125.68 0.85 4.21% 122.45 0.86 1.53% 120.60 0.87 117.13 0.88 -2.88% 114.39 0.90 -5.15%
538-3 162.45 0.85 6.72% 158.34 0.87 4.02% 152.22 0.88 150.01 0.89 -1.45% 146.78 0.91 -3.57%
539-1 96.40 0.84 8.41% 92.40 0.86 3.91% 88.92 0.88 83.28 0.90 -6.34% 80.03 0.91 -9.99%
539-2 208.34 0.84 10.56% 194.89 0.87 3.43% 188.43 0.90 183.89 0.91 -2.41% 179.78 0.92 -4.59%
539-3 367.89 0.85 11.49% 349.20 0.88 5.83% 329.97 0.90 324.89 0.92 -1.54% 316.23 0.93 -4.16%

Figure 5.14: Effect of change in pallets versus base case

From Table 5.15 and Figure 5.14 we can see that having a few extra pallets would have been worth it for the
initial investment. As expected, the effect is bigger on the 539 as the 538 has 16 more pallets in the base case
already. Having four more pallets for machine 539 already increases the objective value by 7.5 percent and the
utilisation is also expected to increase by two percent. Had HTM Aerotec initially opted for fewer pallets, the
performance decrease would have been higher than the increase in performance gained from adding pallets more
pallets initially compared to the base case.

5.5.3 Dedicated fixtures available

In this section, the effect of available dedicated fixtures is investigated to see how they affect system performance.
Products can only be mounted on a pallet if the dedicated fixture for it is available. For instance, the restriction
of having just one dedicated fixture available at a time limits the number of products that can be mounted on a
pallet requiring that specific fixture to only one pallet. Based on this, it can be determined whether it is worth
it to make extra dedicated fixtures for orders.
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To investigate the influence of dedicated fixtures, dedicated fixtures are added to the orders that have a limited
amount of these fixtures available. Experiments are done by adding one fixture, two fixtures, and removing the
limit of dedicated fixtures. In Table 5.16 and Figure 5.15 the effect of a change in dedicated fixture availability
can be seen.

Table 5.16: Effect of adding dedicated fixtures available

Base +1 +2 No limit
Instance Obj Util Obj Util Gap Obj Util Gap Obj Util Gap
538-1 62.77 0.82 60.67 0.83 -3.35% 60.24 0.83 -4.03% 59.97 0.83 -4.46%
538-2 120.60 0.87 118.68 0.87 -1.59% 117.46 0.88 -2.60% 116.89 0.88 -3.08%
538-3 152.22 0.88 151.01 0.88 -0.79% 150.43 0.88 -1.18% 149.45 0.89 -1.82%
539-1 88.92 0.88 83.45 0.89 -6.15% 81.23 0.90 -8.65% 79.78 0.91 -10.28%
539-2 188.43 0.90 182.34 0.91 -3.23% 180.03 0.91 -4.46% 177.34 0.92 -5.89%
539-3 329.97 0.90 314.18 0.92 -4.79% 303.29 0.93 -8.09% 298.34 0.94 -9.59%

Figure 5.15: Effect of having more dedicated fixtures

For machine 539, dedicated fixture availability has more influence on system performance compared to machine
538. This can be explained by the fact that the 539 has more orders with a limit on dedicated fixtures, as can
also be seen in Table 5.4. Therefore, it is beneficial to produce extra dedicated fixtures for orders of machine
539, especially if these orders are recurring and consist of many products.

5.5.4 Machine failure

In this subsection, we test what happens to the system performance if we make the planning more robust. Adding
more robustness to the schedule can mitigate the impact of unexpected machine failures on the feasibility of
the schedule. Making a more robust schedule with buffers for machine run times can lead to lower performance
indicators in terms of efficiency and productivity, however, it significantly enhances the resilience of the planning
process. To assess the impact of enhancing schedule robustness, we multiply the machine run time for each job
by increments of 5%, ranging from 5% to 20%.

Table 5.17: Effect of making a more robust schedule by adding an extra buffer to machine running time

Base +5% +10% +15% +20%
Inst Obj Util Obj Util Gap Obj Util Gap Obj Util Gap Obj Util Gap
538-1 62.77 0.82 67.78 0.79 7.98% 70.23 0.77 11.88% 75.43 0.76 20.17% 79.21 0.74 26.19%
538-2 120.60 0.87 122.01 0.86 1.17% 127.59 0.84 5.80% 135.67 0.81 12.50% 143.12 0.77 18.67%
538-3 152.22 0.88 157.29 0.87 3.33% 166.57 0.84 9.43% 181.59 0.80 19.29% 190.12 0.79 24.89%
539-1 88.92 0.88 92.40 0.87 3.91% 98.79 0.85 11.10% 106.45 0.81 19.71% 111.23 0.78 25.09%
539-2 188.43 0.90 196.40 0.88 4.23% 218.29 0.84 15.84% 240.12 0.81 27.43% 260.12 0.79 38.05%
539-3 329.97 0.90 348.20 0.88 5.52% 371.49 0.86 12.58% 402.28 0.81 21.91% 437.83 0.79 32.69%

As can be seen in Table 5.17 and Figure 5.16, the impact of making the schedule more robust is significant,
especially for machine 539. Adding a 20% safety factor to each job already decreases the utilisation by 10%.
However, when making the schedule more robust the planning is more likely to be feasible when machine failure
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Figure 5.16: Effect of making planning more robust

occurs. Even with the inclusion of a 20% safety factor, the performance surpasses the 105 production hours per
week. The number of production hours is still approximately 133 hours for both machines.

5.6 Algorithmic versus observed real-world performance

In the final experiment, we compare the algorithmic performance with the performance that was gotten over the
last month for both machines. Since there is no data available on tardiness, we assess the real-world performance
by examining the percentage of time the machines were operational each day, which allows us to determine the
production hours achieved per week. For the algorithmic analysis, we use the base case with problem instance
538-3 for machine 538 and problem instance 539-3 for machine 539. We look at the first month of the results
and retrieve the achieved production hours per week from that period.

Table 5.18: Production hours per week reached with algorithm and real-world

Machine Real-world Algorithm Difference (%)
538 129.14 138.20 7.01%
539 141.60 149.68 5.71%

What we can conclude from Table 5.18, is that both machines had a really good month at the company,
especially compared to performances gotten in the last 2.5 years (see Table 2.3). The algorithm was still
capable of outperforming the real-world results. The 538 was outperformed by 7.01% and the 539 by 5.71%.
If we take a closer look in-depth in the performance we can identify where the differences lie. In Figure 5.18
the utilisation levels over the month can be seen. Besides, in Table 5.19 we can see the percentage of time the
machine is running in the algorithm and observed in real world for both machines.

Table 5.19: Percentage of day machining time per day of the week

Day Real-world 538 Algorithm 538 Real-world 539 Algorithm 539
Monday 58.24 61.89 66.38 71.61
Tuesday 76.52 87.97 81.68 90.83

Wednesday 83.12 90.43 88.64 92.65
Thursday 81.90 93.33 89.20 94.11

Friday 75.78 96.41 90.83 91.41
Saturday 76.58 93.66 83.98 95.99
Sunday 69.93 48.80 72.25 81.25

Based on Table 5.19 we can see that the algorithm is not able to handle the end of the weekend going into
Monday at the moment for machine 538. A drop in performance for machine 538 can be seen every Sunday in
Figure 5.18. The percentages the machines are running are on the low side there. This can be explained by the
fact that in the real-world the operators stay as long as the machines are filled up again, whereas in the model
they have the exact window of 1.5 hours. This 1.5 hours is not enough in the model for the 538. To see what
happens to the algorithm weekend performance we extend the weekend operator availability by one hour to
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Figure 5.17: Real-world versus algorithmic utilisation in last month for both machines (base case)

10.00-12.30, similar to experiments done in Section 5.5.1. This results in the following. Having one hour extra
at the weekend massively improves the performance of machine 538, whereas for machine 539 the difference is
considerably smaller.

Figure 5.18: Real-world versus algorithmic utilisation in last month for both machines with 1-hour extra weekend
visit length

Table 5.20: Production hours per week reached with algorithm and real-world with 1 hour extra visit length in
weekend

Machine Real-world Algorithm Difference (%)
538 129.14 148.51 14.99%
539 141.60 153.73 8.57%

5.7 Conclusion

The main goal of this chapter is to answer the research question: What experiments can be done with the model
to investigate the performance? We have six problem instances in total. We have a smaller size, medium size,
and big size problem instance for each machine with which we do all experiments noted in the experimental
design. The experimental design first consists of finding input parameters of heuristics, used to find the best
solution approach, which is used for the rest of the experiments. Afterwards, sensitivity analysis is described
which is performed on operator availability, available pallets, dedicated fixtures, and robustness of schedules.
The last experiment compares the performance of the algorithm with the real-time performance achieved in a
month.
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The algorithmic experiments identified EDD as by far the best dispatching rule for constructing an initial
solution. With this constructive heuristic, the best trade-off between makespan and tardiness is gotten. Besides,
due to a limit on run time, the algorithm is not able to overcome poor initial solutions generated by the other
dispatching rules. Therefore, the EDD dispatching rule was used to compare the improvement heuristics and
operator strategy. Consequently, we found that TS with random operator selection is the superior solution
approach for all six problem instances. Hence, for the sensitivity analyses TS with random operator selection
was used.

The sensitivity analysis provides interesting results. In terms of operator availability, we showed that frequency
of visiting is the most important operator availability factor as not coming at the weekend can increase the
objective value by up to 50%. Besides, visiting later on the day at the weekend provides better results than
the current visiting time at the weekend for both machines. Weekend visiting length is of great importance for
machine 538. The operator visiting time during the week significantly impacts system performance. However,
visiting one hour less a day still provides decent results. The sensitivity analysis on dedicated fixtures available
showed that they do not have a significant impact on machine 538. For machine 539 it may be wise to look into
making some more dedicated fixtures, especially for big orders that have a limit on dedicated fixtures available.
Making a schedule more robust means achieving a much lower makespan and less utilisation, however, does give
more guarantee that the schedule is feasible in reality.

At last, the algorithmic performance of a schedule of one full month was compared with the real-world per-
formance in the same month. The real-world performance was highly above average, compared to performance
over the last years. The algorithmic performance still managed to provide better results than the real-world
performance. The algorithm managed to achieve 7.01% more production hours for machine 538 and 5.71% more
production hours for machine 539 in the base case.
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6 Implementation

This chapter describes how the model we proposed can be implemented at HTM Aerotec and answers the fifth
research question:

How can HTM Aerotec use the model?

First Section 6.1 describes which input is needed for the model to work. Section 6.2 describes how to easily
run the model. At last Section 6.3 describes the output of the model and explains the dashboard. With the
information presented in this chapter, HTM Aerotec can use the model to get useful insights into the performance
of their machines, allowing for more informed decision-making.

6.1 Required input data

As described in Section 4.1, the main input for the model is the schedule list sent to production periodically.
This list includes information on due dates, setup, machine running time, quantity to be produced, and more.
However, certain essential planning details are still missing from the schedule list. Table 6.1 provides an overview
of the additional input required in the schedule list for the model to work properly.

Table 6.1: Input data model

In schedule list Extra data required
Due date Setup required
Quantity Routesteps & operations per item

Item number Labour time
Total hours per item Release date

Setup time Dedicated fixtures available
Run time Number of products on single pallet

To obtain the additional data necessary for the model, some manual actions were undertaken. This process is
time-consuming but can be expedited. Information on the number of route steps and corresponding operations
per item is available in the ERP system (Glovia G2). Currently, these are aggregated, and the total runtime
is summed, but this data needs to be split up. Labour time is already available in the ERP system within
the same line for each order. The determination of setup requirements and release dates, however still requires
manual input.

Gathering the data for the number of dedicated fixtures and the number of products that fit on a single pallet
for each order is currently the most time-consuming task. Identifying the number of dedicated fixtures involves
reviewing the work instructions for a specific item to determine the fixture in use. The work instructions also
provide information on the number of products that can fit on a single pallet. Currently, there is no efficient
method for looking this up.

Given that the majority of orders are recurring, a more effective strategy would involve expanding the order
line data within the ERP system. This expansion would encompass details regarding specific fixtures and the
quantity of products that can be accommodated on a single pallet. The number of route steps for each item
and operation should be recorded on distinct lines. The only manual input necessary would be to indicate if
setup is needed and provide the order’s release date.

6.2 Running the model

The model has been made in a Python interpreter. However, (most) people in the company have no to very
limited experience using Python. This makes the model by itself unusable for the company. By producing
an executable file, the usability, and accessibility of the Python model are improved significantly. All Python
scripts are contained in this executable file, which makes it easy for non-technical people to use the model. This
method simplifies the execution process by removing the need for the planner to install or configure Python. A
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tutorial on how to correctly set up and run the executable file, as well as retrieve the output, has been written
for the company and provided to them.

With the executable file, the person can handle the input data by making changes to the Excel file that is in
the same directory. Running the executable results in some output, which is stored in an Excel file as explained
in Section 6.3.

6.3 Model output

From the model, output is generated with various statistics, as Figure 6.1 depicts. The output includes inform-
ation for each order based on the final schedule resulting from the optimisation model. The statistics contain
information on the start and completion times of production for products within a production order, order lead
time (measured in days), the percentage of orders that fall behind schedule, and the average delay in days for
each order. Besides, on the right side of the figure, a ranking is made based on the worst-performing items in
terms of order lead time, percentage later, and average days late. For each order a bottleneck score is calculated
based on a normalisation of the three previously mentioned statistics, assigning a score of 1 to orders with
the worst performance and 0 to those with the best performance. This approach offers valuable insights into
bottleneck items, allowing for a good assessment of schedule feasibility and being able to set good due dates.

Figure 6.1: Output of model

More detailed output is also presented. In Figure 6.2, a part of the Gantt chart for the first day in the schedule
of machine 538 for the first 10 pallets can be seen. The blue bars represent the labour the operators have to
perform. In the time that is depicted in the blue bar, the previous product needs to be taken off the pallet
and the new product needs to be placed on the pallet. The information on each bar is the Work Order number
(which has been changed for this example), the operation (in Dutch "Bewerking"), and in which place in the
machine sequence this product should be placed. Even more in-depth information about the exact labour times
and production times of each product can be seen as well in the output of the Excel sheet.

Figure 6.2: Gantt chart for loading of pallets

53



7 CONCLUSIONS & RECOMMENDATIONS

7 Conclusions & recommendations

In this final chapter, the last research question is answered:

What conclusions and recommendations can be made to HTM Aerotec?

Section 7.1 summarises the main findings and answers the main research question. Section 7.2 provides the
recommendations to HTM Aerotec. Section 7.3 discusses the limitations of the research and provides directions
for future research. At last, Section 7.4 describes both the academic and practical contribution of the research.

7.1 Conclusion

In this research, solution approaches for scheduling the 5-axis milling machines at HTM Aerotec were explored.
Currently, the company does not have a sophisticated planning approach for the machines. Based on the work
provided, we can answer the main research question: How can an optimised scheduling strategy be developed
to consistently achieve the goal of reaching more than 105 production hours per week for the 5-axis milling
machines?

The scheduling problem has several practical constraints. Resource constraints are on operator availability,
dedicated fixtures, and pallets for the machines. Besides, each product type has its characteristics and con-
straints. A scheduling algorithm has been programmed in Python to construct a schedule, adhering to all the
constraints, based on a given input sequence. For optimising this unique single-machine scheduling problem,
12 solution approaches were proposed, based on information obtained in the literature review. Each solution
approach consists of the following steps:

• Generate an initial solution based on a chosen dispatching rule. Three dispatching rules are proposed:
EDD, multi-factor, and completely random. In this case, randomness had to be introduced to improve
initial solution quality. Adding randomness also meant that the risk of an initial bad solution has to be
mitigated by generating an initial population size P0 of 35 solutions. 35 solutions is a sufficient amount
to ensure a good initial start objective value and a low standard deviation of the objective value of the
initial solution.

• Improve the initial solution with an improvement heuristic with a neighbourhood strategy. The effective-
ness of two improvement heuristics (SA and TS) and two neighbourhood strategies (random and VN) have
been evaluated. For both improvement heuristics, input parameters are tuned to ensure a good trade-off
between objective value and model runtime.

The best solution approach is to use EDD as the dispatching rule for generating the initial solution and improve
the initial solution using TS with random operation selection. The EDD dispatching rule gives the best trade-
off between makespan and tardiness. Due to the complexity of the scheduling problem, the algorithm is not
capable of overcoming the worse solutions of the other initial solutions generated by the other dispatching rules
in a reasonable time span. Using the solution approach, the initial goal of consistently reaching more than 105
production hours per week was easily reached. This can be seen in Table 7.1.

Table 7.1: Improvement of production hours reached, compared with the initial goal

Machine Production hours reached Production hours goal Difference (%)
538 136.98 ≥ 105 30.46%
539 149.12 ≥ 105 42.02%

The production hours per week increased by 30.46% and 42.02% for machines 538 and 539 respectively. Besides
an improvement in production hours, meaningful insights into the performance of the machines and the factors
that influence the performance have been obtained. The effect of operator availability during the weekend
and the week has been studied. Generally, reducing working hours is not preferable, whether it’s during the
weekdays or over the weekend. Additionally, scheduling visits later in the weekend tends to yield better outcomes
on average. The effects of other resource constraints like pallet availability and available dedicated fixtures have
also been studied. For both of these, machine 539 is more sensitive as it has fewer pallets available, and relatively
more products are placed on dedicated fixtures.
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An executable file has been made, with which the employees for the company can run the model, based on the
input they provide in the accompanying Excel file. The output of the model is converted to provide usable
information. Insights can be obtained on a higher level, such as when to start producing the first product of
an order, the expected lead time of the order, and expected tardiness. More detailed insights can be extracted
from the model output, including the sequencing of products for production on the machine, the ideal timing
for loading each product, and the pallet allocation for product placement.

7.2 Recommendations

In this section we provide HTM Aerotec with some practical recommendations:

• Visiting twice at the weekend is necessary. If only one weekend visit is possible, visiting on Sunday is
slightly preferred. Not visiting at the weekend decreases the performance of machine 538 by just under
20% and for machine 539 this is almost 50(!)%

• Have the operators visit later on the day at the weekend. Visiting at a later time in the weekend improves
the system performance significantly. Visiting at 16.00-17.30 instead of 10.00-11.30 improved the system
performance of the 538 by three percent and the 539 by six percent.

• For big, recurring orders on machine 539 it is beneficial to add extra dedicated fixtures.

• Use the model to gain more insight into the feasibility of the due dates on the schedule list, lead time of
orders, and to identify the bottleneck orders.

• Experiment with operators using the Gantt charts with the loading times to see if this can improve system
performance

• Improve the detail of the schedule lists by including route steps & operations on the same machine for
each item, labour time, release dates, dedicated fixtures available, and the number of products that fit on
a pallet. Based on this information alone it can already be easier to estimate how long an order is going
to take.

• Keep machine status more up to date. The insight into the quantity of products that still need to be
finished from a production order is subpar. If the insight on quantities still left to produce is not there, it
is also not possible to make an exact correct schedule.

• The workload on the machines is higher than they can manage (especially machine 539), so looking for
more machines and/or outsourcing is recommended. The scheduled workload on machine 539 for the first
12 weeks of the year is 2058.80. This means that on average 171 production hours per week need to be
reached, which is infeasible.

7.3 Limitations and future research

This section provides the limitations of the research and gives directions for future research. The first limitation
is that the scope is limited to 5-axis milling machines themselves and surrounding machines are not considered.
For this, we assumed that everything of an order is available after the release date, whilst in reality, these
machines can be dependent on other machines that come earlier in the production process.

The planning model starts with an empty system on a Monday at 7.00 AM, meaning that none of the pallets
are filled at this point. An empty system on a Monday is not very unrealistic, as most items on the pallets have
been machined over the weekend and are to be loaded off the pallets on Monday first thing in the morning.
However, the planning model currently can not handle starting on a Wednesday for example. Another point to
consider is that given that the machines start with an empty system, dynamic rescheduling is not possible and
is an interesting topic for future research.

Machine and tool failure are not directly considered when making the planning. One of the main reasons the
operator gives for the lower amount of production hours achieved than desired are failures out of their control.
We did conduct a sensitivity analysis on schedule robustness, however, future research could be done on how
machine and especially tool failure affect the scheduling strategy.
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In this research, we did not consider tool changes as part of a planning constraint. This is because of the big
tool capacity in the machines and the fact that nobody at the company considered the tool changes to be a
constraint. However, as the paper by Dang et al. (2023) showcases, tool changes can have an impact on making
a schedule for these types of machines in some cases.

Determining more exactly when and how long to visit for each weekend in the planning could be an interesting
direction for future research. The time to visit at the weekend significantly impacts the performance of the
system, so research specifically on this subject could be of value to HTM Aerotec.

7.4 Contribution of the research

In this section, the theoretical and practical contribution of the research is described. The scheduling problem
researched is a unique research. To the best of our knowledge, the paper of Shin et al. (2019) comes closest in
terms of machine characteristics and the paper of Dang et al. (2023) comes closest in terms of operator (non-)
availability scheduling constraints. However, both do not include the combination of the operator availability,
pallets, dedicated fixtures and product constraints this research has. We made a mathematical model represent-
ing the problem, which was not done before for this type of problem. Additionally, we tested the performance
of 12 different solution approaches for six different problem instances.

The practical contribution for HTM Aerotec lies in the insights they get into the system. The feasibility of a
schedule list can be tested when using it as input to the model. Based on this, information can be obtained
about which orders are most likely to be late and what the expected internal lead time of the order is at the
company. The current system, Factory Planning, cannot generate plans that are as realistic as those produced
by the model. Therefore, this model represents a significant upgrade for HTM Aerotec, enabling more informed,
data-driven decision-making. Besides, the output for the model also provides a plan for the operators which
shows when and where to start loading a product. Sensitivity analysis on various factors shows the impact of
certain aspects on system performance, which they can influence.
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A Overview solution approach

The figure below shows an overview of the general solution approach we take.

Figure A.1: Overview solution approach

B Parameter tuning

B.1 Objective function weight tuning

In Equation 1 we have the objective function with a weight w. In order to find the value we use for w, 100
schedules for both machine 538 and 539 were generated. For all these schedules we calculated the objective
value for w values ranging from 0.1 to 0.9 with a step of 0.1. For each step the best best objective value was
selected along with its corresponding makespan and average tardiness values. The makespan and tardiness
values can be seen in Table B.1. Based on this we can see that there is no difference between 0.1 and 0.6 for
both instances. For machine 538 a different solution was chosen for w of 0.7 to 0.9. This however has a less
desired solution with quite a lot more tardiness. Therefore, we choose a weight w of 0.1 as this also results in
the lowest objective value, making it easier on the eye.

Table B.1: Objective weight tuning

w Machine Makespan Average Tardiness Machine Makespan Average Tardiness
0,1 538 1610,8 136,13 539 2287,46 387,36
0,2 538 1610,8 136,13 539 2287,46 387,36
0,3 538 1610,8 136,13 539 2287,46 387,36
0,4 538 1610,8 136,13 539 2287,46 387,36
0,5 538 1610,8 136,13 539 2287,46 387,36
0,6 538 1610,8 136,13 539 2287,46 387,36
0,7 538 1605,82 145,66 539 2287,46 387,36
0,8 538 1605,82 145,66 539 2287,46 387,36
0,9 538 1605,82 145,66 539 2287,46 387,36

B.2 Improvement heuristic parameter tuning

The first step for the SA parameter tuning process is determining the starting temperature. We obtain the
temperature by solving problem instances 538-3 and 539-3 (see 5.1). We do this for the largest problem instances
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of both machines to see if we need problem-specific parameters or not. We use the multi-factor dispatching rule
to construct the initial solution. We start with a temperature of 100 for both. We solve the instances with a
Markov chain length of 100 and a cooling factor alpha of 0.8. We stop when the temperature reaches 1. The
big decrease factor of 0.8 was chosen to reduce computational time. For each temperature, at the end of each
Markov chain we store the acceptance ratio. This indicates the number of worse neighbours accepted divided
by the number of worse neighbours proposed. Figure B.1 provides the results of this.

Figure B.1: Acceptance ratio versus temperature level

Based on Figure B.1, we choose a starting temperature of 15 for both the 538 and the 539, which have an
acceptance ratio close to 0.67. We choose to not start with a temperature that has an acceptance ratio closer to
1 as the constructive heuristics already provide decent initial results. A higher starting temperature can then
result in significantly worse solutions at the start, which may take a lot of iterations to overcome. Besides, due to
the relatively high computational time, choosing a lower temperature prevents excessively high computational
times.

Next, we have to consider doing experiments with stopping temperature, Markov chain length and decrease
factor alpha. For stopping temperature we consider the values 2.5, 5 and 7.5. For Markov chain length 5, 10,
15. For the decrease factor alpha we consider 0.9, 0.925 and 0.95. Table B.2 shows the full factorial experiment
including the objective value and run time. From this table we can select the parameter setting that result in a
good trade-off between objective value and running time. For getting the results in the table the multi-factor
dispatching rule for the problem instance of machine 539 was used. From the table, we conclude that the
experiment with stopping temperature 5, decrease factor alpha of 0.9, and Markov Chain length of 15 led to
the best trade-off between objective value and run time.

Now the TS parameters have to be found. To find the tabu list size and the number of iterations we do
experiments. Since we do 70 iterations for SA, we experiment with TS with iteration numbers close to this.
For tabu list length we experiment with 5, 10 and 15. For the Number of iterations we experiment with 50,
75, 100, 125, 150 and to see if a much bigger amount of iterations makes a difference we try 300 and put it
in a convergence figure. We solve the problem instance of machine 539 with the multi-factor dispatching rule.
Based on Table B.3 we choose max iterations of 125 and tabu list size of 10.
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Table B.2: SA Cooling scheme

StopTemp Alpha MarkovChainLength Objective Run time
2,5 0,9 5 558.07 1146.02
2,5 0,9 10 556.72 2320.97
2,5 0,9 15 555.28 3448.02
2,5 0,925 5 557.94 1446.60
2,5 0,925 10 553.93 2965.78
2,5 0,925 15 553.18 4411.04
2,5 0,95 5 556.53 2272.99
2,5 0,95 10 554.40 4480.52
2,5 0,95 15 554.08 6656.32
5 0,9 5 555.78 888.44
5 0,9 10 555.16 1383.85
5 0,9 15 553.78 2065.05
5 0,925 5 559.60 942.07
5 0,925 10 557.61 1879.82
5 0,925 15 555.44 2826.75
5 0,95 5 556.69 1380.55
5 0,95 10 555.46 2758.63
5 0,95 15 553.40 4145,71
7,5 0,9 5 560.88 436.57
7,5 0,9 10 560.01 901.35
7,5 0,9 15 559.60 1382.53
7,5 0,925 5 560.83 592.22
7,5 0,925 10 556.53 1184.97
7,5 0,925 15 554.08 1782.15
7,5 0,95 5 559.46 920.84
7,5 0,95 10 555.73 1845.35
7,5 0,95 15 553.86 2768.40

Table B.3: Tabu list size experiment

Max iterations Max Tabu list Size Objective Run time
50 5 554.88 631.04
50 10 554.12 630.81
50 15 554.01 640.05
75 5 554.12 948.97
75 10 553.45 947.99
75 15 553.79 1005.28
100 5 552.81 1277.47
100 10 552.67 1275.54
100 15 553.10 1264.58
125 5 552.12 1586.61
125 10 552.01 1587.97
125 15 552.46 1589.32
150 5 552.06 1881.89
150 10 552.07 1871.67
150 15 552.29 1867.92
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