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Abstract

Laplacian leader follower dynamics is a consensus algorithm used for distributed coordi-
nation of networked systems, the topology of which is given in the form of a graph. We pro-
vide an algorithm to classify graphs into their controllability classes (essentially controllable,
conditionally controllable, and completely uncontrollable) which is asymptotically faster than
one designed for an arbitrary state space linear system. We use this algorithm to answer ques-
tions about resiliency of this dynamic to random changes in topology, and to investigate the
probability a topology is essentially controllable.
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1 Introduction

1.1 Motivation

Suppose a network of autonomous agents — for example a swarm of quadcopter drones, where
each is able to communicate with the adjacent drones – which are all subject to some internal time-
continuous dynamics. Suppose further we desire to control this network using an input signal. In
practice, if the network is large, it is unfeasible to communicate with each of these agents separately.
It would be highly practical if one could control them, while only communicating with a small
group of them, the so-called leaders.

One potential form of dynamics for such a system is the Laplacian leader-follower dynamic
(LLFD). LLFD is a consensus algorithm, that is, it causes all the agents to converge to a common
opinion. The controllability of the resulting dynamic system will in general depend on both the
graph structure and our choice of leaders.

In practice, it is possible for the graph structure of the network to unexpectedly change. Resilience
of the system to these random changes is essential as we do not want to lose control, just because
two agents lose connection, or because one agent malfunctions. It is thus natural to ask how the
controllability properties change under random changes to the graph.

1.2 Research Questions

Suppose we are designing a networked system with a given number of agents, that will behave
according to some specified behaviour – the Laplacian leader-follower dynamic. The system may
be controllable, depending on our selection of leaders. If the system is controllable for every (rea-
sonable) choice of leaders, we call it essentially controllable, if for some choices of leaders, we
call it conditionally controllable and if for no choice of leaders, we call it completely uncontrol-
lable.

In practice, it is possible for the topology of the network (represented by a graph) to change un-
predictably, due to hardware failure, wireless communication interference, etc. In what topology
shall we connect the agents, so that the system is resilient to these random changes? In partic-
ular, we would like the probability that the system is essentially controllable after a random change
to be high. We will consider two types of random change:

• A random edge is lost (two agents losing connection).

• A random vertex and all edges adjacent to it are lost (one agent malfunctions).

One may suspect the complete graph to be an answer to the posed question. But by the nature of
Laplacian leader-follower dynamics, we need certain asymmetry or irregularity in the topology to
achieve essential controllability. The complete graph is in fact completely uncontrollable.

In order to answer the research question about resilience to random changes, we will first focus
on the following preliminary research questions. In [2], graphs are classified into essentially con-
trollable, conditionally controllable, and completely uncontrollable. Suppose a networked system
with a known graph structure follows the Laplacian leader-follower dynamic. We will attempt to
devise and implement an algorithm to decide whether the system is essentially controllable, con-
ditionally controllable, or completely uncontrollable, and we will analyse the complexity of this
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an algorithm. We will then use this algorithm to investigate the main research question on small
graphs.

Essential controllability and asymmetry of the underlying graph are closely connected. We will
thus examine whether, as we increase the number of vertices, the ratio of the number of essentially
controllable graphs to the number of asymmetric graphs approaches 1.

1.3 Literature Review

[15] is first to consider the controllability of Laplacian leader-follower dynamics, its theoretical
findings are advanced in [2], which also introduces the definition of the controllability classes. It
provides two propositions we used in the construction of the algorithm. The authors also provide
a table evaluating the number of graphs in each of the controllability class.

[5] discusses the application of LLFD in construction of aerial swarms. [13] highlights the useful-
ness of LLFD for the distributed coordination of networked agents in general. This contributes to
the motivation of our research.

[16] asks questions about resilience of graphs under random changes, but for a leader-follower
dynamic that is different from LLFD. While their approach can not be easily adapted to help in
our research, others investigating this question, be it in a different context, indicates the question
is relevant and its investigation worthwhile.

The experimental part of this thesis is powered by the Julia programming language [3] and the
Graphs.jl library [7]. The list of all unique connected graphs with a given number of vertices was
generated using the program Nauty, see [10].

We used insights from [9] to determine the number of random graphs we need to investigate for a
given precision and confidence.

2 Graph Theory & State Space Systems

2.1 Graph Theory

This subsection is adapted from A. Graph Theory in Preliminaries of [2]. We omit citation marks
to improve readability, as the source text consists of common mathematical facts.

By a labelled graph, we mean a pair G = (V, E) consisting of a finite vertex set V and an edge
set E ⊆ {{v, w} | v, w ∈ V , v ̸= w}.1 The order of the graph G is the cardinality of its vertex
set V and we will denote it with n. The neighbours of v ∈ V is the vertex set, Nv := {w ∈ V |
{v, w} ∈ E} and the degree of v is dv := |Nv|.

A path in G of length k is a subgraph of G consisting of vertices {v0, v1, . . . , vk} ⊆ V and edges
{{v0, v1} , {v1, v2} , . . . , {vk−1, vk}} ⊆ E , where all the vi are distinct. For such a path, v0 and vk
are called the terminal vertices. We call two vertices u, v connected iff there exists a path with
u, v as terminal vertices, and we say a graph G is connected if there is a path between any pair
of vertices. Suppose R := {(u, v) | u, v ∈ V , u, v are connected}. Then R is an equivalence

1In the context of LLFD, we consider only simple graphs – undirected, with no loops or multiple edges. Self loops
would cancel algebraically by the definition of LLFD. Multiple edges could be entertained in future work.
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1 2

3 4

Figure 1: An example of a graph.

relation on V and the partitions of V induced by it are called connected components of G. We call
an edge {v, w} a bridge of G = (V, E) iff G′ := (V, E \ {v, w}) has more connected components
than G. For example, the graph in Figure 1 is connected and in that graph, {2, 4} is a bridge.

Henceforth, when not explicitly stated otherwise, we fix an ordering on the vertex set V and thus,
without loss of generality, we take V = {1, . . . , n}, where n is the order of G. The adjacency
matrix of G is the n× n matrix A defined as Aij = 1 if {i, j} ∈ E and Aij = 0 otherwise, where
Aij denotes the entry of A in the ith row and jth column. The adjacency matrix of the example
graph in Figure 1 is 

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0


We denote by D the degree matrix of G, i.e., the diagonal matrix whose ith diagonal entry is di.
The Laplacian matrix of G is given by

L = D −A

The Laplacian matrix of the example graph is
2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1



The Laplacian matrix L is symmetric and positive semidefinite, and thus the eigenvalues of L can
be ordered λ1 ≤ λ2 ≤ · · · ≤ λn. The ones vector 1n :=

[
1 1 . . . 1

]⊺ is an eigenvector of L
with eigenvalue λ1 = 0. The algebraic multiplicity of the 0 eigenvalue is the number of connected
components of G, in particular, G is connected iff λ1 = 0 is a simple eigenvalue of L. For our
purposes, by the eigenvalues (eigenvectors) of a graph G, we mean the eigenvalues (eigenvectors)
of its Laplacian matrix L.

A mapping φ : V → V is an automorphism of G iff it is a bijection and {i, j} ∈ E implies that
{φ(i), φ(j)} ∈ E . The identity mapping is an automorphism of every graph, and we call it the
trivial automorphism. For example, the graph in Figure 1 has exactly one non-trivial automor-
phism: φ = {1 → 3, 2 → 2, 3 → 1, 4 → 4}. We call a graph asymmetric iff the identity
automorphism is its only automorphism. Let ∼ be a relation, where G1 ∼ G2 iff there exists an
automorphism that maps G1 to G2. Then∼ is an equivalence relation, and by an unlabelled graph
we understand an equivalence class induced by ∼.
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2.2 Systems & Control

The following facts come from the University of Twente bachelor course reader Linear Systems
Theory by Gjerrit Meinsma, however can be also found in [12].

Definition 1. By a linear state space system, we understand the pair of matrices (A,B) ∈ Rn×n×
Rn×nu and the resulting system of differential equations

ẋ = Ax+Bu

x(0) = x0
(1)

where u : [0,∞) → Rnu is the input, x : [0,∞) → Rn is the state, and x0 ∈ Rn is the initial
state.

Usually, the definition of a linear state space system includes the output y : [0,∞) → Rny , but
we decided to omit it as it is not necessary for our work. Many real world phenomena can be
modelled with a state space linear system, for example mass-spring-damper system, RC circuits or
population dynamics.

Later, we investigate the autonomous behaviour of a linear state space system – that is, we let
u = 0.

Proposition 1. If u = 0, the solution to a linear state space system (A,B) is given by x(t) =
eAtx0.

Often, we are interested in whether we can steer the system to a particular state x1 by applying an
appropriate input. This gives rise to the notion of controllability.

Definition 2. A system (A,B) is controllable iff for every pair of states x0, x1 ∈ Rn, and x(0) =
x0, there is a t1 ≥ 0 and an input u : [0, t1] → Rnu such that x (t1) = x1.

It can be shown that controllability of a system (A,B) can be characterized in terms of a matrix
rank condition.

Proposition 2. A linear state space system (A,B) is controllable iff the controllability matrix

C :=


B
AB
...

An−1B


has full column rank.
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2.3 Laplacian Leader Follower Dynamics

Suppose a network of agents – each agent has a communication link to some others. Such net-
work can be represented with a labelled graph. An example of such a network can be a swarm
of quadcopter drones. Suppose further that each agent in the network has an opinion. Generally,
by an opinion of an agent j, denoted xj , we understand a vector in Rk. In the swarm of drones
example, it may be the direction and the speed in which a swarm of quadcopters is moving, or its
location. We can, however, analyse every component of the opinion independently, hence for the
sake of simplicity we will in the rest of this work assume xj ∈ R. One can see an example of such
a network of agents in Figure 3.

In the absence of control, it is (in many contexts) desirable for the agents to arrive at a compromise
– have their opinions converge to the same value. For that, we can use a so-called consensus mech-
anism. One way of achieving this (in a connected graph) is Laplacian Leader Follower Dynamics
(LLFD).

Figure 2: A network of two drones reaching a compromise on their direction of movement.

x1(t) x2(t)

x3(t) x4(t)

Figure 3: An example of a network of agents with opinion x(t) =

x1(t)...
x4(t)

.
Each agent j modifies their opinion xj to closer align it with the opinion of its neighbours in the
following manner:

ẋj =
∑
i∈Nj

(xi − xj) (2)

The component-wise Equation 2 is equivalent to the vector form equation

ẋ = [A(G)−D(G)]x = −L(G)x, (3)
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where x ∈ Rn is the opinion of the network and A(G), D(G), L(G) are the adjacency, degree,
and Laplacian matrix respectively, as defined in Subsection 2.1.

While convergence to a compromise is a good behaviour in the absence of external interference, it
is (in many contexts) practical to be able to have some influence over the opinions in the network.
The optimal scenario is if we arrive at a controllable system, where we have the freedom to impose
any particular vector of opinions x. We are attempting to control the network of agents with a one
dimensional input u. We choose a set of leaders and influencing all of them in the same way. Our
leader selection can be represented with the binary control vector b ∈ {0, 1}n[2]. Then our system
can be represented with

ẋ = −L(G)x+ bu.

Definition 3. Let n ∈ N and G be a graph with n vertices. Then by G’s LLFD we understand the
state space system described by

ẋ = −L(G)x+ bu (4)

with b ∈ {0, 1}n representing our choice of leaders.

What makes LLFD an interesting consensus algorithm is its simplicity. The edges have no weight
and the leaders are all treated as one by the controller.

2.3.1 Autonomous behaviour of Laplacian Leader Follower Dynamics

We first examine LLFD without external interference – we assume u = 0.

Lemma 1. If u = 0, then the sum of opinions of all the agents in the network is constant.

Proof. We have
d

dt

n∑
j=1

xj =

n∑
j=1

ẋj =

n∑
j=1

∑
i∈Nj

(xi − xj)

But if we sum over every vertex and then all its neighbours, we consider each edge {k, l} in the
graph exactly twice – when j = k, i = l and when j = l, i = k. These two visits to a particular
edge yield xl − xk and xk − xl respectively, which of course sum to zero. Because this is true for
every edge, we get

d

dt

n∑
j=1

xj = 0.

Proposition 3. If G is connected and u = 0, then the individual opinions in the network converge
to the average of initial state x0.

Proof. In other words, we are looking to prove that if x : [0,∞) → R is a solution of ẋ = −L(G)x
and x(0) = x0, then

lim
t→∞

x(t) =

∑
j(x0)j

n


1
1
...
1
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Let L be the Laplacian matrix of G. Because L is symmetric and positive semidefinite, we know
that its eigenvalues are real and non-negative, and thatL is diagonalizable. BecauseL is the Lapla-
cian matrix, it has

[
1 1 . . . 1

]⊺ as an eigenvector with λ1 = 0 and because G is connected,
λ1 = 0 is a simple eigenvalue. So let the eigenvalues of L be λ1 = 0 < λ2 ≤ ... ≤ λn.

Let T be the matrix whose ith column is the eigenvector of L that corresponds to eigenvalue λi.
Then

−L = −

T


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn

T−1

 = T


−λ1 0 . . . 0
0 −λ2 . . . 0
...

... . . . ...
0 0 . . . −λn

T−1.

And by Proposition 1

x(t) = e−Ltx0 = T


e−λ1t 0 . . . 0
0 e−λ2t . . . 0
...

... . . . ...
0 0 . . . e−λnt

T−1x0.

We are looking for limt→∞ x(t). Because λ1 = 0 < λ2 ≤ ... ≤ λn we get

lim
t→∞

x(t) = T

 lim
t→∞


e−λ1t 0 . . . 0
0 e−λ2t . . . 0
...

... . . . ...
0 0 . . . e−λnt


T−1x0 = T


1 0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 . . . 0

T−1x0.

And because the first eigenvector of L is
[
1 1 . . . 1

]⊺,
T


1 0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 . . . 0

T−1x0 =


1 0 . . . 0
1 0 . . . 0
...

... . . . ...
1 0 . . . 0

T−1x0 = z1


1
1
...
1

 ,

where z1 is the first component of T−1x0 (a scalar).

But Lemma 1 tells us that
∑

j x(t)j is constant. Hence, also

∑
j

(x0)j = lim
t→∞

∑
j

x(t)j =
∑
j

(
lim
t→∞

x(t)
)
j
=

∑
j

z1


1
1
...
1




j

= nz1.

Hence z1 =
∑

j(x0)j/n and

lim
t→∞

x(t) =

∑
j(x0)j

n


1
1
...
1

 .
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2.3.2 Controllability of Laplacian Leader Follower Dynamics

In this section, we partition graphs into three classes based on the controllability properties of the
associated LLFD. While in Definition 2 we define controllability for a system (A,B), or (L, b)
in case of LLFD, here controllability is examined as a property across all possible binary control
vectors b and hence is a property of the Laplacian matrix – in other words it is a property of the
graph.

Definition 4. (Definition 3.1 in [2]) Let G be a connected graph with Laplacian matrix L and let
B = {0, 1}n. Then G is called:

1. essentially controllable on B iff (L, b) is controllable for every2 b ∈ B\ ker(L);

2. completely uncontrollable on B iff (L, b) is uncontrollable for every b ∈ B;

3. conditionally controllable on B, iff it is neither essentially controllable nor completely un-
controllable on B.

Onemight wonder whywe chose those three classes – why is this the right way to divide the graphs.
The essential controllability and complete uncontrollability are extremes of sorts. For example, for
n = 9 there are 29 = 512 control vectors, and we require that all but two lead to a controllable
system to classify it as essentially controllable, or that none of them lead to a controllable system,
to classify it as completely uncontrollable. Yet, as one can see in Table 1, those two scenarios
combined are almost as likely as the system being conditionally controllable.

Note that definition 4 is restricted to connected graphs. This is because if a graph is disconnected,
then (L, b) is uncontrollable for every b ∈ B.

3 Graph Classification Algorithm

In this section, we devise and analyse two algorithms to determine which controllability class a
given graph belongs to.

3.1 State System Algorithm

For any particular systemwith n agents and a selection of leaders (represented with the pair (L, b)),
we can determine if it is controllable (as defined in Definition 2) by constructing the controllability
matrix and checking its rank (see Proposition 2).

We shall analyse the worst-case asymptotic time complexity of this approach. The complexity
of matrix multiplication is Θ(nω). The value of ω depends on the implementation of the matrix
multiplication algorithm, and the current best techniques put it around 2.5 [6].3 The precise value
is not crucial to our analysis. In order to construct the controllability matrix, we need to perform
n matrix multiplications, which puts the complexity of this step at Θ(nω+1). The complexity of
checking a rank is lower than that,4 hence, the total time complexity of checking controllability of
(L, b) is dominated by the construction of the controllability matrix and stands atΘ(nω+1).

2Of course because G is connected, ker(L) = span(
[
1 1 . . . 1

]
)⊺

3Interestingly, in [6] it is shown that the asymptotic complexity of any matrix multiplication can be improved.
4A (non-optimal) way to check rank is Gaussian elimination, which has complexity is Θ(n3)[4]
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However, to determine in which controllability class a graph is located, we need to know if the
system is controllable for any binary control vectors, of which there are 2n. The following propo-
sition allows us to cut the number of control vectors for which we check controllability in half, but
unfortunately this does not change the asymptotic complexity.

Proposition 4. (Proposition 4.1 in [2]) Controllability and Binary Complements: Let n ≥ 2
and consider the controlled Laplacian dynamics (1) with b ∈ {0, 1}n. Then the pair (L, b) is
controllable if and only if the pair (L, b) is controllable.

This means the complexity of classifying a graph with n vertices is Θ(nω+12n) – worse than
exponential.

3.2 Leveraging LLFD

As explained in the previous subsection, without theoretical knowledge on LLFD, one would use
an algorithm with time complexity Θ(nω+12n). In this subsection, we leverage theory developed
in [2] to derive an algorithm that manages to answer the question in Θ(nω2n).

The following propositions inspire the algorithm with better asymptotic time complexity.

Proposition 5. (After remark 4.1 in [2]) Every graph whose Laplacian matrix has a repeated
eigenvalue is completely uncontrollable.

An interesting fact first mentioned in [2], which was rediscovered here, is that completely uncon-
trollable graphs that do not have a repeated eigenvalue are rare. There are zero such graphs for
n ∈ {1, 2, ..., 7}, only 10 such graphs with n = 8 (out of 2764) and 12 such graphs with n = 9
(out of 29750).

Proposition 6. (Adapted from Proposition 1.ii in [2]) Let A ∈ Rn×n be diagonalizable and have
distinct eigenvalues. Let v := U−1b where U is a matrix whose columns are linearly independent
eigenvectors of A. Then (A, b) is controllable if and only if no component of v is zero.

Recall that the Laplacian matrix of a simple graph is always diagonalizable, because it is sym-
metric. Hence, the former two propositions apply, and we can classify a graph with the following
algorithm:

1. Calculate the eigenvalues of L and U – the matrix whose columns are the eigenvectors of L.

2. If L has a repeated eigenvalue, G is completely uncontrollable.

3. Calculate U−1.

4. For every control vector b, check controllability by checking whether U−1b has a zero ele-
ment.

5. Determine controllability class of G based on whether all, some, or none of the control vec-
tors lead to controllability.

11



The computational complexity of step 1 and 2 is polynomial,5 and we only need to do them once
(not for every control vector), so they will be dominated by the exponential complexity. Then for
each control vector b, we only need to multiply U−1b and check if it has a zero element, which has
time complexity Θ(nω).

Hence, this classification algorithm has an improved complexity ofΘ(n22n). After implementing
both algorithms, we indeed found the time required to classify the vectors decreased by a factor of
n. It is my understanding this is the algorithm the authors of [2] used to construct their Table I, but
they do not discuss their algorithmic choice in their paper.

3.3 Shortcomings Stemming from Rounding

An important thing to note is that the algorithm developed in Subsection 3.2 has a limitation.
Eigenvalues may be irrational and even if the actual eigenvalue is rational, finding roots of large
(characteristic) polynomials can only be done numerically with a certain precision. When we
check for equality of two eigenvalues, we thus have to specify a threshold (10−9 in our case)
and consider two eigenvalues equal if they are closer than that. An analogous issue arises when
checking if components of the eigenvectors are non-zero. Therefore, two eigenvalues may in fact
(in theory) be different, but closer than our specified threshold. Our algorithm would mistakenly
consider these eigenvalues identical, which could lead to a wrong classification.

Onewould expect this should not be an issuewith the simple algorithm, as the controllabilitymatrix
is integral and hence its rank can be computed reliably. In practice, the rank of an integral matrix
is checked by calculating the singular values of a matrix and checking if they are greater than zero.

Here, the same issue with rounding occurs, and a tolerance has to be used. For example,
[
1 0
108 1

]
will be incorrectly assigned rank 1 by both Matlab and Julia. While there are exact methods for
determining the rank of a matrix, we observed they easily overflow integers of fixed size and their
performance is much worse than that of the forementioned method.6

In practice, the two algorithms agree for all graphs where n ≤ 8, however, there are 741 graphs of
cardinality 9 that are classified differently by the two methods. This corresponds to an error rate
of 0.2838%. If the exact rank algorithm is used in the first algorithm instead, it takes three hours
instead of several minutes to evaluate, but the results agree with the second method. While the
second method is not guaranteed to classify a given graph correctly, it does so for all graphs where
n ≤ 9. As there are over 270 000 such graphs, we are hopeful the second algorithm is likely to
work for a particular larger graph.

3.4 Feasibility of a Better Algorithm

It is natural to ask if an algorithm with better asymptotic time complexity exists. The main limi-
tation stems from the necessity to check half of the control vector individually, as the number of
these vectors is exponential. So far, no theoretical result is known to us, that would allow for a
faster classification algorithm.

5The popular QR Algorithm to compute the eigenvalues and eigenvectors has complexityΘ(n3)[11]. Matrix inver-
sion can be done almost as fast as matrix multiplication.[4]

6There also exists an algorithm that does not overflow integers, but its complexity is also impractical, see [1].
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3.5 Evaluation of Controllability classes of Small Graphs

For small graphs (2 ≤ n ≤ 9) we generated all unlabelled connected graphs using a program
called Nauty[10] and then used the classification algorithm devised in Subsection 3.2 to analyse
them. We stopped at n = 9 as the computational difficulty of constructing such table grows very
fast. For example, it would take more than 88 times longer to evaluate the table for n = 10
than it did for n = 9.7 The results are summarized in Table 1. A similar table was originally
produced by the authors of [2]. We shall discuss the results in Table 1. The only graph with

n
Number of

connected graphs
Essentially
controllable

Conditionally
controllable

Completely
uncontrollable

1 1 1 100.0% 0 0.00% 0 0.00%
2 1 1 100.0% 0 0.00% 0 0.00%
3 2 0 0.00% 1 50.00% 1 50.00%
4 6 0 0.00% 2 33.33% 4 66.67%
5 21 0 0.00% 10 47.62% 11 52.38%
6 112 4 3.57% 49 43.75% 59 52.68%
7 853 84 9.85% 505 59.20% 264 30.95%
8 11117 1992 17.92% 6361 57.22% 2764 24.86%
9 261080 94084 36.04% 137246 52.57% 29750 11.39%

Table 1: Enumeration of controllability classes for small unlabelled connected graphs.

n = 1 is a fascinating edge case of Definition 4. It technically satisfies the definition of essential
controllability, as there are no binary control vectors outside the kernel of its Laplacian matrix –
the system being controllable for all of them is true vacuously. Nevertheless, because the system
is one dimensional, it is still controllable for b = [1] – the only control vector for which it makes
sense to call it essentially controllable.

There are no essentially controllable graphs with 3 ≤ n ≤ 5. At n = 6 we see the essentially
controllable graphs re-emerge.8 For n ≥ 6, with rising n the essentially controllable graphs are
more common, while both conditionally controllable and completely uncontrollable become less
common.

The last observation is that the number of unlabelled connected graphs rises fast with n. There are
about five times as many of them with n = 6 than with n = 5, almost eight times as many with
n = 7 than with n = 6, about 13 times as many with n = 8 than with n = 7, and more than 23
times more with n = 9 than with n = 8.

4 Resilient Graphs

As mentioned in Subsection 1.2, we want to investigate the resilience of LLFD to random changes
to the graph. By a random change of the graph, we understand removing a random edge or remov-
ing a random vertex and all the edges adjacent to it.

Definition 5. Let G = (V, E) be a connected graph with n ≥ 2.
7There are 261080 connected graphs for n = 9 and there are 11716571 connected graphs for n = 10, which is

aproximately 44 times higher. For each graph, we will need more than twice as long, due to the complexity of the
algorithm.

8Along with the smallest asymmetric graphs.
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We call G perfectly edge resilient iff removing any one edge results in a graph that is connected
and essentially controllable.

We call G perfectly vertex resilient iff removing any one vertex results in a graph that is connected
and essentially controllable.

We exclude the graph with one vertex from these definitions for two reasons. If the single vertex
is removed, we obtain the empty graph, for which LLFD is not defined. Secondly, it is the only
connected graph with no edge, so the condition for perfect edge resiliency is true vacuously. The
following two conclusions follow from the definitions.

Proposition 7. If a graph is perfectly edge resilient, it contains no bridges.

Proof. We prove the contrapositive statement, which is equivalent: If a graph contains a bridge, it
is not perfectly edge resilient.

Suppose that {v, w} is a bridge of G. By removing this bridge, we obtain a graph that is, by
definition of a bridge, disconnected. Therefore, G is not perfectly edge resilient.

Proposition 8. The connected graph with two vertices is the only perfectly vertex resilient graph
that contains a bridge.

Proof. If we remove any of the two vertices of the connected graph with two vertices, we get the
graph with one vertex (and no edges), which is essentially controllable. So the connected graph
with two vertices is perfectly vertex resilient. The only edge in this graph is of course a bridge.

For the second part of the statement, we once again use proof by contrapositive. The connected
graph with two vertices is the only graph with a bridge (or an edge of any kind) with less than three
vertices. So let n ≥ 3 and suppose {v, w} is the bridge of a connected graph G. As G is connected
and n ≥ 3, there is another vertex q which is connected to one of the vertices of the bridge, w.l.o.g.
w. Let G′ = (V \ w, E). Then there is no path between v and q, by definition of a bridge. Hence,
G′ is disconnected, which means G is not perfectly vertex resilient.

We went through all the connected unlabelled graphs with 2 ≤ n ≤ 9. For each, we determined
whether it is perfectly edge resilient by removing edges one at a time and using the algorithm
devised in Subsection 3.2 to classify the resulting graph. Similarly, we removed vertices from the
original graph one at a time to look for perfectly vertex resilient graphs. Recall that we did not
define resiliency for n = 1 or for non-connected graphs. For graphs with n > 9, the computational
difficulty is too high to consider them all. It took over an hour to consider all connected and
unlabelled graphs with n = 9 and we estimate it would take more than a 100 times longer to do
the same for n = 10.

The only connected graph with n = 2 is perfectly vertex resilient. At n = 3, there are no perfectly
edge resilient graphs, but the cycle is completely uncontrollable, yet perfectly vertex resilient.
There are no perfectly edge or vertex resilient graphs for n ∈ {4, 5, 6, 7}. For n = 8, there are 2
perfectly edge resilient graphs, both of which are essentially controllable, and 2 perfectly vertex
resilient graphs, both of which are conditionally controllable.
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Conditionally
controllable

Essentially
controllable

Perfectly edge resilient 9 211
Perfectly vertex resilient 8 34

Table 2: Perfectly resilient graphs with 9 vertices.

For n = 9 the situation is summarized in Table 2. There are four graphs with n = 9, which are
both perfectly vertex and edge resilient. These are the adjacency matrices of those four graphs, all
of which are essentially controllable.

0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 1
1 1 0 1 1 1 0 0 1
1 1 0 0 1 1 1 1 0





0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 1 1
1 0 1 1 0 0 0 0 1
1 0 1 0 1 1 0 0 0
1 1 0 1 1 1 1 0 0




0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 1 1
1 0 1 1 0 0 0 1 0
1 0 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1 0





0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1 1
0 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 0 1
1 1 0 1 1 1 0 1 0



(5)

Themain takeaway is that (at least forn ≤ 9) the vast majority of essentially controllable graphs are
neither perfectly vertex resilient, nor perfectly edge resilient. This is important from an engineering
perspective – if one wishes to retain essential controllability under failure, they should intentionally
incorporate resilience in the design of the network’s topology.

5 Random Asymmetric Graphs and Essential Controllability

An important fact about LLFD is that any non-trivial graph automorphism prevents essential con-
trollability. Hence, essentially controllable graphs are a subset of asymmetric graphs.

Proposition 9. (Proposition 4.2 in [2]) All essentially controllable graphs with n ≥ 3 are asym-
metric.

The converse of the preceding statement, however, is not true. On the other hand, as the authors of
[2] point out, “The data in Table I suggests that the ratio [of the number essentially controllable to
the number of asymmetric graphs] is monotonically increasing as n increases. It is an interesting
problem to investigate if almost all asymmetric graphs are essentially controllable on {0, 1}n as
n → ∞.” That suggestion inspires this section.
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n Asymmetric
graphs

Essentially
controllable

graphs
Ratio

6 8 4 50.00%
7 144 84 58.33%
8 3552 1992 56.08%
9 131452 94084 71.57%

Table 3: Ratio of the number of asymmetric to essentially controllable unlabelled con-
nected graphs, as implied from TABLE I in [2].

As one can see in Table 3, the suggestion made by authors of [2] is not an entirely accurate descrip-
tion of their data. The ratio is lower for n = 8 than it is for n = 7. Nevertheless, this decrease at
n = 8 might be an anomaly and whether this ratio increases for larger n is an interesting question,
which we will investigate in this section.

As the number of unlabelled asymmetric connected graphs increases very fast with n, it is not
feasible to go through all of them.9 We will therefore sample random graphs to determine the ratio
of the number of essentially controllable to the number of asymmetric graphs for a given n.

5.1 Generating Random Graphs

A straight forward way to create a random graph with n vertices is to consider each pair of vertices
and create an edge between them with a given probability p = 1/2. This method of generating
random graphs is called Erdős-Rényi random graph model[14].

In our case, we would like to sample unlabelled graphs uniformly, as it is the underlying structure
of the graph that interests us. But the Erdős-Rényi model samples the labelled graphs uniformly.
To illustrate the difference, we will examine labelled and unlabelled graphs for n = 3.

(4.a) 1 2 3 (4.b) 1 2 3

(4.c) 1 2 3 (4.d) 1 2 3

(4.e) 1 2 3 (4.f) 1 2 3

(4.g) 1 2 3 (4.h) 1 2 3

Figure 4: All graphs with n = 3 with labelled vertices.

Using the Erdős-Rényi model, every labelled graph in 4h as the same probability of being chosen.

9The number of labelled graphs with n vertices is 2
n(n+1)

2 . The number of unlabelled asymmetric connected with
n vertices is difficult to work out exactly.[8]
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(5.a) (5.b)

(5.c) (5.d)

Figure 5: All graphs with n = 3 with unlabelled vertices.

Notice, that both (4.f), and (4.g) correspond to (5.c); but only (4.h) corresponds to (5.d). This
means that (5.c) is twice as likely to be generated with the described procedure than (5.d). This
contradicts our aim to sample unlabelled graphs uniformly.

How likely is then a given unlabelled graph to be generated?. The number of labelled graphs that
correspond to a particular unlabelled graph is n!/S, where S is the number of automorphisms of
the given graph – see equation 1.1.3 in [8] for details. The probability of a graph (with fixed size
n) being generated with this algorithm is hence proportional to 1/S.

For our application, we need to generate randomgraphs that are connected and asymmetric, as those
are prerequisites for essential controllability. The probability of both of those properties increases
with n[2]. We can simply generate a new graph if the one we obtained from the algorithm is
disconnected or symmetric. By definition, the size of the automorphism group of asymmetric graph
is 1, hence they have the same probability of being generated with the described algorithm.

5.2 Results

We can use the following formula to determine the number of times that a Bernoulli variable has
to be sampled in order to achieve a given absolute error ε with confidence 1 − α (Algorithm 1 in
[9]):

n =

⌈
log(2/α)

2ε2

⌉
We will therefore sample 76820 graphs to find results to two significant digits, which corresponds
to relative error of .005, with 95% confidence.

As one can see in the table below, the ratio of Essentially controllable graphs to asymmetric graphs
does not increase with every increment in n, but it seems to tend to 1 as n grows.

n 9 10 11 12 13 14 15 16
Essentially Controllable 72% 72% 89% 86% 96% 95% 98% 99%

Table 4: Ratio of Essentially controllable graphs to asymmetric graphs.

We noticed that whenever the ratio of essentially controllable graphs to asymmetric graphs de-
creases when incrementing n, it is always when going from an odd n to even n.

6 Conclusion

In Section 4 we defined the notions of perfect vertex and edge resilience, we examined all graphs
2 ≤ n ≤ 9 and observed that the complete graph with three vertices (the triangle graph) is the only
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perfectly vertex resilient graph that is also completely uncontrollable. Furthermore, all 19 condi-
tionally controllable graphs with n ∈ {8, 9} that are either perfectly vertex resilient or perfectly
edge resilient were controllable with the majority of the control vectors. This leads us to state the
following conjectures:

Conjecture 1. The complete graph with three vertices is the only graph of any size that is both
completely uncontrollable and perfectly vertex resilient.

Conjecture 2. There are no graphs that are completely uncontrollable and perfectly edge resilient.

Surprisingly, we found a graph does not have to be essentially controllable to be perfectly vertex
resilient or perfectly edge resilient. The question remains if it has to be essentially controllable to
be both perfectly vertex and perfectly edge resilient.

Conjecture 3. The ratio of the number of essentially controllable to the number of asymmetric
graphs, approaches 1 as n → ∞.

The former conjecture inspired Section 5, where we provide strong statistical indication it holds.
However, to prove or disprove this notion remains an unsolved problem. Furthermore, our method
sampled all unlabelled asymmetric graphs with equal probability. But in many practical scenarios,
one would favour some topologies over others. For example, when controlling a swarm of drones,
the hardware will have a limit on the number of connection each agent can make – the vertices in
our topology have a maximum degree. For a given practical application, research should be done
investigating this question using more appropriate random graph sampling.
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7 Appendix (Code)

The latest version of the code can be found at github.com/MikiVanousek/bcs-thesis.

7.1 main.jl
1 """
2 LLFD Graph Classification algorithm and other code written with LLFD theory

insight.
3 """
4 module LLFD
5
6 using Graphs
7 using GraphIO.Graph6
8 using GraphIO.EdgeList
9 using Graphs.LinAlg
10 using SparseArrays
11 using LinearAlgebra
12
13 include("util.jl")
14 using .LLFDUtil
15
16 @enum ContClass essentially conditionally uncontrollable
17 export ContClass , essentially , conditionally , uncontrollable
18
19 cont_vecs_cache = Dict{Int64,Vector{Vector{Int64}}}()
20 function cont_vecs(n::Int64)
21 if !(n in keys(cont_vecs_cache))
22 cont_vecs_cache[n] = generate_cont_vecs(n)
23 end
24 return cont_vecs_cache[n]
25 end
26
27 struct LaplacianGraph
28 g::SimpleGraph
29 cont::Vector{Bool}
30 score::Float64
31 class::ContClass
32 L::Matrix{Int64}
33 end
34 function LaplacianGraphBF(g, is_ctr=is_controllable)
35 L = Matrix(laplacian_matrix(g))
36 cont = [is_controllable(L, B) for B in cont_vecs(nv(g))]
37 score = average(cont)
38 if score == 0.0
39 class = uncontrollable
40 elseif score == 1.0
41 class = essentially
42 else
43 class = conditionally
44 end
45 return LaplacianGraph(g, cont, score, class, L)
46 end
47 function LaplacianGraphSmart(g)
48 L = Matrix(laplacian_matrix(g))
49
50 vals, vecs = eigen(L)
51 if repeated(vals)
52 score = 0.0
53 cont = [false for _ in 1:length(cont_vecs(nv(g)))]
54 class = uncontrollable
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55 return LaplacianGraph(g, cont, score, class, L)
56 end
57 U = vecs^-1
58 has_zero(k) = any(almost_zero.(k))
59 ctrl(B) = !has_zero(U * B)
60 cont = [ctrl(B) for B in cont_vecs(nv(g))]
61
62 score = average(cont)
63 if score == 0.0
64 class = uncontrollable
65 elseif score == 1.0
66 class = essentially
67 else
68 class = conditionally
69 end
70 LaplacianGraph(g, cont, score, class, L)
71 end
72 export LaplacianGraph , LaplacianGraphBF , LaplacianGraphSmart
73
74
75 function edge_modifications(g)
76 res = []
77 for e in edges(g)
78 gm = copy(g)
79 rem_edge!(gm, e)
80 push!(res, gm)
81 end
82 return res
83 end
84 edge_resilience_essentially(lg) = average(gm.class == essentially for gm in

LaplacianGraph.(edge_modifications(lg.g)))
85 function find_perfect_edge_resilience(lgs)
86 perfect = []
87 for (i, lg) in enumerate(lgs)
88 if i % 1000 == 0
89 println("perfect_progress ", 100i / length(lgs))
90 end
91 if edge_resilience_essentially(lg) == 1.0
92 push!(perfect, lg)
93 end
94 end
95 return perfect
96 end
97
98 function vertex_modifications(g)
99 res = []
100 for v in vertices(g)
101 gm = copy(g)
102 rem_vertex!(gm, v)
103 push!(res, gm)
104 end
105 return res
106 end
107 vertex_resilience_essentially(lg) = average(gm.class == essentially for gm in

LaplacianGraph.(vertex_modifications(lg.g)))
108 function find_perfect_vertex_resilience(lgs)
109 perfect = []
110 for (i, lg) in enumerate(lgs)
111 if i % 1000 == 0
112 println("perfect_progress ", 100i / length(lgs))
113 end
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114 if vertex_resilience_essentially(lg) == 1.0
115 push!(perfect, lg)
116 end
117 end
118 return perfect
119 end
120 export find_perfect_edge_resilience , find_perfect_edge_resilience
121
122 function random_graph(n, p=0.5, condition=(g) -> true)
123 while true
124 g = SimpleGraph(n)
125 for (i, v1) in enumerate(vertices(g))
126 for v2 in view(vertices(g), i+1:nv(g))
127 if rand() < p
128 add_edge!(g, v1, v2)
129 end
130 end
131 end
132 if condition(g)
133 return g
134 end
135 end
136 end
137
138 export random_graph , random_graph_connected_asymmetric
139
140 graphs_dict(n) = loadgraphs("./graphs/connected -$n", Graph6Format())
141 graphs_list = values � graphs_dict
142 function separate(lgs::Vector{LaplacianGraph})
143 res = Dict(i => [] for i in instances(ContClass))
144 for g in lgs
145 push!(res[g.class], g)
146 end
147 @assert sum(length.(values(res))) == length(lgs)
148 return res
149 end
150 export graphs_dict , graphs_list , separate
151
152 end

7.2 util.jl
1 """
2 Utilities and helper function , that do not contain essential insights from LLFD

theory.
3 """
4 module LLFDUtil
5 using LinearAlgebraX
6
7 almost_eq(a, b, tol=10^-9) = abs(a - b) < tol
8 almost_zero(v) = all(almost_eq.(0, v))
9 orth(a, b) = almost_eq(0, a � b)
10 repeated(v) = any(almost_eq(v[i], v[i+1]) for i in 1:length(v)-1)
11 export almost_eq , almost_zero , orth, repeated
12
13 function controllability_matrix(A, B)::Matrix{Int64}
14 @assert (n = length(B)) == size(A, 1) == size(A, 2)
15 res = zeros(Int64, n, n)
16 res[:, 1] = B
17 for i in 2:n
18 res[:, i] = A * res[:, i-1]

23



19 end
20 return res
21 end
22 function is_controllable(A, B)
23 @assert (n = size(A, 1)) == size(A, 2)
24 rank(controllability_matrix(A, B)) == n
25 end
26 function is_controllable_x(A, B)
27 @assert (n = size(A, 1)) == size(A, 2)
28 rankx(controllability_matrix(A, B)) == n
29 end
30 export is_controllable , is_controllable_x
31
32 function all_bin_vecs(n::Int64)
33 if n == 0
34 return []
35 elseif n == 1
36 return [[0], [1]]
37 end
38 smaller = all_bin_vecs(n - 1)
39 return vcat([[s; 0] for s in smaller], [[s; 1] for s in smaller])
40 end
41 generate_cont_vecs(n::Int64) = [push!(b, 0) for b in all_bin_vecs(n - 1) if sum

(b) > 0]
42 export generate_cont_vecs
43
44 average(iter) = sum(iter) / length(iter)
45 export average
46
47 class_counts(dict) = Dict(k => length(v) for (k, v) in dict)
48 export class_counts
49
50 function track_progress(i, k, reports=10)
51 if i % floor(k / reports) == 0
52 println("progress $(round(100i/k, digits=2))%")
53 end
54 end
55 export track_progress
56
57 end

7.3 test.jl
1 """
2 Here we test functions from main.jl and use them to find numerical results to

some of our research questions.
3 """
4
5 using Pkg
6 Pkg.activate(".")
7
8 using Plots
9 using GraphRecipes
10 using Graphs
11 using CSV
12 using DataFrames
13
14 include("main.jl")
15 using .LLFD
16 include("util.jl")
17 using .LLFDUtil
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18 include("color_refinement.jl")
19 using .ColorRefinement
20
21 show(g::Graph) = graphplot(g, show=true)
22
23 function assert_classification(expected , actual)
24 total = sum � values
25 if total(expected) != total(actual)
26 prinln("Expected and actual disagree on the number of graphs!")
27 end
28 if !(expected == actual)
29 println("actual - expected")
30 diff = Dict(e => actual[e] - expected[e] for e in instances(ContClass))
31 display(diff)
32 println("Percentage wrong: ", sum(abs.(values(diff))) / 2 / sum(value(

expected)) * 100)
33 error("Wrong answer!")
34 end
35 end
36
37 function test_classification(n)
38 correct_classes = Dict(
39 2 => Dict(
40 essentially => 1,
41 uncontrollable => 0,
42 conditionally => 0,
43 ),
44 3 => Dict(
45 essentially => 0,
46 uncontrollable => 1,
47 conditionally => 1,
48 ),
49 4 => Dict(
50 essentially => 0,
51 uncontrollable => 4,
52 conditionally => 2,
53 ),
54 5 => Dict(
55 essentially => 0,
56 uncontrollable => 11,
57 conditionally => 10,
58 ),
59 6 => Dict(
60 essentially => 4,
61 uncontrollable => 59,
62 conditionally => 49,
63 ),
64 7 => Dict(
65 essentially => 84,
66 uncontrollable => 264,
67 conditionally => 505,
68 ),
69 8 => Dict(
70 essentially => 1992,
71 uncontrollable => 2764,
72 conditionally => 6361,
73 ),
74 9 => Dict(
75 essentially => 94084,
76 uncontrollable => 29750,
77 conditionally => 137246,
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78 ),
79 )
80 separated = separate(LaplacianGraphSmart.(graphs_list(n)))
81 cc = class_counts(separated)
82 display(cc)
83 assert_classification(correct_classes[n], cc)
84 end
85
86 function test_resilience()
87 resilience_scores = [edge_resilience_essentialy(es) for es in separated[

essentially]]
88 display(resilience_scores)
89 println(maximum(resilience_scores))
90 resilience_scores
91 end
92
93 function save_graphs(lgs, filename , graphs_dict)
94 gs = getproperty.(lgs, :g)
95 d = Dict(k => v for (k, v) in graphs_dict if v in gs)
96 println("number of perfect: ", length(d))
97 if length(d) > 0
98 savegraph(filename , d)
99 end
100 end
101 function find_perect_vertex(n)
102 graphs_dict , graphs, separated , lgraphs = init(n)
103 save_graphs(find_pefect_vertex_resiliance(separated[essentially]), "

vertex_perfect -$n", graphs_dict)
104 end
105
106 function find_perfect(n)
107 graphs_dict , graphs, separated , lgraphs = init(n)
108 edge_perfect = []
109 vertex_perfect = []
110 for e in (essentially , conditionally , uncontrollable)
111 println(e)
112 ep = find_pefect_edge_resiliance(separated[e])
113 println("edge ", length(ep))
114 append!(edge_perfect , ep)
115 vp = find_pefect_vertex_resiliance(separated[e])
116 println("vertex ", length(vp))
117 append!(vertex_perfect , vp)
118 println()
119 end
120 println("Total edge perfect: ", length(edge_perfect))
121 println("Total vertex perfect: ", length(vertex_perfect))
122 save_graphs(edge_perfect , "edge_perfect", graphs_dict)
123 save_graphs(vertex_perfect , "vertex_perfect", graphs_dict)
124 end
125 function test_color_ref()
126 n = 9
127
128 graphs_dict , graphs, separated , lgraphs = init(n)
129 test_color_ref()
130
131 for e in instances(ContClass)
132 println(e)
133 average(has_discrete(lg.g) for lg in separated[e]) |> println
134 end
135 end
136 function test_asymetric_color_ref()
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137 include("color_refinement.jl")
138 n = 9
139 asgs = loadgraphs("graphs/asymetric -$n", Graph6Format())
140 println("asymetric grahps: ", length(asgs))
141 average(has_discrete(g) for g in values(asgs)) |> println
142 @assert all(asymmetric(g) for g in values(asgs))
143 end
144
145 function test_random(n, k)
146 include("color_refinement.jl")
147 ess = 0
148 con = 0
149 unc = 0
150 color_refined_ess = 0
151 color_refined_cond = 0
152
153 for i in 1:k
154 if 100i % k == 0
155 println("progress $(100i/k)%")
156 end
157 g = random_connected_graph(n)
158 lg = LaplacianGraph(g)
159 if lg.class == essentially
160 ess += 1
161 hd = has_discrete(g)
162 if !hd
163 println("Counter example!")
164 display(Matrix(adjacency_matrix(g)))
165 end
166 color_refined_ess += hd
167
168 elseif lg.class == conditionally
169 con += 1
170 color_refined_cond += has_discrete(g)
171 else
172 unc += 1
173 end
174 end
175 println("Probability essentially: ", ess / k)
176 println("Probability conditionally: ", con / k)
177 println("Probability color refined (essentially): ", color_refined_ess /

ess)
178 println("Probability color refined (conditionally): ", color_refined_cond /

con)
179
180 end
181 function test_random_asymetric(n, k)
182 include("color_refinement.jl")
183 found = 0
184 for i in 1:k
185 if 100i % k == 0
186 println("progress $(100i/k)%")
187 end
188 g = random_connected_graph(n)
189 if asymmetric(g) && !has_discrete(g)
190 found += 1
191 end
192 end
193 println("Rebels ", found)
194 end
195 function test_random(n, decimal_prec=2)
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196 function random_graph_connected_asymmetric(n, p=0.5)
197 @assert n >= 6 "There are no asymmetric graphs with less than 6

vertices!"
198 random_graph(n, p, (g) -> is_connected(g) && asymmetric(g))
199 end
200
201 signif = 0.95
202 a = 1 - signif
203 abs_error = 4.9 * 10.0^(-(decimal_prec + 1))
204 trials = ceil(Int64, log(2 / a) / (2abs_error^2))
205
206 println("Trials needed for $decimal_prec (abs error $abs_error) at

significance $signif:\n$trials")
207 ess = 0
208 for i in 1:trials
209 track_progress(i, trials)
210 g = random_graph_connected_asymmetric(n)
211 lg = LaplacianGraphSmart(g)
212 if lg.class == essentially
213 ess += 1
214 end
215 end
216 prob_ess = round(ess / trials, digits=decimal_prec)
217 println("For n=$n")
218 println("Probability of essen. cont.: \t$prob_ess")
219 println()
220 return prob_ess
221 end
222
223 function analyze_random(range=9:16, decimal_prec=2)
224 df = DataFrame(n=Int[], ess=Float64[])
225
226 for n in range
227 ess = test_random(n, decimal_prec)
228 push!(df, (n, ess))
229 end
230 CSV.write("random_graph_analysis.csv", df)
231 end

7.4 graphs/gen-graphs.sh

You have to run this script to generate all files with unlabelled and asymmetric graphs.
1 # Install Nauty before use for the geng and pickg binaries!
2 # https://pallini.di.uniroma1.it/
3 # Check if exactly one argument is provided
4 if [ $# -ne 1 ]; then
5 echo "Usage: $0 [n]"
6 echo " [n] is the number of vertices in the graph.
7 exit 1
8 fi
9
10 touch connected -$1
11 geng -c $1 > connected -$1
12 pickg -a1 < connected -$1 > asymetric -$1
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