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SUMMARY 

Groundwater is an important part of the water availability in the Netherlands and serves as a 

necessary source for agriculture, industry, drinking water and nature. To protect the groundwater 

availability, it is crucial to monitor groundwater levels as this provides insight into current 

groundwater conditions. The dry summer of 2018 demonstrated that sufficient groundwater 

availability cannot be guaranteed every year, in large parts of the Netherlands. Among other things, a 

changing climate, increased groundwater withdrawals and changes in the water system have made 

the Netherlands vulnerable to groundwater droughts. Therefore, it is important to have insight in the 

long-term behaviour of groundwater levels, to make optimal and justified decisions on groundwater 

policy and the implementation of structural measures. However, the limited availability and 

applicability of long-term groundwater observations hinders the understanding of long-term 

groundwater fluctuations, the classification of extreme dry conditions, and the frequency of extreme 

drought events. 

This study presents long-term groundwater levels for four locations in the Netherlands. For the first 

time, a data-driven time series model is combined with historical meteorological data to simulate 

groundwater levels for the period 1910-2022. The time series analysis is conducted using a transfer 

function-noise model, in which fluctuations of groundwater levels are modelled by precipitation and 

evaporation data. The simulated groundwater levels are historical projections based on the current 

climate and groundwater system, which allows for different drought statistics to be derived and 

compared with groundwater observations. The findings of this study indicate that groundwater 

observations over the last eight years do not provide a comprehensive representation of long-term 

groundwater levels. Long-term groundwater simulations offer improved insights, particularly in 

estimating return periods of droughts. Furthermore, the choice of drought statistic plays a crucial 

role the characterisation of drought intensity, duration, and frequency. 

 

Figure 1: Differences in return periods between groundwater observations (2012-2020) and long-term simulations. 

The figure above shows an example of the drought characterisation using annual minimum 

groundwater levels. The drought of 2018 occurs less frequently than expected based on observations 

(Figure 1a). Groundwater levels like those observed in the 2018 drought appear every 12 years based 

on observations. However, long-term simulations suggest a lower frequency, with similar levels 

occurring only once every 25 years. Moreover, if a measure is justified for droughts that occur on 

average every 10 years (T10), the intervention would be taken too late or not at all, based on 

observations (Figure 1b). Therefore, the use of long-term simulations with historical meteorological 

data gives an improved insight in return periods for current droughts.  
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1 INTRODUCTION 

The Netherlands has a substantial groundwater reservoir, which serves various crucial purposes, 

including supply for drinking water, industrial, and agricultural practices. Additionally, groundwater 

determines the baseflow of streams, water management in urban areas and is necessary for plant 

growth in nature (Geologische Dienst Nederland, 2023). Phreatic groundwater levels increase when 

the amount of precipitation exceeds evaporation rates. This establishes a seasonal pattern 

characterised by higher groundwater levels during the winter and lower groundwater levels during 

the summer, due to increased evaporation. Phreatic groundwater also drains to surface water and 

deeper layers. Imbalances in groundwater levels, whether too high or too low, lead to various 

challenges and issues. 

Hydrological droughts can occur as a result of prolonged periods of precipitation deficit, leading to a 

decline in groundwater levels due to insufficient groundwater recharge combined with increased 

abstraction, posing a significant threat to water availability. The recent droughts in 2018 and 2022 

have provided a lot of attention regarding hydrological droughts due to severe damage to a wide 

range of sectors (Brakkee et al., 2021). In 2018, declining water reserves inflicted substantial damage, 

mainly to agriculture, but also to navigation, drinking water and industry, with estimated economic 

losses ranging from 450 to 2080 million euros (Van Hussen et al., 2019). Moreover, the increase in 

climate variability is expected to lead to even drier years in the future (Philip et al., 2020). In addition, 

a growing population requires changes in land use and an increased water demand. All these factors 

put pressure on the groundwater availability. Well-informed groundwater management and insight 

in the extremes of droughts is needed to overcome these challenges. 

The existing design and use of the water system has left areas vulnerable to droughts because 

groundwater levels decline faster in times of low precipitation. Drainage through pipes, ditches and 

streams, groundwater withdrawals for drinking water and agricultural irrigation play an important 

part. In a country that has traditionally prioritised discharging precipitation, the drought in 2018 was 

perceived as a turning point by many.  

To move towards a climate-resilient groundwater system, it is necessary to have a proper 

understanding of the hydrological state of the water system (van den Eertwegh et al., 2021). 

Effectively mitigating the effects of droughts depends on gaining insight into (extremely) low 

groundwater levels. This is because groundwater is the most persistent water storage in the 

landscape and the last to respond when a meteorological drought propagates through the 

hydrological system (Van Loon, 2013). 

The analysis of groundwater conditions is based on groundwater measurements but can be improved 

by using groundwater models, which are valuable tools to describe groundwater level fluctuations. 

Among these models, time series modelling is commonly used. The time series model used in this 

study is a transfer function-noise model (TFN). TFN modelling uses regression to establish a 

relationship between various stress factors, such as precipitation and evaporation, and observed 

groundwater levels. This relationship can be used to extend or interpolate observed time series of 

groundwater levels. The use of precipitation and evaporation data is constrained by the length of 

observed meteorological time series. To extend observed time series of groundwater levels, it 

becomes necessary to use climate models or synthetic meteorological data. In this study, a 

detrended historical meteorological series is used, developed by HKV (Pezij & Lugt, 2023). 

This study is the first to use a time series model with historical meteorological data to provide long-

term groundwater levels for four monitoring wells in the Netherlands.  
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1.1 PROBLEM CONTEXT 
Monitoring the status of groundwater resources is a crucial component of drought management. 

Droughts are assessed as deviations relative to ‘normal’ conditions. Groundwater measurements are 

the primary source to determine this reference. Therefore, the amount of groundwater 

measurements determines the description of current groundwater conditions, i.e. to determine 

when it is dry. Therefore, it is crucial to have information about long-term groundwater levels, which 

requires a minimum 30-year measurement period (van den Eertwegh et al., 2021). To identify 

extreme droughts, even longer series would be required. For instance, extreme value statistics 

necessitate a minimum sample size of 50 years (McCluskey et al., 2021). However, due to limited 

quality and amount of available groundwater measurements, describing groundwater droughts 

remains challenging (Brakkee et al., 2021).  

In practice, reliable long-term groundwater measurements (over a period of 50 years) are hardly 

available in the Netherlands (Ritzema et al., 2012; van den Eertwegh et al., 2021). 110 groundwater 

monitoring wells have measurements for more than 50 years, while only 6 wells have measurements 

exceeding 80 years (Verhagen & Avis, 2021). Furthermore, the locations of these measurements are 

unevenly distributed across the Netherlands, such that there are large parts of the country where 

there is insufficient coverage with time series longer than 50 years. Most importantly, these historical 

groundwater measurements are not representative of the current situation due to the changes in the 

climate and water system, so that only measurements from recent years can be used to describe 

groundwater droughts. This results in a limited understanding of groundwater droughts, and thus 

lack in describing: 

• Long-term (> 100-year) fluctuations of groundwater levels. 

• Classification of extreme dry conditions. 

• Frequency of groundwater droughts. 

As a result, it is currently difficult to assess the severity and occurrence of groundwater levels during 

summer months, when the groundwater levels drop due to precipitation deficits. This lack of insight 

in describing extreme groundwater levels hinders the implementation of appropriate measures such 

as irrigation restrictions. 

Additionally, the use of meteorological data in time series modelling shows potential for simulating 

long-term groundwater level time series (El Mezouary et al., 2020; Vonk, 2021). However, it remains 

uncertain whether long-term simulations contribute to the understanding of extreme groundwater 

levels and improve the characterisation of groundwater droughts. Also used for the first time are 

historical detrended meteorological data developed by HKV (Pezij & Lugt, 2023). However, it is 

unsure whether this dataset is appropriate to use to simulate long-term groundwater levels. 
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1.2 RESEARCH OBJECTIVE AND QUESTIONS 
The objective of this study is:  

To improve the understanding of the severity and occurrence of groundwater droughts by simulating 

long-term groundwater levels for the period 1910-2022 that represent the current climate and 

groundwater system. 

The research objective can be translated into the following main research question:  

Main research question: To what extent can groundwater measurements describe the 

severity and occurrence of groundwater droughts? 

And the following sub-questions: 

RQ1: How do different drought statistics describe relevant properties of groundwater 

droughts? 

RQ2: To what extent do the climatological properties of the historical meteorological time 

series match the current climate?  

RQ3: How can you use historical meteorological time series to simulate long-term 

groundwater heads? 

RQ4: How do drought properties differ when drought statistics are derived from long-term 

groundwater levels? 

1.3 READING GUIDE 
The theoretical background of this study is provided in the second chapter. The third chapter 

presents the research steps, study area and data. In this, the first research question is already 

answered by providing a methodology to describe groundwater droughts. Chapter 4 shows the 

simulation of long-term groundwater series. In chapter 5, drought statistics of observed and 

simulated groundwater levels are derived and compared. This is followed by a discussion of the 

validity and interpretation of the results in Chapter 6. Chapter 7 contains the main conclusions and 

chapter 8 makes recommendations for further research and practical use.  
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2 THEORETICAL BACKGROUND 

The theoretical background is elaborated in the following paragraphs. First, background information 

is given about groundwater and the factors influencing groundwater levels. Next, the different stages 

of droughts are presented. In the fourth paragraph, various statistical methods are described. Lastly, 

the transfer function-noise model is explained. 

2.1 GROUNDWATER WITHIN THE HYDROLOGICAL CYCLE 
The hydrological cycle of the Earth consists of various processes (Figure 2). Groundwater is a major 

storage within the hydrological cycle. The cycle starts with evaporation of water. Evaporation occurs 

from soil and surface water. Vegetation also transpires, since water vapour escapes from stomata 

when plants photosynthesise. Therefore, the sum of this process is referred to as evapotranspiration. 

Evaporated water comes back as precipitation. Precipitation either flows over the surface towards 

lakes and rivers (surface runoff) or infiltrates into the soil. This process of infiltration saturates the 

soil by filling up space between soil particles. The part of the ground which is not fully saturated is 

known as the unsaturated or vadose zone and the water in the pores soil moisture. Water in parts of 

the soil that are fully saturated is called groundwater. Infiltrated water can percolate further towards 

deeper groundwater storages (aquifers).  

The phreatic groundwater table marks the boundary between the saturated and unsaturated zones 

of the soil. Depending on the difference between groundwater table and surface water level 

groundwater can drain to surface water. However, this movement is relatively slow (Hoekstra, 2018), 

the average residence time of deep groundwater (100 to 200 years) is significantly longer than that 

of soil moisture (1 to 2 months), lakes (50 to 100 years), and rivers (2 to 6 months) (Pidwirny, 2006). 

This makes groundwater act as a buffer, being replenished in times of rainfall surpluses and being 

depleted gradually over time. The deep groundwater flows so slow, that it is often referred to as a 

finite resource, since extractions easily surpass replenishing rates (Hoekstra, 2018). 

 

Figure 2: Hydrological cycle (The editors of Encyclopaedia Britannica, 2023). 
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2.2 GROUNDWATER MONITORING 
Groundwater measurements are the principal source of information about groundwater levels. Four 

common methods exist to measure the phreatic groundwater level: monitoring wells, piezometers, 

open boreholes and field estimates, of which the first two are the most reliable (Ritzema et al., 

2012). Groundwater monitoring wells are shallow monitoring wells that measure a head that 

deviates little from the phreatic groundwater level. Piezometers are monitoring wells that measure 

heads in deeper soil layers (Bouma et al., 2012). Field estimates are estimates of physical 

groundwater levels and mainly a tool to determine the location of open boreholes and not suitable 

for validation purposes (Ritzema et al., 2012). 

Groundwater levels are dynamic and constantly vary due to short and long-term changes in 

meteorological conditions, climate, groundwater withdrawals and land use (Alley & Taylor, 2002; 

Ritzema et al., 2012). Therefore, it is important to measure groundwater levels at multiple locations. 

The location of groundwater measurements is key to reliable observations. Groundwater levels can 

vary spatially due to soil types and elevation differences, nearby surface water (Figure 3), 

groundwater withdrawals, presence of hard surfaces and drainage. Therefore, monitoring wells 

should be placed in a safe and protected location where the groundwater levels are representative 

for the surrounding area (Bouma et al., 2012).  

 

 

Figure 3: Subsurface groundwater flow, observation well and some hydrological elements (Alley & Taylor, 2002). 

2.3 CLASSIFICATION OF DROUGHTS 
Droughts are recurrent features of the climate that results from a shortfall in precipitation or 

increase in evapotranspiration over an extended period of time (European Drought Observatory, 

2023), and leads to an unusual and temporary deficit in the water availability of water storages. A 

deficit occurs when the demand for groundwater is greater than the availability of groundwater. 

Generally, droughts can be classified in several categories, depending on their impact and prevailing 

effect on the hydrological system.  
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Meteorological droughts refer to an extensive period of abnormal precipitation deficit, in relation to 

the long-term average conditions for a region. The KNMI uses precipitation deficit or the 

Standardised Precipitation Index (SPI) to indicate meteorological droughts (KNMI, 2021b). The SPI is a 

statistical indicator comparing the actual precipitation with the long-term precipitation distribution 

for the same period at that location.  

When a meteorological drought continues for longer periods and leads to a soil moisture deficit, the 

result is a soil moisture drought. In this situation, the drought limits the water availability for natural 

vegetation and crops. The European Drought Observatory uses the Combined Drought Indicator (CDI) 

to identify areas affected by soil moisture droughts. This indicator is computed by combining the 

anomalies of precipitation, soil moisture and satellite-measured plant growth (European Drought 

Observatory, 2023). 

A hydrological drought is related to the effects on surface or sub-surface water supply, such as 

below-normal reservoir and lake levels, groundwater levels and declining river discharge.  

The last type of drought is socio-economic drought, which occurs when the shortfall in water 

availability results in a disruption of the water resources system, such that the supply does not meet 

the economic demand. It can also refer to the ecological or health-related impacts of droughts.  

Droughts are known to propagate over time (Schumacher et al., 2022; Van Loon, 2013), since a 

prolonged precipitation deficiency generates less input to the hydrological system. 

2.4 STATISTICAL METHODS   
Statistical analysis involves the characterisation of groundwater level occurrences. These 

characteristics encompass central tendencies (mean, median, mode), dispersion (standard deviation, 

variance), and the assessment of extreme event probabilities. Statistical methods serve the purpose 

of describing and making inferences about groundwater level behaviour. No single optimised method 

exists to derive groundwater statistics. Therefore, within the theoretical background of this study, 

various statistical methods are described and used to characterise groundwater droughts. The 

methods include percentiles, average low groundwater level (GLG), Standardised Groundwater Index 

(SGI) and extreme value statistics (EVA). The following sections provide a description of the 

aforementioned statistics. 

2.4.1 Percentiles  

A percentile is a statistical measure that indicates the percentage of data points below a specific 

value. For example, the 50th percentile (also known as the median) represents the middle point of 

the dataset, where 50% of the data points are below this value. The value of the pth percentile can be 

determined using the following: 

𝑃 =
𝑝

100
∗ 𝑁  (1) 

Where P is the position of the sorted groundwater levels that belongs to percentile p using N 

observations. In this method, current groundwater levels are compared with other groundwater 

levels over a specified period, making use of percentiles. Interpreting this comparison offers an 

assessment of whether the measured groundwater levels are dry, moderate, or wet, depending on 

their percentile rank, giving insight into the drought conditions of current groundwater levels. 

Percentiles are currently used in some databases of provinces and regional water authorities in the 

Netherlands (such as Province of Brabant and Waterschap Rijn en IJssel) and in the database of the 

Geologische Dienst Nederland to display groundwater levels (Zaadnoordijk et al., 2019). 
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2.4.2 Average low groundwater Level (GLG) 

Statistics can also be used to describe the average annual fluctuations of groundwater levels, often 

referred to as grondwater dynamics or groundwater regime. The annual groundwater fluctuations 

can be characterised by using certain parameters, such as the average low (GLG) and average high 

(GHG) groundwater levels (van der Gaast et al., 2010) (Figure 4). Alongside the average low and high 

groundwater levels, parameters also exist for the Average Spring Groundwater level (GVG) and 

Average Groundwater level (GG). The collective term for all these parameters is the GXG. 

 

Figure 4: Describing the annual fluctuations of groundwater using the parameters GLG and GHG. 

The most useful parameter for droughts is the average low groundwater Level (GLG) since it can be 

interpreted as the average summer groundwater level and is often used as a general indicator of low 

groundwater levels. The GLG is therefore not indicating an extremely dry situation (Zaadnoordijk et 

al., 2019). The GLG can be defined as the average of the three lowest annual groundwater levels, 

averaged over a period of at least eight years: 

𝐺𝐿𝐺 =  
∑ 𝐿𝐺3𝑛

1

𝑛
(2) 

Where LG3 is the average of the three lowest groundwater levels in a hydrological year [m +NAP], 

and n is the number of years whose LG3 has been determined which should be at least eight 

hydrological years during which no hydrological interventions have taken place. The GLG is used in 

combination with the GHG in the Dutch method “grondwatertrappen” (de Gruijter et al., 2004; 

Hoogland et al., 2014; Knotters et al., 2018; van Kekem et al., 2005), involving various stages of 

combinations of average low and average high groundwater levels to provide a nationwide 

description of the groundwater dynamics (Knotters et al., 2018). The GLG statistic is also used to 

indicate low groundwater levels in the database of the Geologische Dienst Nederland (Zaadnoordijk 

et al., 2019).  

2.4.3 Standardised Groundwater Index (SGI) 

The Standardised Groundwater Index (SGI) standardises the fluctuations of groundwater time series 

to characterise groundwater droughts (Bloomfield & Marchant, 2013). Its primary purpose is to 

standardise groundwater data by transforming groundwater levels into a standardised index. The 

method is similar to the Standardised Precipitation Index, an index used to evaluate precipitation 

deficits (Devesa, 2023; KNMI, 2021b).  

 



13 
 

The calculation of the index values is based on nonparametric transformation, instead of distribution 

fitting (Bloomfield & Marchant, 2013). This means that the measured groundwater heads are 

transformed to a normal distribution, and minimal assumptions are made about the underlying 

distribution of the data. For each calendar month with n observations, probability values are 

uniformly spaced over interval (1/2n) to (1 – 1/2n) (Brakkee et al., 2021). The corresponding SGI 

values are found by applying a normal inverse cumulative distribution function to these values 

(Marchant & Bloomfield, 2018). The resulting SGI values are assigned to the groundwater levels by 

their rank from low to high (Brakkee et al., 2021), which can be formulated as:  

𝑆𝐺𝐼 = 𝐹−1(𝑝) (3) 

Where F-1 is the inverse of the cumulative function of a normal distribution and p is the probability 

between 0 and 1. So basically, for every month, uniformly spaced probability values are assigned to 

groundwater levels, and these are transformed to a standardised index value using an inverse of the 

cumulative function of a normal distribution. SGI values can be understood as standardised 

variations from the historical mean. Positive SGI values indicate groundwater levels above average, 

while negative values signify groundwater levels below the historical average. 

The SGI can be determined for different time scales, reflecting different types of droughts (Guo et al., 

2021). The SGI is often determined for periods of 90 days (3 months; SGI-3), 30 days (1 month; SGI-1) 

or 10 days (SGI-0). Therefore, the value of the index is an average of the preceding 90, 30 or 10 days 

(Bloomfield & Marchant, 2013; van den Eertwegh et al., 2021). The droogteportaal uses different 

time scales of the SGI to show the actual drought conditions for monitoring wells in the Netherlands 

(van den Eertwegh et al., 2021)1.  

2.4.4 Extreme value analysis (EVA) 

Extreme value analysis involves fitting an extreme value distribution to the tail of a probability 

distribution. EVA deals with the characterisation of the tails of a distribution, where extreme 

observations occur, such as extreme low groundwater levels. Extreme value statistics aims to predict 

probabilities for rare events using the probability of exceedance. Generally, two main approaches for 

extreme value statistics exist, which are Block Maxima (BM) and Peak Over Threshold (POT). When a 

block of one year is selected, annual minima (or maxima) are obtained. When applied to 

groundwater measurements, the Annual Minima (AM) technique consists of sampling the minimum 

groundwater level for every calendar or hydrological year. This is a simple method to determine the 

general trend of the lowest groundwater levels on a yearly basis (Škarpich et al., 2016).  

An extreme value distribution can be fitted with the selection of (annual) minima values. The 

selection of the most suitable distribution is based on the Akaike Information Criterion (AIC) value, 

which measures the fit of a distribution in relation to other distributions. For Block Maxima extreme 

values, the best fit is often a generalized extreme value (GEV) distribution function: 

𝐺𝐸𝑉(𝜇, 𝜎, 𝜁) =  𝑒
−(1+𝜉(

𝑧−𝜇
𝜎

))
−

1
𝜉

(4)
 

Where µ is the location parameter [-], σ is the scale parameter [-] and ξ is the shape parameter [-]. If 

ξ = 0, the distribution is known as a Gumbel distribution. Extreme value analysis is a commonly used 

method for other hydrological events such as precipitation, streamflow, discharge, and lake levels 

(Dawley et al., 2019; Katz et al., 2002). 

 
1 www.droogteportaal.nl 
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2.5 TRANSFER FUNCTION-NOISE MODELLING 
Transfer function-noise modelling is a form of time series analysis that estimates output series using 

one or multiple input series, based on impulse response functions and a noise model. A relationship 

is sought between observed groundwater levels and input stresses, like precipitation and 

evaporation, in the form of impulse response functions. The goal of the modelling is to define the 

impulse response functions using observational data and use those in combination with other input 

stress data to simulate groundwater levels. Many studies have shown the effectiveness of using 

transfer function-noise modelling in groundwater studies (Collenteur et al., 2021; El Mezouary et al., 

2020; Mohanasundaram et al., 2017; Pezij et al., 2020; Ratering, 2023; Von Asmuth et al., 2002; 

Vonk, 2021; Zaadnoordijk et al., 2019). This data-driven approach is commonly simpler and faster 

than developing a numerical groundwater model (M. Bakker & Schaars, 2019) and does not need 

prior assumptions on model structure (Peterson & Western, 2014). Furthermore, the response of a 

water system to input stresses is included, which increases our understanding of the effects of an 

input stress (Pezij et al., 2020). Lastly, the stochastic system dynamics are modelled using a noise 

model (Von Asmuth et al., 2002). Commonly used tools for time series analysis are Menyanthes (von 

Asmuth et al., 2012), Hydrosight (Peterson & Western, 2014) and Pastas (Collenteur et al., 2019).  

Pastas will be used in this study and is an open-source python package developed by TU Delft, Artesia 

and TU Graz (Collenteur et al., 2019). The objective of Pastas is to provide a scientific framework to 

develop and test new methods and to provide a tool for groundwater research. Pastas implements 

transfer function-noise models to simulate time series of groundwater heads using Predefined 

Impulse Response Functions in Continuous Time (PIRFICT) (Von Asmuth et al., 2002), in which time 

series are modelled as follows: 

ℎ(𝑡) = ∑ ℎ𝑚(𝑡) + 𝑑 + 𝑟(𝑡)

𝑀

𝑚=1

 (5) 

In which h(t) is the observed groundwater head [m], hm(t) is the contribution of input stress m 

(impulse response function), d is the base level of the model, and r(t) is the model residual 

(Collenteur et al., 2019). This formula describes the impact of different stresses to observed 

groundwater heads, comprising of a base level, response functions of different input stresses and 

residuals. The base level d is a constant parameter without physical meaning which is used to correct 

the model. Sometimes the parameter is considered the base drainage, the equilibrium level of 

groundwater when all input stresses are zero. However, this interpretation is not always correct. The 

base level can be determined using an average of the residuals after a simulation, or to include the 

parameter in the calibration (Collenteur et al., 2019). 

The fluctuations in groundwater heads can be caused by a variety of factors. The effect of an input 

stress can differ depending on the model structure. Therefore, the choice of model structure has 

impact on the results. There are two types of input stresses, measured and ambient influences. 

Ambient influences have no available time series which can be used to determine the effect on the 

groundwater heads, making it more difficult to model the response of the groundwater level for the 

input stress. These include changing land use or interventions in the water system. These are 

typically modelled by including a trend which corrects the model for this ambient influence. 

Measured input stresses are influences with available time series to determine the effect on the 

groundwater head. Most common examples are precipitation, evapotranspiration, groundwater 

extractions, surface water levels. The contributions of these influences can be determined using 

impulse response functions.  
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2.5.1 Impulse response functions 

The contribution of input stresses to the groundwater heads can be determined using impulse 

response functions (hm(t) from Eq. 5): 

ℎ𝑚(𝑡) = ∫ 𝑆𝑚(𝜏)𝜗𝑚(𝑡 − 𝜏)𝑑𝜏
𝑡

−∞

 (6) 

In which Sm is the time series of a certain input stress m and ϑm is the impulse response function of m 

(Von Asmuth et al., 2002). The impulse response function describes the behaviour of groundwater 

head following an impulse of a certain input stress. Many different impulse response functions exist, 

depending on the type of input stress and on the study area. A simple impulse response function is 

the exponential function (Von Asmuth et al., 2021), in which only two parameters have to be fitted to 

the observed groundwater heads: 

𝜗(𝑡) = 𝐴𝑒−
𝑡

𝑎 (7)  

A gamma impulse response function has three parameters, and thus can describe the effect of 

groundwater infiltration better than an exponential function: 

𝜗(𝑡) = 𝐴𝑡𝑛−1𝑒−
𝑡
𝑎  (8) 

Other impulse response functions are FourParam, Hantush, Polder, Double Exponential, Edelman and 

the Hantush Well Model (Collenteur et al., 2019). 

The input stresses of precipitation and evaporation can also be combined into one recharge stress 

model, instead of modelling two separate stresses. Since groundwater heads do not behave the 

same after an equal impulse of either evaporation or precipitation, there are various approaches to 

model the recharge stress. These different approaches increase the accuracy because of their ability 

to describe the recharge flux. One simple method is linear recharge (Obergfell et al., 2019). There are 

also non-linear recharge stress models like TARSO (Von Asmuth et al., 2021), Berendrecht, Peterson 

(Peterson & Western, 2014) and FlexModel (Collenteur et al., 2021). The modelling in this study 

included testing different stress models, however just modelling recharge as precipitation minus 

evaporation proved to yield the best results (Table 20, Appendix E: Use of different stress models).  

2.5.2 Noise model 

Another important part of the time series modelling is the noise model. A noise model is used to 

reduce the model residuals and simulate the stochastic system behaviour. The residual is the 

difference between the observed and simulated groundwater heads, meaning the groundwater 

which could not be simulated by responses to the input stresses (r in equation 4). Often, the 

residuals from the model are correlated, resulting in the residual being dependent on the residual of 

the previous day. Since this effect can attenuate for several days, the model may simulate excessive 

groundwater heads. Therefore, correlated noise is implemented using the following formula for 

exponential decay (Collenteur et al., 2019): 

𝑛𝑐(𝑡) = 𝑒−
1
𝛼 ∙ 𝑛𝑐(𝑡 − 1) + 𝑛(𝑡) (9) 

In which nc is the correlated noise, α is the noise decay parameter and n is the uncorrelated (white) 

noise, result of a random process. The created noise series is added to the observed groundwater 

head (Collenteur et al., 2019). Without noise model it is impossible to make statistical predictions 

and analyse uncertainty of parameters (Von Asmuth et al., 2021). 
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3 METHODOLOGY 

3.1 RESEARCH STEPS 
The research steps are visualised in Figure 5: 

• In the first research question, an overview is given of statistical methods that describe 

groundwater drought conditions. The results of the first research question are already 

included in this chapter. 

• To use the historical meteorological data for long-term simulations, in the second research 

question, it must be validated whether it is representative of the current climate. 

• In the third research question, long-term groundwater levels are simulated using the 

validated historical meteorological data and time series analysis. Therefore, a transfer 

function-noise model is developed using groundwater measurements and observed 

meteorological data. Then, the fitted model is used to simulate long-term groundwater levels 

using the historical meteorological data. The long-term groundwater levels are also 

validated. 

• In the last research question, the methodology from the first research question is used to 

derive drought statistics of groundwater observations and simulations which are compared.  

 

Figure 5: Flow diagram of research steps 
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3.2 RQ1 – METHODOLOGY TO DERIVE DROUGHT STATISTICS 
The objective of the first research question is to explore statistical methods to describe groundwater 

drought conditions. First, relevant aspects of groundwater droughts are described. This is followed by 

the elaboration of the research question, as the results of this research question provide a 

methodology for the rest of the study. This contains the elaboration of the four methods from the 

theoretical background (section 2.4), describing how they characterise drought conditions. 

3.2.1 Characterising drought properties in groundwater levels 

The important aspects of droughts are identified to determine the ability of statistics to characterise 

droughts in groundwater levels. The aim is to provide insight into the duration, intensity and 

frequency of droughts, as these determine the impact (Petersen-Perlman et al., 2022). The extremity 

of a groundwater drought can therefore be assessed in terms of its intensity, its duration and its 

frequency: 

• Intensity refers to the severity of the groundwater deficit during the period of the drought. 

• The duration of a drought is the length of time during which the groundwater level remains 

below a defined threshold.  

• Frequency describes how often a given level of drought occurs. This can be expressed in 

terms of return periods or probability of exceedance. The return period is the average time 

interval between the recurrence of a particular drought event. For example, a return period 

of 10 years means that, on average, similar drought conditions are expected to occur once 

every 10 years. The probability of exceedance is the probability that a drought of a given 

intensity and duration will be exceeded in a given year. For example, a probability of 0.10 [-] 

means that there is a 10% chance of a drought of that intensity is exceeded each year. This 

results in an average of one event every 10 years.  

The frequency of a drought event can be determined for a certain drought intensity, such as the 

annual minimum groundwater level. The frequency of drought events is estimated using their 

plotting position (Benard & Bos-Levenbach, 1954), which is commonly used in hydrology:  

𝐹𝑖 =
𝑖 − 0.3

𝑁 + 0.4
  (10) 

In which 𝐹𝑖 is the plotting position for a specific drought intensity, which is the position on a 

frequency curve. 𝑖 denotes the rank number of the drought intensity, sorted from high to low, where 

the lowest values have a rank of 1. N is the total number of data values. The probability of 

exceedance is the survival function of 𝐹𝑖. The return period T is the inverse of the exceedance 

probability (Eq. 11). The return period indicates, on average, how often a drought event of a specific 

intensity and duration can be expected to occur: 

𝑇 =
1

1 − 𝐹𝑖

(11) 

3.2.2 Percentiles 

Percentiles are determined by first sorting a dataset in ascending order. Percentiles indicate the 

percentage of data points that fall below a certain value. Since groundwater levels fluctuate 

throughout the year, percentiles are generally determined per month, by resampling the data based 

on monthly averages, acknowledging that the groundwater level are typically higher in winter and 

lower in summer. The calculated percentile values are set to the first of the month. Ranges between 

two percentile values are indicated as coloured bands. This results in a regime curve that shows the 

fluctuations of the groundwater, using percentile ranges (Figure 6). 
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Figure 6: Example of a regime curve. The black line is the 50th percentile, the median. The coloured lines could represent the 
pth percentile, therefore the percentage of the groundwater levels that are below this line. The range between percentiles 

are classified to drought conditions. 

The classification of drought conditions to percentile values are shown in Table 1. The classification 

of the extremely dry groundwater levels is based on the current application of percentile methods 

for groundwater. Some references use the 2.5th percentile (Knotters et al., 2013), 5th percentile 

(Finke et al., 2001), but most sources use the 10th percentile (Averink, 2013; Zaadnoordijk et al., 

2019). The 1st and 99th percentiles are the minimum and maximum occurring groundwater levels. 

Table 1: Classification of percentiles. 

Classification Percentile bands 

Extremely dry 1st to 10th percentile 
Dry 10th to 25th percentile 
Moderate 25th to 75th percentile 
Wet 75th to 90th percentile 
Extremely Wet 90th to 99th percentile  

 

By interpreting the regime curve and percentile bands, valuable insights can be gained into the 

intensity, duration, and frequency of drought events. The percentile bands, along with their 

corresponding classifications, indicate the intensity of drought. The duration of drought corresponds 

to the period during which groundwater resides within a particular percentile band. The frequency of 

drought events depends on the total amount of measurement years and the particular percentile 

band of the drought. Since percentiles indicate the percentage of groundwater levels that exceed the 

specified percentile. 

3.2.3 Average low groundwater Level (GLG) 

The average low groundwater level (GLG) is the average of the 3 lowest groundwater levels per year 

and can be considered the average summer condition (as elaborated in 2.4.2). Alongside the GLG, the 

average high (GHG), average spring (GVG) and average groundwater level (GG) will be determined. 

Current groundwater levels can be plotted alongside a line of the GLG value to identify drought 

conditions (Figure 7). Next, the intensity is determined by measuring the difference between the 

lowest value of a drought event and the GLG line. In other words, it quantifies how much below the 

average summer conditions (represented by a GLG line) the groundwater levels have dropped during 

a specific drought event. Duration refers to the time period during which the groundwater levels 

remain consecutively below the GLG line. It measures how long the drought event persists with 

groundwater conditions falling below the established threshold. Frequency is calculated by 
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determining the return periods for drought events using the Bernard en Bos-Levenbach plotting 

positions (section 3.2.1). 

 

Figure 7: Example of characterising droughts. The horizontal line is the GLG, L is the duration of the drought. I is the intensity 
of the drought, the groundwater levels below GLG. The frequency of the drought is determined at the lowest point. 

3.2.4 Standardised Groundwater Index (SGI) 

The Standardised Groundwater Index (SGI) is determined by transforming groundwater levels to a 

normal distribution (as elaborated in 2.4.3). Therefore, SGI values can be understood as standardised 

variations from the historical mean. Positive SGI values indicate groundwater levels above the 

historical average, while negative values indicate groundwater levels below the historical average. 

The SGI value reflects the degree of this deviation and is used to classify drought conditions (Table 2). 

It is chosen to determine the SGI over a period of 3 months, which means that for any given day, the 

SGI is the average of the last 90 days. The SGI-3 reflects the characteristics of groundwater droughts 

(Guo et al., 2021), and makes it clearer to characterise droughts (Figure 52, Appendix C), due to the 

reduced short-term fluctuations.   

As a result, the SGI offers valuable insights into the intensity and duration of droughts by examining 

how far SGI values drop below zero (Table 2) and the duration for which they remain beneath zero 

(Hsin-Fu Yeh & Chang, 2019). The frequency of drought events can be assessed by estimating the 

return periods of annual minimum SGI values. 

Table 2: Index values representing groundwater drought conditions (Bloomfield & Marchant, 2013). 

Condition Criterion 

No drought SGI > 0 
Mild drought 0 > SGI > -1 
Moderate drought -1 ≥ SGI > -1.5 
Severe drought -1.5 ≥ SGI > -2 
Extreme drought -2 ≥ SGI 

3.2.5 Annual minima extreme value analysis (EVA) 

The analysis of extreme values is based on annual minima groundwater levels. The annual minimum 

extreme value analysis only takes into account the lowest groundwater level in one year. The analysis 

of extreme values provides insight into the probability and intensity of extreme occurrences over 

time. It does not inherently provide information about the duration of drought events, as a single 

value for each year is chosen. The intensity consists of the minimum groundwater level. The 

frequency of drought events is determined using the return periods for the annual minima. 
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Furthermore, an extreme value distribution is fitted to the annual minima values to extrapolate the 

frequency curve to a return period of 100 years (as elaborated in 2.4.4). 

3.2.6 Overview drought statistics 

Table 3 gives an overview of the different drought statistics which provide insight into the extremity 

of groundwater drought events. This includes the characterisation of droughts according to the 

properties intensity, duration, and frequency. The consecutive duration of a certain intensity is noted 

as [m, m + nm] which means that the intensity holds for period (months or day-of-year) m to m + nm. 

Table 3: Overview statistical methods that describe droughts using intensity, duration, and frequency. 

Statistical 

Methods 
Intensity Duration Frequency 

Percentiles P P for [m, m + nm] T(Pm) 

Average low 

groundwater 

Level (GLG) 

Min(H) < GLG H < GLG for [m, m + nm] T(min(H) < GLG) 

Standardised 

groundwater 

index (SGI) 

Min(SGI) < 0 SGI < 0 for [m, m + nm] T(min(SGI) < 0) 

Annual minima 

extreme value 

analysis (EVA) 

Min(H) 

  

- T(min(H)) 

 

  

3.3 RQ2 – VALIDATION OF HISTORICAL METEOROLOGICAL DATA 
The objective of the second research question is to validate whether the historical meteorological 

time series represents the current climate. To gain insight into the drought statistics of the current 

climate, it is important to have long-term data that is representative of the current climate. The 

validation is required to ensure that it is valid to use the historical data in the modelling part of this 

study. The historical meteorological dataset from HKV (Pezij & Lugt, 2023) contains nationwide daily 

precipitation and reference crop evaporation for the period 1910-2022 projected to the current 

climate, in contrast to other meteorological datasets (Appendix E: Additional historical 

meteorological series). The dataset was developed using daily measurements of precipitation and 

reference crop evaporation of various KNMI weather stations. The precipitation and evaporation 

series were detrended per weather station to filter out long-term changes in the meteorological 

series, by applying a trend factor per season to each weather station. Afterwards, the data was 

spatially interpolated to cover a nationwide 1x1 km raster resolution, using different interpolation 

techniques for the precipitation and evaporation series. The interpolation of precipitation is based on 

spatial correlation between station observations, which are described by a variogram. There is also 

corrected for stations with no precipitation, using the assumption that the percentage of grid cells 

without daily precipitation should be equal to the percentage of stations with no daily precipitation. 

For evaporation data, observations are interpolated using a smooth plane. This is possible because 

evaporation varies gradually in space, unlike precipitation which varies widely in space.  
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The validation of the historical meteorological series from HKV (Pezij & Lugt, 2023) involves 

comparing the climatological properties of the historical precipitation and evaporation data with 

observed precipitation and evaporation. A period of 30 years (1991 to 2020) is assumed 

representative for the current climate because climate information encompasses long-term weather 

patterns, typically spanning 30 years (World Meteorological Organization, 2017). Furthermore, a 

comprehensive climate description includes not just averages but also variations from those averages 

(extremes) and the likelihood of these variations occurring (KNMI, 2021a), which can be described 

using probability density functions. Therefore, to address the second research question, the 

approach involves comparing probability density functions derived from historical precipitation and 

evaporation data to observed precipitation and evaporation at the locations of the KNMI stations. 

Probability density curves are created for both precipitation and evaporation of both observed and 

historical data by sorting the data and calculating the probability for each value. The probability 

densities are accumulated to obtain a cumulative density function (CDF) for a clearer comparison. 

These curves can be visually compared for disparities in the probability density. Another visual 

inspection will be performed using quantile-quantile (Q-Q) plots, in which the quantiles of the CDF of 

historical meteorological data are compared to the quantiles of observed meteorological data (Das & 

Umamahesh, 2018; De Valk & Wijnant, 2019). If the quantiles are equal, thus having the same 

distribution function, the points in the Q-Q plot will fall along a straight line. 

To perform a quantitative analysis, a gamma distribution is fitted to data, identified as the best fit for 

climate variables such as precipitation and evaporation (Dawley et al., 2019; Gupta et al., 2019; 

Martinez-Villalobos & David Neelin, 2019). The differences in gamma distributions are tested using 

the Kolmogorov-Smirnov test. The Kolmogorov-Smirnov (K-S) test is a non-parametric hypothesis test 

for comparing the probability distributions of two samples. Its primary application lies in determining 

whether two samples are drawn from identical distributions. The null hypothesis is that the historical 

climate and observed climate have the same distribution. Since it is impossible to prove that the 

climate variables have the same distribution, the distributions are considered the same if the test 

fails to reject the null hypothesis. The K-S test reports the maximum difference between two 

cumulative distributions and calculates a p-value. The p-value [-] describes how likely it is that the 

data could have occurred under the null hypothesis. The smaller the p-value, the more likely it is that 

the null hypothesis is rejected. If the p-value is below 0.05 [-], the hypothesis is rejected (with 95% 

confidence), indicating samples are from different distributions. If the p-value is above 0.05 [-], the 

hypothesis cannot be rejected. Assuming the sample size is large enough, it is plausible to conclude 

that both climates have the same distribution.  

If the historical meteorological time series fails to match the current climate, a bias correction is 

necessary. A widely recognized bias-correction method for climate variables is quantile mapping 

(Gupta et al., 2019; Navarro-Racines et al., 2015; Qian & Chang, 2021). Quantile mapping involves 

substituting the historical precipitation or evaporation with observed ones at the same cumulative 

density function (CDF) value within the utilised distribution for every CDF value (see Figure 8). 

Quantile mapping outperforms simpler methods such as shifting or scaling due to its effectiveness 

and minimal computational requirements (Gupta et al., 2019) and the ability to take into account the 

underlying distribution (Qian & Chang, 2021).  
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Figure 8: Quantile mapping bias correction (Gupta et al., 2019); Quantile mapping involves substituting the historical values 

with observed ones at the same cumulative density function (CDF) within the utilised distribution for every CDF value. 

3.4 RQ3 – SIMULATION OF GROUNDWATER LEVELS 
The objective of the third research question is to simulate long-term groundwater levels for the 

period 1910-2022. The long-term groundwater levels are simulated using the validated historical 

meteorological series (section 3.3) and a trained transfer function-noise model. Therefore, the first 

step is to fit the parameters of the model. This procedure includes a calibration and validation. The 

performances of the calibration and validation are evaluated using two goodness of fit metrics. After 

the long-term groundwater levels are simulated, these simulations are validated. 

3.4.1 Calibration and validation of the model parameters 

The transfer function-noise model is developed using eight years of observed groundwater levels, 

precipitation and reference crop evaporation. This time period is chosen such that the model 

represents the current response of the groundwater system (Zaadnoordijk et al., 2019), because of 

alterations in the water system are constantly taken place in the Netherlands. As an example, the 

relocation of monitoring wells may cause inhomogeneous results (Bouma et al., 2012; Ritzema et al., 

2012). The calibration period is six years (2014-2020), and the validation period is two years (2012-

2014). These periods are chosen since it results in enough data for calibration with some dry and 

moderate years. In the calibration period, the model parameters are fitted using the observed 

groundwater levels, precipitation and evaporation data. The validation shows how well the model 

simulates groundwater for a different period than the calibration period. 

3.4.2 Model performance 

The performances of the models are evaluated using two goodness of fit metrics. The explained 

variance percentage (EVP) and the root mean square error (RMSE), which are commonly used 

goodness of fit metric for groundwater level models (von Asmuth et al., 2012). These metrics indicate 

the performance of the model by comparing model simulations to actual observations. The 

difference between simulated and observed groundwater levels on a given day is the residual.  

The EVP [%] describes the percentage of variation in the groundwater levels that is explained by 

precipitation and potential evapotranspiration: 

𝐸𝑉𝑃 =
𝜎ℎ

2 − 𝜎𝑟
2

𝜎ℎ
2

∗ 100% (12) 
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Where σh2 [m2] is the variance of the groundwater observations and σr2 [m2] is the variance of the 

residuals. The returned value is bounded between 0% and 100%, higher percentages indicate more 

explained variance and therefore a better fit. The RMSE [m] measures the average difference 

between simulated and observed values and is calculated by the square root of the mean of the 

residuals: 

𝑅𝑀𝑆𝐸 = √
∑ 𝑟2

𝑛
(13) 

Where n [-] is the amount of residuals r [m]. A lower root mean square error implies smaller 

residuals and therefore a better fit. The goodness of fit criteria for the model performance is set to a 

minimum EVP of 70% and minimising the RMSE. Furthermore, the RMSE should be similar for the 

calibration and validation period. These criteria are often set to groundwater level models (Pezij et 

al., 2020; van Engelenburg et al., 2020; Zaadnoordijk et al., 2019). The performance of the model is 

determined for all groundwater levels in a year and specifically for summer groundwater levels, to 

emphasise the model performance for simulating low groundwater levels. 

3.4.3 Validation of long-term groundwater levels 

To validate how representative the long-term simulated groundwater levels are of current 

groundwater conditions, the simulated groundwater levels are compared with groundwater 

observations within the analysis (2012-2020). The goodness of fit metrics is used for this purpose. 

Furthermore, to give an indication of the quality of the simulated groundwater levels before the 

analysis period, the simulated groundwater levels are compared with observations before the 

analysis period (~2006-2012) and groundwater levels in the vicinity of the location (~1950 - 2012). 

These includes measurements within 2 km of the monitoring locations. As the groundwater levels are 

projections and not actual groundwater levels, goodness of fit metrics and a direct comparison 

cannot be used for this purpose. Therefore, a visual comparison using dot plots is conducted 

between these measurements and simulated groundwater levels, to indicate to what extent the 

simulated values are relatable to measurements, even though they are not supposed to be the same. 

 
Figure 9: Different time periods for the simulation of long-term groundwater levels. 
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3.5 RQ4 – COMPARING DROUGHT STATISTICS OF OBSERVED AND SIMULATED GROUNDWATER 

LEVELS 
The objective of the fourth research question is to derive drought statistics from groundwater 

observations and long-term simulations. Furthermore, the drought statistics of the observations and 

simulations are compared to assess whether the groundwater measurements are representative of 

long-term groundwater levels. 

In the first part, drought statistics are derived using the approach defined in the first research 

question (Section 3.2). Therefore, for each location, each drought statistic is derived from 

groundwater observations (2012-2020) and long-term simulations (1910-2022). Frequency lines are 

plotted, showing the return period with associated drought intensity. Scatterplots are also produced 

showing the drought duration with associated drought intensity.  

The second part involves the general comparison of observations and simulations. Therefore, the 

characterisation of the 2018 drought is highlighted for one location. In addition, the drought 

characteristics of 2018 are compared with those of 1976 and 1921, both record years in terms of 

precipitation deficit. The 1976 deficit was more intense, while the 1921 deficit was more prolonged. 

This makes it possible to determine whether the drought events are characterised differently, 

resulting in differences in the driest year. 

3.6 STUDY AREA AND DATA 
Long-term groundwater levels are simulated for locations in the management area of regional water 

authority Waterschap Limburg (dots in Figure 10). These locations are monitoring wells with 

relatively few external influences on groundwater flow (such as seepage to surface water or major 

groundwater withdrawals). Furthermore, Northern Limburg has sandy soils which have vulnerability 

to groundwater droughts (Brakkee et al., 2021; van den Eertwegh et al., 2021). Lastly, the locations 

have differences in land use, soil type and distance to surface water, providing a more generalised 

research. This is used to demonstrate whether a valid time series model can be set up for all these 

locations, since these are important characteristics that have impact on groundwater levels. The 

region has a temperate climate with a precipitation surplus of 100-350 mm/y (Brakkee et al., 2021), 

characterised as low-topography area above sea level (Figure 29, Appendix A).  
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Figure 10: The four monitoring wells (dots) and the KNMI meteorological stations (diamonds) in northern Limburg (KNMI, 
2023a, 2023b). The names given to the monitoring wells are Ell, Heibloem, Sevenum and Mariapeel (Table 4). 

3.6.1 Study area 

For each monitoring well, the land use, soil type and distance to surface water are analysed, and 

shown in Table 4. The given name of the locations are related to towns nearby the monitoring well. 

Land use is extracted from the Landelijk Grondgebruiksbestand Nederland database (LGN), which is a 

land cover dataset that relies on a combination of geospatial data sources and satellite data (Hazeu 

et al., 2023). Soil types are derived from the soil map of Basisregistratie ondergrond (BRO), which 

delineates the soil composition of the Netherlands down to a depth of 1.2 meters at a scale of 

1:50.000 (show in Figure 31, Appendix A). The soil map SGM is used, which is a model that is based 

on the interpretation of field work data and is often used in hydrological studies (Programma 

Basisregistratie Ondergrond, 2023). Along with the type of soil, the designation according to the soil 

classification system in the Netherlands (H. de Bakker & Schelling, 1989) is given, which is founded on 

geological conditions. 

The distance to nearby surface water is approximated using satellite imagery. In order to minimise 

the subsurface groundwater flow to surface water, the minimal distance should be 100 m from a 

river or canal, 25-50 m from streams and 10-25 m from a ditch (Bouma et al., 2012). Possible 

groundwater withdrawals by farmers (1Limburg, 2023) are shown in Figure 30, Appendix A. However, 

since location Ell, Sevenum and Mariapeel are located within buffer zones for desiccated nature 

reserves, groundwater can only be withdrawn by permit holders and is therefore minimised. Lastly, 

there are no groundwater protection areas (Waterschap Limburg, 2019) or drinking water 

withdrawals in the area (Figure 30, Appendix A). Detailed description of the locations are shown in 

Appendix A: Characteristics of locations. 
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Table 4: Characteristics of site groundwater monitoring wells. 

Location 
name 

Code 
monitoring well 

Soil (Programma 
Basisregistratie 
Ondergrond, 2023) 

Land use (Hazeu et al., 
2023) 

Distance to surface 
water 

Ell B58C0749 Loamy fine sand; 
Beekeerd  

Grassland for nature 50 m (Vliet) 

Heibloem B58B0154 Loamy fine sand; 
Gooreerd 

Agricultural 150 m (Egchelbeek) 

Sevenum B52G1304 Loamy fine sand; 
Veldpodzol 

Agricultural and 
grassland for nature 

110 m (Groote 
Molenbeek) 

Mariapeel B52D0490 Soft loamy fine sand; 
Veldpodzol 

Nature reserve 30 m (Peelkanaal) 

3.6.2 Data 

The time-series analysis of groundwater data requires meteorological and groundwater 

measurements. The used data in this study are groundwater measurements, observed 

meteorological observations and a historical meteorological dataset, as summarised in Table 5. The 

locations of the measurements are shown in Figure 10. Details about the measurements are 

mentioned in the paragraphs below. 

Groundwater measurements from the four monitoring wells (B58C0749, B58B0154, B52G1304, and 

B52D0490) are used, spanning from December 2, 2012 to December 2, 2020 (DINOloket, 2020). 

Measurements were taken every other week or daily. The properties of the observed groundwater 

measurements are shown in Table 13 of Appendix B.  

Meteorological observations consist of daily precipitation sum and reference crop evaporation 

according to Makkink, which were obtained from nearby KNMI weather station Ell-Haler. Additional 

daily precipitation sum was obtained from KNMI precipitation stations (Heibloem, and Sevenum). 

Therefore, covering different time periods (1999-2023 for Ell-Haler and 1991-2020 for Heibloem and 

Sevenum). The reference crop evaporation data from station Ell was used for all four groundwater 

monitoring locations (Figure 49). Additional information about the data is given in Appendix B. 

In addition to the meteorological observations obtained from KNMI, a historical meteorological 

dataset is used (as described in section 3.3). Referred to as historical meteorological data throughout 

the remainder of the report. The historical meteorological data is extracted at the location of the 

KNMI stations, such that it is consistent with the observed meteorological data (as described in 

Figure 49, Appendix B). The historical meteorological contains also daily precipitation sum and 

Makkink reference crop evaporation. 

Table 5: The type, temporal resolution, and time period of the data. 

Name Type 
Temporal 
resolution 

Time period Reference 

Groundwater 
observations 

Point 
Every two weeks 
(Ell) or 
daily (others) 

2012-2020 
(DINOloket, 
2020) 

Daily precipitation 
sum 

Point Daily 
1999-2023 (Ell) or 
1991-2020 (others) 

(KNMI, 2023a, 
2023b) 

Reference crop 
evaporation  

Point Daily 
 
1999-2023 

(KNMI, 2023b) 

Historical 
meteorological data 

Raster 
(1x1 km) 

Daily 1910-2022 
(Pezij & Lugt, 
2023) 
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4 SIMULATING LONG-TERM GROUNDWATER SERIES 

This chapter describes the simulation of long-term groundwater levels using historical meteorological 

data. This includes the results of the validation of the historical meteorological data using cumulative 

density functions (CDFs), quantile-quantile (QQ) plots, and the Kolmogorov-Smirnov (KS) test (section 

4.1). The transfer function-noise model is calibrated using observed groundwater levels, precipitation 

and evaporation, for the period 2012-2020 (section 4.2). The performance of the calibration is 

assessed using the goodness of fit metrics RMSE and EVP. In section 4.3, long-term groundwater 

levels are simulated for the period 1910-2022 using the calibrated model and historical 

meteorological data. The validity of the simulation results is assessed using the goodness of fit 

metrics RMSE and EVP (section 4.4). Simulated groundwater levels are also visually compared to 

observations from groundwater monitoring stations nearby with longer time series. 

4.1 VALIDATION OF HISTORICAL METEOROLOGICAL SERIES 
The first step in the process of modelling long-term groundwater levels is to validate the historical 

meteorological time series. The goal of the model is to simulate long-term groundwater levels for the 

current situation. Therefore, validation is essential to ensure that the historical meteorological data 

represents the current climate, and therefore valid to use as input data for the simulation.  

Initially, the validation shows that the historical precipitation at precipitation stations Heibloem and 

Sevenum do not represent the current climate (Appendix D: Validation of historical meteorological 

data before correction). The cumulative density functions for the historical meteorological data and 

current observation look very similar (Figure 59). However, the QQ-plots (Figure 60) and Kolmogorov-

Smirnov test (Table 18) show that there is indeed a significant difference for precipitation at 

Heibloem and Sevenum. Specifically, high precipitation events are underestimated in the historical 

data compared to observed precipitation. However, for KNMI station Ell, the historical precipitation 

and reference crop evaporation are representative for the current climate. This is because this 

weather station was used in the development of the dataset, while the precipitation at Sevenum and 

Heibloem were spatially interpolated.  

As a result, the precipitation for location Sevenum and Heibloem were bias corrected using observed 

precipitation following the quantile mapping approach. This means that the CDF of the long-term 

climate series is adjusted to match the CDF of the 30-year observed climate data, resulting in 

historical precipitation and evaporation that represents the current climate (Figure 11). 

 

Figure 11: Observed and historical precipitation and reference crop evaporation (whereof Sevenum and Heibloem are 
corrected for current climate using the observations). The historical climate is validated to represent the current climate. 
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Figure 12 displays QQ-plots, comparing the quantiles the historical precipitation and evaporation 

with those of the current observed climate. The red line represents the theoretical scenario where 

the distributions of both climate series are identical. Based on a visual inspection of the QQ-plots, the 

cumulative density function of both meteorological series looks very similar, indicating that the 

climate of the historical series represents the current climate. The precipitation in the historical 

series is underestimated slightly in the most extreme quantiles. Conversely, the historical climate 

series tends to slightly overestimate evaporation in these extreme quantiles. However, this has 

minimal impact since the most extreme precipitation will not infiltrate into the ground if the 

infiltration capacity is reached, unless there is no surface runoff. 

 
Figure 12: QQ-plots: quantiles of historical precipitation and refence crop evaporation are compared to quantiles of 

observed precipitation and refence crop evaporation. If the distributions are equal, the points will fall along a straight line. 

Table 6 shows the results of the KS-test for the corrected historical meteorological data. In the table, 

this test proves that the corrected historical data represents the current climate since the p-values 

for the meteorological series are above the chosen criteria. Therefore, validating with 95% 

confidence that the corrected historical meteorological data is representative of the current climate. 

The K-S statistic is the maximum difference in cumulative density function value, which are also 

relatively small values. 

Table 6: K-S statistics of corrected historical and observed climate. 

Test Ell Heibloem Sevenum Criterion 

 P ET P P  

KS [mm] 0.05 0.03 0.02 0.02 
 

P-value [-] 0.13 0.99 0.97 0.95 > 0.05 

4.2 CALIBRATION AND VALIDATION OF THE MODEL PARAMETERS  
Figure 13 shows the time series of the calibration and validation, alongside the observed 

groundwater levels. Moreover, the calibration and validation goodness of fit metrics meet the 

criteria (Table 7) meaning that all models can accurately simulate groundwater levels. The model 

performances for validation of location Heibloem are lower, which is probably caused by the 

underestimation of groundwater levels in the year 2014. 
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In Appendix E (Table 19), the model performance is shown for only summer months, to give an 

indication of the performance of the model to simulate low groundwater years. This results in slightly 

lower goodness of fit values, but still comfortably above the defined criteria.  

Table 7: Model performance using goodness of fit metrics EVP and RMSE. 

Model Performance Ell Heibloem Sevenum Mariapeel Criteria 

Calibration (2014-2020) 
  

    

EVP [%] 94.9 88.6 90.3 92.6 > 70% 

RMSE [m] 0.12 0.16 0.16 0.14  

Validation (2012-2014) 
  

    

EVP [%] 96.1 76.6 90.3 89.5 > 70% 

RMSE [m] 0.09 0.30 0.16 0.11  

 

Figure 13: Calibration and validation of the time series model, together with goodness of fit metrics EVP and RMSE. 

 

4.3 SIMULATING LONG-TERM GROUNDWATER LEVELS WITH HISTORICAL METEOROLOGICAL 

SERIES 
The calibrated time series model can be combined with historical precipitation and evaporation data 

to simulate long-term groundwater levels. The obtained simulated long-term groundwater levels are 

shown in Figure 14. The figure shows the annual groundwater levels for the period 1910-2022, 

displayed throughout the year. The reference year 2018 and record year 1976 are highlighted. As can 

be seen, the groundwater levels in the year 1976 are very low, and lower compared to 2018. 
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Figure 14: Long-term groundwater levels based on simulations with the calibrated model and historical meteorological data, 

displayed throughout the year. The dashed red line is the reference year 2018, which can be compared to observed 
groundwater levels. The solid red line is record-year 1976, which has the largest precipitation deficit. 

4.4 VALIDATION OF LONG-TERM GROUNDWATER LEVELS 
This paragraph describes the validity of the long-term groundwater simulations with historical 

meteorological time series. For the analysis period (2012-2020), the simulated groundwater levels 

are assessed using the goodness of fit metric RMSE and EVP (Figure 15). The simulations show 

accurate results, with EVP values around 90% (Table 8). Furthermore, simulating similar low 

groundwater levels compared to observations such as summer 2018.  

Table 8: Validation of long-term groundwater simulations in analysis period. 

 
Ell Heibloem Sevenum Mariapeel 

EVP [%] 93.0 85.3 86.3 87.6 

RMSE [m] 0.23 0.18 0.18 0.20 

 

 
Figure 15: Validation of long-term simulated groundwater levels using measurements in the analysis period. Performance 

indicators are the goodness of fit metrics RMSE and EVP. The figure also includes the calibration and validation of the model 
(section 4.2). 
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To validate the long-term groundwater simulations outside the analysis period, simulated 

groundwater levels are visually compared to measurements before the analysis period and to 

observations of groundwater monitoring stations in the vicinity with a larger data availability (Figure 

62, Appendix D). Since the long-term groundwater simulations are projections rather than actual 

events, the validity cannot be performed quantitively. However, the groundwater simulations can be 

visually compared to measurement before the analysis period (Figure 16) and in the vicinity within 2 

km of the monitoring location (Figure 17).  

These figures show that the observed groundwater measurements are mostly different to the long-

term simulations in earlier years. However, this is expected since the climate and groundwater 

system has changed. What can be seen is that the comparison follows the same trend, indicating that 

dry years in the measurements are also occurring the long-term groundwater simulations. 

 

 
Figure 16: Validation of long-term simulated groundwater levels using measurements before the analysis period. 

 

 
Figure 17: Validation of long-term simulated groundwater levels using measurements in the vicinity with larger data 

availability. 
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5 COMPARING DROUGHT STATISTICS OF OBSERVED AND SIMULATED 

GROUNDWATER LEVELS 

Various drought statistics are derived from the groundwater measurements and long-term 

simulations. In the following paragraphs, the methodology of section 3.2 is used to derive drought 

statistics of groundwater observations and simulations. In Appendix E, the groundwater 

measurements from the monitoring wells (over the period of 2012-2020) are presented (Figure 65). 

In section 4.3, the time series of the groundwater simulations (over the period of 1910-2022) were 

presented.  

5.1 PERCENTILES 
Figure 18 shows the regime curve with percentile bands for the four locations. The left panels 

present the percentiles based on observations, while the right panels present percentiles based on 

simulations. The regime curve provides a visual representation of the annual groundwater dynamics, 

with coloured bands serving to indicate the extent of groundwater fluctuations throughout the year. 

The green percentile band, representing moderate conditions, encompasses 50% of the data points. 

The light blue and yellow percentile bands, indicative of wet and dry conditions, respectively, each 

capture 15% of the data points. Lastly, the orange and dark blue percentile bands, reflecting very dry 

and very wet conditions, each account for 10% of the data points. 

A monthly resampling yields a nuanced perspective. Moderate conditions exhibit similarity between 

observations and simulations. For example, the average difference in median for location Ell is 0.2m 

(Table 15, Appendix C). Furthermore, the green percentile bands for moderate conditions are visually 

similar. The average observed groundwater levels are relatively well representative for average long-

term conditions. A notable difference is evident in the wider extreme percentile bands, as the 

simulations involve a more prolonged analysis period. Figure 18 shows that the extreme dry and wet 

conditions based on observations are not representative when compared to the long-term simulated 

conditions, since the percentile bands have different ranges.   

Consequently, percentiles based on observations indicate that the conditions in reference year 2018 

transitions from wet to very dry. Long-term groundwater levels indicate that the beginning of 2018 

was moderate, later turning extremely dry. Furthermore, in the observations, 2018 stands out as the 

most extreme year, while the long-term simulations suggest otherwise. 
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Figure 18: Regime curve with percentile bands; Extreme wet conditions defined with 90th percentile, wet condition is the 

75th - 90th percentile band; 75th to 25th percentile bands indicate moderate conditions. 10th percentile demarcates dry and 
extreme dry conditions; resampled to monthly values. 

5.2 AVERAGE LOW GROUNDWATER LEVEL (GLG) 
The average high groundwater level (GHG), average spring groundwater level (GVG), average 

groundwater level (GG) and the average low groundwater level (GLG) are determined for the 

observations and simulations. Table 9 shows that most of the average groundwater statistics based 

on observations are higher than compared to simulations. The groundwater levels in the observation 

years are below-average compared to the long-term simulations. The average low groundwater level 

in location Ell is the lowest, indicating that the groundwater levels in the summer are highest 

compared to the other locations. 

Table 9: Average high (GHG), average spring (GVG), average (GG) and average low (GLG) groundwater levels based on 
groundwater observations and model simulations for all monitoring locations. 

Statistic [m 
below 

surface level] 

Ell Heibloem Sevenum Mariapeel 

Observed Simulated Observed Simulated Observed Simulated Observed Simulated 

GHG 0.87 0.64 0.92 0.98 1.28 1.15 1.09 0.98 

GVG 0.98 0.83 1.12 1.16 1.46 1.44 1.22 1.14 

GG 1.5 1.25 1.62 1.55 1.88 1.8 1.66 1.61 

GLG 2.06 1.82 2.14 2.07 2.46 2.43 2.17 2.17 
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Figure 11 shows the GLG in relation to the groundwater observations and model simulations. The 

figures show multiple throughs below the GLG line. Observations show that the groundwater levels 

in 2018 drop lowest below this line while simulations show that there are multiple years with even 

lower groundwater levels, indicating more intense dryer periods.  

 

 
Figure 19: Average high (GHG), average spring (GVG), average (GG) and average low (GLG) groundwater levels based on 

groundwater observations and model simulations for all monitoring locations. 

 

The selection of drought events, peaks with groundwater levels below the GLG, are shown in 

Appendix B (Figure 50). Using the plotting positions, the return periods of the drought events can be 

determined (Figure 20). As seen in the figure, the return periods for observations years do not 

exceed 1 in 10 years. The yellow stars represent the return period for reference year 2018, shown for 

both observations and simulations, while the red stars represent the return period for record year 

1976.  

Comparing the statistics, using only measurements tends to underestimate the severity of the 

drought (lower return period), except for Mariapeel. Furthermore, difference exist between 

locations, for example for a return period of ten years (T10). For location Ell and Sevenum, the 

groundwater level for T10 is lower using long-term simulations, indicating less head below GLG. This 

means that the years in the observation period indicate a drier T10 groundwater level compared to 

long-term simulation. For location Heibloem and Mariapeel is this the other way around.  
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Figure 20: Return periods for groundwater levels below GLG. 

 

Figure 21 shows the intensity (head below GLG) and the duration of drought events for simulations 

(green outline) and observation (blue outline). The figure shows that the drought of 1976 is more 

intense but is shorter compared to the drought of 1921, except for Mariapeel. Furthermore, the 

most prolonged drought is nine months below the GLG, which is quite more extreme compared to 

the year 2018.  

 
Figure 21: Drought as duration of groundwater levels below GLG. 
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5.3 STANDARDISED GROUNDWATER INDEX (SGI) 
Figure 22 illustrates the Standardised Groundwater Index (SGI) for all monitoring stations, 

accumulated over a rolling window of three months (SGI-3). Positive SGI values indicate wet 

conditions, while negative values indicate dry periods. The left-side panels are based on groundwater 

observations, whereas the right-side panels are derived from groundwater simulations. Compared to 

time series of groundwater levels, the SGI does not contain a strong seasonal component. This means 

that the indication of droughts is not constrained by the rise in groundwater levels in the winter, 

which also increases drought duration. The SGI exhibits a consistent pattern across all monitoring 

stations, for observations and simulations. Furthermore, the pattern seen in the observation period 

is also visible in the simulation period for those years. 

In the observation period, 2019 stands out as the most severe drought. However, the long-term 

simulations reveal that the 2018 drought appears less extreme. There have been several years in the 

past with even lower SGI values, indicating periods of more intense droughts (Figure 22). 

 

 
Figure 22: Standardised Groundwater Index for all monitoring stations; SGI values above zero (blue) indicate wet conditions, 
SGI values below zero (red) indicates dry conditions; figures on the left are derived from groundwater observations, figures 

on the right are derived from groundwater simulations. 

 

Figure 23 presents a comparison return periods for annual SGI values below zero derived from 

observed and simulated groundwater levels. As evident in the figure, return periods for observations 

do not exceed 12 years, emphasizing the limited time series for drought analysis.  
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A comparison of the SGI for the 2018 drought indicates that using only measurements tends to 

overestimate the severity of the drought (lower return time for observations, implying more 

frequent occurrences), except for Mariapeel. This highlights the limitations of relying solely on 

measurements for accurate drought characterisation. Interestingly, the SGI values for the 2018 

drought are consistent between short-term (observed data) and long-term (simulation data) 

statistics. This suggests that the intensity of simulated SGI peaks closely matches that of the observed 

drought event. 

 
Figure 23: Return periods of minimum SGI-3 of drought events. 

 

Figure 24 shows the intensity (SGI-3) and the duration of drought events for simulations (green 

outline) and observation (blue outline). The figure shows that the drought of 1921 is not always the 

most prolonged. However, those other droughts with long durations are a lot less intense. 

Furthermore, the most prolonged drought is around fifty months of SGI below zero, which is quite 

more extreme compared to the year 2018.  

 
Figure 24: Drought as duration of minimum SGI-3. 
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5.4 ANNUAL MINIMA EXTREME VALUE ANALYSIS (EVA) 
Last, groundwater droughts are classified by selecting annual minimum groundwater levels (Figure 

25). The figure shows the annual minimum groundwater levels for the observation period on the left 

panels, indicating 2018 as the most extreme drought. The right panels show the annual minimum 

groundwater levels for the simulated period, indicating 1976 as the most intense drought. What also 

can be seen in the figure is that the seasonal fluctuations are clearly present. Furthermore, that the 

low groundwater levels in the summer sustain for multiple years.  

 

 
Figure 25: Annual minima for observations and simulations. 

 

Figure 26 shows the return periods of the annual minimum groundwater heads along with the fitted 

extreme value distributions for observed and simulated groundwater levels. The most extreme 

return period for the minimum groundwater head in the observation series is 12 years. Additionally, 

the extreme value distributions allow for extrapolation of annual minimum groundwater levels for 

return periods up to 100 years. However, this is not accurate for the observations since a minimum 

of 30 years is needed (McCluskey et al., 2021).  

When comparing the return period of 2018 between simulations and observations, the return period 

based on observations is a factor 2 smaller for all locations (except Mariapeel). This means that the 

observations give an incorrect representation of long-term frequency of droughts. Furthermore, the 

frequency lines of Ell and Sevenum are lower than the frequency lines of the simulations. This results 

in observations estimating lower groundwater levels for the same return period. 



39 
 

Additionally, basing criteria on return periods of observations could lead to delayed measures, 

resulting in the actual return period being surpassed by the time action is taken. For Heibloem and 

Mariapeel, this is the other way around. Most importantly, the return periods of the simulations 

show a clear break in trend around the T15 situation. Prior to this break, the groundwater level 

exhibits a gradual decrease as the return time increases, and then experiences a sudden, rapid 

decline until it eventually levels off. 

 
Figure 26: Return periods for annual minima with best fitting extreme value distribution. 

 

5.5 DIFFERENCE BETWEEN DROUGHT STATISTICS OF SIMULATIONS AND OBSERVATIONS 
Table 10 shows the differences between the drought statistics for the characterisation of the 2018 

drought at the Ell site. Intensity and duration are similar for all drought statistics between 

observations and simulations. The frequency shows a significant difference. This difference applies to 

all percentiles, GLG and EVA. The frequency based on simulations gives a return period that is twice 

that of the observations. 

 

Table 10: Difference in drought statistics for the characterisation of reference year 2018 at location Ell. 

2018 Intensity Duration Frequency (return period)  
Observations Simulations Observations Simulations Observations Simulations 

Percentiles Minimum 
Extreme dry 

5th percentile  
Extreme dry 

6 months 6 months T8 T21 

GLG 0.87 m below 
GLG 

0.84 m below GLG 5.6 months 5.4 months T9 T17 

SGI -1.68         
Severe drought 

-1.79               
Severe drought 

20 months 18 months T13 T11 

EVA 26.5 m + NAP 26.5 m + NAP - - T12 T24 
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Table 11 compares the drought statistics and their characterisation of the year 1976 and 1921 which 

can be compared to the simulation for 2018 in Table 10. The drought statistics show that although 

1976 was more intense, the 1921 drought lasted longer, this emphasises that not only return periods 

are important. 

Table 11: Drought statistics for simulated record year 1976 and long drought year 1921 at location Ell. 

1976 Intensity Duration Frequency 1921 Intensity Duration Frequency 

Percentiles Minimum 
Extreme 

dry 

10 months T110 Minimum 
Extreme dry 

11 months T110 

    

GLG 1.12 m 
below GLG 

6.8 months T112 0.95 m below 
GLG 

7.5 months T46 

SGI -2.72 
Extreme 
drought 

22 months T162 -2.58 Extreme 
drought 

32 months T67 

EVA 26.2 m + 
NAP 

- T161 26.4 m + NAP - T67 

 

Table 12 displays the most extreme dry years based on return periods for all drought statistics and 

locations. This results in differences in the most extreme dry year per location and per drought 

statistic. However, percentiles and GLG indicate the same years as most extreme.  

 

Table 12: Ranking of driest year for different statistical methods based on drought frequency. 

 
Ell Heibloem Sevenum Mariapeel 

 
Obs Sim Obs Sim Obs Sim Obs Sim 

Percentiles 2018 1976 2019 1976 2018 1959 2018 1921 

GLG 2018 1976 2019 1976 2018 1959 2018 1921 

SGI 2019 1976 2019 1921 2018 1921 2019 1976 

EVA 2018 1976 2019 1976 2018 1921 2018 1959 
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6 DISCUSSION 

This chapter consists of a discussion about the results of this study. The discussion is divided into the 

validity of the simulation of long-term groundwater series, interpretation of results and limitations in 

methodology.  

6.1 VALIDITY OF SIMULATIONS 
Several validations have been carried out in this study to ensure that the long-term simulated 

groundwater levels represent the current climate and groundwater system: 

• The Kolmogorov-Smirnov test shows that the historical meteorological data are 

representative of the current climate, and therefore valid as input to the time series model; 

• The goodness of fit metrics Explained Variance Percentage and Root Mean Square Error of 

the calibration of the model parameters meet the set criteria for a valid time series model; 

• The calibrated model parameters show similar performance in goodness of fit metrics when 

validated for another time period; 

• The long-term simulated groundwater levels display a similar goodness of fit performance 

compared to groundwater observations within the analysis period (2012-2020); 

• The long-term simulated groundwater levels are comparable with historical measurements 

before the analysis period (1950-2012) at the same location and in the vicinity (<2 km). 

Thus, the time series model effectively simulates long-term groundwater levels for the selected 

locations, suggesting that the fluctuations in groundwater levels can be explained by precipitation 

and evaporation.  

The calibrated model parameters are validated over a limited two-year period, providing a good 

indication of the model performance. However, it is important to note that not a lot of extreme 

groundwater levels are included in this timeframe, which may lead to incorrect validation of 

extremely low groundwater levels. Furthermore, the accuracy of the goodness of fit metrics EVP and 

RMSE are compromised for location Ell due to the limited number of measurements. This makes it 

easier to achieve a higher performance indication, even though it does not necessarily imply a better 

fit (Collenteur, 2021). Additionally, the RMSE values for the validation and calibration should be 

approximately equal. This holds true for all locations except Heibloem, where the RMSE for validation 

is double that of the calibration (Table 7). 

Validating model simulations prior to the analysis period (Figure 16, Figure 17) is challenging because 

the simulated groundwater levels are projections rather than observed events. These simulations 

represent historical groundwater levels under the current climate and water system. In particular, 

significant changes in the water system around 1950 make a direct comparison of groundwater levels 

impossible. Lastly, some groundwater levels are briefly simulated above surface level. This is 

probably because the model is calibrated in a relatively dry period (2014-2020) such that periods 

with high precipitation are modelled less accurately.  

6.2 INTERPRETATION OF RESULTS 
The characterisation of groundwater droughts using drought statistics from groundwater 

observations and long-term simulations shows significant differences (Figure 27). The methodology 

described in this study allows the direct translation of groundwater levels into return periods and 

vice versa. This means that it is possible to accurately quantify the severity of past droughts under 
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current conditions and makes a significant contribution to the understanding of groundwater 

droughts. This means that it is possible to get better estimates of how often droughts of different 

severity might occur by using return periods for drought analysis (Figure 27a). The drought of 2018 

occurs less frequently than expected based on observations. Furthermore, the corresponding 

groundwater level that is expected for a given return period (Figure 27b). For example, if a drought 

occurring on average once in 10 years (T10) would justify a ban on irrigation, the action would be 

taken too late or not at all if it were based on observations. 

 

Figure 27: Implications to groundwater analysis 

Furthermore, there are other things that stand out about the results. At location Sevenum, the 

results show notable discrepancies in comparison to other locations (Figure 28). The frequency lines 

exhibit a quicker flattening and reaching the minimum groundwater level sooner, around the T20 

situation. This difference is particularly notable in terms of the minimum groundwater level in the 

driest year, which is approximately 0.3 meters higher at Sevenum.  

 

Figure 28: Droughts at location Sevenum are less intense and frequency line flattens out.  

There are several possible reasons for this discrepancy, such as incorrect model inputs. However, the 

use of consistent evaporation data across locations and similar precipitation patterns suggests 

otherwise (Figure 12). Another consideration is the model calibration. It can be seen that the 

calibration for Sevenum leads to overfitting, given the relatively higher density of measurements in 

the summer of 2018 compared to the other locations (Figure 61, Appendix E). This results in those 

groundwater levels being overrepresented in the calibration. Overfitting means that the model fits 

the training data exceptionally well but struggles to simulate new unseen data. Therefore, overfitting 

can lead to poor performances and lacking robustness. Another explanation of the differences in 

location Sevenum lies in differences in soil physics. The structure of the subsurface in this study area 

is largely determined by fractures (Figure 32, Appendix A). These fractures originate from shallow 

impermeable layers in the subsurface, making the subsoil very complex (Benninga et al., 2018). 

Although these fractures do not occur exclusively at location Sevenum, they may occur at higher 

layers and therefore affect shallow subsurface flows. 
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The results also reveal a trend break in the frequency lines of the long-term simulated groundwater 

levels around the T20 return time (Figure 20, Figure 23 and Figure 26). Prior to this break, the 

groundwater level exhibits a gradual decrease as the return time increases, and then experiences a 

sudden, rapid decline until it eventually levels off. This pattern is seen at all sites, although some 

locations exhibit it more prominently. Possible explanations for this phenomenon include the impact 

of groundwater withdrawals or subsurface flows, particularly relevant at very low groundwater 

levels. Alternatively, it may be attributed to incorrect estimation of return times. The estimation of 

return times relies on the assumption that all included events are independent of each other. Due to 

the long residence time of the groundwater system, this assumption is not met when taking annual 

groundwater levels, impacting the statistical analysis. Therefore, the estimation of return period is 

biased by the selection of included drought events (Figure 55, Appendix C). Furthermore, higher 

return periods are inherently less accurate, since these have only occurred once in the simulations. 

Therefore, with 112 years of simulations, accurate return periods can be estimated up to 

approximately a return period of T25, as these events would have occurred in the simulations more 

than four times on average.  

6.3 LIMITATIONS IN METHODOLOGY 
While the methodology in this study provides valuable insights into long-term groundwater levels, it 

is important to acknowledge several limitations.  

• This study utilises a framework based on intensity, duration, and frequency to characterise 

droughts. However, additional variables also contribute to the other classification of 

droughts, such as groundwater demand, land use and drought pattern. Consequently, there 

can be diverse definitions and interpretations of droughts.  

• The accuracy of groundwater measurements is ±2 cm (Bouma et al., 2012; Ritzema et al., 

2012), implying that the groundwater measurements potentially deviate from the actual 

groundwater levels. Furthermore, there can be measurements errors in the observations and 

although some errors are removed, some measurements errors may still be in the data.   

• Although groundwater measuring methods in the Netherlands follow standardisation in 

terms of tube type, placement, measurement methods and data storage, there is room for 

interpretation by the monitoring manager regarding aspects such as location, depth, filter 

length, measurement frequency and soil type (Ritzema et al., 2012).  

• Regarding meteorological data from the KNMI, both data from an automatic weather station 

(Ell) and manual precipitation stations (Heibloem, Sevenum) were used. Automatic weather 

stations can measure 5 - 8% less precipitation annually than manual stations, corresponding 

to approximately 0.3 mm per wet day (Brandsma, 2014). 

• The limitations of the time series model are closely tied to the available data. Because the 

model is trained for six years, care must be taken to avoid overfitting, as the results for 

location Sevenum show. Additionally, the time series model uses potential evaporation, 

assuming that there is always sufficient moisture for plants to evaporate. However, during 

dry weather, when the groundwater levels decrease, plants dry out. Consequently, actual 

evaporation in dry periods might be lower than the model estimates. Therefore, the 

simulated groundwater levels are probably slightly lower than the actual groundwater levels.  

• The model also assumes reference crop evaporation, considering a grass field (KNMI, 2018), 

which may lead to variations in actual evaporation for other crops and plants. 

• Finally, the simulation of groundwater levels relies solely on precipitation and evaporation, 

not taking into account extractions and surface water. If this situation changes in the future, 

the results will no longer be representative of the location.  
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7 CONCLUSION 

The main objective of this research was to characterise groundwater droughts using long-term 

groundwater levels. The main research question was: 

Main research question: To what extent can groundwater measurements describe the 

severity and occurrence of groundwater droughts? 

Therefore, the main conclusion of this study is that groundwater measurements do not provide a 

comprehensive representation of long-term groundwater levels. Long-term groundwater simulations 

offer more accurate insights, particularly in estimating return periods of droughts, due to the larger 

statistical substantiation. This results in different return periods for the current droughts, e.g. the 

drought of 2018. It also results in different groundwater levels when return periods are used to 

justify actions, e.g. at T10. Therefore, the use of long-term simulations with historical meteorological 

data provides a more accurate characterisation of groundwater droughts, which can be used to 

justify measures and more precisely determine the extremity of currents droughts. 

RQ1: How do different drought statistics describe relevant properties of groundwater 

droughts? 

Drought statistics have different characterisations of groundwater droughts using intensity, duration, 

and frequency of low groundwater levels: 

• The percentiles method assesses drought intensity by the percentile of the monthly 

resampled groundwater level and classifies drought conditions based on percentile bands. It 

evaluates the duration of the drought by the consecutive time that groundwater levels 

remain within the percentile band and determines the frequency of the drought by 

multiplying the percentile by the number of measurements.  

• The average low groundwater (GLG) method measures the intensity of drought by the 

distance below the GLG line. It determines the duration of drought by the consecutive time 

the groundwater level remains below the average low groundwater level and estimates the 

frequency of drought by identifying the return period based on the plot positions of peaks 

below the GLG line. 

• The Standardised Groundwater Index (SGI) statistic describes the extent of drought using a 

standardised index. SGI quantifies the intensity of the drought by the value of the index if the 

index value drops below zero. The duration of drought is determined by the consecutive time 

the index value remains below zero, and the frequency of drought is estimating by 

identifying the return period based on the plot positions of peaks with SGI values below zero. 

• The annual minimum extreme value analysis (EVA) measures the intensity of drought in 

terms of annual minimum groundwater levels. EVA cannot provide a direct interpretation of 

drought duration. However, EVA does estimate the frequency of droughts by identifying the 

return periods based on the plot positions of the minimum groundwater levels per year. 
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RQ2: To what extent do the climatological properties of the historical meteorological time 

series match the current climate? 

The climatological properties of historical meteorological data were validated. The Kolmogorov-

Smirnov test revealed that the historical precipitation at location Heibloem and Sevenum did not 

match the current climate. Therefore, the cumulative density functions of these precipitation series 

were bias-corrected. As a result, the historical meteorological data does match the current climate 

and can be used to simulate long-term groundwater levels. 

RQ3: How can you use historical meteorological time series to simulate long-term 

groundwater heads? 

To simulate long-term groundwater levels, a transfer function-noise model was developed using 

eight years of groundwater, precipitation, and evaporation measurements. Of these, six years were 

used to calibrate the model parameters and two years to validate the model parameters. The 

calibration and validation results met the goodness of fit criteria for both year-round and summer-

only groundwater levels. So, a valid time series model can be established for the study area locations 

using precipitation and evaporation data.  

The time series model was used with the validated historical meteorological series to simulate long-

term groundwater levels. This resulted in groundwater levels for the period 1910-2022 for the 

current climate and groundwater system. These long-term simulated groundwater levels are 

validated using observations from the monitoring wells within the analysis period (2012-2020), which 

show a good goodness of fit. Furthermore, the long-term groundwater levels are compared to 

measurements outside the analysis period and observations in the vicinity with larger data 

availability. The peaks in the long-term simulated groundwater levels match the locations of the 

peaks in the observations.   

RQ4: How do drought properties differ when drought statistics are derived from long-term 

groundwater levels? 

Drought statistics have different interpretations of intensity, duration, and frequency of droughts, 

causing differences in identifying the most extreme dry year per location. Furthermore, drought 

statistics derived from long-term simulated groundwater levels show differences compared to 

drought statistics derived from observations. While the drought intensity and duration exhibit 

minimal differences, the frequency of droughts exhibits a significant difference due to the longer 

time series of the simulation. The frequency of droughts can be determined more precisely through 

long-term simulations. As an example, the return period for annual minima extreme value analysis of 

the groundwater drought of 2018 in location Ell is 1 in 24 years for long-term simulations versus 1 in 

12 years for groundwater observations. Additionally, the analysis of drought statistics reveals that, 

despite the greater intensity of the 1976 drought, the 1921 drought endured for a more prolonged 

period. This underscores the significance of also considering duration when evaluating extremes in 

groundwater levels. 
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8 RECOMMENDATIONS 

This research contributed to the understanding of long-term fluctuations of groundwater levels, the 

classification of groundwater droughts and their characterisation using intensity, duration and 

frequency. Recommendations are given for practical use and further research.   

8.1 PRACTICAL USE 
Examples for application. The methodology described in this study can be used to develop policy 

based on return periods. This study showed that it is possible to simulate long-term groundwater 

levels and determine their return periods. This allows criteria such as irrigation bans or the location 

of structural measures to be determined for each area. This can give a water authorities guidance 

when interventions are needed during dry summers. In addition, insurance companies could use this 

to determine whether pay outs are justified for drought claims, by examining the severity of certain 

groundwater droughts. 

Importance of long-term simulations. The results in this study show the importance of extended 

time series for a proper analysis of drought frequency. Simulations are crucial, as measurements 

alone do not represent long-term groundwater conditions. The accurate characterisation of droughts 

gives potential for water authorities to establish policy criteria based on this. I would recommend 

informing water authorities about the importance of long-term groundwater levels and the use of 

groundwater simulations to gain a more comprehensive understanding of groundwater levels. 

Furthermore, the results in this study offer a more comprehensive perspective compared to the 

'historical' groundwater levels presented in the databases from droogteportaal and 

grondwaterstanden in beeld, in which groundwater levels are modelled for only eight years. 

Validity of historical meteorological data. The historical meteorological time series used in this study 

were recently developed by HKV. The findings in this research showed that for KNMI precipitation 

stations excluded from the generation of this dataset, the climate is not representative of the current 

climate. I recommend including this as a discussion point in that study or considering including more 

KNMI stations in a future version of this historical meteorological series. In Appendix E, additional 

historical meteorological data is described such as RACMO and GRADE. I would not advise to use 

those datasets, since they are more complex to use and involve a smaller dataset. These datasets 

would also need to be bias corrected, since they are developed for much larger areas. Furthermore, 

the historical meteorological dataset from HKV simulates properly.  

Characterisation of droughts. The results in this study show that different drought statistics have 

different characterisations of groundwater droughts using intensity, duration and frequency. 

Regardless of the choice in method, the analysis of drought statistics reveals that, despite the greater 

intensity of the 1976 drought, the 1921 drought lasted longer. This underlines the importance of 

taking duration into account when evaluating extremes in groundwater levels. Therefore, my 

suggestion is to consider extreme droughts not solely on intensity and its frequency but also on 

duration.  I would also recommend using percentiles and GLG for descriptive functions, e.g. in a 

database or to highlight average years. I think SGI and EVA are more useful for analysing droughts. Of 

these, I would prefer to use SGI to characterise droughts. As this index is standardised, there is no 

seasonal variation in its time series. In addition, the duration of the drought is included in this index, 

especially when longer time scales are used (SGI-1 or SGI-3). 
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Continue using time series modelling. HKV is actively engaged in several studies that use time series 

analysis to model groundwater. My own experience in this research agrees that time series analysis 

offers a highly effective, efficient, and straightforward approach to groundwater modelling. 

Additionally, the used transfer function-noise model is continuously updated and developed as well 

as its online documentation. I would therefore recommend continuing to use time series analysis for 

groundwater modelling. 

8.2 FURTHER RESEARCH 
Uncertainty analysis of historical meteorological data. This study did not include a sensitivity 

analysis for the use of meteorological data. As a result, it remains uncertain to what extent the model 

is sensitive to errors or uncertainties in the meteorological input series. To evaluate the sensitivity of 

meteorological data and take weather uncertainty into account, a possible approach involves 

reshuffling the historical meteorological data. By bootstrap resampling the historical meteorological 

data and feeding it into the model, it is possible to provide insights into the sensitivity of the 

historical meteorological data. To add to that, the approach can be extended by shuffling the 

historical meteorological data multiple times (e.g. >100 times), effectively creating a Monte Carlo 

simulation. This is easily feasible due to the high processing speed of the model. By aggregating the 

outcomes of these simulations, a potentially more probabilistic understanding of long-term 

groundwater levels can be obtained, thereby incorporating an uncertainty margin into the results. 

Therefore, I would recommend testing the sensitivity of the meteorological data to understand how 

uncertainties in the weather affect the simulations.  

Sensitivity analysis of the calibration. In the case of location Sevenum, there is evidence that the 

model is too overfitted, indicating that the time series model for this location lacks the necessary 

flexibility to accurately simulate a wider range of groundwater levels. This issue may be overlooked 

due to the limited duration of the validation period, but extending it leads to a shorter calibration 

period. Sensitivity analysis can help identify overfitting by, for example, reducing the number of 

calibration points during dry summers or using extremely low and/or high precipitation as test inputs 

to evaluate their influence on simulated groundwater levels. Subsequently, a suitable solution, such 

as a more precise selection of calibration points, can be implemented to reduce the overfitting. 

Therefore, I suggest testing the sensitivity of the calibration such that overfitting can be prevented. 

Use the KNMI’23 climate scenarios to simulate future groundwater levels. This study has proven 

that valid groundwater projections can be simulated using a time series model and other 

meteorological data. The KNMI climate scenarios are already being translated into future river 

discharges. As this dataset also includes precipitation and evaporation, this could also be done for 

groundwater levels, using the methodology from this study. This can provide insight into future 

groundwater levels for the current groundwater system. 

Expanding the number of locations. This study uses four groundwater monitoring wells in Northern 

Limburg, which is classified as high sandy soils. I would recommend researching to what extent the 

results of this study holds for other geographical areas. I would expect it to be difficult to model using 

precipitation and evaporation alone, so this would require sufficient data on e.g. river discharge or 

polder water level. The generalisability of the results might be limited by location-specific factors like 

polder areas, varying subsoil characteristics, and diverse land use practices. Nevertheless, the 

interpretation regarding the differences between characterising droughts using measurements and 

simulations might hold true across these contexts. 
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Take into account dependency of multi-year droughts in statistics. As highlighted in this study, 

extreme droughts often extend across multiple years, influencing groundwater levels even during 

periods of relatively higher rainfall. For example, the drought in 2018 led to lower groundwater levels 

in the beginning of 2019, resulting in a very dry summer despite the increased precipitation that 

year. This implies that groundwater levels exhibit both seasonal fluctuations (summer-winter) and 

fluctuations between dry and wet periods over multiple years. This pattern also occurs in long-term 

groundwater simulations in this study. The estimation of return periods in this study assumes 

independent events, a condition not met using annual values due to the long response time of 

groundwater. The sensitivity analysis showed that the return period below T20 is therefore sensitive 

to the sampling strategy. A possible solution to reduce the dependency of years in annual statistics is 

to correct for the trend in fluctuations between dry and wet periods, retaining only seasonal 

fluctuations. However, this results in less insight in the groundwater dynamics. Alternatively, the 

variation between summer and winter groundwater levels can be analysed separately for each year, 

excluding any previous dry or wet years. This requires the use of a Bayesian statistic, where the 

frequency of a summer groundwater level is derived, given the previous winter groundwater level. 

My suggestion is to further explore the dependency of multiple years in groundwater statistics. 

 

  



49 
 

REFERENCES 

1Limburg. (2023, June 18). Grondwateronttrekking lijkt niemand te boeien. 

https://www.1limburg.nl/nieuws/2224008/grondwateronttrekking-lijkt-niemand-te-boeien 

AHN. (2022). Actueel Hoogtebestand Nederland. https://service.pdok.nl/rws/ahn/atom/index.xml 

Alley, W. M., & Taylor, C. J. (2002). Ground-Water-Level Monitoring and the Importance of Long-Term 

Water-Level Data. https://www.researchgate.net/publication/255948122 

Averink, J. (2013). Methoden voor bepalen hoogste en laagste grondwaterstanden [Master Thesis, 

Universiteit Twente]. https://essay.utwente.nl/64285/1/Averink_Arjan.pdf 

Bakker, M., & Schaars, F. (2019). Solving Groundwater Flow Problems with Time Series Analysis: You 

May Not Even Need Another Model. Groundwater, 57(6), 826–833. 

https://doi.org/10.1111/gwat.12927 

Bartholomeus, R. P., Voortman, B. R., & Witte, J.-P. M. (2011). In search of the actual groundwater 

recharge. www.kwrwater.nl 

Benard, A., & Bos-Levenbach, E. C. (1954). Het uitzetten van waarnemingen op 

waarschijnlijkheidspapier. https://doi.org/10.1111/j.1467-9574.1953.tb00821.x 

Benninga, H. J. F., Carranza, C. D. U., Pezij, M., Van Santen, P., Van Der Ploeg, M. J., Augustijn, D. C. 

M., & Van Der Velde, R. (2018). The Raam regional soil moisture monitoring network in the 

Netherlands. Earth System Science Data, 10(1), 61–79. https://doi.org/10.5194/essd-10-61-

2018 

Bloomfield, J. P., & Marchant, B. P. (2013). Analysis of groundwater drought building on the 

standardised precipitation index approach. Hydrology and Earth System Sciences, 17(12), 4769–

4787. https://doi.org/10.5194/hess-17-4769-2013 

Bouma, J., Maasbommel, M., & Schuurman, I. (2012). handboek meten van grondwaterstanden in 

peilbuizen. STOWA. 

Brakkee, E., Van Huijgevoort, M., & Bartholomeus, R. P. (2021). Spatiotemporal development of the 

2018-2019 groundwater drought in the Netherlands: a data-based approach. Hydrology and 

Earth System Sciences. https://doi.org/10.5194/hess-2021-64 

Brandsma, T. (2014). Comparison of automatic and manual precipitation networks in the 

Netherlands. 

Collenteur, R. A. (2021). How Good Is Your Model Fit? Weighted Goodness-of-Fit Metrics for Irregular 

Time Series. Groundwater, 59(4), 474–478. https://doi.org/10.1111/gwat.13111 

Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., & Schaars, F. (2019). Pastas: Open Source Software 

for the Analysis of Groundwater Time Series. Groundwater, 57(6), 877–885. 

https://doi.org/10.1111/gwat.12925 

Collenteur, R. A., Bakker, M., Klammler, G., & Birk, S. (2021). Estimation of groundwater recharge 

from groundwater levels using nonlinear transfer function noise models and comparison to 

lysimeter data. Hydrology and Earth System Sciences, 25(5), 2931–2949. 

https://doi.org/10.5194/hess-25-2931-2021 



50 
 

Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., & Jones, P. D. (2018). An Ensemble 

Version of the E-OBS Temperature and Precipitation Data Sets. Journal of Geophysical Research: 

Atmospheres, 123(17), 9391–9409. https://doi.org/10.1029/2017JD028200 

Das, J., & Umamahesh, N. V. (2018). Assessment of uncertainty in estimating future flood return 

levels under climate change. Natural Hazards, 93(1), 109–124. https://doi.org/10.1007/s11069-

018-3291-2 

Dawley, S., Zhang, Y., Liu, X., Jiang, P., Tick, G. R., Sun, H. G., Zheng, C., & Chen, L. (2019). Statistical 

analysis of extreme events in precipitation, stream discharge, and groundwater head 

fluctuation: Distribution, memory, and correlation. Water (Switzerland), 11(4). 

https://doi.org/10.3390/w11040707 

de Bakker, H., & Schelling, J. (1989). Systeem van bodemclassificatie voor Nederland. 

de Gruijter, J. J., van der Horst, J. B. F., Heuvelink, G. B. M., Knotters, M., & Hoogland, T. (2004). 

Grondwater opnieuw op de kaart. 

De Valk, C., & Wijnant, I. L. (2019). Uncertainty analysis of climatological parameters of the Dutch 

Offshore Wind Atlas (DOWA). https://www.dutchoffshorewindatlas.nl/about-the-atlas 

Devesa, K. (2023). Drought indicators in the East of the Netherlands. 

DINOloket. (2020, November 28). Ondergrondgegevens. TNO. 

https://www.dinoloket.nl/ondergrondgegevens 

Droogers, P. (2009). Verbetering bepaling actuele verdamping voor het strategisch waterbeheer. 

https://edepot.wur.nl/7183 

El Mezouary, L., El Mansouri, B., & El Bouhaddioui, M. (2020, March 11). Groundwater Forecasting 

using a Numerical Flow Model Coupled with Machine Learning Model for Synthetic Time Series. 

ACM International Conference Proceeding Series. https://doi.org/10.1145/3399205.3399230 

European Drought Observatory. (2023, February 17). Drought and Drought Observation. https://edo-

jrc-ec-europa-eu.ezproxy2.utwente.nl/edov2/html/1001.html 

Finke, P. A., Bierkens, M. F. P., Zeeman, W. P. C., Schouten, G., Runhaar, J., van der Molen, P., van der 

Meer, W., de Gruijter, J. J., & van Bakel, P. J. T. (2001). Beter werken met ‘Waternood’; Een 

proeftoepassing in het herinrichtingsgebied ‘De Leijen’. 

https://www.researchgate.net/publication/40155498 

Geologische Dienst Nederland. (2023). Grondwaterstanden in beeld. Grondwatertools. 

https://www.grondwatertools.nl/gwsinbeeld/showloc?wellid=B42H0043&screenid=001 

Guo, M., Yue, W., Wang, T., Zheng, N., & Wu, L. (2021). Assessing the use of standardized 

groundwater index for quantifying groundwater drought over the conterminous US. Journal of 

Hydrology, 598, 126227. https://doi.org/10.1016/J.JHYDROL.2021.126227 

Gupta, R., Bhattarai, R., & Mishra, A. (2019). Development of climate data bias corrector (CDBC) tool 

and its application over the agro-ecological zones of India. Water (Switzerland), 11(5). 

https://doi.org/10.3390/w11051102 

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European 

daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. 

Journal of Geophysical Research Atmospheres, 113(20). https://doi.org/10.1029/2008JD010201 



51 
 

Hazeu, G., Schuiling, R., Thomas, D., Vittek, M., Storm, M., & Bulens, D. J. (2023). Landelijk 

Grondgebruiksbestand Nederland 2021 (LGN2021). Wageningen Environmental Research. 

Hegnauer, M., Beersma, J. J., van den Boogaard, H. F. P., Buishand, T. A., & Passchier, R. H. (2014). 

Generator of Rainfall and Discharge Extremes (GRADE) for the Rhine and Meuse basins-Final 

report of GRADE 2.0. 

Hoekstra, A. Y. (2018). Lecture Notes Water (Vol. 885). Faculty of Engineering Technology. 

Hoogland, T., Knotters, M., Pleijter, M., & Walvoort, D. J. J. (2014). Actualisatie van de 

grondwatertrappenkaart van holoceen Nederland. www.BISNederland.wur.nl 

Hsin-Fu Yeh, H. F., & Chang, C. F. (2019). Using Standardized Groundwater Index and Standardized 

Precipitation Index to Assess Drought Characteristics of the Kaoping River Basin, Taiwan. Water 

Resources, 46(5), 670–678. https://doi.org/10.1134/S0097807819050105 

Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in hydrology. Advances in 

Water Resources, 25(8–12), 1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8 

KNMI. (2018). Referentie-gewasverdamping. 

https://cdn.knmi.nl/system/ckeditor_assets/attachments/62/ref_gewasverdamping.pdf 

KNMI. (2021a, January 5). Achtergrondinformatie berekening klimaatnormalen 1991- 2020. 

https://www.knmi.nl/kennis-en-datacentrum/achtergrond/achtergrondinformatie-berekening-

klimaatnormalen-1991-2020 

KNMI. (2021b, June 28). Achtergrondinformatie neerslagindexen SPI en SPEI. 

https://www.knmi.nl/kennis-en-datacentrum/achtergrond/achtergrondinformatie-

neerslagindex-

spi#:~:text=Het%20KNMI%20rekent%20de%20SPI,ontwikkeling%20van%20de%20SPI%20toege

voegd. 

KNMI. (2023a). Dagwaarden neerslagstations. https://www.knmi.nl/nederland-

nu/klimatologie/monv/reeksen 

KNMI. (2023b). Dagwaarnemingen weerstations. 

https://daggegevens.knmi.nl/klimatologie/daggegevens 

Knotters, M., Hoogland, T., & Brus, D. (2013). Validatie van grondwater-standskaarten met behulp 

van de Landelijke Steekproef Kaarteenheden. Stromingen, 19(3 & 4), 35–47. 

https://edepot.wur.nl/315231 

Knotters, M., Walvoort, D., Brouwer, F., Stuyt, L., & Okx, J. (2018). Landsdekkende, actuele informatie 

over grondwatertrappen digitaal beschikbaar. Wagningen Environmental Research. 

Lenderink, G., van den Hurk, B., van Meijgaard, E., van Ulden, A., & Cuijpers, H. (2003). Simulation of 

present-day climate in RACMO2: first results and model developments. KNMI. 

Martinez-Villalobos, C., & David Neelin, J. (2019). Why Do Precipitation Intensities Tend to Follow 

Gamma Distributions? Journal of the Atmospheric Sciences, 76(11), 3611–3631. 

https://doi.org/10.1175/JAS-D-18 

McCluskey, C. J., Guers, M. J., & Conlon, S. C. (2021). Minimum sample size for extreme value 

statistics of flow-induced response. Marine Structures, 79, 103048. 

https://doi.org/10.1016/J.MARSTRUC.2021.103048 



52 
 

Mohanasundaram, S., Narasimhan, B., & Suresh Kumar, G. (2017). Transfer function noise modelling 

of groundwater level fluctuation using threshold rainfall-based binary-weighted parameter 

estimation approach. Hydrological Sciences Journal, 62(1), 36–49. 

https://doi.org/10.1080/02626667.2016.1171325 

Navarro-Racines, Tarapues-Montenegro, And Ramírez-Villegas, J. E., & Ramírez-Villegas. (2015). BIAS-

CORRECTION IN THE CCAFS-CLIMATE PORTAL: A description of methodologies. 

http://www.ccafs-climate.org/data_bias_correction/ 

NHI. (2023). Documentatie datasets. STOWA. 

https://nhi.nu/documents/46/Documentatie_datasets.pdf 

Obergfell, C., Bakker, M., & Maas, K. (2019). Estimation of Average Diffuse Aquifer Recharge Using 

Time Series Modeling of Groundwater Heads. Water Resources Research, 55(3), 2194–2210. 

https://doi.org/10.1029/2018WR024235 

Petersen-Perlman, J. D., Aguilar-Barajas, I., & Megdal, S. B. (2022). Drought and groundwater 

management: Interconnections, challenges, and policyresponses. In Current Opinion in 

Environmental Science and Health (Vol. 28). Elsevier B.V. 

https://doi.org/10.1016/j.coesh.2022.100364 

Peterson, T. J., & Western, A. W. (2014). Nonlinear time-series modeling of unconfined groundwater 

head. Water Resources Research, 50(10), 8330–8355. https://doi.org/10.1002/2013WR014800 

Pezij, M., Augustijn, D. C. M., Hendriks, D. M. D., & Hulscher, S. J. M. H. (2020). Applying transfer 

function-noise modelling to characterize soil moisture dynamics: a data-driven approach using 

remote sensing data. Environmental Modelling & Software, 131, 104756. 

https://doi.org/10.1016/J.ENVSOFT.2020.104756 

Pezij, M., & Lugt, D. (2023). Droogtestatistiek; Meteo-onderzoek ten behoeve van het waterbeheer: 

Deelrapport 3. https://www.stowa.nl/publicaties/droogtestatistiek-meteo-onderzoek-ten-

behoeve-van-het-waterbeheer-deelrapport-3 

Philip, S. Y., Kew, S. F., Van Der Wiel, K., Wanders, N., Jan Van Oldenborgh, G., & Philip, S. Y. (2020). 

Regional differentiation in climate change induced drought trends in the Netherlands. 

Environmental Research Letters, 15(9). https://doi.org/10.1088/1748-9326/ab97ca 

Pidwirny, M. (2006). The Hydrologic Cycle. Fundamentals of Physical Geography, 2nd Edition. 

http://www.physicalgeography.net/fundamentals/8b.html 

Programma Basisregistratie Ondergrond. (2023). Bodemkaart (SGM). 

https://basisregistratieondergrond.nl/inhoud-bro/registratieobjecten/modellen/bodemkaart-

sgm/ 

Qian, W., & Chang, H. H. (2021). Projecting health impacts of future temperature: A comparison of 

quantile‐mapping bias‐correction methods. International Journal of Environmental Research 

and Public Health, 18(4), 1–12. https://doi.org/10.3390/ijerph18041992 

Ratering, P. (2023). Effects of human landscape interventions on groundwater drought [Master 

Thesis, University of Twente]. https://landschapoverijssel.nl/twente/doorbraak 

Ritzema, H., Heuvelink, G., Heinen, M., Bogaart, P., van der Bolt, F., Hack-ten Broeke, M., Hoogland, 

T., Knotters, M., Massop, H., & Vroon, H. (2012). Meten en interpreteren van 

grondwaterstanden. In Alterra-rapport 2345. 



53 
 

Robinson, D. A., Nemes, A., Reinsch, S., Radbourne, A., Bentley, L., & Keith, A. M. (2022). Global 

meta-analysis of soil hydraulic properties on the same soils with differing land use. Science of 

The Total Environment, 852, 158506. https://doi.org/10.1016/J.SCITOTENV.2022.158506 

Schumacher, D. L., Keune, J., Dirmeyer, P., & Miralles, D. G. (2022). Drought self-propagation in 

drylands due to land–atmosphere feedbacks. Nature Geoscience, 15(4), 262–268. 

https://doi.org/10.1038/s41561-022-00912-7 

Škarpich, V., Horáček, M., Galia, T., Kapustová, V., & Šala, V. (2016). The effects of river patterns on 

riparian vegetation: A comparison of anabranching and single-thread incised channels. 

Moravian Geographical Reports, 24(3), 24–31. https://doi.org/10.1515/mgr-2016-0014 

The editors of Encyclopaedia Britannica. (2023). Water cycle. In Rafferty John P. (Ed.), Encyclopedia 

Britannica. https://www.britannica.com/science/water-cycle 

van den Eertwegh, G., de Louw, P., Witte, J.-P., van Huijgevoort, M., Bartholomeus, R., van Deijl, D., 

van Dam, J., Hunink, J., America, I., Pouwels, J., Hoefsloot, P., & de Wit, J. (2021). Droogte 

Zandgronden Nederland. 

van der Gaast, J. W. J., Vroon, H. R. J., & Massop, H. Th. L. (2010). Grondwaterregime op basis van 

karteerbare kenmerken. https://edepot.wur.nl/163486 

van Engelenburg, J., de Jonge, M., Rijpkema, S., van Slobbe, E., & Bense, V. (2020). Hydrogeological 

evaluation of managed aquifer recharge in a glacial moraine complex using long-term 

groundwater data analysis. Hydrogeology Journal, 28(5), 1787–1807. 

https://doi.org/10.1007/s10040-020-02145-7 

Van Hussen, K., Van De Velde, I., Läkamp, R., & Van Der Kooij, S. (2019). Economische schade door 

droogte in 2018. 

van Kekem, A. J., Hoogland, T., & van der Horst, J. B. F. (2005). Uitspoelingsgevoelige gronden op de 

kaart. 

Van Loon, A. F. (2013). On the propagation of drought How climate and catchment characteristics 

influence hydrological drought development and recovery. 

Van Meijgaard, E., Van Ulft, L. H., Van De Berg, W. J., Bosveld, F. C., Van Den Hurk, B. J. J. M., 

Lenderink, G., & Siebesma, A. P. (2008). The KNMI regional atmospheric climate model RACMO 

version 2.1. 

Van Voorst, L., & Van Den Brink, H. (2022). Improving the GRADE weather generator by using 

synthetic datasets from RACMO and SEAS5. 

Verhagen, F., & Avis, L. (2021). Lessen uit lange grondwaterreeksen. Stromingen, 27(2). 

Von Asmuth, J., Baggelaar, P., Bakker, M., Brakenhoff, D., Collenteur, R. A., Ebbens, O., Mondeel, H., 

Klop, S., & Schaars, F. (2021). Handleiding Tijdreeksanalyse. STOWA. www.stowa.nl 

Von Asmuth, J., Bierkens, M., & Maas, K. (2002). Transfer function-noise modeling in continuous time 

using predefined impulse response functions. Water Resources Research, 38(12), 23-1-23–12. 

https://doi.org/10.1029/2001wr001136 

von Asmuth, J., Maas, K., Knotters, M., Bierkens, M. F. P., Bakker, M., Olsthoorn, T. N., Cirkel, D. G., 

Leunk, I., Schaars, F., & von Asmuth, D. C. (2012). Software for hydrogeologic time series 



54 
 

analysis, interfacing data with physical insight. Environmental Modelling and Software, 38, 178–

190. https://doi.org/10.1016/j.envsoft.2012.06.003 

Vonk, M. (2021). Performance of nonlinear time series models to simulate synthetic ground-water 

table time series from an unsaturated zone model. 

Waterschap Limburg. (2019). Kaarten en meetgegevens. 

https://www.waterschaplimburg.nl/uwbuurt/kaarten-meetgegevens/ 

World Meteorological Organization. (2017). WMO Guidelines on the Calculation of Climate Normals. 

https://library.wmo.int/viewer/55797?medianame=1203_en_#page=1&viewer=picture&o=boo

kmark&n=0&q= 

Zaadnoordijk, W. J., Bus, S. A. R., Lourens, A., & Berendrecht, W. L. (2019). Automated Time Series 

Modeling for Piezometers in the National Database of the Netherlands. Groundwater, 57(6), 

834–843. https://doi.org/10.1111/GWAT.12819 

  

  



55 
 

APPENDIX A: ADDITIONAL MAPS OF STUDY AREA 

 

Figure 29: Ground elevation from Digital Terrain Model AHN3 (AHN, 2022). 

 

Figure 30: Drinking water withdrawals (blue patches) and possible irrigation extractions (green areas) (NHI, 2023). 
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Figure 31: Soil surfaces BRO Soil Map (SGM) (Programma Basisregistratie Ondergrond, 2023). 

 

 
Figure 32: Subsurface soil fractures (NHI, 2023). 
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Figure 33: Land use of study area according to LGN2022 (Hazeu et al., 2023). 
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CHARACTERISTICS OF LOCATIONS 
Ell 
The land use surrounding monitoring well Ell predominantly consists of managed agrarian grasslands, 
with a deciduous forest (Heijkersbroek) in close proximity. The soil is classified as Beekeerdgrond, 
which typically comprises of sandy soils found in stream valleys. The nearest stream is Vliet at 
approximately 50 meters from the monitoring well. 

 
Figure 34: Land use zoomed in on location Ell. 

Heibloem 
The land use surrounding the Heibloem monitoring well is primarily dedicated to agriculture, 
featuring crops such as potatoes, corn and sugar beets. In Heibloem, the soil is classified as 
Gooreerdgrond, characterized by calcareous sandy soils with a topsoil primarily composed of loamy 
fine sand. Nearest surface water is Egchelbeek at approximately 150 meters from the monitoring 
well. 

 
Figure 35: Land use zoomed in on location Heibloem. 
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Sevenum 
The Sevenum monitoring well is located on the border of agricultural areas and nature-managed 
grasslands with adjacent deciduous forest (Elsbeemden). Similarly, in Sevenum, the soil is identified 
as Veldpodzolgrond, which are humic podzolic soils mainly consisting of loamy fine sand. The nearest 
surface water is the Groote Molenbeek at approximately 110 meters from the monitoring well. 

 
Figure 36: Land use zoomed in on location Sevenum. 

Mariapeel 
Finally, the Mariapeel monitoring well is situated at the edge of a Natura-2000 area (Mariapeel) and 
adjacent to a stretch of deciduous forest, with agricultural land nearby. Mariapeel also exhibits 
characteristics of veldpodzolgronden, with a soft loamy fine sand topsoil. The adjacent natural area 
contains peat with humuspodzol and marshy podzolic soils. The nearest surface water is the 
Peelkanaal at approximately 30 meters from the monitoring well. This is less than the defined 
criteria, such that it might impact groundwater monitoring (Bouma et al., 2012). 

 
Figure 37: Land use zoomed in on location Mariapeel. 
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Figure 38: Profile bore sample location Ell. 

 

Figure 39:  Profile bore sample location Heibloem. 

 

Figure 40: Profile bore sample location Sevenum. 

 

Figure 41: Profile bore sample location Mariapeel. 
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APPENDIX B: INPUT DATA 

INPUT DATA RQ1: METHODOLOGY TO DERIVE STATISTICS OF MEASUREMENTS 
Some measurements expose unrealistic changes to the groundwater head within one observation 

time step. These measurements are marked as measurements errors since they cause unreliability in 

further analysis. Therefore, these measurements are removed from the dataset. Whether a 

measurement is an error is based on visual inspection of the measurement series and comparing 

outliers with other locations and measured precipitation. The found measurement errors and a few 

examples are given in the appendix. The gaps due to the removed errors are not interpolated, since 

the measurements series already contains data gaps which are too large to interpolate. 

The processed measurements of the observation wells are displayed throughout the year in Figure 

42. In the figure, the annual regime of the groundwater heads is presented. Furthermore, it is easier 

to highlight peak events in relation to the other years. A high peak is shown in June 2016 for all 

locations, due to a large rainfall event. Furthermore, the groundwater heads in the years 2018, 2019 

and 2020 are low, especially in the months July – September. It is also worth noting that 

groundwater levels in 2019 already start below average, due to low groundwater levels in late 2018.  

 

Figure 42: Groundwater observations per Day-Of-Year. 
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Table 13: Properties of groundwater measurements for analysis period. 

Properties measurement 
series 

 monitoring well Ell 
 monitoring well 
Heibloem 

 monitoring well 
Sevenum 

 monitoring well 
Mariapeel 

Start date measurement 
period 

28-11-2012 2-12-2012 2-12-2012 2-12-2012 

End date measurement 
period 

28-11-2020 2-12-2020 2-12-2020 2-12-2020 

Number of measurements 191 2574 2863 2275 

Average (cm + NAP) 2763 2974 2575 3117 

standard deviation (cm) 49.2 52.9 45.5 43.7 

Minimum (cm + NAP) 2645 2875 2460 3015 

10-percentile (cm + NAP) 2693 2891 2507 3055 

50-percentile (cm + NAP) 2769 2982 2582 3123 

90-percentile (cm + NAP) 2823 3039 2630 3170 

Maximum (cm + NAP) 2859 3083 2698 3256 

Groundwater dynamics (m) 1.3 1.48 1.23 1.15 

 

Table 14: Dates of measurement errors based on precipitation data and visual comparison with other locations. 

Measurement errors: 

Heibloem Sevenum 

28-10-2013 4-6-2013 

4-11-2013 5-6-2013 

27-1-2014 23-5-2017 

15-2-2014 2-6-2017 

28-5-2014 11-7-2017 

26-8-2014 22-4-2020 

28-12-2014 24-4-2020 

9-1-2015 9-5-2020 

10-1-2015 10-5-2020 

14-1-2015 18-5-2020 

27-2-2015 19-5-2020 

30-3-2015 Mariapeel 

31-3-2015 6-1-2015 

23-2-2016 17-2-2020 

5-6-2016 18-2-2020 

9-3-2017 Ell 

30-10-2018 28-12-2012 

11-2-2019 28-6-2014 
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Figure 43: Example of measurement error for location Mariapeel. 

 

Figure 44: Example of measurement error for location Ell. 

 

Figure 45: Example of measurement error for location Sevenum. 
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Figure 46: Example of measurement error for location Heibloem. 

 

INPUT DATA RQ2: VALIDATION OF HISTORICAL METEOROLOGICAL SERIES 

 

Figure 47: Observed precipitation (Ell, Heibloem, Sevenum) and evaporation (Ell) for the KNMI stations for approximately 30 
years (1991-2020 for the precipitation stations and 1999-2023 for weather station Ell due to lack of data). 
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Figure 48: Historical precipitation and evaporation data extracted for the locations of the KNMI stations for the period of 

1910-2022. 

METEOROLOGICAL OBSERVATIONS 
The KNMI is the primary source for meteorological data, utilizing automated weather stations and 

manual precipitation stations. Precipitation is measured using rain gauges, with 1 millimeter 

corresponding to 1 liter of water per square meter. Evaporation not only depends on meteorological 

quantities such as solar radiation, wind and temperature, but also on non-meteorological conditions 

such as soil moisture, crop growth and ground cover. Given this, actual evapotranspiration cannot be 

predicted (KNMI, 2018). Therefore, KNMI calculates reference crop evaporation from proxy 

meteorological data. In summer, wind tends to play a less significant role in influencing evaporation 

making it possible to accurately estimate evaporation based solely on the temperature and solar 

radiation. The KNMI developed a calculation method based on these parameters, known as the 

Makkink method. Reference crop evaporation is used to estimate the potential evapotranspiration of 

a crop or vegetation (Bartholomeus et al., 2011), and is defined as the evapotranspiration from a dry 

grass surface optimally supplied by water (Droogers, 2009).  

 

 
Figure 49: Locations of the input data; Historical meteorological data at locations of measuring wells; Observed precipitation 

data in KNMI station Ell, Heibloem and Sevenum and evaporation data at KNMI station Ell. Circles denote the use of which 
KNMI data for which measuring well (Orange = precipitation, black = evaporation). 
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APPENDIX C: ADDITIONAL RQ1: METHODOLOGY TO DERIVE STATISTICS 

PERCENTILES 
Table 15: Median (50th percentile) value for observations and simulations for location Ell. 

Month Observation 
[m+ NAP] 

Simulation 
[m + NAP] 

Difference 
[m+ NAP] 

1 28.14 28.26 -0.12 

2 28.18 28.39 -0.21 

3 28.20 28.33 -0.14 

4 28.00 28.14 -0.14 

5 27.72 27.85 -0.13 

6 27.40 27.61 -0.21 

7 27.16 27.46 -0.30 

8 27.10 27.36 -0.26 

9 27.25 27.45 -0.20 

10 27.34 27.55 -0.22 

11 27.44 27.75 -0.31 

12 27.84 28.02 -0.18   
sum -2.42   
average -0.20 
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AVERAGE LOW GROUNDWATER LEVEL 
 

 

 

Figure 50: Selection of drought events with minimum groundwater head below GLG. 

 

 

Table 16: GxG of observed and simulated groundwater levels for all locations. 

Statistic [m 
below 

surface level] 

Ell Heibloem Sevenum Mariapeel 

Observed Simulated Observed Simulated Observed Simulated Observed Simulated 

GHG 0.87 0.64 0.92 0.98 1.28 1.15 1.09 0.98 

GVG 0.98 0.83 1.12 1.16 1.46 1.44 1.22 1.14 

GG 1.5 1.25 1.62 1.55 1.88 1.8 1.66 1.61 

GLG 2.06 1.82 2.14 2.07 2.46 2.43 2.17 2.17 
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STANDARDISED GROUNDWATER INDEX 

 

 
Figure 51: Peak selection for SGI below zero for observations and simulations. 

 

 
Figure 52: Difference between SGI-0, SGI-1 and SGI-3 for monitoring location Ell. 
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ANNUAL MINIMA EXTREME VALUE ANALYSIS 

 

Figure 53: Plot of return periods for annual minima extreme values for both distributions. 

 

Table 17: Estimated return periods fitted extreme value distributions. 

T P Annual Min Ell   
[m + NAP] 

Annual Min 
Heibloem [m + NAP] 

Annual Min Sevenum 
[m + NAP] 

Annual Min 
Mariapeel [m + NAP] 

2 0.5 26.94 29.04 24.96 30.46 

5 0.2 26.65 28.85 24.73 30.30 

10 0.1 26.51 28.77 24.62 30.23 

25 0.04 26.36 28.69 24.52 30.16 

50 0.02 26.28 28.65 24.45 30.12 

100 0.01 26.20 28.61 24.39 30.09 

 

 
Figure 54: Peak selection extreme value analysis for different annual windows. 
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Figure 55: Sensitivity analysis of estimating drought frequency (peak selection in Figure 54) 

 

 

APPENDIX D: ADDITIONAL RQ2: VALIDATION OF METEOROLOGICAL SERIES 

 

Figure 56: Histogram of observed and historical meteorological data; bins of 2 [mm] for precipitation and 0.2 [mm] for 
evaporation. 
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Figure 57: Observed KNMI weather and long-term series for location Ell for the period 1910-2023. 

 

Figure 58: Observed KNMI weather and long-term series for location Ell for the period 1999-2023; long-term series match 
the observation series. 

VALIDATION OF HISTORICAL METEOROLOGICAL DATA BEFORE CORRECTION 
The climatological properties are represented in the cumulative density functions. The cumulative 

density functions (CDF) of the observed and historical climate are shown in Figure 59. The CDF 

describe the climate for both meteorological datasets (section 3.3), meaning the average and 

deviations of precipitation and evaporation over a significant period of time. As can be seen in the 

figures, the CDF’s look very similar, indicating that the climate of the historical series represents 

current climate. Only at the most extreme value of the tail, the historical precipitation and 

evaporation overestimate the observed precipitation and evaporation. However, since groundwater 

has a maximum infiltration rate (until the ground is saturated), is it expected that this has minimal 

impact.  
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Figure 59: Empirical CDF of historical and observed meteorological data. 

 

The historical precipitation at KNMI locations Heibloem and Sevenum did not have the same 

distribution as the current precipitation at these locations, according to the KS-test and visual 

inspection (Table 18, Figure 60). High precipitation events are underestimated in the historical 

precipitation compared to observed precipitation. Therefore, the bias correction method of quantile 

mapping is performed to corrected for deviation. The historical precipitation and reference crop 

evaporation for KNMI station Ell was correct in the historical meteorological data series. This is as 

predicted, since that KNMI station was used to compile the dataset, while the locations of Sevenum 

and Heibloem did not. Therefore, the precipitation at these locations were spatially interpolated 

which meant that the precipitation turns out lower than current climate.  

 

 

Figure 60: QQ-plot for historical and observed climate at the same location before correction. 
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Table 18: Kolmogorov-Smirnov test for historical meteorological data before correction. 

Test Ell Heibloem Sevenum Criteria 

  P ET P P   
K-S 0.052 0.04 0.18 0.261 

 

P-value 0.13 0.99 1.44e-14 2.43e-30 > 0.05 
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APPENDIX E: ADDITIONAL RQ3: SIMULATION OF GROUNDWATER LEVELS 

 

 

 

 

 

Table 19: Specific for only groundwater levels in the summer. 

Model Performance Ell Heibloem Mariapeel Sevenum Criteria 

Calibration (2014-2020) 
   

   

EVP [%] 93.3 90.4 87.7 92 > 70% 

RMSE [m] 0.14 0.16 0.19 0.15 < 

Validation (2012-2014) 
   

   

EVP [%] 97.4 73.1 88.8 94.5 > 70% 

RMSE [m] 0.09 0.38 0.13 0.17 < 
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CALIBRATION IN SUMMER 2018 

 

Figure 61: Measurements summer 2018 used in calibration. 

 

 

 

VALIDATION OF LONG-TERM GROUNDWATER SIMULATIONS 

 
Figure 62: Validation of simulated groundwater levels using groundwater observation outside model calibration period and 

monitoring stations in the vicinity of the locations. 
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Figure 63: Observed groundwater measurements from monitoring wells in the vicinity alongside groundwater simulations 

between the period ~1950-2012. 

 
Figure 64: Observed groundwater measurements before the analysis period alongside groundwater simulations between the 

period 2000-2012. 
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USE OF DIFFERENT STRESS MODELS 
 

Table 20: Results of model performance using different stress models. Modelling recharge as one input stress of 
precipitation minus evaporation provides the best results. 

Calibration period 2014-2020; Validation period 2012-2014   

StressModel:   Goodness of fit: Ell Heibloem Sevenum Mariapeel 

Precipitation 
and 
evaporation 
separate 

Calibration EVP 92.22% 73.61% 83.32% 78.32% 

  RMSE 0.14 0.23 0.18 0.2 

Validation EVP 93.57% 36.08% 61.95% 47.51% 

  RMSE 0.08 0.38 0.24 0.24 

Recharge 
(precipitation 
- evaporation) 

Calibration EVP 94.9% 88.6% 90.3% 92.6% 

  RMSE 0.12 0.16 0.16 0.14 

Validation EVP 96.1% 76.6% 90.3% 89.5% 

  RMSE 0.09 0.30 0.16 0.11 

FlexModel Calibration EVP 92.50% 0.00% 83.10% 86.70% 

    RMSE 0.14 0.33 0.18 0.17 

  Validation EVP 93.70% 0.00% 80.47% 89.62% 

    RMSE 0.10 0.44 0.17 0.14 

Linear Calibration EVP 94.61% 86.31% 0.00% 90.82% 

    RMSE 0.12 0.18 0.34 0.16 

  Validation EVP 96.22% 80.19% 44.16% 89.89% 

    RMSE 0.08 0.32 0.26 0.11 

Berendrecht Calibration EVP 91.10% 0.00% 0.00% 72.40% 

    RMSE 0.15 0.33 0.32 0.2 

  Validation EVP 87.47% 0.00% 0.00% 71.54% 

    RMSE 0.16 0.43 0.25 0.17 

Peterson Calibration EVP 94.53% 83.80% 93.71% 76.65% 

    RMSE 0.12 0.19 0.12 0.19 

  Validation EVP 95.12% 56.82% 87.09% 66.43% 

    RMSE 0.08 0.26 0.12 0.17 

 

GROUNDWATER MEASUREMENTS 
The pre-processed groundwater observations are shown in Figure 65. It is chosen for a period of 

eight years, since changes in water management can often induce changes in the groundwater 

regime. Certain climatological events occur consistently across all groundwater observation series, 

notably the annual groundwater fluctuation pattern. Higher groundwater levels are observed during 

winter months, due to increased precipitation, while lower levels are observed in summer months. 

Notably, in the years 2018 and 2019, particularly in Ell and Sevenum, groundwater levels decrease in 

the summer.  

As seen in Figure 65, some measurements expose unrealistic changes to the groundwater head 

within one observation time step. These measurements are marked as measurements errors since 

they cause unreliability in further analysis. Therefore, these measurements are removed from the 

dataset. Whether a measurement is an error is based on visual inspection of the measurement series 

and comparing outliers with other locations and measured precipitation. The found measurement 
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errors and a few examples are given in the appendix. The gaps due to the removed errors are not 

interpolated, since the measurements series already contains data gaps which are too large to 

interpolate. 

 

 

Figure 65: Pre-processed groundwater observations for the monitoring wells. 

Distinctive characteristics occur in the annual pattern of the different locations. In Ell and Mariapeel, 

the peaks display a more rounded profile, whereas in Sevenum and Heibloem, the curves appear 

more irregular. This deviation is likely influenced by the difference in land uses surrounding the 

monitoring wells. Ell and Mariapeel are close to natural areas, where precipitation infiltrates quicker 

into the ground compared to agricultural areas, such as Sevenum and Heibloem (Robinson et al., 

2022). 

  



79 
 

ADDITIONAL HISTORICAL METEOROLOGICAL SERIES 
Next to historical meteorological data, there is also synthetic meteorological data. Synthetic 

meteorological time series refers to artificially generated weather datasets that resemble real-world 

meteorological data over a specific time period. These synthetic datasets can be created using 

statistical models or numerical simulations and are designed to capture the statistical properties and 

dynamics of meteorological variables. While synthetic meteorological datasets can provide valuable 

insights when real data is unavailable, they might not capture all complexities and nuances of the 

actual meteorological processes. 

Regional Atmospheric Climate Model (RACMO) is a numerical climate model used to simulate the 

climate and atmospheric processes over a specific area. RACMO is designed to provide detailed 

information about various climatological variables such as temperature, precipitation and radiation. 

RACMO is a well-known high resolution climatological model developed by KNMI (Van Meijgaard et 

al., 2008), based on hydrostatic dynamics originating from a numerical weather forecasting system 

(HIRLAM) and physics of the European Centre of Medium Range Weather Forecast (ECMWF) 

(Lenderink et al., 2003). 

GRADE is model developed for the KNMI and generates rainfall and discharge extremes for the Rhine 

and Meuse rivers under current and future climate conditions (Hegnauer et al., 2014). GRADE 

essentially is a modelling tool that consists of three components: a stochastic weather generator, a 

rainfall-runoff (hydrological) model and a hydraulic model. The stochastic weather generator is the 

climate model that could be used to generate synthetic meteorological time series. GRADE can also 

be combined with RACMO(Van Voorst & Van Den Brink, 2022).  

E-OBS comes as an ensemble dataset and is available on a 0.1- and 0.25-degree regular grid for the 

period of 1950 to 2022 for Europe (Cornes et al., 2018). The ensemble dataset is constructed through 

a conditional simulation procedure. For each of the members of the ensemble, a spatially correlated 

random field is produced using a pre-calculated spatial correlation function. The basis consists of 

23000 meteorological stations which are gridded using ordinary kriging (Haylock et al., 2008). 

 

 


