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São José dos Campos, SP - Brazil

2024



Cataloging-in Publication Data

Documentation and Information Division

Koch, Thorben Fabian
Comparison of constrained optimisation methods for aerostructural design / Thorben Fabian Koch.
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R. Secco. Co-advisor: Dr. ir. A. van Garrel.

1. Multidisciplinary optimisation. 2. Aerostrucutral Analysis. 3. Constrained Optimisation. I. Instituto
Tecnológico de Aeronáutica. II. Title.
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“Nothing at all takes place in the universe
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— Leonhard Euler



Resumo

A demanda por aeronaves altamente eficientes e ecologicamente corretas é prioritária na busca
pela aviação sustentável. Esse imperativo destaca as complexidades do acoplamento aeroestru-
tural, ressaltando a necessidade de Otimização de Projeto Multidisciplinar (Multidisciplinary
Design Optimisation - MDO) e técnicas de otimização baseadas em gradiente. Um ponto central
da otimização aeroestrutural é o complexo problema de gerenciar várias restrições de desigual-
dade, como tensões estruturais, que os métodos tradicionais de otimização muitas vezes têm
dificuldade de tratar de forma eficiente. Métodos atuais, como o uso de funções max, a função
Kreisselmeier-Steinhauser (KS), e abordagens de conformidade, enfrentam desafios no gerenci-
amento eficiente das restrições à medida que o número de funções de restrição aumenta. Esta
dissertação explora o potencial do método do Lagrangiano Aumentado (Augmented Lagrangian
method - ALM) para contornar essas limitações, oferecendo uma abordagem mais eficiente para
gerenciar as restrições de desigualdade. Essa abordagem é aplicada em um modelo de análise
aeroestrutural que emprega um modelo de elementos finitos para análise estrutural e uma adap-
tação da da linha sustentadora de Prandtl para a aerodinâmica. Central a essa investigação
é a comparação da abordagem ALM com uma abordagem de otimização que não agrega re-
strições, e com uma abordagem agregadora que emprega uma função KS para consolidar essas
restrições. Com foco no modelo de aeronave Helios Pathfinder Plus, o estudo destaca a eficácia
do ALM, especialmente no contexto do cálculo de derivadas pelo método adjunto. Isso con-
trasta com as complexidades e as demandas computacionais da abordagem de otimização que
não agrega restrições, especialmente ao lidar com modelos estruturais complexos. A abordagem
agregadora, embora eficiente em termos de tempo, não atinge o mesmo ńıvel de precisão e efi-
ciência computacional que o ALM. Em otimizações de peso estrutural altamente discretizadas,
o ALM supera significativamente as abordagens concorrentes, atingindo velocidades quase duas
vezes mais rápidas que a abordagem agregadora e dez vezes mais rápidas que a abordagem não
agregadora. Além disso, o ALM demonstrou de forma consistente um comportamento de con-
vergência no contexto de otimizações aeroestruturais altamente complexas, onde as abordagens
não agregadoras e as agregadoras tiveram dificuldades para alcançar a convergência. A pesquisa
ressalta a importância do ajuste fino dos parâmetros do ALM para equilibrar a exploração do
cenário de otimização e a busca de soluções viáveis. Configurações de parâmetros excessiva-
mente conservadoras podem levar o algoritmo ALM a soluções abaixo do ideal, priorizando a
viabilidade rápida em detrimento da exploração aprofundada.
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Abstract

In the pursuit of sustainable aviation, the demand for highly efficient and environmentally
friendly aircraft takes precedence. This imperative brings to light the complexities of aerostruc-
tural coupling, underscoring the necessity for Multidisciplinary Design Optimisation (MDO) and
gradient-based optimisation techniques.

Central to aerostructural optimisation is the intricate problem of managing numerous in-
equality constraints, such as structural stresses, which traditional optimisation methods of-
ten struggle to handle efficiently. The current methods, such as using max functions, the
Kreisselmeier-Steinhauser (KS) function, and compliance approaches, encounter challenges in
efficiently managing the constraints as the number of constraint functions increases. This thesis
explores the potential of the Augmented Lagrangian method (ALM) to transcend these limita-
tions by offering a more effective approach to managing inequality constraints.

This thesis explores aerostructural optimisation through a comprehensive study that employs
a finite element model for structural analysis and an adaptation of Prandtl’s lifting line theory
for aerodynamics. Central to this investigation is the comparison of the ALM approach with
both a non-aggregating optimisation approach, which directly handles all inequality constraints,
and an aggregating approach that employs a KS function to consolidate these constraints.

Focusing on a model of the Helios Pathfinder Plus aircraft, the study highlights the ef-
fectiveness of the ALM, particularly in the context of derivative calculation via the adjoint
method. This contrasts with the complexities and computational demands associated with the
non-aggregating optimisation approach, especially in handling complex structural models. The
aggregating approach, while time-efficient, does not achieve the same level of accuracy and
computational efficiency as the ALM.

In highly discretised structural weight optimisations, the ALM significantly outperforms
competing approaches, achieving speeds nearly twice as fast as the aggregating approach and
ten times faster than the non-aggregating approach. Moreover, in the context of highly com-
plex aerostructural optimisations, where both the non-aggregating and aggregating approaches
struggled to achieve convergence, the ALM consistently demonstrated robust and reliable con-
vergence behavior. The research underscores the significance the fine-tuning of ALM parameters
to balance exploration of the optimisation landscape and the pursuit of feasible solutions. Overly
conservative parameter settings may lead the ALM algorithm to suboptimal solutions by priori-
tising rapid feasibility over thorough exploration.
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1 Introduction

As one of the fastest-growing sources of greenhouse gas emissions, the aviation industry
stands at a critical juncture in the global effort to combat climate change. The European Union
(EU), recognising the significant environmental impact of aviation, has embarked on ambitious
initiatives to reduce these emissions. With the revision of the EU Emissions Trading System
(ETS) Directive and the European Green Deal, the EU aims for a net reduction of greenhouse
gas emissions by at least 55% by 2030 and a 90% reduction in transport emissions by 2050,
compared to 1990 levels (European Commission, 2023). These goals underscore the urgent need
for innovative aviation design and operation solutions. Despite improvements in fuel efficiency,
with a 24% reduction in fuel burned per passenger from 2005 to 2017, the sustained growth in
air traffic continues to outpace environmental gains. In 2017, aviation accounted for 3.8% of
the EU’s total CO2 emissions and 13.9% of transport emissions, making it the second largest
source of transport greenhouse gases after road transport. The stark reality is further illustrated
by the fact that a round-trip flight from Lisbon to New York generates emissions comparable
to an average EU citizen’s annual home heating (European Commission, 2023). This alarming
scenario, coupled with the non-CO2 climate impacts of aviation, such as the release of nitrogen
oxides and soot particles at high altitudes (European Commission, 2023), brings into sharp focus
the critical role of aerostructural optimisation. This thesis is situated within the urgent need for
environmentally sustainable innovations in aviation, aligning with the EU’s climate goals.

A prime example of the advancements driven by this environmental mandate is the ground-
breaking design of the Boeing 787 Dreamliner. One of the Dreamliner’s most significant inno-
vations is its more flexible wing design. This flexibility results from substantial mass reduction
achieved through new structural concepts, including using materials with increased strain al-
lowance. These advancements have been incorporated into the latest generation of Boeing
aircraft, such as the 787 and the 777-8/9 seriesc(WUNDERLICH et al., 2022). The Dreamliner’s
wings demonstrate an impressive feat of engineering; under ultimate load conditions, the wingtip
displacement can reach up to almost 8 metres, approximately 27% of the half wingspan (LOH,
2022), see figure 1.1. This remarkable flexibility is not just a structural advancement but also
a strategic aerodynamic adaptation. The wings’ static aeroelastic effects allow for passive load
alleviation, further reducing wing mass and, as a result, improving the aircraft’s overall fuel
efficiency and reducing its environmental impact.

FIGURE 1.1 – Boeing 787 Dreamliner wing displacement under ultimate load conditions. Illustration from Dodt
(2011) (edited).
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The design of the Boeing 787 Dreamliner offers a clear illustration of what we call aerostruc-
tural optimisation. Aerostructural optimisation is an engineering approach that synergistically
considers both aerodynamic and structural aspects of aircraft design to enhance performance
and efficiency. Engineers can significantly improve the aircraft’s efficiency and environmental
footprint by optimising the structural integrity and aerodynamic properties simultaneously. This
integrated approach to design is crucial in modern aviation, where each improvement can have
substantial implications for both performance and sustainability.

In modern aeronautical engineering, Multidisciplinary Optimisation (MDO) plays a pivotal
role. This concept extends beyond the conventional, compartmentalised approach to design,
advocating for a holistic view that encompasses multiple engineering disciplines simultaneously.
MDO is not just about optimising individual components in isolation; it is about understanding
and exploiting the intricate interplay between different aspects of aircraft design to achieve the
best overall outcome.

At the heart of MDO lies the principle that structural integrity and aerodynamic performance
are fundamentally interconnected. The structural design of an aircraft not only determines its
weight and resilience to various stressors but also influences its aerodynamic efficiency. For
instance, the weight and strength of the structure directly impact fuel consumption and flight
stability. On the other hand, aerodynamic considerations such as drag reduction and lift op-
timisation play a critical role in determining how the aircraft interacts with the air around it.
In MDO, these aspects are not treated as separate challenges but as complementary facets of a
single, unified design problem (MARTINS; NING, 2021).

This integrative approach utilises advanced computational models and algorithms to address
these multidisciplinary factors simultaneously. By doing so, MDO facilitates a more nuanced
and effective optimisation process. The optimisation of one aspect, such as the structural design
for weight reduction, is done with a keen awareness of how it affects aerodynamic performance
and vice versa. The result is a design that balances and harmonises the various demands of
weight, strength, efficiency, and performance.

In essence, MDO represents a shift in engineering philosophy – from isolated optimisation
within specific domains to a comprehensive, integrated approach. This shift is crucial in pursuing
more efficient, sustainable, and high-performing aircraft designs. As we progress in this thesis,
the focus will shift to applying these MDO principles to the Helios aircraft, exploring how
this integrated approach can enhance its design for optimal environmental sustainability and
efficiency.

1.1 Objective

In the realm of aircraft design, the quest for optimal performance has always been a delicate
balance between aerodynamics and structural integrity. Aircraft design optimisation involves
balancing aerodynamics and structural integrity. Ludwig Prandtl’s work on elliptical lift dis-
tribution, which minimises drag through the lifting-line theory (LLT), has historically informed
design principles (ANDERSON, 2017). However, Prandtl also acknowledged the efficiency of non-
elliptical lift distributions when considering structural constraints, as discussed in his paper
”Über Tragflügel kleinsten induzierten Widerstandes” (On Wings of Minimum Induced Drag)
(PRANDTL, 1933), highlighting the complexity of aerostructural optimisation where solely focus-
ing on aerodynamics might not yield the most efficient designs.

Modern aerostructural optimisation has transitioned from Prandtl’s analytical methods to
numerical, gradient-based techniques propelled by computational advances and sophisticated
algorithms for derivative computation. This evolution allows for detailed optimisations that
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integrate both aerodynamic and structural considerations, addressing challenges previously un-
feasible due to computational limitations. This shift underscores the intricate understanding
required in contemporary aerostructural optimisation.

In gradient-based optimisation methodologies, a primary obstacle is the extensive number
of inequality constraints derived from the structural model (MARTINS et al., 2005). These con-
straints represent a critical factor in maintaining structural integrity under various stress and
load conditions. However, addressing them within the optimisation framework is not straight-
forward. The need to compute gradients for each constraint adds layers of computational com-
plexity, making the process both time-consuming and resource-intensive. This often forms a
bottleneck in optimisation efforts, as the computational demands can escalate rapidly with the
increase in the number of constraints.

To address this, a common strategy in aerostructural optimisation has been the adoption of
aggregation functions, notably the Kreisselmeier–Steinhauser (KS) function (POON; MARTINS,
2007). The KS function effectively consolidates numerous inequality constraints into a singular
aggregate constraint. This approach simplifies the optimisation problem, making it more com-
putationally manageable by reducing the number of derivative calculations required. However,
this simplification comes at a cost. The use of the KS function inherently involves an approx-
imation of all inequality constraints, which can impede the optimiser from converging to the
best possible solution. While it eases the computational burden, this aggregation can lead to
suboptimal or imprecise solutions in representing the true constraint landscape.

This limitation forms the crux of this thesis and motivates the exploration of a third opti-
misation approach: the augmented Lagrangian method (ALM). Unlike the KS function, ALM
incorporates constraints directly into its formulation. It does this by augmenting the Lagrangian
function with penalty terms related to constraint violations, thereby maintaining a closer ad-
herence to the original problem structure. This approach promises a more accurate and po-
tentially more effective means of handling the numerous constraints inherent in aerostructural
optimisation. By comparing these three optimisation approaches—standard gradient-based, KS
function-based, and ALM — this thesis aims to provide insights into their respective efficien-
cies and effectiveness, particularly in the context of the complex, constraint-rich landscape of
aerostructural design.

In circling back to the outset of our discussion—the imperative for environmentally sustain-
able aviation—we find a perfect embodiment of this vision in the Helios Aircraft. Helios, a
marvel of modern engineering, stands as a testament to the potential for genuinely sustainable
flight. Powered solely by solar energy, it eschews the need for fossil fuels, presenting a ground-
breaking step towards an eco-friendly aviation future (NASA, 2002). The Helios Aircraft not
only symbolises the aspiration for greener skies but also serves as the practical foundation for
applying the optimisation methods discussed in this thesis.

In this Master’s thesis, the Helios Aircraft will be the focal point of our optimisation studies.
By applying the three optimisation approaches to this solar-powered aircraft, we aim to ex-
plore how these methodologies can enhance an already environmentally conscious design. This
endeavour is more than a technical exercise; it is a foray into the realm of possibility, demon-
strating that optimisation techniques can significantly contribute to the development of aircraft
that align with our environmental ambitions. The optimisation of the Helios Aircraft serves
as a microcosm of the larger goal: to show that sustainable aviation is not just a concept but
an achievable reality. Through this thesis, we aim to contribute to this vital transition, ad-
vancing the cause of environmentally responsible aviation and underscoring the crucial role of
aerostructural optimisation in achieving this goal.

The box below summarises the objective of this thesis and gives a step-by-step description
of how we want to achieve our objective.

3



Thesis’ objective

This thesis aims to evaluate the efficacy of three distinct op-
timisation methodologies within the context of aerostructural
optimisation, characterised by its dense constraint environment.
These methodologies include a conventional gradient-based
approach, an aggregation technique, and an optimisation
strategy based on ALM. The goal is to conduct a comparative
analysis of these approaches to identify the most effective strategy.

Step-by-Step description to achieve objective:

1. Methodological overview: Comprehensive description of
each optimisation approach, detailing the theoretical foun-
dations.

2. ALM advantage illustration: Illustration of the benefits of
the ALM-based approach regarding the gradient evaluation
efficiency.

3. Testbed definition: Definition of structural and aerostruc-
tural testbeds that will serve as the basis for comparing the
optimisation approaches.

4. Performance analysis and comparison: Assess and juxtapose
the performance of the optimisation strategies with respect
to:

(a) Optimisation duration

(b) Optimisation outcomes

5. Conclusion & recommendations: Summary of conclu-
sions and recommendations for further research regarding
constraint-rich aerostructural optimisations.

1.2 Organisation of the thesis

The thesis is organised into chapters to facilitate structured topic exploration. The Theo-
retical Background chapter in the appendix A provides essential information for understanding
the thesis. The reader is encouraged to start with this chapter, especially if unfamiliar with
the relevant concepts. However, it is essential to note that readers can revisit this chapter later
if they encounter unclear or unfamiliar topics during their reading, as it serves as a valuable
reference for clarification. Chapter 2 offers a comprehensive literature review, delving into the
current challenges in aerostructural optimisation. In Chapter 3, the methodology of the three
optimisation approaches is explained, along with the definition of the optimisation problem for
the Helios aircraft. This problem is divided into structural and aerostructural optimisation
components. Chapter 4 presents the numerical implementation and methodology for each opti-
misation approach. It demonstrates the behaviour of these approaches in optimising the Helios
aircraft. Chapter 5 discusses the results of these optimisations, highlighting the performance and
trade-offs observed. Lastly, chapter 6 summarises the conclusions drawn from the findings, es-
pecially regarding the comparison of the three optimisation approaches. It also suggests avenues
for future research, for the optimisation program used and for each optimisation approach.
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2 Literature Review

This chapter embarks on a detailed literature review, crucial for situating the research in
the context of MDO, an essential aspect of aerostructural optimisation. It seeks to elucidate
the significance of MDO in realising optimised designs and examines methodologies for gradient
computation with an emphasis on the adjoint method. Additionally, it explores constraint
aggregation techniques, focusing on the KS function and the ALM. These components are vital
in grasping the complexities of aerostructural optimisation. The review aims to seamlessly
connect theoretical concepts with their practical applications, setting a robust foundation for
the thesis.

The transition in aircraft design methodologies towards computational techniques marks a
critical juncture in the field. As Martins et al. (2005) highlights, the shift from traditional meth-
ods, based on simplified theories and wind tunnel tests, to computational fluid dynamics (CFD)
and computational structural mechanics (CSM) reflects a growing confidence in computational
approaches. This evolution represents the industry’s move towards more advanced, precise, and
efficient design strategies, paving the way for the subsequent discussion on the necessity of MDO.

2.1 Multidisciplinary Design Optimisation

MDO is a pivotal concept in modern engineering systems, integrating multiple disciplines
to depict a unified system. As Martins and Ning (2021) explain, MDO utilises coupled models
and solvers for an integrated analysis of multidisciplinary systems, surpassing traditional single-
discipline models. This holistic approach incorporates physical, economic, and human factors,
more accurately reflecting real-world system interactions and performance.

The advantages of MDO are significant, including enhanced system performance, reduced
design time, cost-effectiveness, and minimised uncertainty. Unlike traditional sequential compo-
nent optimisation, MDO optimises various components simultaneously, yielding more effective
system designs. As Sobieszczanski-Sobieski and Haftka (1997) note, engineering systems are
typically modelled as assemblages of software modules representing different aspects. In MDO,
these modules are cohesively optimised, allowing for optimal trade-offs and overcoming the lim-
itations of sequential optimisation, which often results in suboptimal solutions and constraint
violations.

A specific application of MDO, aerostructural optimisation, focuses on the interplay between
structural and aerodynamic aspects. This integration is critical, as Martins et al. (2005) describe,
with aerodynamic flow solutions and structural responses being interdependent.

Mono-disciplinary approaches in aircraft design have limitations, as Peter and Dwight (2010)
illustrate. Optimising a wing solely for aerodynamics, ignoring structural deformations, often
leads to suboptimal results. MDO addresses this by simultaneously considering aerodynamic and
structural objectives, as Martins and Kennedy (2021) emphasise. Aerodynamic optimisation can
yield impractical designs, such as excessively large wings, without integrating structural factors.
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MDO inherently balances these requirements, ensuring realistic and feasible designs.

The superiority of MDO over sequential optimisation in aerostructural design is well-established.
A study by Grossman et al. (1988) demonstrates MDO’s effectiveness in optimising a glider’s
wing, coupling aerodynamic and structural models. This integrated approach produces supe-
rior outcomes with a 11% lower weight than sequential methodologies, a point reinforced by
Sobieszczanski-Sobieski and Haftka (1997).

However, MDO’s implementation is complex, particularly compared to single-discipline opti-
misation. As Martins et al. (2005) point out, developing high-fidelity MDO methods is challeng-
ing due to the inter-disciplinary coupling and heterogeneity of design problems. Additionally, as
Sobieszczanski-Sobieski and Haftka (1997) note, the complexity and dimensionality of multidis-
ciplinary systems often hinder the extension of single-discipline sensitivity analysis principles.
To manage this complexity, MDO models are often simplified, coupling design space search
with simpler approximations of objective functions and constraints rather than direct multi-
disciplinary analysis (GIUNTA et al., 1994); (TOROPOV; MARKINE, 1996). This simplification is
essential for practical and effective MDO application in aerostructural design optimisation.

2.2 Gradient evaluation

Gradient-based optimisation, a cornerstone in aerostructural design, hinges on the accurate
and efficient computation of gradients. The initial forays into this domain, as explored by Hicks
et al. in the mid-1970s (HICKS et al., 1974),(VANDERPLAATS; HICKS, 1976), (HICKS; HENNE,
1977), involved the use of finite differences for gradient information in airfoil and wing design,
primarily with lower fidelity calculations (NEWMAN et al., 1998). However, while straightforward,
this approach suffered from significant drawbacks, notably in terms of computational cost and
accuracy issues, as the cost is proportional to the number of design variables and plagued by
the step-size dilemma (MARTINS; KENNEDY, 2021).

Recognising the inefficiencies of finite differences, the field shifted towards more time-efficient
methods for gradient computation. The need for rapid and accurate gradient evaluation became
increasingly apparent, as highlighted by Poon and Martins (2007), especially when traditional
methods proved time-consuming. This shift marked a significant advancement in optimisation
techniques within aerostructural design.

The advent of direct and adjoint methods revolutionised gradient computation in large sys-
tems. Section A.1.7 explains in detail both methods. Originating from optimal control theory
(e.g. (BRYSON; HO, 1975)) and structural design (MARTINS; KENNEDY, 2021), these methods
were adapted for aerostructural applications, offering more efficient alternatives to finite differ-
ence methods. The pioneering work of Jameson (1988) introduced the use of the adjoint method
in CFD, drawing from control theory, to efficiently compute gradients for aerodynamic optimi-
sation, as highlighted by his formulation of the adjoint equation (JAMESON, 1988). The direct
method, which is particularly effective when there are few design variables and many functions of
interest, was first extended to multidisciplinary problems by Sobieszczanski-Sobieski (1990). On
the other hand, the adjoint method, suitable for scenarios with many design variables and few
functions of interest, has been widely applied in structural optimisation problems and aerostruc-
tural design (POON; MARTINS, 2007). The choice between these methods largely depends on the
specific requirements of the optimisation problem, particularly the number of design variables
and functions of interest (AKGÜN et al., 2001).

The adjoint method, in particular, has gained prominence for its ability to compute sensi-
tivities for an arbitrary number of design variables at a cost similar to that of a single function
evaluation, making it highly efficient for large-scale optimisations (MARTINS et al., 2005). Various
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studies have demonstrated its application in aerostructural design, including the work of Mader
et al. (2008), who used the adjoint method to determine derivatives in coupled aerostructural
models.

In contrast, the direct method has proven to be highly efficient and easier to implement in
scenarios with fewer design variables, as exemplified by Lund (1994) in the context of Finite
element method (FEM) programs. This method’s efficiency and ease of implementation make
it a viable option for specific optimisation scenarios.

As the discussion of gradient computation methods concludes, it naturally leads to the sub-
sequent section on aggregation functions. Notably, the adjoint method’s efficiency is tempered
by its increasing computational cost as the number of design functions grows, underscoring the
need for function aggregation to maintain computational feasibility in large-scale optimisations.
This transition is crucial, particularly in addressing the challenge of managing a large number
of constraint functions arising from inequality stress constraints in aerostructural optimisations.
The choice of gradient computation method, whether direct or adjoint, plays a pivotal role in
addressing these challenges, as will be further explored in the following section on aggregation
functions.

2.3 Aggregation functions

In the realm of aerostructural optimisation, particularly when employing FEM, a prominent
challenge arises from the multitude of structural constraints. As Martins et al. (2005) elucidates,
while the aerodynamic aspect of such optimisation problems typically involves a single objective
function and a few constraints, the structural part is characterised by an extensive array of
constraints. This disparity in the nature of constraints between aerodynamics and structures
significantly complicates the optimisation process.

The direct implication of this multitude of constraints is the enormity of the optimisation
problem. As described by Lambe et al. (2017), a practical approach to enforcing failure con-
straints in a continuum structure would ideally require their application throughout the material
domain, leading to an impractically high number of constraints. This problem is compounded in
high-fidelity structural models, where element-wise enforcement of failure constraints can lead to
thousands or even millions of constraints, posing substantial challenges to optimisation efforts.

Traditional alternative solutions, such as focusing solely on maximum stress or compliance
constraints, have proven to be insufficient. The work of Ghazlane et al. (2011), which uses the
maximum stress from a FEM model on aerostructural optimisation, exemplifies this limitation.
While such approaches may offer some utility, as Kennedy and Hicken (2015) point out, they fall
short in large-scale design problems when gradient-based optimisation methods are employed.
Using the maximum as stress as a constraint yields a discontinuous design space, which makes
the gradient computation challenging. Additionally, compliance constraints, as highlighted by
Arreckx et al. (2016), often result in designs with stress concentrations that could lead to failure,
rendering them impractical from an engineering design perspective.

A more effective solution to this challenge is the KS function, a widely used method for
constraint aggregation in gradient-based optimisation. The section A.1.5 in the Theoretical
Background chapter explained the theory of the KS function. The KS function has found exten-
sive application in diverse areas ranging from aerodynamic shape optimisation (POON; MARTINS,
2007), chemical process design (ROONEY; BIEGLER, 2002), aircraft design (STETTNER; SCHRAGE,
1992; AKGÜN et al., 2001; MARTINS et al., 2004), dynamic systems (COUCEIRO et al., 2022), and
topology optimisation (XIA; SHI, 2016), demonstrating its versatility and effectiveness in reduc-
ing the number of constraints from a potentially overwhelming number to a manageable few.
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This reduction not only streamlines the optimisation process but also makes adjoint methods
more feasible and efficient.

However, the implementation of the KS function has its challenges. A critical aspect of using
this function is the choice of the parameter ÄKS . As Lambe et al. (2017) have noted, the value
of ÄKS significantly impacts the quality of the solution and the duration of the optimisation
process. A low ÄKS value can lead to overly conservative solutions, while a high value can result
in longer optimisation times and issues related to ill-conditioning.

Addressing this dilemma, Qin and Nguyen (1994) proposed an approach that can define
the aggregation function’s error beforehand. Furthermore, an adaptive approach to setting
ÄKS has been proposed by Poon and Martins (2007) as a different effective strategy. This
approach, as discussed by Zhang et al. (2019), involves adjusting ÄKS during the optimisation
process, balancing the accuracy of the optimal solution against the potential for ill-conditioning.
Such an approach has been applied successfully in various optimisation scenarios, including
aeroservoelastic design and high-fidelity aerostructural optimisation.

Despite the benefits offered by the KS function in managing a large number of constraints,
it is essential to note that this method does not recreate the actual feasible design space as
precisely as the original constraints would. As Lambe et al. (2017) point out, the final design
determined by the optimiser using the KS function will vary depending on the aggregation
scheme employed. This aspect underscores the need for careful consideration in applying the
KS function, particularly in complex aerostructural optimisations.

Concluding this discussion, it becomes apparent that while the KS function and other ag-
gregation methods offer significant advantages in managing numerous constraints, they may not
always provide the most optimal solution. This realisation paves the way for exploring alterna-
tive methods, such as the ALM, which may offer better solutions in scenarios where traditional
inequality aggregation falls short. The work of Poon and Martins (2007) provides a compelling
example, demonstrating that the solution corresponding to the maximum of constraints formu-
lation was infeasible. The KS function formulation converged to a minimum, but the resulting
structure was not fully stressed, leading to a final weight that was 5.8% higher than the reference
result obtained without constraint aggregation. The work of Poon and Martins (2007) is crucial
because, in this Master’s Thesis, we will perform a similar comparison. We want to compare
an optimisation approach without constraint aggregation, one with constraint aggregation and
another where we use an ALM approach. The ALM method is further reviewed in the next
section.

2.4 Augmented Lagrangian method

In aerostructural optimisation, constraint aggregation effectively manages numerous struc-
tural failure constraints but may not yield optimal results due to overestimations, such as in
final structural mass (ARRECKX et al., 2016). This approach limits optimisation to a subset of
possible solutions, highlighting the need for alternatives like the ALM that encompass the full
range of constraints for more accurate outcomes in complex designs.

ALM, initially termed as the ”method of multipliers,” was a significant development in the
field of optimisation, pioneered by Hestenes (1969), Powell (1969), Haarhoff and Buys (1970).
These foundational works laid the groundwork for transforming constrained optimisation prob-
lems into a series of more manageable unconstrained sub-problems. While the intricacies of
these methods are beyond the scope of this review, comprehensive analyses and reviews can be
found in the works of Rockafellar (1973a), Rockafellar (1973b), Fletcher (1974), Pierre and Lowe
(1975), and Powell (1978a).
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Initially focused on equality constraints, ALM faced a significant challenge when extended to
inequality constraints, a common scenario in complex aerostructural optimisation problems. One
of the earliest approaches to handling inequality constraints was the concept of the ’active set.’
This method involved identifying constraints that were ’active’ (i.e., constraints that directly
impact the solution) at the optimal point. However, a significant disadvantage of this method
was the initial unknown status of the active set, requiring iterative guessing and verification,
which proved to be computationally impractical and inefficient.

Some researchers, like Armand and Omheni (2017b), proposed an alternative to replace
inequality constraints with logarithmic barriers. While conceptually straightforward, this ap-
proach did not adequately address the complexities of inequality constraints in optimisation.
Essentially, replacing inequality constraints with barrier functions echoed the limitations of con-
straint aggregation methods like the KS function, where the optimisation is constrained to a
subset of the feasible region, potentially leading to suboptimal solutions.

Another proposed solution was the introduction of slack variables to transform inequality
constraints into equality constraints (GILL et al., 1986). This transformation involved adding a
slack variable for each inequality constraint, effectively converting the inequality into an equality
constraint by ensuring that the sum of the original constraint function and the slack variable
equalled zero. While this method successfully converted inequality constraints into a more
manageable form, it significantly increased the problem’s dimensionality by adding as many
slack variables as there were inequality constraints.

Rockafellar (1973a) presented an approach which does not suffer from the issue of increased
dimensionality. His Powell-Hestenes-Rockafellar augmented Lagrangian function managed in-
equality constraints without explicitly solving for slack variables, thus avoiding increasing prob-
lem dimensionality. Fletcher (1975) later revisited the Powell-Hestenes-Rockafellar augmented
Lagrangian function and proposed a mathematically identical augmented Lagrangian function
but easier to program. Furthermore, Fletcher (1975) discussed practical strategies for guar-
anteeing convergence. Further discussions on the nuances of these methods, including local
convergence rates, effects of approximate unconstrained minimisation, and adjustments of La-
grange multipliers, have been contributed to by Buys (1972), Polyak and Tretyakov (1974),
Polak and Sangiovanni-Vincentelli (1979), and Bertsekas (1982). These works provide deeper
insights into the evolution and application of multiplier methods in optimisation.

A crucial aspect of the ALM lies in the careful initial selection and adjustment of the penalty
factor, Ä. As emphasised by Arora et al. (1991), the convergence rate of ALM heavily depends on
this factor. Although a larger value of Ä accelerates convergence, it must be increased judiciously
to avoid sub-problem ill-conditioning, highlighting the importance of its initial setting. Echoing
this, Bertsekas (1999), supported by recommendations in the literature, including Bertsekas
(1996) and Arora et al. (1991), advise starting with a moderate Ä and progressively increasing
it. This strategy aims to balance convergence efficiency against the risk of ill-conditioning.
Armand and Omheni (2017a) even presented an approach where the penalty factor can both
increase and decrease during the optimisation. This intricate balance required for the penalty
factor in ALM, contrasting with the single parameter choice in methods like the KS function,
demonstrates the method’s inherent complexity and the careful consideration needed for its
effective application in (aero-)structural optimisations.

In the landscape of optimisation methods, while the ALM provides a robust approach for
handling large-scale optimisation problems, it is often compared unfavourably with Sequential
Quadratic Programming (SQP) methods, particularly regarding local convergence properties.
As noted by Arreckx et al. (2016), one of the main disadvantages of ALM is that it typically
does not exhibit the favourable local convergence properties characteristic of SQP methods. This
has led to some preference for SQP over ALM in specific optimisation scenarios.
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The efficiency of ALM in large-scale problems has been debated among researchers. While
some have found ALM less efficient for large-scale optimisation problems (COUCEIRO et al., 2022),
others, such as Birgin and Mart́ınez (2019), have highlighted a renewed interest in ALM due
to its ability to solve such problems effectively. This dichotomy in viewpoints underscores the
situational effectiveness of ALM.

Interestingly, Birgin and Mart́ınez (2019) emphasises that the strength of ALM lies not just in
its efficiency but in its ability to solve problems other algorithms fail to solve. The heterogeneous
nature of constrained optimisation suggests that the choice between ALM and other methods
should not be solely based on subtle efficiency criteria but also on their suitability for specific
problem types.

In this context, the combination of ALM with the adjoint method presents a significant ad-
vantage, particularly in scenarios involving a large number of design variables and constraint
functions. When paired with ALM, the adjoint method can outperform other optimisation
methods in such scenarios due to its efficient handling of multiple constraints and variables
when combined with the adjoint method. However, despite its potential, relatively little re-
search has explored this combination, particularly in aerostructural optimisation. This thesis
aims to fill this gap by investigating the performance of ALM in conjunction with the adjoint
method, particularly in situations characterised by many design variables and constraints, where
traditional methods may not be as effective.

As we delve deeper into the applications of the ALM, a spectrum of approaches and their
limitations becomes apparent. An early example by Qin and Nguyen (1994) demonstrates the
use of an aggregation function in conjunction with the ALM for optimisation. However, this
approach mirrors the disadvantages encountered when using the KS function, as the ALM’s
potential in handling constraints within its formulation is not fully realised. Larsson and Rön-
nqvist (1995) presented an approach to structural optimisation in applying the ALM. While
effectively managing numerous inequality constraints, Larsson and Rönnqvist (1995) incorpo-
rated the residual equations, determining the state variables, as equality constraints within the
ALM. This approach, treating residual equations directly as constraints, showcases one of the
varied strategies in optimisation. Subsequent advancements in the field have suggested the ad-
joint method as a more streamlined alternative for handling residual equations. By implicitly
addressing these equations, the adjoint method simplifies the optimisation process, avoiding the
complexities of including residual equations as part of the explicit constraint set.

The work of Larsson and Rönnqvist (1995) represents an early exploration within the realm
of optimisation, particularly in handling inequality constraints using the ALM. However, it is
noteworthy that the combination of ALM with the adjoint method, a potentially more efficient
approach, especially in (aero-)structural optimisation, appears to be underutilised in the field.
This observation underscores a significant research opportunity, pointing towards a gap in the
current body of knowledge where the synergistic benefits of ALM and the adjoint method have
not been fully explored or harnessed in these complex optimisation scenarios.

In contrast, Arreckx et al. (2016) adopted a more refined approach to addressing the chal-
lenges of aerostructural optimisation. Instead of treating the residual equation as a direct con-
straint, Arreckx et al. (2016) formulated the optimisation problem in a reduced space. This
method, while closely aligned with the adjoint method, is not identical to it. The reduced-space
formulation implicitly integrates the residual function into the optimisation process, a strategy
that offers a more efficient alternative to directly handling the residual equation as a constraint,
as highlighted in Biros and Ghattas (2005).

While effective in its own right, the method of Arreckx et al. (2016) does not extend to
multidisciplinary aerostructural designs and does not employ the adjoint method. Utilising
the adjoint method in this context would offer an even more significant simplification of the
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process by requiring only the gradient information of a single function—the gradient of the
augmented Lagrangian function. The paper’s authors anticipate that the matrix-free augmented
Lagrangian optimisation method would be particularly advantageous for coupled aerodynamic
and structural optimisation. This outlook is a driving force behind this thesis, motivating
the development of a matrix-free augmented Lagrangian algorithm within a program called
QASTRO. QASTRO stands for Quick AeroSTRuctural Optimisation and is being developed
at the Aeronautic Institute of Technology (ITA). QASTRO was already successfully utilised
by Cruz (2020) and Almeida (2021) in the context of and box wing and propeller slipstream
optimisations, demonstrating its effectiveness and underscoring the framework’s adaptability
and robustness in the context of aerostructural optimisations.

Integrating the adjoint method in the ALM algorithm is anticipated to be significantly ben-
eficial, particularly in aerostructural optimisations, as it obviates the need for computing the
Jacobian of the constraint functions and further simplifies the optimisation process.

The evolution of ALM’s application reached a notable development in the work of Conn et

al. (1997), whom the author believed to be among the first to combine ALM with the adjoint
method. In the context of circuit optimisation, Conn et al. (1997) compared the time to get
the sensitivities of the direct method, the adjoint method, and the ALM combined with the
adjoint method. Conn et al. (1997) showed that the ALM combined with the adjoint method
leads to short sensitivity computation times and highlights the efficiency of this combination.
Importantly, Conn et al. (1997) found that when dealing with a large number of design variables
and functions of interest, combining ALM with the adjoint method reduces computational time.
However, the study of Conn et al. (1997) focused only on the time to compute sensitivities and
did not compare optimisation results or apply the method to MDO. More recent applications
by Maute and Allen (2004) and Senhora et al. (2020) in topology optimisation demonstrate
an understanding of the advantages of combining ALM with the adjoint method. While not
explicitly MDO, these studies show a reduction in the computational burden by needing to
compute fewer adjoint variables. However, they do not fully explore the method’s potential in
more complex scenarios, such as aerostructural optimisation.

These examples, especially when viewed in the context of the belief of Arreckx et al. (2016) in
the significant potential of ALM for complex aerostructural optimisations, highlight a substantial
research gap. This thesis aims to address this gap by applying ALM combined with the adjoint
method in MDO, particularly in aerostructural optimisation. Unlike previous studies, this thesis
will compare optimisation results, not just computation times, to fully assess the effectiveness
of this combined approach in a more complex and multidisciplinary setting.
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3 Methodology

The Methodology chapter plays a crucial role in this Master’s Thesis. This chapter provides
a detailed explanation of how the research was carried out. Furthermore, the chapter explains
the research design, methods, and techniques used for the (aero-) structural optimisation. This
chapter aims to give the reader a detailed view of the research process and demonstrate the
study’s validity.

As mentioned in the Literature Review, the author enhanced a program called QASTRO with
two additional optimisation approaches. Readers unfamiliar with QASTRO are encouraged to
keep revisiting section B.1 in the Appendix while reading the following four sections. This section
together with the following four gives a bigger picture of the implementation of QASTRO.

QASTRO is an optimisation program that couples a finite element model with an aero-
dynamic model based on LLT. First, the structural model, then the aerodynamic model, is
explained in the following two sections. The third section explains how those two models are
combined into an aerostructural model, to perform aerostructual analyses. The aerostructural
analysis is computed in Fortran. The Fortran codes are wrapped in a Python code, which is
the user interface of QASTRO. The aerostructural model can be used to perform aerostructural
optimisations. All optimisations are performed on the Python interface, where we utilise the
SciPy library (VIRTANEN et al., 2020). The chapter continues by describing the methodology of
the three optimisation approaches, which will be compared in the Result chapter. Ultimately,
the chapter defines the structural and aerostructural optimisation problems.

3.1 Structural model

In QASTRO is a finite element model implemented to calculate the displacement of the
aeroplane structure due to aerodynamic forces. QASTRO uses beam-truss elements with a
tubular cross-section to model the aircraft structure. Every beam-truss element has six degrees
of freedom (DoFs) at every node. Figure 3.1a shows the DoFs of the tubular beam-truss element
in a sketch. The stiffness matrix of one element is kkklocal and is a function of the elastic modulus
E, the shear modulus G, the cross-sectional area of the beam-truss element A and the length
of the element L, the second moment of area of the beam-truss element around the x-,y-, and
z-axis, denoted by J , Iy, and Iz, respectively (LOGAN, 2012).

The local displacement vector dddlocal of one element is

dddTlocal =
(

ui vi wi ϕix ϕiy ϕiz
︸ ︷︷ ︸

i

uj vj wj ϕjx ϕjy ϕjz
︸ ︷︷ ︸

j

)

, (3.1)

where the first six elements are the displacements and rotations at node i, and the last six
are the displacements and rotations at node j.

We need to establish a relationship between the local coordinate system of the element and
the global coordinate system. Figure 3.1b illustrates the local coordinate system of an element
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(a) DoF of finite element. (b) Local coordinate system of beam-truss ele-

ment (indicated by an apostrophe) and global

coordinate system.

FIGURE 3.1 – DoF and illustration of coordinate systems of FEM model.

in the global coordinate system. The apostrophe symbol represents the local coordinates. The
finite element is aligned with the xxx′ axis of the local coordinate system, as shown in figure 3.2.
For each element, the user must specify the z-axis of the element in the global coordinate system.
This information allows us to compute the transformation matrix TTT between the local and global
coordinate systems. The transformation matrix is defined as

TTT =











RRR3×3 000 000 000
000 RRR3×3 000 000
000 000 RRR3×3 000
000 000 000 RRR3×3











, (3.2)

where RRR is called the direction cosines matrix. The rows of the matrix RRR are the direction
cosine concerning the x’-axis, y’-axis and z’-axis, respectively. Thus, the rows of RRR are the
canonical basis vectors xxx′, yyy′, and zzz′ of the local coordinate system. The direction cosine is
indicated by the letter C. The subscript of C indicates the two axes of the direction cosine. For
example, Czy′ = cos ¹zy′ is the direction cosine of the global z-axis and the local y’-axis. With
this notation we can write RRR as

RRR =







Cxx′ Cyx′ Czx′

Cxy′ Cyy′ Czy′

Cxz′ Cyz′ Czz′






=







xxx′

yyy′

zzz′






. (3.3)

Please note that Cyx′ and Cxy′ are not necessarily equal. The beam-truss element is along
the local x’-axis orientated. Thus, the direction cosines of the x’-axis are

Cxx′ = cos ¹xx′ =
xj − xi
L

, Cyx′ = cos ¹yx′ =
yj − yi
L

, Czx′ = cos ¹zx′ =
zj − zi
L

, (3.4)

where x, y and z are the coordinates of nodes i and j of the beam-truss element in the global
coordinate system, which the user needs to specify. We can determine the canonical basis vector
yyy′ in the global coordinate system by the cross product of zzz′, and xxx′ (LOGAN, 2012).

yyy′ = zzz′ × xxx′ (3.5)

zzz′ will be provided by the user. Please note that this requires that the user gives zzz′ that is
orthogonal to xxx′. If this is not the case, QASTRO calculates zzz′ by

zzz′ = (zzzuser − projxxx′ zzzuser)/∥zzzuser∥ (3.6)

where zzzuser is the zzz
′ -axis in the global coordinate system given by the user. By this, QASTRO
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ensures that zzz′ is orthogonal to xxx′. We can repeat this procedure for every element to calculate
the canonical basis vectors in the global coordinate system for every element. The canonical
basis vectors give us the matrix RRR, which then gives us the transformation matrix TTT for every
element. Once TTT is calculated, we can transform the local stiffness matrix kkklocal in the stiffness
matrix of one element in the global coordinate system by

kkkglobal = TTT TkkklocalTTT , (3.7)

where the superscript T indicates the transpose (LOGAN, 2012). Next, QASTRO assembles
the global stiffness matrices of all elements according to their connectivity and applies the
boundary conditions. Section B.2 illustrates how QASTRO applies the boundary conditions.
After applying the boundary conditions, we are left to solve the linear system

KKKddd = FFF , (3.8)

for ddd where ddd is the displacement vector of all elements, the vector FFF contains the acting
forces and moments on the aeroplane structure, KKK is the stiffness matrix of the structure. We
can solve for the displacement vector ddd by defining a residual function rrr

rrr(ddd) =KKKddd−FFF (3.9)

and find ddd such that rrr(ddd) = 000. We try to find ddd such that rrr(ddd) = 000 by defining the optimisation
problem

min
ddd

∥

∥rrr(ddd)
∥

∥. (3.10)

FIGURE 3.2 – Local coordinate system of beam-truss element on node i. Forces and moments acting on the
element on node j in the local coordinate system.

Section 3.3 describes the solving procedure of this optimisation problem 3.10. Once the
displacements and rotations are known, we can determine the stress in the structure. The first
step is to calculate the local forces and moments in every beam-truss element by transforming
the forces in the global coordinate system into the local coordinate system. The local force
vector of element k is

fffklocal =
(

Fix Fiy Fiz Mix Miy Miz
︸ ︷︷ ︸

i

Fjx Fjy Fjz Mjx Mjy Mjz
︸ ︷︷ ︸

j

)T

, (3.11)

and is determined by

fffklocal = TTT kFFF k, (3.12)

where FFF k are the elements of the global force vector associated with the DoF of element k.
Figure 3.2 illustrates the forces and moments on the beam-truss element. TTT k is the transforma-
tion matrix of element k (COOK et al., 2001). Figure 3.2 shows the forces and moments acting
on node j on a beam-truss element.
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On every node are acting three forces. Fx is an axial force and Fy and Fz are shear forces.
Both shear forces can be combined in one shear force Fs by

Fs =
√

F 2
y + F 2

z . (3.13)

Next, on every node, act three moments. Mx is a in-plane moment (torsion moment) and
My and Mz are out-of-plane bending moments. Both out-of-plane bending moments can be
combined in one moment

MB =
√

M2
y +M2

z . (3.14)

FIGURE 3.3 – Dimensions of the beam-truss element. The red dots indicate the locations where the stress of the
beam-truss element will be calculated.

We will calculate the stress at four locations of every beam-truss element. The four locations
are at the top and bottom of every node. Figure 3.3 visualises the four stress locations and
indicates the three structural dimensions L, r and t of every beam-truss element. The axial
force Fx causes a uniform stress Ãx, and the shear force Fs causes a shear stress Äs. Both
stresses are determined by

Ãx =
Fx

A
, and Äs = v

Fs

A
,

where A is the cross-sectional area of the element and v is the shear factor. The shear stress
is the largest at the midplane, but we will use the maximum shear factor v = 2 at the top and
bottom to be conservative. The out-of-plane bending moment causes linear varying stress, which
is at the top and bottom

Ãtop =
MB r

I
, and Ãbot = −

MB r

I
,

respectively. I = Iy = Iz is the second-moment area around the axis of the local coordinate
system and r is the radius of the beam-truss element, see figure 3.3. The shear stress due to the
torsion moment Mx is

ÄT =
Mx

2Ae t
, (3.15)

where Ae = 2Ãr2c is the enclosed area of the tubular beam-truss element with the radius
rc = r + t/2, where r is the radius and t is the wall thickness. Figure 3.3 indicates by a
red dot the four different locations where we determine the stress in the beam-truss elements.
The equivalent von Mises stress can determine the stress at the top and bottom of every node
(WITTEL et al., 2019).

ÃvM, top =
√

(Ãx + Ãtop)2 + 3(ÄT + Äs)2, ÃvM, bot =
√

(Ãx + Ãbot)2 + 3(ÄT + Äs)2

The normalised four failure margins at node i and j of the beam-truss element k are

mk,1(ppp) = 1−
ÃvM top i(ppp)

ÃY
mk,2(ppp) = 1−

ÃvM bot i(ppp)

ÃY
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mk,3(ppp) = 1−
ÃvM top j(ppp)

ÃY
mk,4(ppp) = 1−

ÃvM bot j(ppp)

ÃY
,

where ÃY is the yield strength. All failure margins are stored in one margin vector mmm(ppp)

mmm(ppp) =
(

m1,1(ppp), m1,2(ppp), m1,3(ppp), m1,4(ppp), m2,1(ppp), . . .
)

. (3.16)

The structure does not fail if mmm(ppp) has no negative elements.

3.2 Aerodynamic model

The aerodynamic model in QASTRO is heavily inspired by a modern adaption of Prandtl’s
classic LLT of Phillips and Snyder (2000). Section A.2.2 explains the classical Prandtl’s LLT.
To understand the modern adaption, it is essential to be familiar with the conventional LLT.
One of the most significant restrictions of Prandtl’s LLT is that the formulation is only valid for
a single lifting surface without a sweep or dihedral angle. The downwash in Prandtl’s classical
LLT is calculated based on the bound vortex and the trailing vortex. The bound vortex is along
the lifting-line, and the trailing vortex is parallel to the free stream in the wake; see figure A.11.
However, suppose we want to include multiple lifting surfaces and/ or a sweep or dihedral angle.
In that case, we also need to encounter the induced velocity by the bound vortex segments on
each other. In the classical LLT, we can neglect the interaction of the bound vortices on each
other because, due to the parallel nature of each vortex segment, they do not influence each
other.

Consequently, in the classical LLT, we can calculate the lift solely based on the induced
velocity by the trailing vortex sheet and the free stream velocity. In the modern adaption,
Phillips and Snyder (2000) allow multiple lifting surfaces, sweep angles and dihedral angles,
which means that they include the interaction of the bound vortices on each other in their
formulation. The following part describes the aerodynamic formulation of QASTRO with the
same principle ideas as of Phillips and Snyder (2000).

(a) Finite wing with sweep and dihedral angle

modelled with horseshoe vortices at the quarter

chord.

(b) Horseshoe vortex to model finite wing in QAS-

TRO.

FIGURE 3.4 – Explanation of modern adaption of Prandtl’s LLT. Illustrations from Phillips and Snyder (2000).

Let us consider a wing with a sweep and dihedral angle and place multiple horseshoes on the
wing as shown in figure 3.4a. The bound vortex of each horseshoe is along the wing quarter-
chord line. Please note that the horseshoes are placed differently than in the classical LLT. In
figure 3.4a, the horseshoes are placed next to each other instead of on top of each other as in
Prandtl’s theory; see figure A.13b. From figure 3.4a, it becomes clear that the bound vortex of
each vortex creates a downwash on the other side of the wing. If all bound vortices are collinear,
as is the case for the classical LLT, then the bound vortices have no interaction on each other.
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Figure 3.4b shows one single horseshoe of figure 3.4a. All horseshoes are precisely next to
each other such that the left trailing vortex of the right horseshoe lies on the right trailing vortex
of the left horseshoe. Each horseshoe vortex consists of three straight vortex lines. The induced
velocity of each vortex line is given by figure A.9 and equation A.204 or equation A.205. By
combining equation A.205 for all three straight vortex elements of the horseshoe, we get the
induced velocity

VVV =
Γ

4Ã

[

uuu∞ × rrr2
r2(r2 − uuu∞ · rrr2)

+
(r1 + r2)(rrr1 × rrr2)

r1r2(r1r2 + rrr1 · rrr2)
−

uuu∞ × rrr1
r1(r1 − uuu∞ · rrr1)

]

(3.17)

of one horseshoe at an arbitrary point in space (PHILLIPS; SNYDER, 2000). uuu∞ is a unit
vector in the direction of the freestream, rrr1 and rrr2 are two vectors in space from the vortex tips
to an arbitrary point in space. r1 =∥rrr1∥ and r2 =∥rrr2∥. Please note that the vortex strength in
equation 3.17 is still unknown. One possibility to determine the vortex strengths is by defining
nΓ zero flow conditions, where nΓ is the number of horseshoe vortices. With the additional nΓ
zero flow equations, we can solve for the nΓ unknown vortex strengths. Nevertheless, QASTRO
uses a different approach to determine the vortex strengths ΓΓΓ. Let us divide the finite wing into
nΓ sections, where each section has the width of one horseshoe. Every horseshoe has a control
point at the midpoint of the bound vortex. We assume that we can express the lift force of the
wing section i by the lift force of a two-dimensional airfoil:

dFFF i = ÄAirΓiVVV i × dllli (3.18)

dllli is the length of the vortex bound. We need to know the local velocity VVV i at our control
point i which is on the quarter-chord line of the wing section i to compute the lift force of
the section. The local velocity VVV i along the bound segment of the horseshoe vortex i can be
computed by equation 3.17. Each horseshoe j influences the local velocity on the wing section
i, including the horseshoe i itself. We can express the local velocity VVV i by

VVV i = VVV∞ +

nΓ
∑

j=1

Γjvvvj,i, where vvvj,i =
Vind j

Γi
. (3.19)

VVV∞ is the freestream velocity and Vind j is the induced velocity of horseshoe j on control point
i, computed by equation 3.17. vvvj,i can be seen as a measure of the influence of the horseshoe
j on the bound segment of horseshoe i. Please note that each bound segment is placed on
the quarter-chord line. Given the local velocity at the quarter-chord of segment i, we get an
expression for the spanwise differential lift force of the wing section i:

dFFF i = ÄAirΓi(VVV∞ +

nΓ
∑

j=1

Γjvvvj,i)× dllli, (3.20)

where ÄAir is the air density. A second possibility to express the lift force of section i, which
is based on the 2D section properties, is

|dFi| =
1

2
ÄAirV

2
i cli(³i, ¶i)dAi (3.21)

where dAi is the wing area of section i, Vi =∥VVV i∥ and cli is the local lift coefficient of section
i which is a function of the local angle of attack ³i and the flap angle ¶i. The local angle of
attack ³i is given by

³i = tan−1

(

VVV i · uuuni
VVV i · uuuai

)

(3.22)

One can find the definition of uuuni and uuuai in figure 3.5. Equation 3.21 gives the magnitude
of the lift force and uuuni the direction of the lift force. Hence, we can define the lift force vector
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FIGURE 3.5 – Definition of normal vectors on local airfoil section (PHILLIPS; SNYDER, 2000).

as

dFFF i = |dFi|uuuni =
1

2
ÄAir V

2
i cli dAiuuuni, (3.23)

where the lift coefficient is cli = c0i + ³i clαi and uuuni is the normal vector aligned with the
direction of the lift force. c0i and clαi are the zero lift coefficient and the lift slope of section
i, respectively. In the final step, we need to find the vortex strengths ΓΓΓ such that the lift force
vector of equation 3.20 and 3.23 are equal. For this, QASTRO defines the residual function

ri = 2 ∥dFFF i − dFFF i∥ (3.24)

=

∥

∥

∥

∥

∥

∥

2Γi(VVV∞ +

nΓ
∑

j=1

Γjvvvj,i)× dllli − V
2
i cli(³i, ¶i)dAiuuuni

∥

∥

∥

∥

∥

∥

, (3.25)

which is solved by an iterative solver for the vortex strength Γi. Please note that all residual
functions ri are coupled. Once the vortex strengths are known, we can compute the forces and
moments acting on the aircraft. We get the total force vector by adding all force vectors of each
section up. Thus,

FFF =

nΓ
∑

i=1

dFFF i. (3.26)

The drag force D is defined to be parallel to the free stream unit vector uuu∞. If we place
the wing on the x-y plane, the free stream unit vector without a slipstream (often denoted by
´ = 0) is

uuu∞ =
(

cos (³) 0 sin (³)
)T

, (3.27)

where ³ is the angle of attack. Thus, we can calculate the drag force D by the vector
projection of the total force along the free stream direction.

D = FFF · uuu∞ = cos (³)Fx + sin (³)Fz. (3.28)

The lift force L is defined to be perpendicular to the free stream. The lift force is

L = FFF · uuun = − sin (³)Fx + cos (³)Fz. (3.29)

Given the drag and lift forces, we can calculate the aerodynamic coefficients CL and CD.

CL =
L

1
2
ÄAirSrefV 2

∞

CD =
D

1
2
ÄAirSrefV 2

∞

(3.30)

Sref is the reference surface area. The acting moment of each lifting surface is

dMi =
1

2
ÄAirV

2
i Ai ci cmi, (3.31)
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where the moment coefficient is cmi = cm0i + ³i cmαi. cm0i and cmαi are the zero moment
coefficient and the moment curve slope of section i, respectively. The moment dMi of the lifting
surface i is acting around the unit vector uuusi. With this unit vector, we can calculate the moment
vector of each lifting surface in the three-dimensional space by dMMM i = dMiuuusi. The total moment
of the aircraft around the point XXXref is

MMM =

nΓ
∑

i

dFFF i × (XXXc i −XXXref) + dMMM i (3.32)

where XXXc i is the midpoint of the horseshoe i. The midpoint lies on the bound vortex of the
horseshoe.

3.3 Aerostructural model

The aerostructural model is a coupling of the structural and aerodynamic models described
in sections 3.1 and 3.2. Figure 3.6 illustrates an aerostructural model of a wing. The wing
is divided in multiple finite wings. The aerodynamics are described by horseshoe vortices, the
structure is modelled by beam-truss elements. The aerodynamic and structural model interact
with each other, meaning that the displacements and rotations ddd of the structural model affect
the aerodynamic behaviour, and the aerodynamic forces and moments, in turn, affect the dis-
placements of the structural model. The goal is to find the displacement/rotation vector ddd and
circulation vector ΓΓΓ such that the residual functions of both models are zero. The residual func-
tions of the structural and aerodynamic models are given in equations 3.9 and 3.25, respectively.
The workflow of the aerostructural analysis is depicted in figure B.1 and can help to understand
this section.

FIGURE 3.6 – Representation of aerostructural model in QASTRO.

To solve the aerostructural model, the user must first make an initial guess for the dis-
placement/rotation vector ddd and the vortex circulation vector ΓΓΓ. The initial guess for the
displacements is then transferred onto the aerostructural mesh. It is important to note that
the structural and aerostructural mesh in QASTRO do not necessarily need to be identical as
in figure 3.6. With the new displaced mesh, QASTRO determines the residual function of the
aerodynamic model (eq. 3.25) using the current guess of the vortex circulations. Next, QAS-
TRO calculates the aerodynamic loads of each section i using the current guess of the vortex
circulations. However, the aerodynamic forces and moments are not accurate until the residual
functions are zero.

The aerodynamic forces and moments calculated by the aerodynamic model serve as input
for the structural model, which returns the residual function (eq. 3.9) using the current guess of
the displacements. At this point, we have the values of the residual function of both models and
can make a new guess for the displacements ddd and vortex strengths ΓΓΓ. The goal is to reduce all
residual functions until they are zero or close to zero. Once the residual functions are zero, we
have found the aerodynamic model’s displacements and circulation strengths. The box below
summarises how QASTRO solves the aerostructural model.
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Aerostructural solver algorithm steps

1. Check for convergence: If rrr f ϵ, then stop, where

rrr =
(

rrrTstruc rrrTaero

)T

2. Update the mesh with the current displacements dddk.

3. Calculate the residual function of the aerodynamic model
rrraero(ΓΓΓk) (eq. 3.25).

4. Determine the aerodynamic forces and moments of each
section i with the current circulations ΓΓΓk:

dFFF i = |dFi|uuuni =
1

2
ÄAirV

2
i cli(³i, ¶i)dAiuuuni

dMMM i =
1

2
ÄAirV

2
i Ai ci cmiuuusi

5. Calculate the residual function of the structural model rrrstruc
(eq. 3.9) with the current displacements vector dddk and the
aerodynamic forces and moments calculated in the previous
step.

6. Make a new guess for the displacement vector dddk+1 and cir-
culation vector ΓΓΓk+1.

Making a good new guess for the state variables dddk+1 and ΓΓΓk+1 can be challenging. The
residual functions of the structural and aerostructural model, which are both computed in For-
tran, are given to a non-linear Python solver from the SciPy library (VIRTANEN et al., 2020). The
non-linear Python solver makes a new guess for the state variables by defining the optimisation
problem

min
ppp

∥

∥rrr(ppppppppp)
∥

∥, (3.33)

where rrr are the residual functions of the structural and aerostructural model, and pppT =
(

dddT ΓΓΓT
)

are our state variables. We use an SciPy algorithm1 which uses a modification of the

Powell hybrid method (MORE et al., 1980) to solve the optimisation problem stated in equation
3.33. The algorithm determines the search direction qqq by solving the optimisation problem

min
ppp

∥

∥rrr(pppk) + JJJrrr(pppk)qqq
∥

∥

s.t. ∥DDDqqq∥ f ∆,
(3.34)

by the Powell hybrid method (POWELL, 1970), where pppk are the state variables and JJJrrr(pppk) is
the Jacobian matrix at the current iteration k of the residual function rrr. DDD is a diagonal scaling
matrix and ∆ is a step bound. Unfortunately, the user needs to provide the full Jacobian matrix
instead of a function which returns the directional derivative JJJrrr(pppk)qqq. The Jacobian-vector
product could be computed with a single AD execution. However, it requires rn AD calls to
get the full Jacobian matrix, where rn is the total number of residual functions. The directional
derivative we could get with only a single forward-mode AD call. For the aerostructural problem,
we compute the Jacobian matrix by the forward-mode AD; see section A.1.6.1. If we solve only

1https://github.com/scipy/scipy/blob/main/scipy/optimize/_root.py accessed at 27.08.23
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the structural problem to perform structural optimisations, we do not provide the Jacobian
matrix to the algorithm. In this case, the Jacobian matrix is approximated by the forward
difference method at the first iteration. At the next iterations, the algorithm determines the
Jacobian matrix JJJrrr(pppk) by the Broyden rank-1 updating method (BROYDEN, 1965). This is in
contrast to the original Powell hybrid method. The Jacobian matrix becomes again determined
by a finite difference step if the rank-1 updating method no longer provides satisfactory progress.
If the optimisation problem stated in equation 3.34 does not provide a suitable search direction
qqq (e.g. not a sufficient decrease), ∆ is decreased or, if needed, JJJrrr is computed again. The next
iteration of the modified Powell hybrid algorithm is

pppk+1 = pppk + qqq. (3.35)

The optimisation problem stated in equation 3.34 is solved again at the new iteration, and
this procedure is repeated until rrr(ppp∗) ≈ 000. For the exact convergence criteria and further details,
the author refers to (MORE et al., 1980).

Once the state variables ppp are known, we also know all variables which depend on the state
variable, such as the failure margins or the lift force.

3.4 Optimisation methods

This Master’s Thesis compares three distinct approaches to solving a constrained aerostruc-
tural optimisation problem. This section gives the reader a detailed view of how the optimisation
methods work. All three approaches solve the general optimisation problem

min
w.r.t. xxx

f(xxx,ppp)

subjected to (s.t.) hhh(xxx,ppp) = 000, ggg(xxx,ppp) f 000, lll f xxx f uuu

while solving (w.s.) rrr(ppp;xxx) = 000,

(3.36)

where xxx are the design variables, ppp are the state variables ddd and ΓΓΓ, f is the objective function,
hhh are the equality constraints, ggg are the inequality constraints, lll is the lower bound vector and uuu
is the upper bound vector. The solution of the optimisation problem 3.36 is denoted by xxx∗. We
consider optimisation problems with many inequality constraints. The purpose of comparing
the three optimisation approaches is to see how they handle those many inequality constraints.
Please note that it is essential to be familiar with the Theoretical Background in the Appendix
chapter to understand the optimisation approaches.

3.4.1 SLSQP approach

The SLSQP approach uses the Sequential Least SQuares Programming (SLSQP) method of
Wilson (1963), Han (1977) and Powell (1978b), which is described in the paper of Schittkowski
(1981a). The description of the SLSQP algorithm2 is given in the paper of Dieter Kraft (KRAFT,
1988) and is implemented in the SciPy library (VIRTANEN et al., 2020), which QASTRO utilises.
The SLSQP method solves the original constrained optimisation problem of equation 3.36 with-
out any aggregation functions. The SLSQP algorithm of Dieter Kraft is an enhancement of the
SQP method explained in section A.1.4.6. In contrast to Schittkowski’s and Dieter Kraft’s orig-
inal paper, this section shows the SLSQP method’s derivation based on the SQP method. The
disadvantage of the SQP method is that it requires the Hessian matrix of the Lagrangian func-

2https://github.com/scipy/scipy/blob/v1.10.1/scipy/optimize/_slsqp_py.py#L68-L211 accessed at
27.08.23
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tion L(xxx,¼¼¼,µµµ) = f(xxx)+¼¼¼Thhh(xxx)+µµµTggg(xxx), where we denote the equality and inequality Lagrange
multipliers with ¼¼¼ and µµµ, respectively. The Hessian of the Lagrangian function is computation-
ally expensive to obtain. The SLSQP method uses the Quasi-Newton method of section A.1.4.2
to avoid calculating the Hessian matrix of the Lagrangian function and formulates the linear
system at each iteration as a least square optimisation problem. Nevertheless, let us go through
it step-by-step. The SQP method solves an optimisation problem of a quadratic approximation
of the Lagrangian function subjected to the linearised constraints at each iteration. The sub-
optimisation problems at each iteration k of the SQP method, including inequality constraints,
is

min
qqq

d(qqq) =
1

2
qqqT
[

∇2
xxxxxxL(xxxk,¼¼¼k,µµµk)

]

qqq + qqqT
[

∇xxxL(xxxk,¼¼¼k,µµµk)
]

=
1

2
qqqT
[

∇2
xxxxxxL(xxxk,¼¼¼k,µµµk)

]

qqq + qqqT∇xxxf(xxxk) + qqqT∇xxxhhh(xxxk)¼¼¼ + qqqT∇xxxggg(xxx)µµµ

s.t. hhh(xxxk) + ∇xxxhhh(xxxk)
T qqq = 000, ggg(xxxk) + ∇xxxggg(xxxk)

T qqq f 000,

(3.37)

where qqq is the search direction. Note that we did not include the bound constraints. We
will address later how we ensure that the algorithm gives a search direction within the bounds.
Let us give the term qqqT∇xxxhhh(xxxk)¼¼¼ a little bit more attention. The term is a scalar value, so the
transpose of the expression is an equivalent scalar value. Thus,

qqqT∇xxxhhh(xxxk)¼¼¼ =
{

qqqT∇xxxhhh(xxxk)¼¼¼
}T

(3.38)

= ¼¼¼T∇xxxhhh(xxxk)
Tqqq. (3.39)

From the constraint follows that ∇xxxhhh(xxxk)
Tqqq = −hhh(xxxk). Hence,

qqqT∇xxxhhh(xxxk)¼¼¼ = −¼¼¼Thhh(xxxk), (3.40)

which shows that the term qqqT∇xxxhhh(xxxk)¼¼¼ of the objective function d(qqq) is independent of qqq.
The same holds for the term qqqT∇xxxggg(xxx)µµµ. The solution to the optimisation problem only depends
on the active constraints; hence, we can write the inequality constraints as equality constraints
at qqq∗. Moreover, all inactive constraints at qqq∗ do not influence the solution and can anyway be
ignored. That means that we can ignore both terms and we can define an equivalent optimisation
problem as follows

min
qqq

d(qqq) =
1

2
qqqTBBBqqq + qqqT∇xxxf(xxxk)

s.t. hhh(xxxk) + ∇xxxhhh(xxxk)
T qqq = 000, ggg(xxxk) + ∇xxxggg(xxxk)

T qqq f 000,

(3.41)

with BBB =
[

∇2
xxxxxxL(xxxk,¼¼¼k,µµµk)

]

. However, as mentioned above, it is computationally expensive
to compute the Hessian at every iteration. But we can approximate the Hessian matrix by the
BFGS - formula proposed by Powell (1978b)

BBBk+1 = BBBk +
yyyk yyy

T
k

yyyTk sssk
−
BBBk sssk sss

T
k BBBk

sssTk BBBk sssk
, (3.42)

where sssk = xxxk+1−xxxk = ³k qqq. ³k is a scalar value and determines the step size. yyyk is not the
difference of the gradient of the Lagrangian function as one would expect, but Powell defined
yyyk = ¹k¸̧̧k + (1− ¹k)BBBksssk, where ¸̧̧k∇L(xxxk+1,¼¼¼k)−∇L(xxxk,¼¼¼k) is the difference of the gradients
of the Lagrangian function and ¹k is determined by

¹k =







1 if sssTk ¸k g 0.2sssTkBBBksssk,
0.8sssT

k
BBBksssk

ssskBBBksss
T
k
−sssT

k
ηk

otherwise.
(3.43)
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The choice to define yyyk in this way ensures that BBB is positive definite if BBB is initialised with
a positive definite matrix. The value 0.2 is chosen empirically. By using the LDL-decomposition
BBB = LLLDDDLLLT , where LLL is a lower triangular matrix and DDD is a diagonal matrix (SCHITTKOWSKI,
1981b), (KRAFT, 1988) we can replace the sub-optimisation problem stated in equation 3.41 by

min
qqq

∥

∥

∥
DDD1/2LLLT qqq + DDD−1/2LLL−1∇f(xxxk)

∥

∥

∥

s.t. hhh(xxxk) + ∇xxxhhh(xxxk)
T qqq = 000, ggg(xxxk) + ∇xxxggg(xxxk)

T qqq f 000.
(3.44)

Thus, instead of solving the optimisation problem 3.41 at every iteration, we solve the linear
least squares problem 3.44 at every iteration to get the search direction qqq. We broke down a
complex non-linear optimisation problem into several linear sub-optimisation problems. At this
point, the advantage of rewriting the problem might become clear. The optimisation problem
3.44 is equivalent to solve the overdetermined system AAAqqq = bbb for qqq, but with constraints.
Solving overdetermined systems is already well understood, which helps to solve the optimisation
problem 3.44. However, we still need to take care of our constraints. Unfortunately, Kraft (1988)
did not document how the SLSQP algorithm handles bound constraints, but one can verify in
the source code3 that the SLSQP algorithm includes the bounds by defining a bound constraint
for the search direction qqq in the sub-optimisation problem 3.44. The lower and upper bound of
the search direction qqq are

lllqqq = lll − xxxk, and uuuqqq = uuu− xxxk, (3.45)

respectively. Those bound constraints ensure that the sub-problem will give us a search
direction such that xxxk+1 = xxxk + qqq satisfies the bound lll f xxxk+1 f uuu. Please note that including
bounds like that is equivalent to truncating the search direction to the bound, which can cause
small steps in the algorithm. There are more sophisticated methods to include bound constraints,
as we will see in section 3.4.3. Let us define the optimisation problem we need to solve at each
sub-iteration, including the new bound constraints:

min
qqq

∥AAAqqq − bbb∥

s.t. GGGqqq − bbb = 000, CCCqqq − ddd f 000, lllqqq f qqq f uuuqqq,
(3.46)

where in our case AAA = DDD1/2LLLT , bbb = −DDD−1/2LLL−1∇f(xxxk), GGG = ∇xxxhhh(xxxk)
T , bbb = −hhh(xxxk),

CCC = ∇xxxggg(xxxk)
T and ddd = −ggg(xxxk). Without any constraints, it is easier to solve the optimisa-

tion problem stated in equation 3.46, so we will try to eliminate the constraints. The SLSQP
algorithm rewrites the bound constraint lllqqq f qqq f uuuqqq as two inequality constraints,

−IIIqqq + lllqqq f 000, and −IIIqqq − uuuqqq f 000 (3.47)

where III is the identity matrix. Replacing the bound constraint with inequality constraints
is generally not the best option because bound constraints are ’simpler’ than inequality con-
straints. Furthermore, we exchange one bound constraint for two inequality constraints, which
is inefficient. The equality constraints in 3.46 state that we need to satisfy the linear equations
GGGqqq = bbb. Lawson and Hanson (1995) show that you can eliminate linear equality constraints by
substituting the linear equality constraints in the linear least squares problem. This requires to
compute the orthogonal basis of the nullspace of GGG. After replacing the bound constraints with
inequality constraints and eliminating the equality constraints, we are left to solve

3https://github.com/scipy/scipy/blob/v1.8.0/scipy/optimize/slsqp/slsqp_optmz.f#L792 accessed at
27.08.23

23



min
qqq

∥

∥AAA′ qqq − bbb′
∥

∥

s.t. CCC ′qqq − ddd′ f 000,
(3.48)

where AAA′ and bbb′ are the modified versions of AAA and bbb such that we automatically satisfy the
equality constraints. CCC ′ and ddd′ are the augmented matrix and vector ofCCC and ddd by the inequality
constraints. Problem 3.48 is a linear least squares problem with only inequality constraints. The
SLSQP algorithm follows the approach of Lawson and Hanson (1995) to solve the problem for
the search direction qqq, satisfying all constraints. Further, the step size ³k is chosen by solving
the constrained one-dimensional problem

min
αk

f(xxxk + ³k qqqk)

s.t. ³min f ³k f ³max,
(3.49)

where ³min is the minimum step size of the algorithm and ³max = 1 because with ³max > 1,
it is not guaranteed anymore that we will satisfy the bound constraints of the original optimisa-
tion problem stated in equation 3.36. One could use any optimisation method which can handle
bound constraints to calculate the step size ³k. This SLSQP algorithm combines the Golden
Section and a successive quadratic interpolation to solve the one-dimensional optimisation prob-
lem 3.49. The box below describes the steps of the SLSQP algorithm. Note that the user needs
to initialise BBB, which gives the matrices DDD and LLL for the first sub-problem to solve.

Sequential least squares programming method algorithm steps

1. Check for convergence: If ∥qqq∥ f ϵ, then stop.

2. Solve sub-problem to get qqq:

min
qqq

∥

∥

∥
DDD1/2LLLT qqq + DDD−1/2LLL−1∇f(xxxk)

∥

∥

∥

s.t. hhh(xxxk) + ∇xxxhhh(xxxk)
T qqq = 000, ggg(xxxk) + ∇xxxggg(xxxk)

T qqq f 000

lllqqq f qqq f uuuqqq

3. Perform line search to get ³k

4. Set sssk = ³k qqqk and make step xxxk+1 = xxxk + sssk

5. Calculate yyyk = ¹k¸̧̧k + (1− ¹k)BBBksssk

6. Update approximation of the Hessian

BBBk+1 = BBBk +
yyyk yyy

T
k

yyyTk sssk
−
BBBk sssk sss

T
k BBBk

sssTk BBBk sssk
.

7. Perform LDL - decomposition BBB = LLLDDDLLLT

3.4.2 SLSQP with aggregation function approach

As section 3.1 shows, every element of the finite element model gives four failure margins.
Those failure margins are the inequality constraints of the optimisation problem given in equation
3.36. Consequently, the optimisation problem becomes cumbersome with many finite elements.
Aggregation functions merge all inequality constraints in one single scalar function and simplify
the optimisation problem, as explained in section A.1.5. The second optimisation approach uses
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the SLSQP algorithm described in the previous section but merges all inequality constraints in
the function

ḡKS(ÄKS , ggg) = max
j

gj +
1

ÄKS

ln





ng
∑

j=1

exp

(

ÄKS

{

gj −max
j
gj

}

)



, (3.50)

which is an alternative KS function. The original KS function, shown in equation A.104, can
easily result in overflow (MARTINS; NING, 2021). However, both KS functions are equivalent.
ÄKS determines how accuratly the inequality constraints are aggregated. For ÄKS → ∞, the
KS function becomes the max function. ng is the total number of inequality constraints. The
optimisation problem of the aggregation function approach (SLSQP KS) reads

min
xxx

f(xxx,ppp)

s.t. hhh(xxx,ppp) = 000, ḡKS(ÄKS , ggg) f 0, lll f xxx f uuu

w.s. rrr(ppp;xxx) = 000.

(3.51)

3.4.3 Augmented Lagrangian approach

The third approach to solve the optimisation problem given in equation 3.36 is by the ALM
of Fletcher (1975) described in section A.1.4.5. The augmented Lagrangian A(xxx,¼¼¼k,µµµk, Äk)
function of the ALM algorithm is

A(xxx,¼¼¼k,µµµk, Äk) = f(xxx) +
1

2
Äk





∥

∥

∥

∥

hhh(xxx) +
¼¼¼k
Äk

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∥

〈

ggg(xxx) +
µµµk
Äk

〉

∥

∥

∥

∥

∥

2

2



 (3.52)

= f(xxx) +
1

2
Äk

(

∥

∥

∥
h̃hh(xxx,¼¼¼k, Äk)

∥

∥

∥

2

2
+
∥

∥g̃gg(xxx,µµµk, Äk)
∥

∥

2

2

)

, (3.53)

where h̃hh(xxx,¼¼¼k, Äk) =
(

hhh(xxx) + λλλk

ρk

)

and g̃gg(xxx,µµµk, Äk) =
〈

ggg(xxx) + µµµk

ρk

〉

where ïað = max(0, a).

Äk is the penalty factor. ¼¼¼k and µµµk are the Lagrange multipliers associated with the equality
and inequality constraints at the current iteration k, respectively. The ALM algorithm can
be divided into three steps as described in section A.1.4.5. The steps of the algorithm in this
Master’s Thesis are described in the box below, where lll and uuu are vectors of the lower and upper
bound of xxx, respectively. In step 3, it is indicated that Äk+1 must not essentially increase. In
fact, if Äk becomes too large, the problem might become ill-conditioned. For this reason Äk+1

becomes only increased by Äk+1 = Äk µ if Vk g r Vk−1, where

Vk = max

{

∥

∥hhh(xxxk)
∥

∥ ,

∥

∥

∥

∥

∥

max

{

ggg(xxxk),−
µµµk
Äk

}

∥

∥

∥

∥

∥

}

. (3.54)

Vk can be seen as a measure of feasibility. The goal is to increase only the penalty factor if
updating the Lagrange multipliers is insufficient to obtain feasible enough design states. This
choice for increasing Äk can also be found in different papers, e.g. in Birgin and Mart́ınez

(2019). The term max
{

ggg(xxxk),−
µµµk

ρk

}

is a vector, which is at position j the maximum value

between gj and −µj/Äk, where gj is the constraint value at iteration k of constraint j and µj
is the corresponding Lagrange multiplier (µj g 0). The condition Vk g r Vk−1 ensures we only
increase Äk if iteration k is infeasible enough. r = 0 implies that we will increase Äk at every
iteration, and, e.g. r = 1 implies that iteration k must be as least as infeasible as the previous
iteration that we increase Äk. For r > 1, iteration k must be even more infeasible than iteration
k − 1, that Äk gets increased. The user is free to use the initial penalty factor Ä0.
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Additionally, the user has the option to use a separate penalty factor for the equality and the
inequality constraints. In this case, we define a separate Vk value for the equality and inequality
constraints, which read

Vk h =
∥

∥hhh(xxxk)
∥

∥ and Vk g =

∥

∥

∥

∥

∥

max

{

ggg(xxxk),−
µµµk
Äk

}

∥

∥

∥

∥

∥

. (3.55)

Please note that we get the same expression for Vk if we optimise only with equality or
inequality constraints and not both constraint types simultaneously.

The ALM algorithm is written by the author. However, the sub-problems are solved by
an optimiser of the SciPy library (VIRTANEN et al., 2020). The remaining part of this section
describes the solving procedure of the sub-problem.

Augmented Lagrangian approach algorithm steps

1. Check for optimality: If

|A(xxxk,¼¼¼k,µµµk, Äk)−A(xxxk−1,¼¼¼k−1,µµµk−1, Äk−1)| f ϵ,

then stop.

2. Solve sub-problem:

min
xxx

A(xxx) = f(xxx) +
1

2
Äk

(

∥

∥

∥
h̃hh(xxx,¼¼¼k)

∥

∥

∥

2

2
+
∥

∥g̃gg(xxx,µµµk)
∥

∥

2

2

)

s.t. lll f xxx f uuu

which gives xxxk+1.

3. Update ¼¼¼k, µµµk and Äk

¼¼¼k+1 = ¼¼¼k + Äkhhh(xxxk+1)

µµµk+1 = max
{

0,µµµk + Äk ggg(xxxk+1)
}

Äk+1 g Äk

Section A.1.4.5 shows that the ALM converts the constrained optimisation problem given in
equation 3.36 into multiple unconstrained sub-optimisation problems. However, in this Master’s
Thesis, we must constrain the sub-problems with a lower and upper bound. xxx are the design
variables such as the length L, the radius r and the thickness t of the finite element beam-truss
elements, see figure 3.3. Those dimensions must remain greater than zero. The author chose to
use the algorithm4 of Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu (BYRD et

al., 1995), which is implemented in the SciPy library (VIRTANEN et al., 2020). The algorithm is
a limited storage Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with bound constraints
(L-BFGS-B) and is used to solve the sub-problem

min
xxx

A(xxx,¼¼¼k,µµµk, Äk) = f(xxx) +
1

2
Äk

(

∥

∥

∥
h̃hh(xxx,¼¼¼k)

∥

∥

∥

2

2
+
∥

∥g̃gg(xxx,µµµk)
∥

∥

2

2

)

s.t. lll f xxx f uuu.

(3.56)

of the ALM to get the next iteration step xxxk+1. Please note that the only free variable
of the optimisation problem given in equation 3.56 is xxx; ¼¼¼k, µµµk and Äk are fixed. We denote
the iterations of the L-BFGS-B algorithm with a bar, e.g., x̄xxk+1, to distinguish them from the
iteration of the ALM algorithm. We give to the algorithm a function which can compute the
augmented Lagrangian function A(xxx,¼¼¼k,µµµk, Äk) and its gradient ∇A(xxx,¼¼¼k,µµµk, Äk) at any point

4https://github.com/scipy/scipy/tree/main/scipy/optimize/lbfgsb_src accessed at 27.08.23
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xxxk . Providing this information allows us to approximate the augmented Lagrangian function
by a quadratic model at x̄xxk,

mk(xxx) = A(x̄xxk,¼¼¼k,µµµk, Äk) +∇A(x̄xxk,¼¼¼k,µµµk, Äk)
T (xxx− x̄xxk) +

1

2
(xxx− x̄xxk)

TBBBk(xxx− x̄xxk). (3.57)

The approximated Hessian matrix BBBk is not computed explicitly. Section A.1.4.3 gives an
idea of how limited memory approximation of the Hessian matrix works. Instead of computing
BBBk, we compute directly (xxx− x̄xxk)

TBBBk(xxx− x̄xxk) by the gradients of nmc previous iterations. The
author chose to use nmc = 15 because this gives, in general, a good estimation of the Hessian
matrix (ZHU et al., 1997). The computation of (xxx − x̄xxk)

TBBBk(xxx − x̄xxk) is described in section B.3
in the Appendix.

Figure 3.7 shows a two-dimensional example of an arbitrary augmented Lagrangian function
A(xxx,¼¼¼k,µµµk, Äk) and it’s quadratic approximation mk(xxx) at x̄xxk.

FIGURE 3.7 – Augmented Lagrangian function A(xxx,λλλk,µµµk, ρk) and it’s quadratic approximation mk(xxx) at x̄xxk.

The algorithm minimises a sequence of quadratic approximations mk(xxx) subjected to the
bounds. Bounds are the most simple constraints to optimisation problems. The algorithm
determines the active bounds and fixes the design variables associated with the active bounds
by the value of the Cauchy point. Next, let us discuss how the algorithm defines the active
set and the Cauchy point. The active bounds are determined by the projection of the steepest
descent direction with an optimal step size tc onto the feasible region Ω. The steepest descent
direction is the negative direction of the gradient, scaled by a step size t. Figure 3.8a and 3.8b
show the contour lines of A(xxx,¼¼¼k,µµµk, Äk) and mk(xxx) of figure 3.7, respectively. The black cross
indicates the current design iteration x̄xxk. The blue arrow shows the steepest descent direction
of mk(x̄xx), and the green arrow is a projection onto the feasible region Ω. The projection onto Ω
is obtained by

ProjΩ(x, l, u)i =











li, if xi < li
xi, if xi ∈ [li, ui] .
ui, if xi > ui

(3.58)

The projection of the steepest descent direction is the continuous, piecewise differentiable
function

xxx(t) = ProjΩ({xxxk − t∇A}, lll,uuu), (3.59)

which is a function of the step size t. We get the optimal step size tc by the generalised Cauchy
point x̄xxc, which is indicated by the orange cross in figure 3.8b. The generalised Cauchy point
is the first local minimiser of the one-dimensional function mk(xxx(t)). mk(xxx(t)) is a continuous,
quadratic piecewise differentiable function which is along the projection onto Ω of the steepest
descent direction. Figure 3.9a shows the univarate function mk(xxx(t)) of our two-dimensional
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(a) Contour lines of A(xxx,λλλk,µµµk, ρk) (b) Contour lines of mk(xxx)

FIGURE 3.8 – Explanation of sub-optimisation method of ALM approach. The black cross is the current iteration
x̄xxk; the red lines show the bounds, the blue arrow shows the steepest descent direction with step size tc, and the
green arrow shows the projection of the blue arrow onto the feasible region Ω.

plots. After the first non-differential location at t ≈ 0.0025, the steepest descent direction gets
projected onto the upper bound of x1; hence one bound is active. The second non-differential
location implies that the second bound is active, which means that the steepest descent direction
is projected onto the upper right corner of the feasible set. Any increase in the step size t cannot
change the value of mk(xxx(t)) anymore. In this example, the first (and only) local minimiser is
at t ≈ 0.013, which is the optimal step size. Note that for this step size, one bound is active.
The optimal step size determines the Cauchy point x̄xxc. The active set is a set of all variables
whose values are at the upper or lower bound at the Cauchy point. Next, we can define the
optimisation problem of our quadratic approximation of A(xxx,¼¼¼k,µµµk, Äk) with our active set

min
xxx

{

mk(xxx) : xi = xci ∀ ∈ [li, ui]
}

s.t. lll f xxx f uuu ∀ /∈ [li, ui]
(3.60)

with the solution x̄xx∗. Note that we fixed the active bounds with the value of the Cauchy
point. In fact, we reduce the problem’s dimensionality by the number of active bounds at the
Cauchy point. The optimisation problem stated in 3.60 is easy to solve because it is a quadratic
problem, and we can use the Cauchy point as our first initial guess, which is usually already
close to the solution. Figure 3.9b shows the remaining optimisation problem of our example
throughout this explanation. The upper bound of the x1-dimension is active at the Cauchy
point; hence, we are left with an optimisation problem in the x2-dimension. In this simple
example, the Cauchy point is even the solution to the optimisation problem of equation 3.60.
The orange cross indicates the Cauchy point x̄xxc = x̄xx∗.

Once we get the solution x̄xx∗ to the optimisation problem in equation 3.60 we get the search
direction q̄qqk = x̄xx∗ − x̄xxk. Along this search direction, we can find a step size ³k which satisfies
the sufficient decrease condition of Armijo

A(x̄xxk+1,¼¼¼k,µµµk, Äk) f A(x̄xxk,¼¼¼k,µµµk, Äk) + ³kc∇A(x̄xxk,¼¼¼k,µµµk, Äk)
T q̄qqk, (3.61)

where c = 10−4 and also satisfies the curvature condition

|∇A(xxxk+1,¼¼¼k,µµµk, Äk)
T q̄qq| f ´|∇A(xxxk,¼¼¼k,µµµk, Äk)

T q̄qq|, (3.62)

where ´ = 0.9. Given the step size ³k, which satisfies both conditions, also known as the
Wolf conditions, the next iteration of the sub-problem is x̄xxk+1 = ³k q̄qqk. At x̄xxk+1 the algorithm
computes A(x̄xxk+1,¼¼¼k+1,µµµk+1, Äk+1), ∇A(x̄xxk+1,¼¼¼k+1,µµµk+1, Äk+1) and (xxx−x̄xxk+1)

TBBBk+1(xxx−x̄xxk+1)
again and repeats the process until convergence. The convergence criteria of the sub-problem is
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(a) mk along the projection onto Ω of the steepest

descent direction as a function of step size t.

(b) Optimisation problem of eq. 3.60 with active

set determined by the projection onto Ω of steep-

est descent direction onto the feasible set.

FIGURE 3.9 – Explanation of sub-optimisation method of ALM approach.

|A(xxxk,¼¼¼k,µµµk, Äk)−A(xxxk−1,¼¼¼k,µµµk, Äk)| f ϵ = 10−6. (3.63)

3.5 Computing derivatives

The previous section described the optimisation methods to solve the optimisation problem

min
xxx

f(xxx,ppp)

s.t. hhh(xxx,ppp) = 000, ggg(xxx,ppp) f 000

w.s. rrr(ppp;xxx) = 000,

(3.64)

where we ignore the bound constraints since they do not influence the derivative computation.
However, there was no attention given that we need to minimise f while solving rrr(ppp;xxx) = 000. In
our case, rrr(ppp;xxx) are the residual functions of the structural and aerostructural models given in
equation 3.9 and 3.25, respectively. There are two methods to solve an optimisation problem
while solving rrr(ppp;xxx) = 000; the direct and the adjoint method. Section A.1.7 describes both
methods. We will use the adjoint method because structural and aerostructural optimisation
problems usually have more design variables than functions of interest. The adjoint method
computes the derivatives along a linear approximation of rrr(ppp;xxx) = 000 and gives those derivatives
to the optimisers described in the previous section. By giving the optimiser derivatives along a
linear approximation of rrr(ppp;xxx) = 000 we implicitly ensure that the optimiser encounters for the
relationship between the design and state variables.

QASTRO calculates the partial derivatives for the adjoint by AD. Section A.1.6 of the
Theoretical Background chapter describes how the AD works. There are two AD methods:
the direct method and the adjoint method. QASTRO uses the adjoint method instead of the
direct method because there are usually more design variables xxx than functions of interest.
Please ensure you are familiar with the adjoint method described in section A.1.7. The partial
derivatives for the adjoint method are obtained by Tapenade AD (HASCOËT; PASCUAL, 2013),
a program that performs the AD method to a Fortran script.

This section plays a crucial part in this Master’s Thesis because it shows the approach of
combining the adjoint method with the ALM, which saves computing the adjoint variables for all
constraint functions. More on this later. First, this section shows how the adjoint method is used
for the SLSQP optimisation approach, described in section 3.4.1. Gradient-based optimisers,
such as the SLSQP or BFGS, require gradients of the objective and, in the case of SLSQP,
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gradients of the constraint functions. The total derivative of the objective function f along a
linear approximation of rrr(ppp;xxx) = 000 with respect to the design variables xxx is

df

dxxx
=
∂f

∂xxx
−ΨΨΨT

f

∂rrr

∂xxx
, (3.65)

where someone can get the adjoint variables ΨΨΨf by solving the linear system
[

∂rrr

∂ppp

]T

ΨΨΨf =

[

∂f

∂ppp

]T

. (3.66)

We could get the four partial derivatives by AD—the computational cost of the backward-
mode AD scales with the number of output functions. Hence, we can get ∂f/∂xxx and ∂f/∂ppp
within one execution of the backward-mode AD script because f is a single scalar function.
However, we must also determine the derivative of the residual functions rrr. There are as many
residual functions as state variables, thus nr = nDoF + nΓ, where nDoF are the number of
DoF in the FEM model and nΓ the number of vortex horseshoes in the LLT model. In this
case, the backward-mode AD is not advantageous. However, neither the forward-mode AD is
advantageous because the computational cost of the forward-mode AD scales with the function
inputs xxx and ppp. The number of design variables nx and the number of state variables np = nr
are both large integers.

Instead of calculating the full Jacobian matrices ∂rrr/∂xxx and ∂rrr/∂ppp, we will exploit the way the
adjoint method and the backward-mode AD are defined to solve the linear system 3.66. Tapenade
AD provides a code that takes a vector xxx as input and outputs the results obtained through
forward-mode or backward-mode AD. When we perform backward-mode AD, differentiating
with respect to the input vector xxx, we obtain the following result

x̄xxf = JJJT
aaaxxx
· v̄vv (3.67)

where JJJaaaxxx = (∂aaa/∂xxx)T is the Jacobian matrix of the vector aaa. aaa is a column vector of scalar
functions. v̄vv is the reversed seed vector. Let us define aaa as

aaa =
[

f rrrT
]T

, (3.68)

where f is our objective function and rrr is a vector of all residual functions. Thus, the
Jacobian matrix is

JJJaaaxxx =
[

∂aaa
∂xxx

]T

=

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xnx

∂r1
∂x1

∂r1
∂x2

. . . ∂r1
∂xnx

∂r2
∂x1

∂r2
∂x2

. . . ∂r2
∂xnx

...
...

. . .
...

∂rnr

∂x1

∂rnr

∂x2

. . . ∂rnr

∂xnx













































∂f
∂xxx

∂rrr
∂xxx

(3.69)

If we carefully observe equation 3.67 and equation 3.69 again, we can see that we can express
the result of the backward-mode AD by

x̄xxf =

[

∂f

∂xxx

]T

· v̄f +

[

∂rrr

∂xxx

]T

· v̄vvr, (3.70)

where v̄f is the seed value of the objective function and v̄vvr is the seed vector of the residual

functions. We can get
[

∂f/∂xxx
]T

by setting v̄f = 1 and v̄vvr = 000. In the same way, we can express
the result of the backward-mode AD by differentiating with respect to the state variables ppp by
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p̄ppf =

[

∂f

∂ppp

]T

· v̄f +

[

∂rrr

∂ppp

]T

· v̄vvr. (3.71)

We can get the right hand side of equation 3.66 by setting v̄f = 1 and v̄vvr = 000 in equation
3.71. If we set v̄f = 0 and v̄vvr = bbb, we get the left hand side of equation 3.66 for an arbitrary
vector bbb of equation 3.66. That means we can use a matrix-free linear system solver to solve for
ΨΨΨf in equation 3.66. ΨΨΨf is determined by defining the residual function

rrrΨΨΨ(bbb) =

[

∂rrr

∂ppp

]T

bbb−

[

∂f

∂ppp

]T

, (3.72)

where we need to find bbb such that rrrΨΨΨ(bbb = ΨΨΨf ) = 000. Again, we use the non-linear Python
solver from the SciPy library (VIRTANEN et al., 2020), which is a modification of the Powell
hybrid method to solve rrrΨΨΨ(bbb = ΨΨΨf ) = 000. The method is briefly described in section 3.3 and
can be found in (MORE et al., 1980). Once the vector bbb = ΨΨΨf is known, we can set v̄f = 1 and
v̄vvr = −ΨΨΨf in equation 3.70 and get

x̄xxf =

[

∂f

∂xxx

]T

· 1 +

[

∂rrr

∂xxx

]T

· −ΨΨΨf (3.73)

=

[

df

dxxx

]T

, (3.74)

according to equation 3.65. That means we got the total derivative for the optimisation
procedure for our first function of interest (objective function). Next, we can move on and

repeat the procedure with all constraint functions to get
[

dhhh/dxxx
]T

and
[

dggg/dxxx
]T

. In total, we
need to execute this process nf + nh + ng = 1 + nh + ng times. nf is the number of objective
functions, nh is the number of equality constraints and ng is the number of inequality constraints.

The second optimisation approach is to merge all inequality constraints ggg in one aggregation
function ḡKS and is described in section 3.4.2. In this case, ng reduces to one. Thus, in total,
we need to solve nf + nh + ng = 1 + nh + 1 linear systems to get the adjoint variables.

The third optimisation approach uses the ALM described in section A.1.4.5 and section 3.4.3.
We need to solve only one linear system for the ALM approach to get the adjoint variables. To
solve the sub-problem, we need to compute the derivative of the augmented Lagrangian function
along a linear approximation of rrr(ppp;xxx) = 000, which is dA/dxxx. Please note that it is not in any step
required to know explicitly the derivative of the objective function df/dxxx or any of the constraint
functions dhhh/dxxx or dggg/dxxx. This is a considerable advantage compared to the SLSQP method.
The SLSQP method requires knowing dhhh/dxxx and dggg/dxxx because it linearises the constraints at
each sub-problem.

By the adjoint method, we can express this derivative of the augmented Lagrangian function
as

dA

dxxx
=
∂A

∂xxx
−ΨΨΨT

A

∂rrr

∂xxx
, (3.75)

where we can get the adjoint variables ΨΨΨA by solving the linear system
[

∂rrr

∂ppp

]T

ΨΨΨA =

[

∂A

∂ppp

]T

. (3.76)

The result of the backward-mode AD applied to the augmented Lagrangian function is

x̄xxA =

[

∂A

∂xxx

]T

· v̄A +

[

∂rrr

∂xxx

]T

· v̄vvr (3.77) p̄ppA =

[

∂A

∂ppp

]T

· v̄A +

[

∂rrr

∂ppp

]T

· v̄vvr. (3.78)

By setting v̄A = 1 and v̄vvr = 000 in equation 3.78 we get ∂A/∂ppp, the right hand side of equation
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3.76. Next, we set v̄A = 0 and v̄vvr = bbb, where bbb is an arbitrary vector to solve equation 3.76

for ΨΨΨA. In the final step we can set v̄A = 1 and v̄vvA = −ΨΨΨA in equation 3.77 to get
[

dA/dxxx
]T

according to equation 3.75.

Table 3.1 summarises how many adjoint equations we need to solve for the three different
optimisation approaches. For the SLSQP approach, we must provide the gradient of the objective
function and all constraint functions. In this case, we need to solve 1+nh+ng adjoint equations
to get the derivative of all functions: one adjoint equation for the objective function, nh for
the equality constraints and ng for the inequality constraints. For the SLSQP KS optimisation
approach, we aggregate the inequality constraint functions and reduce the number of inequality
constraints to one. Thus, we only need to solve 1 + nh + 1 adjoint equations. We still need to
solve one adjoint equation for the objective function and nh for the equality constraints but only
one for all inequality constraint functions because we aggregated all inequality constraints in a
single scalar function. If we use the augmented Lagrangian approach, we only need to solve one
adjoint equation at each iteration because we only need to know the derivative of A(xxx). The
knowledge of the derivative of the objective function of the constraint functions is not required.

Optimisation approach SLSQP SLSQP KS ALM

Requires to know derivatives of f(xxx), hhh(xxx), ggg(xxx) f(xxx), hhh(xxx), gKS(xxx) A(xxx)

Which function f(xxx)→ 1 f(xxx)→ 1
gives how many hhh(xxx)→ nh hhh(xxx)→ nh A(xxx)→ 1

adjoint equations to solve? ggg(xxx)→ ng gKS(xxx)→ 1

Number of adjoint equations to
solve at every algorithm iteration 1 + nh + ng 1 + nh + 1 1

TABLE 3.1 – Table shows which optimisation approach requires the derivative of which function. A different
number of adjoint equations must be solved to get the derivatives for each optimisation approach. For the SLSQP
approach, we need to solve the most adjoint equations. We need to solve just a single adjoint equation for the
ALM optimisation approach.

In the subsequent sections of this dissertation, we will delve into the exploration of both
structural and aerostructural optimisations. The focus for structural optimisations will be on
the variation of beam-truss thicknesses, which serve as the design variables. At the same time,
the mass of the structures is employed as the objective function. As shown in section B.4 of
the Appendix, this specific scenario allows for a more straightforward calculation of derivatives.
This is due to the straightforward determination of partial derivatives. The incorporation of
this method significantly diminishes the computational expenses. Nevertheless, the primary aim
of this Master’s thesis is to conduct a comparative analysis of the three distinct optimisation
methodologies (SLSQP, SLSQP KS and ALM). In most instances, this simplified approach to
get the derivatives is not applicable. Therefore, while acknowledging the existence of a more
rudimentary method for derivative calculation in structural optimisation, this study deliber-
ately refrains from employing it, to maintain a comprehensive assessment of the optimisation
techniques under consideration.

3.6 Optimisation problems

We will test the performance of the three optimisation approaches on an atmospheric satellite
aircraft called Helios aircraft. The Helios aircraft has multiple configurations; in this Master’s
Thesis, we will optimise the Pathfinder-Plus configuration, shown in figure 3.10a. The Helios
aircraft is a flying wing developed under the National Aeronautics and Space Administration
(NASA) Environmental Research Aircraft and Sensor Technology project. The project aimed
to demonstrate a sustainable aircraft and create an aeroplane that can fly non-stop. The non-
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stop flying goal is not possible with the Pathfinder-Plus configuration. Solar panels on the
aircraft’s wings power the eight brushless direct-current electric motors. The aircraft is equipped
with backup batteries, which provide enough power to power the motors for several hours,
depending on the flight conditions, but not long enough to fly the whole night without sunlight.
The atmospheric satellite aircraft is remotely controlled on Earth and can be used for various
Earth and atmospheric science missions, including storm tracking studies, atmospheric sampling,
spectral imaging for agriculture, natural resources monitoring and pipeline monitoring. However,
the aircraft can also serve as relay platforms for telecommunications systems (NASA, 2002).

The Helios aircraft is made of composite materials such as carbon fiber, graphite epoxy,
Kevlar, styrofoam, and a thin, transparent plastic skin (CURRY, 2002). In QASTRO, it is not
possible to model those materials. The finite element formulation in QASTRO can only model
isotropic materials. The main tubular wing spar is made of carbon fibre. However, we will model
the tubular wing spar by nbeams aligned aluminium beam-truss elements and assume that the
tubular wing spar represents the whole structure. Table 3.2 lists the material properties of the
aluminium alloy used to model the tubular wing spar. The circular beam-truss elements have
an initial thickness of ttt = 5mm and a slightly lower diameter than the thickness of the airfoil.
The airfoil’s maximum thickness is 0.137 c = 0.3341m and ,the beam-truss elements’ diameter
is 2r = 0.2926m.

Parameter Symbol Value Unit

Elasticity modulus E 73.1 · 109 [N/m2]
Shear modulus G 27.48 · 109 [N/m2]
Poisson’s ratio ¿ 0.33 [−]
Yield strength ÃY 324 · 106 [N/m2]
Material density Ämat 2780 [kg/m3]

TABLE 3.2 – Assumed Helios Pathfinder-Plus aircraft material specifications. We assume an aluminium alloy
called 2024-T4; 2024-T351. The material properties are from MatWeb (2023).

For the Helios aircraft, we will assume a fixed mass of 100 kg for the solar panels and the
engines. Furthermore, we assume a battery mass of 25 kg and an additional 30 kg for technical
equipment. Table 3.3 summarises the assumed masses.

Includes Value Unit

Fixed mass Solar panels, engines 100 [kg]
Battery mass Battery 25 [kg]
Technical equipment e.g. Telecommunication system 30 [kg]

TABLE 3.3 – Helios Pathfinder-Plus aircraft fixed masses estimation.

(a) Pathfinder-Plus5

(b) Lift distribution

FIGURE 3.10 – Helios aircraft Pathfinder-Plus. Lift distribution of rectangular wing according to Schrenk (1940).
Red arrows indicate distributed lift force.
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Table 3.4 lists the Pathinder-Plus wing dimensions. Note that the aircraft wings are simply
rectangular. The flight altitude at cruise conditions is about 18.30 km (60, 000 ft). At this alti-
tude, the flight speed is about 28.65m/s. We will assume an air density of ÄAir = 0.1225 kg/m3

and a dynamic viscosity of µ = 1.432 · 10−5 kg/(ms), which are the air properties at around the
flight altitude according to the United States standard atmosphere (DRELA, 2014).

Parameter Symbol Value Unit

Span width b 36.3 [m]
Chord length c 2.434 [m]

TABLE 3.4 – Pathfinder-Plus aircraft wing di-
mensions (NASA, 2002).

Parameter Symbol Value Unit

Free stream V∞ 28.65 [m/s]
Air density ÄAir 0.1225 [kg/m3]
Viscosity µ 1.432 · 10−5 [kg/(ms)]

TABLE 3.5 – Pathfinder-Plus aircraft flight parameters.

We will perform a structural and an aerostructural optimisation on the Helios aircraft. For
the structural optimisation, we do not couple the structural model with the aerodynamic model
of the aircraft. The structural and the aerostructural optimisation definitions are described in
section 3.6.1 and 3.6.2, respectively.

3.6.1 Structural optimisation problems

First, we will perform a structural optimisation on the Helios aircraft without coupling the
aerodynamic loads with the structural displacements. The aim is to minimise the weight of the
aircraft by solving

min
xxx=ttt

f(xxx = ttt) =
1

mw0

nbeams
∑

i

Ämat i LiAi =
1

mw0

nbeams
∑

i

2ÃÄmat i Li ri ti

s.t. ggg(ppp = ddd) = −mmm(ppp = ddd) f 000, lll f xxx f uuu,

w.s. rrr(ppp = ddd;xxx = ttt) =KKKddd− LF ·FFF = 000,

(3.79)

where the semicolon detonates that the design variables xxx are fixed when the residual func-
tions rrr are solved for the state variables ppp. mw0 is for normalisation purposes, Ämat is the material
density, Li and Ai is the length and the cross-sectional area of the beam-truss element i. ri and
ti is the radius and the wall thickness of the beam-truss element, see figure 3.3. The failure
marginsmmm(ppp) are given in equation 3.16. LF is the load factor which is equal to three, KKK is the
stiffness matrix, ddd is the displacement/ rotation vector and FFF is the force/ moment vector.

We model only half of the aircraft because the aircraft is symmetric. The design variables are
the beam-truss element thicknesses xxx = ttt with the bound 0.5 f ttt0 f 5 mm for each beam-truss
element. Table 3.4 and 3.5 list the wing dimensions and the flight conditions, respectively. Given
those specifications we can determine the lift distribution according to Schrenk’s distribution
(SCHRENK, 1940), which gives us the force/ moment vector FFF . Morse (1944) gives step-by-step
instructions to determine Schrenk’s lift distribution, which is used as a baseline for determining
the Helios Pathfinder-Plus lift distribution. Figure 3.10b shows Schrenk’s lift approximation for
the Helios aircraft wing. After determining Schrenk’s normalised lift approximation, we need
to determine the lift force of the aircraft to get the dimensional lift distribution. The lift force
with an assumed cruise lift coefficient CL = 0.5 of one wing is

L =
1

2
CL ÄAirV

2
∞ c b/2 = 1112.5 [N ], (3.80)

which means that both wing’s lift is 2225.0N . In other terms, the generated lift can carry
226.81 kg. It is challenging to find the exact weight specifications of the Pathfinder-Plus, but

5https://www.avinc.com/innovative-solutions/hale-uas accessed at 27.08.23
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the Pathfinder configuration, which has a slightly smaller wingspan compared to the Pathfinder-
Plus configuration, has an empty weight of 226.80 kg (FLITTIE; CURTIN, 1998). Consequently,
the total lift is in a realistic range.

Given the lift distribution of the Helios aircraft wing, we can determine the equivalent force
and moment at each node. The equivalent forces and moments are determined such that the
displacement of the beam-truss elements is equivalent to the displacement due to the distributed
load. Please note that the distributed load is assumed to vary linearly along a beam-truss
element. Logan (2012) shows how to get the equivalent forces and moments for a linearly
varying load on a beam-truss element. Furthermore, we consider a load factor of three to ensure
that the Helios aircraft does not fail for any speeds higher than the cruise speed V∞ = 28.65m/s.
That means that the Helios aircraft model is loaded with equivalent forces and moments, three
times higher than due to the lift distribution at cruise speed. Figure 4.2 shows how the Helios
aircraft is modelled. The black lines are the horizontally aligned beam-truss elements. The blue
area represents the wing, and the red arrows are the lift forces.

3.6.2 Aerostructural optimisation problems

For the aerostructural optimisation problem, we consider again the Helios aircraft shown
in figure 3.10a. The difference to the structural optimisation of the Helios aircraft described
in section 3.6.1 is that in the aerostructural optimisation we couple the structural model with
the aerodynamic model to estimate the lift distribution. Figure 3.12 shows the initial design of
the Helios aircraft model. The Helios aircraft utilises an airfoil called LA2573A. The properties
of this airfoil are used for each wing section and are listed in table 3.6. The parameters are
obtained by Xfoil (DRELA, 1989) with the Reynolds number

Re =
ÄAirV∞c

µ
=

0.1225 · 28.65 · 2.4384

1.432 · 10−5
= 0.598 · 106 [−]. (3.81)

For the aerostructural optimisation, we allow to increase and decrease the chord length and
the flight speed by 10 %. That means the Reynolds number changes and, consequently, the airfoil
properties. The maximum and minimum Reynolds number we can obtain are Remax = 0.724·106

and Remin = 0.484 · 106, respectively. Figure 3.11a shows the lift curve for all three Reynolds
numbers. One can see that the curves are sufficiently close to each other such that we can assume
that the airfoil parameters are equal for all Reynolds numbers. The dashed line indicates the
approximated lift coefficient cl with the airfoil parameters of table 3.6. Figure 3.11b shows the
drag polar of the LA2573A airfoil. QASTRO can approximate the drag polar of an airfoil by a
quadratic approximation. However, for the LA2573A airfoil, it seems to be a good estimation
to take a constant drag coefficient cd for all lift coefficients. The dashed line in figure 3.11b
indicates the approximated constant minimum drag coefficient for the Helios aircraft model.

Parameter Symbol Value Unit

Zero lift coefficient cl0 5.15 [◦]
Lift slope clα 2Ã [1/rad]
Zero moment coefficient cm0 0.01 [−]
Moment curve slope cmα 0 [1/rad]
Minimum drag coefficient cdmin 0.011 [−]

TABLE 3.6 – Helios Pathfinder-Plus aircraft airfoil (LA2573A) specifications.

Table 3.7 lists the initial design variables and their bounds for the aerostructural optimi-
sations. The sum of the upper bound from the twist and angle of attack is 12◦. This is the
maximum angle of attack before stall occurs; see the lift curve in figure 3.11a. The bounds of
the angle of attack are chosen so that the pilot has a range of 10◦ to control the aircraft. Figure
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(a) Lift curve (b) Drag polar

FIGURE 3.11 – Lift curve and drag polar of airfoil LA2573A for different Reynolds numbers.

3.12 shows the Helios aircraft model in QASTRO. The black lines are the horizontally aligned
beam-truss elements.

Parameter Symbol Initial value Upper bound Lower bound Unit

Twist ³³³0 3 5 −2 [◦]
Beam-truss thickness ttt 5 5 0.5 [mm]
Chord length ccc 2.4384 1.1 c 0.9 c [m]
Beam-truss location xxxBeam 50% chord line trailing edge leading edge [m]
Free stream V∞ 28.65 1.1V∞ 0.9V∞ [m/s]
Angle of attack ³ 2 or 5 7 −3 [◦]

TABLE 3.7 – Initial design variables and its bounds. Bold symbols indicate that the parameter is discretised
along the wing span. The initial angle of attack is 5◦ for the high load condition, otherwise 2◦.

FIGURE 3.12 – Initial Helios aircraft design. Red arrows indicate lift forces. Green dashed line shows undeformed
tubular wing spar. The initial design is infeasible.

The initial mass of the aircraft, including the tubular wing spar of the Helios aircraft, is
541.52 kg, but the configuration is infeasible because the lift constraint(s) are not satisfied. In
order to satisfy the lift constraint(s), the aircraft’s weight reduces to at least 250 kg, which is
in the weight range of the Helios Pathfinder-Plus. We can further decrease the weight of the
aircraft by optimising the aircraft. Again, we want to design the Helios pathfinder-Plus aircraft
with a load factor of three. The optimisation problem for the aerostructural optimisation reads

min
xxx

f(xxx,ppp)

s.t. hhh(ppp) = 000, ggg(ppp) f 000, lll f xxx f uuu,

w.s. rrr(ppp;xxx) = 000.

(3.82)

We will consider two different optimisations with each different constraints. The first optimi-
sation extrapolates the failure margins for LF = 3, while the second case computes two separate
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lift distributions: one for the cruise condition and the second for the high load condition. For
the first optimisation problem, the constraint and residual functions are

Level flight constraint:

hhh(xxx) = L(ppp)/W − 1,

Failure margin constraint:

ggg(xxx) = −(LF ·mmm(ppp)− LF + 1),

Residual functions:

rrr(ppp;xxx) =

{

rrrstruc(ppp;xxx)
rrraeros(ppp;xxx)

}

,

where mmm(ppp) are the failure margins and LF = 3 is the load factor. L is the total lift force
and W is the total weight of the aircraft. rrrstruc and rrraero are the residual functions of the
structural and aerodynamic model given in equation 3.9 and 3.25, respectively. In aerostructual

optimisation, the state variables are pppT =
[

dddT ΓΓΓT
]

where ddd are the displacements of the

structure and ΓΓΓ are the circulation strengths of the horseshoes. We will consider two sets of
design variables - one reduced set xxxreduced and one complete set xxxcomplete. The reduced set
includes the beam-truss element thicknesses ttt; the wing twist ³³³0 and the angle of attack ³.

xxxreduced =
[

ttt ³³³0 ³
]T

, (3.83)

where the design variables are row vectors. The complete set of design variables includes the
beam-truss element thicknesses ttt, the wing twist ³³³0, the angle of attack ³, the chord lengths ccc,
the free stream velocity V∞ and the beam-truss element location in the x - direction xxxBeam.

xxxcomplete =
[

ttt ³³³0 ³ ccc V∞ xxxBeam

]T

, (3.84)

where the design variables are row vectors.

Next, let us define the constraint for the second optimisation problem. Usually, we do not
want to optimise the aircraft in this high-load condition. We want to optimise the cruise condi-
tion. In the second optimisation problem, we optimise the aircraft’s cruise condition. For this,
we will create two separate Helios aircraft models. We will call the cruise condition condition

1 and the flight condition with a load factor of three we will call condition 2. For the second
flight condition, we require that the aircraft be able to generate a lift force that is equal to the
weight multiplied by the load factor LF . By this, we ensure that the aircraft will not fail even if
the lift force is LF times higher than in a cruise condition. Furthermore, we ensure the aircraft
can generate enough lift to reach the desired manoeuvring condition. It does not make sense
to oversize the wing structure if the aircraft can not create the lift forces, which can cause the
wing structure to fail. The constraint functions and residual function of the second optimisation
problem where we optimise the cruise conditions read

Level flight constraints:

hhh(xxx) =

{

L1(ppp)/W − 1
L2(ppp)/(LF ·W )− 1

}

,

Failure margin constraints:

ggg(xxx) =

{

−mmm1(ppp)
−mmm2(ppp)

}

,

Residual functions:

rrr(ppp;xxx) =



















rrrstruc 1(ppp;xxx)
rrraeros 1(ppp;xxx)
rrrstruc 2(ppp;xxx)
rrraeros 2(ppp;xxx)



















,

where the subscripts 1 and 2 indicate that the functions are from the first or second flight
condition, respectively. The complete set of design variables for the optimisation with two flight
conditions is

xxxcomplete 1, 2 =
[

ttt ³³³0 ³1 ³2 ccc V∞ 1 V∞ 2 xxxBeam

]T

, (3.85)

where the design variables are row vectors and the subscripts 1 and 2 indicate the design
variable of the first or second flight condition, respectively. Please note that for the SLSQP KS
approach, we aggregate the inequality constraints in one KS function for each condition, giving
us two KS functions in total. With two flight conditions, it is impossible to reach a feasible
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solution by optimising with respect to the reduced set of design variables. Thus, we will only
consider the complete set of design variables for the optimisation with two conditions.

Given the optimisation problems for a single flight condition and two flight conditions, let
us define the objective function for the optimisation problems. Possible objective functions for
the Helios aircraft are the weight, the endurance and the power ratio. The power ratio is the
ratio between the required power to operate the aircraft and the generated energy by the solar
panels. The objective function to minimise the weight W of the aircraft reads

f(xxx)Weight =
1

W0
W (xxx), (3.86)

where f(xxx0)Weight = W0 is the initial weight of the aircraft. The objective function to
maximise the endurance is

f(xxx)Endurance = −
1

tEndurance 0

mBattery cBattery

g D(xxx)V∞
, (3.87)

where f(xxx0)Endurance = tEndurance 0 is the endurance of the initial design, g = 9.81m/s2 is the
gravity, mBattery = 25 kg is the battery mass and cBattery is the specific energy of the battery. We
assume a specific energy of the battery of cBattery = 250Wh/kg. Lastly, the objective function
to decrease the power ratio is

f(xxx)Power ratio =
1

Pratio 0

D(xxx) V∞
cSolar panel S(xxx)

, (3.88)

where f(xxx0)Power ratio = Pratio 0 is the initial power ratio, cSolar panel = 205.83W/m2 is the
produced power per square metre of the solar panels and S(xxx) is the surface area of the solar
panels.

3.7 Optimisation with multiple conditions

QASTRO is designed to consider multiple flight conditions during the optimisation. Usually,
we want to optimise an aircraft for cruise conditions but require that the aircraft not fail in
some high-load conditions. The approach in QASTRO is to create multiple (aero-) structural
models representing the different (flight) conditions. For the SLSQP and SLSQP KS optimisation
approaches, there are no difficulties in adding constraint functions from different models because
we compute the derivative of every constraint function anyway. If we consider ncond different
conditions, we need to solve ncond times the number of adjoint equations as listed in table
3.1. However, in theory, it is still possible to solve a single adjoint equation for the ALM
approach, although we consider multiple conditions. This section explains the difficulties by
considering multiple conditions using the ALM optimisation approach if we want to solve the
adjoint equation only once. It will help to understand this section while keeping the workflow
of QASTRO, depicted in figure B.1, in mind.

For the ALM approach, it becomes more challenging to define our desired augmented La-
grangian function, which reads

A(xxx,¼¼¼k,µµµk, Äk) = f(xxx) +
1

2
Äk
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 , (3.89)

where the equality and inequality constraint functions are all constraint equations for all
conditions. However, the construction of the augmented Lagrangian function within QASTRO
is fixed at the Fortran level, limiting flexibility. A composite function is proposed, computed on
the Python level, formulated as a weighted sum of individual augmented Lagrangian functions
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of each considered condition, to circumvent this:

A(xxx) =

ncond
∑

i

wA,iAi, (3.90)

where wA,i is the weight of the augmented Lagrangian function and each Ai is defined as
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If we set wA,i = 1, ∀i, wf,1 = 1 and wf,i = 0, ∀i ̸= 1, we get the desired augmented
Lagrangian function presented in equation 3.89.

Next, let us focus on the gradient evaluation. Theoretically, when we aggregate the con-
ditions, we revert to a singular augmented Lagrangian function. This consolidation suggests
that, in an ideal scenario, only one residual function remains to solve to get the adjoint vari-
ables to compute the gradient ∇A, simplifying the process significantly. Despite the theoretical
simplification, QASTRO’s programming structure introduces significant practical limitations.
In QASTRO, the augmented Lagrangian functions for individual conditions are defined at the
Fortran level, offering high computational efficiency. Furthermore, by defining the augmented
Lagrangian functions on the Fortran level we can utilise Tapanade AD to get the derivatives
of the augmented Lagrangian functions. However, the operation to sum these functions and
form the singular augmented Lagrangian function occurs at the Python level. This separation
between the computational levels necessitates solving an adjoint residual function for each con-
dition to obtain the required adjoint variables, contrary to the theoretical model of solving a
single adjoint equation.

Currently, we get the gradient of the augmented Lagrangian function ∇A by summing up all
gradients ∇Ai of all conditions. In the following, we would like to show that this approach leads
indeed to the correct gradient of the augmented Lagrangian function (eq. 3.89), which considers
all conditions. We consider only equality constraints to increase readability - the extension to
inequality constraints is left to the reader.

∇A(xxx) =

ncond
∑

i=1

∇A(xxx)i (3.93)
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where Jhx
Jhx
Jhx

T is the transpose of the Jacobian of hhh with respect to xxx and is defined as
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, (3.95)

where we consider k design variables. Comparing this result with the gradient of the aug-
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mented Lagrangian function given in the Theoretical Background chapter (eq. A.83) shows that
equation 3.93 gives the correct gradient of the augmented Lagrangian function given in equation
3.89.

In summary, this section showed that it is possible to consider multiple (flight) conditions in
QASTRO with the ALM approach. However, we still do not use the full potential of the ALM
approach because we need to solve as many residual functions as conditions to get the adjoint
variables at every iteration.

3.8 Outline of comparison strategy for optimisation approaches

In this thesis, we want to compare the performance of the SLSQP, SLSQP KS and the ALM
approach. This section aims to give the reader an outline of the comparison strategy. There are
various aspects which we want to compare. The optimisation results in the following chapter
are wisely structured to focus on different aspects of the comparison sequentially. We want
to constantly increase the complexity throughout the result chapter, starting with structural
optimisation and ending with aerostructual optimisation with two flight conditions. We will
increase the number of inequality constraints by increasing the model’s discretisation. Structural
optimisations focus on comparing optimisation durations, whereas aerostructural optimisations
concentrate on the optimisation results themselves.

For the structural optimisations, we first analyse the three optimisation approaches on the
Helios aircraft model with 60 beam-truss elements. For the SLSQP KS approach, the main focus
lies on the influence of the ÄKS value. The parameter ÄKS is critical for effectively approximating
inequality constraints. We want to answer two questions: How large does ÄKS need to be that
we can consider the SLSQP KS solution close enough to the SLSQP solution, and what is the
influence of ÄKS on the optimisation time?

For the ALM approach, we want to analyse if the ALM approach and the SLSQP give
identical results. Considering that both methods do not approximate the inequality constraints,
one can expect that both methods give the same result. Furthermore, we want to analyse the
influence on the optimisation duration of each ALM optimisation parameter: Ä0, µ, and r.

Our investigation journey will continue with an analysis of the usage of B-splines. B-splines
can reduce the number of design variables and, hence, reduce the complexity of the optimisation
problem. We want to answer how much B-splines can reduce the optimisation time.

In aerostructural optimisations, emphasis shifts to comparing the outcomes, f(xxx∗), rather
than the duration of optimisations. The aim is to progressively increase model complexity and
evaluate the results of different optimisation methods, particularly examining the effects of ÄKS

in the SLSQP KS method and the impacts of Ä0, µ, and r in the ALM approach.

First, we will consider a simple Helios aircraft model with 14 beam-truss elements and 20
horseshoe vortices and the reduced set of design variables. Then, we will increase the num-
ber of design variables. In this comparison, we want to focus on two separate analyses. We
want to analyse how the three optimisation approaches can handle the increased number of
design variables and analyse the potential difficulties. Furthermore, we want to analyse how the
optimisation approaches deal with an increasing number of inequality constraint functions.

The final comparison of the three optimisation approaches will be with two flight conditions.
By considering two flight conditions, we decrease the feasible region, which increases the com-
plexity of the optimisation problem. Furthermore, each flight condition introduces its inequality
constraints to the optimisation problem, resulting in a constraint-rich aerostructural optimisa-
tion. We will increase the discretisation to analyse which optimisation approach best handles a
large number of inequality constraints considering a highly complex optimisation problem.
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4 Results

In this chapter, we explore the results of our study, building upon the methodologies outlined
in Chapter 3. We thoroughly examine the results, specifically examining and comparing the
SLSQP, SLSQP KS, and ALM optimisation approaches. All optimisations are executed on a
Macbook Pro M2, 8 GB. Table 4.1 summarises the optimality conditions of each optimisation
approach. The optimality condition f(xxx)tol f 10−6 implies that

|f(xxxk)− f(xxxk−1)| f 10−6. (4.1)

The optimality condition of the main optimisation problem of the ALM is

A(xxx,¼¼¼,µµµ, Ä)tol = |A(xxxk,¼¼¼k,µµµk, Äk)−A(xxxk−1,¼¼¼k−1,µµµk−1, Äk−1)| f 10−6, (4.2)

whereas the optimality condition of the sub-problem is

A(xxx)tol = |A(xxxj ,¼¼¼k,µµµk, Äk)−A(xxxj−1,¼¼¼k,µµµk, Äk)| f 10−6, (4.3)

where j is the index of the sub-optimisation problem.

SLSQP f(xxx)tol f 10−6

SLSQP KS f(xxx)tol f 10−6

ALM
Main A(xxx,¼¼¼,µµµ, Ä)tol f 10−6 and f(xxx)tol f 10−6

Sub A(xxx)tol f 10−6

TABLE 4.1 – Overview of optimality condition of each optimisation approach.

4.1 Structural optimisation problem

Section 4.1 delves into the structural optimisation of the Helios aircraft. It is crucial to note
that here, aerodynamic and structural models are not coupled; instead, we estimate aerodynamic
loads independently using Schrenk’s model. Please note that, due to symmetry, we model
only half of the aircraft for the structural optimisations. In this section, we will compare the
SLSQP, the SLSQP KS and the ALM optimisation approaches. Each method’s impact on
the optimisation process, particularly in terms of solution quality and efficiency, is thoroughly
analysed, offering crucial insights into their respective advantages and limitations in structural
optimisation scenarios. The main focus lies on the performance of the optimisation methods
regarding the discretisation of the Helios aircraft model.

It is important to note that the optimisation time is not measured but calculated. The
methodology regarding the time computation can be found in Appendix B.5.

This section is split into two subsections. In the first subsection, we optimise the thickness
of the beam-truss elements directly. We will refer to the beam-truss elements as the frame
elements of the aircraft. In the second subsection, we use B-splines to describe the thickness
variation of the frame elements along the wingspan. Instead of optimising the thickness of the
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frame elements, we optimise the control points of the B-splines. Section A.1.8 in the Theoretical
Background chapter explains how QASTRO uses B-splines for optimisation.

4.1.1 Structural optimisation without B-splines

Section 4.1.1 delves into the structural optimisation results of the Helios aircraft without
the use of B-splines. This means that the design variables for the optimisers are the thicknesses
of each frame element. The number of design variables equals the number of frame elements
in the model. In the following three subsections, we will investigate the performance of each
optimisation approach individually. Furthermore, we will compare each optimisation approach
with each other.

4.1.1.1 SLSQP approach analysis

The SLSQP approach serves as a baseline for our analysis because it considers each con-
straint separately, therefore not suffering from the approximations generated by the aggregation
approach. This makes the SLQP approach a reference point for comparing other optimisation
strategies. However, before diving into the performance of the optimisation algorithm, the au-
thor wants to familiarise the reader with the solution of the structural optimisation from the
Helios aircraft.

The optimisation formulation is stated in equation 3.79 in the Methodology chapter. The
design variables are solely the thickness ttt of the tubular wing spar. The objective of the op-
timisation procedure is to reduce the weight of the Helios aircraft. Figure 4.1 presents the
SLSQP-optimised structure of the Helios wing using a 60-frame element model. Notably, the
thickness distribution varies significantly along the wingspan. The largest thickness is observed
at the wing root, a structural necessity to support the higher stress concentrations common in
this area. Conversely, towards the wing tips, the thickness reaches its lower bound, reflecting the
reduced stress and the necessity for lighter construction to maintain aerodynamic efficiency and
structural integrity. This gradation in thickness from root to tip is integral to understanding
the wing’s structural optimisation.

FIGURE 4.1 – Helios aircraft tubular wing spar thickness, before and after structural weight optimisation by
SLSQP method (without KS function) or ALM. Helios aircraft wing model with 60 frame elements.

Figure 4.2 compares the Helios aircraft’s wing displacement before and after optimisation
using the SLSQP method. The red arrows indicate the lift distribution according to Schrenk’s
model. The lift forces act on the quarter chord line, indicated by the dashed line. The solid black
line illustrates the deformed quarter chord line of the wing. Please note that the lift forces act on
the undeformed wing, not the deformed one. The lift forces act on the undeformed wing because
the aerodynamic model is not coupled with the structural model. The figure distinctly shows
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the substantial deformation of the optimised wing compared to the baseline, underlining the
significant structural changes achieved through optimisation. Please note that the deformation
in figure 4.2b is the maximum wing deformation in the high-load case before failure. The wing
tip displacement is 5.84% in the baseline and 26.78% in the optimised aircraft of the semi-span.

(a) Baseline (b) Optimised

FIGURE 4.2 – Helios aircraft wing displacement, before and after structural weight optimisation by SLSQP
approach (without KS function) or ALM.

The optimisation process using the SLSQP method, particularly with 60 frame elements, is
depicted in figure 4.3. ’fev’ and ’iter’ indicate the function evaluations and optimisation itera-
tions, respectively. Figure 4.3a illustrates the normalised mass of the entire aircraft, including
both wings and fixed masses. A notable reduction in the wing mass is observed right from the
first iteration, despite the initial infeasibility shown in figure 4.3b. As the optimisation pro-
gresses, the structure regains feasibility, and the normalised mass stabilises at less than 40% of
the baseline.

Notably, the SLSQP method achieved convergence within eight iterations and only twelve
function evaluations, signifying efficiency in reaching the solution. However, it is crucial to
note that the optimisation time for the SLSQP approach, particularly for the 60-frame element
model, was considerably long, totalling 270.97 seconds. This extended duration is attributed to
the time-consuming process of computing derivatives for all 4 · 60 = 240 constraint functions
during iterations.

(a) Objective function (b) Constraint functions

FIGURE 4.3 – Helios aircraft SLSQP structural weight optimisation with 60 frame elements. Optimisation time:
270.97 seconds.

4.1.1.2 SLSQP KS approach analysis

The performance of the SLSQP KS approach, which utilises the KS function to aggregate
inequality constraints for structural optimisation, is critically analysed. Figure 4.4 illustrates
the comparative efficiency and the impact of ÄKS on optimisation, respectively. A higher ÄKS
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enhances the solution quality by reducing the normalised mass and aligning closer to the SLSQP
solution. However, the optimisation time, as shown in figures 4.4b and 4.4c, is significantly
lower for the SLSQP KS approach, particularly at higher discretisation levels. While at low
discretisation, the time savings are minimal, at higher complexities, such as with 60 frame
elements in the Helios aircraft model, the SLSQP KS method markedly outperforms the SLSQP
in terms of optimisation time, achieving results in less than 50 seconds compared to over 250
seconds. Despite these advantages, excessively high ÄKS values should be avoided to prevent the
KS function from becoming a less desirable piecewise differential max function, underscoring the
importance of a balanced ÄKS selection for effective constraint approximation and optimisation
efficiency.

(a) Influence of ρKS on f(xxx∗) (b) Influence of ρKS on optimisation

time

(c) Influence of ρKS on optimisation

time

FIGURE 4.4 – Helios aircraft SLSQP structural weight optimisation with KS function for 5, 10, 30 & 60 frame
elements.

In the comparative analysis of the SLSQP and SLSQP KS approaches, a specific margin of
tolerance is defined to evaluate the closeness of the SLSQP KS results to the SLSQP method.
This margin of 0.25% with respect to the baseline equates to about 1.35 kg in terms of weight
reduction. The margin is crucial for determining the effectiveness of the SLSQP KS approach in
approximating the SLSQP results. Figure 4.5 categorises the SLSQP KS results based on this
tolerance level. Optimisations falling within this defined tolerance are considered successful. The
selection of the ÄKS parameter in the SLSQP KS approach is pivotal. The analysis reveals that
lower ÄKS values often lead to outcomes outside the acceptable tolerance, especially at higher
discretisations. Conversely, a ÄKS value around 160 or higher consistently yields results within
the tolerance range, irrespective of the model’s discretisation in our considered range. This is
further illustrated in Figure 4.6a, where the relationship between ÄKS value, discretisation, and
adherence to tolerance criteria is clearly depicted.

FIGURE 4.5 – Categorised Helios aircraft structural weight optimisations in within and outside tolerance sorted
by ρKS . The green colour indicates that the optimisation result of the SLSQP KS approach is within tolerance.
The optimisations coloured red are outside the tolerance.

Figure 4.6a critically examines the normalised mass as a function of discretisation for both
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the SLSQP and SLSQP KS methods across varying ÄKS values. This comparison highlights the
significance of choosing an appropriate ÄKS value for optimal outcomes. The figure incorporates
a blue shaded area, symbolising the tolerance level of 0.25%, which serves as a benchmark for
assessing the closeness of the SLSQP KS results to the SLSQP method. A notable observation
from the figure is the impact of different ÄKS values on solution quality. For instance, a ÄKS

value of 22.5 leads to suboptimal results at higher discretisations. This finding is somewhat
counterintuitive, as one might expect better solutions with more frame elements. However, it
underscores that without a judicious selection of ÄKS , the expected improvement in solutions
may not materialise, emphasising the criticality of a strategic ÄKS value choice in structural
optimisation. Figure 4.6a emphasises again that when the ÄKS value is set to 160, the optimi-
sation results of the SLSQP KS approach consistently fall within the defined tolerance across
the considered range of discretisation. This consistency reinforces the efficacy of selecting a ÄKS

value of 160 for achieving optimal results within the acceptable margin, thereby providing a
reliable guideline for parameter selection in (aero-) structural optimisation scenarios.

(a) f(xxx∗) for selected ρKS values. (b) Optimisation time range for all ρKS values.

FIGURE 4.6 – Both figures compare the SLSQP Helios aircraft weight optimisation with and without using a
KS function. The time range in figure (b) comprises optimisations within the tolerance indicated in figure (a).
Shaded area in figure (b) indicates optimisation time range depending on ρKS selection.

The optimisation history of the SLSQP KS approach using ÄKS = 160 for 60 frame elements
is documented in figure 4.7. The figure comprises two parts: figure 4.7a, showcasing the objec-
tive function’s progression, and figure 4.7b, depicting the KS function aggregating all inequality
constraints. This approach required 104 iterations and 321 function evaluations to reach conver-
gence, initially navigating through highly infeasible solutions before gradually shifting towards
feasible ones. Interestingly, the normalised mass, serving as the objective function, experiences
only a marginal increase throughout this convergence trajectory. This analysis substantiates the
choice of ÄKS = 160, highlighting its ability to consistently yield solutions within the tolerance
range while ensuring optimisation time remains relatively short of only 48.79 seconds.

Figure 4.6b offers a crucial comparison of optimisation times between the SLSQP and SLSQP
KS approaches, focusing on different levels of discretisation. This comparison is restricted to
those SLSQP KS results falling within the predefined tolerance, ensuring fairness. The red
shaded area indicates the optimisation time range of all ÄKS values, which let the optimisation
converge within the tolerance. The analysis reveals a significant disparity in optimisation times at
higher discretisations, with the SLSQP method exhibiting a more pronounced quadratic increase
in time compared to the SLSQP KS approach. The solid red line in figure 4.6b represents
the optimisation with ÄKS = 160. A critical aspect of the SLSQP KS approach’s efficiency
is its method of aggregating inequality constraints using the KS function. This aggregation
significantly reduces the computational cost, as the SLSQP KS only requires derivatives of
the objective function and the aggregated KS constraint function. In contrast, the SLSQP
approach must compute derivatives for each individual constraint function. With the number
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(a) Objective function (b) Constraint functions

FIGURE 4.7 – Helios aircraft structural weight optimisation with SLSQP KS. Optimisation with ρKS = 160 and
60 frame elements. Optimisation time: 48.79 seconds.

of constraint functions equaling four times the number of frame elements, this difference in
derivative computation requirements considerably impacts the optimisation time. Consequently,
this is a critical factor in the faster optimisation times observed with the SLSQP KS approach
for higher discretisations. For a discretisation of 80 frame elements, the SLSQP KS is more than
five times faster than the SLSQP approach.

In summary, the SLSQP KS approach, particularly with a judicious choice of the ÄKS value,
demonstrates superior efficiency in optimisation time, significantly as model complexity in-
creases. This contrast in time efficiency, alongside the ability of the SLSQP KS method to
produce results within a reasonable tolerance of the SLSQP approach, underlines its potential
advantages in (aero-) structural optimisation scenarios involving complex models.

4.1.1.3 ALM approach analysis

In this section, we want to draw our attention to the performance of the ALM optimisation
approach. The option to select various parameters highlights the approach’s versatility and
complexity. These include initial Lagrange multipliers, the initial penalty factor value Ä0, the
factor µ for scaling the penalty factor, and the threshold value r for increasing the penalty.
Table 4.2 summarises the parameters the user can choose and the meaning of each parameter.
This flexibility in parameter selection offers significant control over the optimisation process.
However, it also introduces the challenge of parameter choice, which can be daunting for users
unfamiliar with optimal values. This dual nature of flexibility and complexity is a defining
characteristic of the ALM approach.

Value Description

Ä0 Initial value for the penalty factor
µ Factor by which the penalty factor is multiplied to increase it
r Threshold value determining when to increase the penalty factor
µµµ0 Initial values for Lagrange multipliers

TABLE 4.2 – Parameters the user needs to choose for the ALM approach.

Table 4.3 presents the chosen optimisation parameters for ALM optimisation, including initial
penalty factors (Ä0) set at 0.005, 0.2525, and 0.5 to dictate the outset of penalisation, reflecting
minimal to significant initial constraint emphasis. The rate of penalty increase (µ) options are
1.1, 2.05, and 3, indicating a slow to fast penalty escalation. The threshold r value, crucial
for modulating penalty factor adjustments, varies between 0 and 1. A r value of 1 delays
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penalty increases until the solution’s feasibility deteriorates from one iteration to the next,
promoting gradual refinement. On the contrary, a r value of 0 triggers penalty increases at
every iteration, fostering an aggressive push towards meeting constraints. The table’s colour
coding, with red highlighting conservative values, assists in parameter selection according to
optimisation needs and model complexity. Highly conservative parameters prioritise satisfying
constraints, while slightly conservative parameters prioritise minimising the objective function.
Please note that we excluded the possibility of selecting different initial Lagrange multipliers.
We will not investigate the influence of the initial guess for the Lagrange multipliers because,
in our case, the structure is initially feasible, which means that we know the initial Lagrange
multipliers. The Lagrange multipliers of feasible inequality constraints are zero. Furthermore,
at the solution xxx∗, most inequality constraints are inactive and inactive inequality constraints
have an associated Lagrange multiplier equal to zero. Therefore, assuming that all inequality
constraints are not active initially is an excellent guess.

Parameter Values

Ä0 0.005 0.2525 0.5

µ 1.1 2.05 3

r 1.0 0.5 0.0

Slightly Moderately Highly
conservative conservative conservative

TABLE 4.3 – Optimisation parameters values for ALM. Red are highly conservative parameters, yellow parameters
are moderately conservative, and green parameters are slightly conservative parameters.

Figure 4.8 illustrates the impact of ALM parameter combinations on optimisation dura-
tion for 60 frame elements, using colour coding (green for slightly conservative, red for highly
conservative, and orange/yellow for moderately) to denote conservativeness levels. The black
cross indicate the moderately conservative parameters of table 4.3. The collective interaction
of parameters, rather than individual ones, determines optimisation time, with highly conser-
vative settings generally leading to quicker convergence due to an early focus on feasibility.
Notably, a low µ value, especially µ = 1.1, prolongs optimisation, indicating that higher µ values
may better support optimisation speed. In the 60-frame element model, despite varied times
across parameters, all ALM scenarios outperform the SLSQP method, showcasing ALM’s over-
all efficiency. Moreover, ALM’s advantage grows with higher discretisation levels, consistently
surpassing SLSQP and achieving shorter optimisation times, underscoring ALM’s effectiveness
and scalability with increased discretisation.

While choosing more conservative ALM parameters for faster optimisation might be appeal-
ing, caution is advised. Overly conservative parameters risk transforming the ALM method into
a penalty optimisation method, undermining the benefits of Lagrange multipliers. This analysis
underscores the importance of strategic parameter selection in the ALM approach, highlighting
the need to balance between achieving quick feasibility and overall optimisation efficiency.

Building upon the analysis in figure 4.8, we delve into the ALM optimisation with two pa-
rameter sets: moderately conservative and slightly conservative. The former balances feasibility
and efficiency, while the latter focuses on the Lagrange multiplier update instead of increasing
the penalty factor to reach feasibility. Figures 4.9 and 4.10 highlight the ALM’s performance un-
der moderately conservative parameters. ’sub-iter’ and ’alm-iter’ indicate the sub-iterations and
the ALM iterations of the algorithm. Figure 4.9 illustrates the interplay between objectives and
constraints, showing the ALM’s progression towards an optimal solution and effective constraint
management. Figure 4.10 provides insight into the ALM’s adaptive mechanisms, showcasing
dynamic adjustments of the Lagrange multipliers and penalty factors, crucial for constraint
handling and solution refinement. The ALM algorithm achieves convergence by scaling up the
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(a) Influence of conservative level on optimisation

time

(b) Influence of γ on optimisation time

FIGURE 4.8 – Helios aircraft structural weight optimisation with ALM and 60 frame elements. Influence of
conservative level and γ on optimisation times.

penalty factor to a few times its initial value, Ä0, without necessitating extreme multiplicative
enhancements. This behaviour is desirable to avoid ill-conditioning. Instead of increasing the
penalty factor, the algorithm updates the Lagrange multipliers to achieve feasibility.

(a) Objective function (b) Constraint functions

FIGURE 4.9 – Helios aircraft structural weight optimisation with ALM and 60 frame elements. Parameters:
ρ0 = 0.2525, γ = 2.05, r = 0.5 and µµµ0 = 000. The figure shows desirable convergence behaviour. Optimisation time:
32.75 seconds.

Examining the ALM with slightly conservative parameters, figure 4.11 shows an example
of a long optimisation time of 180.95 seconds due to slightly conservative ALM parameters.
The figures show an initial decrease in normalised mass, followed by stability. Despite this
early progress, the optimisation is not complete. The penalty factor’s dynamics, illustrated in
figure 4.11b, remain unchanged for the first 20 ALM iterations, contributing to the lengthy
optimisation process due to slow constraint satisfaction. The critical insights, however, come
from figure 4.11c, which uniquely presents two perspectives of the constraint satisfaction process:
a zoomed-out view on the left and a zoomed-in view on the right. The zoomed-out view shows
the overall trend of constraint satisfaction nearing completion. In contrast, the zoomed-in view
reveals the intricate details of this process, highlighting that it takes a significantly longer time
for the algorithm to drive all active constraints precisely to zero. This detailed view underscores
the meticulous approach taken by the algorithm under slightly conservative parameters, striving
to achieve exact constraint satisfaction, albeit at the cost of a prolonged optimisation timeline.
Given the observed slow converging behaviour under the µ value of 1.1, it has been decided
to exclude this particular setting from further comparative analysis. The rationale behind this
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(a) Lagrange multipliers µ (b) Penalty factor ρk

FIGURE 4.10 – Helios aircraft structural weight optimisation with ALM and 60 frame elements. Parameters:
ρ0 = 0.2525, γ = 2.05, r = 0.5, and µµµ0 = 000. The figure shows desirable convergence behaviour. Optimisation
time: 32.75 seconds.

decision is to focus on more effective parameter combinations that ensure a more balanced
trade-off between convergence speed and optimisation domain exploration.

(a) Objective function (b) Penalty factor ρk

(c) Constraint functions

FIGURE 4.11 – Helios aircraft structural weight optimisation with ALM and 60 frame elements. Parameters:
ρ0 = 0.005, γ = 1.1, r = 1.0, and µµµ0 = 000. The figure shows slow convergence due to low penalisation. Optimisation
time: 180.95 seconds.

Continuing our investigation of the optimisation methods, figure 4.12 provides a crucial com-
parison of optimisation times between the three optimisation approaches. In this comparison,
it is essential to note that optimisations, where µ is set at 1.1, have been excluded due to their
previously discussed inefficient convergence behaviour. The green and red shaded areas indicate
the optimisation time range depending on the optimisation parameter selection of the ALM and
the SLSQP KS approaches. Figure 4.12a reveals a significant finding: the optimisation time for
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the ALM is consistently lower than that of the SLSQP approach across various discretisations.
This is particularly evident when employing moderately conservative parameters for the ALM,
such as Ä0 = 0.2525, µ = 2.05, and r = 0.5. The green solid line indicates the optimisation
of those parameters. For a highly discretised model, the ALM is up to ten times faster than
the SLSQP approach. In figure 4.12b, the focus shifts to comparing the ALM and SLSQP KS
approaches. Again, the red shaded area indicates the optimisation time range of all ÄKS values,
which let the optimisation converge within the tolerance. The results illustrate that, particularly
at lower discretisations, the optimisation times for both methods are strikingly similar. However,
as the number of discretisations increases, the ALM demonstrates a more pronounced advantage
in terms of optimisation time over the SLSQP KS approach. This trend underscores the effec-
tiveness of the ALM approach, especially for more complex models with higher discretisation.
For a discretisation of 80 frame elements, the ALM approach’s optimisation time with moderate
conservative parameters is 40% lower than that of the SLSQP KS approach with ÄKS = 160.
Depending on the optimisation parameters of both approaches, the ALM approach can be up
to almost twice as fast as the SLSQP KS approach. The reason behind this efficiency becomes
apparent when considering the nature of the SLSQP KS approach. As the number of frame ele-
ments—and consequently, the number of constraint functions—increases, the task of aggregating
these constraints into a single KS function becomes increasingly challenging, leading to longer
optimisation times. The ALM, however, handles the constraints differently by integrating them
into its formulation, which, as results suggest, is a more time-efficient approach. This method’s
capability to handle constraints within its formulation without aggregating them leads to faster
optimisation, especially as the model complexity escalates.

(a) SLSQP and ALM comparison (b) SLSQP KS and ALM comparison

FIGURE 4.12 – Helios aircraft structural weight optimisation time comparison of all three approaches. Solid red
line: SLSQP KS with ρKS = 160. Solid green line: ALM with ρ0 = 0.2525, γ = 2.05, r = 0.5, and µµµ0 = 000. Shaded
areas indicate the optimisation time range depending on the selection of the optimisation parameters.

In conclusion, figure 4.12 provides a compelling argument for the superiority of the ALM
over both the SLSQP and SLSQP KS approaches in terms of optimisation time, particularly for
models with high discretisation. This superiority, coupled with the ALM’s ability to converge
consistently to better solutions than the SLSQP KS approach, makes it a preferred choice in
scenarios where optimisation time is a critical factor.

Figure 4.13 shows a comparative analysis of time allocation across the three optimisation
approaches. SLSQP primarily spends its optimisation time on gradient computations; only a
minor portion of the optimisation time is necessary to solve for the state variables. This observa-
tion is confirmed by the rapid convergence with a few iterations shown in figure 4.3. In contrast,
SLSQP KS predominantly invests time in problem-solving, benefiting from simplified derivative
calculations due to its focus on a singular constraint and objective function, thereby reducing
the derivative computation load. ALM equally divides its time between problem-solving and
gradient computation. The ALM approach avoids the direct derivative calculations for con-
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straints and the objective function. However, the ALM’s sub-optimisation process, driven by
the need to satisfy the curvature condition (eq. 3.62), demands frequent gradient evaluations,
thus extending optimisation duration. Notably, optimisation time could be significantly reduced
for SLSQP by accelerating derivative computations and for SLSQP KS by expediting residual
function evaluations. For ALM, improvements in either aspect yield benefits due to its bal-
anced time allocation. The distribution of optimisation time remains consistent for all three
optimisation approaches across different discretisation levels.

(a) SLSQP (b) SLSQP KS (c) ALM

FIGURE 4.13 – Helios aircraft structural weight optimisation: Optimisation time of optimisation approaches
for 60 frame configuration. SLSQP KS with ρKS = 160. The ALM optimisation parameters are ρ0 = 0.2525,
γ = 2.05, r = 0.5, and µµµ0 = 000.

4.1.2 Structural optimisation with B-splines

In the structural optimisation of the Helios aircraft, employing B-splines facilitates a reduc-
tion in design variables by optimising their control points rather than the direct thicknesses
of each frame element. The B-splines describe the multiplicative change to the initial design
state. Section A.1.8 in the Appendix explains how QASTRO employs B-splines for optimisa-
tion. While this approach generally leads to suboptimal outcomes, it significantly simplifies the
representation of these thicknesses. Specifically, the thicknesses are modelled through the math-
ematical framework of B-splines, with their control points serving as the adjustable parameters.
This method not only delineates the frame elements’ dimensions but also streamlines the design
process. The study confines itself to third-order B-splines, adhering to previous research findings
suggesting that higher-order B-splines do not enhance results (ALMEIDA, 2021).

Illustrated in figure 4.14a is a depiction of the trade-off associated with the use of B-splines.
The objective function, represented by the normalised mass, is examined in relation to discreti-
sation. The solid line signifies the normalised mass without incorporating B-splines, while the
dashed lines represent the objective function when utilising 5 and 10 control points, respectively.
It is evident that the reduction in design variables, achieved through the use of B-splines, cor-
responds to a compromised solution, indicated by a higher normalised mass. By using 60 frame
elements and 5 control points, the mass is 2% higher with respect to the baseline than for the
optimisation without B-splines. In the case of 10 control points, the relative difference reduces
to only 0.19% with respect to the baseline. Notably, with more control points, the solution
approaches proximity to the one obtained without B-splines. When enough control points are
used, the optimisations with and without B-splines give identical results.

In figure 4.14b, the tubular wing spar’s thickness is depicted as a function of the wing
semi-span, utilising the SLSQP method with five control points. This representation allows for
visual comparison with the solution obtained without B-splines, as showcased in figure 4.1. An
observation from figure 4.14b is the smoother reduction in thickness for the tubular wing spar
when B-splines are employed, as opposed to the solution where B-splines were not utilised (figure
4.1). This visualisation provides insight into the functioning of B-splines and their ability to
approximate a function more smoothly. Furthermore, it underscores the importance of caution
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(a) Comparison of f(xxx∗) with and without B-

splines with SLSQP approach (ALM gives identi-

cal results).

(b) Helios aircraft tubular wing spar thickness,

before and after structural weight optimisation by

SLSQP or ALM approach using B-spline with 5

control points.

FIGURE 4.14 – Helios aircraft structural weight optimisation modelled by 60 frame elements and optimised with
third-order B-spline functions. The figure shows the influence of B-spline on optimisation results.

in selecting an appropriate number of control points. The figure demonstrates that opting for too
few control points may yield suboptimal results, reinforcing the notion that an optimal balance
must be struck to achieve effective results in structural optimisation using B-splines. This
observation emphasises the significance of judiciously determining the number of control points
to ensure the efficacy of the optimisation process. In the ensuing section, a more comprehensive
discussion will ensue regarding the optimal selection of the number of control points for the
optimisation process. This analysis aims to give the reader a relation between the number of
control points and the optimisation time.

Subsequently, we turn our attention to analysing the impact of using B-splines on the op-
timisation time for both ALM and the SLSQP KS optimisation approaches. Given that both
methods exhibit significantly shorter optimisation times than the SLSQP approach, we focus
our comparative analysis solely on the ALM and SLSQP KS approaches, as they present rela-
tively comparable optimisation times. Notably, even with incorporating B-splines, the SLSQP
approach, without aggregating the constraint functions, continues to exhibit the most extended
optimisation times.

Figure 4.15 portrays the optimisation time relative to discretisation, considering 5, 40, and
80 control points. This figure aligns with the representation in Figure 4.12b, where no B-
splines were employed. Observing figure 4.15, a striking reduction in optimisation time for the
SLSQP KS approach is evident when using just five control points. In contrast, the augmented
Lagrangian approach’s optimisation time remains relatively constant compared to the scenario
without B-splines. However, we can observe for the ALM approach that the number of control
points affects the influence of the ALM parameters on the optimisation time, with a smaller
influence on the optimisation time for an increasing number of control points. Nevertheless, as
the number of control points increases, the optimisation time for the SLSQP KS approach rises,
as depicted in figures 4.15b and 4.15c, where 40 and 80 control points are employed, respectively.
This trend suggests that the number of control points notably influences the optimisation time,
especially for the SLSQP KS approach, highlighting the need for careful consideration in selecting
an optimal number of control points for effective (aero-) structural optimisation.

The perplexing question arises: Why does the optimisation time of the augmented La-
grangian approach not exhibit a substantial decrease with the utilisation of B-splines, while the
SLSQP KS approach is significantly influenced in terms of optimisation time when employing
B-splines? The key lies in understanding that the reduction of design variables achieved through
using B-splines inherently diminishes the complexity of the optimisation problem. Consequently,
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the SLSQP KS approach benefits from a quicker convergence to a solution, as observed in the
decreased optimisation times. Furthermore, the B-splines normalise the design variables, which
helps the optimiser converge faster. Contrastingly, the augmented Lagrangian approach does not
experience a commensurate reduction in optimisation time when B-splines are employed. The
reason for this lies in the fact that the augmented Lagrangian approach necessitates the update
of hyperparameters at every augmented Lagrangian iteration. These hyperparameters corre-
spond to the Lagrange multipliers, which are subject to updating. Notably, the crucial point is
that the number of hyperparameters remains unaltered, unaffected by using B-splines. Specifi-
cally, the number of hyperparameters equals the number of inequality constraints. In practical
terms, the augmented Lagrangian approach maintains four times as many hyperparameters as
frame elements, resulting in a substantial quantity. Consequently, the optimisation time fails
to decrease significantly because the number of hyperparameters requiring updating remains
constant, and it is this factor that contributes to the sustained optimisation time observed in
the ALM, irrespective of the utilisation of B-splines.

Table 4.4 illustrates the number of design variables and hyperparameters for a 60-frame el-
ements model. The SLSQP KS approach needs to update only the design variables, whereas
the ALM approach updates the design variables and the hyperparameters. For a small num-
ber of control points, thus design variables, the hyperparameter quantity is considerably more
prominent compared to the design variables quantity. Furthermore, table 4.4 highlights that
the ALM approach updates a large unaltered amount of hyperparameters, although the usage
of B-splines.

Control points Design variables Hyperparameters Design variables
+ Hyperparameters

5 5 60 · 4 = 240 245
40 40 60 · 4 = 240 280
80 80 60 · 4 = 240 320

SLSQP KS ALM

TABLE 4.4 – Overview of the number of design variables and hyperparameters for 60-frame elements model. We
can effectively reduce the design variables using B-splines, but the number of hyperparameters stays unaltered.
The ALM approach needs to update the hyperparameters, which increases the optimisation time.

Stays unaltered

(a) 5 control points (b) 40 control points (c) 80 control points

FIGURE 4.15 – Helios aircraft structural weight optimisation time comparison of SLSQP KS and ALM approaches
with B-splines. Solid red line: SLSQP KS with ρKS = 160. Solid green line: ALM with ρ0 = 0.2525, γ = 2.05,
r = 0.5, and µµµ0 = 000. Shaded areas indicate the optimisation time range depending on optimisation parameter
selection.

Continuing the discussion, let us focus on figure 4.16 to provide a visual representation of
the optimisation time for the ALM and the SLSQP KS optimisation approach with varying
numbers of control points while keeping the number of frame elements fixed at 60. In figure
4.16, the vertical lines represent the control points 5, 40 and 80, as indicated in figure 4.15,
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providing a reference for the reader to comprehend the significance of the graph. Notably, figure
4.16 reinforces the earlier explanation that increasing the number of control points leads to an
increase in the optimisation time for the SLSQP KS approach. In contrast, the optimisation
time for the augmented Lagrangian approach remains relatively constant. It is essential to
acknowledge that the choice of using more control points than discretisation, as shown in figure
4.16, might not always be optimal. However, the subsequent sections will delve into determining
an optimal number of control points for effective optimisations.

FIGURE 4.16 – Helios aircraft structural optimisation time as a function of number of control points for Helios
aircraft with 60 frame elements. Shaded areas indicate the optimisation time range depending on optimisation
parameter selection.

The overarching conclusion is that employing B-splines is advisable. Primarily, this rec-
ommendation stems from the normalisation of design variables facilitated by B-splines, along
with the significant reduction in the optimisation time of the SLSQP KS approach—an advan-
tageous outcome. Although there is a marginal reduction in the objective function value when
B-splines are used, it becomes apparent that, with an adequate number of control points, the
solutions with and without B-splines closely align. Furthermore, B-splines aid the optimiser in
navigating the design space by restricting unrealistic changes in thickness between neighbour-
ing frame elements. This feature prevents the exploration of design spaces that lack practical
feasibility. While this effect is not explicitly illustrated in the current analysis, it is noteworthy
as a supplementary point highlighting the multifaceted advantages of B-splines. A secondary
observation is drawn from this section: the SLSQP KS approach enjoys an advantage in terms
of optimisation time over the ALM approach, especially when the number of control points is
small. However, as the number of control points increases, the optimisation time of the ALM
approach becomes smaller compared to the SLSQP KS approach. This nuanced perspective un-
derscores the context-dependent efficiency of the optimisation methods and the need for careful
consideration of factors such as control points in achieving optimal outcomes.

4.2 Aerostructural optimisation problems

The aerostructural optimisation results focus on the result f(xxx∗) of the three different opti-
misation approaches and not anymore on the optimisation time as in the structural optimisation
result section 4.1. This is because, in the structural optimisation, all optimisation approaches
converged within a small tolerance to the same solution (for SLSQP KS only if ÄKS was high
enough). However, for the aerostructural analysis, this is not the case anymore. In this section,
we will analyse to which solution the optimisation approaches converge and make a relationship
to the optimisation parameters. This chapter is important because it shows how we can get the
best optimisation result with each optimisation approach. Furthermore, this chapter investigates
the influence of the discretisation. For the aerostructural model, we discretise the structural
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model in finite beam-truss (i.e. frame) elements and the aerodynamic model in horseshoe vor-
tices along the quarter-chord (i.e. panels). It is essential to mention that for the aerostructural
optimisation, it was necessary to model the Helios aircraft with around 20 horseshoe vortices or
higher. QASTRO could no longer compute the state variables for a lower lifting-line discretisa-
tion. For this reason, the Helios aircraft is modelled with at least 20 horseshoe vortices in this
section. In this section, all design variables are described by third-order B-splines. Also, note
that QASTRO does not allow users to apply symmetry conditions for aerostructural optimi-
sations. Therefore, the entire aircraft is modelled for the aerostructural optimisations. For all
aerostructural optimisations we take ¼¼¼0 = 000, similar to the initial inequality Lagrange multipliers
µµµ0 in the structural optimisations.

The aerostructural optimisation result section is divided into two parts. The first subsection
describes the results with a single flight condition, and the following subsection describes the
solution with two flight conditions.

4.2.1 Single flight condition

In this subsection, we will focus on the optimisation results with a single flight condition. The
optimisation problem with a single flight condition is described in equation 3.82. This subsection
is further subdivided into a subsection where we use the reduced set of design variables and the
complete set of design variables.

4.2.1.1 Reduced set of design variables

In this section, we examine the results of optimising the Helios aircraft under a single-flight
condition, focusing on a reduced set of design variables. The reduced set of design variables are:

xxxreduced =
[

ttt ³³³0 ³
]T

(4.4)

This analysis is structured into several parts, each corresponding to the different optimisation
approaches employed: SLSQP, SLSQP KS and ALM approach.

SLSQP approach analysis

Figures 4.17 and 4.18 illustrate the outcome of the SLSQP approach with a FEM and LLT
discretisation of 14 and 20, respectively. The optimised mass is 38.10% of the baseline. Figure
4.17 demonstrates the distribution of the tubular wing spar ttt, along with the wing twist ³³³0. It
is evident from these results that the distribution of thickness mirrors the outcomes observed
in the structural optimisation problem, albeit with a slight overall reduction in thickness. This
reduction is attributed to the inclusion of both twist ³³³0 and angle of attack ³ as design variables.
Because the optimiser can control each panel’s local angle of attack, the optimiser can control
the lift distribution, which leads to a lighter wing structure. In the structural optimisation, we
could only use an approximation of the lift distribution. Figure 4.18 presents the aircraft model
incorporating the thickness and twist parameters as depicted in figure 4.17. The red arrows
indicate the lift distribution of the aircraft. One can see that the lift distribution deviates from
the elliptical distribution, indicating that the induced drag is high in the optimised state. By
generating more lift at the wing root, the optimiser can further alleviate the bending moment
applied at the structure. We could achieve a similar effect by reducing the wing span. However,
please note that this stands in contrast to maximising endurance and the power production over
power consumption ratio. Later in this chapter, we will discuss the results of the optimisations
further.
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(a) Thickness distribution (b) Twist distribution

FIGURE 4.17 – Objective function: Normalised weight; reduced set of design variables: ttt, ααα0, α; single flight
condition. Aerostructural optimisation result of SLSQP with 14 control points with FEM discretisation 14 and
LLT discretisation 20. Result of other design variables: α = 1.42 ◦, V∞ = 28.62m/s.

FIGURE 4.18 – Objective function: Normalised weight; reduced set of design variables: ttt, ααα0, α; single flight
condition. Aerostructural optimisation result of SLSQP with 14 control points with FEM discretisation 14 and
LLT discretisation 20.

Comparison of SLSQP and SLSQP KS approaches

Figure 4.19 compares the SLSQP, and the SLSQP KS approaches. This comparison focuses
on the effect of varying the ÄKS value in the SLSQP KS approach. It is observed that with
increasing ÄKS values, the SLSQP KS solution tends to converge towards the SLSQP solution.
This result reflects the same conclusion as the structural result section. However, an excessively
high ÄKS value may impede this convergence, as evidenced in figure 4.19a, where the objective
function value deviates from the SLSQP solution for a FEM discretisation of 26. Later in this
section, we will focus more on this discrepancy.

(a) Influence of ρKS on f(xxx) using 14 control

points and LLT discretisation of 20 horseshoe vor-

tices.

(b) Influence of number of control points. Fixed

FEM and LLT discretisation of 14 and 20, respec-

tively.

FIGURE 4.19 – Objective function: Normalised weight; reduced set of design variables: ttt, ααα0, α; aerostructural
optimisation with single flight condition.
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Figure 4.19b emphasises the relationship between the number of control points used for the
B-splines and the final objective function value (normalised weight). Note that B-splines are
used to describe both twist and thickness. This relationship is analysed under a fixed number
of FEM and LLT discretisations, set at 14 and 20, respectively. The analysis reveals that an
increase in the number of control points correlates with a lower objective function value up to
the point where the number of control points equals the discretisation number. Beyond this,
additional control points do not significantly reduce the objective function value. The reason
that we need so many control points to obtain a solution with a low objective function value
can be found in figure 4.17b. The twist changes rapidly at around 10 metres of the wing span.
It requires many control points that the B-spline can capture this behaviour. Because of this
observation, we will use as many control points as horseshoe vortices for the LLT discretisation
in many analyses. Additionally, figure 4.19b shows that higher ÄKS values lead to improved
solutions, converging towards the SLSQP solution. The same conclusion which we got already
from figure 4.19a, just from a different perspective.

ALM approach analysis

Table 4.5 lists the analysed optimisation parameters for the ALM optimisation approach.
The values coloured in red are highly conservative parameters, the values coloured in yellow
are moderately conservative parameters, and the values coloured in green are slightly conserva-
tive parameters. Highly conservative parameters penalise infeasibility significantly, and slightly
conservative parameters allow the algorithm to explore infeasible solutions.

Parameter Values

Ä0 0.005 0.2525 0.5

µ 1.1 2.05 3

r 1.0 0.5 0.0

Slightly Moderately Highly
conservative conservative conservative

TABLE 4.5 – Optimisation parameters values for ALM. Red are highly conservative parameters, yellow parameters
are moderately conservative, and green parameters are slightly conservative parameters.

Figure 4.20 explores the ALM approach, focusing on the impact of varying levels of con-
servatism in the optimisation parameters. Highly conservative parameters, which seek feasible
solutions rapidly, are contrasted with slightly conservative parameters, which allow gradual up-
dates of the hyperparameters. The findings suggest that overly conservative parameters may
prevent convergence to the optimal solution achieved by the SLSQP method. In contrast, slightly
conservative parameters appear more likely to reach this optimal solution without becoming en-
trapped in local minima. Figure 4.20 shows that the ALM can converge to worse solutions
with highly conservative optimisation parameters where the normalised weight is the objective
function. However, this behaviour could also be shown with the endurance or the power ratio
as the objective function. The author chose to present the bad converging behaviour with the
normalised weight as an objective function because, in this case, the ALM optimisation approach
behaved the worst. In the following sections, we will see that the other optimisation approaches
also have the most difficulties in optimising the aircraft’s weight.

In summary, for section 4.2.1.1, it is discerned that all three optimisation approaches are
viable with a reduced set of design variables. However, it is crucial to employ slightly conservative
optimisation parameters for the ALM approach to avoid suboptimal solutions. Please note that
slightly conservative parameters increase the optimisation time as concluded from section 4.1
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FIGURE 4.20 – Objective function: Normalised weight; reduced set of design variables: ttt, ααα0, α; Aerostructural
optimisation with single flight condition. Influence of conservative level of ALM optimisation parameters on f(xxx∗).
FEM discretisation 14, LLT discretisation 20 and 14 control points.

4.2.1.2 Complete set of design variables

In this subsection, we delve deeper into the optimisation of the Helios aircraft under single-
flight conditions, employing a complete set of design variables, including the thickness of the
frame element ttt, wing twist ³³³0, angle of attack ³, chord lengths ccc, free-stream velocity V∞ and
the frame element location xxxBeam along the chord length.

xxxcomplete =
[

ttt ³³³0 ³ ccc V∞ xxxBeam

]T

(4.5)

The frame element location in the x - direction might not seem to influence the optimisation
result, but this is not the case. The strategic adjustment of the FEM nodes in the x-direction,
parallel to the chord length, is particularly crucial. This adjustment allows for nuanced control
over the wing’s twist in response to lift forces, crucially impacting its aerodynamic efficiency and
structural integrity due to the created moments.

Comparison of SLSQP and SLSQP KS approaches

Before presenting the results with the complete set of design variables, the author wants
to emphasise that including more groups of design variables can reduce the objective function.
Figure 4.21a offers a detailed illustration of the benefits of using the complete set of design
variables. The figure shows the normalised mass as a function of the discretisation using the
SLSQP approach. For every discretisation, the final normalised mass is about 1% lower using
the complete set of design variables compared to using the reduced set of design variables. A
reduction of 1% corresponds to a notable decrease of about 5.42 kg. Figure 4.21a shows one
more important observation. The objective function value is higher for a discretisation of 26
than for a discretisation of 20 using the complete set of design variables. This shows that the
SLSQP method has difficulties to converge to the global minimum, which can be confirmed by
figure 4.21b.

The result of the SLSQP KS approach, shown in figure 4.21b, indicates that the SLSQP KS
approach can converge to solutions which are better than the SLSQP approach. This observation
contradicts the previous results, where the SLSQP KS always converged to the SLSQP approach.
It seems that it helps to simplify the optimisation problem by aggregating the inequality con-
straint functions to avoid the SLSQP method converging to local minima. Thus, selecting the
SLSQP KS optimisation approach over the SLSQP approach for complex optimisation problems
is advisable to converge to a better solution. Note that we can not adjust any parameters for the
SLSQP approach to overcome this problem, except changing the optimisation’s starting point
xxx0. The lack of flexibility showcases a big disadvantage of the SLSQP approach. However,
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(a) Difference between reduced and complete set

of design variables on f(xxx∗)

(b) Aerostructural optimisation results. Influence

of ρKS on f(xxx∗) with complete set of design vari-

ables. Fixed LLT discretisation of 20 horseshoe

vortices.

FIGURE 4.21 – Objective function: Normalised weight; aerostructural optimisation with single flight condition.
Left figure: For discretisation < 20, LLT discretisation is 20 horseshoe vortices. For discretisation ≥ 20, LLT and
FEM discretisations are equal. The number of control points is equal to the LLT discretisation.

choosing the ÄKS value is critical to avoid convergence problems. If ÄKS is chosen too high, the
optimisation approach has difficulty converging to the best possible solution. High ÄKS increases
the difficulties in computing the gradient of the KS function, leading to suboptimal convergence
behaviour. E.g. this can be seen in figure 4.21b for a discretisation of 26 frame elements. We
can see that for ÄKS > 310, the approximation of the inequality constraints by the KS function
increases only slightly, but we increase the risk of converging to sub-optimal solutions due to a
decrease in differentiability of the KS function. Consequently, ÄKS = 310 shows a good trade-off
between solution quality and differentiability.

ALM approach analysis

The previous subsection concluded that choosing slightly conservative optimisation param-
eters for the ALM approach is advisable. However, in this subsection, the author wants to
emphasise the potential difficulties associated with penalisation that is too low and the strate-
gies to overcome them. A key challenge observed with insufficiently conservative parameters
is the emergence of oscillating behaviour in the optimisation process. This oscillation often
manifests as a back-and-forth fluctuation between the bounds of design variables, mainly when
the constraint violation penalties are insufficient to guide the optimiser towards a stable solu-
tion. Such oscillatory tendencies are clearly illustrated in figure 4.22, where we optimised for
the negative normalised endurance. The reason for this oscillating behaviour is the insufficient
penalisation of the constraints. Increasing the r value, which determines if the penalty factor
becomes increased if the new design state is infeasible enough, efficiently overcomes this problem.
Figure 4.23 illustrates the better performance with a lower r value. Regarding this observation,
we will choose r = 0.75 to optimise the endurance. Also, we encounter a slow convergence with
r = 1.0 for the power ratio as the objective function. For this reason, we will choose r = 0.75
when optimising concerning the power ratio, too. Table 4.6 summarises the chosen optimisation
parameters for the ALM optimisation approach.

Objective function Weight Endurance Power ratio

Ä0 0.005 0.005 0.005
µ 1.1 1.1 1.1
r 1.0 0.75 0.75

TABLE 4.6 – Chosen ALM optimisation parameters for aerostructural optimisations.
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FIGURE 4.22 – Objective function: Negative normalised endurance; aerostructural optimisation with single flight
condition and complete set of design variables. Illustration of oscillating design variable due to low penalisation
with 20 control points and a FEM and LLT discretisation of 20. Optimisation parameters: ρ0 = 0.005, γ = 1.1,
r = 1, λ0 = 0, µµµ0 = 000 and separate penalty factors for equality and inequality constraints.

(a) r = 1.0 (b) r = 0.75 (c) r = 0.5

FIGURE 4.23 – Objective function: Negative normalised endurance; aerostructural optimisation single flight
condition and complete set of design variables. Illustration of oscillating behaviour due to low penalisation with
20 control points and a FEM and LLT discretisation of 20. Optimisation parameters: ρ0 = 0.005, γ = 1.1, λ0 = 0,
µµµ0 = 000 and separate penalty factors for equality and inequality constraints. r = 1 was terminated after the 400th

ALM iteration. r = 0.75 and r = 0.5 converged to the same solution.

Next, the ALM optimisation approach also faced difficulties converging to symmetric so-
lutions. Figure 4.24 illustrates the outcome when employing the ALM approach with a dis-
cretisation of 26. This figure reveals an asymmetry in the chord length distribution along the
wingspan resulting from the ALM using a single penalty factor. The asymmetrical solution leads
to a suboptimal normalised mass, indicating that the optimiser, in this setup, converges to an
unbalanced solution that does not adequately represent the optimal aerodynamic efficiency of
the aircraft.

Theoretically, the optimiser should never converge to an asymmetrical solution because the
initial design state is symmetric. The symmetry of the initial state ensures that the gradients
with respect to each design variable group, such as ³³³0, are also symmetric. This symmetry in
gradients should, in turn, lead to a symmetric solution in subsequent iterations. However, the
emergence of an asymmetrical final result can be attributed to the methodology employed by
QASTRO in computing the derivatives, as detailed in section 3.5. QASTRO’s approach involves
solving the linear system of equation 3.76 to obtain the adjoint variables, which in turn provide
the derivatives with respect to the design variables. Solving for the adjoint variables introduces
minor uncertainties, potentially by convergence issues and defined tolerances. Those uncertain-
ties can lead to asymmetrical derivatives and, consequently, asymmetrical design evaluations.

The SLSQP optimisation method has fewer difficulties with asymmetric derivatives, which
can be seen by the fact that the SLSQP and SLSQP KS approaches converge less frequently to
asymmetrical solutions. It is important to note that it could improve the ALM performance if we
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FIGURE 4.24 – Objective function: Normalised weight; aerostructural optimisation single flight condition and
complete set of design variables. Illustration of asymmetrical solution of design variables with 26 control points
and a FEM and LLT discretisation of 26. Optimisation parameters: ρ0 = 0.005, γ = 1.1, r = 1.0, λ0 = 0, µµµ0 = 000
and single penalty factor for equality and inequality constraints.

select a different optimisation method for solving the ALM approach’s sub-problems since other
optimisation methods can better handle the inaccuracies of the computed gradients. Neverthe-
less, one possibility to help the ALM optimisation approach converge to symmetric solutions is
using two separate penalty factors, one for equality and one for inequality constraints. The rea-
son why using two separate penalty factors can increase the performance of the ALM algorithm
can be explained by figure 4.25.

(a) Single penalty factor (b) Separate penalty factors

FIGURE 4.25 – Objective function: Normalised weight; aerostructural optimisation single flight condition and
complete set of design variables. Illustration of the difference between a single penalty factor and separate penalty
factors with 26 control points and a FEM and LLT discretisation of 26. Optimisation parameters: ρ0 = 0.005,
γ = 1.1, r = 1.0, λ0 = 0, µµµ0 = 000. Optimisation terminated successfully after 40 ALM iterations with a single
penalty factor and after 217 ALM iterations with two penalty factors (not all ALM iterations are shown in figure
(b)).

Figure 4.25 illustrates the increase of the penalty factors using single and separate ones. In
this figure, we observe that when a single penalty factor is applied, the optimiser’s ability to dif-
ferentiate and effectively manage the equality and inequality constraints is limited, often leading
to unbalanced and asymmetric outcomes. Conversely, with two separate penalty factors, the
algorithm can independently adjust and fine-tune the penalisations for each type of constraint.
This targeted approach allows the optimiser to navigate the complexities of the problem more
effectively, reducing the likelihood of asymmetric solutions and improving the overall balance
and optimality of the results. Figure 4.25b shows that most of the time the ALM algorithm
either increase the penalty factor of the equality or inequality constraints, but not both at the
same time. By this, the algorithm can reduce the complexity of the optimisation problem, focus-
ing sequentially on the equality and inequality constraints. Using two penalty factors increases
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the chances of converging to symmetric and potentially more aerodynamically efficient designs
and enhances the optimisation process’s robustness in navigating complex design landscapes.
However, it is important to note that employing two separate penalty factors is not a panacea.
While it offers a more refined approach to managing constraints, it also introduces another layer
of complexity in the form of another hyperparameter that needs to be managed throughout the
optimisation process. This complexity underscores the need for careful consideration and cali-
bration of these factors to ensure they contribute positively to the optimisation process rather
than adding unnecessary complications. In many other optimisations, using two penalty factors
had a negative effect.

Figure 4.26 offers a comprehensive comparative analysis of the three optimisation approaches
— ALM, SLSQP KS, and SLSQP — when optimising for normalised mass, negative normalised
endurance, and normalised power ratio. The figure presents the objective functions as a function
of discretisation, providing insight into each method’s performance across different discretisation
levels. Notably, the trend in the figure indicates that beyond a certain point, particularly at a
discretisation level of 50, further increases in discretisation yield diminishing improvements in
the objective functions. This observation suggests that a discretisation level of 50 is sufficiently
detailed for the optimisation process, as it does not lead to a significant decrease in the objective
functions compared to higher discretisation levels. Therefore, while higher discretisation provides
a more refined model, it does not necessarily translate into substantial enhancements in the
optimisation results beyond this level.

(a) Objective function: Normalised weight (b) Objective function: Negative normalised en-

durance

(c) Objective function: Normalised power ratio

FIGURE 4.26 – Aerostructural optimisation with single flight condition and complete set of design variables.
Objective functions as a function of discretisation. For discretisation < 20, LLT discretisation is 20 horseshoe
vortices. For discretisation ≥ 20, LLT and FEM discretisations are equal. The number of control points is equal
to the LLT discretisation.

In figure 4.26a, it is particularly noteworthy that the SLSQP approach has considerable dif-
ficulties in converging to the same solution as the SLSQP KS and the ALM with two penalty
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factors. We could already observe the convergence difficulty of the SLSQP approach in figure
4.21b. The ALM optimisation approach using a single penalty factor yields less favourable re-
sults when optimising for normalised mass, similar to the SLSQP approach. The suboptimal
ALM results are due to the symmetry issue addressed earlier. As shown in figure 4.26a, using
two penalty factors increases the performance of the ALM approach. However, for the other two
objective functions—negative normalised endurance and normalised power ratio—the outcomes
using single and separate penalty factors are almost identical. This observation highlights that
the impact of penalty factor configuration can vary significantly depending on the optimisation
objective. When optimising for the normalised power ratio, all methods show a robust conver-
gence performance, suggesting that the choice of optimisation approach may be less crucial for
this particular objective, provided the discretisation is handled appropriately.

Table 4.7 lists the final objective function value f(xxx∗) of all three optimisation approaches
with a discretisation of 50. The table compares the final objective function values with the two
condition optimisations. In the following subsection, we will discuss in detail the optimisation
results by comparing them with the two flight conditions described in the following subsection.

Furthermore, figure 4.27 showcases the final optimised aircraft results for the three objec-
tive functions at a discretisation level of 50 utilising the ALM approach. This figure visually
demonstrates the tangible outcomes of the optimisation processes, enabling a direct comparison
of how different objectives impact the final aircraft design. The visualisation in figure 4.27 is
integral for understanding the practical implications of optimisation choices in aerostructural
design. Figures 4.30 - 4.32 illustrate the design variables of the optimised aircraft with respect
to the weight, endurance and power ratio.

Please note that when we optimise the aircraft’s weight, the lift distribution deviates from
the elliptical lift distribution. Employing the complete set of design variables, it becomes evident
that for the section of the aircraft’s wing extending beyond a 10-meter span from the fuselage
to the wingtip, there is a significant reduction in lift generation. This results in a minimal
aerodynamic lift within this outer portion of the wing and an increase in the induced drag. Note
that we obtain a lift distribution with a lower induced drag when optimising the endurance and
power ratio.

In summary, figures 4.26 and 4.27 collectively provide a deep dive into the optimisation
behaviour under varying objectives and discretisation levels. They offer valuable insights for
future optimisation efforts in similar aerostructural scenarios, highlighting the importance of
method selection, discretisation levels, and the configuration of penalty factors.

4.2.2 Two flight conditions

This section presents the optimisation results for the Helios aircraft under two flight condi-
tions: cruise and high-load. The high-load condition demands the aircraft to produce lift forces
three times greater than in cruise condition, which is a stricter constraint than the constraint in
the single flight condition optimisation. Addressing this challenge requires utilising the complete
set of design variables, which are

xxxcomplete 1, 2 =
[

ttt ³³³0 ³1 ³2 ccc V∞ 1 V∞ 2 xxxBeam

]T

, (4.6)

where the subscripts 1 and 2 indicate the design variable of the first and second flight
conditions (cruise and high load flight conditions), respectively. Using the reduced set of design
variables is insufficient to obtain a feasible solution. This analysis explores how adding a flight
condition affects the aircraft’s aerodynamic and structural design, highlighting the complexities
of meeting the additional high-load model constraints.
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(a) Objective function: Normalised weight (b) Objective function: Negative normalised en-

durance

(c) Objective function: Normalised power ratio

FIGURE 4.27 – Aerostructural ALM optimisation with single flight condition and complete set of design variables:
ttt, ααα0, α, ccc, V∞, xxxBeam. Optimisation result of ALM with 50 control points with FEM and LLT discretisation
of 50. Optimisation parameters: ρ0 = 0.005, γ = 1.1, λ0 = 0, µµµ0 = 000 and separate penalty factors for equality
and inequality constraints. r = 1 for normalised weight optimisation. r = 0.75 for endurance and power ratio
optimisation.

4.2.2.1 Comparing of SLSQP, SLSQP KS and ALM approach performances

In figure 4.28, the effects of discretisation on the optimisation results for the three objective
functions — normalised weight, negative normalised endurance, and normalised power ratio —
are analysed under the two flight conditions. This figure highlights a key trend: a higher dis-
cretisation generally leads to better optimisation outcomes. As the discretisation level increases,
the results for each objective function show a convergence towards a consistent solution.

As one might notice, figure 4.28 misses many optimisation results of the SLSQP and SLSQP
KS approach. The reason for this is because those optimisations failed. The unsuccessful
termination is not directly related to the optimisation approaches. The optimisations failed
because QASTRO could not solve for the state variables anymore at the design points during
the optimisation process. The solver for the state variables is described in the Methodology
chapter in section 3.3. QASTRO uses the results of the previous state variables as the initial
guess for the state variables at the new design state. A possible reason why the non-linear solver
of QASTRO is not capable anymore of solving for the state variables is that the SLSQP and the
SLSQP KS make too big steps during the optimisation process, which makes the previous result
of the state variables an inadequate initial guess. In scenarios where the solver fails repeatedly,
the optimisation process is terminated. The significant disadvantage of the SLSQP and the
SLSQP KS is the lack of parameters to adjust to overcome this problem potentially.

Figure 4.28 illustrates that if the optimisation did not fail the SLSQP approach converged
many times to a local minima. Furthermore, we see that the SLSQP KS optimisation approaches
are capable of finding solutions at very low and high discretisation levels, but they encounter
significant challenges at intermediate levels. Even if we choose a different ÄKS value, the SLSQP
KS method has difficulty converging. The best converging behaviour was observed with ÄKS =
310. We can reduce the convergence difficulties with very low ÄKS values, but in this case, the
optimiser converges to unsatisfactory solutions. The reason for the convergence to unsatisfactory
solutions with lower ÄKS values can be seen in figure 4.6a. The higher the number of inequality
constraints we wish to approximate using the KS function, the greater the ÄKS value must be
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(a) Objective function: Normalised weight (b) Objective function: Negative normalised en-

durance

(c) Objective function: Normalised power ratio

FIGURE 4.28 – Aerostructural optimisation with two flight conditions and complete set of design variables.
Objective functions as a function of discretisation. For discretisation < 20, LLT discretisation is 20 horseshoe
vortices. For discretisation ≥ 20, LLT and FEM discretisations are equal. The number of control points is equal
to the LLT discretisation.

to ensure convergence to a satisfactory solution. If we loosen the tight constraint requirements,
e.g., by reducing the load factor, the SLSQP and the SLSQP KS approaches have less difficulty
converging towards a solution. However, the optimisation approach should not determine the
aircraft’s requirements.

Luckily, the ALM optimisation approach is more robust and shows, in general, a successful
converging behaviour for increasing discretisation. The big advantage of the ALM optimisation
approach is that even if an optimisation fails, the user can select different optimisation parame-
ters and try to run the optimisation again. This flexibility is not given for the SLSQP approach
and is just in a limited range for the SLSQP KS approach. Nevertheless, even without selecting
multiple optimisation parameters, the ALM approach with a single penalty factor did not fail
for a single discretisation. This is impressive regarding the complexity of the aircraft model.
However, in the context of optimising for weight, the ALM approach also demonstrates its lim-
itations, particularly at higher discretisation levels. As seen in figure 4.28a, at a discretisation
level of 44, the ALM approach does not yield the most optimal results. For lower discretisation,
the ALM approach found a better solution than for a discretisation level of 44, indicating a
potential difficulty in navigating the solution space effectively at this level of model detail.

In optimising endurance, the ALM approach demonstrates a relatively consistent perfor-
mance advantage. As evidenced in figure 4.28b, the objective function values consistently
decrease with an increase in the number of discretisation elements, indicating the method’s
effectiveness in steadily improving the optimisation results as the model detail is enhanced.
This trend suggests that the ALM approach is adept at navigating the endurance optimisa-
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tion landscape, particularly as the complexity of the aerostructural model increases with higher
discretisation. However, a notable challenge arises with the ALM approach when two penalty
factors are used at lower discretisation levels. Specifically, the method struggles at discretisations
below 26, and QASTRO non-linear solvers fails to compute the state variables, which makes the
optimisation approach fail.

When optimising for the power ratio, figure 4.28c reveals an intriguing aspect of the ALM
approach: it converges to different solutions depending on whether single or separate penalty
factors are used for discretisations higher than 26. This distinction is crucial as it demonstrates
the method’s varied response to penalty factor configuration, affecting the optimisation’s trajec-
tory and final outcomes. Notably, using a single penalty factor in the ALM approach does not
result in asymmetrical solutions, contrary to previous results. This outcome suggests that while
separate penalty factors provide a more targeted approach to constraint management, a single
penalty factor can still yield balanced and symmetric solutions in the context of power ratio
optimisation. This finding underscores the nuanced role of penalty factor configurations in the
ALM optimisation process, particularly in achieving efficient and effective solutions for different
objective functions. The differing solutions achieved by the ALM approach in the power ratio
optimisation are further illustrated in figure 4.33. This figure visually compares the outcomes
using single and separate penalty factors, highlighting the distinct paths taken by the optimisa-
tion process under each setup. A more detailed analysis of these results, especially in the context
of optimising the power ratio, will be discussed later, offering more profound insights into the
implications of these varied solutions.

Table 4.7 lists the final objective function values of each optimisation approach with a FEM
and LLT discretisation of 50. The table compares the results of the single and two flight con-
ditions. One can see that considering two flight conditions reduces the feasible region, which
leads to higher final objective function values. Considering two flight conditions, all SLSQP
optimisations at a discretisation of 50 failed. Nevertheless, the SLSQP KS optimisations did not
fail for the discretisation of 50 and showed comparable results to the ALM optimisation results.

Normalised
weight

Neg. normalised
endurance

Normalised power
ratio

1 cond. 2 cond. 1 cond. 2 cond. 1 cond. 2 cond.

SLSQP 0.3637 - −1.521 - 0.6773 -
SLSQP KS 0.3640 0.3832 −1.514 −1.486 0.6800 0.6818
ALM 0.3637 0.3836 −1.521 −1.488 0.6774 0.6814

TABLE 4.7 – Final objective function values of optimisation approaches with two flight conditions and FEM and
LLT discretisation of 50. ALM approach with two penalty factors.

4.2.2.2 Analysis of optimisation results

Figure 4.29 shows the aircraft design optimised regarding the weight, endurance and power
ratio. The figure shows the result of the ALM approach with a discretisation of 50. The lift
distribution of the aircraft closely resembles that of an optimised aircraft under a single condition,
as depicted in figure 4.27, upon initial observation. However, a detailed review will show some
essential differences.

Figure 4.30 reveals critical differences in the Helios aircraft’s design when optimising for
weight under single and two-flight conditions. Notably, the tubular wing spar’s thickness in-
creases under two-flight conditions (figure 4.30a), a necessary change to support higher lift
forces. The chord length also extends in the two-flight scenario (figure 4.30b), aiding in greater
lift generation. Figure shows 4.30c a similar twist distribution as from the previous results,
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Cruise condition High load condition

(a) Objective function: Normalised weight (b) Objective function: Normalised weight

(c) Objective function: Negative normalised en-

durance

(d) Objective function: Negative normalised en-

durance

(e) Objective function: Normalised power ratio (f) Objective function: Normalised power ratio

FIGURE 4.29 – Aerostructural ALM optimisation with two flight conditions and complete set of design variables:
ttt, ααα0, α1, α2, ccc, V∞ 1, V∞ 2, xxxBeam. Figures show left the cruise condition and right the high load condition. Opti-
misation result of ALM with 50 control points with FEM and LLT discretisation of 50. Optimisation parameters:
ρ0 = 0.005, γ = 1.1, λλλ0 = 000, µµµ0 = 000 and separate penalty factors for equality and inequality constraints. r = 1
for normalised weight optimisation. r = 0.75 for endurance and power ratio optimisation.

shown in figure 4.17b. However, more horseshoe vortices have a higher twist angle when consid-
ering two flight conditions. The dashed line indicates the total aerodynamic angle at the high
load condition. Additionally, the beam’s location shifts closer to the leading edge at the wing
tips in the two-flight conditions (figure 4.30d), resulting in the leading edge twisting downwards
due to the lift forces, effectively reducing the angle of attack at the wing tips. At the high load
condition, the aerodynamic load shifts towards the root, which enhances structural resistance
to bending. These adaptations underscore the intricate design modifications needed to bal-
ance weight optimisation with structural and aerodynamic demands in varying flight conditions.
When optimising with two flight conditions, we could reduce the weight of the Helios aircraft
from an initial weight of 541.52 kg to 208.01 kg. However, please keep in mind that the initial
design is not feasible. Moreover, please note that regardless of whether we optimise with a single
or two flight conditions, the weight-optimised solution shows that the incidence angles are higher
at the wing roots compared to the wing tips with an abrupt change in the twist angle. This
leads to the non-elliptical lift distribution shown in figure 4.27a and 4.29a. This lift distribution
can make the weight optimisation questionable.
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(a) (b)

(c) Dashed line indicates high load condition (d)

FIGURE 4.30 – Objective function: Normalised weight; complete set of design variables: ttt, ααα0, α1, α2, ccc,
V∞ 1, V∞ 2, xxxBeam; aerostructural ALM optimisation comparison between single and two flight conditions. The
optimisation results with 50 control points, FEM and LLT discretisation of 50 and two independent penalty
factors. Result of the remaining design variable with single condition: V∞ = 31.52m/s (upper bound). Result of
other design variables with two conditions: V∞ 1 = 28.62m/s, V∞ 2 = 31.52m/s (upper bound).

Figure 4.31 presents the design variable results when optimising the Helios aircraft for en-
durance. One can see that for both optimisation models, the chord length is at its lower bound.
This is because a shorter chord length increases, the aspect ratio and thus reduces the aircraft’s
drag and consequently increases the endurance. A crucial observation is the similar total aero-
dynamic angle across single and two-flight conditions, indicating consistent aerodynamic profiles
despite varied operational demands. Notably, in the two-flight condition, there is a restraint on
increasing the twist angle, which is essential to prevent exceeding the stall angle. Differences in
frame element location are also evident; the frame element is positioned closer to the leading
edge in the two-flight conditions, particularly at the wingtips. This strategic placement counters
excessive upward bending of the wings, which is crucial for maintaining optimal aerodynamic
performance under cruise condition requirements. When optimising with two flight conditions,
we could increase the endurance of the Helios aircraft on the batteries from 2.64 hours to 3.93
hours.

Figure 4.32 showcases the design variable outcomes when optimising the Helios aircraft for
the power ratio. Notably, the tubular wing spar thickness remains consistent across single
and two flight conditions, underscoring similar structural demands. The chord length is at its
upper limit in both scenarios, maximising the solar panel area for enhanced energy production.
Variations in the total geometric angle of attack are observed, with higher angles in the two-flight
condition. One might interpret the result as the aircraft requiring more lift in cruise conditions
when optimising with two flight conditions. However, this is not the case. The reason for the
lower aerodynamic angle result when optimising with a single flight condition can be seen in
figure 4.32d. In the single-condition optimisation, the frame element location did not change
significantly. In contrast, when optimising with two flight conditions, the frame element location
changed such that the wing had a stronger resistance against upward bending. Consequently,
the optimised wing using only a single flight condition will twist more than the optimised wing
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(a) (b)

(c) Dashed line indicates high load condition (d)

FIGURE 4.31 – Objective function: Negative normalised endurance; complete set of design variables: ttt, ααα0, α1,
α2, ccc, V∞ 1, V∞ 2, xxxBeam; aerostructural ALM optimisation comparison between single and two flight conditions.
The optimisation results with 50 control points, FEM and LLT discretisation of 50 and two independent penalty
factors. Result of the remaining design variable with a single condition: V∞ = 25.79m/s (lower bound). Result
of other design variables with two conditions: V∞ 1 = 25.79m/s (lower bound), V∞ 2 = 31.52m/s (upper bound).

using two flight conditions for optimising. This additional twist increases the angle of attack,
providing more lift. The frame element location differences reflect the structural adaptations
necessary for maintaining aerodynamic performance, particularly under the increased demands
of the two-flight condition. These adjustments highlight the intricate design considerations
crucial for optimising the power ratio, balancing energy production, and aerodynamic efficiency.

The Helios aircraft’s wings are approximately 75% covered with solar panels. If we assume
that the solar panles can produce cSolar panel = 205.83W/m2, which is in a realistic range for
modern solar panels (RIBAH; RAMAYANTI, 2018), then we could decrease the power ratio from
0.17 to 0.12 when considering two flight conditions. This means we increase power production
over the power consumption from 5.78 to 8.48. According to Flittie and Curtin (1998), the
power ratio of the Pathfinder configuration at take-off is 4 and even higher in cruise conditions.
Our optimised Helios aircraft shows an improvement in the power ratio, significantly surpassing
the benchmarks set by the Pathfinder configuration. Please note that this ratio will only be
achieved under optimal conditions, usually not given.

Figure 4.33 illuminates the differing results of the ALM optimisation for the power ratio
under single and separate penalty factor configurations. A key distinction lies in the frame
element location: with separate penalty factors, the frame element is nearer the leading edge,
enhancing resistance to wing bending and affecting aerodynamic properties. Conversely, using
a single penalty factor, the beam’s positioning allows more upward bending of the wing. This
bending increases the angle of attack, enabling sufficient lift generation without maxing out the
angles. Consequently, the angle of attack plus twist does not reach its upper limit in the single
penalty factor solution. This dynamic, especially evident in a discretisation of higher than 26,
showcases how varying penalty factor setups in the ALM lead to notably different optimisation
outcomes for the power ratio, reflecting the complexities of balancing energy production and
aerodynamic efficiency.
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(a) (b)

(c) Dashed line indicates high load condition (d)

FIGURE 4.32 – Objective function: Normalised power ratio; complete set of design variables: ttt, ααα0, α1, α2, ccc, V∞ 1,
V∞ 2, xxxBeam; aerostructural ALM optimisation comparison between single and two flight conditions. Optimisation
result with 50 control points, FEM and LLT discretisation of 50 and two independent penalty factors. Result of
the remaining design variable with a single condition: V∞ = 25.79m/s (lower bound). Result of other design
variables with two conditions: V∞ 1 = 25.79m/s (lower bound), V∞ 2 = 31.52m/s (upper bound).

(a) Dashed lines indicates high load condition (b)

FIGURE 4.33 – Objective function: Normalised power ratio; complete set of design variables: ttt, ααα0, α1, α2, ccc,
V∞ 1, V∞ 2, xxxBeam; aerostructural ALM optimisation with two flight conditions. The optimisation results with 50
control points, FEM and LLT discretisation of 50. Comparison of results with single and two penalty factors.
Results of other design variables are identical with single and two penalty factors: V∞ 1 = 25.79m/s (lower
bound), V∞ 2 = 31.52m/s (upper bound).
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5 Discussion

In Chapter 5, we critically evaluate and interpret the findings presented in Chapter 4, with
a particular focus on the methodologies and results of the optimisation techniques. The chapter
is structured to provide an in-depth discussion of these outcomes, aiding in the understanding
of their implications and relevance. This chapter is divided into two separate sections. The first
section discusses the findings of the structural optimisation, and the second section elaborates
on the outcomes of the aerostructural results.

5.1 Structural optimisations

The section 4.1 focuses on structural optimisation results, emphasising the significance of the
underlying assumptions and methodological choices. A pivotal assumption in the model is using
aluminium for the wing spar, deviating from the actual diverse material composition like Kevlar
of the wing spar of the Helios aircraft. This simplification for structural modelling, by assum-
ing a tubular wing spar represents all wing properties, may not capture the full complexities
of actual wing structures. Moreover, a linear FEM model is not appropriate for highly-flexible
wings such as for the Helios aircraft. Additionally, the study concentrates solely on structural
optimisation, excluding aerostructural aspects. This methodological choice simplifies the anal-
ysis but overlooks the crucial interaction between structural and aerodynamic models, vital in
real-world scenarios for comprehensive understanding of aerostructural dynamics. The decision
to distinguish structural optimisation from aerostructural analysis aims to clarify the structural
optimisation landscape, evaluating three optimisation approaches (SLSQP, SLSQP KS, and
ALM) within a simplified structural model context. While these findings are informative, they
represent an idealised scenario, and their real-world applicability should be considered in light
of these methodological constraints. Future analysis and interpretation of these optimisation
results must remain cognisant of these foundational methodology aspects and inherent assump-
tions. It is essential to highlight that this study focuses on comparing optimisers’ performance
as the problem complexity scales.

5.1.1 Discussion on SLSQP KS approach

In our study of the SLSQP KS approach, the flexibility of the ÄKS parameter was pivotal.
Higher ÄKS values improved optimisation outcomes, consistent with the anticipated behaviour of
inequality constraint approximation in this approach. The SLSQP KS notably converged towards
SLSQP solutions, validating its effectiveness and showing alignment with our initial hypothesis.
A key observation was the significant reduction in optimisation time when employing the KS
function for constraint aggregation, underscoring the approach’s efficiency, especially in time-
sensitive scenarios. Regarding the ÄKS parameter specifics, we limited its range to a maximum of
310, aiming to balance optimisation time against result quality. In contexts where time efficiency
is crucial, further increasing ÄKS may not correspondingly enhance result accuracy. For setting
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the tolerance for optimisation results, we established a criterion that considers outcomes to be
acceptable if they deviate by up to a quarter of a percent from the objective function values of
the SLSQP and ALM methods, with this deviation measured against the initial design, i.e., the
baseline. This threshold, translating to about a 1.35-kilogram difference in our study, met our
optimisation goals and allowed for effective comparisons between the three approaches. However,
there is room for discussion on this threshold. One could set this threshold appropriately to their
optimisation goals.

5.1.2 Discussion on ALM approach

In examining the ALM approach, an essential aspect of our analysis was exploring the wide
range of available parameter choices. Notably, the µ parameter considerably affected the optimi-
sation time, which deviated from our initial expectations; µ = 1.1 exhibited extended durations.
This suggests that a higher penalty factor is necessary to achieve convergence, contrary to our
assumption that the Lagrange multipliers would effectively drive all active constraints to zero.
Furthermore, we anticipated an increase in optimisation time with overly conservative param-
eters, as the ALM approach tends to morph into a penalty approach, diminishing the benefits
of updating Lagrange multipliers. However, this anticipated trend was not distinctly evident
in the result data, presenting a notable discrepancy between expected and observed outcomes.
The choice of initial penalty factor, Ä0, was a critical decision in our methodology. We kept Ä0
at a maximum value of 0.5 based on the understanding that this setting moderates the influence
of constraint gradients in the initial optimisation phases. This was a strategic choice to prevent
constraints from dominating the optimisation process prematurely. Regarding the decision to
increase the penalty factor, our approach diverged from the common practice of incrementing
it in each iteration. Instead, we opted to increase it only when there was inadequate progress
towards a feasible solution. This methodology, inspired by the findings of Birgin and Mart́ınez
(2019), proved effective in our case, indicating that a less frequent increase in the penalty factor
can be beneficial in specific scenarios. Additionally, the ALM approach showed shorter optimi-
sation times for high discretisation compared to both the SLSQP and SLSQP KS approaches.
While it was anticipated to outperform the SLSQP in terms of time efficiency, its superiority
over the SLSQP KS approach indicates the effectiveness of the ALM.

5.1.3 Discussion on the usage of B-Splines

Integrating B-splines in optimisation, especially in SLSQP KS and ALM approaches, yields
diverse outcomes. In SLSQP KS, B-splines significantly reduce optimisation time, mainly due to
fewer design variables, challenging prior assumptions about optimisation efficiency. Conversely,
their application in the ALM approach does not expedite optimisation, indicating a possible
lesser sensitivity to design variable quantity in ALM or a more significant influence of other
factors like hyperparameter adjustments. The SLSQP KS approach updates only the design
variables at each iteration, whereas the ALM approach needs to update the design variables and
the hyperparameters. Effectively, the ALM updates quantitatively more parameters than the
SLSQP KS approach due to the Lagrange multipliers updates. This finding emphasises the role
of hyperparameter management in ALM’s optimisation efficiency. These observations underscore
the need for further investigation into the interplay between design variables, hyperparameter
adjustments, and different optimisation methods. The variable impact of B-splines on different
optimisation strategies highlights their versatility and suggests a tailored approach to optimisa-
tion tool selection based on specific problem characteristics. Overall, B-splines’ role in structural
optimisation demonstrates a complex interaction of factors affecting efficiency, offering valuable
insights for optimising tool utilisation in various scenarios.
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5.2 Aerostructual optimisation

In this analysis, we critically examine the methodology underlying our aerostructural optimi-
sation results, which is essential for contextualising the findings within the broader optimisation
framework. The methodology incorporates chord length and freestream velocity variations, im-
pacting the Reynolds number and lift curve. In our model, we assume that the parameters
defining the lift and drag curves remain constant across the entire spectrum of Reynolds num-
bers considered. Our investigation indicates that alterations up to 10% in these parameters
have negligible effects on lift and drag, affirming the approximation’s suitability for the specified
conditions. However, there is room for discussion to select a higher or lower percentage to alter
those parameters.

A significant assumption in our approach is that changes in chord length do not affect the
aircraft’s weight, primarily due to the simplified representation of the aircraft structure with a
tubular wing spar. Furthermore, we assumed that the location of the tubular wing spar could
vary anywhere along the chord length of the wing. This assumption is unrealistic, as the wing
spar’s diameter at specific points exceeds the wing thickness. A better solution is to establish
a coupling between the wing thickness and the diameter of the tubular wing spar to maintain
structural feasibility. Additionally, the study imposes bounds on twist angles between 5◦ and
−2◦, which can be questioned. The authors chose to balance the optimisation benefits, which
could be obtained by loosening the tight bound constraints on the twist angle against potential
stall risks and pilot control limitations.

Moreover, considering structural twist bending, which is not confined by the bounds of the
twist angle, adds another layer of complexity to the aerostructural model. Structural twist
bending can increase the angle of attack. This additional increase can result in an angle of
attack higher than 12◦ and thus in stall behaviour. When combined with the downwash, which
reduces the angle of attack, this effect presents a balancing act within the model. This means
that even if the twist bending increases the angle of attack by more than 12◦, the downwash will,
on the other hand, reduce the angle of attack, which can prevent the stall behaviour. However, it
is essential to acknowledge that this balance is an assumption within the model, and the precise
interplay of these factors could vary in real-world flight conditions.

Next, our decision to exclude wingspan as a design variable was motivated by the complex
integration challenges within QASTRO. Including the wingspan as a design variable would have
introduced additional computational complexities, detracting from the study’s primary focus
areas.

Lastly, choosing a relatively high load factor of three in our optimisation model warrants
discussion. While NASA’s paper (FLITTIE; CURTIN, 1998) suggest that the Helios aircraft is
capable of withstanding accelerations up to 3.2 g, we consciously opted for a load factor of
three to ensure feasibility in our optimisation solutions. It is important to contextualise this
decision: using a load factor as high as three, albeit lower than the aircraft’s maximum capability,
was driven by the need to challenge its design within realistic operational limits while still
achieving viable optimisation results. This load factor, though seemingly high, was carefully
chosen to strike a balance between testing the structural integrity of the aircraft under demanding
conditions and the practical constraints of the optimisation process.

While characterised by certain simplifications and assumptions, the methodology applied
in our aerostructural optimisation study was critical in navigating the complexities inherent
in integrating structural and aerodynamic models. These choices reflect a balance between
computational feasibility and the pursuit of realistic and applicable optimisation results, laying
the groundwork for the subsequent analysis of optimisation approaches and their outcomes.
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5.2.1 Discussion on SLSQP approach

In the aerostructural optimisation context (section 4.2), the performance of the SLSQP
method diverged notably from initial expectations. Initially selected based on its efficacy in
structural optimisation (section 4.1), the SLSQP approach faced challenges in more complex
aerostructural scenarios. While it excelled in more straightforward optimisations involving a
limited set of design variables and a single flight condition, its limitations became evident by
introducing a complete set of variables and multiple conditions. Contrary to our expectations,
SLSQP struggled to find the global minimum, often becoming trapped in local minima. This
unexpected outcome highlights the method’s constraints in handling the increased complexity
of aerostructural optimisation.

5.2.2 Discussion on SLSQP KS approach

For complex aerostructural optimisation, the SLSQP KS approach generally converged to
lower objective function values than the SLSQP approach. This result deviates from our hypoth-
esis, considering the SLSQP KS approach’s foundational assumption of aggregating all inequality
constraints into a single scalar function. Contrary to conventional expectations, this approxima-
tion proved beneficial, assisting the optimiser in avoiding local minima. This outcome highlights
the SLSQP KS approach’s capacity to effectively navigate complex optimisation landscapes, a
significant insight into its potential utility in aerostructural optimisation.

5.2.3 Discussion on ALM approach

In the context of aerostructural optimisation, the ALM approach provided some key ob-
servations. Notably, the necessity for slightly conservative parameters to converge to optimal
solutions was unexpected. This requirement underscores the uniqueness of the aerostructural
optimisation problem and suggests that different optimisation challenges might demand varying
parameter strategies.

A crucial element of our ALM methodology was using two independent penalty factors for
equality and inequality constraints. While potentially more complex than simply scaling con-
straints, this approach offered distinct advantages. It addressed the varying challenges posed
by different types of constraints, depending on the objective function. For instance, optimising
for weight made satisfying the lift constraint more challenging, while objectives like endurance
or power ratio presented more significant difficulties with structural constraints. Independent
penalty factors allowed the optimiser to focus on different constraint types sequentially, effec-
tively reducing the problem’s complexity in specific scenarios. However, this strategy opens
up new considerations. The idea of using separate penalty factors for each constraint leads to
a potential trade-off. While it offers more nuanced control over the optimisation process, it
also adds complexity. In fact, our analysis revealed that the inclusion of more penalty factors
could detrimentally increase this complexity. This observation was echoed in the results of the
structural optimisations, particularly in the section on B-splines, where it was noted that a sig-
nificant portion of optimisation time was consumed by managing numerous hyperparameters.
Thus, there’s a balance to be struck between the level of control provided by multiple penalty
factors and the increased complexity they introduce.
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6 Conclusions & Recommendations

In Chapter 6, we combine the essential findings and insights from our investigation into
constrained optimisation methods for aerostructural design. For our analysis, we utilised a
program called QASTRO. This chapter is pivotal as it crystallises the research outcomes into
conclusive statements and forward-looking recommendations. It is structured into two distinct
sections: firstly, the conclusions, and secondly, the recommendations. This chapter aims to
provide a clear, comprehensive encapsulation of the study, highlighting its contributions to the
field of aerostructural optimisation.

6.1 Conclusions

In section 6.1, we comprehensively evaluate the research findings in light of the hypotheses
set forth at the beginning of this thesis. Central to our investigation was the comparative
assessment of three constrained optimisation approaches – SLSQP, SLSQP KS, and ALM –
within the context of aerostructural design. Our hypotheses posited that the SLSQP approach
would yield the most favourable results regarding objective function values but at the expense of
longer optimisation times. For the SLSQP KS approach, we anticipated slightly lower objective
function values with increased efficiency, while the ALM approach was hypothesised to offer
both speed and accuracy in its results. This section systematically revisits these hypotheses,
aligning them with the results gathered to determine the extent to which our research validated
or refuted them.

6.1.1 Conclusion of SLSQP approach

The SLSQP approach, when applied to structural and aerostructural optimisation, presented
a nuanced performance profile that both confirmed and contradicted our initial expectations.
SLSQP effectively minimised objective function values in more straightforward structural optimi-
sation scenarios, demonstrating its robustness in line with our hypotheses. It showed particular
strength in contexts with fewer variables and constraints, affirming its predicted dominance in
less complex optimisation tasks. However, its optimisation time is considerably longer than the
SLSQP KS and ALM approaches.

However, the approach encountered significant challenges in more intricate aerostructural
scenarios, especially at higher discretisation levels. Contrary to our expectations, SLSQP strug-
gled to consistently identify the global minimum, revealing limitations in its capacity to navigate
the complexities of aerostructural optimisation. A particularly notable issue was the failure of
the SLSQP approach to converge to a solution in several complex aerostructural optimisations.
This failure was attributed to the inability of the non-linear Python solvers within QASTRO to
compute the state variables during the optimisation process. This limitation severely hindered
the effectiveness of the SLSQP approach in these scenarios, marking a substantial impediment
to its application in complex aerostructural design tasks. Additionally, the SLSQP approach’s
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tendency to become ensnared in local minima, mainly due to its individual handling of inequal-
ity constraints and lack of adjustable parameters, emerged as a significant barrier. This aspect
further limited its adaptability and manoeuvrability in intricate optimisation landscapes.

In conclusion, while the SLSQP approach affirmed its strengths in more straightforward
settings, its challenges in complex aerostructural optimisations, including convergence issues,
offered more profound insights into its suitability for various optimisation needs within the
realm of aerostructural design.

6.1.2 Conclusions of SLSQP KS approach

The SLSQP method combined with the KS function for aggregating the inequality constraints
in structural and aerostructural optimisation brought to light several vital conclusions, some
aligning with our hypotheses and others revealing new insights.

A critical finding was that for more straightforward problems, including structural optimi-
sations and aerostructural optimisations with fewer design variables, the SLSQP KS approach
converged to results similar to the SLSQP approach. This corroborated our hypothesis and
highlighted the effectiveness of the KS function in approximating inequality constraints. The
quality of this approximation, and consequently the convergence to the SLSQP solution, was
contingent on the ÄKS value. A higher ÄKS enhanced the approximation quality, allowing the
optimiser to potentially converge to better solutions. For structural optimisations, we could
observe with ÄKS = 160 a consistent convergence to objective function values not higher than
0.25% (of the baseline) compared to the SLSQP or ALM solution. Moreover, we observed a
substantially reduced optimisation time with the SLSQP KS approach compared to SLSQP.
For a highly discretised structural optimisation with 80 frame elements, and thus a constraint-
rich optimisation, the SLSQP KS is more than five times faster than the SLSQP approach.
This efficiency gain stemmed from the simplification offered by representing all inequality con-
straints within a single scalar KS function, reducing the complexity of derivative computations.
However, the SLSQP KS approach exhibited limitations in more complex aerostructural opti-
misation scenarios, mainly when ÄKS values were set too high. In such cases, the KS function
approximates a max function, which is only piecewise differentiable and poses challenges in gra-
dient computation. This issue was evident in complex problems with many design variables and
high discretisation levels, where the approach struggled to converge to the global solution. In
constraint-rich optimisations, a ÄKS = 310 demonstrated a favourable balance between solution
quality and the differentiability of the KS function. Interestingly, in complex aerostructural
optimisations, the SLSQP KS approach often outperformed the SLSQP regarding the solution
quality f(xxx∗). This superior performance is attributed to its problem simplification, aiding the
optimiser in navigating towards the global minimum more effectively. The significant impact of
B-Splines on reducing optimisation time with the SLSQP KS approach further indicated that
its efficiency is closely tied to the number of design variables. However, like SLSQP, the SLSQP
KS approach faced difficulties in complex scenarios, often failing to converge to a solution. Like
SLSQP, this failure was linked to the non-linear Python solvers within QASTRO. The solvers
could not compute state variables during the optimisation process, suggesting that this issue is
not mitigated merely by the simplification provided by the KS function.

These findings paint a comprehensive picture of the SLSQP KS approach’s capabilities and
limitations, offering valuable insights into its applicability and performance in varying contexts
of aerostructural optimisation.
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6.1.3 Conclusions of ALM approach

Evaluating the ALM approach across structural and aerostructural optimisation provided
insightful conclusions about its performance and parameter sensitivities. In structural optimisa-
tion problems, independent of the parameter choice, the ALM approach consistently converged
to the same solutions as the SLSQP approach, affirming its effectiveness. The choice of param-
eters notably influenced the optimisation time; highly conservative parameters led to quicker
convergence, while slightly conservative settings resulted in more extended optimisation peri-
ods. This was particularly evident in the role of the penalty factor increase rate (µ), where a
lower µ value, leading to a gradual increase in the penalty factor (Ä), extended the optimisation
time. This need for a higher penalty factor to precisely drive active constraints to zero under-
lined the importance of penalty factor management in the ALM approach. In scenarios with
high discretisation, the ALM approach showed remarkable efficiency, mainly due to its require-
ment to compute derivatives only for the augmented Lagrangian function, unlike the multiple
derivative computations needed in SLSQP and SLSQP KS approaches. In a highly discretised
Helios aircraft model (e.g. 80 frame elements for one wing), the ALM with moderate conser-
vative parameters is ten times faster than the SLSQP and about 40% faster than the SLSQP
KS approach with ÄKS = 160. With more conservative ALM parameters, the ALM approach
can be up to almost twice as fast as the SLSQP KS approach. For structural optimisations,
moderately conservative parameters, such as Ä0 = 0.2525, µ = 2.05, and r = 0.5 showed a good
trade-off between convergence speed and constraint management.

Incorporation of B-splines had minimal impact on ALM optimisation time, highlighting hy-
perparameter updates, especially those of the Lagrange multipliers, as the main time-consuming
component. However, increasing control points led to diminished effects of ALM parameters on
optimisation time.

In the more complex realm of aerostructural optimisation, the ALM approach’s best re-
sults were achieved with slightly conservative parameters, such as Ä0 = 0.005, µ = 1.1, r = 1.0.
Conversely, highly conservative parameters frequently resulted in local minima convergence, sug-
gesting a need for balanced parameter selection. Instances of low penalisation, meaning minimal
conservatism, sometimes led to oscillatory behaviour in the optimiser, impacting the optimisa-
tion time without necessarily degrading the solution quality. This oscillatory tendency could
be effectively countered by reducing the r value, thereby enhancing the optimisation process’s
efficiency. The ALM approach occasionally converged to asymmetric solutions, a challenge ad-
dressed by employing two separate penalty factors for equality and inequality constraints. This
strategy allowed the optimiser to sequentially focus on each constraint type, reducing problem
complexity and aiding in achieving more symmetric solutions.

A standout aspect of the ALM approach was its robust convergence behaviour, especially
in highly complex scenarios involving a complete set of design variables and two flight condi-
tions. Its strategy of dividing the optimisation into multiple unconstrained sub-optimisations
contributed to this robustness, showcasing the method’s potential as a powerful tool in complex
optimisation scenarios, contingent upon careful parameter selection and management.

In summary, the ALM approach demonstrated a high degree of effectiveness and adaptability
in both structural and aerostructural optimisation, with its performance intricately linked to the
judicious selection and management of its parameters.

6.1.4 Overall findings

Incorporating multiple optimisation approaches within QASTRO marks an advancement
in the field of aerostructural optimisation, offering enhanced flexibility and choice for users.
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The addition of the SLSQP and ALM approaches to the previously sole SLSQP KS approach
represents a notable expansion of the tool’s capabilities.

One key implication of this expansion is the increased user flexibility in addressing various
optimisation challenges. Users can now opt for the straightforward SLSQP approach without
delving into complex parameter settings for simple optimisation tasks where time efficiency is
not a primary concern. This simplification is particularly beneficial for users focused on less
intricate problems, providing a hassle-free optimisation process. Another significant advantage
is the ability to switch between optimisation approaches, which is especially useful when there are
concerns about convergence to local minima. This flexibility enables users to explore alternative
solutions and verify the robustness of their optimisation results, enhancing the reliability of the
outcomes. An important insight relevant to users of QASTRO and similar platforms is the
impact of discretisation on the optimisation results. Our research suggests that starting with
a lower discretisation level and gradually increasing it can be a strategic approach to ensure
convergence towards the global solution. Particularly in complex aerostructural optimisations,
discretisation plays a crucial role in the solution’s quality and optimisation time. It was observed
that increasing discretisation beyond a certain threshold (e.g., 50) does not significantly enhance
the objective function value but leads to longer optimisation times. This finding is vital for users
in managing the trade-off between solution accuracy and computational efficiency.

In essence, these findings underscore the importance of approach selection and parameter
management in aerostructural optimisation. The enhanced options in QASTRO, coupled with
insights into discretisation and optimisation management, provide users with a more robust and
versatile framework for tackling diverse aerostructural challenges.

6.2 Recommendations

In section 6.2, we provide a series of recommendations derived from the findings and analyses
of our research. These suggestions are designed to enhance the application and effectiveness of
the three optimisation approaches within QASTRO and to inform future research and practical
applications in aerostructural optimisation. The section is methodically divided to address each
key aspect of our study, offering specific guidance on QASTRO’s overall development, as well as
the SLSQP, SLSQP KS, and ALM approaches. We aim to contribute actionable insights that
can facilitate the ongoing evolution and refinement of aerostructural optimisation techniques.

6.2.1 Recommendations for QASTRO

In the context of enhancing QASTRO, several recommendations emerge from our research.
These aim to broaden the software’s capabilities and improve its efficiency in handling complex
aerostructural optimisation problems.

Firstly, the incorporation of buckling analysis in QASTRO is recommended for more intricate
structural models. While the current model does not account for buckling, its consideration could
be critical in analysing complex structures. However, given the complexity of implementing
buckling analysis, this enhancement should be pursued if buckling is deemed a significant factor
in the analysed structures. Furthermore, we recommend exploring more efficient solutions for
solving linear equations in structural optimisations. For structural analysis, the residual function
for solving the displacements is linear. Currently, QASTRO employs a non-linear solver for
solving for the displacements, which, while effective, may not be the most efficient method. There
is potential for significant improvements in computational efficiency by adopting advanced linear
solvers. Similar efficiency gains can be achieved in solving for adjoint variables. The process,
which is always linear regardless of whether the optimisation is structural or aerostructural,
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currently utilises the same non-linear solver. Adopting more specialised linear solvers for adjoint
variable computations could enhance the overall efficiency and speed of the optimisation process
in QASTRO. In light of our experiences, there are currently no reliable linear Python solvers;
we strongly recommend pursuing further research and development in this area.

An additional vital recommendation for QASTRO is the implementation of symmetry con-
ditions. Currently, the inability to apply symmetry in QASTRO limits the optimisation process,
especially in scenarios where symmetrical solutions are desired or more efficient. Including sym-
metry conditions would not only reduce the complexity of the problems but also significantly
improve the performance of all optimisation approaches. This feature is particularly crucial for
the ALM optimiser, which has shown difficulties in converging to symmetrical solutions. En-
abling symmetry conditions could be a game-changer for the ALM approach, offering substantial
benefits in terms of both efficiency and solution accuracy.

Additionally, a critical area for further investigation within QASTRO pertains to the chal-
lenges encountered in computing state variables during complex optimisation tasks, particularly
under the SLSQP and SLSQP KS approaches. Our research identified frequent instances of fail-
ure, particularly in complex problem scenarios and when considering two flight conditions. This
can be attributed to the inadequacies of the non-linear Python solver employed by QASTRO in
computing state variables. The optimisation problem 3.34 describes the state variable compu-
tation. This issue not only hinders the successful application of these optimisation approaches
but also raises concerns about the solvers’ capacity to handle highly intricate aerostructural
problems. Therefore, conducting in-depth research and development efforts to resolve this com-
putational challenge is strongly recommended. Addressing this issue will not only enhance the
robustness and reliability of QASTRO in advanced optimisation scenarios but also significantly
expand its applicability to a broader range of complex aerostructural designs.

In computing the state variables, the full Jacobian matrix is required in the optimisation
problem 3.34. However, only the Jacobian-vector product, which can be efficiently computed
using AD in a single execution, is necessary. Computing the full Jacobian matrix is computa-
tionally expensive, requiring as many executions as there are rows or columns in the matrix.
This cost is significant, as the number of rows in the Jacobian is six times the number of FEM
nodes plus the number of horseshoe vortices. We suggest modifying the Python solver used to
solve equation 3.34 to allow users to input the directional derivative, i.e., the Jacobian-vector
product. Though not the focus of this thesis, providing the directional derivative can signifi-
cantly reduce optimisation time in aerostructural optimisations, particularly with the SLSQP
and ALM approaches. These methods spend a considerable amount of time computing gradients,
as illustrated in figure 4.13.

These recommendations are proposed to make QASTRO a more versatile and powerful tool
for aerostructural optimisation, capable of handling a more comprehensive range of design con-
siderations and computational challenges.

6.2.2 Recommendations for SLSQP approach

In the context of refining the SLSQP approach within QASTRO, our study leads to two
primary recommendations to enhance its efficiency and effectiveness.

The first recommendation pertains to the method of derivative computation employed in the
SLSQP approach. Currently, the adjoint method and backward-mode AD are utilised primarily
for their advantages when the number of design variables exceeds the number of functions, as
is often the case with the SLSQP KS and ALM approaches. However, in the SLSQP approach,
the scenario may often be reversed, with more functions than design variables. This is particu-
larly evident when considering that each beam-truss element in the structural model yields four
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inequality constraint functions against a single design variable, such as beam-truss thickness. In
such cases, the direct method and forward-mode AD are more beneficial, reducing the compu-
tational cost and enhancing the efficiency of the SLSQP optimisation process. A shift to these
methods would align the derivative computation with the specific requirements of the SLSQP
approach, especially in scenarios where functions outnumber design variables.

The second recommendation focuses on improving the handling of bound constraints in the
SLSQP method. The current approach trims the search direction to fit within the bounds,
sometimes resulting in less progress as the search direction may become significantly shortened.
A more practical alternative could be the adoption of the projection approach, similar to that
used in the ALM sub-optimisation method. This approach could potentially enhance the progress
made by the optimiser, avoiding the limitations of the current trimming strategy and thereby
improving the overall efficiency and effectiveness of the SLSQP method in dealing with bound
constraints.

6.2.3 Recommendations for SLSQP KS approach

In enhancing the SLSQP KS approach within QASTRO, our study suggests several targeted
recommendations to improve its application and effectiveness. Firstly, the recommendation
regarding handling bound constraints in the SLSQP approach is equally applicable to the SLSQP
KS approach since the SLSQP KS utilises the same underlying SLSQP method.

A key recommendation for the SLSQP KS approach involves the strategic management of
the ÄKS value. We observed that an excessively low ÄKS value hinders the optimiser’s ability to
converge to a satisfactory solution, while a very high value complicates gradient computations. A
sequential increase in the ÄKS value could offer a balanced approach, starting with a lower value
to facilitate easier derivative computations and then gradually increasing it as the optimiser
nears the solution. This method would enable the optimiser to initially navigate the solution
space more efficiently and then refine its approach as it gets closer to the optimal solution. This
approach was already suggested by Poon and Martins (2007).

Additionally, a hybrid approach is proposed, combining the strengths of the SLSQP KS ap-
proach with either the SLSQP or the ALM approach. This hybrid method would initially employ
the SLSQP KS approach to approximate a solution close to the global minimum, leveraging its
effective convergence behaviour when aggregating inequality constraints. Following this initial
approximation, the optimisation could switch to either the ALM or the SLSQP approach with
tight bounds to refine and fully converge to the global minimum. It is crucial to balance the
tightness of these bounds to avoid hindering the optimiser’s progress. If the optimisation ends
at the bounds, a slight relaxation of the bounds followed by re-optimisation might be necessary
to achieve the best possible solution.

6.2.4 Recommendations for the ALM approach

In optimising the ALM approach within QASTRO, several key recommendations can be
made to enhance its efficacy and efficiency based on our research findings.

Firstly, the reader wants to emphasise again that currently, the ALM approach does not
use its full potential when multiple flight conditions are considered. The author recommends
revisiting the programming structure regarding implementing multiple conditions with the ALM
approach such that we need to solve just one adjoint equation, regardless of the number of flight
conditions we consider. For more details, the reader is referred to section 3.7.

Secondly, exploring different methods for solving the sub-optimisation problems within the
ALM framework is advisable. Our exploration indicated that alternative methods, such as the
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SLSQP method, could offer better and faster convergence behaviour for these sub-problems.
The current method, L-BFGS-B, requires derivative evaluations at each function evaluation to
verify the Wolfe conditions (eqs. 3.61 and 3.62). A more efficient strategy could be to initially
check only the Armijo condition (eq. 3.61) and require gradient evaluations only if necessary.
The SLSQP method, for example, employs an approach to adjust the step size by solving a one-
dimensional optimisation problem (eq. 3.49), which seems more effective due to fewer derivative
evaluations. However, a comprehensive analysis of various methods for solving the ALM’s sub-
problems is needed to validate this hypothesis. The initial choice of the L-BFGS-B method was
driven by its practical projection approach for handling bounds, but alternative methods might
offer better performance.

Another area for improvement in the ALM approach is the strategy for solving adjoint vari-
ables. Currently, the approach for solving adjoint variables in the ALM is similar to that in
the SLSQP and SLSQP KS approaches. The only difference is that the SLSQP and SLSQP
KS approaches use the previous adjoint variables as initial guesses. Using the previous adjoint
variables as an initial guess is not optimal for the ALM approach, especially when the penalty
factor is increased. An increase in the penalty factor significantly alters the derivatives, making
the previous adjoint variables less suitable as initial guesses. Therefore, it is suggested that fur-
ther research be conducted to develop a more effective initial guess strategy for adjoint variables
in the ALM approach. This could involve using the previous adjoint variables as initial guesses
only when the penalty factor remains unchanged and finding alternative strategies when the
penalty factor is adjusted.

6.2.5 Recommendation for new optimisation approach

The main advantage of the ALM approach is that we do not explicitly need to compute
the derivative of the objective function and all constraint functions. However, we only need to
compute the derivative of the augmented Lagrangian function A. We could apply the same idea
to the SQP method. The SQP method solves multiple sub-problems of the form

∇2L(xxxk,¼¼¼k)
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, (6.3)

see section A.1.4.6 in the Theoretical Background chapter in the Appendix. µµµk determines
the Lagrange multiplier update at iteration k. We can get ∇xxxL(xxxk,¼¼¼k) by the adjoint method
and backward-mode AD. hhh(xxxk) is given at every iteration. Thus, we know ∇L(xxxk,¼¼¼k) by only
solving a single residual function to get the adjoint variables. Next, we need to know the
Hessian matrix ∇2L(xxxk,¼¼¼k) which we can approximate with the aid of ∇L(xxxk,¼¼¼k) by the BFGS
- formula proposed by Powell (1978b). Alternatively, one could even approximate the inverse of
the Hessian. In the final step, we must solve the linear system for the search direction qqqk and
the multiplier update µµµk. This process can be repeated until convergence. One can see that we
just need to solve one residual function for each sub-problem to get the adjoint variables and
thus the gradients for the SQP method. In contrast, the SLSPQ method requires solving one
residual function for the objective function and one for each constraint function to determine
the adjoint variables.
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A Theoretical Background

The Theoretical Background chapter plays a crucial role in any academic work, particularly
in the field of optimisation. Different definitions of theories that are equally valid exist in the
literature, but it is essential to be consistent with those theories. This chapter provides the
reader with the definition of all theories used in this Master’s Thesis. Furthermore, this chapter
establishes a framework for understanding the research question and the significance of the study.
Ultimately, the Theoretical Background chapter is essential for ensuring the validity and rigour
of the research and for demonstrating the author’s expertise and contribution to the field of
(aero-) structural optimisation. The Theoretical Background chapter is divided into two parts.
The first part gives the reader background information regarding optimisation; the second part
is about the fundamental parts of aerodynamics.

A.1 Optimisation

A.1.1 Notation

This subsection shows the notation used in this Master’s Thesis. All vectors or matrices are
written in bold, e.g. xxx. All other variables are scalar values or scalar functions. A vector of
scalar functions fff(xxx) Rn → R

m is defined to be

fff(xxx) =































f1(xxx)
f2(xxx)
f3(xxx)
...

fn(xxx)































, (A.1)

where the domain is in R
n and the range is in R

m. Vectors are always column vectors if not
mentioned otherwise. The gradient of a scalar function f(xxx) Rn → R is a column vector of the
partial derivatives of the function with respect to all variables x1, x2...xn.

∇f(xxx) =
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(A.2)

The gradient of a vector of scalar functions fff(xxx) R
n → R

m is a matrix where each column
is the gradient vector of one function.
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The transpose of ∇fff(xxx) is called the Jacobian matrix and is defined as

JJJfff =
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The second derivative of a scalar function f(xxx) R
n → R is a matrix, too. This matrix is

referred to as the Hessian matrix and is defined as

HHHf =
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. (A.5)

The norm used in this Master’s Thesis is the Euclidean norm, which is defined as

∥hhh∥22 = hhhThhh. (A.6)

A.1.2 Definition of optimisation problem

Formally, an optimisation problem can be formulated as

min
xxx

f(xxx,ppp)

subjected to (s.t.) hhh(xxx,ppp) = 000

ggg(xxx,ppp) f 000

lll f xxx f uuu

while solving (w.s.) rrr(ppp;xxx) = 000

for ppp.

(A.7)

where f is called the objective function. The objective function could, for example, describe
the fuel consumption, weight of a structure or the drag of a wing and depends on the design
variables xxx and the state variables ppp. The design variables xxx are, for example, the chord length of
a wing or the fuselage diameter. The state variables ppp are, for example, the wing displacements.
We want to optimise f with respect to the design variables xxx, or in other words, we want to find
the lowest value of the objective function. Underneath the word ’min’ is indicated with respect to
which variable the objective function becomes minimised. Suppose we assume that f is bounded,
which means that the range of f is finite and that there are no constraints, then the lowest
value of the objective function is at a minimum. It is more complicated than it seems to find
this minimum because the objective function f is usually not an explicit analytical expression.
Hence, it is difficult to symbolically determine the derivative of f and set the derivative to zero
to find the extreme points of the objective function. Additionally, f is generally computationally
expansive to evaluate at a certain design state. Thus, evaluating f at multiple points in the
design range is also inefficient in finding its lowest value. Gradient-based optimisation is an
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iterative process determining the function values and their gradient at multiple design points.
The optimisation procedure converges to the minimum of the objective function. It should be
noted that an optimisation algorithm could not converge to the global minimum but to a local
minimum of f . In most cases, we want to optimise under certain conditions, which are called
constraints in optimisation terms. In this case, we minimise f with respect to xxx subjected
to the constraint functions. A condition or constraint could, for example, be the number of
seats in an aeroplane, the speed of an aeroplane or the flight altitude. There are three types of
constraints: equality, inequality and bound constraints. All equality constraints are combined
in one vector-valued function called hhh, and all inequality constraints are combined in one vector-
valued function called ggg. Both constraints are formulated such that they equal zero (equality
constraint) or that they are greater than zero (inequality constraint). For example, suppose we
want to minimise the fuel consumption of an aeroplane. In that case, we can prescribe the flight
altitude by h = x1 − x1desirable = 0, where x1 is the design variable for the flight altitude and
x1desirable is the desirable flight altitude. The bound constraint defines that there is an upper
and a lower limit for all design variables.

Furthermore, we can require that while solving the problem, an equation is satisfied. In the
optimisation problem (A.7) we solve the equation rrr(ppp;xxx) = 000 to get the state variables ppp. The
semicolon indicates that the design variables xxx are fixed when the functions rrr are solved for the
state variables ppp. Usually, those functions rrr are called residuals. In this Master’s Thesis, the
residuals ensure that the system follows the physical laws (MARTINS; NING, 2021).

A.1.3 Optimality conditions

It is essential to define what we consider as the solution to an optimisation problem since
we are trying to find it. We check for optimality conditions at every design stage to verify if
we found the solution to the optimisation problem. Although many algorithms only check the
first-order conditions. Furthermore, it is only possible to reach the optimality conditions within
a specific computer precision ϵ in numerical optimisation. However, in many engineering appli-
cations, reaching the optimality conditions within a range higher than the computer’s precision
is sufficient. So ϵ is usually set to a higher value than the computer precision. It is important
to note that the optimality condition can only be checked if we find a local solution but not if
we find a global solution. Furthermore, we assume that all the functions are twice continuously
differentiable.

A.1.3.1 Unconstrained

Let us consider an optimisation problem without any constraints.

min
xxx

f(xxx) (A.8)

The solution to an optimisation problem is called xxx∗. For an unconstrained optimisation
problem, the solution xxx∗ is the (global) minimum of the objective function f(xxx). It is well
known that at xxx∗, the gradient of the objective function is zero, ∇f(xxx∗) = 000, which is a first-
order necessary condition. First-order refers to the first derivative of the condition. However,
the first-order necessary condition is also satisfied at a maximum of f(xxx). Hence, we need an
additional necessary condition to check for optimality. One can derive from the Taylor series
that ∇2f(xxx∗) is positive semidefinite, the second necessary optimality condition. However, both
necessary conditions are still insufficient because a saddle point satisfies both conditions but
is not a minimiser of f(xxx). A sufficient condition is that if ∇2f(xxx) is positive definite, then
xxx = xxx∗ (GRIVA et al., 2009). The box below summarises the necessary and sufficient optimality
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conditions of an unconstrained optimisation problem.

Optimality conditions unconstrained optimisation

Necessary conditions

∇f(xxx∗) = 000 (A.9)

∇2f(xxx∗) is positive semidefinite (A.10)

Sufficient conditions

∇f(xxx∗) = 000 (A.11)

∇2f(xxx∗) is positive definite (A.12)

A.1.3.2 Equality constraints

Next, let us consider an optimisation problem with equality constraints.

min
xxx

f(xxx)

s.t. hhh(xxx) = 000
(A.13)

It becomes more difficult when equality constraints are also considered. In constraint optimi-
sation, there is a different first-order necessary condition. Let us assume that we are considering
a regular point. The regularity assumption assumes that the rows of∇hhh(xxx∗) are linearly indepen-
dent. Without diving too deep inside the theory, Lagrange showed that a first-order necessary
condition for constrained optimisation is that the gradient of the objective function f(xxx∗) needs
to be a multiple of the gradient of the constraint function hhh(xxx∗). Mathematically, the condition
reads

∇f(xxx∗) = −¼¼¼T∇hhh(xxx∗), (A.14)

where ¼¼¼ are the Lagrange multipliers. Note that the minus sign is arbitrary. A second
first-order necessary condition is that the constraints are not violated, hence hhh(xxx∗) = 000. Both
of those first-order necessary conditions can be expressed by a so-called Lagrangian function,
which is a function of the design variables xxx and the Lagrange multipliers ¼¼¼ and is defined as

L(xxx,¼¼¼) = f(xxx) + ¼¼¼Thhh(xxx). (A.15)

If the gradient of the Lagrangian function equals zero, both first-order optimality conditions
stated above are satisfied.

∇L(xxx∗,¼¼¼∗) =

{

∇xxxL

∇λλλL

}

=

{

∇xxxf(xxx
∗) +∇xxxhhh(xxx

∗)¼¼¼
hhh(xxx∗)

}

=

{

000
000

}

(A.16)

Hence, to check if we found the optimum of our constrained optimisation problem, we do not
check if ∇f(xxx) = 000, but we check if ∇L(xxx,¼¼¼) = 000. ∇L(xxx∗,¼¼¼∗) = 000 is our first necessary condition
for optimality. One could think that the second necessary condition is ∇2L(xxx∗,¼¼¼∗) is positive
semidefinite, but this is not true. It is out of the scope of this Master’s Thesis to derive the
second-order necessary condition because it requires a deep understanding of the optimisation
theory. Nevertheless, the second-order necessary condition is that ZZZ(xxx∗)T ∇2L(xxx∗,¼¼¼∗)ZZZ(xxx∗) is
positive semidefinite, where ZZZ is the null-space matrix of the Jacobian of the equality constraints
at xxx∗, i.e. JJJhhh(xxx∗). The condition is derived by defining feasible curves and a tangent vector at xxx∗.
The full derivation can be found in (GRIVA et al., 2009). However, the necessary conditions are not
sufficient. The sufficient conditions are that ∇L(xxx∗,¼¼¼∗) = 000 and that ZZZ(xxx∗)T ∇2L(xxx∗,¼¼¼∗)ZZZ(xxx∗)
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is positive definite (GRIVA et al., 2009). The necessary and sufficient conditions are summarised
in the box below.

Optimality conditions with equality constraints

Necessary conditions

∇L(xxx∗,¼¼¼∗) = 000 (A.17)

ZZZ(xxx∗)T ∇2L(xxx∗,¼¼¼∗)ZZZ(xxx∗) is positive semidefinite (A.18)

Sufficient conditions

∇L(xxx∗,¼¼¼∗) = 000 (A.19)

ZZZ(xxx∗)T ∇2L(xxx∗,¼¼¼∗)ZZZ(xxx∗) is positive definite (A.20)

ZZZ is the null-space matrix of the Jacobian of the equality con-
straints at xxx∗, i.e. JJJhhh(xxx∗).

A.1.3.3 Inequality constraints

Moving forward, let us consider an optimisation problem with only inequality constraints.

min
xxx

f(xxx)

s.t. ggg(xxx) f 000
(A.21)

The optimality conditions for inequalities differ slightly from those with equality conditions,
but extra attention must be taken. We call the Lagrange multipliers of the inequality con-
straints µµµ to distinguish them from the Lagrange multipliers of the equality constraints. The
key point to understanding inequality optimality conditions is that we only need to consider
active constraints. An constraint is active if gi(x̄xx) = 0, where x̄xx is any feasible point of the
optimisation problem. All constraints which are at xxx∗ not active do not influence the solution of
the optimisation problem and can be neglected. The active constraints at xxx∗ can be treated as
equality constraints because at xxx∗ holds that gi(xxx

∗) = 0. Thus, the necessary conditions for an
optimisation problem with inequality constraints are the same as for equality constraints, but
we need to ensure two things:

1.The Lagrange multiplier of gi needs to be positive. The objective function decreases
towards the feasible region if the Lagrange multiplier is negative.

µ∗i f 0 (A.22)

2.We only consider active inequality constraints. We can do this by setting ¼i to zero for
inactive constraints and require

µµµ∗Tggg(xxx∗) = 000, (A.23)

which means that a constraint is inactive (µi = 0) and/ or the inequality constraint is
equal to zero (ggg(xxx∗) = 0). This condition is called complementary slackness condition.

The two additional conditions, together with the necessary conditions defined for the equal-
ity constraints, are the necessary optimality conditions for an optimisation problem with only
inequality constraints, which are also called the Karush-Kuhn-Tucker (KKT) conditions. Please
note that we again assume that xxx∗ is a regular point, which means for inequality constraints that
the gradients of the active constraints at xxx∗, {∇gi(xxx

∗) : gi(xxx
∗) = 0}, are linearly independent.
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For the sufficient conditions of an optimisation problem with inequality constraints, extra
care must be taken with the condition µµµ∗Tggg(xxx∗) = 000. It can happen that ¼i = 0 and gi(xxx) = 0,
but xxx ̸= xxx∗. Hence, we need to require that not both µi and gi(xxx) equal zero. This condition
is called strict complementary condition. Adding the strict complementary condition to the
necessary optimality and requiring that ZZZ(xxx∗)T ∇2L(xxx∗,¼¼¼∗)ZZZ(xxx∗) is positive definite, we get
the sufficient optimality conditions. However, a better way to define the sufficient optimality
conditions is to require that ZZZ+(xxx

∗)T ∇2L(xxx∗,¼¼¼∗)ZZZ+(xxx
∗) is positive definite, instead requiring

the strict complementary condition. ZZZ+ is the basis for the null-space of JJJggg(xxx∗) with only active
constraints. Again, the derivation of the second-order conditions is out of the scope of this
Master’s Thesis. However, one can prove the second-order conditions by defining feasible arcs.
The full derivation is given by Griva et al. (2009).

Optimality conditions with inequality constraints

Necessary conditions (KKT)

∇L(xxx∗,µµµ∗) = 000 (A.24)

µµµ∗ f 000 (A.25)

µµµ∗Tggg(xxx∗) = 000 (A.26)

ZZZ(xxx∗)T ∇2L(xxx∗,µµµ∗)ZZZ(xxx∗) is positive semidefinite (A.27)

Sufficient conditions

∇L(xxx∗,µµµ∗) = 000 (A.28)

µµµ∗ f 000 (A.29)

µµµ∗Tggg(xxx∗) = 000 (A.30)

ZZZ+(xxx
∗)T ∇2L(xxx∗,µµµ∗)ZZZ+(xxx

∗) is positive definite (A.31)

ZZZ is the null-space matrix of the Jacobian of the inequality con-
straints at xxx∗, i.e. JJJggg(xxx∗). ZZZ+ is the basis for the null-space of
JJJggg(xxx∗) with only active constraints.

A.1.3.4 Equality and inequality constraints

Ultimately, let us define the optimality conditions for the optimisation problem with equality
and inequality constraints.

min
xxx

f(xxx)

s.t. hhh(xxx) = 000

ggg(xxx) f 000

(A.32)

The Lagrangian function with equality and inequality constraints is

L(xxx,¼¼¼,µµµ) = f(xxx) + ¼¼¼Thhh(xxx) +µµµTggg(xxx). (A.33)

It is straightforward to combine the optimality conditions for equality and inequality con-
straints. Equality constraints can be seen as inequality constraints, which are always active
(GRIVA et al., 2009). The box below combines the necessary and sufficient conditions of an
optimisation problem with equality and inequality constraints.
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Optimality conditions with equality and inequality constraints

Necessary conditions (KKT)

∇L(xxx∗,¼¼¼∗,µµµ∗) = 000 (A.34)

µµµ∗ f 000 (A.35)

µµµ∗Tggg(xxx∗) = 000 (A.36)

ZZZ(xxx∗)T ∇2L(xxx∗,¼¼¼∗,µµµ∗)ZZZ(xxx∗) is positive semidefinite (A.37)

Sufficient conditions

∇L(xxx∗,¼¼¼∗,µµµ∗) = 000 (A.38)

µµµ∗ f 000 (A.39)

µµµ∗Tggg(xxx∗) = 000 (A.40)

ZZZ+(xxx
∗)T ∇2L(xxx∗,¼¼¼∗,µµµ∗)ZZZ+(xxx

∗) is positive definite (A.41)

where ZZZ is the null-space matrix of the Jacobian of the constraints
at xxx∗. ZZZ+ is the basis for the null space of the Jacobian of the
constraints with all equality constraints but only active inequality
constraints.

A.1.4 Optimisation methods

This subsection explains a few optimisation methods. There are many more, but only the
methods below are used in this Master’s Thesis.

A.1.4.1 Newton’s method for minimising

The Newton method for minimising is a method to solve unconstrained optimisation prob-
lems. It is based on Newton’s method to find a root of fff(xxx), where fff(xxx) is a vector of single
value functions fi(xxx). First, let us review the Newton method for finding a root. The Taylor
series approximation for the function fff at the point xxxk is

fff(xxxk + qqq) ≈ fff(xxxk) +∇fff(xxxk)
T qqq, (A.42)

where xxxk is our estimation of the solution (root). We want to find the point xxx∗, where
fff(xxx∗) = 000. So, we can set the Taylor series approximation to zero and solve for qqq.

qqq = −∇fff(xxx)−T fff(xxx) (A.43)

The idea is to interpret qqq as a step we need to walk to find the root of fff . Hence, our new
estimate of the solution is

xxxk+1 = xxxk + qqq = xxxk −∇fff(xxxk)
−T fff(xxxk). (A.44)

Newton’s method for minimising is based on the same logic. However, we are not trying to
find the root of fff(xxx) but of ∇f(xxx). Please note that ∇f(xxx) is also a vector of functions. We are
trying to find ∇f(xxx) = 000 because it is one necessary optimality condition; see equation (A.9).
Following the same procedure for ∇f(xxx) instead of fff(xxx) we get the Taylor series approximation

∇f(xxxk + qqq) ≈ ∇f(xxxk) +∇
2f(xxxk)qqq, (A.45)

and the search direction qqq becomes
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xxxk+1 = xxxk + qqq = xxxk −
[

∇2f(xxxk)
]−1

∇f(xxxk). (A.46)

Please note that ∇2f(xxx) is symmetric. However, usually, the search direction qqq is obtained
by solving the linear system

[

∇2f(xxxk)
]

qqq = −∇f(xxxk). (A.47)

An optimisation algorithm solves the linear system of equation A.47 to determine the search
direction qqq at every iteration. The next iteration is at xxxk+1 = xxxk + qqq. Those steps are repeated
until the algorithm converges to xxx∗. Newton’s method is a prevalent optimisation method due
to its quadratic convergence rate. The Taylor series approximation can prove the quadratic
convergence rate and is left to the reader (GRIVA et al., 2009). The box below summarises the
steps of Newton’s methods for minimising. Please note that this is the simplest form of Newton’s
method. Usually, algorithms are more advanced.

Newton’s method algorithm steps

1.Check for optimality: If
∥

∥∇f(xxxk)
∥

∥ f ϵ, then stop.

2.Solve linear system for qqq:
[

∇2f(xxxk)
]

qqq = −∇f(xxxk)

3.Make step xxxk+1 = xxxk + qqq

A.1.4.2 Quasi-Newton method (BGFS)

Quasi-Newton methods are methods to solve unconstrained optimisation problems. The dis-
advantage of Newton’s method is that it requires determining the Hessian matrix HHH = ∇2f(xxx)
at every iteration xxxk, which is very computationally expansive. Quasi-Newton methods approxi-
mate the Hessian matrix (or the inverse of the Hessian) by the gradient ∇f(xxx) at the current and
previous iterations. This subsection will only discuss the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm. The approximation of the Hessian of Quasi-Newton methods is based on the
Taylor series approximation of equation (A.45). Since qqq = xxxk+1 − xxxk we can rewrite the Taylor
series approximation to

∇f(xxxk + xxxk+1 − xxxk) ≈ ∇f(xxxk) +∇
2f(xxxk) (xxxk+1 − xxxk) (A.48)

∇f(xxxk+1) ≈ ∇f(xxxk) +∇
2f(xxxk) (xxxk+1 − xxxk), (A.49)

and rewrite the equation to

∇f(xxxk+1)−∇f(xxxk) ≈ ∇
2f(xxxk) (xxxk+1 − xxxk). (A.50)

Let us call yyyk = ∇f(xxxk+1)−∇f(xxxk) and sssk = (xxxk+1 − xxxk) and we get

yyyk ≈ ∇
2f(xxxk)sssk. (A.51)

This approximation above is the foundation of the approximation of the Hessian matrix
HHH = ∇2f . Let us call the approximation of the Hessian BBB and define that the approximation
needs to satisfy

yyyk = BBBk+1 sssk. (A.52)

By using some properties of the Hessian matrix, we can define BBBk+1 as
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BBBk+1 = BBBk +
yyyk yyy

T
k

yyyTk sssk
−
BBBk sssk sss

T
k BBBk

sssTk BBBk sssk
(A.53)

(LUENBERGER; YE, 2008). The box below lists the steps of how an algorithm uses the
approximation of the Hessian BBBk+1 to solve an optimisation problem.

Quasi-Newton’s method algorithm steps (Hessian approx.)

1.Check for optimality: If
∥

∥∇f(xxxk)
∥

∥ f ϵ, then stop.

2.Solve linear system for qqq:

BBBk qqq = −∇f(xxxk)

3.Perform line search to get ³k

4.Set sssk = ³k qqqk and make step xxxk+1 = xxxk + sssk

5.Calculate yyyk = ∇f(xxxk+1)−∇f(xxxk)

6.Update approximation of Hessian

BBBk+1 = BBBk +
yyyk yyy

T
k

yyyTk sssk
−
BBBk sssk sss

T
k BBBk

sssTk BBBk sssk

Please note that the user needs to give an initial guess for BBBk. The identity matrix III is a
common choice because this boils down to the gradient descent method in the first iteration.
One can see that the algorithm uses a so-called line search to get ³k. ³k is a positive scalar
which determines how long the step in the search direction should be. There are different line
search methods, but they are not discussed in this Thesis. The Newton method does not need
a line search because ³k = 1 is mostly the best choice.

The algorithm above needs to solve a linear system at every iteration k (step 2). It would
be better to have an updated formula for the inverse of the Hessian because then we do not
need to solve the linear system at every iteration. One can use the Sherman-Morrison formula
to calculate the inverse of BBBk+1.

BBB−1
k+1 =HHHk+1 =HHHk +

(sssTk yyyk + yyyTk HHHk yyyk)(sssk sss
T
k )

(sssTk yyyk)
2

−
HHHk yyyk sss

T
k + sssk yyy

T
k HHHk

sssTk yyyk
, (A.54)

where HHHk ≡ BBB
−1
k (LUENBERGER; YE, 2008). The box below shows the steps of an algorithm

using the inverse approximation of the Hessian matrix.

Quasi-Newton’s method algo. steps (inv. Hessian approx.)

1.Check for optimality: If
∥

∥∇f(xxxk)
∥

∥ f ϵ, then stop.

2.Calculate search direction qqq:

qqq = −HHHk∇f(xxxk)

3.Perform line search to get ³k

4.Set sssk = ³k qqqk and make step xxxk+1 = xxxk + sssk

5.Calculate yyyk = ∇f(xxxk+1)−∇f(xxxk)
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6.Update approximation of the inverse of the Hessian

HHHk+1 =HHHk+
(sssTk yyyk + yyyTk HHHk yyyk)(sssk sss

T
k )

(sssTk yyyk)
2

−
HHHk yyyk sss

T
k + sssk yyy

T
k HHHk

sssTk yyyk

A.1.4.3 Limited memory Quasi-Newton method (L-BGFS)

The limited memory Quasi-Newton method is an optimisation method to minimise an un-
constrained optimisation problem. This subsection only describes the limited memory method
for the Quasi-Newton method using the BGFS update formula (GRIVA et al., 2009). This algo-
rithm is not used in the Master’s Thesis, but understanding it will help the reader understand
more advanced algorithms in this Master’s Thesis. Please note that there are also different lim-
ited memory methods for other optimisation methods. The disadvantage of the Quasi-Newton
methods is that they require storing matrices, and it is necessary to perform matrix-vector mul-
tiplications. The limited memory Quasi-Newton methods only require storing vectors instead of
matrices. Let us look at the updated formula of the approximation of the inverse of the Hessian
again according to the BGFS update formula.

HHHk+1 =HHHk +
(sssTk yyyk + yyyTk HHHk yyyk)(sssk sss

T
k )

(sssTk yyyk)
2

−
HHHk yyyk sss

T
k + sssk yyy

T
k HHHk

sssTk yyyk
(A.55)

= −

[

III −
ssskyyyk
yyyTk sssk

]

HHHk

[

III −
yyyksss

T
k

yyyTk sssk

]

−
sssksss

T
k

yyyTk sssk
(A.56)

One can see that HHHk+1 is only defined by vectors and the previous approximation of the
Hessian HHHk. The idea of the limited memory method is to describe HHHk+1 only by sssk and yyyk and
HHHk. But instead of storing the matrix HHHk, HHHk is described by sssk−1 and yyyk−1 and HHHk−1. And
HHHk−1 is also not stored but described by sssk−2 and yyyk−2 and HHHk−2 and so on. That means that,
in theory, we need to store all vectors sss and yyy since the first iteration. However, in practice,
the user specifies an integer nmc, which defines how many previous iterations are considered to
calculate HHHk+1. Usually, it is sufficient to choose nmc between 3 and 5. However, that means
thatHHHk+1−nmc

needs to be somehow initialised because the information to determineHHHk+1−nmc

is not stored anymore. A simple approach is to choose HHHk+1−nmc
= III, but there are more

sophisticated methods.

Let us have a look at how an algorithm calculates the new search direction qqqk+1 by only
storing vectors. The new search direction is

qqqk+1 =HHHk+1∇f(xxxk) (A.57)

= −

[

III −
ssskyyyk
yyyTk sssk

]

HHHk

[

III −
yyyksss

T
k

yyyTk sssk

]

∇f(xxxk)−
sssksss

T
k

yyyTk sssk
∇f(xxxk), (A.58)

Next, we define the three scalars t0, t1 and t2 and rewrite the search direction to

qqqk+1 = −

[

III −
ssskyyyk
t0

]

HHHk

[

∇f(xxxk)− yyykt2
]

− sssk t2, (A.59)

where t0 ≡ yyy
T
k sssk (A.60)

t1 ≡ sss
T
k ∇f(xxxk) (A.61)

t2 ≡ t1/t0 (A.62)
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Next we can define uuu ≡ ∇f(xxxk)− yyykt2 and get

qqqk+1 = −

[

III −
ssskyyyk
t0

]

HHHkuuu− sssk t2. (A.63)

We must compute the matrix-vector multiplication HHHkuuu. However, HHHk is not explicitly
known. Instead, we perform the matrix-vector multiplication in the same manner as we multiply
the matrix HHHk+1 with the vector ∇f(xxxk) at the moment. (This requires starting with the
computation of intermediate results of iteration k−nmc). After this process we reassign uuu←HHHkuuu
and further simplify qqqk+1 to

qqqk+1 = −uuu(t4 − t2)sssk, (A.64)

where

t3 = yyyTk /uuu (A.65)

t4 = t3/t0. (A.66)

As we can see, it is possible to avoid storing any matrices and use only vector multiplications
to compute the new search direction qqqk+1. However, please note that the BGFS update formula
only used information from the last nmc iterations. If the optimisation process is terminated
before the nthmc iteration, the result of the L-BGFS method is equivalent to that of the BGFS
method. The L-BGFS algorithm steps are the same as the algorithm steps of the BGFS method.
The only difference is in step 2, which describes how the search direction is computed.

A.1.4.4 Penalty method

The penalty method is a method to solve a constrained optimisation problem. The idea of
the penalty method is as simple as ingenious. We are trying to find the minimum value of a
function subjected to certain equality constraints. Hence, we try to solve

min
xxx

f(xxx)

s.t. hhh(xxx) = 000.
(A.67)

The idea of the penalty method is to transform a constrained optimisation problem into an
unconstrained optimisation problem which is ’easy’ to solve. The unconstrained optimisation
problem, which we will get from the penalty method, can be solved by any unconstrained
optimisation method. Thus, for example, with Newton’s method or with Quasi-Newton methods.
Suppose we do not satisfy the constraint at a certain iteration step k during the optimisation. We
can ’force’ the algorithm to seek a feasible solution by adding a value to the objective function.
This additional term is called the penalty term. A common choice for the penalty term is
1
2
Äkhhh(xxx)

Thhh(xxx). The more the constraint is violated, the higher the penalty term is. Hence, the
penalty method converts a constraint optimisation into an unconstrained optimisation problem,
which reads

min
xxx

Ã(xxx, Äk) = f(xxx) +
1

2
Äkhhh(xxx)

Thhh(xxx). (A.68)

The larger Äk, the more attention is given to the feasibility. However, if Äk is too large,
the problem might become ill-conditioned. The procedure is to increase Äk at (almost) every
iteration. Hence, we solve multiple sub-problems until we reach convergence (GRIVA et al., 2009).
The box below shows the steps for a penalty method algorithm.
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Penalty method algorithm steps

1.Check for optimality: If
∥

∥∇Ã(xxx, Äk)
∥

∥ f ϵ, then stop.

2.Solve unconstrained sub-problem:

min
xxx

Ã(xxx, Äk) = f(xxx) +
1

2
Äkhhh(xxx)

Thhh(xxx)

3.Increase Äk Äk+1 g Äk

A.1.4.5 Augmented Lagrangian method

The ALM is a method to solve constrained optimisation problems. This subsection first only
considers equality constraints, and later, the theory is extended to inequality constraints to solve
the general optimisation problem stated in problem (A.32).

We saw that a first-order optimality condition of a constrained optimisation problem is that
∇L(xxx∗,¼¼¼∗) = 000, which is a very similar first-order condition to the unconstrained optimisation
problem (∇f(xxx∗) = 000). A question may arise: Why do we not minimise L and not bother
about the constraints anymore? Unfortunately, this is not possible because then we assume that
L(xxx∗,¼¼¼∗) is a minimiser, which is, in general, not the case. Usually L(xxx∗,¼¼¼∗) is a saddle point.
The ALM augments the Lagrangian function by an additional penalty term to overcome this
problem. The penalty term comes from the penalty method, which is explained in the subsection
A.1.4.4.

ALM equality constraints

The idea of the ALM is to combine the Lagrangian function with the penalty method. If we
add a penalty term to the Lagrangian function shown in equation (A.15), we get the augmented
Lagrangian formulation, which is defined as

A(xxx,¼¼¼, Äk) = f(xxx) + ¼¼¼Thhh(xxx) +
1

2
Äkhhh(xxx)

Thhh(xxx). (A.69)

The penalty term of the augmented Lagrangian ensures that A(xxx∗,¼¼¼∗, Äk) is a minimiser.
We can increase Äk at (almost) every iteration and solve multiple unconstrained sub-problems,
similar to the penalty method. However, a question remains: How do we know the values of the
Lagrange multipliers? Initially, we need to guess the Lagrange multipliers. However, we update
¼¼¼k at every iteration in order to get a better guess of the Lagrange multipliers ¼¼¼∗ at the solution
xxx∗. If we assume that we will reach convergence at the next iteration, we say that

∇A(xxxk+1,¼¼¼k, Äk) = 000, (A.70)

or

∇A(xxxk+1,¼¼¼k, Äk) = 000 = ∇f(xxxk+1) +∇hhh(xxxk+1)¼¼¼k + Äk∇hhh(xxxk+1)
Thhh(xxxk+1), (A.71)

which can be rearranged as

∇A(xxxk+1,¼¼¼k, Äk) = 000 = ∇f(xxxk+1) +∇hhh(xxxk+1)¼¼¼k + Äk∇hhh(xxxk+1)
Thhh(xxxk+1) (A.72)

= ∇f(xxxk+1) +∇hhh(xxxk+1)[¼¼¼k + Äkhhh(xxxk+1)]. (A.73)

Hence, a logical choice to update ¼¼¼ is
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¼¼¼k+1 = ¼¼¼k + Äkhhh(xxxk+1), (A.74)

because then

∇xxxL(xxxk+1,¼¼¼k+1) = ∇f(xxxk+1) +∇hhh(xxxk+1)¼¼¼k+1 = 000, (A.75)

which is an optimality condition for a constrained optimisation problem. The algorithm will
terminate when ∇L(xxxk+1,¼¼¼k+1) = 000 or

∥

∥∇L(xxxk,¼¼¼k)
∥

∥ f ϵ. An ALM algorithm can be divided
into three steps: 1. Check for optimality, 2. Solve unconstrained sub-problem, 3. Update ¼¼¼k
and Äk. Those three steps are repeated until convergence is achieved (GRIVA et al., 2009). The
three steps are described in the box below.

Augmented Lagrangian method algorithm steps

1.Check for optimality: If
∥

∥∇L(xxxk,¼¼¼k)
∥

∥ f ϵ, then stop.

2.Solve unconstrained sub-problem:

min
xxx

A(xxx,¼¼¼k, Äk) = f(xxx) + ¼¼¼Tkhhh(xxx) +
1

2
Äkhhh(xxx)

Thhh(xxx)

which gives xxxk+1.

3.Update ¼¼¼k and Äk ¼¼¼k+1 = ¼¼¼k + Äkhhh(xxxk+1)

Äk+1 g Äk

ALM equality and inequality constraints

The previous subsection describes solving a constrained optimisation problem with the ALM.
However, the method described above can only handle equality constraints. This subsection
describes how the theory is extended to inequality constraints. There are multiple methods to
include inequality constraints, see, e.g. (GILL et al., 1986), (PILLO; GRIPPO, 1982), (BIRGIN et al.,
2005), (ROCKAFELLAR, 1973a). Nevertheless, in this Master’s Thesis, the method of Fletcher
(1975) will be used. The augmented Lagrangian formulation of equation (A.69) can be rewritten
to an equivalent formulation which is 1

A(xxx,¼¼¼k, Äk) = f(xxx) +
1

2
Äk

∥

∥

∥

∥

hhh(xxx) +
¼¼¼k
Äk

∥

∥

∥

∥

2

2

(A.76)

= f(xxx) +
1

2
Äk

∥

∥

∥
h̃hh(xxx,¼¼¼k)

∥

∥

∥

2

2
, (A.77)

where h̃hh(xxx,¼¼¼k, Äk) = hhh(xxx) + ¼¼¼k/Äk. Please note the similarity to the penalty method (equa-

tion (A.68)), where
∥

∥

∥
1/2 Äkh̃hh(xxx,¼¼¼k)

∥

∥

∥

2

2
can be seen as a penalty term which gets added to the

objective function. Fletcher (1975) proposed to add the inequality constraints ggg(xxx) to the aug-
mented Lagrangian function in a similar way as the equality constraints. However, the inequality
constraints should be ignored if the current iteration is feasible enough. One method to do so is
by using a max function. Fletcher proposed augmented Lagrangian function is

1Actually the rewritten formulation is A(xxx,λλλk, ρk) = f(xxx) + 1

2
ρk

∥

∥

∥
hhh(xxx) + λλλk

ρk

∥

∥

∥

2

2

+ C, where C =

−1/2
(

λkλkλk/ρk
)T (

λkλkλk/ρk
)

but since C is a constant it does not influence the solution xxx∗. A constant shifts a
curve up or down, but the location of the minimiser stays unaltered.
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A(xxx,¼¼¼k,µµµk, Äk) = f(xxx) +
1

2
Äk





∥

∥

∥

∥

hhh(xxx) +
¼¼¼k
Äk

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∥

〈

ggg(xxx) +
µµµk
Äk

〉

∥

∥

∥

∥

∥

2

2



 (A.78)

= f(xxx) +
1

2
Äk

(

∥

∥

∥
h̃hh(xxx,¼¼¼k)

∥

∥

∥

2

2
+
∥

∥g̃gg(xxx,µµµk)
∥

∥

2

2

)

, (A.79)

where g̃gg(xxx,µµµk, Äk) =
〈

ggg(xxx) +µµµk/Äk
〉

and ïað = max(0, a). This implies that g̃gg(xxx,µµµk, Äk) is a
vector where all elements are greater or equal to zero. µµµk are the estimated Lagrange multipliers
associated with the inequality constraints. Please note that in the expression above, the equality
and inequality terms get penalised by the same penalisation factor Äk. However, choosing two
separate penalty factors for the equality and inequality constraints is also possible. Next, instead
of using the norm notation, we can express the augmented Lagrangian function by

A(xxx,¼¼¼k,µµµk, Äk) = f(xxx) +
1

2
Äk

(

∥

∥

∥
h̃hh(xxx,¼¼¼k)

∥

∥

∥

2

2
+
∥

∥g̃gg(xxx,µµµk)
∥

∥

2

2

)

(A.80)

= f(xxx) +
1

2
Äk

(

h̃hh(xxx,¼¼¼k)
T
h̃hh(xxx,¼¼¼k) + g̃gg(xxx,µµµk)

T g̃gg(xxx,µµµk)

)

(A.81)

= f(xxx) +
1

2
Äk

(

(

hhh(xxx) +
¼¼¼k
Äk

)T (

hhh(xxx) +
¼¼¼k
Äk

)

+

〈

ggg(xxx) +
µµµk
Äk

〉T 〈

ggg(xxx) +
µµµk
Äk

〉

)

,

(A.82)

to make the differentiation in the next step more intuitive.

∇xxxA(xxx,¼¼¼k,µµµk, Äk) = ∇xxxf(xxx) + Äk

(

∇xxxhhh(xxx) h̃hh(xxx,¼¼¼k) +∇xxxggg(xxx) g̃gg(xxx,µµµk)
)

(A.83)

= ∇xxxf(xxx) + Äk

(

Jhx
JhxJhx

T h̃hh(xxx,¼¼¼k) + JgxJgxJgx
T g̃gg(xxx,µµµk)

)

(A.84)

= ∇xxxf(xxx) + Äk

(

Jhx
JhxJhx

T

(

hhh(xxx) +
¼¼¼k
Äk

)

+ JgxJgxJgx
T

〈

ggg(xxx) +
µµµk
Äk

〉

)

, (A.85)

where Jhx
JhxJhx

and Jhx
JhxJhx

are the Jacobian matrices with respect to xxx associated with hhh(xxx) and
ggg(xxx), respectively. ∇xxxA(xxx,¼¼¼k,µµµk, Äk) can be used to solve the unconstrained sub-problem. A
logical choice to update the Lagrange multipliers of the inequality constraints is

µµµk+1 = max
{

0,µµµk + Äk ggg(xxxk+1)
}

. (A.86)

Please note that by using the updating formula above, it is not possible that the Lagrange
multipliers for inequality constraints are negative. This makes sense because a negative Lagrange
multiplier implies that the objective function decreases towards the feasible region.

Augmented Lagrangian method (Fletcher) algorithm steps

1.Check for optimality: If
∥

∥∇L(xxxk,¼¼¼k,µµµk)
∥

∥ f ϵ, then stop.

2.Solve unconstrained sub-problem:

min
xxx

A(xxx) = f(xxx) +
1

2
Äk

(

∥

∥

∥
h̃hh(xxx,¼¼¼k)

∥

∥

∥

2

2
+
∥

∥g̃gg(xxx,µµµk)
∥

∥

2

2

)

which gives xxxk+1.

3.Update ¼¼¼k, µµµk and Äk
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¼¼¼k+1 = ¼¼¼k + Äkhhh(xxxk+1)

µµµk+1 = max
{

0,µµµk + Äk ggg(xxxk+1)
}

Äk+1 g Äk

A.1.4.6 Sequential quadratic programming method

The sequential Quadratic Programming (SQP) method is a method to solve constraint op-
timisation problems. Suppose we want to solve the following optimisation problem.

min
xxx

f(xxx)

s.t. hhh(xxx) = 000
(A.87)

The Lagrangian function of this problem is

L(xxx,¼¼¼) = f(xxx) + ¼¼¼T hhh(xxx). (A.88)

According to equation (A.17), one first-order necessary optimality condition of the stated
problem is

∇L(xxx∗,¼¼¼∗) = 000. (A.89)

Let us try to find∇L(xxx∗,¼¼¼∗) = 000 by Newtons method explained in subsection A.1.4.1. Hence,
we need to solve the linear system

∇2L(xxxk,¼¼¼k)

{

qqqk
µµµk

}

= −∇L(xxxk,¼¼¼k), (A.90)

for the search direction

{

qqqk
µµµk

}

. At the next iteration we can update xxxk and the Lagrange

multipliers ¼¼¼k by
{

xxxk+1

¼¼¼k+1

}

=

{

xxxk
¼¼¼k

}

+

{

qqqk
µµµk

}

. (A.91)

We can repeat this process until the algorithm converges to xxx∗ and ¼¼¼∗ (GRIVA et al., 2009).
But why does this method work? Let us analyse the linear system carefully again.

∇2L(xxxk,¼¼¼k)

{

qqqk
µµµk

}

= −∇L(xxxk,¼¼¼k) (A.92)

[

∇2
xxxxxxL(xxxk,¼¼¼k) ∇

2
xxxλλλL(xxxk,¼¼¼k)

∇2
λλλxxxL(xxx,¼¼¼) ∇2

λλλλλλ(xxxk,¼¼¼k)

]{

qqqk
µµµk

}

= −

{

∇xxxL(xxxk,¼¼¼k)
∇λλλL(xxxk,¼¼¼k)

}

(A.93)

[

∇2
xxxxxxL(xxxk,¼¼¼k) ∇xxxhhh(xxxk)
∇xxxhhh(xxxk)

T 000

]{

qqqk
µµµk

}

= −

{

∇xxxf(xxxk) +∇xxxhhh(xxxk)¼¼¼
hhh(xxxk)

}

(A.94)

The linear system represents the first-order necessary condition of the optimisation problem

min
qqq

d(qqq) =
1

2
qqqT
[

∇2
xxxxxxL(xxxk,¼¼¼k)

]

qqq + qqqT
[

∇xxxL(xxxk,¼¼¼k)
]

s.t. hhh(xxxk) + ∇xxxhhh(xxxk)
T qqq = 000,

(A.95)
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which is a quadratic approximation of the Lagrangian function L(xxx,¼¼¼) and a linear approx-
imation of the constrain hhh(xxx) at the point xxxk and ¼¼¼k (GRIVA et al., 2009). It may not be that
trivial to see that the linear system is the first-order necessary condition of the abovementioned
optimisation problem. So, let us derive the first-order necessary conditions of the optimisation
problem. The first-order necessary condition states that the gradient of the objective function
d(qqq) is a multiple of the gradient of the constraint hhh(qqq). Thus,

∇qqqd(qqq
∗) +∇qqqhhh(qqq

∗)µµµ = 000 (A.96)
[

∇2
xxxxxxL(xxxk,¼¼¼k)

]

qqq +
[

∇xxxL(xxxk,¼¼¼k)
]

+∇xxxhhh(xxxk)µµµ = 000 (A.97)
[

∇2
xxxxxxL(xxxk,¼¼¼k)

]

qqq + ∇xxxhhh(xxxk)µµµ = −
[

∇xxxL(xxxk,¼¼¼k)
]

(A.98)
[

∇2
xxxxxxL(xxxk,¼¼¼k)

]

qqq + ∇xxxhhh(xxxk)µµµ = −∇xxxf(xxxk) +∇xxxhhh(xxxk)¼¼¼, (A.99)

where µµµ are the Lagrange multipliers of the optimisation problem stated in equation (A.95).
Please note that the gradient with respect to qqq of the constraint hhh(xxxk) + ∇xxxhhh(xxxk)

T qqq is equal to
the gradient of hhh(qqq) at xxxk. Thus, ∇qqqhhh(qqq

∗) = ∇xxxhhh(xxxk). The second first-order condition is that
the constraint is not violated. The constraint is satisfied if

hhh(xxxk) + ∇xxxhhh(xxxk)
T qqq = 000 (A.100)

∇xxxhhh(xxxk)
T qqq = −hhh(xxxk). (A.101)

Combining equation (A.99) and (A.101) gives the linear system obtained by applying New-
ton’s method to the optimisation problem stated in (A.87). Consequently, the SQP method
works because, at every iteration, we solve a linear system which will satisfy the first-order nec-
essary optimality condition of a quadratic approximation of the Lagrangian subjected to a linear
approximation of the constraints. Repeating this process will usually converge to the solution
xxx∗. The box below shows the steps of an SQP algorithm. Note that we need to guess ¼¼¼0 to
determine the Lagrangian function (equation A.88) at the first iteration.

Sequential quadratic programming method algorithm steps

1.Check for optimality: If
∥

∥∇L(xxxk,¼¼¼k)
∥

∥ f ϵ, then stop.

2.Solve linear system:

∇2L(xxxk,¼¼¼k)

{

qqqk
µµµk

}

= −∇L(xxxk,¼¼¼k)

3.Make step and update ¼¼¼
{

xxxk+1

¼¼¼k+1

}

=

{

xxxk
¼¼¼k

}

+

{

qqqk
µµµk

}

A.1.5 Aggregation functions

Suppose we want to solve the optimisation problem

min
xxx

f(xxx)

s.t. gi(xxx) f 0 i = 1, 2, ..., ng
(A.102)
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by a gradient-based optimisation method where ng is a large integer. Hence, it is an optimi-
sation problem with many inequality constraints. For all active constraints at xxxk, which means
for all the constraints gi(xxxk) for which holds gi(xxxk) = 0, we need to calculate the gradient. If the
optimisation problem has many inequality constraints, it becomes computationally expensive
to compute the gradient of all active constraints at xxxk. Aggregation functions can overcome
this problem by combining all inequality constraints in one single scalar function. The simplest
aggregation function is the max function

ḡmax = max(ggg(xxx)), (A.103)

which returns the maximum value of all constraints. However, in practice, the max func-
tion performs very poorly, and the function is not differentiable, which makes it unsuitable for
gradient-based optimisation. A better and differentiable aggregation function is the KS function
and is defined as

ḡKS(ÄKS ,xxx) =
1

ÄKS

ln

ng
∑

j=1

exp
(

ÄKS gj(xxx)
)

, (A.104)

where ÄKS is a scalar value which determines the accuracy of ḡKS to the largest inequality
constraint. The advantage of the KS function is that the contribution of inactive constraints is
multiple orders of magnitude smaller compared to active constraints (POON; MARTINS, 2006).
The KS function has several properties (HAFTKA; GüRDAL, 1992),(RASPANTI et al., 2000):

1.ḡmax < ḡKS(ÄKS ,xxx) < ḡmax +
ln (ng)

ρKS

2.ḡKS(ÄKS ,xxx) g ḡmax for all Ä > 0

3. lim
ρKS→∞

ḡKS(ÄKS ,xxx) = ḡmax

4.ḡKS(ÄKS2,xxx) g ḡKS(ÄKS1,xxx) ∀xxx such that ÄKS1 > ÄKS2

5.The KS function ḡKS(ÄKS ,xxx) is insensitive to ÄKS as ÄKS becomes large

6.The gradient of the KS function with respect to xxx is independent of ḡmax

7.ḡKS(ÄKS ,xxx) is convex if and only if all constraints are convex

Figure A.1 shows how the KS function approximates the maximum value of the three in-
equality functions

g1(x) f
1

5
x+ 1 (A.105)

g2(x) f
4

100
x2 −

1

5
x (A.106)

g3(x) f −
2

100
x3 +

3

10
x2 −

13

2
. (A.107)

One can see that the larger ÄKS , the better the KS function approximates the maximum
value of all inequality constraints. However, if ÄKS is too large, the optimisation problem can
become ill-conditioned.

A.1.6 Automatic differentiation

As the previous subsections showed, knowledge of the gradient is essential in optimisation.
Usually, the constraint and objective functions are not explicitly known but are coded in a
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(a) ρKS = 1 (b) ρKS = 5

(c) ρKS = 50

FIGURE A.1 – Influence of ρKS on accuracy of KS function.

computer script. There are several methods to get the gradient of a script, and AD is one of
them. AD is a popular choice to get the gradient due to its precision, which is of the same order
as the machine precision (NOCEDAL; WRIGHT, 2000). In a script, we use several variables; in
this subsection, we will call those variables xk. x1 is the first assigned variable, x2 is the second
and so on until we assign xn, where n is the total number of variables assigned in the script.
AD is based on the chain rule. Two different chain rules exist that are equally valid. The first
one is

dxi
dxj

=
i−1
∑

k=j

∂xi
∂xk

dxk
dxj

, (A.108)

which is used for the forward-mode AD. The second chain rule is

dxi
dxj

=

i
∑

k=j+1

∂xk
∂xj

dxi
dxk

, (A.109)

which is used for the backward-mode AD (MARTINS; NING, 2021). The second chain rule is
less intuitive and less known but gives the same result as the first one. Both chain rules give
the derivative of variable xi with respect to the variable xj , which could be any variable of our
script. In both chain rules, the indices i and j are fixed, and we sum over the index k. One can
see that the difference between both chain rules is that only the partial and total derivatives are
interchanged. Let us consider the function

f(x1, x2) = x5(x2, x3, x4) = x2 · x3(x1) · x4(x1, x2), (A.110)

where

A-18



x3(x1) = x21 (A.111)

x4(x1, x3) = x1 + x3(x1) (A.112)

and suppose we want to know the derivative of f = x5 with respect to x1 and x2. Thus,
i = 5 and j = 1, 2 . The chain rule used by the forward-mode AD gives

dx5
dx1

=

i−1=4
∑

k=j=1

∂x5
∂xk

dxk
dx1

(A.113)

=
∂x5
∂x1

dx1
dx1

+
∂x5
∂x2

dx2
dx1

+
∂x5
∂x3

dx3
dx1

+
∂x5
∂x4

dx4
dx1

(A.114)

= x2(3x
2
1 + 4x31). (A.115)

and

dx5
dx2

=
i−1=4
∑

k=j=2

∂x5
∂xk

dxk
dx2

(A.116)

=
∂x5
∂x2

dx2
dx2

+
∂x5
∂x3

dx3
dx2

+
∂x5
∂x4

dx4
dx2

(A.117)

= x31 + x41. (A.118)

The chain rule of the backward-mode AD gives the same answer. So, how can we use both
chain rules to calculate the derivatives of a script? A computer breaks down complex equations
in simple operations like additions, multiplications, etc. and elementary functions like the sinus
or exponential function. The script organises the simple operations and elementary functions
in a computational graph. Figure A.2 shows the computational graph for our example. Every
circle is called a node. The Forward- and backward-mode AD use this computational graph to
determine the derivative. Both AD methods only calculate the partial derivatives and assemble
them by the corresponding chain rule to get the total derivative.

x1 x4

x5

x3
x2

+

*

x2
*

Input Output

FIGURE A.2 – Computational graph for f(xxx) of equation A.110.

A.1.6.1 Forward-mode AD

Forward-mode AD gets its name from the computational flow direction of the derivatives in
the computational graph. The derivatives are determined in the computational graph from left
to right in a forward direction. In a script are nin input variables and nd dependent variables,
which depend on the input variables. Furthermore, there are nout output variables, which are
at the same time also dependent variables. The forward-mode AD calculates the directional
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derivative of the dependent variables along the seed vector v̇vv =
(

ẋ1 ẋ2 . . . ẋnin

)T

. The

seed vector is a unit vector whose elements are called seeds. Mathematically, the forward-mode
calculates

∇v̇vvxxxd = ∇xxxin
xxxTd · v̇vv (A.119)

∇v̇vvxxxd = JJJxxxd
· v̇vv. (A.120)

where xxxd are all dependent variables, xxxin are all input variables, JJJxxxd
is the Jacobian of the

dependent variables with respect to the input variables and ∇v̇vvxxxd is the directional derivative
of the dependent variables with respect to the input variables along the direction of the vector
v̇vv. The vector v̇vv is an input of the forward-mode AD. However, we are usually only interested in
the derivatives of the outputs of our script. Hence, we can write the result of the forward-mode
AD as

∇v̇vvxxxout = JJJxxxout · v̇vv. (A.121)

JJJxxxout is a sub-matrix of JJJxxxd
, which is a sub-matrix of JJJxxx. In the most simple case, v̇vv is the

jth canonical basis vector of the input space. In that case, the forward-mode AD determines the
Jacobian matrix’s jth column, as shown below.

JJJxxx =

























dx1

dx1

dx1

dx2
. . . dx1

dxj
. . . dx1

dxn

dx2

dx1

dx2

dx2
. . . dx2

dxj
. . . dx2

dxn

...
...

. . .
...

. . .
...

dxj

dx1

dxj

dx2
. . .

dxj

dxj
. . .

dxj

dxn

...
...

. . .
...

. . .
...

dxn

dx1

dxn

dx2
. . . dxn

dxj
. . . dxn

dxn

























(A.122)

Suppose we want to know the derivative dx4/dx1 of our example above. That means we need
to calculate the column j = 1 of the Jacobian matrix because dx4/dx1 is the last element of the
first column of the Jacobian matrix. So, we need to choose the first canonical basis vector as the

seed vector, which is the unit vector along the x1-axis. Thus, v̇vv =
(

1 0
)T

. The forward-mode

AD calculates at every node i the total derivative with respect to the first input node x1, defined
as ẋi = dxi/dx1. The total derivative of the input nodes are the elements of the seed vector. In
our example the seed value of node i = 1 is ẋ1 = dx1/dx1 = 1 and the seed value of node i = 2
is ẋ2 = dx2/dx1 = 0. Next we move to the third node i = 3 and calculate ẋ3 = dx3/dx1 by the
chain rule of equation (A.108)

dx3
dx1

= ẋ3 =

i−1=2
∑

k=j=1

∂x3
∂xk

dxk
dx1

(A.123)

=
∂x3
∂x1

dx1
dx1

+
∂x3
∂x2

dx2
dx1

(A.124)

=
∂x3
∂x1

ẋ1 +
∂x3
∂x2

ẋ2 (A.125)

= 2x1, (A.126)

where we only need to calculate the partial derivatives of node 3 with respect to the two
parent nodes 1 and 2 because we already know the total derivatives ẋ1 and ẋ2. Next, we can
move to node i = 4 and calculate ẋ4.
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dx4
dx1

= ẋ4 =
i−1=3
∑

k=j=1

∂x4
∂xk

dxk
dx1

(A.127)

=
∂x4
∂x1

dx1
dx1

+
∂x4
∂x2

dx2
dx1

+
∂x4
∂x3

dx3
dx1

(A.128)

=
∂x4
∂x1

ẋ1 +
∂x4
∂x2

ẋ2 +
∂x4
∂x3

ẋ3 (A.129)

= 1 + 2x1 (A.130)

Ultimately, we can move to the output node i = 5 to calculate our desired derivative dx5/dx1.

dx5
dx1

= ẋ5 =
i−1=4
∑

k=j=1

∂x5
∂xk

dxk
dx1

(A.131)

=
∂x5
∂x1

dx1
dx1

+
∂x5
∂x2

dx2
dx1

+
∂x5
∂x3

dx3
dx1

+
∂x5
∂x4

dx4
dx1

(A.132)

=
∂x5
∂x1

ẋ1 +
∂x5
∂x2

ẋ2 +
∂x5
∂x3

ẋ3 +
∂x5
∂x4

ẋ4 (A.133)

= x2(3x
2
1 + 4x31) (A.134)

One can see that the forward-mode AD walks along the computational tree from left to right
and determines the partial derivatives on its way. The forward-mode AD reuses the previously
determined total derivatives to calculate the total derivative at the current node. Once the
forward-mode AD reaches the computational tree’s right side, the desired directional derivative
along the seed vector v̇vv is known. Suppose that not only x5 is an output of the script, but also
x4. In this case, we do not need to apply the forward-mode AD again because dx4/dx1 is an
intermediate result of the process. However, suppose we want the derivative dx5/dx2. In this

case, we need to choose as the seed vector the second canonical basis vector, e.g. v̇vv =
(

0 1
)T

,

and perform the forward-mode AD again. Consequently, the computational price to get the
directional derivative of the function outputs along the canonical basis vectors of the input
space by the forward-mode AD is independent of the number of output functions but scales
with the input variables. This becomes clear by observing the Jacobian matrix. Let us consider
the Jacobian matrix of our example.

JJJxxx =















1 0 0 0 0
0 1 0 0 0
dx3

dx1

dx3

dx2
1 0 0

dx4

dx1

dx4

dx2

dx4

dx3
1 0

dx5

dx1

dx5

dx2

dx5

dx3

dx5

dx4
1















(A.135)

Our chosen seed vector is v̇vv =
(

1 0
)T

which is encircled in orange. Because our seed vector

is the first canonical basis vector, the forward-mode AD determined the Jacobian matrix’s first
column, shown in blue. The Jacobian matrix of all dependent variables is encircled in green.
The Jacobian matrix of the output JJJxxxout nodes is encircled in red. As someone can see, the
forward-mode AD calculates the directional derivative along the x1-axis of all variables in the
script. However, please note that the output of the forward-mode AD is just ∇v̇vvxxxout = JJJxxxout ·v̇vv =
dx5/dx1, which is the intersection of the blue and red circles. All other derivatives encircled
in blue are intermediate results. Additionally, one can observe that we need to perform the
forward-mode AD again to get dx5/dx2.

A-21



A.1.6.2 Backward-mode AD

The backward-mode AD gets its name from the computational flow direction of the deriva-
tives. The result of the backward-mode AD can be expressed as

x̄xx = JJJT
xxxout
· v̄vv, (A.136)

where JJJxxxout is the Jacobian matrix of the output variables with respect to the input variables,
and v̄vv is a vector spanned in the output space. v̄vv is also referred as the reversed seed vector. In
the simplest case, v̄vv is the (nx− j+1)th canonical basis vector in the output space. In that case,
the backward-mode AD determines the Jacobian matrix’s jth row as shown below.

JJJxxx =
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(A.137)

The backward-mode AD consists of two sweeps: a forward sweep and a backward sweep. The
forward sweep walks the computational tree from the left to the right, and the backward sweep
from the right to the left. In the forward sweep, all numerical values of all nodes are determined.
Additionally, the forward sweep determines and stores all partial derivatives on its way. Next,
the backward sweep gets initialised. The backward-mode AD assigns to every node an adjoint

variable. The adjoint variables of the output nodes are the values in the reversed seed vector,
which the user specifies. The adjoint variables of all other nodes are defined as x̄j = dxn/dxj ,
where xn is the last assigned variable in the script (which is consequently also an output of the
script). The backward-mode AD determines the adjoint variables x̄j by the second chain rule
of equation (A.109). Let us consider our example again. Figure A.3 shows the computational
tree of our example after the forward sweep where we determined the numerical values of x1 -
x5 and all numerical values of the partial derivatives shown in the figure. Our output space is
only one-dimensional. Hence, we can only choose v̄vv as a scalar. So, let us choose v̄vv = 1 to get
the last row of the Jacobian matrix. Hence, x̄5 = 1. Next, we start the backward sweep at node
j = 4 and determine the adjoint

x̄4 =
dx5
dx4

=

i=5
∑

k=j+1=5

∂xk
∂x4

dx5
dxk

(A.138)

=
∂x5
∂x4

dx5
dx5

(A.139)

= x2x
2
1. (A.140)

Next, we move to node j = 3 and determine the adjoint x̄3.
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dx5
dx3

= x̄3 =
i=5
∑

k=j+1=4

∂xk
∂x3

dx5
dxk

(A.141)

=
∂x4
∂x3

dx5
dx4

+
∂x5
∂x3

dx5
dx5

(A.142)

=
∂x4
∂x3

x̄4 +
∂x5
∂x3

x̄5 (A.143)

= x2(2x
2
1 + x1), (A.144)

where ∂x4/∂x3, x̄4, ∂x5/∂x3 and x̄5 are known. Moving on to node j = 2 and determine by
the chain rule x̄2

dx5
dx2

= x̄2 =

i=5
∑

k=j+1=3

∂xk
∂x2

dx5
dxk

(A.145)

=
∂x3
∂x2

dx5
dx3

+
∂x4
∂x2

dx5
dx4

+
∂x5
∂x2

dx5
dx5

(A.146)

=
∂x3
∂x2

x̄3 +
∂x4
∂x2

x̄4 +
∂x5
∂x2

x̄5 (A.147)

= x31 + x41, (A.148)

where we use again the intermediate results x̄3 and x̄4. Ultimately, we can calculate the
derivative x̄1 by

dx5
dx1

= x̄1 =
i=5
∑

k=j+1=2

∂xk
∂x1

dx5
dxk

(A.149)

=
∂x2
∂x1

dx5
dx2

+
∂x3
∂x1

dx5
dx3

+
∂x4
∂x1

dx5
dx4

+
∂x5
∂x1

dx5
dx5

(A.150)

=
∂x2
∂x1

x̄2 +
∂x3
∂x1

x̄3 +
∂x4
∂x1

x̄4 +
∂x5
∂x1

x̄5 (A.151)

= x2(4x
3
1 + 3x21). (A.152)

FIGURE A.3 – Computational graph after forward sweep. In the forward sweep, the partial derivatives are
determined.

As you can see, we determine the derivative by walking the computational tree backwards and
exploiting how the second chain rule is defined. Furthermore, one can see that x̄2 = dx5/dx2 is
an intermediate result. So, we do not need to repeat the backward-mode AD to get the derivative
of the output function with respect to a different input variable. Nevertheless, we need to repeat
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the backward-mode AD to know the total derivative of a different output function. That means
the backward-mode AD is beneficial if the script has many input variables and only a few output
functions, as is usually the case in optimisation problems. Let us observe the Jacobian matrix
of our example again and see which derivatives the backward-mode AD determines.

JJJxxx =















1 0 0 0 0
0 1 0 0 0
dx3

dx1

dx3

dx2
1 0 0

dx4

dx1

dx4

dx2

dx4

dx3
1 0

dx5

dx1

dx5

dx2

dx5

dx3

dx5

dx4
1















(A.153)

Our seed vector is the scalar value 1 and is in the lower right corner of the Jacobian matrix
in orange. In blue, we can see which derivatives the backward-mode AD determines. In red is
JJJxxxout , thus the derivatives of the output function with respect to the input variables, which is
at the same time the result of the backward-mode AD. As in the forward-mode AD, the result
of the backward-mode AD is the intersection of the blue and the red circles. One can see that
we can get the gradient of the output function f = x5 with one backward-mode AD execution.

A.1.7 Direct and adjoint method

Suppose we want to solve the optimisation problem

min
xxx

f(xxx,ppp)

w.s. rrr(ppp;xxx) = 000.
(A.154)

In non-mathematical terms, does this problem state that we want to minimise the objective
function f while we need to satisfy rrr(ppp;xxx) = 000. The semicolon indicates that the equation rrr(ppp;xxx)
is solved for ppp while xxx is fixed. Hence, ppp is a function of xxx, i.e. ppp(xxx). The objective function could,
for example, be the drag of a wing, which depends on the design variables xxx of the wing and
the state variables ppp (e.g. displacement of the wing). In this case, rrr are the residual functions
ensuring the model follows physical laws.

We can see rrr = 000 as an equality constraint and use any constrained optimisation method
described in subsection A.1.4 to solve this problem. However, we can do better than this. rrr = 000
describes the relationship between the design and state variables, and the objective function is
a function of both the design and state variables. The idea is to give the optimiser a derivative,
which already considers the implicit relationship between the design and state variables. For
this, we give the optimiser a derivative of f , which is along a linear approximation of rrr = 000. We
can do that by treating ppp as a function of xxx and define the optimisation problem as

min
xxx

f(xxx,ppp(xxx)) (A.155)

where the residual function rrr describes ppp(xxx). The only disadvantage is that it is more
complicated to calculate the derivative of the objective function. Using the chain rule, the total
derivative of f is

d

dxxx
f(xxx,ppp(xxx)) =

∂f

∂ppp

dppp

dxxx
+
∂f

∂xxx

dxxx

dxxx
(A.156)

=
∂f

∂ppp

dppp

dxxx
+
∂f

∂xxx
, (A.157)
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which requires to know dppp/dxxx. Figure A.4 shows the geometrical interpretation of equation
(A.157). One can see that the derivative of f(xxx,ppp(xxx)) is along the curve rrr = 000.

FIGURE A.4 – Contour lines of objective function f(x, p) = x p and residual function r = 3x2 + p2 − 5 = 0. The
plot shows the gradient of the objective function in blue and the total derivative of f(x, p(x)) in green.

Next, we can get dppp/dxxx from the total derivative of rrr(xxx,ppp(xxx)) (please note that we defined
that ppp is a function of xxx) which is

d

dxxx
rrr(xxx,ppp(xxx)) = 000 =

∂rrr

∂ppp

dppp

dxxx
+
∂rrr

∂xxx

dxxx

dxxx
(A.158)

=
∂rrr

∂ppp

dppp

dxxx
+
∂rrr

∂xxx
(A.159)

−
∂rrr

∂xxx
=
∂rrr

∂ppp

dppp

dxxx
. (A.160)

Please note that drrr/dxxx is equal to zero because ppp is a function of xxx. To show this is left to
the reader. However, a different way to see that drrr/dxxx = 000 is to realise that rrr is zero everywhere.
Thus a small perpetuation in rrr is zero, i.e. drrr = 000. Next, let us rearrange equation (A.160) to
get dppp/dxxx

dppp

dxxx
= −

[

∂rrr

∂ppp

]−1 ∂rrr

∂xxx
. (A.161)

where we assumed that ∂rrr/∂ppp is invertible. Since we got an expression for dppp/dxxx we can
plug it in equation (A.157) which gives

d

dxxx
f(xxx,ppp(xxx)) = −

∂f

∂ppp

[

∂rrr

∂ppp

]−1 ∂rrr

∂xxx
+
∂f

∂xxx
. (A.162)

Please note that we only need to compute partial derivatives to get the total derivative of the
objective function. However, it is computationally expensive to invert a matrix. There are two
methods to avoid calculating the inverse of ∂rrr/∂ppp, which are the direct method and the adjoint

method.

A.1.7.1 Direct method

The direct method introduces a matrix ΦΦΦ which is defined to be
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ΦΦΦ ≡

[

∂rrr

∂ppp

]−1 ∂rrr

∂xxx
. (A.163)

Hence, we can determine ΦΦΦ by solving the linear system

∂rrr

∂ppp
ΦΦΦ =

∂rrr

∂xxx
. (A.164)

ΦΦΦ has the dimensions np × nx. We need to solve for every column of ΦΦΦ one linear system;
thus, we must solve nx linear systems. Consequently, the direct method is beneficial if only a
few design variables xxx exist. The equation below visualises the dimensions of the matrices in
case nx > np.

∂rrr
∂ppp

(np×np)

ΦΦΦ

(np×nx)

= ∂rrr
∂xxx

(np×nx)

Next, let us plug in ΦΦΦ in equation (A.162) and we get

d

dxxx
f(xxx,ppp(xxx)) = −

∂f

∂ppp

[

∂rrr

∂ppp

]−1 ∂rrr

∂xxx
︸ ︷︷ ︸

ΦΦΦ

+
∂f

∂xxx
(A.165)

= −
∂f

∂ppp
ΦΦΦ+

∂f

∂xxx
. (A.166)

The box below shows the steps on how to use the direct method.

Direct method steps

min
xxx

f(xxx,ppp)

w.s. rrr(ppp;xxx) = 000

1.Solve rrr(ppp;xxx) = 000 for ppp

2.Solve linear system for ΦΦΦ

∂rrr

∂ppp
ΦΦΦ =

∂rrr

∂xxx

3.Calculate total derivative

d

dxxx
f(xxx,ppp(xxx)) =

∂f

∂ppp
ΦΦΦ+

∂f

∂xxx

4.Use the total derivative for any optimisation method to get
the new design variables xxx

A.1.7.2 Adjoint method

The adjoint method defines a matrix ΨΨΨ as

ΨΨΨT ≡
∂f

∂ppp

[

∂rrr

∂ppp

]−1

. (A.167)

So we can calculate ΨΨΨ by solving the linear system
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[

∂rrr

∂ppp

]T

ΨΨΨ =

[

∂f

∂ppp

]T

. (A.168)

Please note that ΨΨΨ has the dimensions np× nf . Again, we need to solve for every column of
ΨΨΨ one linear system. In case there are only a few functions of interest, as is usually the case in
optimisation, the adjoint method is beneficial. The equation below shows the dimensions of the
matrices in case np > nf .

[

∂rrr
∂ppp

]T

(np×np)

ΨΨΨ

(np×nf )

=
[

∂f
∂ppp

]T

(np×nf )

Similar to the direct method, we can plug in ΨΨΨ in equation (A.162).

d

dxxx
f(xxx,ppp(xxx)) = −

∂f

∂ppp

[

∂rrr

∂ppp

]−1

︸ ︷︷ ︸

ΨΨΨT

∂rrr

∂xxx
+
∂f

∂xxx
(A.169)

= −ΨΨΨT ∂rrr

∂xxx
+
∂f

∂xxx
(A.170)

The box below shows the steps of the adjoint method.

Adjoint method steps

min
xxx

f(xxx,ppp)

w.s. rrr(ppp;xxx) = 000

1.Solve rrr(ppp;xxx) = 000 for ppp

2.Solve linear system for ΨΨΨ
[

∂rrr

∂ppp

]T

ΨΨΨ =

[

∂f

∂ppp

]T

3.Calculate total derivative

d

dxxx
f(xxx,ppp(xxx)) = −ΨΨΨT ∂rrr

∂xxx
+
∂f

∂xxx

4.Use the total derivative for any optimisation method to get
the new design variables xxx

A.1.8 Introduction to B-splines

Basic splines, or in short B-splines, are built from piecewise polynomial functions, also called
basis functions. B-splines are widely used in computer graphics, computer-aided design (CAD)
and other numerical analysis. This section explains the fundamental principles of the splines
and explores how they are employed in optimisation processes.

Suppose we want to minimise the weight of a beam loaded by a vertical force as shown in
figure A.5. The design variable is the beam’s radius, and we require that the beam does not fail.

A-27



FIGURE A.5 – Beam subjected to vertical force, an example where B-splines are useful in optimising. B-splines
could describe the radius of the beam.

We can divide the beam into finite parts and optimise of every section the radius as indicated
in figure A.5. It is evident that the more beams we use for modelling, the closer we get to the
optimal solution. The disadvantage of increasing the number of beams in the model is that we
increase the number of design variables, which increases the optimisation cost. We introduce
B-splines in the optimisation process to decrease the number of design variables. Instead of
defining the thickness of the beam at finite points, we use a B-spline to describe the thickness
as a function of the length of the beam. The design variables become the weights of each basic
function of the B-spline. The weights determine the contribution of each basic function to the
B-spline. Mathematically, we can describe the B-spline as

fB =

nB
∑

i

Bi,p(À) ci, (A.171)

where Bi,p is the ith basic function of degree p, nB is the number of basic functions and
ci is the weight of the ith basic function. All weights can be collected in the weight vector ccc.
To create a basic function, one must choose a degree p of the basis function and a knot vector
ΞΞΞ. The knot vector contains a series of non-decreasing values of parametric coordinates called
knots. The knot vector reads

ΞΞΞ =
[

À0, À1, Ài, . . . ÀnΞΞΞ

]

, (A.172)

where Ài f Ài+1 and nΞΞΞ is the total number of knots. Two neighbouring knots span an
interval, which is known as a knot span. The ith knot span goes from Ài up to and not including
Ài+1, or mathematically [Ài, Ài+1). Given the degree p and the knot vector ΞΞΞ the B-splines can
be determined by the Cox–de Boor recursion formula, which reads for p = 0

Bi,0(À) =

{

1 if Ài f À < Ài+1,

0 otherwise,
(A.173)

and for p > 0

Bi,p(À) =
À − Ài
Ài+p − Ài

Bi,p−1(À) +
Ài+p+1 − À

Ài+p+1 − Ài+1
Bi+1,p−1(À). (A.174)

Please note that the higher-order basic functions (p > 0) are defined based on the lower-
order basis functions. What is interesting to observe is that we will get nB = nΞΞΞ − p − 1 basic
functions. The B-splines have two essential properties. They are always positive, and the sum
of all basis functions together is one on the parameter space [a, b].

Bi,p(À) g 0,

nB
∑

i=0

Bi,p(À) = 1, ∀· ∈ [a, b] (A.175)

For simplicity, we will choose the parameter space [0, 1], which we can always be achieved by
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scaling. Furthermore, we only consider B-splines with knot vectors where the first and the last
vector element is p+1 times repeated. Those knot vectors are called open knot vectors and have
the advantage that the B-splines are clamped at a and b. Clamped means that the B-spline will
have the value of the first weight c0 at a and the value of the last weight cnB

at b. To give an
impression how the B-splines look, figure A.6a shows the basic functions for the for p = 3 and
the knot vector

ΞΞΞ =
[

0 0, 0, 0, 1/2, 1, 1, 1, 1
]

(A.176)

Next, if we choose the weight vector

cccB =
[

1/2, 1/3, 1/4, 3, 3
]

(A.177)

we get the B-spline shown in figure A.6b. The B-spline is clamped, as we can see by the fact
that its first and final values are the values of the first and final weight. The B-spline is adjustable
by changing the weights, making the weights excellent design variables in an optimisation process
(BEER et al., 2020).

(a) Basis functions of third degree (b) B-spline

FIGURE A.6 – Basis functions and B-spline with knot vector ΞΞΞ =
[

0 0, 0, 0, 1/2, 1, 1, 1, 1
]

and

with weight vector ccc =
[

1/2, 1/3, 1/4, 3, 3
]

.

In QASTRO, the user provides the initial design parameters (e.g. the radius at finite points
of a beam), which is the baseline. The user has two options; the B-splines can represent either
’additive’ or ’multiplicative’ changes to the initial design parameters, which correspond to relative
changes rather than their absolute values. When the ’multiplicative’ option is chosen, the B-
spline is initially a flat line, which means that all weights are equal to one. As the optimiser
runs, it modifies the B-spline weights. The B-spline becomes evaluated at finite points where
the design parameters are defined, and those values are the factors which increase or decrease
the baseline geometry. On the other hand, when the ’additive’ option is selected, the B-spline is
initially a flat line, which means that all weights are zero. As optimisation proceeds, the B-spline
is modified, adding or subtracting values to the baseline geometry. In this Master’s Thesis, we
use only the ’multiplicative’ option.
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A.2 Aerodynamics

The methodology chapter describes a finite-wing model based on Prandlt’s finite-wing model.
It is essential to be familiar with the finite wing model of Prandlt to understand the methodology
in this Master’s Thesis. Both finite wing models are based on the potential flow theory described
in the first subsection. The second subsubtion explains Prandlt’s finite-wing model.

A.2.1 Introduction to potential flow

The potential flow theory is an aerodynamics concept that describes fluid behaviour in a
flow. The theory makes the important assumption that the fluid is inviscid, incompressible and
irrotational. The flow velocity at any point in the flow field can be determined by a potential

function Φ(rrr), which is a function of the location rrr =
(

x, y, z
)T

. Φ(rrr) is chosen such that its

gradient gives us the velocity field. Thus,

∇Φ(rrr) = VVV (rrr), (A.178)

where VVV (rrr) is the flow velocity at the location rrr. Because we assume that the flow is
incompressible, we know that

∇ · VVV (rrr) = 0, (A.179)

which means that

∇ · ∇Φ(rrr) = 0 (A.180)

∇2Φ(rrr) = 0. (A.181)

Consequently, we need to solve the Laplace equation ∇2Φ = 0 for the scalar function Φ(rrr),
which will give us the flow’s velocity field. We have two boundary conditions to solve the Laplace
equation:

1.Zero flow condition: There is no airflow through a solid object in a flow. In our case, the
object in the flow will be a wing. Hence, we will define that there is no flow normal to the
wing surface. Mathematically, this boundary condition reads

∇Φ(rrr) ·nnn = 000 (A.182)

2.Decay of disturbance: The object, or in our case the wing, disturbs the flow. This distur-
bance should decay far away from the object. That means that

lim
r→∞

(∇Φ− VVV rel) = 000, (A.183)

where VVV rel is the relative velocity between the undisturbed fluid and the object, and r is
the distance to the object.

The challenge is to find the scalar function Φ(rrr). Luckily, we can use the principle of su-
perposition for the Laplace equation, which states that if Φ1,Φ2, . . .ΦnΦ

are solutions to the
Laplace equation, then

Φ =

nΦ
∑

k=1

ckΦk (A.184)

is a solution to the Laplace equation, too. ck is an arbitrary constant.
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The procedure to find Φ(rrr) is to combine multiple elementary solutions (e.g. sources, dou-
blets, vortexes), which satisfy the Laplace equation such that the zero flow boundary condition
is satisfied. Those elementary solutions mostly satisfy the decay of disturbance, which is the
second boundary condition.

A.2.1.1 Circulation free elementary solutions

Polynomials

The most straightforward solutions to the Laplace equation are polynomials. For example,
we can describe the free stream velocity by the potential function

Φ = Ax+By + Cz (A.185)

which gives the velocity field

VVV =











A
B
C











=











u
v
w











. (A.186)

Also, different polynomial potential functions can be used to describe a flow field.

Point source/sink

A point source/ sink located at point rrr0 has the potential function

Φ(rrr) = −
Ã

4Ã|rrr − rrr0|
, (A.187)

where Ã is the strength of the source/ sink. If Ã is positive, we call it a source; if Ã is negative,
it’s called a sink. The velocity due to the point source/ sink is

VVV =
Ã|rrr − rrr0|

4Ã|rrr − rrr0|3
. (A.188)

Please note that at rrr0, the conservation of mass is violated, and we need to exclude the point
rrr0 of the solution.

Point doublet

Let us consider a point source and a point sink of strength Ã with opposite sign. The vector
eeel with a length l connects the sink and the source. Suppose we let l go to zero (l → 0), we let
Ã go to infinity (Ã →∞) but remain the product of the distance l and the strength Ã constant
(Ãl→ µ). In this case, we get a point doublet with a potential function

Φ = −
µeeel · rrr

4Ã |rrr − rrr0|3
. (A.189)

The doublet has a directional component eeel. If we orientate eeel along the x-,y- or z-axis we
get the potential functions
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Φeeex(x, y, z) = −
µ

4Ã
(x− x0)

[

(x− x0)
2 + (y − y0)

2 + (z − z0)
2
]−3/2

(A.190)

Φeeey(x, y, z) = −
µ

4Ã
(y − x0)

[

(x− x0)
2 + (y − y0)

2 + (z − z0)
2
]−3/2

(A.191)

Φeeez(x, y, z) = −
µ

4Ã
(z − x0)

[

(x− x0)
2 + (y − y0)

2 + (z − z0)
2
]−3/2

. (A.192)

The velocity field VVV =
(

u, v, w
)T

of a point doublet orientated along the x-axis is

u = −
µ

4Ã

(y − y0)
2 + (z − z0)

2 − 2(x− x0)
2

[

(x− x0)2 + (y − y0)2 + (z − z0)2
]5/2

(A.193)

v = −
3µ

4Ã

(x− x0)(y − y0)
[

(x− x0)2 + (y − y0)2 + (z − z0)2
]5/2

(A.194)

v = −
3µ

4Ã

(x− x0)(z − z0)
[

(x− x0)2 + (y − y0)2 + (z − z0)2
]5/2

. (A.195)

The velocity field of Φeeey and Φeeez are left to the reader.

A.2.1.2 Circulation elementary solutions

Understanding the concept of vorticity and circulation is important before we move on to
other elementary solutions to the Laplace equation. Let us consider a particle in a flow. The
vorticity · is twice the angular velocity of the particle in the flow. Thus,

··· ≡ 2ÉÉÉ = ∇× VVV . (A.196)

The circulation is the line integral of the tangential velocity component about a closed curve
fixed in the flow. Thus,

Γ ≡

∮

c

VVV · dlll. (A.197)

FIGURE A.7 – Relationship between vorticity and circulation by Stokes’ Theorem (KATZ; PLOTKIN, 2001).

With Stokes’ Theorem, we can write the circulation in terms of the vorticity. Let us consider
an open surface S with a closed curve C on its boundary. The circulation of the enclosed surface
S is given by
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Γ ≡

∮

c

VVV · dlll =

∫

S

··· ·nnndS =

∫

S

∇× VVV ·nnndS, (A.198)

where nnn is normal to the surface S and 2ÉÉÉ is the vorticity vector. Hence, the circulation
around a closed contour is the sum of the enclosed vorticity. Consequently, we need vorticity in
the flow to get a circulation in the flow because equation (A.198) shows that if ··· = 000, then Γ = 0.
With the aid of the concept of vorticity and circulation, we can describe flow fields with only
tangential velocity components. We will see that those elements are essential to describe the
flow around wings and to generate the lift. However, there is a problem because the potential
flow needs to be irrotational. Irrotational means that the flow particles can not spin around
their own axis or, in other words, that the angular velocity is zero, which implies that ··· = 000.
The potential flow needs to be irrotational because it is irrotational by definition:

· = ∇× VVV = ∇× (∇Φ) = 000 (A.199)

∇×(∇Φ) is a vector identity and is always zero. Thus, we need to define elementary solutions
for the potential flow where we exclude the rotational part of the solution. By excluding the
rotational part of the potential flow solution, we can have a circulation in the potential flow
solution. Circulation means that the fluid particles can have a rotational motion around a
closed path, e.g. around an airfoil (ANDERSON, 2017).

General vortex element (3D)

The general vortex element in three dimensions is given by the Biot & Savart law. The Biot
& Savart law does not give a potential function but directly the flow field. Let us consider an
infinitesimal piece of the vorticity filament ···, shown in figure A.8. The Biot & Savart law states
that the velocity field induced by the vorticity filament is given by

VVV (rrr) =
Γ

4Ã

∫

dlll × rrr

|rrr|3
(A.200)

where dlll is a vector along the vorticity filament and rrr = rrr0−rrr1. rrr1 is a point on the vorticity
filament. The vorticity vector ··· is located on the vortex segment dS. The circulation of the
vortex segment is Γ, which is according to Stokes’ Therom Γ =

∫

S
··· ·nnndS.

Straight vortex segment

We want to determine the induced velocity in point P by a straight vortex segment with
the circulation Γ according to the Biot & Savart law. Figure A.9a shows the straight vortex
segment. A vortex segment can not start or end in a fluid. However, we will determine the
induced velocity in point P by the vortex segment, which starts at point 1 and ends at point 2.
The distance to the point P is rrr0 − rrr1 = rrr.

The induced velocity by the vortex segment 1 → 2 is given by the differential form of the
Biot & Savart law, which is

∆VVV =
Γ

4Ã

dlll × rrr

r3
. (A.201)

We can write the differential version of the Biot & Savart law in a scalar form

∆Vθ =
Γ

4Ã

sin´

r2
dl (A.202)

=
Γ

4Ãd
sin´ d´ (A.203)

because we consider a straight vortex segment, which will only induce a tangential velocity.
Next, we can integrate along the vortex segment
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FIGURE A.8 – Vorticity filament of Biot & Savart law. The Biot & Savart law determines the velocity induced
by the vortex segment dS in point P (KATZ; PLOTKIN, 2001).

(a) Induced velocity in point P by straight vortex segment (b) Angles of straight vortex segment

FIGURE A.9 – From Katz and Plotkin (2001).

Vθ =
Γ

4Ãd

∫ β2

β1

sin´ d´ =
Γ

4Ãd
(cos´1 − cos´2) (A.204)

to get the induced velocity by the vortex segment in point P . Figure A.9b shows the angles
´1 and ´2. However, we can also define the velocity vector VVV in terms of rrr1 and rrr2 by

VVV =
Γ

4Ã

rrr1 × rrr2
|rrr1 × rrr2|

rrr0 ·

(

rrr1
r 1
−
rrr2
r2

)

, (A.205)
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where rrr1 and rrr2 are the vectors from point 1 and 2 to point P , respectively.

If we choose ´1 = Ã/2 and ´2 = Ã we get the induced velocity

Uθ =
Γ

4Ãd
(A.206)

in point P by a semi-infinite vortex line starting at point O.

An infinite vortex segment has the angles ´1 = 0 and ´2 = Ã which gives the induced velocity

Uθ =
Γ

2Ãd
. (A.207)

The infinite vortex segment can be seen as a two-dimensional vortex as shown in figure A.10.

FIGURE A.10 – Infinite vortex segment, which is a two-dimensional vortex segment. Figure shows the streamlines
in two dimensions, where the vortex is located at the origin (KATZ; PLOTKIN, 2001).

For the two-dimensional vortex, the potential function is

Φ = −
Γ

2Ã
tan−1

(

z − z0
x− x0

)

(A.208)

where the vortex is located at rrr0 =
{

x0 z0

}T

. Please note that inside the vortex filament

is vorticity, which means that we need to exclude the filament from the solution because the
potential flow must remain irrotational.

A.2.2 Prandtl’s classical lifting-line theory

Prandtl developed a lifting-line theory to model a finite wing. He knew that circulation in
the flow was essential to generate lift; thus, he chose to use straight vortex segments to model
the finite wing. However, Helmholtz’s theorem states that a vortex filament cannot start nor
end in a fluid, which makes it difficult to model a finite wing. Prandtl’s idea was to create a
”Horseshoe vortex”, which consists of a straight vortex segment along the span b of the wing.
At the wing tips, at b/2 and −b/2, the vortex segment does not end but continues in the wake
of the wing. The straight trailing vortex segments continue until infinity.

Figure A.11a shows the basic idea of Prandtl. The aim is to find the vortex strength Γ of
the horseshoe, which describes a wing with span width b and chord width c. This model needs
to satisfy two conditions. The Kutta condition states that the vorticity component parallel to
the trailing edge needs to be zero and the zero flow through solid bodies condition of equation
A.182. One can show that we satisfy the Kutta condition if we place the vortex line at the wing’s
quarter-chord line. The zero flow condition is more challenging to achieve because the vortex
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(a) Prandlt’s finite wing model with a single horseshoe.

Adapted from Anderson (2017)

(b) Downwash of Prandlt’s wing model with single horseshoe (AN-

DERSON, 2017)

FIGURE A.11 – Basic idea of Prandtl’s finite wing model with single horseshoe.

line is placed inside the wing. However, we can define a control point on the airfoil with a zero
flow condition. Prandtl put this control a half chord length behind the vortex line, effectively
at a three-quarter line of the wing. Figure A.12 shows the zero flow boundary condition of
Prandtl’s finite wing model. Mathematically, we can write the boundary condition as

wwing + wwake + V∞³ = 0, (A.209)

where wwing is the velocity induced by the straight vortex segment along the span inside the
wing and wwake is the induced velocity by the wake vortex segments along the x-axis, V∞ =∥VVV∞∥

and ³ is the geometric angle of attack.

FIGURE A.12 – Boundary condition for Prandlt’s finite wing model from Katz and Plotkin (2001).

The finite wing is attached to the origin, and the free stream velocity VVV∞ is in the positive
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x-axis. The trailing vortex segments create a so-called downwash flow in the x-y plane. The
downwash velocity of a semi-infinite vortex line is given by (A.206). The distance d in (A.206)
for the vortex line at y = b/2 is dr = b/2 − y. For the vortex line at y = −b/2, the distance is
dl = b/2 + y. If we plug those distances in (A.206) and add both induced velocities of the right
and the left vortex line together, we get the total induced downwash velocity

w(y) = −
Γ

4Ãdl
−

Γ

4Ãdr
= −

Γ

4Ã(b/2 + y)
−

Γ

4Ã(b/2− y)
= −

Γ

4Ã

b

(b/2)2 − y2
(A.210)

in the negative z-direction. The negative sign in (A.210) ensures that the downwash velocity
is positive in the negative z-direction. Figure A.11b shows the resulting downwash due to the
trailing vortex segments. One can see that this model has the problem that the downwash veloc-
ity at the wing tips goes to infinity. The model gives little flexibility to change this behaviour,
and here is where the idea of Prandtl’s lifting-line starts.

We can not change the vorticity along the horseshoe because this violates Helmholtz’s the-
orem, which states that the strength of a vortex line is constant along its length. However,
we can include multiple horseshoes with each a different vorticity strength dΓ. Figure A.13a
shows a finite wing model with in total three vortex horseshoes. The first vortex horseshoe goes
from point A to point F along the span width b of the wing, similar to the model with a single
horseshoe in figure A.11a. The second horseshoe goes from point B to point E and the third
goes from point C to point D. The vortex segments along the wing span coincide with each
other. The vortex strength of all vortex lines coinciding with each other becomes summed up.
The vortex strength dΓ1 of the first element is along the whole wing span. Along the second
vortex line is a total vortex strength of dΓ1 + dΓ2. In the middle is the vortex strength of all
vortex horseshoes together: dΓ1+ dΓ2+ dΓ3. The vortex segments in the wake of all horseshoes
are parallel. Please note that the vortex strength of the vortex segments in the wake is always
equal to the change in vortex strength along the span. For example, the vortex strength of the
wake vortex line at point E is the jump in the vortex strength along the span at point E. The
vortex jump at point E is from dΓ1 to dΓ1 + dΓ2 which is dΓ2. Thus, the strength of the wake
vortex line at point E is dΓ2.

By orientating the horseshoes in the manner as shown in figure A.13a, we create a vortex
line along the wing span, which varies without violating Helmholtz’s theorem. We do not violate
Helmholtz’s theorem because we shed the local circulation change along the wing span into the
wake. Now, let us increase the number of vortex shoes to infinity. In this case, we create a
continuous varying vortex strength Γ(y) along the wing span and a continuous vortex sheet in
the x-y plane. Figure A.13b visualises infinity horseshoes along the wing span. The vortex line
along the wing span is called the lifting-line. Let us consider an infinitesimal small segment dy
on the y-axis. At this location, the vortex strength is Γ(y), and the change in vorticity along
dy is dΓ(y) = (dΓ(y)/dy)dy. Consequently, the wake vortex line segment at point y has the
strength dΓ(y) = (dΓ(y)/dy)dy. The induced downwash at point y0 of the wake vortex line at
y is

dw(y0) = −
(dΓ(y)/dy)dy

4Ã(y0 − y)
. (A.211)

Please note that dw(y0) is constant along the x-axis and positive upward. The induced
velocity of all wake vortex lines is given by integrating over the span of the wing.

w(y0) = wwake = −
1

4Ã

∫ b/2

−b/2

(dΓ(y)/dy)dy

4Ã(y0 − y)
(A.212)

Equation (A.212) gives the downwash wwake of the vortex sheet in the x-y plane, thus through
our control points. Next, we must calculate the induced downwash wwing by the straight vortex
line along the wing span. Let us consider a small piece of the lifting-line. This small piece
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(a) Prandlt’s finite wing model with multiple horseshoes

(b) Prandlt’s finite wing model with infinite horseshoes

FIGURE A.13 – From Anderson (2017).

creates a downwash

∆wwing(d) = −
∆Γ

4Ãd
(cos´1 − cos´2) (A.213)

∆wwing(c(y)) = −
∆Γ

4Ãc(y)/2

[

y + y0
√

(c/2)2 + (y + y0)2
+

y0 − y
√

(c/2)2 + (y0 − y)2

]

(A.214)

≈ −
∆Γ

Ãc(y)
(A.215)

according to equation (A.204) and if the aspect ratio is large enough, we can neglect (c/2)2.
Note that wwing is defined in a positive z-direction. Thus, the downwash is negative due to the
lifting-line. All small pieces of the lifting-line together create a downwash

wwing(y) = −
Γ

Ãc(y)
. (A.216)

Next, we can plug the downwash velocity wwing due to the wing (equation (A.212)) and the
downwash velocity wwake due to the wake (equation (A.216)) in the zero flow equation (A.209)
and divide it by the free stream velocity V∞.
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wwing + wwake + V∞³ = 0 (A.217)

−
Γ

Ãc(y)
−

1

4Ã

∫ b/2

−b/2

(dΓ(y)/dy)dy

4Ã(y0 − y)
+ V∞³ = 0 (A.218)

−
Γ

Ãc(y)V∞
−

1

4ÃV∞

∫ b/2

−b/2

(dΓ(y)/dy)dy

4Ã(y0 − y)
+ ³ = 0 (A.219)

Equation A.217 is Prandtl’s lifting-line integrodifferential equation and is only a function of
the unknown vortex distribution Γ(y). The equation can be solved with the boundary condition
that the pressure difference at the wing tips must be zero.

Γ(y = ±b/2) = 0 (A.220)

However, from an engineering perspective, it is worth rearranging equation (A.217). The
integrodifferential equation can be seen as a combination of the geometric angle of attack ³, the
induced angle of attack ³i and the effective angle of attack ³eff shown in figure A.14.

−
Γ

Ãc(y)V∞
︸ ︷︷ ︸

αeff

−
1

4ÃV∞

∫ b/2

−b/2

(dΓ(y)/dy)dy

4Ã(y0 − y)
︸ ︷︷ ︸

αi

+³ = 0 (A.221)

−³eff − ³i + ³ = 0 (A.222)

FIGURE A.14 – Effect of downwash on the local flow over a local airfoil section of a finite wing (ANDERSON,
2017).

The downwash reduces the geometric angle of attack ³ to the effective angle of attack ³eff .
To generate lift is not for ”free”; you need to ”pay” it by the induced angle of attack ³i.

What is if the wing has a twist angle ³twist(y) along the chord? In this case, the geometric
angle ³ also becomes a function of y. Thus, it might be better to rewrite equation (A.217) in
terms of the twist angle ³twist(y). The geometric angle ³(y) is the twist angle ³twist(y) minus
the zero-lift angle ³L=0(y). Therefore, it is convenient to rewrite the integrodifferential equation
in terms of the twist angle ³twist(y) and the zero-lift-angle ³L=0(y).
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−
Γ

Ãc(y)V∞
−

1

4ÃV∞

∫ b/2

−b/2

(dΓ(y)/dy)dy

4Ã(y0 − y)
+ ³twist(y)− ³L=0(y) = 0 (A.223)

A.2.2.1 Aerodynamic loads

This section will compute the aerodynamic loads acting on a wing. The Kutta-Joukowski
theorem states that the lift at y0 of an airfoil section is

L′(y0) = Ä∞V∞Γ(y0). (A.224)

Once the vortex distribution Γ(y) of the lifting-line is known, we can compute the total lift
of a wing by integrating equation (A.224) over the wing.

L =

∫ b/2

−b/2

L′(y) dy =

∫ b/2

−b/2

Ä∞V∞Γ(y0) dy (A.225)

The lift coefficient is defined as

CL =
L

1
2
Ä∞V∞S

, (A.226)

where S = b c, which means that the lift coefficient in terms of Γ(y) becomes

CL =
2

V∞S

∫ b/2

−b/2

Γ(y0) dy (A.227)

Figure A.14 shows that the induced drag per unit span is

D′
i(³) = L′(y) sin³i ≈ L

′(³)³i(y), (A.228)

where ³i is given in equation (A.221). Again, we can integrate the drag per unit span over
the whole wing to get the total induced drag of the wing.

Di =

∫ b/2

−b/2

L′(y)³i(y) dy = Ä∞V∞

∫ b/2

−b/2

Γ(y)³i(y) dy (A.229)

The drag coefficient in terms of the circulation of the lifting-line becomes

CD,i =
D

1
2
Ä∞V∞S

=
2

V∞S

∫ b/2

−b/2

Γ(y)³i(y) dy. (A.230)
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B Advanced Methodology Topics

Appendix B is intended as a resource for those interested in the technical aspects of our
research methods, providing a deeper dive into the specialised techniques employed. It enhances
transparency and facilitates future replication or extension of our work, but the thesis is designed
to be fully accessible without a detailed engagement with these advanced methodologies.

The advanced methodology covers QASTRO’s implementation, the boundary condition im-
plementation in QASTRO, the limited storage procedure for the ALM-suboptimisations, indi-
cates that for structural optimisations, the derivative computation can be simplified and elabo-
rates on the optimisation time computing.
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B.1 QASTRO’s workflow and implementation

This appendix section illuminates the technical intricacies of QASTRO. As an integrated
aerostructural optimisation tool, it harnesses the computational speed of Fortran and the user-
friendly interface of Python, capitalising on the respective strengths of each programming lan-
guage. The Fortran codes are wrapped into Python. The following paragraphs will detail how
the FEM and LLT, introduced in Sections 3.1 and 3.2, are synergistically combined to form the
comprehensive aerostructural model explained in section 3.3. This segment is crafted to offer
a succinct yet thorough overview of QASTRO’s functional architecture, providing clarity on its
dynamic operational processes for advanced aerostructural analysis.

Figure B.1 illustrates the workflow of QASTRO. The figure illustrates which tasks the Fortran
and Python levels perform. The LLT model, as described in section 3.3, takes as an input the
state variables (circulation strengths ΓΓΓ), the design variables and the displaced aerodynamic
mesh, which takes as an input the displacement of the structural model. For simplicity, figure
B.1 illustrates only the twist angles ³³³0 as design variables for the LLT model. Given the
displaced aerostructural mesh and the state and design variables, the LLT model computes the
LLT residual function rrraero and the aerodynamic forces FFFLLT .

On the structural side, the FEM, detailed in section 3.1, takes as input the displacements ddd,
the design variables, e.g. the beam-truss element thicknesses ttt and the transformed aerodynamic
forces acting on the aeroplane structure FFFFEM . The FEM model returns the structural residual
function rrrstruc.

The LLT and the FEM residual functions are given to a non-linear solver in Python. The
details of the non-linear solver are given in section3.3. The non-linear solver updates the state

variables pppT =
[

dddT ΓΓΓT
]

until both residual functions rrraero and rrrstruc are zero.

Upon completion of the aerostructural analysis, the output functions such as lift, drag,
weight, and margins are known. QASTRO computes the objective and constraint functions
based on the output functions. In figure B.1 the objective function is based on the drag of
the aircraft, but the user can choose different objective functions. The KS function aggregates
all margins, and the objective and the constraint functions are combined into the augmented
Lagrangian function.

These functions — the objective function, the ALM function, and the KS function — are
then passed on to the optimisation algorithms. These optimisers reside within the Python
layer of QASTRO, taking advantage of Python’s user-friendly environment and the powerful
optimisation tools available within the SciPy library (VIRTANEN et al., 2020). They iteratively
adjust the design variables (e.g. ttt and ³³³0) to find the optimal solution that minimises the
objective function while satisfying all the imposed constraints.

This integrated approach allows for a robust optimisation process, leveraging the strengths
of both Fortran and Python to solve complex aerostructural problems efficiently.
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B.2 Structural boundary conditions implementation

This section explains to the reader the boundary condition implementation in QASTRO.
The stiffness of one beam-truss element is kkklocal =

u1 v1 w1 φ1x φ1y φ1z u1 v2 w2 φ2x φ2y φ2z
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where E, G, J , Iy, Iz, A, and L are the elastic modulus, shear modulus, second moment
of area around the x-axis, y-axis, and z-axis, cross-sectional area, and length of a beam-truss
element, respectively (LOGAN, 2012).

The local stiffness matrices of all elements are assembled in one stiffness matrixKKK according
to their connectivity. QASTRO modifies the stiffness matrix KKK to encounter the boundary
conditions. We need to modify KKK according to the boundary conditions to be able to solve
equation 3.8 for the displacements ddd. Two options exist to modify KKK (COOK et al., 2001).
Suppose the structure has nDoF DoFs, and the DoF i = 3 is fixed. The first option is to remove
all rows and columns of the fixed DoFs in KKK. Thus, we need to remove the third row and third
column of KKK in our example. The second option is to replace all vectors and columns of fixed
DoFs with a zero vector, which contains a single 1. This 1 is located at the intersection of the
rows and columns, which got replaced by the zero vector. Hence, in our example, we replace the
third column and the third row with a zero vector and put a 1 at KKK(3, 3). So the system which
remains to solve is
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(B.1)

where nDoF is the number of degrees of freedom. QASTRO uses the second option to apply
the boundary conditions because it is less computationally expensive and easier to implement.

B.3 Limited storage procedure of ALM sub-optimisation

The ALM uses a limited storage BFGS algorithm from the SciPy library (VIRTANEN et al.,
2020) to solve the sub-problems. The limited storage algorithm is based on the paper of Byrd et
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al. (1994) and avoids storing matrices and avoids computing matrix-vector multiplications. This
section explains how the limited storage algorithm works. Section A.1.4.3 exemplifies a limited
storage algorithm and can help to understand this limited storage procedure.

For the ALM sub-problem we approximate the augmented Lagrangian function by a quadratic
model mk at x̄xxk for which we need to compute (xxx − x̄xxk)

TBBBk(xxx − x̄xxk). In this section, we show
how the algorithm computes these vector-matrix multiplications by the gradients of nmc previ-
ous iterations. According to equation A.53, the update formula of the Hessian approximation
BBBk is

BBBk+1 = BBBk +
yyyk yyy

T
k

yyyTk sssk
−
BBBk sssk sss

T
k BBBk

sssTk BBBk sssk
. (B.2)

Let us define

sssk =
[

sss0 sss1 . . . sssk−1

]

, yyyk =
[

yyy0 yyy1 . . . yyyk−1

]

. (B.3)

Byrd et al. (1994) shows the proof that after the kth update, the Hessian approximation can
be written as

BBBk = BBB0 −

[

BBB0SSSk YYY k

]

[

SSST
kBBB0SSSk LLLk

LLLT
k −DDDk

]−1{

SSST
kBBB0

YYY T
k

}

, (B.4)

= ÃkIII −
[

ÃkSSSk YYY k

]

[

ÃkSSS
T
kSSSk LLLk

LLLT
k −DDDk

]−1{

ÃkSSS
T
k

YYY T
k

}

, (B.5)

where if we only consider the last nmc iterations, LLLk is a nmc × nmc matrix defined as

(LLLk)i,j =

{

sssTk−nmc−1+i yyyk−nmc−1+j if i > j,

0 otherwise.
(B.6)

and

DDDk = diag
[

sssT0 yyy0 sssT0 yyy0 . . . sssTk−1yyyk−1

]

(B.7)

and BBB0 = ÃkIII is the initialised matrix. The matrix
[

SSST
kBBB0SSSk LLLk

LLLT
k −DDDk

]

(B.8)

is indefinite. Nevertheless, its inverse can be factorised by the Cholesky factorisation of a
related matrix

[

−DDDk LLLT
k

LLLk SSST
kBBB0SSSk

]

=

[

DDD
1/2

k 000

−LLLDDD
−1/2

k JJJk

][

−DDD
1/2

k DDD
−1/2

k LLLT
k

000 JJJT
k

]

, (B.9)

where JJJk satisfies

JJJkJJJ
T
k = SSST

kBBB0SSSk +LLLkDDD
−1
k LLLT

k . (B.10)

Using this observation, Byrd et al. (1994) provides the direct Hessian approximation

BBBk = ÃkIII −
[

YYY k ÃkSSSk

]

[

−DDD
1/2

k DDD
−1/2

k LLLT
k

000 JJJT
k

]−1 [

DDD
1/2

k 000

−LLLkDDD
−1/2

k JJJk

]−1{

YYY T
k

ÃkSSS
T
k

}

. (B.11)

We would like to compute vvvTBBBkvvv, where vvv = (xxx− x̄xxk), thus
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vvvTBBBkvvv = Ãkvvv
Tvvv − vvvTWWW T

k

[

−DDD
1/2

k DDD
−1/2

k LLLT
k

000 JJJT
k

]−1 [

DDD
1/2

k 000

−LLLkDDD
−1/2

k JJJk

]−1

WWW kvvv (B.12)

where

WWW k =

{

YYY T
k

ÃkSSS
T
k

}

(B.13)

vvvTBBBkvvv will be computed in four steps. Those four steps are indicated in equation B.14.
Every encircled number represents one step.

v
T
Bkv = Ãkv

T
v

︸ ︷︷ ︸

4

−

QT

k
︷ ︸︸ ︷

v
T
W

T
k

A
−1

k
︷ ︸︸ ︷

[

−D
1/2

k D
−1/2

k L
T
k

0 J
T
k

]−1 [

D
1/2

k 0

−LkD
−1/2

k Jk

]−1 Qk
︷ ︸︸ ︷

Wkv
︸ ︷︷ ︸

1
︸ ︷︷ ︸

2
︸ ︷︷ ︸

3

(B.14)

First, we calculate the products YYY T
k vvv and ÃkSSS

T
k vvv, which gives us the matrix-vector product

QQQk =WWW kvvv. In the second step, we need to compute AAA−1
k QQQk where AAA−1

k represents both inverted
matrices. Computing AAA−1

k QQQk is equivalent to solve AAAkttt = QQQk for ttt. Because we applied the
Cholesky factorisation to the matrix in equation B.12, we can solve the system at the cost of
O(n2mc). The solution of the system is a 2nmc × 1 vector, which can be multiplied in the third
step by the vector QQQT

k = vvvTWWW T
k . Please note that we already computed QQQk =WWW kvvv in the first

step. For the fourth step, we compute Ãkvvv
Tvvv. Lastly, we need to subtract the result from step

three of the result of step four. This procedure is repeated at every iteration k to determine
mk(xxx).

B.4 Simplified structural derivative computation

In this section, we would like to show that the derivative computation of the structural
optimisations can be simplified. We can streamline the derivative computation by introducing
the analytic result of partial derivatives. In the case of structural optimisation, those partial
derivatives are not complex to compute in contrast to aerostructural optimisations.

In the following, we will show how the derivative computation for the structural optimisation
can be simplified for the augmented Lagrangian function. The simplified derivative computation
for the objective function and the inequality constraint functions are intermediate derivation re-
sults. In structural optimisation, we deal only with inequality constraints; hence, our augmented
Lagrangian function is

A(xxx,µµµk) = f(xxx) +
1

2

〈

ggg(ddd) +
µµµk
Äk

〉T 〈

ggg(ddd) +
µµµk
Äk

〉

, (B.15)

where ïað = max(0, a). The total derivative of the augmented Lagrangian function using
the adjoint method is

dA

dxxx
=
∂A

∂xxx
+ÈÈÈT

A

∂rrr

∂xxx
, (B.16)

where ÈÈÈA is determined by
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[

∂rrr

∂ddd

]T

ÈÈÈA =

[

∂A

∂ddd

]T

. (B.17)

QASTRO uses a matrix-free approach to solve for the adjoint variables ÈÈÈA, and it is precisely
this step which can be simplified. For the structural optimisation, the Jacobian matrix ∂rrr/∂ddd
is the stiffness matrix, which is already known.

∂rrr

∂ddd
=KKK (B.18)

That means we only need to execute the backward-mode AD script once to get ∂A/∂ddd,
and we can solve for the adjoint variables. However, let’s analyse the partial derivative of the
augmented Lagrangian function with respect to the state variables:

∂A

∂ddd
=
∂f(xxx)

∂ddd
+ Äk g̃gg(ddd)

∂g̃gg(ddd)

∂ddd
(B.19)

= Äk g̃gg(ddd)
∂g̃gg(ddd)

∂ddd
(B.20)

where g̃gg(ddd) =
〈

ggg(ddd) + µµµk

ρk

〉

= max
(

0, ggg(ddd) + µµµk

ρk

)

. ∂f(xxx)/∂ddd = 000 because the objective

function, the mass of the structure is independent of the structure’s displacements. Please note
that if the constraints are not violated, g̃gg(ddd) = 000, implies that ∂A/∂ddd = 000 because A is not a
function of ddd if the constraints are not violated. We just need to execute the backward-mode AD
script to get ∂A/∂ddd if the constraints are violated. In all other cases, we can compute the adjoint
variables without a single backward-mode AD execution. Also, note that the adjoint variables
of the non-violated augmented Lagrangian function are in the null space of the stiffness matrix.
Because the zero vector is included in the null space, the zero vector is a valid solution for the
adjoint variables. Thus, if the constraints are not violated, it holds that dA/∂xxx = ∂A/∂xxx.

After the adjoint variables are known, QASTRO executes one more time the backward-
mode AD script to get the total derivative dA/dxxx. QASTRO does not explicitly compute the
Jacobian matrix ∂rrr/∂xxx, but exploits the way the backward-mode AD is defined to get with a
single backward-mode AD execution dA/dxxx. For details, see section 3.5. However, we will show
that the final backward-mode AD execution is redundant, too. For the structural optimisation,
the partial derivative of the augmented Lagrangian function with respect to the design variables
can be simplified:

∂A

∂xxx
=
∂f(xxx)

∂xxx
+ Äk g̃gg(ddd)

∂g̃gg(ddd)

∂xxx
(B.21)

=
∂f(xxx)

∂xxx
, (B.22)

∂g̃gg(ddd)/∂xxx = 000 because the stress in the structure does not depend directly on the design
variables xxx. But note that the stress depends on the stiffness matrix KKK, which is dependent
on the design variables xxx. Hence, there is only an implicit dependency between g̃gg(ddd) and xxx
(MARTINS; NING, 2021). Consequently, the partial derivative of the augmented Lagrangian
function is equal to the partial derivative of the objective function with respect to the design
variables. Our objective function is the mass of the structure, which is

f(xxx = ttt) =
1

mw0

nbeams
∑

i

Ämat i LiAi =
1

mw0

nbeams
∑

i

2ÃÄmat i Li ri ti. (B.23)

Thus, the partial derivative of the objective function with respect to the design variables is

∂f

∂xxx
=
∂f

∂ttt
=

1

mw0

nbeams
∑

i

2ÃÄmat i Li ri. (B.24)
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The only partial derivative, which is missing, is ∂rrr/∂xxx, but in the structural optimisation,
we can compute ∂rrr/∂xxx analytically:

∂rrr

∂xxx
=
∂KKK

∂xxx
ddd, (B.25)

We need to know the partial derivative of the stiffness matrix with respect to the thickness
of the beam-truss elements, which is easy to compute. The stiffness matrix consists of a few
repetitive entries. One of them is, for example, AE/L, where A = Ãt(t+2r) is the cross-sectional
area of the beam-truss element, E is the elasticity modulus, L is the length of the beam-truss
element, r is the inner radius and t is the thickness. The partial derivative of AE/L with respect
to the beam-truss thickness is Ã(2t + 2r)E/L. We can obtain similar simple derivatives for all
other entries in the stiffness matrix. Thus, we can compute ∂rrr/∂xxx analytically. In the final step,
we can get the total derivative of the augmented Lagrangian function by equation B.16. Please
note that in this simplified approach, we need to compute matrix-vector operations, which are
unnecessary in the derivative computation described in section 3.5.

To summarise, we can compute the derivative of the augmented Lagrangian function in the
context of structural optimisation with a maximum of a single backward-mode AD script execu-
tion. However, in this master thesis, we reject the use of this simplified derivative computation.

B.5 Computational time measurement

In this section, we delineate the methodology employed to ascertain the optimisation time for
the structural optimisation outcomes. We opt for a calculated approach over direct measurement
due to inherent challenges in standardising computational time across different hardware and
execution conditions.

The crux of this research lies in juxtaposing three distinct optimisation approaches, with a
primary emphasis on evaluating their efficiency through computational duration for structural
optimisation and on the optimisation outcomes for aerostructural optimisation. Given the piv-
otal role of optimisation time in gauging the performance of structural optimisation methods,
a reliable measure of this metric is paramount. However, the direct measurement of computa-
tional time is fraught with variability due to hardware dependencies and inherent fluctuations
in execution time, rendering it an unreliable metric for comparative analysis, especially when
optimisation durations are minimal.

To circumvent these impediments, we adopt a calculated methodology to derive optimisation
time, ensuring consistency and enabling extrapolation of optimisation durations across disparate
hardware environments. This approach also allows for the exclusion of initialisation and unre-
lated computational durations, focusing solely on the optimisation-related computations.

The computational effort in structural optimisation bifurcates into two segments: deter-
mining state variables and acquiring derivatives. These components are subject to variability
contingent upon the design state, attributed to the integration of nested optimisation (eq. 3.33)
within the primary optimisation process.

The nested optimisation processes are crucial in obtaining both the state variables and the
derivatives. To deduce the state variables, it’s imperative to compute the residual function. The
execution time for this computation remains constant across different design states, making it
a reliable metric for estimating the time required to solve for the state variables. We can thus
measure the execution time of the residual function and use this as a basis to calculate the time
involved in determining the state variables.

Similarly, when it comes to computing derivatives, the solution hinges on executing the
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backward-mode AD script. This script is integral to the nested optimisation process that yields
the necessary derivatives by solving the residual equation 3.72. Notably, the execution time of the
backward-mode AD script is also design state-independent. By assessing the duration required
to execute this script, we can accurately compute the time needed to obtain the derivatives.
This approach systematically quantifies the computational efforts involved in both aspects of
the optimisation process, free from the variabilities tied to different design states.

Hence, by meticulously tracking the frequency of residual function evaluations and backward-
mode AD script executions within these nested optimisation scenarios and understanding the
invariant computational demand of each evaluation, we can precisely calculate the total opti-
misation time. This calculated time is devoid of the variabilities and external dependencies
inherent in direct measurements, providing a robust and reliable metric for comparative analysis
of different optimisation methodologies within this thesis.

Let us draw our attention on the time computation for the structural optimisation of the
Helios aircraft model. The optimisation time is calculated based on the measured time to get the
residual function to determine the displacements and rotations ddd and the measured time it takes
to call the backward-mode AD code to get the derivatives. Both times are dependent on the
number of beam-truss elements used to model the Helios aircraft. The dots in figure B.2 show
the measured times for 5−80 beam-truss elements on a Macbook Pro M2, 8 GB with OS 13.5.1.
The solid line is a quadratic approximation based on the measured times. It is unsurprising
that the time to get the residual and to call the backward-mode AD increases quadratically.
The residual function is obtained by a matrix vector operation as shown in equation 3.9. The
number of elements in the stiffness matrix KKK increases by O(n2beams). The backward-mode AD
code is a script which determines the derivative line by line according to the chain rule. Hence,
its computational price also increases quadratic with the number of beam-truss elements, as the
main script also does so. Furthermore, figure B.2 shows that the computational cost to obtain
the residual function and to call the backward-mode AD script is very similar.

FIGURE B.2 – Time measurement and interpolation for the Helios aircraft model. Time to get residual function
and to run the backward-mode AD script for a function of interest. Times are shown as function of number of
beam-truss elements used to discretise the wing.

Please note that the Helios aircraft is two dimensional, but modelled in three dimensions.
In QASTRO it is not possible to optimise two dimensional models. Thus, we get in total
(nbeams − 1) · 6 DoFs.
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10.
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Área de Projeto Aeronáutico, Estruturas e Sistemas Aeroespaciais. Orientador: Prof. Dr. Ney Rafael Secco. Coorien-
tador: Dr. ir. Arne van Garrel em 2024. Publicada em 2024.
11.

RESUMO:

In the pursuit of sustainable aviation, the demand for highly efficient and environmentally friendly aircraft takes prece-
dence. This imperative brings to light the complexities of aerostructural coupling, underscoring the necessity for Multi-
disciplinary Design Optimisation (MDO) and gradient-based optimisation techniques.
Central to aerostructural optimisation is the intricate problem of managing numerous inequality constraints, such as
structural stresses, which traditional optimisation methods often struggle to handle efficiently. The current methods, such
as using max functions, the Kreisselmeier-Steinhauser (KS) function, and compliance approaches, encounter challenges
in efficiently managing the constraints as the number of constraint functions increases. This thesis explores the potential
of the Augmented Lagrangian method (ALM) to transcend these limitations by offering a more effective approach to
managing inequality constraints.
This thesis explores aerostructural optimisation through a comprehensive study that employs a finite element model for
structural analysis and an adaptation of Prandtl’s lifting line theory for aerodynamics. Central to this investigation is
the comparison of the ALM approach with both a non-aggregating optimisation approach, which directly handles all
inequality constraints, and an aggregating approach that employs a KS function to consolidate these constraints.
Focusing on a model of the Helios Pathfinder Plus aircraft, the study highlights the effectiveness of the ALM, particularly
in the context of derivative calculation via the adjoint method. This contrasts with the complexities and computational
demands associated with the non-aggregating optimisation approach, especially in handling complex structural models.
The aggregating approach, while time-efficient, does not achieve the same level of accuracy and computational efficiency
as the ALM.
In highly discretised structural weight optimisations, the ALM significantly outperforms competing approaches, achieving
speeds nearly twice as fast as the aggregating approach and ten times faster than the non-aggregating approach. Moreover,
in the context of highly complex aerostructural optimisations, where both the non-aggregating and aggregating approaches
struggled to achieve convergence, the ALM consistently demonstrated robust and reliable convergence behavior. The
research underscores the significance the fine-tuning of ALM parameters to balance exploration of the optimisation
landscape and the pursuit of feasible solutions. Overly conservative parameter settings may lead the ALM algorithm to
suboptimal solutions by prioritising rapid feasibility over thorough exploration.

12.
GRAU DE SIGILO:

(X) OSTENSIVO ( ) RESERVADO ( ) SECRETO


	Face Page
	Cataloging-in-Publication
	Thesis Committee Composition:
	Dedication
	Acknowledgments
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	List of symbols
	Contents
	1 Introduction
	1.1 Objective
	1.2 Organisation of the thesis

	2 Literature Review
	2.1 Multidisciplinary Design Optimisation
	2.2 Gradient evaluation
	2.3 Aggregation functions
	2.4 Augmented Lagrangian method

	3 Methodology
	3.1 Structural model
	3.2 Aerodynamic model
	3.3 Aerostructural model
	3.4 Optimisation methods
	3.4.1 SLSQP approach
	3.4.2 SLSQP with aggregation function approach
	3.4.3 Augmented Lagrangian approach

	3.5 Computing derivatives
	3.6 Optimisation problems
	3.6.1 Structural optimisation problems
	3.6.2 Aerostructural optimisation problems

	3.7 Optimisation with multiple conditions
	3.8 Outline of comparison strategy for optimisation approaches
	4 Results
	4.1 Structural optimisation problem
	4.1.1 Structural optimisation without B-splines
	4.1.2 Structural optimisation with B-splines

	4.2 Aerostructural optimisation problems
	4.2.1 Single flight condition
	4.2.2 Two flight conditions

	5 Discussion
	5.1 Structural optimisations
	5.1.1 Discussion on SLSQP KS approach
	5.1.2 Discussion on ALM approach
	5.1.3 Discussion on the usage of B-Splines

	5.2 Aerostructual optimisation
	5.2.1 Discussion on SLSQP approach
	5.2.2 Discussion on SLSQP KS approach
	5.2.3 Discussion on ALM approach

	6 Conclusions & Recommendations
	6.1 Conclusions
	6.1.1 Conclusion of SLSQP approach
	6.1.2 Conclusions of SLSQP KS approach
	6.1.3 Conclusions of ALM approach
	6.1.4 Overall findings

	6.2 Recommendations
	6.2.1 Recommendations for QASTRO
	6.2.2 Recommendations for SLSQP approach
	6.2.3 Recommendations for SLSQP KS approach
	6.2.4 Recommendations for the ALM approach
	6.2.5 Recommendation for new optimisation approach

	Bibliography
	A Theoretical Background
	A.1 Optimisation
	A.1.1 Notation
	A.1.2 Definition of optimisation problem
	A.1.3 Optimality conditions
	A.1.4 Optimisation methods
	A.1.5 Aggregation functions
	A.1.6 Automatic differentiation
	A.1.7 Direct and adjoint method
	A.1.8 Introduction to B-splines

	A.2 Aerodynamics
	A.2.1 Introduction to potential flow
	A.2.2 Prandtl's classical lifting-line theory

	B Advanced Methodology Topics
	B.1 QASTRO's workflow and implementation
	B.2 Structural boundary conditions implementation
	B.3 Limited storage procedure of ALM sub-optimisation
	B.4 Simplified structural derivative computation
	B.5 Computational time measurement

	Folha de Registro do Documento






