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Abstract

Authentication is crucial to maintain confidentiality on the web. Passwords are vul-
nerable to data leaks, reuse, and phishing attacks. To mitigate these, FIDO2 offers a more
secure and easier way to authenticate. However, the complexity of the protocol might
leave developers with wrong assumptions, leading to vulnerable implementations. Cur-
rently, there are not many tools available to assess server-side misconfigurations of FIDO2
implementations. This thesis proposes a novel methodology to create a Burp Suite ex-
tension that can be used in black-box penetration testing engagements. We implement a
tool that identifies and addresses misconfigurations, along with exploring potential attack
vectors. This can enhance the testing efficiency by automatically scanning for twenty-five
test cases. We have conducted tests on five public websites, in which three did not fully
comply with the security practices of the official WebAuthn standard. Furthermore, one of
these misconfigurations led to a full account takeover. We also introduce a novel Cross-Site
Request Forgery attack tailored to exploit the improper session management of web ser-
vices during WebAuthn operations. This attack can result in a complete takeover of user
accounts. Our testing covered thirteen websites, with one being vulnerable to this attack.
This work contributes to a better understanding of FIDO2/WebAuthn implementation
security. We aim to provide insights into the potential security risks associated with the
incorrect implementations of this promising protocol.

Keywords: FIDO2, WebAuthn, Burp Suite, Cross-Site Request Forgery, security, vulner-
ability.
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Chapter 1

Introduction

Authentication is crucial to maintain confidentiality on the web. From accessing an online
service to unlocking a password manager, most of the authentication processes require (or,
required) a user to remember a secret, i.e., something-you-know, the password.

Due to human nature, people tend to create short and/or guessable passwords, using
common words and numbers, to facilitate the authentication procedure [11]. A malicious
actor can take advantage of this by using password-guessing techniques facilitated by dic-
tionaries of commonly used passwords to easily guess a user’s credentials and gain unau-
thorized access to one of their account. Moreover, data breaches happen frequently and
compound this precarious landscape [22]. For instance, the “Collection #I” data breach [23]
exposed nearly 773 million unique email addresses and passwords. Such incidents amplify
further the risk of unauthorized access. Because most users re-use passwords across multi-
ple services [9], the outcome poses significant threats to the security of numerous accounts
and therefore the confidentiality of sensitive information.

To mitigate easily-guessable passwords and password reuse, password managers are an
effective solution. These help users create unique pseudo-random passwords for each service
the user signs up for. Nevertheless, previous work shows that, due to poor usability and
general low attention towards security, users are inclined not to adopt a password manager
in their daily routines [12] [52]. Regardless, passwords are still vulnerable to more advanced
attacks [49], such as targeted spear phishing [48] and password-busting [41].

To mitigate unauthorized access, several services suggest or enforce the use of Two-
Factor Authentication (2FA). 2FA adds an extra layer of protection, as it adds to something-
you-know (i.e., the password), a something-you-are/have, such as biometrics scanning, push
notifications, Short Message Services (SMSes), Time-based One Time Passwords (TOTPs),
etc. Should 2FA be adopted by a user, after an initial successful login with credentials,
an ulterior verification challenge is sent to their personal device (mobile phone, laptop,
etc.). It would be more challenging for an attacker in this case, in possession of only the
credentials of a victim, to gain unauthorized access to their account. Unfortunately, 2FA
also causes ulterior friction in the authentication process, leading to only 32% of users
having it set up in 2021 [8].

Nevertheless, it was only a matter of time before new attacks against the second factor
were discovered. SMSes and TOTPs, for example, could be captured also with a real-time
phishing [24] or a SIM swap attack [27]. Push notifications can be also tampered with by
the push fatigue attack and be compromised with a timing attack [25]. On the other hand,
hardware tokens are more resistant to phishing attacks due to their design, but users often
do not rely on them, again, due to low usability [8].

The main issues with passwords are that they represent a symmetric secret shared
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between a client and a server and that they are not usually unique per account [9]. To
address these, in 2013 the FIDO Alliance was founded to reduce the reliance of the authen-
tication process on passwords. Instead of adding another “band-aid”, the new protocol(s)
should be secure by design. The latest protocol, FIDO2, defines a password-less authen-
tication scheme based on asymmetric cryptography. To be widely adopted, FIDO2 aims
to be user-friendly by leveraging the biometrics readers of commonly used devices, such as
smartphones and laptops. As these become ubiquitous, they can facilitate users adopting
this new technology in their daily authentication routine. Users can access their online
account with a single gesture (e.g., face scan, fingerprint scan), which proves both factors
something-you-have and something-you-are simultaneously.

1.1 Motivation

In 2021, there exist more than 4 billion FIDO-supporting devices and around 150 million
people using password-less methods each month [17]. The State of Authentication Report
2023 [40] states that around 65% of respondents plan to adopt password-less technologies
in the next 24 months. As this technology becomes more adopted, we are interested to
see what attack vectors exist that can tamper with the intended behavior of the protocol.
The choice of removing passwords from authentication should be carefully understood and
handled by developers before implementing FIDO2. Alam et al. [3] show that previous
security-critical technologies, such as TLS, password storage, and cryptography APIs, have
had pitfalls in their adoption. The authors research the state of FIDO2 specifications,
developers’ forums, and open-source libraries and outline that the most common issues
are:

• The complexity of the protocol leaves developers with doubts and sometimes wrong
mental models,

• the libraries are incomplete and poorly documented,

• playgrounds to implement FIDO2 lack and do not include security- and privacy-
related issues.

From this, we are motivated to research whether services that implement FIDO2 have
misconfigurations that can lead to potential vulnerabilities. In particular, we collect a list
of operations a server should or must do in order to be compliant with the security goals of
the protocol. We hypothesize that developers who integrate custom FIDO2 authentication
into their services may make mistakes when implementing this technology due to wrong
assumptions or the complexity of the protocol. In this work, we also hypothesize the
reasons behind any design that can lead to potential misconfigurations.

1.2 Research questions

With the increase of services implementing FIDO2, we are interested in seeing the de-
sign choices and the security posture of the current implementations by analyzing their
conformance to the protocol. We focus only on the client-server interactions of the proto-
col, which is defined by the Web Authentication (WebAuthn) standard, and leave out the
communication between the client and the authenticator. We notice that in the security
industry, there is a lack of tools that can test externally the conformance and the security
of the FIDO2/WebAuthn implementations. In this work, we aim to create a tool that
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can do black-box testing of the FIDO2/WebAuthn implementations and that can be used
during practical penetration testing engagements. We choose to use Burp Suite to help
us with testing, as it is commonly used for web security testing and it is customizable by
means of extensions.

To summarize, our goals are:

• understanding how to implement a comprehensive FIDO2/WebAuthn testing tool,

• using this tool to conduct automated scanning to detect eventual misconfigurations,

• gaining some insights into the security posture of the current implementations of
FIDO2/WebAuthn.

We also yearn to find new attack surfaces in FIDO2/WebAuthn by exploiting the wrong se-
curity assumptions that developers can make. We propose the following research questions
that this work aims to answer:

• RQ1: How can we ease and automate the testing process for FIDO2/WebAuthn
misconfigurations in web applications?

• RQ2: What are the design choices of current implementations of FIDO2/WebAuthn
and how do they comply with the security best practices?

• RQ3: What types of vulnerabilities in FIDO2/WebAuthn relying parties exist and
how can we exploit these?

To approach RQ1, we begin with understanding how FIDO2/WebAuthn operations
work and what makes a WebAuthn request valid. We then repeat these valid requests
with non-ordinary values to see how a server interprets these requests. Based on its re-
sponse, we can evaluate whether the server is compliant or not with the protocol specifica-
tions. Our end goal is to create an automatic scanner that, given a website implementing
FIDO2/WebAuthn, can assess the correctness of its implementation based on our test
cases. We define a test case as a value that we modify in the data objects sent to the
server to see the latter’s behavior.

To answer RQ2, we plan to use the scanning tool against both demo websites/playgrounds
and commercial services that implement WebAuthn. We make sure to target websites that
have a responsible disclosure policy. We then collect and show the results, and comment
on the design choices of the developers and whether the eventual misconfigurations can
lead to vulnerabilities.

We tackle RQ3 by looking into common web security attacks and designing an exploit
that could interfere with FIDO2/WebAuthn’s normal execution flow. We plan to target
websites that have some WebAuthn misconfigurations and chain these with web security
exploits to see if new vulnerabilities can be discovered.

1.3 Contribution

This research contributes to the academic literature in three ways:

• we present a novel methodology to implement a Burp Suite extension that auto-
matically scans for FIDO2/WebAuthn misconfigurations. Our objective is to create
a useful tool that can assess FIDO2/WebAuthn’s security during penetration test-
ing engagements. With it, security specialists can provide a comprehensive view of
the password-less authentication method and be alerted if there is any server-side
miss-check.
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• we validate our methodology by utilizing the tool against publicly available websites.
We give an overview of the current WebAuthn implementations landscape through
comprehensive test cases and analysis.

• we comment on whether our findings can lead to security vulnerabilities. In this case,
we craft proof of concepts of practical attacks, demonstrating the feasibility and the
consequence of a successful exploitation. We also execute Cross-Site Request Forgery
attacks, which can potentially lead to a full account compromise in case the session
management of WebAuthn operations is not done correctly.

1.4 Computest

This thesis is realized with the collaboration of Computest1. Here I would like to thank my
colleagues who helped to understand web security in more depth, my supervisor, Matthijs
Melissen, who provided me with great insights into every doubt I had, and Thijs Alkemade,
who gave me great tips about security research.

Computest was founded in 2005 and today it offers solutions regarding security. It of-
fers 360-degree services, including security assessments, Security Operations Center (SOC)
monitoring, research, and business consulting. The company is one of the leading secu-
rity companies in the Netherlands and its customers include Talpa, AFAS software, and
Koninklijke Nederlandse Golf Federatie (NGF). Currently, the company holds around 70
employees. The company is also certified with relevant standards, such as ISO9001 and
ISO27001.

Figure 1.1: Computest Security

Computest has 5 business units, as shown in Figure 1.1. For this project, I was assigned
to one of the Prevent business unit teams and worked closely with other security specialists.

Other business units include Detect, Governance, Sector 7, and Business Development.
The following is a brief description of which activities each business unit is involved in:

• Prevent: this performs white hat activities, such as security assessments (Cloud, IT
infrastructure), pentests, red teaming, etc. Its goal is to fortify the security of the
client’s organization by finding weaknesses before an attacker can.

• Detect: this includes a Security Operational Center (SOC) and an Incident Response
team. It allows customers to have a 24/7 updated view of possible threats in their
network.

• Governance: this unit’s main activity is business consulting.
1https://www.computest.nl/en

6



• Sector 72: this is the research team at Computest. In the past, it found important
vulnerabilities in Zoom [1] and MacOS [2]. This shows how the company is up-to-
date with the latest technologies and this was one of the reasons why I chose to join
them.

• Business Development: this includes the teams that help Computest grow among its
competitors. Its teams are recruitment and marketing.

We collaborate on this project because Computest expects its clients to start using
FIDO2 protocols soon. With this work, we expect to create a tool that can find mis-
configurations in the implementation of WebAuthn and provide a more complete security
assessment. This project also provides a general idea about the security standpoint of the
protocol.

1.5 Structure

This section gives an overview of the content of this thesis. Chapter 2 presents the neces-
sary low-level background knowledge regarding FIDO2/WebAuthn and Cross-Site Request
Forgery attacks. After this, we give the details of our methodology for automated scan-
ning and executing Cross-Site Request Forgery attacks in Chapter 3. Chapter 4 shows the
results of the testing. Chapter 5 discusses the results and the limitations of this work.
This paper in Chapter 6 concludes with our vision and comments on this revolutionary
technology. We include an extra chapter about the ethics of our research in Chapter 7.

2https://sector7.computest.nl/
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Chapter 2

Background

This chapter explains all the preliminaries necessary for this thesis.
In the first section, we provide details of the FIDO2 protocol and its sub-protocol, We-

bAuthn. In order, we present the actors involved in the protocol and how the registration
and authentication ceremonies work. We denote all the low-level theoretical notions needed
for the continuation of this work. Then we present the security and privacy analyses of
FIDO2 and WebAuthn.

In the second section, we explain what Cross-Site Request Forgery attacks are and how
can these be executed on the FIDO2/WebAuthn ceremonies.

In the final part, we analyze the existing related work about the protocols. In particular,
we study the formal verification of the security of the FIDO2 and WebAuthn, the attacks
proposed by other authors, and explore work that is similar to ours.

2.1 FIDO2

The Fast ID Online (FIDO) Alliance1 is an open industry that works on improving in-
teroperability among authentication technologies and on reducing the reliance of these on
passwords. The latest standard of FIDO, FIDO2, allows easier password-less authentica-
tion by leveraging common devices, such as mobile and desktop environments [14]. With
this standard, users can log in to their accounts by using simple gestures, such as a biomet-
ric scan or tapping on a security token. FIDO2 replaces passwords with asymmetric keys.
During the registration phase, a key pair is created on the user’s device, and the public key
is sent to the server. The private key is used to sign messages to prove the user’s identity
and never leaves the user’s device.

FIDO2 provides four main benefits on its adoption [14].

1. It enhances security as it creates unique, complex, and scoped credentials and does
not publish the private key (unless encrypted), to the service. By these means, com-
mon attacks such as phishing, replay attacks, and data breaches are fully mitigated.

2. It has a user-friendly design, as simple gestures (fingerprint scan, biometrics, etc.)
are used to unlock users’ credentials.

3. FIDO2 is also privacy-preserving since the credentials identifiers are unique for
each service, so honest-but-curious servers cannot track users across sites.

1https://fidoalliance.org/
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Figure 2.1: FIDO2

4. It is scalable, as browsers and service providers can easily integrate WebAuthn, and
most of the major vendors and platforms already support it.

Figure 2.1 depicts the whole architecture of FIDO2. In the following section, we define
and describe the involved parties: the relying party, the authenticator, and the client.

2.1.1 Actors

Before diving into the details of the standard, we define the actors involved in FIDO2,
which are the relying party, the authenticator, and the client. We describe in more
detail each component.

Relying Party

The relying party (RP) is the service that a user wants to interact with. It is usually a
web application and in this context, it is able to process FIDO2 registration and authen-
tication requests on its back-end. Each relying party is identified to the authenticator by
its Relying Party Identifier (RP ID). By default, this corresponds to the origin’s effective
domain [50]. For instance, the origin of the URL https://login.example.com:1337 is
login.example.com.

Authenticator

An authenticator is a piece of software or hardware that helps authenticate the user who
possesses it. It can also be referred to as an authenticator device, token, or security
key. Authenticators create and store credential maps, which map the relying party to the
created credential. Its primary function is to provide WebAuthn signatures.

There currently exist two classes of authenticators: platform authenticators and
roaming authenticators. Figure 2.2 and Figure 2.3 show examples of them, respec-
tively. Platform authenticators are usually not removable from the client’s device and they
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Figure 2.2: Platform au-
thenticator

Figure 2.3: Roaming au-
thenticators

communicate with the client by platform attachment. Some examples are Windows Hello,
iOS TouchId/FaceId, Android’s biometrics reader, etc.

A roaming authenticator, on the other hand, is an external hardware device that com-
municates with the client via cross-platform attachment. Authenticators of this class are
removable from and can “roam” between client devices using Universal Serial Bus (USB),
Near-Field-Communication (NFC), or Bluetooth-Low-Energy (BLE).

Authenticators store a signature counter value. This value is synchronized between the
authenticator and the relying party and is used to prevent cloned authenticators. After
each FIDO2 operation, both parties increase their value (by 1). In case an attacker clones
the private key(s) of an authenticator, they would not be able to authenticate correctly
if their signature counter value is not greater than the relying party’s. We note that the
WebAuthn standard [44] does not specify how much greater the authenticator’s signature
counter should be. We comment that this is not entirely secure, as an adversary can simply
choose a very high counter value and bypass this check with their cloned authenticator.

In cases where a roaming authenticator has storage limitations, it can use a key wrapping
technique to “outsource” the generated private keys to the relying party. Briefly, the
roaming authenticator holds a master key, which is unique to each one and bounded during
the manufacturing phase. When a new key pair is generated, the new private key and the
hash of the RP ID are encrypted with the master key and are exported to the relying
party for storage. We note that authenticators that use key wrapping are vulnerable to
device cloning. Kang [26] provides a proof of concept of a possible attack that can be
done. Briefly, an attacker can create a virtual authenticator with the cloned master key
and give the original security key to a victim. The victim registers it in one of their online
accounts. The attacker can now use the cloned customized authenticator with a large
signature counter to log in on behalf of the victim.

Client

We define the client as the interface that a user uses to communicate with the online ser-
vices. Typically, these are browsers. In FIDO2, clients act as proxies, as they forward
communication between the relying party and the authenticator. Specifically, relying par-
ties execute the WebAuthn methods on the client, which prompts the authenticator via
the CTAP2 protocol.

10



2.1.2 Specification

FIDO2 has two integral components: Web Authentication (WebAuthn) and Client-To-
Authenticator Protocol v2 (CTAP2). The former is a standard for a JavaScript API,
developed by the World Wide Web Consortium (W3C) 2, with which the FIDO alliance
collaborates. It defines two JavaScript methods in the client in order to create public key
pairs and compute cryptographic signatures with the created private keys. We describe
WebAuthn in more detail in Section 2.2, as it is relevant to this work.

The CTAP2 protocol defines communication between the client and the authentica-
tor. CTAP2 communications are all encoded using Compact Binary Object Representa-
tion (CBOR) because some transport methods (e.g., Bluetooth Smart) are bandwidth-
constrained [16]. CBOR, indeed, is limited to at most four levels of any combination of
CBOR maps and/or CBOR arrays. Serialization formats such as JSON do not have length
limits and so are not suitable for resource-constrained devices.

Unfortunately, CBOR-formatted data [16] are not human readable and there are limited
resources on decoding the data in a way tailored to WebAuthn. We explain in Section 3.1.1
how to create a decoder to display WebAuthn CBOR format in a human-readable way.

2.2 WebAuthn

In this section, we explain the details of one of the two sub-protocols of FIDO2, WebAu-
thn. Web Authentication, or WebAuthn, is a W3C standard that defines an Application
Programming Interface (API) for password-less authentication, based on asymmetric keys.
To this day, “Web Authentication: An API for accessing Public Key Credentials - Level
2” [44] is the latest public standard version, while Level 3 [47] is still a public draft. We-
bAuthn allows web browsers to integrate FIDO2, as it enables web applications to call
client-specific functions to create and store credentials. WebAuthn defines two JavaScript
methods: navigator.credentials.create and navigator.credentials.get, which are
implemented in the clients. These are invoked by the relying parties during registration
and authentication ceremonies, respectively. When invoked, the client then communi-
cates with the authenticator via the other FIDO2 sub-protocol, CTAP2. The former is
a method to created scoped credentials. This means that the generated key pair can
only be used under the origin it has been created on. Indeed, when the client executes
navigator.credentials.get to authenticate and prove the ownership of the private key,
the credential checks if the request comes from the correct origin. In practice, this pre-
vents a private key registered under example.com from being used on attacker.com. In
this way, a phishing website cannot obtain any information about the credentials related
to the legitimate one. Furthermore, to ensure integrity and confidentiality, web browsers
expose the API only under a so-called secure context, i.e. the use of HTTP over TLS
(HTTPS).

Following is a detailed explanation of the two ceremonies in WebAuthn: registration
and authentication.

2.2.1 Registration

Figure 2.4 shows the registration ceremony flow. We assume that a user is registering
their authenticator to a service and starts the registration flow. This is composed of the
following steps:

2https://www.w3.org/
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Figure 2.4: WebAuthn registration flow [44].

0. The user initiates the WebAuthn registration flow. In this work, we refer to this
request as the setup request.

1. The relying party invokes the navigator.credentials.create method on the user’s
client, with arguments a high-entropy random challenge, the RP ID, the user ID, and
the cryptographic algorithms that it supports. The full list of properties can be found
in the Credential API documentation3.

2. The client creates the clientDataJSON object which includes:

• the received challenge

• the origin of the relying party

• the type of the ceremony (in this case, the literal string “webauthn.create”)

The client then sends the user- and relying party-related information, the hash of
the clientDataJSON, and the RP ID to the authenticator via CTAP2.

3. The authenticator must verify that the user is in its proximity (by using BLE, NFC,
or tapping on a button) and optionally verify that they can unlock the authenticator
with a gesture (PIN, biometric, etc.) depending on the relying party’s preference. It
then creates the key pair and scopes the RP ID to it.

The authenticator creates an authenticator data object, which includes:

• The hash of the RP ID.

• The flags, which are bits indicating the authenticator’s status:

– UserPresence (UP): if true, it means that the user is near the authenti-
cator.

3https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/create#
publickey_object_structure
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– UserVerification (UV): if true, it means that the user is authorized to
use the authenticator (for example, by typing a PIN).

– Attested credential data: if true, it means that the authenticator data
added attestation.

– Extension data included: if true, it means that the authenticator data
has extensions.

• The credential ID (or key ID).

• The public key, in CBOR Object Signing and Encryption (COSE) format.

• The AAGUID, an identifier chosen by the authenticator’s manufacturer.

• The initial signature counter.

• Optional extensions.

Figure 2.5: Attestation object layout [43].

The authenticator can optionally include attestation data to provide proof of its
manufacturer depending on the relying party’s preference. The whole data structure
is then called the attestationObject. Figure 2.5 provides a nice overview of the
attestationObject’s composition.

4. The authenticator returns the attestationObject to the client.

5. The client forwards the attestationObject and the clientDataJSON to the relying
party. We mention this as the assertion request.

6. The relying party verifies the data according to the specification [45] and if validated,
adds the credentials to its storage.
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Figure 2.6: WebAuthn authentication flow [44].

2.2.2 Authentication

Figure 2.6 shows the authentication ceremony. When a user navigates to a website and
proceeds to sign in with one of their authenticators, the authentication flow works as
follows:

0. The user initiates the WebAuthn authentication flow. In this work, we refer to this
request as the setup request.

1. The relying party calls the navigator.credentials.get method on the user’s client
with the argument a high-entropy random challenge. Optionally arguments can
include the RP ID, the preference for user verification (i.e., "preferred", "enforced",
or "discouraged"), the list of credential IDs registered by the user, etc. The full list
of properties can be found in the Credential API documentation4.

2. The client creates the clientDataJSON as in the registration, with the value of type
set to "webauthn.create".

The client sends the hash of the clientDataJSON and the RP ID to the authenticator
through CTAP2.

3. The authenticator must verify that the user is in its proximity (by BLE, NFC, or
tapping a button) and optionally verify that the user does a gesture (PIN, biometric,
etc.) to unlock it.

The authenticator creates a CBOR-encoded authenticatorData object, which in-
cludes:

• The hash of the RP ID.

• The flags.

• The signature counter.
4https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/get#publickey_

object_structure
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• Optional extensions.

The authenticator then uses the scoped private key and signs the authenticatorData
concatenated with the hash of the clientDataJSON.

4. The authenticator sends the signature and the authenticatorData to the client.

5. The client appends the clientDataJSON to the authenticatorData and forwards
them to the server. We mention this as the assertion request.

6. The RP verifies the data according to the specification [46] and if validated, lets the
user sign in.

In this work, we are curious to see how relying parties validate the data (step 6).
In case we manipulate the data in the assertion requests, we want to see if the server
accepts or rejects the modified data. In the former case, we consider this mis-check a server
misconfiguration. We explain more about how we operate to test for these comprehensively
in Chapter 3.

2.3 Security

In this section, we explain what considerations FIDO and W3C make regarding security
and privacy.

2.3.1 WebAuthn Security considerations

Section 13 of the WebAuthn standard [44] outlines WebAuthn-specific security considera-
tions. Here, we list the most relevant ones to our work. In particular, we focus on security
considerations for relying parties in Section 13.4 and we comment how these can influence
the security of the protocol. We also include Section 13.4.8 and Section 13.4.9 from the
WebAuthn draft standard [47], as we consider these points relevant to the security of the
protocol.

Section 13.2 says that “it is generally assumed that roaming authenticators are physi-
cally close to, and communicate directly with, the client.”

In Section 13.4.3, the specification mentions that the relying parties SHOULD store
the challenge temporarily until a WebAuthn operation is complete. It does not specify
how this can cause security issues.

Section 13.4.4 outlines the importance of TLS-protected connections, in order to prevent
MitM attacks that could forge the attestation object and change the public key to one that
is controlled by the attacker.

Section 13.4.7 describes how relying parties can leak the privacy of users about whether
they have registered an authenticator in the service. An attacker can leverage these relying
parties to execute username enumeration.

Section 13.4.8 talks about injection attacks and says that relying parties allow the
execution of untrusted code in the origin of the credential that it creates.

Section 13.4.9 says that relying parties MUST validate the origin value in the client
data. Later, they say that even though the credentials are already scoped, this validation
serves as an additional layer of protection in case of a faulty authenticator.
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2.3.2 CVEs

In this section, we list vulnerabilities disclosed by the National Institute of Standards and
Technology (NIST) that are related to the implementation of FIDO2/WebAuthn.

NIST published several security vulnerabilities regarding FIDO2/WebAuthn. CVE-
2021-38299 [31] exposes a critical vulnerability in the WebAuthn framework version
< 3.3.4. Hackenjos discovered that the PHP library webauthn-framework did not ver-
ify the user presence bit in WebAuthn assertions. A remote attacker can potentially log
into a service without passing the user presence test on the victim’s authenticator.

CVE-2022-42731 [32] shows a vulnerability in the Django-mfa2 library. This allows
a replay attack, which can register another authenticator to a user by replaying a request
since the challenge is not invalidated after its first use.

2.4 Web Security

In this section, we give an overview of relevant web application security concepts. We
introduce Burp Suite, a modern web security testing tool, and its functionalities, such as
extensions. We conclude with the description of a well-known class of client-side vulnera-
bilities, Cross-Site Request Forgery (CSRF).

2.4.1 Burp Suite

Burp Suite [33] is a “comprehensive suite of tools for web application security testing” [35],
developed by PortSwigger. It allows for intercepting HTTP(S) traffic and modifying re-
quests and responses in order to test different application behaviors. Hereby, we describe
and summarize the relevant components to our work:

• Proxy: The Proxy sits between the client and the server, allowing Burp Suite to
capture HTTP(S) requests and responses between the two parties. It decrypts the
TLS-protected request content [36] and shows it in Burp Suite.

• Repeater: The Repeater allows users to manually manipulate individual HTTP(S)
requests and test how the application responds to different kinds of inputs.

• Extensions: The Extension tab manages the extensions active in the current Burp
session. It permits the extensibility and automation of custom tasks.

Burp Suite is one of the most common web application testing tools, thanks to its
versatility. As mentioned before, Burp Suite allows users to extend and customize its
functionalities by means of extensions. Any user may personalize Burp Suite’s behaviors,
such as modifying HTTP requests and responses, customizing its interface, adding extra
checks, etc., by developing a custom plugin. Burp Suite provides a comprehensive API
that exposes various functions, interfaces, and data structures: Montoya API [34]. This
allows developers to manipulate the tool’s features.

WebAuthn CBOR Decoder

To date, the only extension available in the BApp Store regarding FIDO2 is a We-
bAuthn CBOR Decoder5. Its purpose is to decode the attestationObject from the

5WebAuthn CBOR Decoder: https://portswigger.net/bappstore/36b86e134e93444596cc2675a4f0e48d
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CBOR format of WebAuthn requests and visualize it in a user-friendly way. This is ex-
tremely useful for debugging, but its utility is limited due to its simplicity as it simply
loops through the request parameters and looks for the literal string "attestationOb-
ject". The extension cannot detect and decode more complicated request parameters
like data=attestationObject:some_attestation_value because its key is not "attes-
tationObject". Moreover, it is not able to decode the authenticatorData parameter. In
Section 3.1.1, we show how we extend this decoder to decode more data structures and
formats.

2.4.2 Cross Site Request Forgery

Cross-Site Request Forgery (CSRF) is an attack that makes a victim do unintended ac-
tions through social engineering. According to PortSwigger [42], three conditions must be
satisfied to execute a CSRF attack:

• The action to be computed is relevant, such as changing user-specific data or modi-
fying permissions for other users.

• The session relies solely on session cookies.

• The request parameters must not contain any unpredictable values.

An example of an HTTP request to register an authenticator would be:

POST /authenticator/add HTTP/1.1
Host: vulnerable-website.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 39
Cookie: session=yvthwsztyeQkAPzeQ5gHgTvlyxHfsAfE

authenticator=attackers_authenticator

If a relying party is vulnerable to CSRF, an attacker can construct a webpage that
once accessed by a victim, triggers automatically an HTTP request on the latter’s behalf.
The victim will perform the relevant action with their session cookie(s) being automatically
included. For instance, this can lead to the attacker’s public key being added to the victim’s
account. The attacker can then log in to the victim’s account with their own private key
and take it over.

Common mitigations against Cross-Site Request Forgery are:

• CSRF tokens, which are unique and unpredictable values generated by the server. For
each relevant action, it is important to include this token in the request parameters
to be considered. An attacker is not able to guess this value and therefore construct
a valid request.

• the SameSite attribute on cookies, which prevents them from being sent if the request
is triggered from a different site than the target one. This does not prevent attacks
between different subdomains of the same domain. There are three possible values
for the SameSite attribute: Strict, Lax, and None. Strict allows the cookie(s) to be
sent only under the same site. Lax allows the cookie sent only in GET requests and
from a top-level navigation by the user, e.g., clicking on a link. There are advanced
methods to send the cookie with POST requests and we make sure to test them
during experiments. None allows the cookie to be sent and thus the website might
be vulnerable to CSRF.
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2.5 Related Work

In this section, we outline the related work regarding the security of FIDO2/WebAuthn.
We remark on the difference between the present literature and our work by highlighting
the relevance of our contribution. In particular, we summarize previous theoretical formal
verification of the FIDO2 and the WebAuthn protocols. Then, we look at the existing at-
tacks against FIDO2. In particular, client-side attacks mainly tamper with the underlying
protocol and its security assumptions. Also, we mention previous authenticator attacks
which are able to extract private information by exploiting hardware weaknesses. We pay
attention to testing server-side misconfigurations, in which only little work has been done.
We do not focus on the protocol itself, but rather on how it is implemented.

2.5.1 Formal verification

Previous work has shown that FIDO2 and its sub-protocol, WebAuthn, are theoretically
secure. In our work, we do not provide security considerations about the protocol, rather
we focus on the practical implementation of it. We study the previous work in order to
find potential theoretical vulnerabilities that we can exploit in practice. The following is
a summary of the most relevant formal verifications of the FIDO2/WebAuthn protocols.

Firstly, Barbosa et al. [5] introduce a formal model for authentication for FIDO2, based
on the first version of WebAuthn and CTAP2 and confirm the authentication security of
WebAuthn.

Bindel et al. [6] build on [5] and provide a more fine-grained security model and prove
other security guarantees, such as token binding agreement, the None attestation mode,
and user presence/verification checks. As we will explain later in Section 2, these properties
are significant for the secure workflow of FIDO2. The authors prove that FIDO2 is secure
in their security model.

Hanzlik et al. [21] are the first to formalize the privacy notion that FIDO wishes to
achieve. The authors extend Barbosa et al.’s work by verifying security for security keys
adopting key derivation and key wrapping. Furthermore, Hanzlik et al. do not consider
authenticator attestation in their model because it is impractical [6] and it could potentially
violate privacy [19]. They show that existing implementations of FIDO2 satisfy the notion
of security against impersonation also in the case of externally stored keys.

Guirat and Halpin [19] conduct the first formal verification of the security and privacy
of solely the WebAuthn protocol. Their security goals are to prove integrity, i.e., no secret
key material can be known by the attacker, and authentication, i.e., the user can only
authenticate to the server they have registered to. Their results show that no phishing
and man-in-the-middle attacks were found. Thus, WebAuthn itself securely authenticates
its users according to their test cases. They also wish to verify the privacy properties by
analyzing whether authentication is unlinkable between origins. They propose a setting
where only a user and a server are present. If the server can link any information that
the client sends, then the privacy property cannot be verified. Their result is that, if a
user uses one authenticator, then its public attestation key will always be the same, so the
server can check that and link it with previous registrations. We argue that this conclusion
assumes that attestation keys are unique to each authenticator, but in practice, multiple
authenticators share the same AAGUID (batch attestation) [6].

2.5.2 Client-side attacks

Previous work shows what attacks can be conducted if the client is compromised.
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Yadav et al. [51] mention in their work that 115,881 Chrome extensions use activeTab/tabs
permission, which can override the WebAuthn API. If one of these extensions is compro-
mised, an attacker can launch an attack impacting millions of users. The authors also
mention that relying parties usually do not provide specific error messages, leaving the
users unaware if actions are their own or spoofed.

Similarly, Kuchhal [28] also implements a proof of concept for an attack using a ma-
licious browser extension. In this case, the authors manage to create a malicious request
immediately after the legitimate one, so that the user re-authenticates with a gesture as
they are unconscious of the second being a malicious request. The attacker can leverage the
Risk-Based Authentication (RBA) systems, which lack transparency and do not specify
what exact action is the user authenticating to.

Schrempp [39] performs a formal verification on FIDO2 and she also proposes two
attacks that enable an attacker to make the victim’s authenticator sign a challenge from
the relying party. She also uses a similar technique to the previous ones.

We agree with these authors that client compromise is still a practical and realistic
scenario, although FIDO Security Reference [15] assumes that it is trustworthy and not
tampered with.

2.5.3 Authenticator Security

Furthermore, previous work shows attacks against the security of authenticators. NinjaLab
conducted a side channel attack to reveal the ECDSA ephemeral key [37]. Even if this
attack is impractical for an average user, due to its high economic cost and complexity,
it still shows that this threat needs to be considered in the security models for formal
verification. A CVE has also been assigned to this vulnerability [30].

Roth et al. [38] demonstrate the cloning attack on the Nordic nRF52832 on Apple
AirTags with a low-cost setup (5€), showing that hardware cloning is nevertheless a fea-
sible threat to be considered. Anyway, we mention that there are techniques to mitigate
authenticator tampering, such as [10].

2.5.4 Server-side misconfigurations

There are not many tools analyzing comprehensively the security of the server-side im-
plementations of FIDO2/WebAuthn. The Fido Alliance offers the “Conformance Self-
Validation Testing” tools [4] which help developers test the conformance of their FIDO2/WebAuthn
implementation with the specifications during the development. In our work, instead, we
create a tool that security professionals can use to test the FIDO2/WebAuthn implemen-
tation externally. We would like this tool to be used in penetration testing assessments
and be able to support black box testing, i.e., without knowing how FIDO2/WebAuthn
is implemented. Grammatopoulos et al. have previously implemented WebDevAuthn, a
tool for “testing FIDO2/WebAuthn implementation’s conformance” [18]. WebDevAuthn
hijacks the communication between the client and the relying party and automatically
displays warnings when misconfigurations are detected. Our work takes inspiration from
theirs, but we aim to improve the usability of the tool, consider more comprehensive test
cases, and provide proof of concepts of feasible attacks. We comment that our implemen-
tation can be integrated into Burp Suite, which is a commonly used software in practical
security assessments.
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Chapter 3

Methodology

In this chapter, we present the methodology to provide answers to our research questions.
To ease and automate the testing process for FIDO2/WebAuthn misconfigurations

in web applications, we implement a Burp Suite extension that can analyze server-side
implementations automatically. We describe our approach to implement it and outline the
design choices and the core functionalities behind this scanner.

To visualize what are the design choices of current implementations of FIDO2/WebAuthn,
we manually compute registration and authentication operations to see what and how in-
formation is exchanged between client and relying parties. We analyze what makes a
WebAuthn request valid and how it is handles on the server side. To assess their com-
pliance with the security best practices, we check with the scanner if the relying parties
follow the official specifications and have the proper security configurations in place. To
expand on this, we further research whether it is possible to conduct client-side attack,
such as Cross-Site Request Forgery, and compromise other user accounts.

After finding potential WebAuthn misconfigurations, we study if possible attacks could
arise. We combine the results of the automated scanning, understand previously disclosed
vulnerabilities, and manually exploit the misconfigurations by trying out several attacks
such as CSRF or JavaScript manipulation.

This chapter is structured as follows. We begin outlining our approach to making an
automatic scanner with Burp Suite. We describe in detail our whole setup, composed of
the Burp Suite extension, the CBOR Decoder, and the virtual authenticators. We proceed
to describe what tests we plan to do and on what services we execute these in order to find
server-side misconfigurations. We conclude by explaining how Cross-Site Request Forgery
attacks can in theory be executed against the FIDO2/WebAuthn ceremony flows, in case
of improper server-side session management.

3.1 Security Configurations

Firstly, we present our setup environment to conduct our tests. We list the components that
help us during the testing of the configurations, namely the Burp Suite CBOR Decoder,
our novel Burp Suite extension, and the virtual authenticators that we use. Secondly, we
list the test cases we are executing and what impact they have. We define a test case as
a value that we modify in the data objects sent to the server to see the latter’s behavior.
We list also the targeted relying parties. We mention that we only select websites on
which testing is allowed. These are either demo websites or the ones that have a public
responsible disclosure platform so that we can submit our findings to the vendor.

We proceed to describe our approach to building our Burp Suite extension and how
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to do automated testing. We give two complementary approaches: the first one facilitates
manual work in case of specific test cases and the second gives a comprehensive testing
result of all the test cases. We recall that we aim to build a Burp Suite extension that can
be used during security assessments. In these cases, the tester can use the second approach
to get an initial overview of all the misconfigurations. After a patch of a misconfiguration,
the tester can then use the first approach to test that single case, without having to check
all of them once again.

3.1.1 Setup

We introduce our setup architecture to conduct automated scanning of FIDO2/WebAuthn
server-side misconfigurations. We aim to implement a Burp Suite Extension that can
modify WebAuthn parameters in the requests. In particular, we target the data structures
clientDataJSON, attestationObject, and authenticatorData. Briefly, our goal is to see
whether the server would reject an invalid request. In case it does not, we report this as
a security issue in Burp Suite. We wish to create a tool that can be used during security
assessments in penetration testing engagements.

Our setup is composed of five integral components, namely Burp Suite, a client, a
(virtual) authenticator, an IDE, and a relying party.

Burp Suite’s CBOR Decoder extension

Examining existing Burp Suite extensions that could facilitate our work, we consider the
WebAuthn CBOR decoder 1. This tool decodes CBOR formatted objects and renders them
in a human-readable form. Currently, this extension decodes only the attestationObject
parameter by simply checking whether a parameter name in the requests matches the
literal string “attestationObject”. Its simplicity makes it not fully compatible with all
requests’ content types and formats. Our contribution to improving the performance of
this tool is adding more content types and formats to detect CBOR-formatted values. In
detail, we include the application/json, the application/x-www-form-urlencoded, and
the multipart/form-data content types by creating a function that looks thoroughly in
the request for every possible CBOR-encoded value. Moreover, we add the detection and
display of the authenticatorData object. With this, we can read more CBOR-encoded
values and better debug WebAuthn requests during our testing.

Burp Suite Extension

The core of this work is creating a Burp Suite extension and we design to be application
in penetration testing engagements. To program it, we use the Montoya API [34] from
PortSwigger. Its versatility allows developers to easily customize the behavior of Burp
Suite tailored to their needs. With the Montoya API, we create a custom HTTP handler
and a context menu item in Burp Suite. In essence, the former is a class that allows us
to implement rules to handle the intercepted HTTP requests. The latter is a Java Swing
menu item, in which we can insert the option that, when clicked, triggers specific actions
(e.g., "Test registration" to start the testing for the registration ceremony). More details
will follow as we explain our approach to test WebAuthn misconfigurations.

1https://portswigger.net/bappstore/36b86e134e93444596cc2675a4f0e48d
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Virtual authenticators

In the testing phase, we opt for virtual authenticators to create and store our FIDO2/WebAuthn
credentials We use two types of virtual authenticators:

• Chrome DevTools virtual authenticator [13]. This is revealed to be the most
useful tool since it offers the functionality to export private keys. These are needed
to re-compute the signature when modifying values in an authentication request. We
mention that exporting the private key is non-conform with the WebAuthn standard
as it “is expected to never be exposed to any other party, not even to the owner of
the authenticator” [44].

Its drawback is that not all relying parties recognize this as a valid FIDO2 authen-
ticator.

• 1Password passkeys. The 1Password password manager is able to create, store,
and synchronize passkeys among different devices. It is extremely useful because it
can create a valid passkey for every relying party we are testing.

3.1.2 Test cases

In this section, we present the comprehensive tests we conduct in our analyses. A test
consists of changing a specific value to one of the data structures mentioned in Section 2.2
in the request that we send to the server during WebAuthn ceremonies. To create our test
set, we follow the list of procedures the relying party should or must follow to correctly
handle the ceremonies defined in Chapter 7 of the standard [44]. A misconfiguration arises
when the relying party incorrectly handles a test. This happens when a server has not
rejected an invalid value that we provided. We refer to Chapter 13 of the standard [44] and
previous CVEs to explain what potential attack surface is exposed by misconfigurations.

Following are the data objects and the values we are modifying.

Client data

We modify the clientDataJSON object sent from the client to the relying party. It contains
client-related data rather than authenticator-specific information. To correctly modify this
object, we undertake the following steps: first, we Base64-decode the clientDataJSON.
Subsequently, we change its value according to the specific test case. After that, we re-
encode the data with Base64 and update the data in the request. We perform the following
tests:

• Client data type: we modify the value associated with key "type" in the clientDataJSON
object. The relying party must make sure that this value is "webauthn.create" for
registration and "webauthn.get" for authentication. We comment that this mis-
check does not imply a security vulnerability.

• Client data challenge: we modify the value associated with key "challenge" in
the clientDataJSON object. The relying party must make sure that this value is the
original challenge value that it has created for this user for this session.

• Client data origin: we modify the value associated with key "origin" in the
clientDataJSON object. The relying party must make sure that the received origin
value is in a whitelist of acceptable origins. This serves as an additional layer of
protection against phishing attacks. If the "origin" is not checked correctly, in case
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an attacker has obtained a credential (i.e., a valid assertion request) from a victim
because of a faulty authenticator, they can use that to log onto the legitimate website
on behalf of the victim.

To test if the relying party correctly checks the "origin" value, we perform two
types of test:

– Client data origin: we modify the "origin" value with, e.g., "Test Exten-
sion".

– Client data origin subdomain: we modify the "origin" value with a sub-
domain value, e.g., "test-extension.domain.com".

We comment that in actual penetration testing engagements, it is more comprehen-
sive to test for instance subdomains with a dictionary of the most common ones.

Authenticator data

We modify the values in the authenticatorData object to assess the abilities of relying
parties to detect anomalies. We undertake the following steps: first, we URL-Base64
decode the authenticatorData to retrieve the CBOR-encoded byte array. From there, we
modify the data at a low level using bitwise operations or overwriting bytes. Subsequently,
we URL-Base64 encode the modified CBOR array to get the new authenticatorData and
update it in the request. We perform the following tests following the syntax in Figure 2.5:

• User Presence: we set the UserPresence flag to 0 and UserVerification flag to
1. We comment that even if this case is not realistic as remote authenticators that
require user verification do not exist, we still test for this for completeness.

• User Verification: we set the UserVerification flag to 0 and UserPresence flag to
1. Should a relying party allow single-factor authentication, they must check that the
UserVerification bit is set, which means that the user has confirmed the ownership
of the authenticator. If relying parties omit checking the UserVerification flag, this
would be a serious vulnerability, as an attacker can log in to a victim’s account by
only obtaining physically their security key.

• User Presence and Verification: we set the UserPresence and UserVerification
flags to 0. We comment that even if this case is not realistic as remote authenticators
do not exist, we still test for this for completeness.

• RP ID hash: in registration, we change the RP ID HASH value to invalid hash
bytes, e.g., to the padded byte-representation of "Test Extension". This is to check
if the relying party accepts an authenticator that tells that it is registering with
another relying party. We comment that this mis-check does not imply a security
vulnerability, but we consider this case for completeness.

• Public key ID: in registration, we change the CREDENTIAL PUBLIC KEY value to an
identifier of a random public key algorithm. We want to see if the server checks
that we have inputted an algorithm that it has not allowed. We comment that
this mis-check does not imply a security vulnerability, but we consider this case for
completeness.
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• Credential ID: in authentication, we change the CREDENTIAL ID value to an invalid
one, e.g., the padded byte-representation of "Test Extension". This is to check if the
relying party accepts an authenticator ID that has not been stored in previous reg-
istrations. We comment that this mis-check does not imply a security vulnerability,
but we consider this case for completeness.

• Signature counter 1: in authentication, we change the COUNTER value to 1 to see
if the relying party accepts a low signature count. We first ensure that the relying
party stores a signature value greater than 1 by manually signing in a few times.
The consequence of this mis-check is that an attacker with a cloned authenticator
can authenticate with that on behalf of the victim.

• Signature counter 999: in authentication, we change the COUNTER to 999 to see if
the relying party accepts a significantly greater signature count. With this, we want
to test if, in the case of a cloned authenticator, the relying party detects if the value
is significantly larger than the stored signature counter. If not, an attacker with a
cloned authenticator can authenticate with that on behalf of the victim by setting a
very high value in the signature counter.

Signature

During authentication, we change the signature to random values to see if the relying
party checks it. A failure in signature validation could have critical consequences, as an
attacker can gain unauthorized access to another account without needing to prove the
ownership of any private key.

3.1.3 Test pages

Here we present the test pages that we target, categorized into two types of relying parties:
demo websites and commercial websites. Our testing methodology slightly differs between
these due to their inherent differences.

Demo websites are WebAuthn playgrounds, in which any user can only register an
authenticator and authenticate within. Their purpose is to let users familiarize themselves
with password-less authentication and for developers to make sure that the FIDO2 library
is implemented and deployed correctly. These websites are easier to test because session
management is simpler or non-existent, the HTTP requests are easily readable and mod-
ifiable, and there are no defense mechanisms such as rate limiting. Additionally, many of
these specify which open-source WebAuthn libraries and frameworks they use. This allows
us to also conduct white-box testing, with which we can refine our tests tailored to the
application.

Commercial web services present a different set of challenges. To compute WebAuthn
ceremonies, we need to have an account within the service and a valid session. Unlike demo
websites, the HTTP requests to compute a ceremony are not straightforward to grasp,
causing more work in the automation of the testing. Commercial services often have the
obstacle of not being open-source as the source code remains the intellectual property of
the commercial party. In case we find open-source resources of these, we perform also
white box testing by manually auditing code, in order to find possible vulnerabilities.

In order to protect the personally identifiable information of other users, we create
dedicated test accounts and act upon these. To ensure ethical testing, We firstly verify
that all the target websites have responsible disclosure programs or bug bounties. We
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strictly follow these programs and disclose promptly any security findings discovered in
this work. More details are in the Chapter 7.

We consider two community-trusted lists of websites that support WebAuthn in their
authentication methods: 1Password passkeys list 2 and the YubiKey Catalog 3. We prior-
itize relying parties that allow password-less authentication rather than leveraging FIDO2
as a second factor. We exclude services where it is not suitable to do analyses. These
include the ones requiring real personal information (Social Security Number, phone num-
ber), with non-English language, malfunctioning, requiring to pay to register, etc. We
further exclude the ones that do not strictly follow the WebAuthn standard [44]. For
instance, we do not consider relying parties that use the standard Base64 encoding (in-
stead of the URL safe mode), as this requires significant effort in crafting valid requests
in our tool. From the Yubikey catalog, we sort websites by popularity and select the most
well-known ones.

Vendors that have not yet disclosed our findings are anonymized as "RPx" and we
refrain from providing any specific information about them to comply with their disclosure
policies. We select the following relying parties to test on:

• webauthn.io: a demo website that uses the Python library of WebAuthn.

• webauthn.cedarcode.com: a demo website that uses the Ruby library of WebAuthn.

• RP3 This is an online co-working space where developers can write code and do
software version control.

• RP4 This is a company that provides electronic signing services.

• RP5 This is a widely-used online travel agency used by people to compare prices and
make reservations for flights, hotels, and other travel-related services.

We target these as we want to show how popular sites with thousands of users adopt
this password-less technology. We believe that in case of a security finding, its disclosure
would significantly and safeguard the security of the respective relying parties and their
user bases.

3.1.4 General approach

In this section, we describe our approaches and design choices behind the implementation
of our Burp Suite extension.

The WebAuthn standard [44] defines the necessary data to compute a WebAuthn cere-
mony, but it does not specify how these should be transmitted from the client to the relying
party’s back end. Relying parties have the freedom to choose their preferred way to parse
the results of the WebAuthn methods and to format them. For instance, the requests’
content type can vary between JSON (Content-Type: application/json), URL pa-
rameters (Content-Type: application/x-www-form-urlencoded), multipart form data
(multipart/form-data), etc. Therefore, it is challenging to build a tool that generates
valid requests out of the blue without knowing in advance what data and in which format
the relying party is expecting.

We assume these discrepancies are because commercial services tend to implement their
own version of WebAuthn. By comparing request formats from open-source WebAuthn

2https://passkeys.directory/
3https://www.yubico.com/works-with-yubikey/catalog/?protocol=5
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libraries and commercial websites, we often do not notice similarities among them. There-
fore, we infer that commercial services do not adopt the publicly available libraries, but
opt for an ad-hoc implementation of WebAuthn tailored to their existing codebase.

Notwithstanding, our general testing approach is understanding what makes requests
valid, i.e., which format and which encoding they employ, and applying our test cases
accordingly. A test case is a value that we modify in one of the data objects described in
Section 2.2, such as attestationObject, authenticatorData, or clientDataJSON. Our
objective is to see whether the relying party accepts our modified (invalid) value. In that
case, we raise an alert in the Burp Suite’s issues panel. We proceed to design our testing
process following two approaches:

1. For each test case, we compute manually a WebAuthn operation and make our tool
apply the test case on the fly. This approach would work with every relying party
and it is less prone to errors as we are essentially executing an ordinary WebAuthn
operation. For instance, when computing a registration ceremony manually, we are
sure that values such as session cookies, CSRF tokens, and the created public key
are valid since they have been created with an ordinary flow. However, this approach
requires significant manual effort from the tester. Indeed, for each test case, they
must manually select it in the source code, load the Burp Suite extension, and perform
manually a ceremony. The main advantage of this approach is that the tester can
select which single case it wants to test, without completing a whole comprehensive
assessment.

2. We manually compute the WebAuthn ceremonies only once. From Burp Suite Proxy’s
history, we look for the setup and assertion requests that compose the ceremony
and we modify and replay them according to the test case. This approach requires
great effort to understand which parameters need to be updated for the requests to
be considered valid by the relying party. For instance, a session cookie might be
invalidated after the initial ceremony and needs updating (e.g., by logging in again).
Despite an initial important manual effort, this approach simplifies significantly the
effort of testing a website as it automatically scans through our test cases.

These two approaches complement each other. In scenarios where a developer wishes to
test their own WebAuthn implementation, they can execute the second approach to have a
comprehensive review of all the misconfigurations and test cases. Once these are patched,
the developer can then manually test the individual cases using the first approach.

During authentication, after we change the clientDataJSON or the authenticatorData
objects, it is necessary to recompute a valid signature. Leveraging the DevTools virtual
authenticator, we can export the private key associated with the credential and recompute
the signature with that. Unfortunately, with other authenticators, we cannot extract the
private keys as these are not exportable. For this reason, the relying parties that do not
accept the DevTools virtual authenticator cannot be tested for the authentication ceremony
(unless they skip the signature check).

After sending the modified requests to the relying party, we need to understand whether
the latter has considered them valid and accepted them. To do this, we need to define a
way to classify valid ceremonies by looking at the HTTP response of the assertion requests.
During the manual steps in our approaches, we observer how relying parties distinguish
between valid or invalid operations. For instance, a relying party can return an HTTP
status code of 201 to indicate that a new authenticator has been added to an account.

As the standard does not specify what responses should relying parties send, we observe
in practise that different HTTP responses are given when a ceremony succeeds or fails. For
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Figure 3.1: Issue raised in Burp Suite about the userVerification flag not being
checked by webauthn.io.

example, some applications to return a successful status code of 200 when an operation
fails or a status code of 301 when it succeeds. We develop a generic function that, given
an HTTP response, can classify it as valid or not. This function examines the response for
peculiar characteristics, such as particular failure literal strings or status codes.

Finally, after scanning a targeted relying party, we check each response manually to
make sure that it is correctly classified. Once a security issue is detected, i.e., after the
relying party has accepted our invalid value, we display it in Burp Suite’s issues panel, as
shown in Figure 3.1

Following is a detailed explanation of the two approaches.

Approach 1

With this approach, we design the Burp Suite extension as follows. We create methods
that look thoroughly for the data objects targeted by our test cases. For instance, if we
want to modify the attestationObject, we create a method that given a generic request,
retrieves that from the request’s parameters. In addition, we create a setter method that,
after modifying the data object, sets it back into their previous location in the request’s
parameters.

After loading the tool into Burp Suite, we manually navigate to the target website and
initiate a new WebAuthn ceremony. The extension can detect the data objects of interest
in the request, change the value according to the test case, set it back, and forward the
modified request. With this approach, we can also visualize the result in our client. For
instance, Figure 3.2 and Figure 3.3 show the response of webauthn.io when modifying the
UserPresence bit during registration and authentication ceremonies.

Approach 2

With this approach, we begin by navigating to the target website and manually compute
a new WebAuthn ceremony. Firstly, we need to understand which requests compose a full
valid WebAuthn ceremony flow, i.e., which WebAuthn requests registers our authenticator
or authenticates us. Our goal is to repeat these requests and, each time, change their
content according to our test cases. Specifically,

1. We take the assertion request, i.e., the one containing the attestationObject or
the authenticatorData, and replay it with Burp Suite Repeater. We examine if
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Figure 3.2: webauthn.io reg-
istration error due to missing
userPresence flag.

Figure 3.3: webauthn.io au-
thentication error due to missing
userPresence flag.

the relying party still considers this request as valid. For instance, for the reg-
istration ceremony, we test whether simply replaying the request containing the
attestationObject would result in registering a new authenticator. If so, it means
that the relying party does not invalidate the challenge or other parameters after the
initial ceremony, and we consider this a valid request. We manually test this case to
also verify if CVE-2022-42731 is still present in some relying parties.

If the repeated request fails, we save this request and proceed with the next step.

2. We take the setup request and replay it with Burp Suite’s Repeater. We see whether
the relying party accepts it by seeing if it responds with a new challenge value. If so,
we retrieve the saved assertion request in step 1 and replay it with the updated chal-
lenge value in the clientDataJSON object. We eventually need to update manually
other nonces such as the CSRF token or cookies if the request fails. If replaying the
setup request and the new assertion request result in successfully registering a new
authenticator during registration, we consider these requests as valid.

If we are unable to retrieve a valid challenge by relaying the setup request, e.g.,
because we do not have a valid session anymore, we proceed with the third step.

3. At this point, we have to compute the normal authentication flow again to receive
a valid fresh session cookie. For example, we can do this by submitting the email
and password again to log in again. We then receive a valid session cookie from the
server, with which we can do the operations in step 2.

In conclusion, we consider valid requests the ones that, replayed, will successfully com-
plete a WebAuthn ceremony. We send these requests to our Burp Suite extension through
our custom context menu item. The extension maintains a list of buffered valid requests
and sends them one by one. After each request, the tool parses the response and updates
the next buffered request with fresh values, such as challenges, CSRF tokens, cookies, or
other nonces, to make it valid and accepted by the relying party.

The main difference from the first approach is that, during registration ceremonies, we
are repeating the registration with the same public key. In the first approach, we are man-
ually creating distinct public keys each time by manually calling the WebAuthn methods.
In this second approach, if a relying party rejects the registration of an already registered
key, we have to make our tool change the credential ID in the attestationObject to a
random one.

For each test case, we send the modified valid requests according to the test case. This
approach can be summarized with the following pseudo-code:
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for test in tests do
for request in valid requests do

if request not assertion then ▷ setup request(s)
send request

else ▷ assertion request
test(request)

end if
end for

end for

3.2 Cross-Site Request Forgery

In this section, we present a novel attack we plan to test on our targeted relying parties
- Cross-Site Request Forgery (CSRF). CSRF makes a victim perform unintended actions
via a simple social engineering technique, i.e., inducing them to click an attacker-controlled
link. In this particular scenario, the goal of the attacker is to illicitly register their public
key on the victim’s account. In this way, the attacker can log in to the victim’s account
with the former’s corresponding private key. The goal of this attack is to achieve a full
account takeover.

Our methodology involves emulating both the attacker and the victim to develop a
proof of concept demonstrating the potential success of the CSRF attack. We highlight
that this attack does not disrupt the ordinary functioning of the relying parties, compared
to the scanning approach.

3.2.1 Test pages

Once again, we select our testbed from the two aforementioned lists: 1Password passkeys
list 4 and the YubiKey Catalog 5. We choose relying parties that allow password-less
authentication instead of using FIDO2 as a second factor. As the information considered
in this experiment is publicly available, we do not anonymize our results in this particular
case.

We select the following relying parties:

• webauthn.io: a demo website that uses the Python library of WebAuthn.

• keycloak.org: a popular open-source identity and access management solution.

• RP3: an online co-working space where developers can write code and do software
version control.

• webauthn.cedarcode.com: a demo website that uses the Ruby library of WebAuthn.

• bestbuy.com: a consumer electronics retailer and it is in the Fortune 500 ranking.

• authgear.com: a highly customizable authentication solution to help businesses bet-
ter manage their users.

• app.hancock.ink: a signing service for documents, quotes, and proposals.
4https://passkeys.directory/
5https://www.yubico.com/works-with-yubikey/catalog/?protocol=5
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• hanko.io: an open-source authentication and user management solution with a focus
on moving the login beyond passwords.

• RP5: an online travel agency.

• locker.io: an online service to store passwords and sensitive data.

• minter.io: provides analytics for social network accounts and shows statistics about
followers, posts, ads, etc.

• nintendo.com: a multinational video game company.

• RP4: a company that provides electronic signing services.

3.2.2 Approach

Firstly, we need to find the session cookie(s) and check the SameSite attribute of these on
the target relying party. We sign into a service to receive all the cookies. Then, with Burp
Suite’s Repeater, we manually repeat a request dropping one cookie at a time and observe
if it is accepted. If not, it means that we are discarding a session cookie and we take note
of its name and SameSite attribute.

Moving forward, we see if the WebAuthn ceremonies requests include a CSRF token.
If we find a potentially vulnerable website, i.e., that has SameSite attributes set to None
and does not have a CSRF token, we create two accounts to emulate an attacker and a
victim. In the case of demo websites, we simply initiate two different sessions.

Firstly, we log in as the attacker and we initiate a WebAuthn registration ceremony.
As explained in 2.2, this is generally composed of a setup request and an assertion request.
We forward the setup request to retrieve the challenge from the server. Then, we intercept
and drop the outgoing assertion request containing the attacker’s public key in Burp Suite.
In this way, we hope that the created challenge remains valid for further assertion requests,
even from other users. Indeed, we hope that the challenge is not associated with the at-
tacker’s session so that the victim can complete the registration ceremony with their own
cookie (or any other session identifier). We mention that the WebAuthn specification [44]
does not specify defensive measures against this. In particular, Section 13.4.3 of the spec-
ification about the cryptographic challenges mentions only that these must be randomly
generated, and not being tied to the user session.

At this point, we craft a phishing page that, when clicked, sends an assertion request
with the previously saved challenge and the attacker’s public key. We can easily set up
this malicious page with Burp Suite’s CSRF proof of concept generator.

After this, we log in as the victim and click on this phishing page. The assertion
request is now sent on behalf of the victim. If the application accepts this request, the
victim has now registered the attacker’s authenticator in their account. In this way, this
results in an account takeover and a severe violation of the confidentiality of other users.
This method provides valuable insights into potential security vulnerabilities within the
WebAuthn ceremonies’ session management, emphasizing the need for robust protective
measures against such attacks like CSRF.
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Chapter 4

Results

The previous chapter answers RQ1 by explaining our approach to making a tool that
can ease the automated testing process for WebAuthn misconfigurations. The focus is on
minimizing manual labor to enhance efficiency. We have seen the components to create a
Burp Suite extension that can assess for server-side misconfigurations.

This chapter now delves into the application of our methodology and the presenta-
tion of the results. To answer RQ2, we also provide insights on the design choices of
the FIDO2/WebAuthn implementations of each tested relying party. For each identified
misconfiguration, we analyze its impact and propose a proof of concept to exploit the po-
tential vulnerability. Furthermore, we show the results of our Cross-Site Request Forgery
(CSRF) attacks and see if these are successful. To execute the attacks, we need to learn
how relying parties do session management and what are their mitigations against CSRF.
For this, we look at the SameSite attribute of the session cookies and the presence of an
eventual CSRF token. Then, we aim to see if executing the described attack in Section 3.2
would lead to an account takeover. Furthermore, we explain the reasons why the attack
succeeds or fails.

Based on the results of the found misconfigurations and the outcomes of CSRF attacks,
we respond to RQ3. This comprehensive examination provides an understanding of the
security posture of the assessed systems.

4.1 Misconfigurations

Implementing a tool capable of automatically testing for WebAuthn misconfigurations
across arbitrary relying parties is a challenging task. This is due to relying parties behaving
significantly differently compared to each other and we have to extend our tool to each case.
For instance, an application may assign a new session cookie after each request. In this
case, we have to create a specific function that updates this value repetitively. Due to this
customization being significantly time-consuming, we are not able to deliver a large number
of results and make comments about the general misconfigurations of FIDO2/WebAuthn.

Despite these challenges, our applied methodology yields insightful results for the five
targeted relying parties, gaining interesting insights. To automatically scan for all the test
cases, we use the second approach described in our methodology.

Table 4.1 and Table 4.2 show the results for the registration and authentication tests,
respectively. To adhere to the responsible disclosure, we promptly disclose the findings to
the respective relying parties. More details about the reporting are in Chapter 7. We refer
to the relying parties of the findings that are still under responsible disclosure as "RPx".
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Table 4.1: Registration tests.

C
re

de
nt

ia
lI

D

C
lie

nt
da

ta
ty

pe

C
lie

nt
da

ta
ch

al
le

ng
e

C
lie

nt
da

ta
or

ig
in

C
lie

nt
da

ta
or

ig
in

su
bd

om
ai

n

U
se

r
P

re
se

nc
e

U
se

r
V

er
ifi

ca
ti

on

U
se

r
P

re
se

nc
e

an
d

V
er

ifi
ca

ti
on

Si
gn

at
ur

e

Si
gn

at
ur

e
co

un
te

r
1

Si
gn

at
ur

e
co

un
te

r
99

9

webauthn.io # # # # # #  # # #  
webauthn.cedarcode.com # # # # #  # # # #  

RP3 # # # # #  # # # #  
RP4 # # #   #  # #   

 Affected # Not Affected

Table 4.2: Authentication tests
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An interesting observation is that registration and authentication share the same mis-
configurations in our results. Following is an overview of the most interesting findings about
how each relying party implements FIDO2/WebAuthn and the impacts of the identified
misconfigurations.

webauthn.io

Upon successful registration, webauthn.io stores the credential by retrieving the credential
ID from the attestationObject parameter 1. We comment that, on a production website,
this would not be a good idea. If an attacker manages to retrieve a credential ID of a victim
and register a new credential with the same credential ID but with the attacker’s username,
the victim’s credential gets overwritten. This can cause the legitimate user not to be able
to log in to their account with their passkey. We consider this attack to be feasible as
some services allow credential ID enumeration, allowing an attacker to obtain other users’
credential IDs.

We comment that the userVerification finding is not a misconfiguration in this case.
Rather, it is a deliberate option offered by the website allowing to omit it.

webauthn.cedarcode.com

webauthn.cedarcode.com saves the credential ID from the request parameters ID and
rawID (the second and third element of Figure 4.1), unlike webauthn.io, which stores it
from the attestationObject.

Figure 4.1: webauthn.cedarcode.com’s registration assertion request.

An important finding we have is that the relying party does not check the case where the
UserPresence flag is false and the UserVerification is true 2, during both registration
and authentication. Omitting the UserPresence check means that the user does not need
to be in proximity and control of the authenticator when computing a WebAuthn ceremony.
Figure 4.2 shows the decoded authenticatorData in the request (with "flagUP" false and

1https://github.com/duo-labs/webauthn.io/blob/c3bb1e30e98bb9b982f4ff9bdab3ba18c1fc6869/
_app/homepage/services/credential.py#L116

2https://github.com/cedarcode/webauthn-ruby/blob/2-stable/spec/webauthn/authenticator_
assertion_response_spec.rb#L106
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"flagUV" true) and the confirmation that the ceremony is successful. We comment that
even if in practice it is not possible to have this case, as there are no remote authenticators
that need user verification, it is still an important misconfiguration as this strictly goes
against the WebAuthn standard [44].

Figure 4.2: webauthn.cedarcode.com not checking the userPresence flag.

Despite the limited impact, the vendor, Cedarcode, has confirmed our finding. Addi-
tional details can be found in Chapter 7.

RP3

Similar to webauthn.cedarcode.com, RP3 does not check the UserPresence flag in case
the UserVerification flag is set to true. We mention again that this case is impractical in
a realistic scenario, as remote authenticators do not exist yet. We report that the vendor
has acknowledged our finding and awarded us a bounty. Further details can be found in
Chapter 7.

RP4

RP4 does not check the origin value in the clientDataJSON object in both registration
and authentication ceremonies. This misconfiguration allows an attacker to take over
a victim’s account, under some conditions. First, the victim has already a passwordless
authentication method set up on RP4 using an authenticator that does not check the origin
on the client side. Second, the attacker succeeds in making the victim visit a website under
the attacker’s control and perform an assertion request. They can then retrieve and forward
that request to RP4, which accepts it without checking that the origin is the attacker’s
website. Under these conditions, this attack might lead to an account take-over.

We assume for the proof of concept that the adversary has a valid email of the victim.

1. The attacker sends the victim’s email to RP4 to perform the setup request. They
retrieve the challenge from the relying party.

2. The attacker creates a phishing webpage with the following JavaScript script to
leverages a faulty authenticator to create a valid signature.

let credential = await navigator.credentials.get({ publicKey: {
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challenge: new Uint8Array([ ... challenge ... ])
}});

We assume that the victim’s authenticator is faulty and computes the signature with-
out checking the RP ID. The attacker then retrieves the valid signature and forwards
it to the relying party. The latter does not check the origin in the clientDataJSON
and accepts the assertion, resulting in an account takeover.

We comment that the faulty authenticator assumption is non-practical. To verify this,
we buy two relatively cheap security tokens that adopt key wrapping (Key-ID FIDO2 and
HyperFIDO Pro Mini) and conduct the experiment. We hypothesize that security keys
using key wrapping could be mistakenly implemented by only wrapping the private key
and not the RP ID. The attack did not succeed as the security keys correctly checked the
RP ID.

Nevertheless, this goes against the WebAuthn specification [44] and RP4 also confirms
our finding after the responsible disclosure.

From the results, we also see that RP4 does not check the UserVerification flag
during authentication. The impact of this is an account takeover. In this case, we can
craft a proof of concept attack as follows. We assume that the victim uses password-less
authentication in RP4 by means of a PIN-protected security key and the attacker physi-
cally gains access to it. Then the attacker starts the authentication flow by inserting the
victim’s email. This step can also be brute-forced, for instance, if the attacker collects
the security key in an office, they can loop through the emails of the employees. Be-
fore proceeding with the authentication, the attacker sets a breakpoint at the JavaScript
method navigator.credentials.get on the client. The attacker then starts the authen-
tication flow, which hits the breakpoint and pauses its execution. Next, they modify the
userVerification value in the argument of the method to "discouraged". They resume
the execution flow and now the security key does not ask for the PIN to the attacker.
As mentioned before, since the userVerification flag is not checked, the attacker can
successfully log in without proving the something-you-know factor.

We tested this proof of concept successfully with the Security Key NFC by Yubico.
We comment that this attack is not possible when the user presence and verification check
coincide on the authenticator. This is the case for platform authenticators and some
biometric roaming authenticators, such as the Yubikey Bio.

RP5

The testing results for RP5 are limited due to the use of standard Base64 encoding instead
of Base64 URL encoding on the attestationObject. This does not conform with the
WebAuthn specification [44]. As a result, we are not able to test for misconfigurations in
the attestationObject with our Burp Suite extension.

Despite not finding any misconfiguration, RP5 offers some interesting insights on its
implementation of FIDO2/WebAuthn. Firstly, it allows for user enumeration. During
registration, in the setup request, it is possible to specify an email address to be sent to
the relying party. When providing the logged-in user’s email or an email that was previously
not registered, RP5 replies back with a PublicKeyCredential object, containing also the
excludeCredentials array. But when giving as input another user’s email, this would
give an error. We comment that this is not best practice, as this can enumerate the
users who have previously registered a security key. A better approach would be to follow
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Section 14.6.2 of the specification[44], which is to give an indistinguishable response to
every provided email.

Now, we provide some observations about how the relying party stores the credentials
of the user. In the assertion request’s body, there are three parameters: credentialId,
attestationObject, and clientDataJSON. The server-side checks if both the credentialId
parameter and the credentialId value in the attestationObject match one of the en-
tries in the excludeCredentials array. If so, the registration is rejected. If it is a valid
request, then the relying party stores the credentialId value in the attestationObject
parameter and ignores the first credentialId parameter. We do not understand why the
stored ID is different than the checked one. This shows how WebAuthn is not mature
enough and developers find difficulties implementing this protocol.

4.2 CSRF

To assess the feasibility of Cross-Site Request Forgery (CSRF) attacks, we first look at the
defensive mechanisms that websites adopt, such as session cookie(s)’s SameSite attribute
and the presence of a CSRF token. In case the SameSite attribute of the session cookies
are None and the CSRF token is not present, we can build a social engineering attack and
send it to the victim.

Table 4.3 provides an overview of the CSRF prevention methods used by the tar-
geted relying parties. Under the first column, we write the SameSite value of the session
cookie(s). In the parenthesis, we list the names of the session cookies. In the second col-
umn, we write the name of the CSRF token and we append a "?" to non-explicit token
(e.g. Bearer tokens). In case of a CSRF attack, these are not automatically sent on behalf
of the victim so this mechanism mitigates CSRF.

We note that these defense mechanisms are not exhaustive and should to be comple-
mented with other security components. For instance, the SameSite attribute protection
can be bypassed if a website is vulnerable to Cross-Site Scripting (XSS). An attacker can
exploit it and make the victim send requests, in this case, without “crossing” websites.
This leads to the cookies being sent even if they have SameSite value of Lax or Strict.
Furthermore, CSRF token protection can be bypassed in case it is not tied specifically to
a user’s session. In our experiments, we tried different techniques to exploit the latter (by
using the attacker’s CSRF token on the victim’s session, removing the CSRF token, leaving
the CSRF token empty, etc.). We do not look for XSS vulnerabilities, as we consider that
out of the scope of this work.

The results of our conducted attacks are limited, indicating that the majority of the
targeted relying parties defend correctly against CSRF. Our attack worked only against
the demo website webauthn.io.

RP3

When testing for RP3 misconfigurations, we notice that by only repeating the assertion
request, we can register a new authenticator within RP3. This implies that the challenge
is not invalidated after its first use and therefore this exhibits the same issue as CVE-2022-
42731 [32]. Since it takes only one request to compute a WebAuthn ceremony, this could
lead to a CSRF attack. Now, we want to test whether it is possible to let another user
repeat this assertion request with our public key using their session. For this attack to
work, it is needed that the challenge in the assertion request is not tied to the user session;
otherwise, the challenge in the victim’s request will be invalidated as it is created by the
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SameSite CSRF token

webauthn.io

RP3 >=Lax (redacted) (redacted)

webauthn.cedarcode.com None
(_webauthn_app_session)

X-Csrf-Token header

bestbuy.com Lax (at, ut)

authgear.com Lax (session) gorilla.csrf.Token

app.hancock.ink Bearer token?

hanko.io Strict (hanko)

RP5 None (redacted) (redacted)

locker.io Bearer token?

minter.io Lax (session)

nintendo.com None csrfToken in JSON body

RP4 (empty) (redacted)

Table 4.3: SameSite cookies and CSRF tokens of the targeted relying parties.

attacker.
As described in Section 3.2, we emulate the adversary and the victim. We make a

registration ceremony manually with the attacker noting of the challenge used. We then
register an authenticator with the victim’s account, replacing the challenge with the at-
tacker’s in the assertion request. This request was not successful. Moreover, the session
cookie(s) have the SameSite attribute set at least as Lax. Indeed, by constructing a CSRF
attack on Burp Suite and emulating the victim by clicking on it, we note that the request
does not contain any cookies.

To conclude, RP3 rewarded us with a bounty even though they commented that this
case does not present a significant security risk.

webauthn.io

Here we present our successful CSRF attack against webauthn.io. This demo website does
not implement session management. From the webauthn.io source code3, we notice the
@csrf_exempt decorator in the registration_verification.py and authentication_verification.py
files. This removes the CSRF protections for the registration and authentication cere-
monies.

To craft a valid CSRF proof of concept, we need to send the setup request with the
username of the victim. When intercepting the subsequent assertion request, we need to
pay attention to a few details:

• the forged request cannot be of Content-Type application/json, so we change it
to be text/plain. In this case, the server does not check the content type, so we
can proceed by constructing the payload.

• the body of a text/plain payload must contain an “=” character. We append it at
the end of any Base64 encoded value (as this would be considered as padding and

3https://github.com/duo-labs/webauthn.io
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not cause decoding errors).

We execute the CSRF attack and receive a confirmation from the server. At this
point, our authenticator stores a credential ID which is tied server-side with the username
of the victim. We confirm the attack was successful by being able to log in with the
victim’s username. Limitations are that no cookie-based session management is used in
webauthn.io. In that case, we would have not been able to execute the attack, because
webauthn.io cookies have the SameSite attribute set as Lax.
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Chapter 5

Discussion

In this chapter, we review the FIDO2/WebAuthn technology in tested environments, com-
ment on the decisions made in the process, and highlight some key findings in our analysis
results. We outline our contribution to the progress of the FIDO2/WebAuthn technology
through a comprehensive design, review, and validation of our methodology.

In the first section, we discuss our contribution to creating a tool to ease the automated
testing of FIDO2/WebAuthn misconfigurations. We conclude by discussing the difficulties
we have found in the creation of the took and in the scanning process.

In the second section, we reason the successes and failures of the CSRF attacks. We
discuss whether this new type of attack could break the security of FIDO2/WebAuthn.
Our aim is to provide valuable insights that can further enhance the understanding and
mitigation of potential risks associated with the FIDO2/WebAuthn technology.

In the final part, we discuss the limitations of our work. We comment on whether these
can affect the applicability and reliability of our methodology in real-world scenarios.

5.1 Security misconfigurations

Our results show that it is possible to create a tool for scanning for FIDO2/WebAuthn
misconfigurations. Despite an initial manual effort, the scanning part is automated through
a comprehensive analysis of requests and responses exchanged between the client and
the relying party. Creating a completely automated scanner for WebAuthn ceremonies
is not trivial. While the WebAuthn specification [44] outlines data exchange between
clients and relying party servers, the diversity in how relying parties implement these flows
presents a challenge for automated tools. For instance, Figure 5.1 and Figure 5.2 clearly
show the differences between two assertion requests’ bodies. From what we have observed
in our tests, relying parties have the freedom to design the execution of the WebAuthn
execution flow by choosing in which format, encoding, capitalization, or content type the
communication with the client should occur. It is therefore not easy to program a one-
size-fits-all tool that automatically parses the needed values and updates them in the right
format. Moreover, WebAuthn ceremonies flows differ slightly according to how relying
parties manage sessions and so the number of valid requests to be repeated.

Nevertheless, we provide a comprehensive methodology and starting point for future
implementations. We make our tool such that it is extensible for future work so that devel-
opers can integrate it with more test cases and relying parties. This work can help security
professionals get a better understanding of FIDO2/WebAuthn and the implementation of
these.

We comment that extending the extension WebAuthn CBOR decoder is an important
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contribution because it helps the testing of WebAuthn flows significantly. By supporting
more formats and the authenticatorData structure, we can read the CBOR-encoded
content of the test cases and make sure that our tool is modifying the values properly.

Regarding the results, while certain misconfigurations were identified, it is still difficult
to find practical attacks against most of them. The UserPresence misconfiguration has
been discovered before in other applications (CVE-2021-38299 [31]) and other technical
report [20] also mentions that this is not a critical issue. Despite being one of the mandatory
checks in the WebAuthn standard [44], its mis-check does not have a significant security
impact.

Another misconfiguration in our results is the origin value mis-check, found in RP4.
Even if this is enforced in Section 7 of the standard [44] and Section 13.4.9 of the draft [47],
there are no practical attacks that can exploit it. Section 13.4.9 indeed mentions that this
validation serves as an additional layer of protection in case of a faulty authenticator, which
is not practical as discussed in the results section.

The most impactful result is the userVerification mis-check. This results in a prac-
tical attack which leads to a potential account take-over. After responsibly disclosing this
finding, RP4 accepted this vulnerability and assigned it a medium priority. This is because
the prerequisites of this attack are not easy to meet. These are that the victim must have
set up a password-less authentication with a roaming authenticator and the attacker needs
to have physical access to it, as explained in Section 4.1.

Despite the limited quantity and impact of our results, we remark on the validity and
effectiveness of our approach in automating the testing process of WebAuthn misconfigu-
rations. After responsibly disclosing out findings, we got confirmation from the respective
vendors that these were valid. In particular, webauthn.cedarcode.com, RP3, and RP4 all
confirmed at least one of our findings and rewarded us with a bounty.

We evaluate our tool’s performance by estimating how much it increases the efficiency
in a comprehensive test of the WebAuthn misconfigurations. We have created 9 test cases
for the registration ceremony and 11 test cases for the authentication one. Despite an initial
effort to extend the tool to be tailored to the targeted websites, we are able to automate 20
test cases. The exact effectiveness depends on the tester’s ability to understand the target
relying party’s WebAuthn ceremonies and extend our tool accordingly. For this, we make
sure to program our tool to be easily extendable.

Figure 5.1: webauthn.io regis-
tration assertion request.

Figure 5.2: google.com regis-
tration assertion request.
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5.2 CSRF attacks

Apart from webauthn.io, all other websites tested are not vulnerable to Cross-Site Request
Forgery (CSRF) attacks. We notice that the challenge value can serve as a form of CSRF
token since it is randomly generated by the relying party. On top of finding websites that
do not use CSRF tokens during WebAuthn ceremonies and do set the SameSite attribute
to None to session cookies, it is also needed that the challenge is not tied to the session. As
expected, none of the relying parties misconfigured all three of these checks. The testing
process for CSRF vulnerabilities included difficulties such as identifying and manipulating
CSRF tokens. This resulted in a more manual effort and limited results in this regard.

5.3 Limitations

This work has limitations. With our tests, we could not cover some aspects of the
FIDO2/WebAuthn protocol. Firstly, we do not consider authenticators’ attestation modes.
Their function is for relying parties to prevent the use of weak or uncertified authenticators,
that could compromise the security of the protocol. Bindel et al. [7] provide a security and
privacy overview of the attestation modes. We comment that we do not include attestation
modes testing in our work due to the absence of concrete attack in this area.

Moreover, we do not consider WebAuthn extensions [29] due to time constraints. These
extensions are extra properties in the PublicKeyCredential object, passed as an argument
to the methods navigator.credentials.create and navigator.credentials.get. For
example, the credProps extension informs the relying party about whether the created
credential is resident/discoverable.

We also do not consider resident keys. These are credentials that store the username
along with the public key information. With these, during the authentication process, the
user does not need to manually input the username. This might allow a potential adversary
to skip the username enumeration phase.
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Chapter 6

Conclusions

In this work, we conducted a thorough study of FIDO2 and its sub-protocol WebAuthn.
We started with a comprehensive analysis of the communication between the client and the
relying party. According to the WebAuthn specification, in order to complete successfully
a ceremony, the latter needs to perform certain verifications on the client’s input data.
Our goal was to observe the behaviour of relying parties once we presented with invalid or
faulty data. In particular, we targeted three WebAuthn data objects: clientDataJSON,
attestationObject, and authenticatorData. We created nine test cases for the regis-
tration ceremony and eleven for authentication.

Moreover, we proposed a methodology that helps automate the black-box testing of
WebAuthn configurations. To achieve this, we created a Burp Suite extension capable of
sending our test cases and detecting whether relying parties accepted our faulty input. If
so, we considered this as a misconfiguration. Once a misconfiguration is found, we tried to
craft proof of concepts of possible attacks against the vulnerability and executed them.

We also considered Cross-Side Request Forgery (CSRF) attacks with a potential impact
of an account takeover. We crafted a malicious webpage that, if accessed by a victim, would
register the attacker’s public key into the victim’s account as a password-less authentication
method. If successful, the attacker can log in to the victim’s account as they possess the
correct respective private key and prove their identity.

This chapter is composed of two sections. In the initial one, we address the research
questions stated in the beginning. Subsequently, we present our concluding thoughts on
this promising protocol.

6.1 Research answers

We recall the proposed research questions:

• RQ1: How can we ease and automate the testing process for FIDO2/WebAuthn
misconfigurations in web applications?

To answer RQ1, we have introduced a novel methodology to scan for WebAuthn vul-
nerabilities using a custom Burp Suite extension. Given a relying party, we can program
to extend our Burp Suite extension to target that and execute our test cases on it. Despite
the initial programming effort, we still consider our methodology to be a significant im-
provement over manual testing. Creating a tool that can create valid WebAuthn requests
without prior knowledge of what valid WebAuthn requests look like is challenging. For
this reason, we designed our tool to be easily expandable for future use.
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• What are the design choices of current implementations of FIDO2/WebAuthn and
how do they comply with the best security-related practices?

To answer RQ2, our results show that current implementations of five FIDO2/WebAuthn
relying parties do not fully comply with the best security practices. Our test cases consist
of server-side checks specified by the WebAuthn standard [44] and previously disclosed
vulnerabilities (CVE-2021-38299, CVE-2022-42731). Our most impactful results are:

• origin value in clientDataJSON mis-check.

• userPresence flag mis-check.

• userVerification flag mis-check for password-less authentication.

Our results show that of the five targeted relying parties, three exhibited security
misconfigurations, with one vulnerability posing a tangible risk of account takeover.

We have reported our security findings to the respective vendors and had confirmation
of them as security vulnerabilities.

• What types of vulnerabilities in FIDO2/WebAuthn relying parties exist and how can
we exploit these?

To answer RQ3, we attempted to exploit the previously found misconfigurations to see
if these could lead to any practical attacks. We have successfully found one concrete attack
against the UserVerification mis-check in the WebAuthn authentication flow. This
attack allows an attacker to compromise a victim’s account under specific circumstances.
These are that the victim must have set their roaming security key as a password-less
WebAuthn authentication method and that the attacker has physical access to it. These
make the attack less practical in practice, its impact could be an account takeover if
exploited.

Furthermore, we investigated leveraging web security attacks such as Cross-Site Re-
quest Forgery. Our goal was to achieve an account takeover. Our result shows that only
webauthn.io was vulnerable to this attack. We believe that this type of attack was previ-
ously unknown; our contribution lies in uncovering and addressing it.

6.2 Final remarks

After extensively studying the behaviors and request flows of WebAuthn in numerous ser-
vices, we conclude the implement of technology in replying parties is not mature enough.
We notice many inconsistencies among relying parties in terms of how WebAuthn is de-
ployed. Every browser and operating system presents the password-less experience in a
different-looking pane. The terminology, the format, and the encoding each service uses are
inconsistent and confusing. A remedy to this is putting pressure on browsers and relying
parties to standardize terms.

Despite these inconsistencies, the FIDO2 protocol is highly secure and we definitely
recommend its adoption. All parties involved - relying party, client, and authenticator -
implement security measures, making it practically difficult to compromise the authenti-
cation and registration processes.

Looking towards the future of password-less authentication, we comment that despite
more services adopting FIDO2, it is still very difficult to completely remove passwords
from the authentication process. For instance, there are currently no practical remedies
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for recovering the account after losing an authenticator. FIDO suggests either letting
users register multiple authenticators or re-running the authentication using traditional
methods.

Our last comments regard Passkeys syncing. Password managers can now sync passkeys
across devices. On MacOS, Google Chrome allows created passkeys to be saved and synced
on the iCloud Keychain to better support usability. We comment that syncing security
keys among devices improves significantly the user’s experience and usability, but it is a
bad practice for security as it opens up more potential attack surfaces. For best security,
we suggest storing the private keys in the Trusted Platform Modules than exporting them
for syncing purposes.
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Chapter 7

Ethics

In this chapter, we discuss the ethical aspects behind this research work. During our
experiments, we make sure to not interfere with the normal execution of the targeted
applications. In particular, we are careful to preserve the confidentiality, integrity, and
availability of the services. To address confidentiality, we create test accounts on purpose
and execute attacks within accounts under our control. We do not involve any sensitive data
or personally identifiable information of other users. To address integrity, we do not modify
any server-side data. In our tests, we only target the registration and authentication flows
of the services and we do not modify any critical data. Furthermore, the faulty input we
provide does not contain any malicious payload and is chosen not to produce any low-level
issues such as buffer overflows. To address availability, our max requests rate is around
30 requests every 2 minutes. We consider this to be not problematic also because we test
against large companies which receive a significant amount of traffic at every moment.

Our work has been reviewed and approved by the Ethics committee of the Computer
& Information Sciences (CIS) of the University of Twente on date 13/03/2024.

7.1 Responsible Disclosure Programs

The following is a summary of responsible disclosure interactions with the vendors.

7.1.1 Cedarcode

We responsibly disclose the userPresence mis-check by contacting security@cedarcode.com,
which suggested creating a Pull Request on GitHub.

Timeline:

• On 16/01/2024, we corrected the userPresence mis-check through a Pull Request.

• On 02/02/2024, we got the confirmation that the issue is being fixed and that we
may publish this finding.

The full conversation is publicly available at https://github.com/cedarcode/webauthn-ruby/
pull/418.

7.1.2 RP3

RP3’s Responsible disclosure is hosted on a public bug bounty platform. We make sure
that all our requests are targeting in-scope domains. We responsibly disclosed our findings,
which include the userPresence mis-check and the repeatable challenge.
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We have responsibly disclosed the userPresence mis-check through the bug bounty
platform. Timeline:

• On 16/01/2024, we submitted the userPresence finding.

• On 23/01/2024, the issue was validated and RP3 started working on a fix.

• On 13/02/2024, RP3 confirmed the finding and rewarded us with a bug bounty.

We have also responsibly disclosed the repeatable challenge finding through the bug
bounty platform. Timeline:

• On 01/02/2024, we submitted the repeatable challenge finding.

• On 01/02/2024, the issue was validated and RP3 started analyzing its impact.

• On 05/03/2024, RP3 considered the finding not a security vulnerability, but still
rewarded us with a bug bounty and closed the issue.

7.1.3 RP4

We have responsibly disclosed the userVerification mis-check through RP4’s public bug
bounty platform. Timeline:

• On 19/01/2024, we submitted the userVerification finding.

• On 31/01/2024, we got confirmation of RP4 acknowledging the vulnerability and
working on a fix.

We have also responsibly disclosed the origin mis-check through RP4’s public bug
bounty platform. Timeline:

• On 08/02/2024, we submitted the origin finding.

• On 01/03/2024, we got confirmation of RP4 acknowledging the vulnerability and
working on a fix.
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