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Abstract

The thesis aims to investigate the potential of leveraging image processing algorithms
to extract metadata from construction drawings, with the aim of enhancing efficiency
and effectiveness in the industrial processes. The research begins by identifying ex-
isting challenges in business process workflows[11], such as lack of automation. Man-
ual extraction of metadata from construction drawings can be time-consuming and
error-prone, leading to inefficiencies in the workflow. Through a meticulous review
of relevant literature and exploration of image processing methodologies, the study
proposes an approach to automate metadata extraction from construction drawings.
Central to the research are three key research questions: the feasibility of automat-
ing metadata extraction, the identification of optimal detection techniques, and the
development of approaches to fine-tune algorithms[40][75] for efficient results. By
conducting experiments and evaluations, the study determines that certain image
processing algorithms, when optimized through multiple fine-tuning techniques, can
effectively extract metadata from construction drawings, even in scenarios with lim-
ited data availability. The findings of the research have significant implications for
industries reliant on construction drawings, offering insights into cost-effective solu-
tions for enhancing workflow efficiency and customer satisfaction. The optimization
efforts resulted in significant achievement in macro-F1 and accuracy scores, with
CCORR_NORMED achieving average scores of 0.81(macro-F1) and 0.83(Accuracy)
for detection experiments conducted. Also, a proposed index, i.e. Detection Effec-
tiveness Index (DEI) resulted in the score of 0.85 in case of CCOEFF_NORMED.
These results highlight the potential of image processing algorithms in addressing
real-world challenges, the feasibility of achieving meaningful outcomes with limited
data. Finally, contributing to the advancement of knowledge and practices at the
intersection of image processing, construction drawings, and industrial processes.



Chapter 1

Introduction

In the rapid evolving landscape of industrial processes, the integration of advanced
technologies has emerged as a catalyst for transformative change. Image processing
is being one among those technologies and used by big corporations to transform
their businesses [63]. Several techniques within image processing can be utilized to
optimize its application throughput [23]. However, in the construction business, us-
age of image data along with computer vision is still a less explored field and needs
more involvement of these technologies to reach to its full potential [2]. The purpose
of studying the image data can be widely used, but the focus is on how it can be
used to make the customer experience better and build a long-lasting relationship
with them [41].

The study will focus on the domain of Computer-Aided Design drawings, here
after referred as construction drawings due to privacy reasons. It is a transfor-
mative field at the intersection of technology, creativity, and engineering precision.
Construction drawings represents a revolutionary departure from traditional manual
designs methods, introducing a digital realm where ideas are not merely conceptu-
alized but carefully crafted with unprecedented accuracy and efficiency. Navigating
through the nuances of construction drawings unveils its pivotal role in shaping the
future of design and innovation. Eventually using this innovation and attracting
the target market and consumers helps in brand image, popularity and reputation.
Leveraging what customer need would help in understanding the market demand
and a way to develop technology [66].

Conducted on behalf of small-scale architectural firms seeking to enhance their
design processes, this research aims to address a common challenge in the indus-
try: optimizing the reuse of previously designed architectural plans for new clients
with similar requirements. These firms, often characterized by their creativity and
personalized approach to design, cater to a diverse clientele spanning residential,
commercial, and institutional projects. The primary focus of this research lies in
harnessing the potential of Computer-Aided Design technology to streamline the
adaptation of existing architectural drawings to meet the needs of new clients. By
developing a proof of concept applicable to various firms, the goal is to extract rel-
evant visual information from past projects and adapt it seamlessly to new design.
This initiative not only aims to enhance efficiency and reduce turnaround time but
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also to empower small-scale architectural firms to deliver high-quality, customized
designs that meet the unique needs of each client. The research aims to decode
the complexities of interpreting architectural drawings and articulating their unique
features in descriptive terms. This understanding is pivotal for extracting valuable
insights from past projects and applying them creatively to new designs across differ-
ent firms. Ultimately, the overarching objective is to refine the architectural design
process industry-wide, ensuring optimal utilization of resources and delivering ex-
ceptional outcomes tailored to the vision and requirements of diverse clients.

1.1 Problem Statement and Research Questions
While examining the existing workflow prevalent in small-scale architectural firms,
ranging from initial client engagement to finalizing design drafts, several challenges
have emerged within the operational framework. Primarily, there is a lack of struc-
tured methods for capturing and comprehending client requirements, leading to
potential misinterpretations by design teams. This inefficiency often results in sig-
nificant time wastage, with the generation of new drafts taking an average of two
days. Additionally, the iterative process of soliciting client feedback and coordinat-
ing revisions with the design team contributes to further delays in project time-
lines. Moreover, the absence of a mechanism to leverage existing design assets from
past projects poses a significant obstacle. Architectural drawings from completed
projects are typically stored in databases, identified solely by their drawing numbers.
Although each drawing has a unique identifier, it’s common for drawings with dif-
ferent names to contain similar design concepts. This redundancy in content could
be addressed if metadata were associated with each drawing, facilitating efficient
retrieval and reuse of design elements. However, the lack of such metadata hin-
ders efforts to optimize design processes and maximize resource utilization across
projects. Businesses offering interior design and furnishing services face challenges
in understanding and translating client preferences into actionable design plans [11].
A critical issue arises when construction drawings are available only in PDF for-
mat, resulting in the loss of structured data that could be leveraged by technical
construction drawing tools. Moreover, the lack of a centralized repository for stor-
ing and reusing design assets can result in redundant work and reduced productivity.

To address these challenges, a potential solution involves harnessing the wealth of
existing drawings and focusing on creating metadata for these construction drawings.
The key emphasis then shifts towards devising a strategy to seamlessly integrate this
metadata with the existing architectural framework. An avenue with promising po-
tential to streamline the process is the application of image processing, particularly
leveraging detection algorithms such as line detection and object detection. These
algorithms within the realm of image processing might hold the promise of providing
a viable solution to enhance the overall efficiency and effectiveness of the current
workflow. By incorporating these advanced detection techniques, the thesis aims to
change the workflow and address the identified issues more proactively. Hence, the
key problems boil down as follows:
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1. How might advancements in technology be leveraged to improve
the extraction of metadata from construction drawings? Addressing this
question involves exploring the feasibility of automating the extraction of metadata
from construction drawings, particularly those in .pdf format. The challenge lies
for the companies in overcoming the absence of two things. First, lack of infras-
tructure for real-time data capture and storage suitable for model execution and
training. Second, readily available metadata for the existing construction drawing
visualizations from past designs that were drafted based on certain requirements.
Automation could significantly enhance the efficiency of this process, potentially un-
locking a valuable resource that has remained untapped due to format constraints.

To achieve that outcome, addressing the below-mentioned research question is
necessary. It will provide a clear view to understand and carry out the research.

RQ. Is the extraction of metadata from construction drawings feasi-
ble?

This primary research question assesses the feasibility of automating the extrac-
tion of metadata from construction drawings, particularly those in .pdf format.

2. What are the algorithms and their threshold parameters that would
make the metadata reliable and efficient? In response to this inquiry, the re-
search aims to delve into the selection of algorithms and their associated threshold
parameters for ensuring the reliability and efficiency of the extracted metadata. As
the focus is on image processing, identifying and fine-tuning algorithms that can
accurately interpret visual data from construction drawings becomes crucial. Deter-
mining optimal threshold parameters is a key aspect to enhance the precision and
relevance of the metadata extraction process.

RQ. What are the optimal detection techniques for extracting details
from construction drawings?

The question delves into identifying the most effective object detection techniques
suitable for extracting pertinent details from construction drawings. The inquiry
involves a careful exploration of various methodologies, considering factors such as
accuracy, speed, and adaptability. The objective is to pinpoint techniques that align
seamlessly with the distinctive characteristics of construction drawings, ensuring re-
liable and efficient information extraction.

RQ. What are the approaches to fine-tune the algorithm for efficient
results?

Building upon the integration of techniques, the question explores the various ap-
proaches to fine-tune the combined algorithm for optimal and efficient results. It
involves considering parameters and adjustments that enhance the precision and
relevance of the metadata extraction process.
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3. What are the parameters that would be used to evaluate the effi-
ciency of the generated metadata? The question addresses the need to establish
clear evaluation parameters for assessing the efficiency of the generated metadata.
Metrics such as accuracy, completeness, precision, and recall would be considered.
By defining and measuring these parameters, the research aims to provide a com-
prehensive understanding of how well the automated process aligns with the desired
outcomes and contributes to the overall optimization of the workflow.

RQ. What are the evaluation parameters to measure the success of
the extraction of metadata from construction drawings?

The sub-question emphasizes defining and establishing metrics to systematically
evaluate the feasibility and success of the integrated solution. The research seeks to
outline measurable criteria for assessing the success and effectiveness of the proposed
solution, providing a foundation for a comprehensive evaluation.

Addressing these research questions is integral to solving the challenges outlined
in the problem statement. By investigating the feasibility of automating meta-
data extraction, identifying optimal detection techniques, and exploring integration
methods, the research aims to develop a technically sound solution. Fine-tuning the
algorithm and establishing evaluation parameters contribute to the precision and
effectiveness of the proposed solution. Ultimately, answering these questions will
provide insights and innovations that not only address the immediate challenges
within the company’s workflow but also lay the groundwork for future advance-
ments at the intersection of image processing and industrial processes. Currently,
the objective of the research can be formulated as:

<Design> the extraction model for the existing construction drawings
<by> Implementing the object detection and fine-tuning algorithm
<that satisfies> the demand of efficient and relevant metadata
<to> serve fast based on the requirements.

The outcome of the research will be the proof of concept to generate metadata
that can be used to map the customer queries received via different input methods
(Email, phone call, voice message, etc.).

1.2 Research Methodology

The research used an exploratory literature review methodology[58] to explore the
field of image recognition, it’s history, transformations, methods and applications,
and how it has impacted the existing business. This approach allowed for a compre-
hensive search of the existing literature on the topic, including both theoretical and
empirical research, as well as case studies, white papers, and other relevant materials.
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The chosen methodology in figure 1.1 aimed to offer a comprehensive and all-
encompassing view of the present state of research and practical applications in the
domain of image processing. By including a wide range of sources, including grey
literature, this study successfully pinpointed essential trends, patterns, and gaps in
the existing literature. Additionally, it emphasized specific areas demanding further
research attention. Furthermore, the review incorporated innovative technological
solutions introduced by various initiatives in the field which are later considered in
the implementation phase of the research.

Figure 1.1: Exploratory Research Methodology

Also, the research utilized the CRISP-DM (Cross-Industry Standard Process
for Data Mining) methodology to structure the project implementation, execution,
and evaluation phases as shown in figure 1.2. CRISP-DM provided a systematic
framework for addressing the practical aspects of the study, encompassing stages
such as data understanding, data preparation, modeling, evaluation, and deploy-
ment. Through this methodology, the project team was able to effectively plan
and execute the implementation of image recognition solutions, leveraging insights
gained from the exploratory literature review. By following a structured approach,
including defining project objectives, identifying data sources, preprocessing data,
selecting appropriate modeling techniques, and evaluating model performance, the
study ensured the successful application of image recognition technologies in real-
world business contexts.
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Figure 1.2: Crisp-DM Process Diagram[30]
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Chapter 2

Literature Review

2.1 Background

The section is organized into four main topics: “construction drawing”, “Image Pro-
cessing Background”, “Image Processing Algorithms”, and “Fine-tuning Methods”.
In the first section, a brief history of the introduction of construction drawing is
presented and how its involvement changed by time. It also mentions the ongo-
ing researches on construction drawings data extraction. Second, the focus is on
understanding the traditional image processing methods and how did they evolve
over time. Third, the focus is on discussing four relevant image processing al-
gorithms—SIFT (Scale-Invariant Feature Transform), SURF (Speeded-Up Robust
Features), ORB (Oriented FAST and Rotated BRIEF), and Template Matching.
Each algorithm is examined in detail, highlighting its applications, technical as-
pects, and relevance to business operations, particularly in the context of construc-
tion drawings. The final section delves into fine-tuning methods for enhancing the
performance of the aforementioned algorithms, emphasizing the importance of adap-
tation in scenarios with limited labelled data. Various innovative approaches, such
as transfer learning, resolution handling, colour augmentation, and regularization
techniques, are explored.

2.1.1 Construction drawing

Computer-Aided Design has come with a paradigm shift in the field of construction
and architecture. Involvement of drawings has not only improved the process in
terms of time but also offered unprecedented precision and efficiency in the design
process [14]. It marked a transformative shift from the traditional manual designing
to digital design platforms. These systems gained prominence in the construction
industry during the 1980s with the advent of affordable computing technology [46].
Design software such as AutoCAD emerged as the industry standard, offering archi-
tects and engineers powerful tools to create, modify, and analyse complex designs
with ease.The integration of this technology in construction processes has yielded
numerous benefits. According to Teichoz [59], Technical construction drawing en-
ables architects and designers to visualise concepts in three dimensions, facilitating
better communication and collaboration among project stakeholders. Moreover,
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construction drawings software allows for the generation of detailed drawings and
blueprints, streamlining the construction documentation process [46].

Metadata extraction from construction drawings plays a crucial role in enhanc-
ing the efficiency and usability of design data. Metadata, which refers to descriptive
information about the content and context of a drawing, enables better organiza-
tion, searchability, and retrieval of design information[46]. Traditionally, extracting
metadata from construction drawings has been a manual and labor-intensive process.
However, this approach is prone to errors and inconsistencies, leading to challenges
in data management and retrieval. By automating metadata extraction[67], con-
struction companies can streamline their design documentation processes, improve
data accuracy, and enhance collaboration among project stakeholders. Moreover,
automated metadata extraction lays the foundation for advanced data analytics
and decision support systems in the construction industry.

Recent advancements in image processing, computer vision, and machine learn-
ing have facilitated automated metadata extraction from drawings[10], offering a
more efficient and accurate alternative to manual methods. Optical character recog-
nition (OCR) algorithms can analyse images and extract textual information em-
bedded within drawings, such as text labels, annotations, and dimensions [27]. Re-
searches are going on how to systematically use this data from the construction
drawings extracted using OCR technology and to build up a semi-automatic ge-
ometric digital twinning for existing buildings based on images [36]. In case of
Engineering drawings, a conceptual approach is introduced to extract the dimen-
sioning information from the drawings to integrate with the production process [49].
Studies have been conducted on Geometric data on how to dismantle the machine
based on the information available and then propose the steps to build it [20]. On
metadata POV, researches are under consideration in order to design the seman-
tic model in which information regarding the parts used in the drawings and the
adjustment information can be stored so that, similar kind of designs can be en-
gineered again based on the requirements [1]. FloorPlan Computer-Aided-Design
is a project which tried to train the model on 10,000 floor drawings by manually
annotating them over 11,000 man-hours and proposed a CNN-GCN model to do
panoptic symbol spotting task [17].

2.1.2 Traditional Image Processing Methods

In the early stages of image processing during the pre-digital era, particularly in the
1950s, practitioners relied on analogue techniques as their primary tools for basic en-
hancement and correction of photographs. Compared to digital methods, analogue
methods were considered to be inexpensive [8], and the processing time was almost
negligible. The prime reason behind it was the expensive resources as computers
and the digital processing algorithms to perform those tasks [8]. The era marked
the initial attempts to manipulate physical photographs and films through methods
such as filtering, masking, and darkroom techniques. Despite its pioneering role,
analogue image processing had inherent limitations. The techniques employed were
often manual, time-consuming, and lacked the precision and repeatedly achievable
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with digital methods. The emergence of digital image processing, which followed
the analogue era, was driven by the imperative to overcome these limitations and
harness the transformative potential of computational approached in handling visual
data. The transition to digital methods laid the foundation for more advanced and
efficient image processing techniques that continue to shape the landscape of visual
data manipulation and analysis later.

During the pivotal period of the 1960 and 1970s, the Image processing field un-
derwent a significant transformation, with the analogue to digital methods. This
marked the advent of digital image processing using the point processing techniques,
where the focus shifted to pixel-level manipulation. Techniques like contrast stretch-
ing [50] and thresholding [47] were introduced, enabling the enhancement of the
images by directly manipulating individual pixel values. The transition was more
instrumental in providing a more systematic and precise approach to image manip-
ulation. Contrast stretching [50] allowed for the expansion of the dynamic range
of pixel intensities, enhancing visual details and improving overall image quality.
Thresholding [47] on the other hand, facilitated the segmentation of images by con-
verting them to binary representations based on predefined intensity thresholds.
These foundation techniques not only initiated the era of digital image processing
but also laid the groundwork for more sophisticated and complex methodologies that
emerged in subsequent years. The shift to digital methods signified a paradigm shift
in image processing, setting the stage for the development of advanced algorithms
and computational approaches that have become integral to modern image analysis
and interpretation.

A notable stride was made with the introduction of spatial domain process-
ing techniques during the 1970s and 1980s. The period marked a departure from
pixel-level manipulation towards operations in the spatial domain, ushering in the
more holistic approach to image enhancement. Spatial domain operations, such
as convolution and filtering, emerged as powerful tools for manipulating the spa-
tial coordinates of pixels within an image. Convolution, a fundamental technique,
involved overlaying an image with a filter kernel [32] [29], modifying pixel values
based on the weighted averages of their neighbouring pixels. Filtering techniques,
on the other hand, allowed for the selective modification of pixel values accord-
ing to the specific spatial criteria. These operations found crucial applications in
image smoothing [33], where noise and irregularities were mitigated, fostering a
cleaner representation. Additionally, spatial domain processing played a pivotal role
in edge detection, highlighting transitions in intensity and identifying boundaries
within the image. Furthermore, these techniques were instrumental in basic image
enhancement, refining visual features and contributing to the overall clarity of the
processed image.

Central to this evolution was the introduction of the Fourier Transform [9], a
powerful mathematical tool that facilitated the conversion of image information
from the spatial domain to the frequency domain. The Fourier Transform allowed
image data to be analysed in terms of its frequency components, revealing patterns
and variations that were not readily apparent in the spatial representation. The
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transformation opened a new avenue for image manipulation and analysis [9]. One
key application was in filtering, where operations in the frequency domain enabled
the selective modification or removal of specific frequency components. This ap-
proach proved particularly effective for tasks such as noise reduction and image
enhancement [32], offering a different perspective on image processing challenges.
Moreover, frequency domain processing played a crucial role in image compression,
where information could be efficiently represented and stored by focusing on essen-
tial frequency components. The utilization of the Fourier Transform during this era
marked a pivotal advancement in image processing, expanding the toolkit available
to practitioners and laying the groundwork for more sophisticated frequency-based
techniques in subsequent years.

As technology advanced and digital imaging became more prevalent, the need to
extend traditional image processing methods to handle colour images gained promi-
nence. The era from 1990s to 2000s saw the introduction of techniques specifically
tailored for colour information, such as separate processing and colour space trans-
formations. Separate channel processing involved the independent manipulation of
colour channels, typically red, green, and blue (RGB) [57], allowing for nuanced
adjustments to each component. Colour space transformations, on the other hand,
provided a means to represent colours in alternative models, such as the Hue, satu-
ration, and Value(HSV) [53] enabling more intuitive and effective manipulation.

Applications of colour image processing during this period were diverse, with
notable emphasis on colour correction and segmentation [35]. Colour correction
techniques allowed for the enhancement and standardization of colour across im-
ages, ensuring a consistent visual experience. In segmentation, the ability to discern
and categorise different regions within a colour image became a paramount [35].
These techniques not only addressed the challenges associated with handling colour
information but also paved the way for advancements in areas such as computer vi-
sion, medical imaging [71], and multimedia applications. The integration of colour
specific processing techniques marked a critical phase in image processing, broaden-
ing its scope to accommodate the intricacies of colour imagery and contributing to
the refinement of various visual data applications.

A distinctive chapter unfolded with the introduction of morphological image
processing techniques[21]. Rooted in mathematical morphology, these operations
focused on the manipulation of shapes and structures within an image, providing
a powerful framework for analysing and enhancing the spatial characteristics of vi-
sual data [64]. Morphological operations, such as erosion, dilation, opening, and
closing, became fundamental tools in the paradigm [19]. Erosion, for instance, in-
volved the shrinking of object boundaries, while dilation expanded them. Opening, a
combination of erosion followed by dilation, was effective in smoothing and breaking
narrow connections, while closing, the reverse, filled gaps and eliminated small holes.

The applications of morphological image processing were particularly notable in
image segmentation and noise reduction[15]. In image segmentation, morphologi-
cal operations played a key role in isolating and distinguishing distinct regions or
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objects within as image based on their shapes and structures. By employing tech-
niques like dilation to connect nearby pixels and erosion to separate interconnected
structures, practitioners could achieve refined segmentation results [19]. Addition-
ally, morphological operations proved valuable in mitigating the impact of noise, as
the manipulation of shapes and structures allowed for the suppression of unwanted
artefacts while preserving essential image features. The era marked the integration
of mathematical morphology into mainstream image processing practices, offering
a robust set of tools for shape-based analysis and contributing significantly to the
fields of computer vision and pattern recognition[42].

During the period spanning from the 2000s to the 2010s, image segmentation
emerged as a pivotal technique for delineating and categorizing distinct regions
within images. The period witnessed the refinement and widespread adoption of var-
ious segmentation methods, tailored to address diverse application challenges [38].
Fundamental techniques like thresholding, involving the classification of pixels into
different regions based on greyscale values, were complemented by advanced ap-
proaches such as region growing algorithms and clustering methods like K-means [73].
These techniques facilitated object recognition by isolating and identifying individ-
ual objects within images [6], aiding scene analysis by parsing complex scenes into
meaningful components [6], and enabling critical roles in medical image analysis,
particularly in delineating anatomical structures for diagnostic procedures and treat-
ment planning [44]. The refinement and diversification of segmentation algorithms
during this period not only contributed to the advancement of computer vision ap-
plications but also opened new opportunities for further improvement and research.

In context of different techniques mentioned above, where the emphasis was
on granular analysis and manipulation of image structures, the resulting datasets
were often large and intricate. The introduction of image compression [68], there-
fore, became indispensable for efficiently storing and transmitting these extensive
datasets. Compression methods were developed to mitigate storage and bandwidth
challenges. Lossless compression techniques, exemplified by algorithms like Run-
Length Encoding(RLE) [56], aimed at reducing file sizes without compromising any
pixel information. However, as the applications of image processing expanded into
intricate domains such as morphology and segmentation, the data generated became
voluminous and complex. Consequently, lossy compression techniques, typified by
standards like JPEG, were introduced [69]. These methods selectively discard redun-
dant or less crucial information, enabling substantial data reduction with acceptable
perceptual quality loss. Beyond merely addressing storage concern, compression
played a pivotal role in facilitating rapid transmission of image data, a critical re-
quirement in applications such as medical imaging, remote sensing, and multimedia
streaming. Technically, the integration of compression techniques into image pro-
cessing workflows allowed for the optimization of storage resources and facilitated
faster transmission of data across networks. This was particularly crucial in scenar-
ios where different manipulation over image data produced large data volumes that
were otherwise cumbersome to handle.

The focus shifted towards more advanced methodologies, prominently in the do-
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mains of object recognition and computer vision. The period(2010s to present) has
witnessed the assimilation of sophisticated techniques such as feature extraction,
pattern recognition, and machine learning, which have significantly elevated the
precision and efficiency of object-related tasks. Feature extraction involves identi-
fying and capturing relevant information or patterns from images, creating a more
condensed representation conducive to subsequent analysis [51]. Technically, the
integration of feature extraction, pattern recognition, and machine learning in ob-
ject related tasks signifies a paradigm shift towards more intelligent and adaptive
systems [51]. The ability to understand and interpret visual data in a contextually
aware manner has broad implications for fields ranging from robotics to healthcare.
As the trajectory of images processing progresses, the fusion of these advanced tech-
niques continues to drive innovations and open new frontiers in the realm of object
recognition and computer vision.

Deep learning, particularly through the utilization of deep neural networks like
Convolutional Neural Networks (CNNs), has significantly transformed image pro-
cessing [26]. These networks have revolutionized the field by enabling the automatic
learning of hierarchical representations from data. CNNs excel at capturing complex
patterns and hierarchies in images by employing convolutional layers. These layers
automatically learn features at different scales and abstraction levels, making CNNs
particularly adept at tasks such as image classification. In this task, the network can
identify objects and assign them to predefined categories with high accuracy [26].
Additionally, CNNs have proven effective in image segmentation tasks, where they
delineate and classify different regions within an image.

One notable advantage of deep learning in image processing is its ability to handle
large and diverse datasets, facilitating robust model training. The automatic fea-
ture extraction capabilities of CNNs reduce the need for manual feature engineering,
thereby streamlining the development process. However, this advancement comes
with computational demands, and training deep networks often requires significant
computational resources [26]. Furthermore, the "black-box" nature of deep learning
models can be a limitation, as interpreting the decision-making process may be chal-
lenging. Deep learning’s applications extend beyond conventional tasks; generative
tasks, such as image synthesis and style transfer, have also seen significant advance-
ments. Generative models like Generative Adversarial Networks (GANs) [22] can
create realistic images and transform them into various artistic styles.

2.2 Related Work
The exploration of Image processing techniques in the preceding section has laid
a comprehensive foundation for understanding the intricacies of advancements and
the potential for transformative change. In this section, we continue the narrative
by examining the existing object detection techniques that play a pivotal role in the
interface between images and efficient workflow optimisation. As discussed, various
methodologies have been developed to detect and extract meaningful information
from images, contributing to advancements in fields of computer vision. Later, this
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section includes literature for various fine-tuning methods that can be used to make
the algorithms under consideration more robust. In order to make a better solution,
the combination of best performed algorithms with the best possible fine-tuning
method is the underlying goal of the research.

2.2.1 Object Detection

Scale-Invariant Feature Transform (SIFT) [72] has proven to be a robust and widely
utilized algorithm in various technical applications. Its strength lies in identifying
distinctive features in an image, regardless of scale and orientation changes, making
it suitable for object recognition and image matching. In Architectural point of view
as shown in figure 2.1, the template image is gone through smoothing at different
levels using Gaussian Scale Space. Difference of Gaussian(DoG) is then calculated
between adjacent smoothing samples. Then the Extreme is found among this dif-
ference across scales and octaves. Based on extremes, the key points are calculated.
For each key point, an orientation is assigned to make the descriptors invariant to
image rotation. Once the orientation is assigned, a descriptor is computed for each
key point. The region around the key point is divided into smaller sub-regions (usu-
ally a grid of cells). Within each sub-region, gradient information is then collected.
This gradient information typically includes the magnitude and orientation of gradi-
ents. With the strength and direction of these subregions, a concentrated descriptor
vector is calculated for each key point. These interest points are compared to the
target image at different orientation and scaling, which let the algorithm decide if
the template is part of the image.

Figure 2.1: Flowchart of SIFT Algorithm [31]

SIFT finds applications in recognizing and aligning similar patterns within draw-
ings [62] and videos, aiding in the efficient retrieval of relevant design information.
On the business front, SIFT’s adaptability extends to tasks like image stitching for
panoramic views and video tracking, contributing to enhanced visualizations and
simulations. It has also proven a good approach where the images are low in con-
trast and needs to be compared [55]. In the paper [55], the focus is on adapting the
gamma factor for contrast threshold and rescaling factor values for feature matching,
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in order to get the adequate number of key points that occur in low-contrast and
noiseless images. This would be helpful as the current sample data under the con-
sideration is majorly on the white base making it less noisy, and also it is thin black
lines along with some coloured templates which makes it low in contrast as well. Its
versatility positions SIFT as a valuable asset in automating the extraction of key
features drawings, reducing manual efforts and improving overall workflow efficiency.

Speeded-Up Robust Features (SURF) represents an evolution of SIFT [62], de-
signed to enhance computational efficiency while maintaining robustness in detecting
image features [43]. In technical domains, SURF finds applications in real-time ob-
ject recognition, image stitching, and motion tracking. Unlike in SIFT, LoG/DoG
filters are used, SURF uses box filters are used to approximate the Hessian. One
more major difference is, In SIFT, to get the multiple version of the template the
image is scaled, Whereas in SURF the filter is scaled in order to get the multiple
version of the template and hence, making it different [5]. To handle the different
orientation of images, SURF uses Haar wavelet response in x and y direction instead
of using inverse tan in SIFT, and to find the main direction it uses the sliding radial
window method to have a more accurate direction [5].

Figure 2.2: Flowchart of SURF Algorithm

In the realm of construction business, SURF’s speed makes it particularly useful
for processing large datasets of drawings swiftly. From a business perspective, its
rapid feature detection can expedite the identification of design elements, streamlin-
ing the generation of drafts and quotes for potential customers [18]. SURF’s balance
between speed and accuracy positions it as a pragmatic choice for businesses aiming
to integrate image processing seamlessly into their operations. In order to handle
large dataset in the current case, considering SURF algorithm can have a positive
outcome to generate the metadata quickly and efficiently.

Oriented FAST and Rotated BRIEF (ORB) is tailored for efficiency in terms of
both computational resources and memory usage [45]. ORB focuses on enhancing
image matching application at low power devices without any GPU acceleration,
and also to reduce the time complexity for feature based object detection on stan-
dard PCs. Technically, the algorithms first select a pixel and, based on the provided
threshold value, it makes a circle of 16 pixels surrounding the main pixel as shown
in figure 2.3. These pixels should be above or below the threshold value distance.
To make the algorithm faster in detection it first compares the intensity of pixels
1,5,9,13 and at least 3–4 pixels should satisfy the condition in order to check all
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other remaining pixel values [45]. In order to make it more robust in detecting the
differently oriented version. The template image is converted into binary form by
rotating the image by 12 degrees and saving the binary output. All these binary
outputs are then compared in the target image to check. If the correlation surpasses
a given minimum value, then the template is considered to be detected [28]. In tech-
nical applications, ORB is employed for real-time object recognition, simultaneous
localization and mapping (SLAM), and robotics [28].

Figure 2.3: Image representing keypoint pixel p and the circular area
around it[12]

In the business realm, ORB’s computational efficiency makes it suitable for han-
dling large databases of construction drawings swiftly. Its applications include rapid
pattern recognition, aiding in the automation of initial drafts based on customer re-
quirements. Compared to SIFT, ORB is found to detect more key points. Also, the
computation time in ORB is found to be faster than SIFT. SIFT has a good perfor-
mance in tackling Scale difference issues, whereas ORB is good at handling rotation
invariance issues [24]. To deal with contrast issues. This paper [25] suggests an
adaptive gamma transform techniques to make the output detection more accurate.
ORB’s lightweight nature positions it as a practical solution for businesses seeking
a balance between computational efficiency [39] and reliable feature extraction in
construction-related workflows.

Template matching is a straightforward yet effective technique in which a tem-
plate image is matched with a larger image to identify occurrences of the template.
In technical applications, template matching is used for object detection, image
recognition, and localization. As the figure 2.4 shows, the algorithm uses a template
image and runs it over the target image like a 2D convolution [37]. It tries to capture
the locations which are matched based on the statistical algorithms [36], [54].

In the business context of its application, the method is applied for finding sim-
ilar patterns within drawings quickly [48]. It facilitates the automation of draft
generation by identifying templates from past orders, reducing the time required for
manual drafting. Its simplicity and efficiency make it a valuable tool for businesses
aiming for a pragmatic approach to object detection within construction drawing
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Figure 2.4: Template Matching Architecture

images. Also, as discussed above Template matching, which involves sliding the
entire image and computing the correlation, is computationally less expensive com-
pared to feature-based methods like SIFT, SURF, ORB.

In comparing these four algorithms, SIFT and SURF exhibit robustness and
versatility, with SIFT being slightly more invariant to scaling and rotation. ORB
stands out for its computational efficiency, making it suitable for real-time applica-
tions [4]. On the other hand, template matching excels in simplicity and speed, but
may lack the nuanced feature detection of the other methods. The choice among
these algorithms depends on the specific requirements of the computer aided design
workflow, balancing factors like accuracy, computational resources, and real-time
processing needs. The suitability of each algorithm should be assessed based on the
intricacies of the construction drawing images and the desired outcome, allowing
businesses to tailor their approach to optimize workflow efficiency.

2.2.2 Fine-tuning Methods

In taking considerations of making the above-mentioned techniques to perform bet-
ter, fine-tuning algorithms to enhance their performance has become paramount,
especially in scenarios where labelled data is scarce. Recent literature reflects a rich
tapestry of innovative approaches [52] [74] [34], each contributing to the refinement
of algorithms tailored for specific tasks.

The work of Zoph et al. [74] presents Learning Transferable Architectures for
Scalable Image Recognition, highlighting the significance of transfer learning in
adapting models for scalable image recognition tasks. By incorporating flip-based
fine-tuning strategies, this research explores architectures that demonstrate trans-
ferable knowledge across diverse datasets and scales. Touvron et al. [60] address
the train-test resolution discrepancy in fixing the train-test resolution discrepancy,
emphasizing the importance of scaling in image recognition tasks. The research
offers insights into strategies for handling resolution variations during fine-tuning,
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contributing to improved model robustness and generalization.In the context of ad-
versarial attacks, Xie et al. [70] propose Mitigating adversarial effects through ran-
domization. The work introduces thresholding as a randomization technique to
enhance model robustness against adversarial perturbations, showcasing its effec-
tiveness in mitigating adversarial effects during fine-tuning.Shorten and Khoshgof-
taar [52] present A survey on Image Data Augmentation for Deep Learning, offering
a comprehensive overview of data augmentation techniques, including noise injec-
tion. This survey emphasizes the role of noise in enhancing model performance,
guiding practitioners in selecting suitable data augmentation strategies for their
specific tasks.

Cubuk et al. [13], revolutionizes colour augmentation strategies. It provides
an innovative approach to automatically learning augmentation policies from data,
showcasing the power of colour jittering in improving model generalization and
performance during fine-tuning. They also contribute to the field with AutoAug-
ment [13], exploring elastic deformations as part of an augmentation policy. Their
approach highlights the efficacy of elastic deformations in capturing diverse image
variations, enabling models to adapt effectively to different data distributions during
fine-tuning.

Lin et al. [34] present Focal Loss for Dense Object Detection, a seminal work
introducing grouping and merging strategies to improve dense object detection. It
demonstrates the effectiveness of focal loss in addressing challenges related to ob-
ject detection, providing insights into techniques that optimize the grouping and
merging of visual features during fine-tuning. Devries and Taylor [16] contribute
to regularization techniques with Improved Regularization of Convolutional Neural
Networks with Cutout. Their work introduces cutout as a regularization method,
showcasing its effectiveness in preventing overfitting during training and enhancing
model generalization during fine-tuning.

Based on the preceding discussion regarding various techniques employed in re-
cent applications and the methods used to fine-tune these algorithms, the literature
review provides a solid foundation for advancing with this knowledge. The algo-
rithms under consideration are slated for testing on construction drawings within
the construction department. Factors such as data size, image contrast and inten-
sity, image rotation, speed, robustness, and efficiency must all be taken into account.
The resolution of these issues will play a crucial role in determining the course of fur-
ther implementation aimed at addressing the tentative research questions outlined
earlier.
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Chapter 3

Metadata Extraction Approach

In tackling the detailed challenges outlined in the problem statement. To find the
solution to automate the process for extracting metadata from the drawings with
the help of detection algorithms and later to fine-tune those algorithms to improve
efficiency. According to the Crisp-DM methodology under consideration, this section
strategically breaks down the overarching concern into specific components, aligning
with the motivation, research questions and the literature review dealt.

3.1 Data Understanding

The dataset for this research consists of a subset of architectural drawings obtained
from various small-scale architectural firms, totalling 93 files. This selection repre-
sents a privacy-conscious approach to handling sensitive information, drawn from the
firms’ extensive collections of architectural drawings. A random sampling technique
was employed to select the subset of drawings, ensuring unbiased representation
across projects and firms. The chosen drawings are uniformly stored in Portable
Document Format (PDF), with the majority being single-pagers, providing concise
information without multiple pages.

Each architectural drawing encapsulates various essential components. Firstly,
textual information such as project details, dimensions, and specifications are typi-
cally located adjacent to the drawing. This section outlines specifics related to the
architectural design, including structural elements, materials, and project descrip-
tions. Secondly, the drawings incorporate 3D visualizations, offering comprehensive
portrayals from different viewpoints to enhance understanding of the design’s spa-
tial configuration. Thirdly, the dataset includes 2D floor plans, containing intricate
details essential for metadata extraction. These plans feature markings indicat-
ing window dimensions, material specifications, scale indicators, and other relevant
information. In cases where architectural elements are intended to be positioned sep-
arately, the 2D visualization accommodates such variations, facilitating flexibility in
design interpretation. These PDFs are presented in a coloured format, enhancing
visual clarity, and are watermarked to protect against unauthorized use. The pre-
cise curation of the dataset ensures its integrity, confidentiality, and practicality for
research purposes.
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3.1.1 Data Distribution

The provided research dataset is organized based on the number of blocks depicted
in the PDF visualizations, as outlined in the accompanying table 3.1. The corre-
sponding figure 3.1 visually represents the equal distribution of data across various
categories. The focus on block count aligns with the research goal of analysing
drawings associated with past orders.

Number of Blocks Total construction drawings
1 16
2 18
3 19
4 22
5 18

Total 93

Table 3.1: Block wise distribution

Figure 3.1: Data Distribution

Additionally, the figure 3.2 illustrates the dataset’s segmentation based on the
number of rooms featured in each drawing. While this information is inferred from
the provided PDFs rather than explicitly stated, its inclusion is imperative for com-
prehending and detecting the diverse uses of rooms within the visualizations.

The straightforward data distribution strategy assures a balanced representation
of block counts and provides temporal context and insights into room utilization.
The clear categorization ensures the dataset’s richness, fostering a comprehensive
exploration of the complexities inherent in the construction drawings under investi-
gation.

Apart from these drawings, there are 20 more drawings provided to validate
the end results. Alike to design-test data, these drawings are also chosen with the
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Figure 3.2: Room wise distribution

random sampling technique. The selection of these drawings are done on a random
basis from the pool of thousands of drawings. The distribution of the drawings
based on the number of blocks and rooms are visualised in figure 3.3 & 3.4.

Figure 3.3: Validation Set - Blocks Split
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Figure 3.4: Validation Set - Rooms Split

3.1.2 Design-Test Split

In addressing the task of developing a detection algorithm to create metadata from
the provided dataset of 93 PDFs, a strategic approach to design-test splitting is
paramount. Unlike scenarios where machine learning facilitates autonomous learn-
ing, the nature of this algorithm involves human-driven design in which it involves
trying out the best algorithm and their fine-tuning approaches in an iterative man-
ner. This would ensure the feasibility by testing over a large proportion of provided
data.

Given the distinctive design-centric nature of the algorithm, a counterintuitive
approach is employed for the design-test split. Typically, machine learning models
learn from a larger portion of the dataset during training; however, in this case,
a subset of 35% is dedicated to designing the algorithm, while the remaining 65%
is reserved for testing its functionality. The data split involves a distinctive active
learning approach[7], emphasizing on selecting the samples with more information
to design during the algorithm creation (35% of the dataset) and leaving the ones
with less information for evaluation phase (65% of the dataset). This methodology
ensures that the algorithm’s adaptability and effectiveness are rigorously tested on
new data, reflecting real-world scenarios.

The figures 3.5 & 3.6 visually illustrate the unconventional design-test split, rein-
forcing the deliberate choice made to emphasize algorithm design over autonomous
learning. The percentage split of number of rooms and blocks for the design set and
the test set is strategically kept similar to get balanced split. The nuanced approach
aligns with the research’s emphasis on leveraging human insights to enhance the
algorithm’s capabilities in extracting metadata from construction drawings.
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Figure 3.5: Designing Split

Figure 3.6: Testing Split

3.2 Data Preparation

To accurately determine the number of blocks and rooms depicted in the drawings,
a comprehensive exploration of the drawings is essential. Initially, a manual exami-
nation of the drawings is conducted to identify discernible details that could provide
insights into the number of blocks and rooms present. Upon thorough investigation,
a list of manually detectable items is compiled.

Upon deeper analysis, it is observed that a specific icon representing distribution
boxes, which are electrical units found in each block, can serve as a reliable indicator
for detecting the number of blocks within each drawing. As such, the detection of
distribution boxes is prioritized for counting the blocks accurately.

Further examination reveals that the drawings predominantly consist of multiple
blocks, which are organized to form various categories of rooms. These room cat-
egories encompass a range of formations, such as those accommodating urinal and
WC facilities, shower rooms, hallways, and more.

To identify and quantify these rooms effectively, the initial step involves the re-
moval of noise present in the drawings. This process aims to isolate the structural
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boundaries of the rooms, facilitating the subsequent detection and categorization
of room types, as well as the determination of the quantity of rooms within each
drawing.

By systematically approaching the analysis and processing of the drawings, the
goal is to extract meaningful insights regarding the number of blocks and rooms
depicted, thus enhancing the efficiency and accuracy of the detection algorithms
employed.

3.2.1 Preprocessing Steps

The following steps as shown in figure 3.7 outline the comprehensive approach un-
dertaken to prepare the dataset for algorithmic experimentation.

Figure 3.7: Preprocessing Steps
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1. Manual Data Classification

The initial phase involves the manual classification of the provided construction
drawings into distinct categories based on predetermined criteria. Specifically, the
drawings are categorized according to the number of blocks and rooms depicted
within each visualization. The data set is stratified over number of blocks and
rooms, making sure that there are instances of each case in both design and test set.

2. Image Conversion and Processing

Following manual classification, the construction drawings undergo a series of trans-
formations to facilitate their compatibility with image processing algorithms. Ini-
tially, the PDF files are read and converted into image format, leveraging established
libraries and tools. Subsequently, the images are processed into the Python Imaging
Library (PIL) format, a versatile platform for image manipulation and analysis.

3. Icon Extraction

An integral aspect of the preprocessing pipeline involves the extraction of icons
essential for experimentation purposes. Leveraging the annotated designing set,
specialized cropping functions are employed to isolate and extract icons from the
construction drawings. This approach ensures the acquisition of representative icon
samples, accounting for variations in scaling and size across the dataset.

4. Room Template Extraction

In parallel with icon extraction, the preprocessing pipeline encompasses the extrac-
tion of room templates from the construction drawings. The process entails the
removal of extraneous elements, including textual information and embedded icons,
to isolate clean room templates characterized by distinct boundaries and internal
features.

5. Test Data Processing

Upon completion of icon and room template extraction, the test data undergoes
additional processing to prepare it for algorithmic analysis. The test PDF drawings
are converted into image format and processed into the PIL[61] format, enabling
seamless integration with established image processing algorithms. For icon de-
tection tasks, this transformation suffices to enable template matching and feature
extraction.

By articulating the significance and intricacies of the preprocessing pipeline, the
experimental setup is positioned for robust and insightful analyses of the construc-
tion drawings dataset.

3.3 Model Fine-tuning
In our methodology, the phase dedicated to model fine-tuning holds substantial sig-
nificance. This stage involves a thorough and iterative process of adjusting various
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parameters and configurations to enhance the performance of our detection algo-
rithm. The objective is to optimize the algorithm’s ability to accurately identify key
features within construction drawings. Following the identification of algorithms
that meet or surpass our baseline criteria, it becomes imperative to undertake fine-
tuning steps. These steps serve as a pivotal mechanism for gaining deeper insights
into the behaviour of the algorithms and for further enhancing their performance.
After thoroughly understanding the quality and type of drawings that are there
in the dataset, the below shortlisted approaches would work in the favour[40][75].
Here, the key parameters considered for fine-tuning are outlined:

Rotation Optimization: construction drawings often contain elements, such
as icons and room layouts, that may appear in various orientations. Therefore, in-
corporating rotation optimization allows the algorithms to effectively detect features
regardless of their orientation, thereby enhancing their versatility and adaptability.

Flip: In addition to rotation, construction drawings may also contain instances
of flipped icons or room layouts. Considering the possibility of flipped orientations
ensures comprehensive detection capabilities for the algorithms, enabling them to
accurately identify features irrespective of their orientation.

Threshold Parameter Optimization: Threshold parameters play a crucial
role in determining the sensitivity and specificity of detection algorithms. Fine-
tuning these parameters involves systematically adjusting them to strike an optimal
balance between sensitivity and specificity, thereby ensuring accurate detection of
relevant features while minimizing false positives.

Proximity and Grouping Parameters: Fine-tuning parameters related to
proximity and grouping is essential for refining how algorithms interpret spatial
relationships and group elements within construction drawings. Adjusting these pa-
rameters aims to enhance the algorithms’ ability to accurately identify and classify
features based on their spatial proximity and relationships.

Through a methodical exploration and adjustment of these parameters during the
fine-tuning phase, our methodology aims to optimize the algorithms’ performance.
Ultimately, it will enable the algorithms to achieve superior accuracy and efficiency
in detecting and classifying key features within construction drawings.
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Chapter 4

Experimentation & Evaluation Setup

4.1 Experiment 1: Baseline

This experiment aims to assess the performance of various algorithms in the con-
text of construction drawing analysis. The objective is to identify the algorithm
that exhibits the highest efficacy in feature detection for subsequent metadata ex-
traction. As visualised in figure 4.1 the experiments will be based on the ma-
jor five feature detection algorithms that came as the output of the literature re-
view namely, SIFT, ORB, TM_CCOEFF_NORMED, TM_SQDIFF_NORMED,
TM_CCORR_NORMED. All the algorithms will be considered for the first experi-
ment to find out the better performing algorithm(s). Since the two categories which
needs to be detected are the small icons and the room templates. To facilitate the
small icons, the experimentation will be performed only on the distribution centre
icon that will enable us to detect the number of blocks in the drawing. Whereas for
room templates, all the room templates that are extracted from the test set would
be considered.

Experiment 1.1 (Block Detection Performance) focus on evaluating how
different algorithms perform in detecting the number of blocks within construction
drawings. The assessment involves measuring the accuracy and efficiency of each al-
gorithm in accurately identifying and quantifying block elements in diverse drawings.

Experiment 1.2 (Room Detection Performance) delves into the algorith-
mic performance in detecting the number of rooms within construction drawings.
The evaluation considers the algorithms’ ability to accurately recognize and quan-
tify room elements, providing insights into their suitability for room-related feature
detection.

4.2 Experiment 2: Fine-Tuning Parameter Optimiza-
tion

The second set of experiments aims to determine the optimal values for fine-tuning
parameters that enhance the accuracy and efficiency of feature detection, particu-
larly focused on the detection of various elements and templates within construction
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Figure 4.1: Experiment 1 Setup

drawings. For this experiment, the best performing algorithms or the ones which
has the potential to perform better when fine-tuned from the experiment 1 are con-
sidered. The setup of the experiment is visualised in the figure 4.2

Experiment 2.1 (Rotation and Flip Fine-Tuning) investigates the impact
of rotation and flip parameters on the accuracy of block detection within construc-
tion drawings. By systematically varying parameters, the goal is to identify the
values that result in the most accurate and efficient detection of blocks and rooms.

Experiment 2.2 (Thresholding and Grouping Fine-Tuning) shifts to fine-
tuning parameters in terms of threshold values and grouping parameters. The ex-
periment aims to uncover the values that optimize the algorithm’s performance in
recognizing and quantifying block and room elements, contributing to efficient fea-
ture extraction.

These experiments collectively contribute to the overarching goal of optimizing
the feature detection process within construction drawings. The outcomes will in-
form the selection of the most suitable algorithm and fine-tuning parameters for
automating metadata extraction, thereby addressing the challenges outlined in the
problem statement.
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Figure 4.2: Experiment 2 Setup
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4.3 Evaluation Method

Upon completion of the experiments, a set of evaluation metrics is indispensable
to comprehensively understand and analyze the results. Although the experiments
encompass the execution of five distinct algorithms aimed at detecting two pri-
mary elements – the number of blocks and the number of rooms – a standardized
evaluation framework is imperative to facilitate comparative analysis of the outputs.

To provide a comprehensive overview of the results and glean meaningful insights,
the evaluation will consider Precision, Recall, Macro Precision, Macro Recall, and
Macro F1 metrics[3]. These metrics are defined as follows:

Precision =
All correctly detected items for a target class

All detected items for this class

Recall =
All correctly detected items for a target class

All actual items for this class

Macro Precision = average(Precision for all target classes)

Macro Recall = average(Recall for all target classes)

Macro F1 =
2× Macro Precision × Macro Recall

Macro Precision + Macro Recall

Accuracy =
All correctly detected instances

Total Instances
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The selection of these metrics for assessing the detection of blocks and rooms in
construction drawings is well-suited and advantageous within the context of the the-
sis. Precision and recall metrics offer a detailed evaluation of the algorithm’s perfor-
mance for each class independently, allowing for a nuanced understanding of its ca-
pabilities in detecting blocks and rooms separately.Macro-averaged metrics provide
a balanced evaluation across all classes, ensuring impartial assessment irrespective of
class distribution[3]. This holistic approach considers the performance of detecting
both blocks and rooms equally, thereby offering a comprehensive assessment of the
algorithm’s effectiveness.Furthermore, the F1 score, derived from Precision and Re-
call, serves to balance the trade-offs between accuracy and completeness, providing
a single metric for comprehensive evaluation. Employing standardized evaluation
metrics like Precision, Recall, and F1 score facilitates objective comparisons with
other methodologies or algorithms, thereby enabling benchmarking and ensuring
interpretability and comparability of evaluation results across different studies or
implementations.

To get the overall best result for both block and room detection, a metric is
proposed considering the macro-F1 scores of the algorithms from both the subtasks
of block and room. The metric is referred as "Detection Effectiveness Index(DEI)".
It is calculated by considering the harmonic mean of the macro-F1 scores from both
the tasks. The formula is represented as

DEI =
2× Macro-F1(Block) × Macro-F1(Room)

Macro-F1(Block) + Macro-F1(Room)

In conclusion, the utilization of these standardized evaluation metrics provides
a systematic and robust approach to assess the algorithm’s performance in detect-
ing blocks and rooms in construction drawings. The approach enables informed
decision-making and offers insights for further algorithm refinement, if required.

4.4 Validation Method
Once the experiments are executed, the final step is to validate the results that are
produced. The outcome of the experiments would give the tangible parameters like,
which algorithms performed well compared to others and what are the values of
threshold and grouping range for each of the algorithms which passed the baseline
experiment. The validation step aims to execute the algorithms on the validation
set which comprises of 20 drawings as discussed in section 3.1.1, with the best
parameters found for each algorithm in order to provide the conclusion to results
produced in later stages.
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Chapter 5

Results and Discussion

This chapter reports the results of the experiments described in experimentation
setup. All experiments are executed in a safe environment without using any cloud
services to process data and rather used the premise resources in order to meet the
guidelines and privacy concern overhead. As mentioned in the previous section, the
agenda is to compare different algorithms on two main tasks, namely, block detection
and the room detection. The evaluation metrics will be used to analyse the results
acquired by the execution of all the experiments and answer the mentioned research
questions in section 1.1. For simplicity, the algorithms in our discussion will be
addressed as SIFT, ORB, CCOEFF, CCORR, and SQDIFF.

5.1 Experiment 1 — Baseline

5.1.1 Block Detection

The performances of SIFT, ORB, CCOEFF, CCORR, SQDIFF are reported in table
5.1 - 5.5 for block detection. These results are used to compare the possibility of
each algorithm to detect the blocks accurately. The mandatory parameters required
by each model are kept at 75% accuracy. Which means the results are evaluated by
considering how these algorithms perform when the baseline is the best 25% of the
results.

Table 5.1: SIFT — Block Detection Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.09 0.36 0.14 11
Class 2 0.20 0.25 0.22 12
Class 3 0.00 0.00 0.00 12
Class 4 0.00 0.00 0.00 14
Class 5 0.00 0.00 0.00 12
Accuracy: 0.11
Macro Avg: 0.06 (Precision), 0.12 (Recall), 0.07 (F1-score)
Weighted Avg: 0.06 (Precision), 0.11 (Recall), 0.07 (F1-score)
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Table 5.2: ORB — Block Detection Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.18 1.00 0.31 11
Class 2 0.00 0.00 0.00 12
Class 3 0.00 0.00 0.00 12
Class 4 0.00 0.00 0.00 14
Class 5 0.00 0.00 0.00 12
Accuracy: 0.18
Macro Avg: 0.04 (Precision), 0.20 (Recall), 0.06 (F1-score)
Weighted Avg: 0.03 (Precision), 0.18 (Recall), 0.06 (F1-score)

Table 5.3: TM_CCOEFF_NORMED — Block Detection Classi-
fication Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.69 1.00 0.81 11
Class 2 0.80 0.67 0.73 12
Class 3 0.91 0.83 0.87 12
Class 4 0.87 0.93 0.90 14
Class 5 1.00 0.75 0.86 12
Accuracy: 0.84
Macro Avg: 0.85 (Precision), 0.84 (Recall), 0.83 (F1-score)
Weighted Avg: 0.86 (Precision), 0.84 (Recall), 0.84 (F1-score)

In table 5.1 it is observed that there are some considerable results from class 1
and class 2. The results suggest that the model was able to detect 1 and 2 block
drawings. Given that the block icon is largely similar for all blocks in the drawings, it
is highly unlikely that the algorithm cannot accurately detect more than two blocks.
Which gives an argument that the model is likely detecting something which looks
similar to the block icon but not the icon itself. This is happening due to the inter-
nal architectural working of SIFT. When the template is provided to the algorithm
to compute stable key points and assign descriptor to it. These descriptors are not
enough to compare them with the drawings, which is much larger compared to the
template image in terms of dimensions. Although it is scale invariant algorithm, it
tries to find the template in the main image as a whole picture. Once, the algorithm
creates the descriptors from the main image. Both the patterns from the template
image and the main image are then compared. Since these descriptors are calculated
based on the extrema across different scales and octaves as discussed in section 2.2.1.
Hence, the algorithm is detecting some other pattern which has similar descriptor
values but not the template. Because it would have been detecting the template,
the results would have spoken for other classes as well.

In table 5.2 it is observed again that the results have got considerable values
only for class 1. Since it is understood that the number of blocks that are present

32



Table 5.4: TM_CCORR_NORMED — Block Detection Classifi-
cation Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.00 0.00 0.00 11
Class 2 0.00 0.00 0.00 12
Class 3 0.00 0.00 0.00 12
Class 4 0.00 0.00 0.00 14
Class 5 0.20 1.00 0.33 12
Accuracy: 0.20
Macro Avg: 0.04 (Precision), 0.20 (Recall), 0.07 (F1-score)
Weighted Avg: 0.04 (Precision), 0.20 (Recall), 0.06 (F1-score)

Table 5.5: TM_SQDIFF_NORMED — Block Detection Classifi-
cation Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.69 1.00 0.81 11
Class 2 0.80 0.67 0.73 12
Class 3 0.91 0.83 0.87 12
Class 4 0.93 0.93 0.93 14
Class 5 1.00 0.83 0.91 12
Accuracy: 0.85
Macro Avg: 0.87 (Precision), 0.85 (Recall), 0.85 (F1-score)
Weighted Avg: 0.87 (Precision), 0.85 (Recall), 0.85 (F1-score)

in all the test drawings would range between 1 and 5. The results are also clipped
between 1 and 5. The algorithm was not able to detect any block icons from the
drawing. The reason turned out again to be the significant difference between the
dimensions of the template and the test drawings. As discussed in section 2.2.1
the small template considers each pixel and makes 16 pixel surrounding. Since the
block icon is just a rectangle with half white and half black separated diagonally, it
is hard to get many descriptors. Also, similar to the SIFT algorithm, the ORB is
also trying to compare the whole image with the target image which makes it away
from the results what the experiment is trying to achieve as it tries to compare the
pattern from the template to the pattern of the whole test image.

In table 5.3 the results are found much better compared to SIFT and ORB.
There is a significant detection of blocks for each class. Precision value for Class 5
is turned out to be 1.0 which means that out of drawings which the model detected
to have 5 blocks, All the detections are correct. Also, the Recall value of Class 1 is
turned out to be 1.0 which means all the drawings that are actually having 1 block
in them are accurately detected by the model. The Macro-Precision, Macro-Recall
and the Macro-F1 values are more than 0.8 which clearly indicates that the model
is able to do the job in our favour.

33



The results for CCORR are not seemed to be favourable as mentioned in table
5.4. The report claims that the model was not able to detect any significant results
for the Class 1-4 and some detection for Class 5. This gives a solid argument that
the model is able to detect more than 5 detections in every drawing because the
results are clipped between 1 and 5 and there is no activity in Class 1, which clearly
states that the model is detecting too many icons than the actual icons. The reason
behind this is the accuracy value, As the initial threshold value is set at 75% to
find the icons matching better than that value. Therefore, significant results can be
observed if this algorithm is considered later in the fine-tuning stage.

In table 5.5 the results are again considerable as there are quite good numbers
for each Class. It is visible that the values for each class is almost similar in table
5.3. This shows that the detections are accurate in the majority of the cases. The
scores for Macro-precision, Macro-Recall, and Macro-F1 are found to be equal and
beyond 0.85 mark which makes it more concrete about moving forward with the
algorithm. Also compared to all the 5 models under experimentation, SQDIFF has
the maximum accuracy of 85%.

On overall comparison of the baseline performance of all 5 algorithms under
consideration, SIFT and ORB does not provide results in our favour. After im-
plementation, it is understood that the template the SIFT and ORB expect needs
to have considerable amount of descriptors for detections, and also it requires tem-
plates which can have the overall structure of the main image in it. Having only
a part of it won’t result in better result. COEFF and SQDIFF produced arount
80% of accuracy whereas CCORR only produces about 20% accuracy. Although
they belong to the same family, they show drastic variation in the results. This is
because that we have considered best 25% detections in all the cases to draw a fair
comparison. This provides a valid argument of executing the fine-tuning experiment
in later stage to get more accurate results. In the case of CCORR, adjusting the
threshold parameter would be necessary to obtain comparable results to CCOEFF
and SQDIFF.

5.1.2 Room Detection

The performances of SIFT, ORB, CCOEFF, CCORR, SQDIFF are reported in ta-
ble 5.6 - 5.10 for Room detection. Before diving into the discussion of individual
algorithm performance, here are a few points to consider. Since the focus is to de-
tect the accurate number of rooms, there are two main cases that we need to deal
with here. CASE I, there were chances that at certain threshold value different
room templates satisfy for the same room structure even though the templates are
different. But the total detections are counted based on the number of times the
template matches. For, example, if two room templates satisfy the same room in the
target drawing, then the total detections would be counted as 2 and not 1 (based
on the room identified in the drawing). CASE II, there are chances that we don’t
have templates for the rooms in the test drawings because the templates for room
are extracted based on the drawings considered for designing the drawings, i.e. the
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design set. In order to gather fair results, the annotation for the rooms is again
done based on the templates that we have, and only those rooms are considered for
which we have templates from the design set. If we don’t do this, the model would
be considered faulty because of the data input.

Table 5.6: SIFT — Room Detection Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.50 0.04 0.07 27
Class 2 0.00 0.00 0.00 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.02 1.00 0.03 1
Accuracy: 0.03
Macro Avg: 0.10 (Precision), 0.21 (Recall), 0.02 (F1-score)
Weighted Avg: 0.22 (Precision), 0.03 (Recall), 0.03 (F1-score)

Table 5.7: ORB — Room Detection Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.44 1.00 0.61 27
Class 2 0.00 0.00 0.00 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.00 0.00 0.00 1
Accuracy: 0.44
Macro Avg: 0.09 (Precision), 0.20 (Recall), 0.12 (F1-score)
Weighted Avg: 0.20 (Precision), 0.44 (Recall), 0.27 (F1-score)

In table 5.6 it is visible that almost all values in the classification report are null.
The Recall value of Class 5 is 1.0 which means that all the test drawings that have
5 rooms are accurately found by the model. Also, the precision value of class 5 is
0.02, which makes a considerable point, stating that 98% of the drawings which the
model predicted to be in Class 5 are misclassified. That means the detections are
equal to or more than 5 for the majority of the drawings. The reason behind is
the black and white nature of the template and the drawings. Since the template
has only black lines with white base, it is hard for the algorithm to detect extrema
across different scales and octaves. Although, unlike block icon detection, the size
of the room template is comparable to the size of the whole drawing, but since the
information is only binary in black and white, it is hard for the algorithm to detect
accurately and hence they have the lot of false positive detections.

In table 5.7 it is clear the there is only considerable result for Class 1 and al-
most null for all the classes. The reason behind this is when the room templates
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Table 5.8: TM_CCOEFF_NORMED — Room Detection Classi-
fication Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.91 0.37 0.53 27
Class 2 0.08 0.05 0.06 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.06 1.00 0.11 1
Accuracy: 0.20
Macro Avg: 0.21 (Precision), 0.28 (Recall), 0.14 (F1-score)
Weighted Avg: 0.43 (Precision), 0.20 (Recall), 0.25 (F1-score)

Table 5.9: TM_CCORR_NORMED — Room Detection Classifi-
cation Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.77 0.74 0.75 27
Class 2 0.31 0.20 0.24 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.00 0.00 0.00 1
Accuracy: 0.39
Macro Avg: 0.22 (Precision), 0.19 (Recall), 0.20 (F1-score)
Weighted Avg: 0.44 (Precision), 0.39 (Recall), 0.41 (F1-score)

are considered for extracting key points and descriptors, they are not able to find
many. Even though the image is greyscale, the majority of the region is evenly pure
white and the only part which represents the boundaries of the room is black. That
means majorly there are only two algorithms present in the template, which doesn’t
provide space for building a good amount of descriptors in the template to compare
with the test image. The working of ORB is described in section 2.2.1. Hence, this
experiment did not provide satisfactory results to move forward.

CCOEFF has found to perform well in the experiment as shown in table 5.8. As
the actual instance of Class 1 is highest and the precision of Class 1 is 0.91 which
clears the fact that 91% of the times, the model was right to predict that the drawing
has only one drawing. Since the recall of Class 5 is 0.37, this means that the model
is able to detect 37% of the actual one block drawings accurately. Also, Precision of
0.06 at Class 5 justifies that the model is detecting more number of rooms for the
majority of the drawings compared to the actual number of rooms they have. Since
there are considerable results for both the extreme classes, it can be considered for
further fine-tuning.

In the table 5.9 we can see significant values for class 1 and 2. There is an ex-
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Table 5.10: TM_SQDIFF_NORMED — Room Detection Classi-
fication Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.67 0.07 0.13 27
Class 2 0.08 0.05 0.06 20
Class 3 0.17 0.11 0.13 9
Class 4 0.00 0.00 0.00 4
Class 5 0.03 1.00 0.06 1
Accuracy: 0.08
Macro Avg: 0.19 (Precision), 0.25 (Recall), 0.08 (F1-score)
Weighted Avg: 0.35 (Precision), 0.08 (Recall), 0.10 (F1-score)

ception while executing this experiment. The results of this experiment are on the
detection of number of rooms when the top 0.01% results are considered. The reason
being the internal statistical formula that is used to calculate the cross correlation
value for the template and the area under consideration from the target drawing.
The recall of Class 2 is 0.2, that means 80% of the actual 2 room drawings are clas-
sified wrongly into another classes, which gives a valid point as why the precision
values of Class 3, 4, 5 are almost negligible. The majority of the actual instances
are from class 1 and class 2 and the precision and recall values of both these classes
are turned out to be good, this can be considered for further investigation as it can
show better results once fine-tuned.

The results from the SQDIFF algorithm are mentioned in the table 5.10. The
small recall values for all the classes 1-4 suggests that the model is not able to pre-
dict the actual number of rooms in most of the cases. Also, the precision is in the
decreasing nature as we move from Class 1 to Class 5 which gives us the fact that
in general model is detecting more number of rooms than the actual number. The
reason could be the two cases that are discussed at the start of the section, i.e. more
templates might be satisfying the same room structure. To get the output in the
range of consideration, detections that fall under best 0.075% are considered. Unlike
CCORR, SQDIFF considers the square difference of the pixel values of the template
and the considered region of the target drawings. Since the majority of the room
templates are having a white base and the drawings under consideration are also
having white base, it is hard to have a diversification in correct detections because,
almost all the detections would be matching due to lower differences in pixel values.

Based on the 5 algorithms under consideration, and the discussion carried out
above for the detecting the number of blocks and rooms, table 5.11 and 5.12 suggests
that CCOEFF, CCORR, and SQDIFF would be the best algorithms to consider in
order to move with the next Experiment of fine-tuning parameters.

37



Table 5.11: Block Detection - Baseline Comparison Matrix

Algorithm Macro-Precision Macro-Recall Macro-F1
SIFT 0.06 0.12 0.07
ORB 0.04 0.20 0.06

TM_CCOEFF_NORMED 0.85 0.84 0.83
TM_CCORR_NORMED 0.04 0.20 0.07
TM_SQDIFF_NORMED 0.87 0.85 0.85

Table 5.12: Room Detection - Baseline Comparison Matrix
Algorithm Macro-Precision Macro-Recall Macro-F1

SIFT 0.10 0.21 0.02
ORB 0.09 0.20 0.12

TM_CCOEFF_NORMED 0.21 0.28 0.14
TM_CCORR_NORMED 0.22 0.19 0.20
TM_SQDIFF_NORMED 0.19 0.25 0.08
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5.2 Experiment 2 — Fine-tuning

This section presents the results about the further fine-tuning experiments conducted
over selected algorithms from the Experiment 1. The two subsections represents two
steps of fine-tuning. The first section specifies the outcome of the algorithms when
rotation and flip detections are introduced, both in block and rooms. The second
section specifies further results when the thresholding and grouping parameters are
considered for both block and rooms.

5.2.1 Rotation and Flip Fine-Tuning

The results from the CCOEFF, CCORR, and SQDIFF are mentioned in the table
5.13 – 5.15 for block detection and in the table 5.16 – 5.18 for rooms detection. The
discussion is drawn based on the evaluation metrics changes compared to the ex-
periment one. All the default parameters are kept intact for respective algorithms.
In block detection scenario, best 25% of the results are considered for all the ex-
periments. Whereas in Room detection scenario, it is best 25% for CCOEFF, 1%
for CCORR, and 2.5% for SQDIFF consideration. The same values are used in
the Experiment 1 so that fair results can be drawn after introduction of Rotation
and Flip. The reason of considering different percentages of the best result is the
statistical algorithmic difference of each. As the size of the rooms are bigger than
the block icon, the pixel level calculations differ in rooms and hence the variation.

Block Detection

Table 5.13: TM_CCOEFF_NORMED — Block Detection Post
Rotation and flip Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.79 1.00 0.88 11
Class 2 1.00 0.83 0.91 12
Class 3 0.92 1.00 0.96 12
Class 4 0.87 0.93 0.90 14
Class 5 1.00 0.75 0.86 12
Accuracy: 0.90
Macro Avg: 0.92 (Precision), 0.90 (Recall), 0.90 (F1-score)
Weighted Avg: 0.92 (Precision), 0.90 (Recall), 0.90 (F1-score)

In CCOEFF, there is an increment of 6% from 84% - 90% of accuracy overall
compared to Exp 1. Precision for each class has increased individually and there is
considerable increase of from 0.85 to 0.92 in the macro precision value, which means
the model is able to improve the detections for each class as it is matching with the
true class. The recall values are also increased for individual class and helped macro
recall value to go from 0.84 to 0.90. This means that the model can detect the true
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Table 5.14: TM_CCORR_NORMED — Block Detection Post
Rotation and Flip Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.00 0.00 0.00 11
Class 2 0.00 0.00 0.00 12
Class 3 0.00 0.00 0.00 12
Class 4 0.00 0.00 0.00 14
Class 5 0.20 1.00 0.33 12
Accuracy: 0.20
Macro Avg: 0.04 (Precision), 0.20 (Recall), 0.07 (F1-score)
Weighted Avg: 0.04 (Precision), 0.20 (Recall), 0.06 (F1-score)

Table 5.15: TM_SQDIFF_NORMED — Block Detection Post
Rotation and Flip Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.79 1.00 0.88 11
Class 2 1.00 0.83 0.91 12
Class 3 0.92 1.00 0.96 12
Class 4 0.93 0.93 0.93 14
Class 5 1.00 0.83 0.91 12
Accuracy: 0.92
Macro Avg: 0.93 (Precision), 0.92 (Recall), 0.92 (F1-score)
Weighted Avg: 0.93 (Precision), 0.92 (Recall), 0.92 (F1-score)

detections more accurately for each class. The increase of both macro-precision and
macro-recall then pushes the macro-F1 value as well, from 0.83 to 0.90. In CCORR,
we cannot see any difference compared to Exp 1 as shown in table 5.14. The reason
is similar as stated before, as the 25% of the results under consideration is may be
little high because of which there are too many detections compared to the actual
blocks in the drawings. The shift is expected once different threshold and grouping
values are taken into consideration in the follow-up experiment. In SQDIFF, as
shown in table 5.15, it is seen that the values of precision and recall for individual
classes have substantially increased from 0.87 to 0.93 for macro-precision, 0.85 to
0.92 for macro-recall, and hence, 0.85 to 0.92 for macro-F1. In a complete view, the
algorithms were able to capture the rotated and flipped version of the block icons.
The improvement in the results makes sure that there can be instances which rep-
resents blocks in different orientations and needs to be considered while designing
the proposed algorithm.

Room Detection

In CCOEFF, the results obtained from this experiment exhibit an inversion com-
pared to the anticipated outcome. The recall of class 1 is decreased from 0.37 to
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Table 5.16: TM_CCOEFF_NORMED — Room Detection Post
Rotation and flip Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.88 0.26 0.40 27
Class 2 0.00 0.00 0.00 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.04 1.00 0.08 1
Accuracy: 0.13
Macro Avg: 0.18 (Precision), 0.25 (Recall), 0.10 (F1-score)
Weighted Avg: 0.39 (Precision), 0.13 (Recall), 0.18 (F1-score)

Table 5.17: TM_CCORR_NORMED — Room Detection Post
Rotation and flip Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.76 0.70 0.73 27
Class 2 0.31 0.20 0.24 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.09 1.00 0.17 1
Accuracy: 0.39
Macro Avg: 0.23 (Precision), 0.38 (Recall), 0.23 (F1-score)
Weighted Avg: 0.44 (Precision), 0.39 (Recall), 0.41 (F1-score)

0.26, that means when the rotation and flip is introduced, then in the case of one
room drawings, model started to detect more number of rooms and hence there is
a decrease in recall value. But the point is, how can rotation and flip would result
in detection less accurately? The answer is, since our results are clipped between
1 and 5, the cases where the rooms were not detected and were counted in Class 1
as the matter of fact that each drawing would always have at least 1 room. Now,
as the rotation and flip is introduced, these rooms are able to get detected, thus
increasing the respective room count and lowering the value of recall in Class 1.
Overall, as we can see that the precision value of Class 5 is only 0.04, which means
in the significant amount of the cases the rooms detected by the algorithm is 5 and
beyond, and also we can see activity in class 1. Since, the results are visible for
both the extreme classes, there is a high chance that the result would improve when
other fine-tuning parameters would be considered along with this. In the CCORR
scenario as well, we can see the similar shift and the reason is also similar. Also,
in the case of SQDIFF, the values for all the classes except class 5 is null. The
precision value of 0.02 and the recall value of 1.0 in Class 5 assures that the model
is detecting way to many rooms than the actual room. Compared to Exp 1, when
Flip and Rotation is introduced now, the model is mapping different flipped version
of the template to the same orientation room, because of which compared to Exp 1
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Table 5.18: TM_SQDIFF_NORMED — Room Detection Post
Rotation and flip Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.00 0.00 0.00 27
Class 2 0.00 0.00 0.00 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.02 1.00 0.05 1
Accuracy: 0.02
Macro Avg: 0.00 (Precision), 0.20 (Recall), 0.01 (F1-score)
Weighted Avg: 0.00 (Precision), 0.02 (Recall), 0.00 (F1-score)

the results are degraded. This can be fixed if we try to fine-tune the detection by
trying out other percentage of best results rather than 2.5%.

5.2.2 Thresholding and Grouping Fine-Tuning

In continuation with the previous experiment, this section represents the results of
the experiment when Thresholding and Grouping ranges are included. In the case
of blocks, Both Threshold and Grouping are introduced simultaneously, as there is
s higher chance of the same template to be detected twice. Thresholding param-
eter help in considering the top matches, and the grouping parameter take care if
there are multiple detections for the same region. For block detection, Figure 5.1 –
5.3 represent the Thresholding and grouping matrix based on the accuracy scores.
Then Table 5.19 – 5.21 represent the final classification report for block detection
based on the fine-tuned threshold and grouping values for which the accuracy is
the highest respectively for each algorithm. Similarly, for room detection, Figure
5.4 – 5.6 represents the Threshold graph based on the accuracy scores. Then Table
5.22 – 5.24 represents the final classification report for block detection based on the
fine-tuned threshold and value for which the accuracy is the highest.

Block Detection

For Exp 1 we know that we have chosen the best 25% of the results for block
detection. CCOEFF shows the best results at threshold of 0.70 and grouping range
value of 1. CCORR shows best results at threshold of 0.86 and grouping range of
1. The threshold values are considered from 0.80 to 1.00 as a matter of fact that no
actual accuracy was found near 0.75 mark for this algorithm as discussed in previous
sections. Similarly, in SQDIFF, the best results are found at a threshold value of
0.3 and grouping range of 1. If all the three graphs are compared, then it is clearly
visible that all of them attain a spike at a certain combination of threshold and
grouping. Compared to grouping, threshold has a major impact on the algorithms as
the transition between the accuracy values is gradual when considered horizontally

42



Figure 5.1: TM_CCOEFF_NORMED Heatmap : Threshold and Group-
ing

in the graph whereas if the values considered vertically, there is no much change
observed.

Table 5.19: TM_CCOEFF_NORMED — Block Detection Final
Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.92 1.00 0.96 11
Class 2 1.00 1.00 1.00 12
Class 3 0.92 1.00 0.96 12
Class 4 0.93 0.93 0.93 14
Class 5 1.00 0.83 0.91 12
Accuracy: 0.95
Macro Avg: 0.95 (Precision), 0.95 (Recall), 0.95 (F1-score)
Weighted Avg: 0.95 (Precision), 0.95 (Recall), 0.95 (F1-score)

The final metrics of each algorithm for block detection turns out to be good in
every aspect. In comparison, CCOEFF is able to attain macro-precision of 0.95,
macro-recall of 0.95, and macro-F1 of 0.95. Whereas, both CCORR and SQDIFF
are able to achieve macro-precision of 0.97, macro-recall of 0.97, and macro-F1 of
0.97. On observation, it is visible that the threshold range considered for CCOEFF
is 0.50 - 1.00 and for CCORR is 0.80 - 1.00, but for SQDIFF it is 0.05 - 0.50. The
reason is, SQDIFF considered the square of the differences between the pixels values
of the template and the region of the drawing under consideration. The lesser the
difference, the better is the match. Hence, by specifying the threshold between 0.05
- 0.50, it is asked to take out results with the least difference. Unlike SQDIFF, for
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Figure 5.2: TM_CCORR_NORMED Heatmap : Threshold and Grouping

Table 5.20: TM_CCORR_NORMED — Block Detection Final
Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.92 1.00 0.96 11
Class 2 1.00 1.00 1.00 12
Class 3 0.92 1.00 0.96 12
Class 4 1.00 0.93 0.96 14
Class 5 1.00 0.92 0.96 12
Accuracy: 0.97
Macro Avg: 0.97 (Precision), 0.97 (Recall), 0.97 (F1-score)
Weighted Avg: 0.97 (Precision), 0.97 (Recall), 0.97 (F1-score)

CCOEFF and CCORR, higher values of threshold specifies better match.

Room Detection

For Exp 1, the best 25% of the results for block detection in case of CCOEFF have
been taken and 1% & 2.5% for CCORR and SQDIFF respectively. In Exp 2, af-
ter considering rotation, flip and thresholding, CCOEFF shows the best results at
threshold of 0.85 by attaining the accuracy of 70%, Means when the top 15% matches
are considered. CCORR shows best results at threshold of 0.996 with an accuracy
of 59%, means when top 0.4% results are considered. Similarly, in SQDIFF, the
best results are found at a threshold value of 0.010 with an accuracy of 66%, means
when top 1% results are considered. If all the three graphs are compared, then it is
clearly visible that all of them attain a spike at a certain threshold value, just like
the case on room detection. The reason for CCOEFF to show such great results
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Figure 5.3: TM_SQDIFF_NORMED Heatmap : Threshold and Grouping

Table 5.21: TM_SQDIFF_NORMED — Block Detection Final
Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.92 1.00 0.96 11
Class 2 1.00 1.00 1.00 12
Class 3 0.92 1.00 0.96 12
Class 4 1.00 0.93 0.96 14
Class 5 1.00 0.92 0.96 12
Accuracy: 0.97
Macro Avg: 0.97 (Precision), 0.97 (Recall), 0.97 (F1-score)
Weighted Avg: 0.97 (Precision), 0.97 (Recall), 0.97 (F1-score)

even while considering the top 15% of the results is that it considers both strength
and direction of similarity for every comparison. Where positive value of Correla-
tion Coefficient means and highly similar match and a negative values concludes and
dissimilar match. Unlike CCOEFF, CCORR, i.e. Cross Correlation, only computes
the measure of similarity at each position which considers brightness and contrast
of the pixels. Since both, the room templates and the drawings under consideration
have a white base, the overall difference only arises by the black room edges, which
makes the difference very close to each other and that’s the reason the algorithm
demands to consider the top 0.4% of the matches to do the distinguishing. Also
for SQDIFF, as discussed formerly, it considers the square of the differences in the
pixels values, the lower the difference, the better the result under consideration.

The final metrics clearly shows that CCOEFF has better results compared to
CCORR and SQDIFF. In CCOEFF, 0.96 of recall for Class 1 states that out of
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Figure 5.4: TM_CCOEFF_NORMED Threshold Graph

Table 5.22: TM_CCOEFF_NORMED — Room Detection Final
Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.68 0.96 0.80 27
Class 2 0.81 0.65 0.72 20
Class 3 0.50 0.22 0.31 9
Class 4 0.67 0.50 0.57 4
Class 5 0.00 0.00 0.00 1
Accuracy: 0.70
Macro Avg: 0.53 (Precision), 0.47 (Recall), 0.48 (F1-score)
Weighted Avg: 0.69 (Precision), 0.70 (Recall), 0.67 (F1-score)

all the true one room drawings, the model is able to predict correctly for 96%
of the times. Similarly, 65% accurately for 2 room blocks, 22% accurately for 3
room blocks, and 50% accurately for 4 room blocks. That means, the higher the
room count, it is conventionally difficult to detect the accurate number of rooms.
The reason behind this would be the two cases discussed in sec 5.1.2. Also, the
proximity of the rooms is also a major point of discussion as sometimes when two
rooms are close to each other there is a high chance that they are considered as
one. This is the reason we haven’t considered grouping parameter in the case of
room detection, because it is good that it is avoided to combine the two different
rooms together. Also in terms of Precision, as shown in fig 5.22, Out of all the
predictions made by the CCOEFF algorithm. 68% times it is said correctly as 1
room block, 81% times for the two room block, 50% and 67% times correctly for
the 3 and 4 rooms block respectively. Since there is only one instance of having a 5
room block, it is understandable currently to not consider that part. According to
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Figure 5.5: TM_CCORR_NORMED Threshold Graph

Table 5.23: TM_CCORR_NORMED — Room Detection Final
Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.52 1.00 0.68 27
Class 2 1.00 0.45 0.62 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.00 0.00 0.00 1
Accuracy: 0.59
Macro Avg: 0.30 (Precision), 0.29 (Recall), 0.26 (F1-score)
Weighted Avg: 0.56 (Precision), 0.59 (Recall), 0.51 (F1-score)

figure 5.23, CCORR does not show comparatively good results as CCOEFF. Based
on individual precision values, 52% of the times model is correct when predicted
drawing to have 1 room and 100% of the times in case of 2 rooms. The Recall of
Class 2 is 0.45 says that out of actual 2 room drawings, 45% of the times model is
able to detect them accurately. There is no considerable detection for the rest of
the classes. In case of SQDIFF, the results are almost close to the performance of
CCOEFF for Classes 1 and 2, but there is no considerable results for other classes,
the reason remains the same discussed in section 5.1.2 s CASE I and II. Yet, this
model is considerable if we talk about the drawings having 1 and 2 room blocks.
On comparison, the macro scores of precision, recall, and F1 scores for CCOEFF
are found to be beyond 47% mark. followed by SQDIFF with beyond 29% and
then CCORR with beyond 26%. Since macro-F1-scores are the harmonic mean
of the macro-precision and macro-recall, and it will only increase when both the
values increase simultaneously. Also based on our proposed metric DEI, it tries
to find the overall better algorithm in the detection of both number of block and
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Figure 5.6: TM_SQDIFF_NORMED Threshold Graph

Table 5.24: TM_SQDIFF_NORMED — Room Detection Final
Classification Report

Class Metrics Support
Precision Recall F1-score

Class 1 0.63 1.00 0.77 27
Class 2 0.81 0.65 0.72 20
Class 3 0.00 0.00 0.00 9
Class 4 0.00 0.00 0.00 4
Class 5 0.00 0.00 0.00 1
Accuracy: 0.66
Macro Avg: 0.29 (Precision), 0.33 (Recall), 0.30 (F1-score)
Weighted Avg: 0.54 (Precision), 0.66 (Recall), 0.58 (F1-score)

number of rooms. The overall score of the DEI metric rises only when the individual
scores of the macro-F1 scores of block and room detection rises. And the individual
macro-F1 will attain higher values when there are accurate detections of both the
features resulting in higher values of individual macro-precision and macro-recall
The sequence of algorithm consideration can be seen as shown in table 5.25. Hence,
based on that criteria, CCOEFF(0.63) ace the list followed by SQDIFF(0.45) and
CCORR(0.41). The higher value of CCOEFF compared to other two algorithms
claims that the algorithm has more accurate detections when both the parameters
are considered simultaneously. Had it been the case when only block detection is
considered, based on table 5.25 COEFF is behind by 0.02% which is a negligible
difference when the test set size is considered.
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Table 5.25: Detection Effectiveness Index

Macro-F1(Block) Macro-F1(Room) DEI
TM_CCOEFF_NORMED 0.95 0.48 0.6377
TM_CCORR_NORMED 0.97 0.26 0.4100
TM_SQDIFF_NORMED 0.97 0.30 0.4582

5.2.3 Validation

Table 5.26: Block Detection (Validation)

Algorithm Macro-Precision Macro-Recall Macro-F1 Accuracy
TM_CCOEFF_NORMED 0.84 0.82 0.79 0.80
TM_CCORR_NORMED 0.90 0.86 0.84 0.85
TM_SQDIFF_NORMED 0.73 0.73 0.73 0.75

Table 5.27: Room Detection (Validation)
Algorithm Macro-Precision Macro-Recall Macro-F1 Accuracy

TM_CCOEFF_NORMED 0.85 0.81 0.82 0.85
TM_CCORR_NORMED 0.60 0.58 0.55 0.65
TM_SQDIFF_NORMED 0.58 0.58 0.54 0.65

Table 5.28: Detection Effectiveness Index(Validation)
Algorithm DEI

TM_CCOEFF_NORMED 0.85
TM_CCORR_NORMED 0.60
TM_SQDIFF_NORMED 0.58

Table 5.26 and 5.27 represents the results obtained by the algorithms with the
parametric values they have performed best. In case of blocks CCORR has the
highest macro-precison of 0.90 which means majority of the times the predicted
class by the algorithm is correct. Similarly highest macro-recall of 0.86 means that
out of all the algorithms, CCORR predicts the correct class better when compared.
Eventually, gets the highest macro-F1 scores and the accuracy scores of 0.84 & 0.85
respectively. Since, there are 20 instances for validation, every drawing constitues for
5% when classified correctly. Accordingly, in case of small icon detections, when the
algorithms are executed on their personal best parameter values, CCORR attains
the maximum accuracy of 85% followed by CCOEFF and SQDIFF with 80% and
75% respectively. In case of rooms, CCOEFF is the clear winner in terms of macro-
precision with 0.85, macro-recall with 0.81, evaluating to macro-F1 of 0.82 and the
accuracy of 85%. The reason why CCOEFF performs better is because it computes
the correlation coefficient which takes into account both the strength and direction
of similarity(+ve value for positive similarity and -ve for negative similarity). Since,
the room templates are atleast 500x bigger than the block icon, computing the
correlation coefficient makes it more accurate to detect the similarity in template.
Hence, CCOEFF performs better than CCORR and SQDIFF in case of rooms.
When the DEI score is calculated, CCOEFF has the score of 0.85 which is atleast
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33% more than the DEI score of CCORR and SQDIFF. Hence, giving the clear
winner.

Figure 5.7: TM_CCOEFF_NORMED Accuracy Graph

To support the correctness of the finding, the CCOEFF is used to detect few
other icons and patterns from the drawings. To execute this validation experiment,
all the drawings including the design-test and the validation constituted around 116
drawings. As shown in figure 5.7, CCOEFF is able to kitchen with 94.80%, showers
with 92.30%, internal hallway with 91.00%, urinals with 77.00%, sinks with 71%
and WCs with 54% accuracy. The accuracy for various icons suggest that, out of all
the drawings, the model is able to extract the exact number of the quantity in the
drawings correctly. Hence, all the false negatives and false positives also accounts
for the cases where the icons are detected in the drawing but the exact number of
matches are not found. Internal hallway is an exception as the outcome is boolean
in nature, i.e. internal hallway present or not.

Based on the results, discussions, and associated validation steps, the findings
provide a strong foundation to use this research for practical purposes. It can be
used to create a proper metadata model for the drawings. The metadata can then
be used to retrieve the drawings based on certain properties. In scenarios, whenever
a stakeholder is interested in finding a drawing with some unique requirements, a
mapping algorithm can be implemented to map those customer requirements with
the metadata. The best-matched results can then be displayed without any hassle.
Architectural industries can use this to gather ideas from past projects, which would
help to expedite their designing process. Additionally, the findings can help in esti-
mating the cost of the project based on the various facilities available in a drawing.
This information could be utilized by project managers and financial teams to more
accurately estimate project costs upfront and allocate budgets accordingly. This
could lead to more efficient resource allocation, better financial planning, and re-
duced risks of cost overruns during the execution phase of architectural projects.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This section answers the research questions and their sub parts that were designed
in the Chapter 1. Based on the Experiments and their results, the answers to those
research questions are as follows:

• RQ 1. What are the optimal detection techniques for extracting
details from construction drawings?

From Section 5.1, it can be concluded that out of 5 detection algorithms un-
der consideration, CCOEFF, CCORR, SQDIFF are the preferred algorithms
when the use case is similar to what is presented, i.e. when the agenda is
to find a smaller piece of visual information on a large image and also want
to count the number of occurrences. In case of blocks, at a certain threshold
value where only best 25% of the matching results were considered, CCOEFF
and SQDIFF show the macro-F1 scores of 0.83 and 0.84 respectively. CCORR
couldn’t beat them, but later after fine-tuning, it gave a tough competition. In
case of rooms, CCOEFF, CCORR and SQDIFF again were the best options
to consider from the considered 5 algorithms. There is not a clear winner for
the room detection task until later when the fine-tuning is performed to get
better results.

• RQ 2. What are the approaches to fine-tune the algorithm for effi-
cient results?

Out of various fine-tuning methods discussed in section 2.2.2. Considering Ro-
tation and Flip, followed by introducing Thresholding and Grouping as tested
in the section 5.2 did turn out in favour of improving the performance of the al-
gorithms under consideration. In case of blocks, when only Rotation and Flip
is introduced, CCOEFF and SQDIFF showed improvement as they attained
the macro-F1 scores of 0.90 and 0.92 respectively. Later, when thresholding
and grouping are also introduced, there is a shift noticed in the rankings. As
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both CCORR and SQDIFF showed, the macro-F1 scores of 0.97 followed by
CCOEFF with the score of 0.95. In case of blocks, after introducing only rota-
tion and flip, no significant improvement is noticed in any algorithm whereas
when thresholding is introduced along with it, a positive shift is noticed. CCO-
EFF is able to achieve the macro-F1 scores of 0.48(previously 0.14). Followed
by SQDIFF and CCORR with the macro-F1 scores of 0.30(previously 0.08)
and 0.26(previously 0.20) respectively.

• RQ 3. What are the evaluation parameters to measure the success
of the extraction of metadata from construction drawings?

From section 4.3, it can be concluded that the considered metrics would be the
good option in the current context to analyse the results. With the individual
scores of Precision, Recall, and F1 for every class, it gives us the performance
of how the algorithm performs at the individual level. Micro scores are con-
sidered in order to give equal weightage to each class, even there is an unequal
distribution of classes in the dataset. The proposed metric termed as DEI
gives us the overall score to evaluate the subtasks to answer the best preferred
algorithm.

• RQ. Is the extraction of metadata from construction drawings fea-
sible?

From Section 2.1.1 and 2.1.2 discusses the feasibility of extracting metadata
from the construction drawings. Overall, based on our experiments stated
in section 5.1 and 5.2 it is validated that, given the construction drawing,
it is possible to extract the metadata from the construction drawing with
the help of detection algorithms which are not specifically trained over large
amount of labelled drawings. Hence, providing a constructive validation of the
possibility of good performance without any overhead involvement of time and
computational resources.

6.2 Scientific Contribution

This research represents a significant contribution to the field by focusing on the
development and evaluation of algorithms that prioritize cost-effectiveness while de-
livering robust results. By carefully reviewing and assessing algorithms such as
CCORR, CCOEFF, and SQDIFF, the study sheds light on their viability in scenar-
ios where resource constraints are a concern.

Moreover, the research addresses a common challenge faced by mid-sized com-
panies, namely the lack of infrastructure for real-time data capture and storage
suitable for model execution and training. Unlike traditional machine learning al-
gorithms, which often require thousands of instances for meaningful results[65], this
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study demonstrates the feasibility of achieving significant outcomes even with lim-
ited data availability.

Furthermore, the findings of this research underscore the potential of image pro-
cessing algorithms, particularly CCORR, CCOEFF, and SQDIFF, in detecting and
extracting metadata from construction drawings. Through optimization techniques
such as rotation, flip, thresholding, and grouping, these algorithms exhibited en-
hanced performance, particularly in scenarios where drawings follow generalized
patterns or templates. The optimization efforts yielded notably positive results, in-
dicating the effectiveness of these methods in improving the accuracy and efficiency
of metadata extraction processes. Additionally, the CRISP-DM methodology facil-
itated the iterative nature of the project, allowing for continuous refinement and
optimization based on feedback and evaluation results.

In essence, this research contributes to advancing the understanding and applica-
tion of image processing algorithms in real-world contexts characterized by resource
constraints. By demonstrating the efficacy of cost-effective algorithms and optimiza-
tion strategies, the study offers valuable insights for practitioners and researchers
alike, paving the way for enhanced efficiency and innovation in industries reliant on
image data analysis.

6.3 Future Works
The study highlights several limitations and proposes avenues for future research
to enhance its findings. Foremost among these limitations is the restricted size of
the dataset. The experiments are strategically conducted by making sure that the
design set and the test set have similar distribution of classes. To improve the study’s
comprehensiveness and robustness, increasing the dataset’s size is paramount. This
might result in improving the results in room detections multifold. The second
limitation is the computational resources. Due to privacy reasons, it was not allowed
to use any third party applications and cloud computing facility, which could have
increased the throughput time. Unavailability of large set of labelled data was also
something needs to be focussed on and that’s what the challenge was all about its
feasibility. To further take this research based on its results, there is a scope of
proposing a semantic model for the construction and architectural drawings which
can also help in mapping the metadata acquired by the drawings to map it to the
customer queries based on their requirement.
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